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The procedure is based on nonlinear lifting line theory which has been modified to
include unsteady wake effects. A discrete voriex lattice representation is used for the
time dependent wake, whereas a finite element rcpresentation is used to describe the
time dependent wing load distribution, which iz agsumed concentrated along a single
line at the 259 chord position, In accordance with lifting line theovy, each chordwise
section is assumed ¢ behave like a two-divnensional airfoil at an effective angle of
attack defined by geometry and induced flov angnlarity. The usual assumptions of 1ift-
ing line theory apoly to the muthed, viz. moderate to high wing aspect ratio, moderate
sweep angie and incompressille flow. Additional assumptions are also implicit regard-
ing effects of the unsteady fiow or sectson chordwise load distributions and stall.
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Arbitrary nonlinear section lift curves may be introduced, and time histories of the
3 overall wing longitudinal and lzteral aerodynamic characteristics and spanwise load
2 distribution may be examined as the wing is pitched (up or down) through the stall range.
Lateral asymmetrties (e.g. afleron deflecticn) may also be introduced and removed
9 during the pitching motion to simulate effects of control actuation.

Zatind 2

Calculatious are presented which compars the method with existing theory and test

data and which show effects of various planform modifications and airfoil section
variations on wing stalling characteristics. For airfoils which have a negative lift
curve slope (subsequent to stall), the solutions sometimes exhibit abrupt losses in lift,
lift hysteresis, and asymmetric stall (even with zero lateral asymmetry). These
results are due to the existence of multiple solutions to the lifting line equations, which
have been known to occur with negative section lift curves (e.g. References 1 - 3). The
transient flow nature of the present formulation may provide a means of choosing
between the various possible loadings at a given angle of attack.
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The theory predicts that lift hysteresis during stail is strongly influenced by wing plan-

o

“\ form shape and by the steepness of the negative lift curve slope beyond stall. Increasing
: aspect ratio and decreasing the section negative lift curve slope tend to reduce stall

x hysteresis. Laterally asymmetrical span load distributions are produced, even at zevo
:, yaw, by introducing and then removing an aileron deflection. This gives rise to a “zero
beta' rolling and yawing moment not unlike those observed in tests at post stall angles

5. of attack. The zero beta asymmetries are shown to be alleviated by the same factors

: which reduced stall hysteresis. Definitive wind tunnel tests involving dynamic
measurements of aerodynamic force and moment coefficients and of - span load

g distribution are vequired to evaluate the accuracy of the method.
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This research was undertaken by the Convair Division of General Dynamics Corporation,
San Diego, Califoraia, under Naval Air and Development Center Confract N62269-75-C-
0356. The NADC Scientific Officer was Mr. A. Piranian, Code 3015A. The pregram
was administered by Professor L. Schmlidt, U.S. Navy Prstgraduate School, who was
acting as Navy Technology Administirator for Aevodvnamics, Code 320D,

The Principal Investigator was Mr. Stanley T. Fiszkin, wio passed away suddenly and
without warning shortly after completing th= formulatior. and computer check-out phases
of the contract. Mr. Piszkin also performed the majority of the computer calculations
and was able to demonstrate the occurance nf zero beta rolling »ad yawing moments.
The second author was priviledged to have worked closely with Mr. Piszkin during the

formulative stages of the program, and hopes that he has been able to convey the ideas
and results of Mr, Piszkin in a clear and precise manner.
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Mr. Piszkin, as an aerodynamicist and as a private pilot with experience in aerobatics,
not only deait with the theory of stalling instabilities from a theoretical standpoint,

but also from a very practical flight safety point of view. It was his hope that these
efforts weuld someday lead to a better understarding of the nature and cause of the
adverse departure and spin entry characteristics of high nerformance aircraft and
thereby result in improved flight safety. It is to this goal and to Mr, 2iszkin's
memory that the present report has been dedicated.

The authors wish to thank Mr. Herbert Sinnen for his efficient programming of the

computational procedure, and for his cooperation in acquainting the second author
with its use when the need arose.
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ABSTRACT

A computational procedure has been developed for predicting the time dependent
longitudinal and lateral aerodypamic characteristics of wing-body configurations at
angles of attack up to and beyond stall. The purpose of the procedure is to provide
the aircraft designer with a tool for simulating and alleviating such adverse wing
stalling characteristics as wing rock, wing drop, loss of roll control or roil control
reversal, etc., and thereby should lead to the design of airzraft with improved stall,
departure and spin resistance characteristics.

The procedure is based on nouvlinear lifting line theory which has been modified to
include unsteady wake effects. A discrete vortex lattice representation is used for
the time dependent wake, whereas a finite element representstion is used to describe
the time dependent wing load distribution, which is assumed conrentrated along a
single line at the 26% chord position. In accordance with lifting line theory, each
chordwise section is assumed to behave like a two-dimensional airfoil at an

effective angle of attack defined by geometry and induced flow angularity. The usual
assumptions of lifting line theory apply to the method, viz. moderate to high wing
aspect ratio , moderate sweep augle and incompressible flow., Additional

assumptions are also implicit regarding effects of the unsteuly flow on section chord-
wise load distributions :nd stall.

Arbitrary nonlinear section lift curves may be introduced. ard time histories of the
overall wing longitudinal and lateral aerodynamic characteristics and spanwise load
distribution may be examined as the wing is pitched (up or down) through the stall
range. Lateral asymmetries (e.g. aileron deflection) may also be introduced and
removed during the pitching motion to simulate effects of conirol actuation.

Calculations are presented which compare the method with existing theory and test
date and which show effects of various planform modifications and airfoil section
variations on wing stalling characteristics. For airfoils which have a negative 1ift
curve slope (subsequent to stall), the coiutions sometimes exhibit abrupt losses in

lift, 1ift hysteresis , and asymmetric stall (even with zero lateral asymmetry).

These -esults are due to the existence of multiple solutions to the lifting lire equations,
which tave been known to ~ccur with negative section lift curves (e.g. References

1-3). The transient flow nature of the present formulation may provide a means of
choosing between the various possible loadings at a given angle of a'iack.

The theory predicts that 1ift hysteresis during stail is strongly i fluenced by wing
planform shape and by the steepness of the negative lift curve ciope beyond stall.
increasing aspect ratio and deceressing the section negative lift curve slope tend to
reduce stall hysteresis. Laterally asymmetrical spanload distributions are produced,
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even at zero yaw, by irtroducing and then removing an alleron deflection. This
gives rise to a ""zerc beta'' rolling and yawing moment not unlike those observed

in tests at post atull angles of attack. The zero beta asymmetries are shown to be
alleviated by the same factors which reduced stall hysteresis. Definitive wind tunnel
tests involving dynamic measurements of aerodynamic force and moment coefficients
and of span load distribution are required tc evaluate the accuracy of the method.
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1
INTRODUCTION

Asg is well known, there are a large mumber of aerodynamic effects which may limit
the maneuverability of a fighter, especially as thrust to weight ratios, structural
placards and physiological limits on the pilot are raised. These include such phenom-
ena as shock induced buffet, wing rock and wing drop (probably due to asymmetrical
separation with a subsequent rolling-yawing motion), nose slicing (possibly due to the
establishment of asymmetrical flow and yawing moments in the noze region), pitch-up
(loss of longitudinal stability due to flow separation at the tips), ioss of lateral stabil-
ity at high angles of attack, loss of roll control and roll control reversal at high angles
of attack, and large drag increases (which lower the maximum sustained ioad factor).
It is generally believed that some type of flow separatior is responsibie for each of

: these pheromena. The present report deals with the development of a simplified aero-
dynamic tool for estimating the aerodynamic characteristics of wings and wing-body

; configurations of moderate to high aspect ratio undergoing transient pitching motion

; with flow separation. Hence, the method developead in this study should prove useful
for the prediction, simulation and possible inhibition of those adverse stalling
phenomena included within the framework of the theory.
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As noted above, the present formulatioa is for wings of moderate to high aspect ratio
to which lifting line theory may be applied. In this regard there has appeared some
interesting analytical work (1-3), based on Prandti lifting line theory, which indicates
that multiple solutions of the lifting line equations are possible under certain coaditions.
The multiple solutions are predicted only if the two-dimensiounal lift curves have either
discontimities or regions of high negative slope, beyond stall, as illustrated in Figure
1. One interesting feature of the multiple solutions is that they can yield span load
distributions which are either symmetrical or asymmetrical about the wing centeriine
even at zero sidelsip angle. According to Sears {1), the asymmetrical solutions
suggested to von Karman that large rolling moments could be produced near the stall
without postulating any initial rolling velocity (or other asymmetries such as slight
sideslip or wing panel misalignment). Sears states that the usual "textbook" explana-
tion for the large rolling moments pear stall, which is based on an initial rolling
velocity which stalls one panel and destalls the other, fails to account for the violence
of the rolling moments experienced in a wind tunnel with a model held fixed to the sting.
The establishment of any one particular load distribution (either symmetrical cr

asymmetrical) probably depends on the relative stability of the corresponding circulation
distribution to small disturbances.

The present report attempts to apply nonlinear lifting line theory to the modeling and

, prediction of aerodynamic effects during stall penetration at high angles of attack.

3 Previous discussions of stall aerodynamics have noted the occurrence of asymmetrical
flow separation at zero yaw angle as & possible forcing mechanism for wing rock and

1
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and other types of pre and post-stall motions (e.g. References 4-7). It is postuated
herein that the time dependent zero beta yawing and roiling moments predicted by the
nonlinear lifting line theory are contributory to the limit cycle type of motions apt to
occur during stall. This, of course, will require careful experimental verification.

The lifting line formulation utilized herein is a finite element, unsteady wake, incom-
pressible flow theory and is somewhat more general than the General Dynamics/Convair
nonlinear lifting line procedure reported in References 8 - 10. Besides excluding time
dependent wake effects, the later procedure was limited to laterally symmetric load
distributions at zero yaw angle, did not include effects of yaw, and could not handle
body interference effects. Nevertheless, the procedure was found to correlate
reasonably well with wind tunnel data through the stall (Ref. 9).

The procedure as formulated herein may be applied at either zero or non zero yaw
angle (yaw is handled by skewing tke wing panels). Both symmetrical and asymmetrical
load distributions may be obtained, even at zero yaw angle. Three dimensional unsteady
aerodynamic effects are included by allowing shed vortices in the wake to vary in
strength with distance and time. The strengths of the shed vortices are related to
those of the corresponding bound elements at an earlier time, based on the convective
time c2lay at free stream velocity between the bound vortex and the particular wake
station. Although the theory is unsteady from the point of view of wake induced effects,
it is assumed that the two-dimensional airfoil chordwise loadings and sectional
characteristics in stall are steady state. Thus, the assumption is implicit that such
two dimensicnal phenomena as associated with the dynamic stall of helicopter blades
are of a shorter time scale than the unsteady wake effects (see also Section 2. 2).

The present approach makes use of the key agsumption in lifting line theory, viz.

that each chordwise section acts like a two-dimensional airfoil at an effective angle

of attack equal to the local geometric angle of attack less the induced angle of attack.
In order for this assumption to remain vaiid, (i.e. for the chordwise load distribution
to remain two-dimensional) the aspect ratio must be sufficiently large tc limit span-
wise flow effects , and vortex effects associated with high leading edge sweep

angles must not be dominant in the stall. Besides the assumptions noted above the
method requires the selection of (or switching between) the various multiple span load
solutions which may exist at a given angle of attack. Some of these solutions may be
indicative of unstalled load distributions, some of partly stalled distributions and some
of nearly fully stalled distributions. The criterion used for selecting among the various
matematically possible solutions is empirical, and it is recognized that this aspect of
the formulatioa requires further analysis. Because of this empiricism, and as a
result of the assumptions noted previousiy, the need for wind tunnel tests involving
dynamic measurements of aerodynamic forces, moments and span ioad distribution
can not be over-emphasized.

The mathematical basis for the present theory is formulated in Section II. Results of
some simplified analyses and propertlies of the solutions are also presented in Section I,

2
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The method of solution and a dicussion of the stability and convergence of the iteration
procedure are presented in Section Ill. More extensive mimerical results involving
comparison with exisfing test data and linear theory, are found in SectionIV. Also
presented in Section IV are parametric studies showing efiects of planform shape

and of two-dimensional 1ift curve characteristics on stalling properties, Mathemati-
cal details of the formulation and & listing of the computer program, aleng with
detaiied instructions for its use, may be found in Reference 12.

* The reader is alsc refzrred {o Reference Z5, which came to the atlention of the
author iust prior to compietion of the present report, and which alsc applies non-

linear lifting line theory to the desizn of wings which minimize aircraft departure
and spin entry terdencies,

&2




2

THEORY AND ASSUMPTIONS

The presernt section presents the mathematical basis and assumptions for the nounlinear
lifting Iine theory with a time dependent wake as utilized herein. The theory may be
used to obiain tke time dependent span load distribution and corresponding time
dependent wing force and moment coefficients for wings and wing-bodies of arbitrary
planform experiencing a predetermined schedule of pitching motion and/or of lateral
conivol deflections.

The present lifting line theory is similar to that used by Weissinger in his L-method(nz
but has been modified to include nonlinear section aerodynamics, body interference
effects and time dependent wake effects. Effects of sideslip, or yaw, are represented
ag differential right and left sweep angles (like a skewed wing). No fuselage cross

flow terms are included in this sideslip representation. The theory as presented

below aliows for the arbitrary chordwise positioning of the wing control points, although
the bound vortex location is always retained at the 25% chord location.

2.1 VORTEX SYSTEM

The vortex system used in the analysis is pictured in Figares 2 and 3, and is assumed
planar except for the vertical displacement of the image vortices in the fuselage. The
exposed wing, as shown in Figure 2, is segmented into N equal-span elements (up to
20) of width h in the spanwise y direction. Each element is a parallelogram in shape
and consists of a bound vortex segment along the 1/4 chord line (which may be swept),
two streamwise trailing segments and a closing shed vortex element at a downstream
distance . x = Vg Lt, where Vo i8S the free stream velocity and At is the time step.
In the time dependent solution the strength T, .(t) of this vortex element repcesen:s
the circulation carried by the wing at the j 'th’spanwise element (j =1,2 ... N) at the
current time t. The downstream trailing vortex elements are of identical shape,

but are of varying strength as

Le® =0 (b-80) ()

where k is an index describiag the vortex element mumber in the wake (see Figure 3).
If the maximum mimber of downstream parallelogram elements to be included is M-1,
then

1 <k s M

where k = 1 corresponds to the wing element at the current time t, and k = M refers

5
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te the final wake elemsant, which is assumed urclosed. ¥ M = 1, the solution reduces
to that for a steady state wake.

Representation of the fuselage (assumed an infinite circular cylinder) by image vorte::
elements, as depicted in Figures 3 and 4, has found extevc<ive use in the literature,
¢.g. References 13-16. The body images are located at identical arial positions as
the primary (wing and wake) vortices. Since only the trailing vortex segments are
properly imaged (cancellation of primary vortex induced velocities normal to the
fuselage) the lateral and vertical locations of the image vortices is based on location
of the primary traiiing vortices. As shown in Figure 4, the images are located along
a straight line in the y-z plaae between the primary trailing vortex and the fuselwge
center at a radial distance R; from ihe centerline

)
R. =R “
1 = By /By 2)

where Rg is the body radins and RI‘ is the radius to the primary vortex.

The velocities induced by the counecting bound elements between the image vortices
arc also included, based on Ref. 13, even though the bound image voriices do not
satisfy the no flow condition through the fuselage. However, these velocities were
not turther augmented by the factor suggested in Reference 14, since it was belicved
that the justification for this correction wase insufficient. The bound image vurtices
were included in the evaluation of the overall force on the wing-bedv con.oination, in
accordance with the Trefftz-plane relationships given in Reference 16.

2.2 LIFTING LINE EQUATIONS

The lifting line assu.nption states that each spanwise station i of a wicg acts like a
two-dimensional airfoll at an eflective angle of attack agpp i equal to the local
geometric pitch angle of attack ap, (includes effects of wing incidence, twist, control
deflection, and body cross flow) less the downwash angle of attack op ; taduced by

the trailing vortex systems, viz.

“erry T 5 T %D, (3)
1

Thus, for an airfoil with lift, pitching momeat, ond profile drag curves of functional
forin
g = = } =
1, CL (cxp), CM CM (cxp,, and CDP CDP (ap) R (4)

lifting line theory assumes that




cLi t) = CLil:aEFFi (t):l

B CMiE’EFF{ (t)] (®)

Cp W =¢Cp ["EFF, (t)]
, P, i

(@)
_—
(o

S
|

Equations (5) indicate also that the unsteady effects to be included in the theory enier
only through the time dependence of agpy, , viz. through changes with time in

a,. and/or ap,. As noted in the Introducéion, the basic section characteristics as
det}ined functionally by Equations (4) are assumed independent of time. This requires
that various linear and nonlinear two~-dimensional unsteady flow effects, such as
dynamic stall (e.g. Reference 17;, be of an appreciably shorter time scale than the
wake and geometric effects included herein. This assumption is equivalent to assuming
that the chordwise pressure distribution, which affects the nature of flow separation
on the airfoil, rapidly approach the steady state distribution for the current angle

of attack. Combining unsteady two-dimensional effects with the nonlinear lifting

iine theory was assumed beyond the scope of the present cffort.

The control point for evaluating oppp, is taken at an axial distance Xep: from the
ieading edge. In the usual Prandtl liftllng line formulation x;,. = ci/4 ! Hence,
there would be no induced velocity contribution from the wing blound vortex segments.
In order to generalize the formulation for arbitrary Xepy the downwash angle

ap. has been defined as the difference between the total three-dimensional downwash
anéle ogp, at the contrul point and an equivalent two-dimensional downwash angle
@2, from an infinite span bound vortex along the c¢/4 line and equal in strength to
i"i, 1 (. Thus

o = o - (6)

In terms of downwash velocity components Aw induced by the paralielogram lattice
elements of unit circulation strength

w j=N, k=M

a ==t
3D, v,

1

i

@ j::l’kz.l lj.k J'K
where for each j, k lattice element and at each control point i

AW = AV + + + + + + +
LW AvTL AwTR AWBF AwBA AwIT AWIT AwIB Awi (8)
L R ¥ Ba




The subscripts in Equation (8) are T trailing element, B ocund or shed element, I
image, L left, R right, F forward and A aft. Mathematical expressions for each of
the elewents ip Equation (8), based on the law of Biot and Savart, are given in
Reference i2.

The equivalent two-dimensional downwach angle is

1 rl, 1 ®

Vo 2n (xc:p—xc/é)l cos (/\i-B)

o .'-'(\-;lt;)Aw r. . ()= (9

2D, i,1

where A is the quarter chord sweep angle (assumed negative for the left wing
panel, 1 <is N/2, and positive for the right wing panel, N/2 + 1 <i s N), and 8
is the side slip angle. The usual sign convention taking the downwash as positive
has been employed in the above expressions.

The pitch angle of attack is coraposed of the elements

api (t) = o (t) +aTi + AaRi (t) + AaBi (t) {:0)

where « (t) is the augle of attack of the root section, aTi is the built in
geometric twist, ‘o p. (t) is the effective roll asymmetry anple of attack due to
deflection of ailerons, and AaB (t) is the additional angle of attack due to the

body upwash. L
RBZ
AofBi t) = [o (1) - iy, J}—?' cos 2(5i cos 6{ (11)
where
I yil
cos O, =

{{zg =(ly/ -yp) tanv] 2, yi2 } 1/

Here i, is the wing rvot incidence angle, and the remuining quantities are defined
in Figure 4.

The unknowns are the current time values of tne circulation on the wing N 1( t), and
may Dbe found by seolving Equation {3) and the first of Equations (5). Thus, inscrting
Equuiizns (6), (7),(9) and (10) into Equation (3) gives




aEFFf (t) =apy (t) - 013Di {t) +xop (1)

i

= (t) +o

B (®)

+Aha_ (t) + Ao
R; {

T,
i

ow I, k(t:)

4 A -
dwy, T ® (12)

y = CL leppr. (U] (13)
® 1 i !

Equation (13) implies that the Kutta- Joukowski law L; (t) = pVw ! (t) holds in the
unsteady as well as in the steadv state case. This assumption is discussed further
in Section 2.5.

Equations (12) and (13) constitute the set of lifting line equations to be solved for
°'EFFi (t) and I‘i 1(t). The T, (t), k> 1, are known from solutions at previous
times through thation (1. B)élkore describing the general method of solution
several simplified solutions of these equations, which do not require any computer
calculations, are discussed below.

2.3 SIMPLIFICATIONS FOR A LINFEAR LIv'T CURVE

In gencral, Equations (12) and (13) must be solved by an iterative method, because
of the nonlinear nature of the lift curve as expressed in Equation (13). It is
precisely these nonlinearities which lead to the occurance of multiple span loadings,
lift hysteresis, and zero beta rolling and yawing moments. However, it is beneficial
to examine several simplifications which occur when the 1ift curve is linear, in
order to compare the theory with existing methods and to betiter understand the
nature of the complications due to the nonlinear effects.
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2.3.1 LINEAR LIFT CURVE - In the case of a linear lift curve Equation (13)
becomes

v_ ci_ -y QEFFi (t) (14)

where a is the section lift curve slope. Combining Equation (14) with Equation (13)
then gives a single set of linear equations which may bz solved directly for I“i 1(t).

The result is

’.\.W /“wq ./.\W
i.,j,l 2 “Di i.i.k .
i} - - = LK .
[ Vo ij( Veace ~ V )}5,1“’ api(t) v, Gk ® (15)
2sksM

where the repeated indices indicate a summation, and 6ij is the Kronecker delta
symbol.

Equation (15) represents a linear set of algebraic equations which may be solved
directly for each step in time. If the problem is initiated from a steady state

condition, then M =1 for t = 0 and the double summation term vanishes. In matrix
notation Equation (15) now becomes

CAWI{T, ()] ={ap, (0] (16)

where clements of the [AW] square matrix are given by the term in square brackets
in Equation (15), whereas {I'; (0)} and {ap. (0)} are column matrices made up of

-

the elements lj ] (0) and api {0) regpectively. Inverting Equation (16) gives

1

(T, (O} = (V] "o, (0)} (17)

At subsequent time steps terms in the double summation plays a role in the solution.
Thus, according to Equation (1), with t = At, k = 2 now corresponds to the solution
l“j 1 (0). Hence, we require M = 2 in order to account for unsteady wake effects.

2.3.2 EQUIVALENCE WITH WEISSINGER THEORY

2.3.2.1 Steady State - The pv:zent lifting line formulation becomes identical to the
Weissinger L-method{!) for 2 iinear lift curve in the steady otate case provided
the control point Xep is placed % distance equal to 50% of chord from the lifting line

10




(75% chord for zero sweep angle). This may be shown by considering a single horseshoe
vortex element (k = 1 only), with a bound segment and two trailing segments. By
Equation (6)

o R P
2D AN
i i
According to Equation (3)
Ii,1
= - +
*grr. - “p, " %p, T qv_c (18)

i i i @1

For thin airfoil aerodynamics, a; = 21; therefore by the steady state form of Equation
(14)

o = (19)

which is the flow tangency boundary condition at the 75% chord control point used in the
Weissinger approach. The nonlinear lifting line formulation, with the control point
location such that

(xcp— xc/4) cos (- 8) =c/2 (20)
may therefore be taken equivalent to a nonlinear Weissinger formulation.

2.3.2.2 Unsteady Theory (Two-Dimensional). It should be noted that the theory

also reduces to an unsteady form of the Weissinger theory, both for two-dimensional

and three-dimensional flows. Thus, for a two-dimensional unsteady flow Equations (6)
b :

and (7) become 1_,1 )

2n Vw (xc

1
@ () =T AW, [, () - -
EFF " Vo ~ k' k 0, /4)

11




where Aw, isthe downwash at Xep due only to forward and aft spanwise segments of
the k'th element. Thus, from Equation (8)

Aw, =SAWL  +Aw (21)

1 " ()
t)y=a (t) -5~ Aw, [ (1) +
(£) = o () v, "k Kt 2TV (X, = X, /)

“EFF
Using the linearized form of the unsteady Kutta-Joukowski law, Equation (14),
assuming the lift curve slope a =2, and taking Xep™ Xe /o ¢/2 then gives

1
= Aw T (t) = o (t) {22)
Vo kK P k=1,2,...
Equation 22 states that the instantaneous downwash argle at the 75% chord position
from all bound and shed spanwise vortex segments is equal to the instantaneous

angle of attack.

Equation (22) may be expressed in terns of the differential vortex strengths.
Referring to Figure 5

M'k (t) = i“k (ty-T t)

k-1

Thus, from Equation (21)

A =
wk I‘k (t) (AWBF+ AWBA )I‘k (t)
k k
i = =
and since AWBA waF
k k+1

substitution in Equation (22) yields

1
—— 3 w = ¢ ”°
V. B, Ark (t) Ol) (t) (23}

"

whe. = as seen from Figure 5,

12




AU (1) =Ty (0 = To(t) = Tq(t)

is the instantaneous bound vor‘ex strength on the airfoil at the 25% chord position.
As also noted in Figure 5, the force free convection of the wake requires

A f'l’ {t +4t)~ 4 (t) (24)

rk— 1

whereas the condition that the total vorticity (bound and shed) remain zero for all
time requires

A%a+au=-[%u+sm-rﬁw] (25)

Equation (25) requires tnat the first time step be taken with k = 2, for which the
first shed vortex is at a distance ¢ =(n - 3/4) ¢ from the trailing cdge, as shown
in Figure 5. Here n is the number of chord lengths per time step.

Equations (22) and (23) both show that the unsteady theory reduces to satisfying a flow
tangency condition in the two-dimensioral case when the comrol station is taken at the
75% chord position.

The equivalence of the prescnt unsteady wake 1ifting line formulation with the classical
solution of Wagner (Reference 18) for & two dimension airfoil in unsteady flow is
readily shown through use of Equations (23) - (25). Thus, Figure 6 compares the
calculated value of the change in Lift coefficient 2 Cy (t) due to a step change in

angle of attack Ldp, as calculated from Equation (23) ~ (25), with the Wagner function.
Lift coefficient was caleulated from the bound circulation strength 'y (t) through the
unsteady Kuita-Joukowski law, Equatien (13).

The step size used in the compution for the shedding of discrete vortices was one
chord length. The ciese correspondence between the discrete vortex formulation

and the continuous vortex sheet theory of Wagner shows that very little accuracy

is lost in the discrete vortex medel. It {s also clear that unsteadv wake effects, due
to the variation of shed as well as of trailing vorticity are accounted for in tho formu-
lation. Effects of wake vorticity on cho:dwise load distribution are not included as
was mentioned previously. Incorporsztion of these effects would require addition
bound vortex elements and control point locations on the wing.

2.3.2.3 Unsteady Theory (Three-Dimensionai}

The unsteady finite element representation may ulso be readily shown {o lead to a
flow tangency condition at the 75% chord position in the three dimensional case. The

13




PRAAE S il

-
LS

=

The demonstration is similar to that in Section 2. 3.2.1 for the steady state case,
except that the unsteady form of the Kutta- Joukowski law is used as given by Equation
(13) and the summation is carried out over k =1,2,... M rows of vortex elements

in the wake. The result is,

L
ok

. =
oz3D. ) = v Aw, . K (t) ozp.(t) (26)
1 *® i
provided the contrel point is located according to Equation (20) and provided the
steady state thin airfoil theory lift curve slope value is used,

2.4 SIMPLIFIED SOLUTIONS FOR A NONLINEAR LIFT CURVE

Several calculations have been performed with N = 2 (one vortex per wing panel)
and a tri-linear 2D 1ift curve. The two-vortex representation is the simplest
possible model for obtaining asymmetrical load distributions at zero yaw angle

and should be illustrative of the type of results obtainable with a larger number of
horseshoe vortex elements. Only simplified steady state solutions are discussed
below, since the corresponding simplified unsteady solutions did not include effects
of the shed vortex segments. Unsteady nonlinear solutions will be presented in
connection with the iterative procedure described for solving Equations (12) and (13)
in Scction 3.

As illustrated geometrically in Figure 7, several different steady state load distributions,
both svmmetrical and asymmetrical, may be possible for a wing with a tri-linear lift
curve at geometric angle of atiack op when ozp> wg > ¥q. Thus, solutions 1 through

6 represent the following loadings (see also Figure 1b):

1. Symmetrical, both panels unstalled with positive lift carve slope a.

o

Symmetrical, both panels stalled with negative lift curve slope - b.
3. Symmetrical, both panels stalled with zere lift curve slope

4. Asymmetrical, one panel unstalled and other pane! stalled with lift curve
slope -b.

5. Asymmetrical, one panel unstalled and other panel staiied with lift curve
slope C.

6. Asymmetrical, both panels stafled, one with liit curve slope ~b and the
other with 1ift curve slope G.

14




The determination or which load distribution will occur depends on the airfoil 2-D

1ift characteristics (b/a, o7 and 012), on the geometric angle of attack, and on wing
aspect ratio.

Symmetrical (unstalled with lift curve slope a)

For loading 1, the lifting line equations, [Equations (12) and (13) ], simplify,
respectively, to

CL1 T alptYy CL1"712 CL ) (27
provided the effective angle of attack Yo pp which is
“eFF - %p " "1 CL1 "Y1 CL2 (28)

is less than ;. Here y;, i8 the downwash angle induced at control point 1 (assumed

at the center of bound element 1) due fo horseshoe vortex 1 of strength such that Cy,
=1. Similarly, 7 12 18 the downwash angle induced at control point 1 due to horse-
shoe vortex 2 of strength such that Cy,, = 1. The influence coefficients 7; ij are related
to the downwash terms Awy, /V_ used %n previous sections through the expression
Yij= (Vi /o) Awi Ve Here also, the control point position has been taken on the
bound vortex, so that Lwop in Equation (12) cancels the contribution from the bound
vortex.

For symmetrical loadings, C1, = CL From the Biot-Savart law the coefficients
11 and 7y, are readily shown to be

Kl
711 TR
i
Y127 31 R

where ¢ and c, are the respective chords and ¢ is the average chord. - For a wing
of symmetrizal planform with only two horseshoe vortices c /c = °2/° =1,
Solving Equatica (27) for CL /acq gives

" o /o
e S p/ 1

ac B L+ay (1+y /y )

(29)

15
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for the unstalled 3-D lift curve. Equation (29) may be compared with the analogous
lifting line result with a constant downwash angle for 2 = 2 7, The latter is

ap
2 - ? s .
CL/ L lanry whereas Equation (29) gives

o
C, /2= —E

1+

3R

Symmetrical (stalled with lift curve slope -b)

For loading 2, the effective angle of attack defined by Equation (28) must lie between
oy anday. The lifting line equation is now

€L =8y -be -7, C -7,C -a

)
1. 1 g 1

Solving for CL /a 1 gives, assuming symmetry,
1

b
‘L, 13 (-afa)
= (30)
- < +

ao 1= ®/ayay, (14 Y,/v))
Symmetrical (stalled with lift curve slope 0)
For loading 3, the three dimensional lift coefficient is simply given by

CL/ac!1 =1- ACL/aoz1 (31)

where AC_ is the drop in lift coefficient between @, andag. For loading 3 we require
that dppy as given by Equ.tion (28) exceed g,

Asymmetrical (panel #1 unstailed, panei #2 stalled with dQL/da = -b)

For loading 4, the liiting line equations give

O
]

"% MG T e CLZ) (32)

@]
0

) (32)

aozl-b(cwp—'y2 C 1

-y..C. -
1 22
Ll L2
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where

®grr. % 1%L, M2 CL (33)
1 1 2
o =a¢ -7.C -v.C
EFF, %p 211 227L

We require that appg 1 be less than a4 and that OEFF, lie between @3 anday. Solving
Equations (32) and (33) with

‘le = ')’2 1 and T ‘)'22 due to the symmetrical wing planform yields
o /aoz1 = Nl/D, (34)
1
C. /aa1 = NZ/D (39)
2
and CL2/CL1 = N2/N1 (36)

where

»|o

W
_ (%
@)

a\ [
 (Ce _b - _ b b,
<a1> 1-2 @Y, ~a7,) <1+a)] +L+) A +ay))

b
@Y, - a'ylz)] -dr) A,

2
1

and D=(1+a'yn)(1-l-;-a‘)'n)+-3(a-‘y12)

Equation (36) has been plotted in Figure 8 for R = 4. Also indicated in Figure 8 is
the maximum angle of attack limit above which ¢ppp  exceeds ;. As seen from
Figure 8, Equation (36) predicts an asymmetrical rol}ing moment at angles of attack
below that for 3-D Cr,__ . When b/a = 1,5. Hence, some deterioration in aircraft de-
parture characteristics might be expected under these conditions.

17
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Asymmetrical (panel #1 unstalled, panel #2 stalled with dCL[_g_gp L))
For loading #5, the lifting line equations reduce to

C., =a3sa (ap - ‘Y11 CL, - 'le CL.Z)

Q
I

- A . 37
aqx CL (37)

We also require that agypp, be iess than and that YEFFo be greater thanog, where
QEFF, and agppy,, are defined according to Equations (33). Solving Egquations (37)

. 1 ~
gives

c aly
L ey -ty d -2 o
1+ -
acy a7
CL2 ac,
ryopl Py @9
%y 1
AC, -1 -
(ap/al) G- aal) ST AR
c. /C. = . 40)
L, 4 Lrary,

£quation (40) has been plotted in Figure 8 for values of ACL/aozl between 0 and 1 and
A = 4. Also shown in Figure 9 is the maximum ungie of attack at which QEFFI

< a, (unstalled panel limit) and the minimum angle of attack at which QEFF, > 09
(stalled panel limit). The latter limit is dependent upon b/a. Figure 9 sho'/s that
with b/a 2 1.5, asymmetric loadings of type 5 may exist over an ¢ zone which
increases in width with increasing b/a and /_\.CL/ aq. . P

Asymmetrical (panel #1 stalled with dCy,/do - -b, panel #2 stailed with dCL/da = §)

In this case the lifting line equations give

= - -y - -a 41
CLl aa, b(ozp 12 CL? 711 CLl cxl) “4n

CL2 = 8011 - ACL

18
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with the requirement that appyp; lie between 93 and ag, and that ¢ppF, be greater
than Upye Equations (41) weve solved for CLZ/ CLl giving

= » @2)
CLl /1 - -‘i.-c}—“- 1 - (P- ) aoy
l \ ac a 11

1

In swnmary, we have demonstrated the possibility of six different steady state load-
ings near stall for wings with a tri-linear section lift curve, Taking a wing with

AR =4, b/a=4and ACL/aal 0,6, it is readily shown that all six loadings will satis-
fy the lifting line eguations at an angie of attacka,, = 1.3 o1, which is just below the
valueay, = 4/3 o, for the maximum 3-D lift coefficient. The values of C1, and Cr,,
for these six loadmgs are listed in the table on Figure 10, The correspondjng values
of ¢ “EFFy and QEFF, are shown in the plot.

The question naturally arises; which of the six possible loadings will occur physically ?
This question was posed by Sears(}) who stated ""The choice between the various sol-
utions must invclve the question of the relative stabilities of the flows,' The question

will ke readdressed in connection with the iterative method of solving the time depen-
dent nonlinear lifting line equations,

2.5 GENERALIZED FORM OF THE KUTTA-JOUKOWSKI LAW FOFR UNSTEADY
FLOW

A generalized {orm of the two-dimensional Kutta-Joukowski law, viz,

L&), = PY, T, 0, (43)

has been used throughout the formulation in Sections 2.2 and 2.3 and is the basis for
Equation (13). In the present section we derive Equation (43) from the condition that
the negative rate of change of total momentum associated with the spanwise vortex
segments gives the magnitude of the liff. The total momentura perpendicular to x
for a two-~dimensional vortex system composed of discrete elemenis Al (t) spaced
along the x axis at distances xj from the leading edge; as shown in Figure 5b, is

PA]"k ) xk

where the double index implies 2 summation. Hence, the unsteady two-dimensional
lift hecomes

19




[Ark (t) Xy ] (44)

where the subscript 1 has been dropped for simplicity of notation [ scc ulso Eq. (1)
of Reference (1) 1.

The conditions that the shed vortex elemeﬁtsl. k 2 2, are convected downstream at

velocity V,, , and that the total vortimty Z ATy (t) remain zero for all time are given oy
k=1

Equations (24) and (25), respectively. The instantaneous bound vortex strength is

M‘I(t) = Fl (t).

Referring to Figure 5b, taking time steps with n = 1 (one chord length between ele-
ments), placing the bound vortex at the 25% chord position, the mcmentum at time

=¢/V, is

L[}

p M‘k(c/V o X = AT 1(c/vm) c/4 + AT, (c/4) 5c/4

-7, (/N e
where we have made use of Equation (25).
Similarly, for t =2c/V_

pAM(2e/V) x =0T (2e/V )c/4 + AT,(20/V ) 5e/4 + AT (2e/Ve) 9 /4

= —I‘I(ZC/VQ) c - 1‘1 (c/‘Vm) ¢
where we have made use ¢f Equations (24) and (25).

For t=(M-1) c/Vw , the result generalizes to

M-
pAT[(M-1) e/V, ) x =-¢ Z r, (ke/V,) (45)
k=1

Taking t =/ wav-Z)c/Vu° and subtracting the result from Equation (45) gives

P {Ark (M-De/V Ix - o7, LiM-2)e/V 3% } =-er [(M-1)e/V, ]

20




Dividing by At =c/V_, we obtain

pA {Ark ((M-1) e/V_] xk}
At

= -V, I [(M-1e/v_]
and Equation (44) in difference form becomes
L[(M-1)c/V_]= prr‘lf_(M—l)c/Vw] (46)

which is identical to Equation (43). The same result may be obtained for arbitrary
step sizes n, and in the limit n - 0 the generalized Kutta- Joukowski law is tound.
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METHOD OF SNLUTION AND ITEKATION PROCEDURE

The set of nonlinear lifting line expressions as given by Equations (12) and (13)

constitute a s/stem of 2N algebraic equations in the 2N unknowns Ty(t) and op FFi (t),
i=1,2,..., N, which must be sclved for each step in tirne. 'The equations are nonlmear,
becausz the functional relation between T'i(t) and o, {t), expressing the two-
dimensional lift curve at station i, is generally nonlinear in the siall region and

beyond. Hence an iteration nrocedure is required fov their solution.

The nonlinear lifting line equations and cerresponding wing and fuselage geometric

relations were programmed for solution on the CDC Cyber 70 compuier. Details of
the computer program and of the method of solution have been presented in Reference
12, as was noted previously. However, the method of solution will also be reviewed
below, because of the 1imited distribution of Reference 12 and because several of the

assumptions in the iteration procedure may require further discussion.
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3.1 ITELATION PROCEDURE

The iteration procedure assumes the aircraft wing and fuselage geometry, sideslip
angle, etc., are given. and that the schedule of pitch angle ap(t) and lateral conirol

a-iection AozR(t) liave been epecified. Two iteration loops will be described, one for
t = { and the second for t> 0.

3.1.1 INITIAL SOLUTION, The method is started by determining the steady state

solution for t = 0. The root solving procedure consists of a simple iteration loop on
the induced angle of attack p, (0). A guess is first made for the spanwise variatien
of induced angle of attack oy, (‘])(0) This, together with the known op. (03,

establishes YRFF; (1)(0) through Equation (3). The wing bound vortex strengths
(1 (0) are then found by table lnok-up from the input aerodynamic lift curves
expressed by Equation (13). For t =0 we may take M =1, or equivalently take

r[ Kk 0y = I"i 1 (0), hence no wake vortices need be considered. The induced ;- 'es
are then vecalculated, based on the downwash velocity e'emmnents Bwg o

and
Awop., arlon the initial iterate for the vortex strengtas Iy (0), aﬂd compar, ‘ﬁ
with tile assumed values of ap (1) (0). The differences may be designated Aczq)i ).
The values to be used in the next iteration are
o Dy =a Yoy+cae Yo (47)
Di D-i Dl

where C is a weighting factor. The value of C affects the stability and convergence
of the iteration procedure. Increasing C speeds up convergence (reduces the number
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of required iterations), but may destablize the iteration procedure. In general,
the maximum value for C depends on wing aspect ratio, the number N of spanwise

elements, and cn lift curve slope. Some further discussion of effects of C on stability
are contained in Section 3.1.3.

With ap (2) (0) given by Equation (47) the procedure is repeated, viz.
i

(2) (2) 2) (2)
@p (0) -*O'EFF. 0) 4{“{’ 1 (0) +AaD (0), etc.

i i i
until either convergence is obtained, or unti! a maximum mmber of iterations has
occurred. Convergence is assumed when AaD (m) (0) = 0.1 degree for all i.
3.1.2 SOLUTIUN AT SUBSEQUENT TIME STEPS - The iteration procedure at
succeeding time steps t> 0 is similar to that at t = 0 with the following exceptions:

() The vortex strengths T'j g (t) in the wake are no longer identical to those
on the wing (k = 1), but are found by indexing from the previous time
step accurding to Equation (1).

(i) A special logic is used to specify the initial guess aDi(l) (®).
The later requirement was found necessary, especially near stall, because of the
possibility of multiple solutions, and because the iteration procedure appurerdly
tends to disallow roots on the steep negative slope regions of the section liit curves.
Therefor«, the wing elements appear in the sclutions as either unstalled or fully
stalled (region where the post stall lift curve is near zero). A dominant form for the
solution in the stall region appears to be a spanwise alternating pattern of unstalled
anc 1wlly stalled elements. The significance of this saw-tooth type of solution was
noi entirely clear. For example, if a very large mumber of spanwise elements were
modeled, then such a pattern over a given spanwise portion of the wing may weil
correctly represent partial stall or heavy buffeting in that region. However, since
the present computer program is limited to 10 elements per wing panel (N, = 20),
this type of saw~tooth stall patiern doss not appear to be physically realistic. It
was found that the saw-tooth stall pattern could be aveided in most cases by choosing
the initial guess for a (t) according to the following special logic.

i

a) When no wing sections are stalled at the prior time step (i. e. all converged
values of aEFFl (t - At) are less than ¥ max:? corresponding to the section
angle of attack for maximum Cj}, thea the aD,(l (1) are taken equal to
the converged values from the previcus time step «p, (t - At). This will

produce soluti»ns with all spanwise elements unstalled, if such solutions
exist.
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b) Wh ntae iteration procedure at the end ri the previous time step, or duritg
the current iteration, gives a soluticn with one or more stalled sections on
a wing panel (e.g. opFF, (t - At) exceeds ¥max)s thentie iteration procedure
is started {or restarted) with the agsumption that the induced angles are zero
on that particular wing panel. This procedure tends to force solutions with
as many stalled elements on that panel as the lifting line equations will
allow,

The special logic represented by a) forces the spanwise wing elements to remain
unstalied until such time that one or more elements must be stalled to satisfy the
governing equations. Partially stalled solutions with either saw-tooth stall patterns
or uniform sta'l patterns, are avoided during this time, even though they satisfy the
lifting line equations. The special logic given by b) assumes that once any spanwise
element has stalled, it tends to induce all adjacent elements of the same panel to
stall within the 1imits of the lifting line equations. Shielding of stall progression
from one side of the airplane to the other is assumed provided by the presence of
the fuselage (at least for low and mid-wing configurations). Unstalled solutions,

or solutions with saw-tooth stall patterns, are avoided during this time even though
they are mathematically acceptable.

It should be noted that the above logic will tend to maximize the extent of any stall
hysteresis loop which occurs for a wing undergoing a pitching motion through the stall.
Thus, stall will be delayed to the maximum possible angle of attack while o (t)

is increasing, and destall will be delayed to the minimum possible angle of attack
while ap (t) is decreasing.

Thus the sample computations presented in Section 4 may well tend to exaggerate

the stall hysteresis loops (and the angle of attack range for the occurrance of zero
beta rolling and yawing moments). The user is cautioned that the physical validity

of these assumptions has yet to be established, since there are at present insufficient
wind tunnel test data with dynamic type ineasurements. An aliernative type of
mathematical formulation, wherein the selection between the various multiple
solutions is based on their physical stability, rather tha: on a special logic for

the initial iterate, is clearly desirable.

3.1.3 STABILITY OF ITERATION PROCEDURE

The stability of the iteration procedure may be readily shown to be dependent upon
the spanwise exteni of the wing vortex elements, upon lift curve slope a and upon
the weighting factor C. We consider for example the highly idealized case of a
wing with a single vortex element and no unsteady wake effects (M = N = 1).
Neglecting the subscripts i, j,k the first iterate at time t is

Aw A
1 - —— .
aD( ) (t) v L@ At)

[=-]
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where

V¢ (Aw Aw
A o D 2D A (t- AL)
¥ - 9 [ 3 - ],and r‘(t-At)=2rt bt

vco - Vo ch Vm C

is the normalized circulation (lift coefficient) from the previous time step. Accordmg
to Sections 3.1.1 and 3.1.2, with the section unstalled, the initial iterate for F* (t)
is

AL, (AW ]
r (t)—a[ap(t) (Vm) T (t - At) ]+CL0 (48)

‘where a is the unstalled lift curve slope, and CL is the section lift coefficient at a =0.
The value for AozD(l) (t) which appears in Equation (47) is simply

Mo -(

Introducing the weighing factor C into Equation (47) gives for the second iteration
in downwash angle

)“‘”()

oo

(2) (t) = (1-C) F(t' Aty + C (V ) A(l) (t)

N2

The second iteration for T~ (t) follows as

7@ ) =a [ap(t) -1-0f ¢ - aty-C (—f,ﬂ)'f W

@

o] +cp,

which may be written, upon making use of Equation (48), as

RO L oD b

r ) =@1-¢)r¢y+C ga dp(t) - (ch) (t) ] +Cy, g 49)
Similarly, for the third iteration

Fm=a0tPm+c {a agt) - (FL)F @ | o 2 (50)
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Subtracting Equations (49) and (50) gives

AGB) . A2
p B @y (Aw)

=1-C=~-aC (T (51)
E@ gty Ve

The iteration procedure should be stable when the absolute value of this ratio is
below one, but convergence becomes very slow as the ratio approaches zero.
Since a> 0, the ratio is generally negative, and convergence and stability require

1 2
<C< < 2
0% |12\ ppfAV ¢ L [2) o (AW : 62
(&) () (50) 2 (32)
Convergence Limit Stability Limit

The product of h/c and 27 (Aw/V,,) has been plotted in Figure 11 versus hfc

for a horseshoe vortex of spanh and with control point locations at either ¢/4 or

3 c¢/4. Examination of Figure 11 shows that the allowable value of C must increase
as the number of spanwise elements N decreases, or as aspect ratio increases.
The value of C should also increase with decreasing positive lift curve slope a, and
C should be taken somewhat smaller when the control point is at 3c/4 instead of at
c/4.

Equation (51) was derived in order to illustrate the functional dependence of C on
paneling geometry and on lift curve slope, and is quantitatively correct only for the
highly simplified formulation M =N =i, Several trial values for C may be required
in order to find the value which gives the best convergenc properties for a particular
nonlinear calculation. According to Reference 12, C should range from about 0.1

for values of R == S5upto C =~0.3 for M =~12. These values were based on N = 15.
A default value C =0.1 is used in the computer program.:

3.2 COMPUTATION OF FORCE AND MOMENT COEFFICIENTS

Once the converged vortex strength distribution has been determined at a particular
time step, total force and moment coefficients for the wing body combinaticn may
be found by integrating the s-ction force and moment coefficients over the N wing
elements. The integration includes contributions from the bound image elements

in the fuselage in order to account for fuselage lift, as noted previously. These
fuselage terms are, however, omitted from the computation of drag, side force,
and rolling moment coefficient, since the fuselage is believed to make only a
negligibly small contribution to these coefficients.
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The overall coefficients of 1ift Cy , drag Cp, side force Cy. pitching moment
CnM, rolling mement Cg, and yawing moment Cy are, in terms of the section
coefficients (subscript i),

N hcl
= + - 3
CL ;( 3 ) CLi cos aDi[J (yILi yxRi) /h] (53)
N hc[
(‘.D = z (—-;— ) (CDE cos o + CL_ SlnofDi> (54)

+ CD sin (of - op. )J (565)
N c,2 / yILl YIg >
Z -g- (,M-CLi1+ b cos\p-aD)
i=1 .
xc/4i 3
.CD_l sin (Q’p’o’Di) '——c':*—-— (56)
N hci yi
c, = - Z ( o )cLi cos ap, (57)
i=1

hciyi \
c -3 (Zuki Aprep—
N A b CDi cos ap, + C,, sinop, (58)

The coefficient are referenced to wing area S, mean aercdynamic choxd ¢ and wing
span b. The angle vy refers to wing dihedral. The effective downwash angle ap,

is taken positive in the downward direction, and therefore is of opposite sense

to the angle Ax; in Reference 12. Several higher ordered terms, such as CD

sin ap. have been neglected in the 1ift and rolling moment expressions. I‘urthermore,
there is no geomertric contribution of dihedral angle nor of sweep angle to effective
angle of attack. Such effects are importa it at high angles of attack and sideslip, and
corrections may be vequired to correlate with test data, especially with sideslip.
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4

SAMPLE CALCULATIONS

An extensive selies of computations were made with the nonlinear lifting line computer
program described in Sections 2 and 3. The computations were made to compare with
test data, with previons theories and to assess effects of wing planform geometry and
section lift curve shape on stalling characteristics.

4.1 COMPARISON WITH AVAILABLE THEORY

Several computations were made in order to compare the current method with existing
theories in order to evaluate the accuracy and generality of the procedure. A
comparison of the accuracy of the finite element representation with the essentially
exact potentizl theory results of Wagner (Reference 18) has been given previously

in Figure 6 for the case of a two-dimensional airfoil with a linear lift curve subject

to a step change in angie of attack. Because of the simplifications introduced by
two-dimensional flow, results by the present method in Figure 6 were hand computed
instead of being run on the digital computer. The similarity of the present finite
element method with the exact results is appareut in Figure 6. Both methods give

an initial lift incremeni equal tc 1/2 of the steady state value.

The present method is compared with calcalations by W. P. Jones (Reference 19)

and Djojodihardjo and Widnall (Reference 20) in Figure 12, for the response to a

step change in angle of attack for a rectangular wing of aspect ratio 6. The lift curve
was again linear, and as can be seen from the figure good correlativn with the more
exact theortes was found. Both the present and more exact methods show that the
initial 1ift increment is greater than 1/2 of ihe steady state value when the aspect ratio
is finite. The computations in Figure 12 were carried out on the digital computer with
values M = 20 and N = 14.

Figure 13 depicts the variation in span ioad distrib: .iot with time from the current
method for the sume sample computation. Aiso shown in Figure 13 are the section
1ift coefficients at the 12 1/2% and 87 1/2% semi span stations as obtained by the
method of Reference 20. Once again, good correlation {s shown with the more e¢xact
computations.

The present method was also used to determine the development of 1ift following a
step changa in angle of attack for rectangular wiags of various aspect ratios, agaiv
with linear lift curves. The results are ploited in Figure 14 and compare well with
similar variations obiained by Jones (Ref. 19) for wings of elliptic ptanform. Once
again we note that the starting circulatory lift increment exceeds one-half the
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steady state value for the finite aspect ratio cases, with the excess increasing for the
lower aspect ratios. The computations in Figuvre 14 are with M = 20 and N = 14,

Normalized steady state lift increments are plotted versus aspect ratio in Figure 15,
to examine the aspect ratio range over which the current formulation may be expected
to hold. The current method appears to provide an accurate representation for 1ift
down to aspect ratios below 2, for an unswept wing of rectangular planform, when
compared with References 21 and 22 and with slender body theory. However, agree-
ment to such low aspect ratios is much less likely for planforms of moderate to high
sweep angle and for more sensitive coefficients such as induced drag, section Cy,,
etc..

4.2 COMPARISON WITH TEST DATA

The wing planform of the T-2C Navy trainer aircraft served as the basic geometry
for the remaining computations (with various modifications and adjustments). Lift
and rolling moment data from Reference 23 will be compared with the T-2C compu-
tations using a steady state wake (M=1), since the testing was done with the model
held fixed at a given angle of attack (pitch and pause).

The basic T-2C cornfiguration has a wing of aspect ratio R = §.07, taper ratio 7 =

0.495, a quarter chord sweep angle A = 2.27 degrees, a wing root incidence «.gle

i = 1.7 degrees with 2.5 degrees of washout at the tips, and a dihedral angle ¥ = 3°.

The airfoil is a NACA 647A212 section with an a = 0.8 (mod) camber line (flaps and
ailerons rigged 3 degrees up), and is constant across the span. The wing was

mounted at mid-height to a fuselage whose shape was approximated in the computations
by a circular cvlinder of radius Rg=0.119 (b/2). The wing paneling used for the
computations is shown in Figure 18 in the case of N = 14, The mimber oi spanwise
elements was varied for different computations. Nonlinear aerodynamic section data
used for the T-2C computations (and for the parametric computations) are plotted

in Figures 17 and 18, respectively. Curves labeled #1, #2 and #3 in Figure 17 are

for a NACA 647A212 section at Reynolds aumber 3 x 106, 6 X108 and> 6 x 108.

Curves labeled #11, #12 and #13 in Figure 17 were adjusted for the -3° trailing edge
rigging of the T-2C model, and are to be used in comparing with the wiud tunncl data.
Curves lakeled #4 and #5 in Figure 18 are for a NACA 64-209 section at Reynolds numbers
3x 108 and 6 x 105, respectively, and were used in the parametric calculations together
with curves #6-#8 to excmine effects of the steepness of the negative lift curve slope

-b in the post stzail region. The airfoil section characteristics in Figures 17 and 18 were
extrapolated from published NACA data (e.g. Reference 24).

A comparison between the calculated and measured iiit values for the T-2C at zero
and ten degrees yaw angle is shown in Figure 19. The tesis were conducted tail on,
and corrections were n:ade for the estimated tail lift contribution as shown in Figure
19b. The test data are static measurements and average out any fluctuating values
of Cy,. The model was not pitched in a manner to produce lift hysteresis (by taking
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transient measurements with oy increasing and then decreasing with time), whereas

the calculations were made with a pitch rate of 8 degrees/second {first increasing and
then decreasing). Even though it is difficult to evaluate the accuracy of the unsteady
method on the basis of the comparison with the static test data, the calculations appear
to indicate a hysteresis loop which extends over a somewhat broader angle of attack band
11° sags 18°) than might.be expected. This would be in accordance with the special
computational logic employed in the method, which as discussed in Section 3. 1.2 may
well tend to 1ead to the maximum allowable hysteresis.

On the other hand, Reference 23 shows the sudden occurence of a rolling moment at
zero yaw angle at angles of attack beyond 12 degrees. This may be taken as an indi-
cation of the stall (or partial stall) of one wing panel, and may correspond to the lower
iimit of any zone of lift hysteresis. The T-2C zero beta rolling moment data has

been plotted in Figure 20. Also shown in Figure 20 are computations made with the
current method, wherein a roll asymmetry is introduced for a very short period

and then removed, in order to perturb the asymmetrical loadings. As seen from
Figure 20, the resulting rolling moment coefficients (with the roll asymmetry
removed) correlate well with the test data.

The present nonlinear lifting line method predicts the occurance of lift hysteresis
and zero beta volling and yawing moments for a symmetrical model with wing
section characteristics similar to the T-2C aircraft. Iis proper evaluation requires
dynamic wind tunzel testing wherein the model may be pitched (up or down) at a given
rate, and for which {nstantaneous (as well as time averaged) data are recorded. It is
recocmmended that any such test be made with a wing whose two-dimensional section
characteristics are known. In addition, a program of this type should include
measurements ol spanload distribution, in order to atford a more explicit evaluation
of the theory.

4.3 PARAMETR'C STUDIES

A series of parametric calculations have been made, using the current method, to
determine effacts of wing planform (aspect ratio, taper ratio, cweep back angle, and
twist) and of airfoil section characteristics (steepness of negative lift slope beyond
stail) on the occurence of lift hysteresis and zero-beta rolling moment. The purpose
of the calculations was to obtain trends and guidelines which might lead to the design
of safer aircraft which are less wubject to adverse departure and spin entry charac-
teristics during high performance maneuvers.

4.3,1 EFFECT OF NEGATIVE LIFT CURVE SLOPE AND ASPECT RATIO.

Effects of the abruptness of the negative 1ift curve slope beyond stall and of aspect
ratio for zero yaw angle are shown in Figures 21-23. Each plot represents a pitch
hystevesis computation through the stall with the angle of attack first increasing and
then decreasing at a rate of & degrees/second. Points with increasing angle of attack
are demoted by circles, whereas triangles are used for poiats with decreasing angle
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of attack. Where no triangles appear, the points are coimcident with the increasing
oy points. This notation has been used throughout the present section.

Figure 21 is for R =5.07, and shows that the zone over which lift hystereesis occurs
gradually decreases as the steepness of the negative lift curve slope diminishes. The
same trend is shown in Figure 22 (R = 8) and Figure 23 (R = 12). The figures also
show that increasing aspect ratio reduces the zone of hysteresis for a given negative
lift curve slope.

A similar set of pitch sweeps were made for a yaw angle 8 = 10°. Lift hysteresis
characteristics similar to those in Figures 21-23 were obtained. The corresponding
variations of rolling moment coefficient versus angle of attack have been plotted

in Figures 24-26 for AR = 5.07, 8 and 12, respectively. The figures show a hysteresis
loop for rolling moment coefficient, which behaves with respect to lift curve slope

and aspect ratio in a manner very similar to lift coefficient.

4,3.2 EFFECTSOF TAPER RATIO, SWEEP ANGLE AND TWIST. Effects of

taper ratio, sweepback angle and twist on lift hysteresis were obtained for the R =8
case with scction lift curves #4,6 and 7. Thus figures 27-29 show effects of varying
T from 0.2 to 1.0 on 1ift hysteresis. The calculations for the intermediate value

T = 0.495 are the same as those presented previously in Figure 22, and exhibit a
clightly greater tendency for lift hysteresis for all negative lift curve slopes than

do either of the other two T cases. This may be true, because the 7= 0.495 taper
ratio provides a more uniform spanwise distribution of section C_, and hence causes
the initial stall to be delayed to higher values of overall lift coefficient when the pitch
rate is positive.

Lift hysteresis curves with a sweepback angle A = 20° have been plotted in Figure 30
for section lift curves #4,6 and 7. TFigure 30 may be compared with Figure 22 (a-c)
to evaluate effects of the increased sweep angle. Although these figures show enly

a minor sweep effect, it should be noted that the present lifting line approach may
well apply only for low sweep angles, because of the assumption in the present analysis
that the section stalling characteristics remain two-dimension. The introduction of
even a moderate degree of wing sweep is known to modify the chordwise pressure
distribution and fo promote spanwise velocity components, thereby compromising the
assumption of locally two-dimensional stall,

Effects of wing twist angle are shown in Figures 31-33. Each figure is for a different
negative lift curve slope and presents results for the cases of -3° lincar wash out
(0=o7 < ~3°, anuntwisted wing (¥1=0), and a wing with positive linear twist

(0 sQp < +3°). The calculations for the untwisted case are the same as presented
previously in Figure 22(a~c). As is apparent from Figures 31-33, twist has only a
minor influence on the extent of life hysteresis for 1lift curves #6 and #7. However,
for lift curve #4, going from wash out (o= 0~-3°) to wash in (« 7= 0= +3°) is seen

32




PRI P

T

to increase the extent of stall hysteresis. This may be due to the more uniform

spanwise distribution of section CL produced by wash in at the tip, as was the case
with the effect of taper ratio.

It is recognized that the effects of twist, taper ratio, aspect ratio, and sweep back
on stall hysteresis are interrelated. The particular combination of wing geometric
parameters which provides the most uniform spanwise distribution of section C

: - . L
should also exhibit a greater degree of stall hysteresis. Because of the correspondance
between the occurrence of stall hysteresis and zero beta rolling and yawing moments
(see Section 4.3.3), it is expected that similar conclusions may be made with regard
to the effects of wing planforr: parameters on the zero-beta moments.

4.3.3 ZERO BETA ROLLING (AND YAWING) MOMENTS. A set of computations
was made to illustrate iiie occurence of zero-beta rolling and yawing moments during
the pitch sequence. This is shown in Figures 34 and 35 for the T-2C plaasform,

(R =5.07). Inthis case the pitching motion was initiated at o, = 12° with the wing
symmetrical. The pitching motion was halted at ap = 14. 4° and an asymmetry

bag = +1° was applied to each wing plane and then subsequently removed, in order
to simulate an aderon perturbation. The pitching motion was then resumed, either
positive or negative, with the wing again symmetrical. Figure 34 shows the lift
variation during this process for various lift curves. The corresponding rolling
moment variations are shown in Figure 35. The theory predicts the occurence of
zero-beta rolling and yawing moments (not plotted) over nearly the same «, zone
as that for which lift hysteresis occurs. Reducing the abruptness of the stall
(steepness of the negative lift curve slope) is seen to ameliorate the effect.

A similar set of computations is shown in Figures 36 and 37 for an R = 8 wing.
Here the roll asymmetry was introduced and removed at ap = 12.4° since the
wing was already completely stalled at ap = 14.4°. The results show that increasing
aspect ratio from 5. 07 to 8.0 considerably reduces the zone of angle of attack over
which zero-)eta lateral moments occur, especially with the less abrupt section 1ift
characteristics.

4.3.4 EFFECTS OF NUMBER OF ELEMENTS. All of the parametric calculations
presented so far were made with 14 vortex elements across the span, in order to
conserve computer time. It is recognized that requirements for improved
computational accuracy could well dictate the use of an increased number N of span-
wise elements (the existing computer program is limited to N = 20). Figure 38 shows
the effect of varying N from 10 to 20 on lift hysteresis, for the gection characteristics
with the most abrupt stall (curve #4) and with the most gradual stall (curve #8).
Although changing N appears to effect the instantaneous Cg, value somewhat, especially
for the case with the most gradual stall, the overall stalling characteristics appear
virtually uneffected by N. It is recognized that further studies of the effect of N,
covering a wider range well beyond N = 2u, and for various values of aspect ratio
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ard taper ratio, are needed to determine an optimum value for the computations.
Inlieu of any comprehensive siudy of this type, the value N=14 used in the majority
of the computations appears reasonable.

Most of the parametric computations have been made with only four rows of vortex
elements in the wake (M =4), the last row being horseshoe in shape. Calculations
were made with values of M as high as 49 (and as low as 1). The value M = 4 was

set as a compromise for including the major contribution from the unsteady wake

(up to distances of 3¢ behind the airfoilj, while reducing computer time to a minimum

4.4 HYSTERESIS CORRELATION

An attempt was made to correlate the results of the various computations of lift
hysteresis with the abruptness of the wing stall and with placform geometry. One
such correlation is shown in Figure 39, wherein the product ACy, - Aoy has been
plotted versus 57. 3b/m R. Here ACL, is the maximum Cy, difference in the
hysteresis zone, and Aoy is the width of the zone. The product ACY,_, - Aoy

is a measure of the area of the lift hysteresis loop. The value b is the maximum
negative lift curve slope (per degree), and the ratic 57.3 b/7 AR represents the ratio
of this slope to the slope dCL/dQ'D for a wing with constant downwash angle ap
across the span.

It is readily seen from Figure 1 that multiple solutions (symmetric case) will not
oceur unless b/(dCy,/dapy) =1, corresponding to 57.3 b/m AR = 1 in the constant
downwash angle case. For a wing with AR = 4 and a trilinear lift curve, as used

in the examples of Section 2.4, multiple asymmetric solutions occur when b/a -
(57.2 b)/(2% AR/4) 2 1.5, (or equivalently 57.3 b/n AR = 0.75), as seen from Figures
7-9. Thus, the parameter 57.3 b/7 AR appears reasonable for predicting the
~ccurence of multiple asymmetric as well as of symmetric solutions.

The correlstions in Figure 39 predict the occurrence of lift hysteresis wherever
57.3 b/ T AR>0.18, although the area of the hysieresis loop is seen to be dependent
on other planform characteristics as well, such as sweep back angle, twist and
taper ratio. Thus, the method predicts the occurrence of lift hysteresis for wings
with negative lift curve slopes only approximately 1/5 as abrupt as thought necessary
based on the idealized constant downwash angle criterion. This may be due to the
ratio dCL/ do. being much less than # &//57.3 over local regions of the wing with
stalled or partially stalled flow. Additional analysis of the parametric computations
and dynamic wind tunnel testing are required to further substantiate the correlation

in Figure 39.
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5

CONCLUSIONS AND RECOMMENDATIOXNS

A ronlinear lifting line theory, with an unsteady wake, has been developed and has
been applied to the prediction of forces and moments on aircraft undergoing a
pitching motion through the stall region. The procedure is an outgrowth of the steady
staie, noulinear lifting line approaches in Reference 1-3, which predicted the occur-
rence of multiple solutions to the lifting line equations under certain conditions. The
present theory predicts the occurrence of lift hysteresis and of rolling and yawing
moments, even at zero yaw angle, for wings where section characteristics exhibit

a negative lift curve slope of sufficient steepness subsequent to stall. It is anticipated
that the theory (and parametric computations presented herein) may serve as a guide
in predicting the susceptibility of varicus aircraft designs of moderate to high aspect
ratio and low sweep angle to adverse stall and departure characteristics.

5.1 CONCLUSIONS

Conclusions relating to the numerical computations and to the assumptions in the
theory are summarized below.

(i) Themethod has been programmed for solution on the CDC Cyber 70
computer. Computer solutions are simple to execute and reasonably
economical, requiring about one-mimute of micro-processor time for a
complete pitch sweep and hysteresis loop.

(ii) Computations by the preseni method agree reasonably well with previous
more exact, unsteady, linear, two-dimensional and three-dimensional
theories down to aspect ratios of 3 and less for wings of zero sweep.

(iii) The present method compares well with steady state T-2C test data (aspect
ratio 5.07), both for lift and rolling moment. No lift hysteresis effect
appeared in the test data, but both test data and theorv showed the occurrence
of zero-beta rolling and yawing moments in the stall region.

(iv) The present theory predicts the occurence of lift hysteresis (and of
zero beta rolling and yawing moments) when the parameier 57.3b/TR > 0.18
(-bis the maximum negative lift curve slope of the two-dimensional airfoil
sections comprising the wing). The angle of attack range over which these
effects occur, and their severity is found to increase with increasing b
and with decreasing aspect ratio. Other planform parameters, such as sweep-
back angle,twist and taper ratio have also been shown to affect the extent
of these adverse stalling characteristics to a lesser degree.
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The converged solutions obtained at angles of attack for which multiple
roots exist are non unique and depend upon the starting solutions used in
the integration procedure.

The iteration procedure used in the present method employed a gpecial
logic, which used either the converged solution from the previous time
step as the initial iterate {unstalled) case, or set the initial iterate for
downwash angle equal to zero over a wing panel (stalled case). This
special logic was somewhat empirical, and led to the elimination of solu-
tions with - saw-tooth stalling patterns. However, the special logic
delayed stall during pitch-up motions, and postponed destall during pitch-
down motions, thereby maxin.izing the zone over which lift hysteresis
(and zero beta rolling and yawing moments) occur. )

The formulation does not include geometric effects of sweep angle and
dihedral angle on the effective section angle of attack. These effects
should be included to produce satisfactory correlation with test data,
particularly for the s ideslip case.

5 2 RECOMMENDATIONS

Recommendations for improving the present method, by removing several of the
restrictive assumptions noted above, by conducting additional comparisons with test
data, and by generalizing the procedure for a wider class of aircraft configurations
(e.g. lower aspect ratio fighters) are given below.

(i)

(it)

A less empirical approach is required for selecting a particular loading
when multiple solutions exist. This would lead to an improved prediction

of the angle of attack zone over which lift hysteresis and attendant zero-beta
lateral moments may exist. One approach may be the introduction of rate
dependent equations for the vorticity on the wing. Such a formulation may
require chordwise relocation of the control poiit and/or modification of the
time stepping procedure (see also iv below).

A more definative evaluation of the method should be carried out by conducting
wind tunnel tests with a model which may he pitched and yawed continuously
while obtaining instantaneous readings of forces and moments. It is
recommended that the model consist of a circular fuselage with replaceable
straight wings of various aspect ratio and of known two-dimensional section
characteristics, in order to determine 1imits of applicability of the method.
Pressure data should be obtained over the wing, so that transient span and
chordwise load distributions may be obtained und compared with those
predicted by the theory.
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(iii) The formulation should be extended to treat yaw and dihedral effects directly,
rather than by simulating a yawed wing by a skewed wing. In addition, a
capability for time dependeut yawing motions should be incorporated into the
program in order to provid : for coupling the lifting line formulation with the
equations of motion for an aircraft.

(iv) In order to extend the method to lower appect ratio fighter type wings, it is
recommended that the lifting line formulation be expanded into an unsteady,
nonlinear, lifting surface theory. The new formulation would employ at
least two spanwise lifting lines, and control points for satisfying flow tangency
would be placed at two or more chordwise positions. The expanded theory
would also include unsteady effects on chordwise load distribution, and
might provide insight into the mechanism of dynamic stall. The later effects
are excluded from the current lifting line formulation, which assumes that
chordwise load distributions are always steadystate.
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TABULATION OF SYMMETRICAL AND ASYMMETRICAL LOADINGS FOR
2PANEL SOLUTION, AR=4 WING WITH b/a=4, ACL/CLMAX=(17, ANDap/a =13

LOADING LOADING
NO. | SYMBOL TYPE C,./C c,/c c/c
Ly bwax | L2 twax | L
® °® SYMMETRIC 0.98 0.98 1.00
® A SYMMETRIC 0.66 0.65 1.00
©) [ | SYMMETRIC 0.40 0.40 1.00
® 0 ASYMMETRIC 0.96 0.84 0.87
® AV ASYMMETRIC 0.91 040 0.44
® 0 ASYMMETRIC 0.46 0.40 0.87
14
Qp
12—
t
10—
%X 08— 20 LIFT !
= CURVE
E ace,,
=
S 06
i dc
_l:.=0
04 ac
1
a2
0 1 | I
0 a2 o4 06 08 1.0 12 14 16 18 20

Yerrly

Figure 10. Example of the Occurance of Six Possible Loadings with a Tri-Linear
Lift Curve
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Figure 17. Section Characteristics of NACA 64l A212 and T-2C Airfoils
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