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departure and spin resi3tance characteristics.

The procedure is based on nonlinear lifting line theory which has been modified to
include unsteady wake effects. A discrete vortex latzice representation is used for the
time dependent wake, whereas a finite element ro-presentation is used to describe the
time dependent wing load distribution, wbich is assuned concentrated along a single
line at the 25% chord position. In axordanccv with lifting line theory, each chordwise
section is assumed to behave like a two-dimnensional airfoil at an effective angle of
attack defined by geometry and induced flcoe angularity. The usual assumptions of lift-
ing line theory apply to the method, viz. moderate to high wing aspect ratio, moderate
sweep angle and incompressible flow. Additional assumptions are also implicit regard-
ing effects of the unsteady now or aection chordwise load distributions and stall.

Arbitrary nonlinear section lft curves may be introduced, and time histories of the
overall wing longitudinal and l.ateral aerodynamic characteristics and spanwise load
distribution may be examined as the wing is pitched (up or down) through the stall range
Lateral asymmetries (e. g. aileron deflection) may also be introduced and removed
during the pitching motion to simulate effects of control actuation.

Calculatious are presented which compare the method with existing theory and test
data and which show effects of various planform modifications and airfoil section
variations on wing stalling characteristics. For airf fols which have a negative lift
curve slope (subsequent to stall), the solutions sometimes exhibit abrupt losses in lift,
lift hysteresis, and asymmetric stall (even with zero lateral asymmetry). These
results are due to the existence of multiple solations to the lifting line equations, which
have been known to occur with negative section lift curves (e. g. References 1 - 3). The
transient flow nature of the present formulation may provide a means of choosing
between the various possible loadings at a given angle of attack.

The theory predicts that lift hysteresis during stall is strongly influenced by wing plan-
form shape and by the steepness of the negative lift curve slope beyond stall. Increasing
aspect ratio and decreasing the section negative lift curve slope tend to reduce stall
hysteresis. Laterally asymmetrical span load distributions are produced, even at zero
yaw, by introducing and then removing an aileron deflection. This gives rise to a 'zero
beta" rolling and yawing moment not unlike those observed in tests at post stall angles
of attack. The zero beta asymmetries are shown to be alleviated by the same factors
which reduced stall hysteresis. Definitive wind tunnel tests involving dynamic
measurements of aerodynamic force and moment coefficients and of. span load
distribution are required to evaluate the accuracy of the method.
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ABSTRACT

A computational procedure has been developed for predicting the time dependent
longitudinal and lateral aerodyPamic characteristics of wing-body configurations at
angles of attack up to and beyond stall. The purpose of the procedure is to provide
the aircraft designer with a tool for simulating and alleviating such adverse wing
stalling characteristics as wing rock, wing drop, loss of roll control or roll control
reversal, etc., and thereby should lead to the design of air-,raft with improved stall,
departure and spin resistap-ee chazacteristics.

The procedure is based on no linear lifting line theory which has been modified to
"P include unsteady wake effects. A discrete vortex lattice representation is used for

the time dependent wake, whereas a finite element represente.tion is used to describe
the time dependent wing load distribution, which is assumed conrentrated along a
single line at the 25% chord position. In accordance with lifting line theory, each
chordwise section is assumed to behave like a two-dimensiozal airfoil at an
effective angle of attack defined by geometry and induced flow angularity. The usual
assumptions of lifting line theory apply to the method, viz. moderate to high wing
aspect ratio, moderate sweep angle and incompressible flow. Additional

R assumptions are also implicit regarding effects of the unsteady flow on section chord-
wise load dlstributions ind stall.

Arbitrary nonlinear section lift curves may be introduced. ard time histories of the
overall wing longitudinal and lateral aerodynamic characteristics and spanwise load
distribution may be examined as the wing Is pitched (up or down) through the stall
range. Lateral asymmetries (e.g. aileron deflection) may also be introduced and
removed during the pitching motion to simulate effects of control actuation.

Calculations are presented which compare the method with existing theory and test
data and which show effects of various planform modifications and airfoil section
variations on wing stalling characteristics. For airfoils which have a negative lift
curve slope (subsequent to stall), the zoiutions sometimes exhibit abrupt losses in
lift, lIMt hysteresis, and asymmetric stall (even with zero lateral asymmetry).
These 7esults are due to the existence of multiple solutions to the lifting line equations,
which I ave been known to -ccur with negative section lift curves (e.g. References
1-3). The transient flow nature of the present formulation may provide a means of

5 choosing between the various possible loadings at a given angle of :&iack.

The theory predicts that lift hysteresis during stall is strongly 1 fluenced by wing
planform shape and by the steepness of the negative lift curve zlope beyond stall.
Increasing aspect ratio and drc-reesing the section negative lift curve slope tend to
reduce stall hysteresis. Laterally asymmetrical span load distributions are produced,
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even at zero yaw, by irtroducing and then removtog an aleron deftection This
gives rise to a "zero beta" rolling and yawing moment nut unlike thone observed
in 'Csts at post stall angles of attack. The &ero beta asymmetries are shown to be
alieviated by the same factors which reduced stall hysteresis. Definitive wind tunnel
tests involving dynamic measurements of aerodynamic force and moment coefficients
and of span load distribution are required te evaluate the accuracy of the method.
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INTRODUCTION

As is well known, there are a large number of aerodynamic effects which may limit
the maneuverability of a fighter, especially as thrust to weight ratios, structural
placards and physiological limits on the pilot are raised. These include such phenom-
ena as shock induced buffet, wing rock and wing drop (probably due to asymmetrical
separation with a subsequent rolling-yawing motion), nose slicing (possibly due to the
establishment of asymmetrical flow and yawing moments in the nose region), pitch-up
(loss of longitudinal stability due to flow separation at the tips), loss of lateral stabil-
ity at high angles of attack, loss of roll control and roll control reversal at high angles
of attack, and large drag increases (whic.h lower the maxim.um sustained load factor).
It is generally believed that some type of flow separation is responsible for each of
these phenomena. The present report deals with the development of a simpl ifiled aero-
dynamic tool for estimating the aerodynamic characteristics of wings and wing-body
configurations of moderate to high aspect ratio undergoing transient pitching motion
with flow separation. Hence, the method developed in this study should prove useful
for the prediction, simulation and possible inhibition of those adverse stalling
phenomena included within the framework of the theory.

As noted above, the present formulation is for wings of moderate to high aspect ratio

to which lifting line theory may be applied. In this regard there has appeared some
interesting analytical work (1-3), based on Prandtl lifting line theory, which in'dicates
that multiple solutions of the lifting line equations are possible under certain conditions.
The multiple solutions are predicted only if the two-dimensional lift curves have either

discontinuities or regions of high negative slope, beyond stall, as illustrated in Figure
1. One interesting feature of the multiple solutions is that they can yield span load
distributions which are either symmetrical or asymmetrical about the wing centerline
even at zero sidelsip angle. According to Sears (1), the asymmetrical solutions
suggested to von Karman that large rolling moments could be produced near the stall
without postulating any initial rolling velocity (or other asymmetries such as slight

sideslip or wing panel misalignment). Sears states that the usual "textbook" explana-
tion for the large rolling moments near stall, which is based on an initial rolling
velocity which stalls one panel and destalls the other, fails to account for the violence

of the rolling moments experienced in a wind tunnel with a model held fixed to the sting.
The establishment of any one particular load distribution (either symnmetrical or

asymmetrical) probably depends on the relative stability of the corresponding circulation
distribution to small disturbances.

The present report attempts to apply nonlinear lifting line theory to the modeling and

prediction of aerodynamic effects during stall penetration at high angles of attack.
* Previous discussions of stall aerodynamics have noted the occurrence of asymmetrical

flow separation at zero yaw angle as a possible forcing mechanism for wing rock and



and other types of pre and post-stall motions (e.g. References 4-7). It is postuated

herein that the time dependent zero beta yawing and rolling moments predicted by the

nonlinear lifting line theory are contributory to the limit cycle type of motions apt to

occur during stall. This, of course, will require careful experimental verification.

The lifting line formulation utilized herein Is a finite element, unsteady wake, incom-
pressible flow theory and is somewhat more general than the General Dynamics/Convair

nonlinear lifting line procedure reported in References 8 - 10. Besides excluding time

dependent wake effects, the later procedure was limited to laterally symmetric load
distributions at zero yaw angle, did not include effects of yaw, and could not handle

body interference effects. Nevertheless, the procedure was found to correlate

reasonably well with wind tunnel data through the stall (Ref. 9).

The procedure as formulated herein may be applied at either zero or non zero yaw

angle (yaw is handled by skewing the wing panels). Both symmetrical and asymmetrical

load distributions may be obtained, even at zero yaw angle. Three dimensional unsteady

aerodynamic effects are included by allowing shed vortices in the wake to vary in
strength with distance and time. The strengths of the shed vortices are related to

those of the corresponding bound elements at an earlier time, based on the convective
time dalay at free stream velocity between the bcund vortex and the particular wake

station. Although the theory is unsteady from the point of view of wake induced effects,

it is assumed that the two-dimensional airfoil chordwise loadings and sectional

characteristics in stall are steady state. Thus, the assumption is implicit that such

two dimensional phenomena as associated with the dynamic stall of helicopter blades

are of a shorter time scale than the unsteady wake effects (see also Section 2. 2).

The present approach makes use of the key assumption in lifting line theory, viz.

that each chordwise section acts like a two-dimensional airfoil at an effective angle
of attack equal to the local geometric angle of attac•k less the induced angle of attack.
In order for this assumption to remain valid, (i. e. for the chordwise load distribution

to remain two-dimensional) the aspect ratio must be sufficiently large to limit span-

wise flow effects , and vortex effects associated with high leading edge sweep

angles must not be dominant in the stall. Besides the assumptions noted above the

method requires the selection of (or switching between) the various multiple span load
solutions which may exist at a given angle of attack. Some of these solutions may be

indicative of unstalled load distributions, some of partly stalled distributions and some

of nearly fully stalled distributions. The criterion used for selecting among the various

matematically possible solutions is empirical, and it is recognized that this aspect of
the formulation requires further analysis. Because of this empiricism, and as a
result of the assumptions noted previously, the need for wind tunnel tests involving

dynamic measurements of aerodynamic forces, moments and span load distribution
can not be over-emphasized.

The mathematical basis for the present theory is formulated in Section II. Results of
some simplified analyses and properties of the solutions are also presented L'i Section If.

2



The method of solution and a dicussion of the stability and convergence of the iteration
procedure are presented in Section III. More extensive wimerical results involving
comparison with existing test data and linear theory, are found in Section IV. Also
presented in Section IV are parametric studies showing effects of planform shape
"and of two-dimensional lift curve characteristics on stalling properties. Matheniati-
cal details of the formulation and a listing of the computer program, along with
detailed instructions for its use, may be found in Reference 12.

* The reader is also referred to Reference 25, which came to the attention of the
author just prior to completion of the present report, and which also applies non-
linear lifting line theory to the design of wings which minimize aircraft departure
and spin entry tendencies.
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2

THEORY AND ASSUMPTIONS

The present section presents the mathematical basis and assumptions for the nonlinear
lifting line theory with a time dependent wake as utilized heroin. The theory may be
used to obtain the time dependent span load distribution and corresponding time
dependent wing force and moment coefficients for wings and wing-bodies of arbitrary
planform experiencing a predetermined schedule of pitching motion and/or of lateral
control deflections,

The present lifting line theory is similar to that used by Weissinger in his L-method
but has been modified to include nonlinear section aerodynamics, body interference
effects and time dependent wake effects. Effects of sideslip, or yaw, are represented
as differential right and left sweep angles (like a skewed wing). No fuselage cross
flow terms are included in this sideslip representation. The theory as presented
below allows for the arbitrary chordwise positioning of the wing control points, although
the bound vortex location is always retained at the 25% chord location.

2.1 VORTEX SYSTEM

The vortex system used in the analysis is pictured in Figures 2 and 3, and is assumed
planar except for the vertical displacement of the image vortices in the fuselage. The
exposed wing, as shown in Figure 2, is segmented into N equal-span elements (up to
20) of width h in the spanwise y direction. Each element is a parallelogram in shape
and consists of a bound vortex segment along the 1/4 chord line (which may be swept),
two streamwise trailing segments and a closing shed vortex element at a downstream
distance L x : V, Lt, where Vo is the free stream velocity and At is the time step.
In the time dependent solution the strength r. I(t) of this vortex element rep.eson;s
the circulation carried by the wing at the j Itspanwise element (j = 1, 2 ... N) at the
current time t. The downstream trailing vortex elements are of identical shape,
but are of varying strength as

r., M t = r.',k- ( t - A t) (1)

where k is an index describing the vortex element number in the wake (see Figure 3).
If the maximum number of downstream parallelogram elements to be included is M-],
then

1 :k5 M

where k = 1 corresponds to the wing element at the current time t, and k = M refers

Preceding page blank



to the final wake element, which is assumed urnlosed. If M = 1, the solution reduces
to that for a steady state wake.

Representation of the fuselage (aasumed an infinite circular cylinder) by Image vorte::
elements, as depicted In Figures 3 and 4, has found exteecdve use in the literature,
e. g. References 13-16. The body images are located a.t identical axial positions as
the primary (wing and wake) vortices. Since only the trailing vortex segments are
properly imaged (cancellation of primary vortex induced velocities normal to the
fuselage) the lateral and vertical locations of the image vortices Is based on location
of the primary trailing vortices. As shown in Figure 4, the images are located altng
a straight lIne in the y-z plane between the primary trailing vortex and the fusel]age
center at a radial distance RI from ýhe centerline

2
RI = RB 2/R (2)

where RB is the body radius and R.- is the radius to the primary vortex.

The velocities induced by the cou,,ecting bound elements between the image vortices
are also included, based on Ref. 13, even though the bound image vortices do not
satisfy the no flow condition through the fuselage. However, these velocities were
not turther augmented by the factor suggested in Reference 14, since it was believed
that the justification for this correz~tion was insufficient. The bound image vortices
were included in the evaluation of the overall force on the wing-body cn'ý.bination, in
accordance with the Trefftz-plane relationships given in Reference 16.

2.2 LIFTING LINE EQUATIONS

The lifting line assumption states that each spanwise station i of a wlag acts like a
two-dimensional airfoil at an effective angle of attack aEF equal to the local
geometric pitch angle of attack ap (includes effects of wing incidence, twist, control
deflection, and body cross flow) less the downwash angle of attack UD* induced by
the trailing vortex systems, viz.

0' = • - • (3)
EFFi / I D(

t

Thus, for an airfoil with lift, pitching moment, ,i.- profile drag curves of functional
form

CL = CL (tp), CM CM (ap), and CD = D (cp (4)
P P*

lifting line theory assumes that

6



CL (t) C"[ " (t)]L CLL EFF,

C (t) MCIEF (t)l (5)M. M,[E FF,C t) C 1 (F

CD (t) CD EFF

PL P1L

Equations (5) Indicate also that the unsteady effects to be included in the theory enter
only through the time dependence of a'EFF , viz. through changes with time in
Up. and/or aD,. As noted in the Introduction, the basic section characteristics as
detfned functionally by Equations (4) are assumed independent of time. This requires
that various linear and nonlinear two-dimensional unsteady flow effects, such as
dynamic stall (e. g. Reference 17), be of an appreciably shorter time scale than the
wake and geometric effects Included herein. This assumption is equivalent to assuming
that the chordwise pressure distribution, which affects the nature of flow separation
on the airfoil, rapidly approach the steady state distrTibution for the current angle

of attack. Combining unsteady two-dimensional effects with the nonlinear lifting
Uine theory was assumed beyond the scope of the present effort.

The control point for evaluating 0 'EFF Is taken at an axial distance Xcpi from the
leading edge. In dhe usual Prandtl lifttng line formulation xcu. = ci/4. Hence,
there would be no induced velocity contribution from the wing bound vortex segments.
In order to generalize the formulation for arbitrary Xcpi, the downwash angle
aD has been defined as the difference between the total three-dimensional downwash
a•gta u3D- at the control point and an equivalent two-dimensional downwash angle

a2D1 from an infinite span bound vortex along the c/4 line and equal in strength to
Fi, (t). Thus

. =3D - 2D (6)
i I

In terms of downwash velocity components Aw induced by the parallelogram lattice
elements of unit circulation strength

w j =K, k=M

3D. V jNk=. .. . (t) (7)
i VOO VW j;l = j,k ' j

where for each J, k lattlce, elemen: and at each control point i

Aw =Aw_, +AW T W+ AwB +A+ B +" 5TR+F6%wv_ + +Awl + AwI (8)
L R F A TL TR BF BA



The subscripts in Equation (8) are T trailing element, B ooand or shed element, I
image, L left, R right, F forward and A aft. Mathematical expressions for each of
the elements In Equation (8), based on the law of Biot and Savart, are given in
Reference 12.

The equivalent two-dimensional downwach angle is

1 r It)
6.W (t- 1,1(9)

L2) V) D Fi, 1 V, 21r (x -x ) cos (A-8)
I Go, ID ep c/4 I I-

where A1 is the quarter chord sweep angle (assumed negative for the left wing
panel. 1 - i s N/2, and positive for the right wing panel, N/2 + 1 "- I < N), and B
Is the side slip angle. The usual sign convention takirg the downwash as positive
has been employed in the above express ions.

The pitch angle of attack is composed of the elements

01 (t) = a(t)+cT +AaR_ (t)+AaB (t) (10)

where a (t) is the angle of attack of the root section, aT. is the built in
geometric twist, \a RI (t) is the effective roll asymmetry angle of attack due to
deflection of ailerons, and Aa (t) is the additional angle of attack due to the
body upwash. i

RB
2

LaB (t) [a (t) - iw Cos 2 c 6 t (11)

where y

cos 6.
V I" zB -l1Yi1 -YB)tany] 2 +y2 1/2

Here iw is the wing rvot inc derce angle, and the remaining quantities are defined
in Figure 4.

The unknowns are the current time values of tnc circulation on the wing 7t 1(t), and

may be found by solving Equation (3) and the first of Equations (5). Thus, insertingEqunatns (6),(7),(9) and (10) into Equation (3) gives

8



1EFF (t) = Cp (t) - a3D (t) 4 a2D (t)

I Li

=M "T L 1 (t) + +r Aa1 (t)

j=N, k=M
"• k~Aw1 j,k (t)

E I ilkj,k

M112+- w F' (t) (12)
V. W2D1. i,I

Expressing CL. (t) iLi Equation (5) in terms of the bound circulation gives

2 T- 1, l ( t )

S- CL . [,' FF i (t) M (13)W Ci L

Equation (13) implies that the Kutta- Joukowski law Li (t) = pVo.r' (t) holds in the
unsteady as well as in the steady state case. This assumption is discussed further
in Section 2.5.

Equations (12) and (13) constitute the set of lifting line equations to be solved for

uEFFi (t) and i'i I(t). The F.. (t), k> 1, are known from solutions at previous
times through Equation (1). odre describing the general method of solution
several simplified solutions of these equations, which do not require arny computer
calculations, are discussed below.

2.3 SIMPLIFICATIONS FOR A LIN'3AR LI,"..2 CURVE

In general, Equations (12) and (13) must be solved by an iterative method, because
of the nonlinear nature of the lift curve as expressed in Equation (13). It is

I: precisely these nonlinearities which lead to the occurance of multiple span loadings,
lift hysteresis, and zero beta rolling and yawing moments. However, it Is beneficial
to examine several simplifications which occur when the lift curve is linear, in
order to compare the theory with existing methods and to better understand the
nature of the corm~plicatlons due to the nonlinear effects.

9



2.3. 1 LINEAR LIFT CURVE - In the case of a linear lift curve Equation (13)

becomes

2rt .(t)
=a a EFFLM(4V = c .(t) (14)

V.c jEFF

where ai is the section lift curve slope. Combining Equation(14) with Equation (13)
then gives a single set of linear equations which may be solved directly for F (t).i,1

The result is

$ L)] l(t) - ' i'((t)15V I+ Vi(2 w 2VoDM -.( w Vi j, k t (15)

where the repeated indices indicate a summation, and 6.. is the Kronecker delta
symbol. L

Equation (15) represents a linear set of algebraic equations which may be solved

directly for each step in time. If the problem is initiated fromn a steady state
condition, then M = 1 for t = 0 and the double summation term vanishes. In matrix
notation Equation (15) now becomes

[AWIIr 1 (0)j 1 ap (0)) (16)

where elements of the [AW] square matrix are given by the term in square brackets
in Equation (15), whereas I 1 (0)) and lap. (0)) are couamn matrices made up of
the elements ., 1 (0) and api (0) respectively. Inverting Equation (16) gives

{I r1(0)1: = IA,vl 1 1t p (0)1 (17)

At subsequent time steps terms in the double summation plays a role in the solution.

Thus, according to Equation (1), with t = At, k = 2 now corresponds to the solution

r,, 1 (0). Hence, we require M z 2 in order to account for unsteady wake effects.

2.3.2 EQUIVALENCE WITH WEISSINGER THEORY

2.3.2.1 Steady State - The ptvsent lifting line formulation becomes identical to the
Weissinger L-method(11) for a Inear lift curve in the steady :state case provided
the control point xcp is placed • distance equal to 50% of chord from the lifting line

10



(75%'o chord for zero sweep angle). This may be shown by considering a single horseshoe
vortex elpment (k I only), with a bound segment and two trailing segments. By
Equation (6)

D. 3D. 2D.
I L I

and from Equation (9) with (xcp - Xc/4)i cos (A, - $) = (1/2) c1

012D. iV. c

According to Equation (3)
P,, 1OaFF =~ Ol-CD + Vc(18)

EFF P. 3D. n V C

For thin airfoil aerddynamiLs, ai 2 77; therefore by the steady state form of Equation
(14)

1T V ci = EFF.
L

and substitution in Equation (18) yields

a• D = a p (19)
3D. (YP.

I L

which is the flow tangency boundary condition at the 75% chord control point used in the
Weissinger approach. The nonlinear lifting line formulation, with the control point

location such that

(xcp- xc/4) cos (A, - )c/2 (20)

may therefore be taken equivalent to a nonlinear Weissinger formulation.

2.3.2.2 Unsteady Theory (Two-Dimensional). It should be noted that the theory
also reduces to an unsteady form of the Welssinger theory, both for two-dimensional
and three-dimensional flows. Thus, for a two-dimensional unsteady flow Equations (6)
and (7) becom e 1I(t)

aEFF(t) V1 wk k 2itV (x -x A
2I • c/4
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where Awk is the downwash at xcp due only to forward and aft spanwise segments of

the k'th element. Thus, from Equation (8)

6wk =LwB +Aw (21)k Fk A k

a M=(t) a(t) - 1 w F (t) + T-
EFF P V . k k 27TV0 (Xcp - x/4)

Using the linearized form of the unsteady Kutta-Joukowski law, Equation (14),
assuming the lift curve slope a = 2 1T, and taking xcp- xc/ 4 c/2 then gives

1- wk Fk (t) = CY (t) (22)
V k k ) 1,k2,...

Equation 22 states that the instantaneous downwash argle at the 75%,/ chord position
from all bound and shed spanwise vortex segments is equal to the instantaneous
angle of attack.

Equation (22) may be expressed in ternis of the differential vortex strengths.
Referring to Figure 5

L,'k (t) = 4k (t) - rk-1 (t)

Thus, from Equation (21)

L wk k(t)( + )Fk(t)
Fk Ak

and since LwB= -LwB
Ak Fk+1

substitution in Equation (22) yields

w A Fk (t) = 0, (t) (23)

whe:. as seen from Figure 5,

12



Al1 (t) '1  (t) - Fo(t) r•(t)

is the instantaneous bound vor'ex strength on the airfoil at the 25% chord position.
As also noted in Figure 5, the force free convection of the wake requires

Zr (t + tt) r--AFk-1 (t) (24)

whereas the condition that the total vorticity (bound and shed) remain zero for all
time requires

A r (t + L.t) = - [i' (t + At) - 7 (t) ] (25)
2 1 1

Equation (25) requires that the first time step be taken with k = 2, for which the
first shed vortex is at a distance e (n - 3/4) c from the trailivg edge, as shown
in Figure 5. Here n is the number of chord lengths per time step.

Equations (22) and (23) both show that the unsteady theory reduces to satisfying a flow
tangency condition in the two-dimensioral case when the conLrol station is taken at the

M,51 chord position.

The equivalence of the present unsteady wake lifting line formulation with the classical
solution of Wagner (Reference 18) for a two dimension airfoil in unsteady flow is
readily shown Zhrough use of Equations (23) - (25). Thus, Figure 6 compares the
calculated value of the change in Lift coefficient A CL(t) due to a step change in

angle of attack -'p. as calculated from Equation (23) - (25), with the Wagner function.
Lift coefficient was calculated from the bound ctrculation strength I 1 (t) through the
unsteady Kutta-Joukowski law, Equation (13).

The step size used in the compution for the shedding of discrete vortices was one
chord length. The close correspondence between the discrete vortex formulation
and the continuou6 vortex sheet theory of Wagner shows that very little accuracy
is lost in the discrete vortex model. It is also clear that unsteady wake effects, due
to the variation of shed as well as of trailing vorticity are accounted for in th., formu-
lation. Effects of wake vorticity on cho-dwise load distribution are not includec, as
was mentioned previously. Incorporation of these effects would require addition
bound vortex elements and control point locations on the wing.

2.3.2.3 Unsteady Theory (Three-Dimensional)

The unsteady finite element representation may also be reAily shown to lead to a
flow tangency condilton at the 75% chord positlon in the three dimensional case. The

13



The demonstration is similar to that in Section 2.3.2. 1 for the steady state case,
except that the unsteady form of the Kutta- Joukowski law is used as given by Equation
(13) and the summation is carried out over k = 1, 2,... M rows of vortex elements
in the wake. The result is,

1

U3D (t) t) (26)

provided the control point is located according to Equation (20) and provided the
steady state thin airfoil theory lift curve slope value is used.

2.4 SIMPLIFIED SOLUTIONS FOR A NONLINEAR LIFT CURVE

Several calculations have been performed with N = 2 (one vortex per wing panel)
and a tri-linear 21) lift curve. The two-vortex representation is the simplest
possible mnodel for obtaining asymmetrical load distributions at zero yaw angle
and should be illustrative of the type of results obtainable with a larger number of
horseshoe vortex elements. Only simplified steady state solutions are discussed
below, since the corresponding simplified unsteady solutions did not include effects
of the shed vortex segments. Unsteady nonlinear solutions will be presented In

connection with the iterative procedure described for solving Equations (12) and (13)
in Section 3.

As illustrated geometrically in Figure 7, several different steady state load distributions,

both symmetrical and asymmetrical, may be possible for a wing with a tri-linear lift
curve at geometric angle of attack ap when cip> C2> Y1. Thus, solutions 1 through
6 represent the following loadings (see also Figure lb):

1. Symmetrical, both panels unstalled with positive lift curve slope a.

2. Symmetrical, both panels stalled with negative lift curve slope - b.

3. Symmetrical, both panels stalled with zero lift curve slope

4. Asymmetrical, one panel unstalled and other pane! stalled with lift curve
slope -b.

5. Asymmetrical, one panel unstalled and other panel stalled with lift curve
slope 0.

6. Asymmetrical, both panels stalled, one wich lift curve slope -b and the
other with lift curve slope 0.

14



The determination or which load distribution will occur depends on the airfoil 2-D

lift characteristics (b/a, a, and a 2 ), on the geometric angle of attack, and on wing
aspect ratio.

Symmetrical (unstalled with lift curve slope a)

For loading 1, the lifting line equations, [Equations (12) and (13) ], simplify,
respectively, to

a LI1 = a (ap- 11 CL -12CL2 (27)112

provided the effective angle of attack a EFF' which is

aEFF = ap - Y 11 C L - >12 CL2 (28)

Is less than c1. Here yll is the downwash angle induced at control point 1 (assumed
at the center of bound element 1) due to horseshoe vortex 1 of strength such that CL 1

= 1. Similarly, 11 2 Is the downwash angle induced at control point 1 due to horse-
shoe vortex 2 of strength such that CL2= 1. The Influence coefficients VYi are related
to the downwash terms Aw-1/17 used Ln previous sections through the expression

'ij = (Vci/2) Aw1j/V 0)- Here also, the control point position has been taken on the
bound vortex, so that AW2D in Equation (12) cancels the contribution from the bound

vortex.

For symmetrical loadings, CL = CL2. From the Biot-Savart law the coefficients

V I1 and ,12 are readily shown lo be

c1 /
YIl 7T AR

* -c2/c
-C2

Y12 -3 /37T

where c1 and c2 are the respective chords and 6 is the average chord. For a wing
of symmetrizal planform with only two horseshoe vortices cl/a = c 2/= 1.
Solving Equation (27) for CL /aa1 gives

•11

R+a 1ly y (29)act1 -1 + a Y110 + Y12/Y11)
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for the unstalled 3-D lift curve. Equation (29) may be compared with the analogous
lifting line result with a constant downwash angle for a = 2 'T. The latter is

SC /27r = ' whereas Equation (29) gives
L 1 +2/AR

CL/27r = P4

L 1+4
3 M

Symmetrical (stalled with lift curve slope -b)

For loading 2, the effective angle of attack defined by Equation (28) must lie between
a• anda 2 . The lifting line equation is now

L 1- b (a P 11 L- 12 -L 1)
1 -1 2

Solving for CL /a a 1 gives, assuming symmetry,

C bL 1 +-- (i- /1_a ia1

aas. 1-(b/a) a-y11 (1 + /12/,) (30)

Symmetrical (stalled with lift curve slope 0)

For loading 3, the three dimensional lift coefficient is simply given by

CL/aa1 = 1 - ACL/aa1 (31)

where ACL is the drop in lift coefficient between a 1 and a 2 . For loading 3 we require
that c'EFF as given by Equ..tion (28) exceed a 2 .

Asymmetrical (panel #1 unstailed, panel #2 stalled with dCL/da = -b)

For loading 4, the lifting line equations give

aL1 = - 11 C - '12L (32)

CL2 aa1 - b (pp -y 21 CL1 - '22 L2 -a 1 ) (32)
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where

aEFF1 aP 11 C L1  '1 2 CL 2  (33)

aa -Y' CL- C
EFF 2 p 21 L 1 22L2

We require that aEFF 1 be less than a, and that aEFF 2 lie between al anda 2. Solving
Equations (32) and (33) with

"Y 12 = T21 and Y1 = vý22 due to the symmetrical wing planform yields

C L1/aat, =N1/D, (34)

C L2/ace a N2/D (35)

and C / = N2/N (36)
L 2L 1 2 1

where

1 V1 1 -- (a. 11-"12) - -a a'Y12

N(a ya7)1 ) +(1+ a) (1+ ay

b b 2
and D= (1 + ay 1 1) (1-- a- 1 1) +- (a b 12 )

Equation (36) has been plotted in Figure 8 for AR = 4. Also indicated in Figure 8 is

the maximum angle of attack limit above which aEFF exceeds ca1 . As seen from
Figure 8, Equation (36) predicts an asymmetrical rolling moment at angles of attack
below that for 3-D CLmax when b/a 2 1.5. Hence, some deterioration in aircraft de-
parture characteristics might be expected under these conditions.
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Asymmetrical (anel #1 unstalled, panel #2 stalled with dCL/d~p_ _

For loading #5, the lifting line equations reduce to

S=L a(a p- ^Y CL, - Y1 2 C L)L1 L2

C = aa1 - AC . (37)

We also require that aEFF1 be less than a 1 and that aFFF2 be greater than a 2 , where
aEFF1 and aEFF 2 are defined according to Equations (33). Solving Equations (37)
gives

ACL
CL1. (a p/al -, (12 /3ii a Y,11 (i - -al) (8

aa 1  1 + a y1 1

C
L2 ACL

2 1 - L (39)

aa1 aa1
1 11

L) a - (Ie 12 /yI)
[ /CLI (40)

L 2 " 1 + a -y 1

Equation (40) has been plotted in Figure 9 for values of ACI/aa 1 between 0 and I and
. = 4. Also shown in Figure 9 is the maximum angle of attack at which aEFF1

<a (unstalled panel limit) and the minimum angle of attack at which aEFF2, _ a 2
(stalled panel limit). The latter limit is dependent upon b/a. Figure 9 shos that

with b/a > 1.5, asymmetric loadings of type 5 may exist over an a zone which
increases in width with "increasing b/a and AC L/aua.

Asymmetrical (panel #1 stalled with dCL/da- -b, panel #2 stalled with dCI/da = C,)

In this case the lifting line equations give

C aa - b (a - T C - C a1 ) (41)
L1 I p 12 L2 11 L

C L aaa1 - ACL
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with the requirement that cyEFF 1 lie between al and c2, and that aEFF2 be greater
than a 2 . Equations (41) were solved for CL2/CL1 giving

SCT 1 + - 1 + (ý,-'-) aVYl (1 -

I I 11 (42)

C L ` !1- (h ) a~y
a a I a

Ln summary, we have demonstrated the possibility of six different steady state load-
ings near stall for wings with a tri-linear section lift curve. Taking a wing with
AR=4, b/a=4 and ACL/aa1 = 0. 6, it is readily shown that all six loadings will satis-

fy the lifting line equations at an angle of attack p = 1.3 al, which is just below the
value a = 4/3 a, for the niahximum 3-D lift coefficient. The values Of CL1 and CL2
for these six loadings are listed in the table on Figure 10. The corresponding values
of ýEFp 1 and are shown it the plot.Sof •,•F1 EFF2

The question naturally arises; which of the six possible loadings will occur physically?
This question was posed by Sears(1) who stated "The choice between the various sol-
utions must involve the question of the relative stabilities of the flows." The question
will be readdressed in connection wilth the iterative method of solving the time depen-
dent nonlinear lifting line equations.

2.5 GENERAL!ZED FORM OF THE KUTTA-JOUKOWSKI LAW FOR UNSTEADY
FLOW

A generalized form of the two-dimensional Kutta-.Joukowski law, viz.

L (t)i =P% (t) (43)

has been used throughout the formulation in Sections 2.2 and 2. 3 and is the basis for
Equation (13). In the present section we derive Equation (43) from the condition that
the negative rate of change of total momentum associated with the spanwise vortex
segments gives the iiagnitude of the lift. The total momentura perpendicular to x
for a two-dimensional vortex system composed of discrete elements Ark (t) spaced
along the x axis at distances xk from the leading edge, as shown in Figure 5b, is

PArk (t)x

where the double index implies a summation. Hence, the unsteady two-dimensional

lift becomes
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L(t) =-p d- [LFrt x (44)

where the subscript 1 has been dropped for simplicity of notation [ Z.also Eq. (1)
of Reference (1) 3.

The conditions that the shed vortex elements, k Ž 2, are convected downstream at
M-1

velocity Vz , and that the total vorticity A~k (t) remain zero for all time are given oy
k=1

Equtations (24) and (25), respectively. The instantaneous bound vortex strength is

Referring to Figure 5b, taking time steps with n = 1 (one chord length between ele-
ments), placing the bound vortex at the 25% chord position, the momentum at time

t = c/V"' is

P 1rk(c/V.) xk = AfI(c/V ) c/4 + M' 2 (c/4) 5c/4

- -FI (c/Vj) c

where we have made use of Equation (25).

Similarly, for t = 2c/Va,

p.1"Fk(2c/V) xk = A'1(2c/Vj)c/4 + AF2(2c/V ) 5c/4 + AM'3(2c/V,) 9 c/4

= -FI(2c/V.) c - 71 (c/V=) c

where we have made use of Equations (24) and (25).

For t = (M - 1) c/V. the result generalizes to

M-1
"pAiV[(M-l) c/V] xk =-c r r1 (kc/V.) (45)

k=1

Taking t = fM-2)c/V, and subtracting the result from Equation (45) gives

P { stk [M-I)c/V3] xk- Ark [(M-2)c/V] xk -cr 1 I(M-1)c/Vý]
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Dividing by At = c/V, we obtain

p A {~r k [(M.-1) c/V-] xkJ (M1cV= -v. r [(M-1%C/v ]
At

and Equation (44) in difference form becomes

L [(M-I)c/V.] = pV r 1[.(M-l)c/VJ] (46)

which is identical to Equation (43). The same result may be obtained for arbitrary
step sizes n, and in the limit n - 0 the generalized Kutta-Joukowski law is tound.
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3

METHOD OF SOLUTION AND ITERUATION PROCEDURE

The set of nonlinear lifting line expressions as given by Equations (12) and (13)
constitute a sjstem of 2N algebraic equations in the 2N unknowns F1(t) and ctEFF- (t),
I = 1,2,.,., N, which must be solved for each step In time. The equations are nonlinear;
becaus2 the functional relation between F1(t) and 'YEFFi it), expressing the two-
dimensional lift curve at station I, Is generally nonlinear in the stall region and
beyond. Hence an iteration procedure is required for their solution.

The nonlinear liftibg line equations and corresponding wing and fuselage geometric
relations were programmed for solution on the CDC Cyber 70 computer. Details of
the computer program and of the method of solution have been presented in Reference
12, as was noted previously. However, the method of solution will also be reviewed
below, because of the limited distribution of Reference 12 and because several of the
assumptions in the iteration procedure may reqaire further discussion.

3.1 ITEr-ATION PROCEDURE

The iteration procedure assumes the aircraft wing and fuselage geometry, sideslip
angle, etc., are given, and that the schedule of pitch angle cp(t) and lateral control
Ce.ectlon AaR(t) r~ave been specified. Two iteration loops will be described, one for
t = and the second for t > 0.

3.1.1 INITIAL SOLUTION. The method is started by determining the steady state
solution for t = 0. The root solving procedure consists of a simple iteration loop on
the induced angle of attack aD (0). A guess Is first made for the spanwise variation

of induced ang~le of attack YDI1 &)(0). This, together with the known ap1 (0),

establishes aE .(1)(0) through Equation (3). The wing bound vortex strengths
r, (1) (0) are then found by table look-up from the input aerodynamic lift curve.
expressed by Equation (13). For t = 0 we may take M = 1, or equivalently take
rlFk (0) = r, 1 (0), hence no wake vortices need be considered. The induced &...yes
are' then rec'alculated, based on the downwash velocity .omponents A wI. k and

AW21D), a.J on the initial iterate for the vortex strengths r, 1 (1)(0), Ad compar,1
with the assumed values of aD (0). The differences may(be designated Lct 0).
The values to be used in the next iteration are

((1)
01 (0) =. ( (0) + C A• (0) (47)D D' D

II

where C Is a weighting factor. The value of C affects the stability and convergence

of the iteration procedure. Increasing C speeds up convergence (reduces the number
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of required iterations), but may destablize the iteration procedure. In general,
the maximum value for C depends on wing aspect ratio, the number N of spanwise
elements, and on lift curve slope. Some further discussion of effects of C on stability
are contained in Section 3.1.3.

With a(2) (0) given by Equation (47) the procedure is repeated, viz.
I

I II
until either vonvergence is obtained, or until a maximum number of iterations has
occurred. Convergence is assumed when Ao (m) (0) < 0. 1 degree for all i.

S~L

3.1.2 SOLUTfGN AT SUBSEQUENT TIME STEPS - The iteration procedure at
succeeding time steps t> 0 is similar to that at t = 0 with the following exceptions:

(i) The vortex strengths ri, k (t) in the wake are no longer identival to those
on the wing (k = 1), but are found by indexing from the previous time
step according to Equation (1).

(1)
(ii) A special logic is used to specify the initial guess a (t).

The later requirement was found necessary, especially near stall, because of the
possibility of multiple solutions, and because the iteration procedure app.-eal1y
tends to dlsallow roots on the steep negative slope regions of the section lift curv6s.
Thereforý, the wing elements appear in the solutions as either unstalled or fully
stalled (regnon where the post stall lift curve is near zero). A dominant form for the
solution in the stall region appears to be a spanwise alternating pattern of unstalled
anc.' ily stalled elements. The significance of this saw-tooth type of solution was
not entirely clear. For example, if a very large number of spanwise elements were
modeled, then such a pattern over a given spanw•.se portion of the wing may ,lvell

correctly represent partial stall or heavy buffetiug in that region. However, since
the present computer program is limited to 10 elements per wing panel (Nmax 20),
this type of saw-tooth stall pattern does not appear to be physically realistic. It
was found that the saw-tooth stall pattern could be avoided In most cases by choosing
the initial guess for a D.(t) according to the following special logic.

a) When no wing sections are stalled at the prior time step (i. e. all converged
values of aEFF. (t - At) are less than am__, corresponding to the section
angle of attack for maximum CL), then the aODi (t) are taken equal to
the converged values from the previous time step a D- (t - At). This will

produce solut'ns with all spanwise elements unstalled, if such solutions
exist.
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b) Wh "i tie iteration procedure at the end rf the previous time step, or durirg
the c,,rrent Iteration, gives a solution with one or more stalled sections on
a wing panel (e.g. aEFF, (t - At) erceeds amax), then ti e iteration procedure
is started (or restarted) with the assumpt(on that the induced angles are zero
on that particular wing panel. This procedure tends to force solutions with
as many stalled elements on that panel as the lifting line equations will
allow.

The special logic represented by a) forces the spanwise wing elements to remain
unstalled until such time that one or more elements must be stalled to satisfy the
governing equations. Partially stalled solutions with either saw-tooth stall patterns
or uniform stall patterns, are avoided during this time, even though they satisfy the
lifting line equations. The special logic given by b) assumes that once any spanwise
element has stalled, it tends to induce all adjacent elements of the same panel to
stall within the limits of the lifting line equations. Shielding of stall progression
from one side of the airplane to the other is assumed provided by the presence of
the fuselage (at least for low and mid-wing configurations). Unstalled solutions,
or solutions with saw-tooth stall patterns, are avoided during this time even though
they are mathematically acceptable.

It should be noted that the above logic will tend to maximize the extent of any stall
hysteresis loop which occurs for a wing undergoing a pitching motion through the stall.
Thus, stall will be delayed to the maximum possible angle of attack while a'p(t)
is increasing, and destall will be delayed to the minimum possible angle of attack
while cp (t) is decreasing.

Thus the sample computations presented in Section 4 may well tend to exaggerate
the stall hysteresis loops (and the angle of attack range for the occurrance of zero
beta rolling and yawing moments). The user is cautioned that the physical validity
of these assumptions has yet to be established, since there are at present insufficient
wind tunnel test data with dynamic type measurements. An alternative type of
mathematical formulation, wherein the selection between the various multiple
solutions is based on their physical stability, rather tha;.- on a special logic for
the initial iterate, is clearly desirable.

3.1.3 STABILITY OF ITERATION PROCEDURE

The stability of the iteration procedure may be readily shown to be dependent upon
the spanwise extent of the wing vortex elements, upon lift curve slope a and upon
the weighting factor C. We consider for example the highly idealized case of a
wing with a single vortex element and no unsteady wake effects (M = N = 1).
Neglecting the subscripts I,j,k the first iterate at time t is

Aw ,
aD() (t) = V F r (t - A t)
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where

6w 1 W3 w2D 2F(t- Lt)SL 3D , and (t- 't)=

is the normalized circulation (lift coefficient) from the previous time step. According
to Sections 3. 1. 1 and 3. 1.2, with the section unstalled, the initial iterate for (t)
is

A(1 Mt = aa (t - At) + CLO (48)

where a is the unstalled lift curve slope, and CLo is the section lift coefficient at 0 =0.

The value for alD(1) (t) which appears in Equation (47) is simply

/ýUD(I M = - r it)

Introducing the weighing factor C into Equation (47) gives for the second iteration
in downwash angle

a D(2) it)= (1-C) r(t- Lt) + C (A-w)^(1)it)

N (2)
The second iteration for F (t) follows as

T2(t) =a MpLt- (1 - C,• -At) -C vw)F1(t) L

which may be written, upon making use of Equation (48), as

r (2) = (1-C) r)M + C a up~t) - (1) I + CL (49)

Similarly, for the third iteration

N (3) '% (2) A( 2
S(t) = (l-C) r (t) + C a a Mt - (
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Subtracting Equations (49) and (50) gives

N. (3) N(2ir (3)t) -. r ((t) -- I - C - a C (6w•

A (2(5 ())"
S(2(t) _ r 1 (t)

The iteration procedure should be stable when the absolute value of this ratio is

below one, but convergence becomes very slow as the ratio approaches zero.
Since a> 0, the ratio is generally negative, and convergence and stability require

1 2 (20< 1< C < 2 - 5. (52)

Convergence Limit Stability Limit

The product of h/c and 21T (bw/V,,O) has been plotted in Figure I I versus h/c
for a horseshoe vortex of span h and with control point locations at either c/4 or
3 c/4. Examination of Figure 11 shows that the allowable value of C must increase
as the number of spanwise elements N decreases, or as aspect ratio increases.
The value of C should also increase with decreasing positive lift curve slope a, and
C should be taken somewhat smaller when the control point is at 3c/4 instead of at

c/4.

Equation (51) was derived in order to Illustrate the functional dependence of C on

paneling geometry and on lift curve slope, and is quantitativply correct only for the
highly simplified formulation M = N = 1. Several trial values for C may be required
in order to find the value which gives the best convergenci properties for a particular
nonlinear calculation. According to Reference 12, C should range from about 0.1
for values of AR - 5 up to C - 0.3 for AR •- 12. These values were based on N = 15.
A default value C = 0. 1 is used in the computer program.t

3.2 COMPUTATION OF FORCE AND MOMENT COEFFICIENTS

Once the converged vortex strength distribution has been determined at a particular
time step, total force and moment coefficients for the wing body combination may
be found by integrating the svction force and moment coefficients over the N wing

elements. The integration includes contributions from the bound image elements
in the fuselage In order to account for fuselage lift, as noted previously. These
fuselage terms are, however, omitted from the computation of drag, side force,
and rolling moment coefficient, since the fuselage Is believed to make only a
negligibly small contribution to these coefficients.
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4

The overall coefficients of lift CL, drag CD, side force Cy, pitching moment
CM, rolling moment C£, and yawing moment CN are, in terms of the section
coefficients (subscript I),

N h-
C L C(L CosaDj h +(YIL YIR) A (53)

(CD Cos a D + C L. sin cyD) (54)

N hc.\,Y r

C -(tany') E -!) ( '_) [CL. COS GeDi

+ CD sin (p - aDi )J (55)
i

N he. 2  [i YIL, - IR.\
CM=i *_- CMiLCLi + costap -YDi)SE l -! (l-x/i h

+ C% sin 1YP-~ (56)

C = - e Sb )CLi cos cD, (57)
i=1

Sb D. =o aS. + i LL. (58)
cNýý = -• -! Dj cos O:Di + Li

The coefficient are referenced to wing area S, mean aerodynamic chord 6 and wing
span b. The angle y refers to wing dihedral. The effective downwash angle aDi
Is taken positive In the downward direction, and therefore is of opposite sense
to the angle Aa i in Reference 12. Several higher ordered terms, such as CDi
sin aD, have been neglected in the lift and rolling moment expressions. Furthermore,

there is no geometric contribution of dihedral angle nor of sweep angle to effective
angle of attack. Such effects are Importa it at high angles of attack and sideslip, and
corrections may be required to correlate with test data, especially with sideslip.
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4

SAMPLE CALCULATIONS

An extensive seiles of computations were made with the nonlinear lifting line computer

program described in Sections 2 and 3. The computations were made to compare with

test data, with previous theories and to assess effects of wing planform geometry and

section lift curve shape on stalling characteristics.

4.1 COMPARISON WITH AVAILABLE THEORY

Several computations were made in ordei to compare the current method with existing

theories in order to evaluate the accuracy and generality of the procedure. A

comparison of the accuracy of the finite element representation with the essentially

exact potential theory results of Wagner (Ref erence 18) has been given previously

in Figure 6 for the case of a two-dimensional airfoil with a linear lift curve subject

to a step change in angle of attack. Because of the simplifications introduced by

two-dimemnional flow, results by the present method in Figure 6 were hand computed

instead of being run on the digital computer. The similarity of the present finite

element method with the exact results is appareut in Figure 6. Both methods give

an initial lift increment equal to 1/2 of the steady state value.

The present method is compared with calcalations by W. P. Jones (Reference 19)

and Djojodlhardjo and Widnall (Reference 20) in Figure 12, for the response to a

step change in angle of attack for a rectangular wing of aspect ratio 6. The lift curve

was again linear, and as can be seen from the figure good correlation with the more

exact theories was found. Both the present and more exact methods show that the

initial lift increment I3 greater than 1/2 of the steady state value when the aspect ratio

is finite. The computations in Figure 12 were carried out on the digital computer with

values M = 20 and N = 14.

Figure 13 depicts the variation in span 9and distrlb" .ion with time from the current

method for the same sample computation. Also shown in Figure 13 are the section

Iift coefficients at the 12 1/2% and 87 1/2 % semi span stations as obtained by the

method of Reference 20. Once again, good correlation Is shown with the more exact

computations.

The present method was also used to determine the development of lift following a

step change in angle of attack for roctangular wings of various aspect ratios, agaL,

with linear lift curves. The results are plotted in Figure 14 and compare well with

similar variations obtained by Jones (Ref. 19) for wings of elliptic planform. Once

again we note that the starting circulatory lift increment exceeds one-half the
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steady state value for the finite aspect ratio cases, with the excess increasing for the
lower aspect ratios. The computations in Figure 14 are with M = 20 and N = 14.

Normalized steady state lift Increments are plotted versus aspect ratio in Figure 15,
to examine the aspect ratio range over which the current formulation may be expected
to hold. The current method appears to provide an accurate representation for lift
down to aspect ratios below 2, for an unswept wing of rectangular planform, when
compared with References 21 and 22 and with slender body theory. However, agree-
ment to such low aspect ratios is much less likely for planforms of moderate to high
sweep angle and for more sensitive coefficients such as induced drag, section CL,
etc..

4.2 COMPARISON WITH TEST DATA

The wing planform of the T-2C Navy trainer aircraft served as the basic geometry
for the remaining computations (with various modifications and adjustments). Lift
and rolling moment data from Reference 23 will be compared with the T-2C compu-
tations using a steady state wake (M=I), since the testing was done with the model
held fixed at a given angle of attack (pitch and pause).

The basic T-2C configuration has a wing of aspect ratio MB = 5.07, taper ratio . =

0.495, a quarter chord sweep angle A = 2.27 degrees, a wing root incidence 1',,gle
i = 1.7 degrees with 2.5 degrees of washout at the tips, and a dihedral angle V = 3'.
The airfoil is a NACA 64 1A212 section with an a = 0.8 (mod) camber line (flaps and
ailerons rigged 3 degrees up), and is constant across the span. The wing was
mounted at mid-height to a fuselage whose shape was approximated in the computations
by a circular cylinder of radius RB=O. 119 (b/2). The wing paneling used for the
computations is shown in Figure 16 in the case of N -= 14. The number of spanwise
elements was varied for different computations. Nonlinear aerodynamic section data
used for the T-2C computations (and for the parametric computations) are plotted
in Figures 17 and 18, respectively. Curves labeled #1, #2 and #3 in Figure 17 are
for a NACA 64 1A212 section at Reynolds number 3 x 1 06, 6 x 1 06 and> 6 x 106.
Curves labeled #11, #12 and #13 in Figure 37 were adjusted for the -30 trailing edge
rigging of the T-2C model, and are to be used in comparing with the wind tunnul data.
Curves labeled #4 and #5 in Figure 18 are for a NACA 64-209 section at Reynolds numbers
3 x 106 and 6 x 106, respectively, and were used In the parametric calculations together
wlth curves 16-#8 to examine effects of the steepness of the negative lift curve slope
-b In the post stall region. The airfoil section characteristics in Figures 17 and 18 were
extrapolated from published NACA data (e. g. Reference 24).

A comparison between the calculated and measured lift values for the T-2C at zero
and ten degrees yaw angle Is shown In Figure 19. The tests were conducted tall on,
and corrections were made for the estimated tail lift contribution as shown in Figure
19b. The test data are static measurements and average out any fluctuating values

of CL. The model was not pitched in a manner to produce lift hysteresis (by taking
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transient measurements with ap Increasing and then decreasing with time), whereas

the calculations were made with a pitch rate of 8 degrees/second (first increasing and
then decreasing). Even though it is difficult to evaluate the accuracy of the unsteady
method on the basis of the comparison with the static test data, the calculations appear
to indicate a hysteresis loop which extends over a somewhat broader angle of attack band

(110°s a -_< 180) than might, be expected. This would be in accordance with the special
computational logic employed in the method, which as discussed in Section 3. 1.2 may
well tend to l ead to the maximum allowable hysteresis.

On the other hand, Reference 23 shows the sudden occurence of a rolling moment at
zero yaw angle at angles of attack beyond 12 degrees. This may be taken as an indi-

cation of the stall (or partial stall) of one wing panel, and may correspond to the lower
"limit of any zone of lift hysteresis. The T-2C zero beta rolling moment data has
been plotted in Figure 20. Also shown in Figure 20 are computations made with the

current method, wherein a roll asymmetry Is introduced for a very short period
and then removed, in order to perturb the asymmetrical loadings. As seen from
Figure 20, the resulting rolling moment coefficients (with the roll asymmetry
removed) correlate well with the test data.

The present nonlinear lifting line method predicts the occurance of lift hysteresis

and zero beta rolling and yawing moments for a symmetrical model with wing
section characteristics similar to the T-2C aircraft. Its proper evaluation requires
dynam;,,v wind tunnel testing wherein the model may be pitched (up or down) at a given
rate, and for which instantaneous (as well as time averaged) data are recorded. It is
recommended that any such test be made with a wing whose two-dimensional section

characteristics are known. In addition, a program of this type should include
measurements of span load distribution, in order to afford a more explicit evaluation

of the theory.

4.3 PARAMET9T C STUDIES

A series of parametric calculations have been made, using the current method, to

detemnine efficts of wing planform (aspect ratio, taper ratio, cweep back angle, and

twist) and of airfoil section characteristics (steepness of negative lift slope beyond

stall) on the occurence of lift hysteresis and zero-beta rolling moment. The purpose

or thfw calculations was to obtain trends and guidelines which might lead to the design
of safer alrcraft which are less mubject to adverse departure and spin entry charac-

teristics during high performance maneuvers.

4.3.1 EFFECT OF NEGATIVE LIFT CURVE SLOPE AND ASPECT RATIO.

Effects of the abruptness of the negative lift curve slope beyond stall and of aspect

ratio for zero yaw angle are shown in Figures 21-23. Each plot represents a pitch

hysteresis computation through the stall with the angle of attack first increasing and

then decreasing at a rate of 8 degrees/second. Points with increaising angle of attack

are de•n•ted by circles, whereas triangles are used for points with decreasing angle
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of attack. Where no triangles appear, the points are coincident with the increasing
ap points. This notation has been used throughout the present section.

!P

Figure 21 is for/A = 5.07, and shows that the zone over which lift hystereE~is occurs
gradually decreases as the steepness of the negative lift curve slope dimi.ishes. The
same trend is shown in Figure 22 (Al = 8) and Figure 23 (Al = 12). The figures also
show that increasing aspect ratio reduces the zone of hysteresis for a given negative

lift curve slope.

A similar set of pitch sweeps were made for a yaw angle 5 = 10'. Lift hysteresis
characteristics similar to those in Figures 21-23 were obtained. The corresponding
variations of rolling moment coefficient versus angle of attack have been plotted
in Figures 24-26 for Al = 5.07, 8 and 12, respectively. The figures show a hysteresis
loop for rolling moment coefficient, which behaves with respect to lift curve slope
and aspect ratio in a manner very similar to lift coefficient.

4.3.2 EFFECTS OF TAPER RATIO, SWEEP ANGLE AND TWIST. Effects of
taper ratio, sweepback angle and twist on lift hysteresis were obtained for the Al = 8
case with section lift curves 114,6 and 7. Thus figures 27-29 show effects of varying
T from 0.2 to 1.0 on lift hysteresis. The calculations for the intermediate value

= 0.495 are the same as those presented previously in Figure 22, and exhibit a
.lightly greater tendency for lift hysteresis for all negative lift curve slopes than
do either of the other two T cases. This may be true, because the T = 0.495 taper
ratio provides a more uniform spanwise distribution of section C L , and hence causes
the initial stall to be delayed to higher values of overall lift coefficient when the pitch
rate is positive.

Lift hysteresis curves with a sweepback angle A = 20* have been plotted in Figure 30
for section I ift curves f 4, 6 and 7. Figure 30 may be compared with Figure 22 (a-c)
to evaluate effects of the increased sweep angle. Although these figures show only
a minor sweep effect, it should be noted that the present lifting line approach may
well apply only for low sweep angles, because of the assumption in the present analysis
that the section stalling characteristics remain two-dimension. The introduction of
even a moderate degree of wing sweep is known to modify the chordwise pressure
distribution and to promote spanwise velocity components, thereby compromising the
assumption of locally two-dimensional stall.

Effects of wing twist angle are shown in Figures 31-33. Each figure is for a different
negative lift curve slope and presents results for the cases of -3' linear wash out
(0 n cT < -3"), an untwisted wing (aT=0), and a wing with positive linear twist
(0•aT 5 +3*). The calculations for the untwisted case are the same as presented
previously in Figure 22(a-c). As is apparent from Figures 31-33, twist has only a
minor influence on the extent of life hysteresis for lift curves #6 and #7. However,
for lift curve #4, going from wash Out (aT = 0 - -30) to wash 0 T= 0 - +30) is seen
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to increase the extent of stall hysteresis. This may be due to the more uniform
spanwise distribution of section CL produced by wash in at the tip, as was the case

with the effect of taper ratio.

It is recognized that the effects of twist, taper ratio, aspect ratio, and sweep back
on stall hysteresis are interrelated. The particular combination of wing geometric
parameters which provides the most uniform spanwise distribution of section CL
should also exhibit a greater degree of stall hysteresis. Because of the correspondance
between the occurrence of stall hysteresis and zero beta rolling and yawing moments
(see Section 4.3.3), it is expected that similar conclusions may be made with regard
to the effects of wing planforra parameters on the zero-beta moments.

4.3.3 ZERO BETA ROLLING (AND YAWING) MOMENTS. A set of computations
was made to illustrate thie occurence of zero-beta rolling and yawing moments during
the pitch sequence. Thlq is shown in Figures 34 and 35 for the T-2C planform,
(Af = 5.07). In this case the pitching motion was initiated at up = 120 with the wing
symmetrical. The pitching motion was halted at up = 14.40 and an asymmetry
6uR = ±1° was applied to each wing plane and then subsequently removed, in order
to simulate an aileron perturbation. The pitching motion was then resumed, either
positive or negative, with the wing again symmetrical. Figure 34 shows the lift
variation during this process for various lift curves. The corresponding rolling
moment variations are shown in Figure 35. The theory predicts the occurence of
zero-beta rolling and yawing moments (not plotted) over nearly the same ap zone
as that for which lift hysteresis occurs. Reducing the abruptness of the stall
(steepness of the negative lift curve slope) is seen to ameliorate the effect.

A similar set of computations is shown in Figures 36 and 37 for an M 8 wing.
Here the roll asymmetry was introduced and removed at cp = 12.40, since the
wing was already completely stalled at up = 14.40. The results show that increasing
aspect ratio from 5.07 to 8.0 considerably reduces the zone of angle of attack over
which zero-:)eta lateral moments occur, especially with the less abrupt section lift

characteristics.

4.3.4 EFFECTS OF NUMBER OF ELEMENTS. All of the parametric calculations
presented so far were made with 14 vortex elements across the span, in order to
conserve computer time. It is recognized that requirements for improved
computational accuracy could well dictate the use of an increased number N of span-
wise elements (the existing computer program is limited to N = 20). Figure 38 shows

the effect of varying N from 10 to 20 on lift hysteresis, for the section characteristics
with the most abrupt stall (curve #4) and with the most gradual stall (curve #8).
Although changing N appears to effect the instantaneous CL value somewhat, especially

for the case with the most gradual stall, the overall stalling characteristics appear
virtually uneffected by N. It is recognized that further studies of the effect of N,

covering a wider range well beyond N = 2v, and for various values of aspect ratio
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and taper ratio, are needed to determine an optimum value for the computations.
In lieu of any comprehensive study of this type, the value N=14 used in the majority
of the computations appears reasonable.

Most of the parametric computations have been made with only four rows of vortex
elements In the wake (M =4), the last row being horseshoe in shape. Calculations
were made with values of M as high as 40 (and as low as 1). The value M = 4 was
set as a compromise for including the major contribution from the unsteady wake
(up to distances of 3c behind the airfoil), while reducing computer time to a minimum

4.4 HYSTERESIS CORRELATION

An attempt was made to correlate the results of the various computations of lift
hysteresis with the abruptness of the wing stall and with planform geometry. One
such correlation is shown in Figure 39, wherein the product ACLH,- AaH has been
plotted versus 57.3b/iTrAR. Here ACLH is the maximum CL difference in the
hysteresis zone, and AsH is the width of the zone. The product ACL . AaH
is a measure of the area of the lift hysteresis loop. The value b is the maximum
negative lift curve slope (per degree), and the ratio 57.3 b/irAR represents the ratio
of this slope to the slope dCL/daD for a wing with constant downwash angle aD
across the span.

It is readily seen from Figure 1 that multiple solutions (symmetric case) will not
occur unless b/(dCL,/daD) > 1, corresponding to 57.3 b/Ir AR > 1 in the constant
downwash angle case. For a wing with AR -= 4 and a trilinear lift curve, as used
in the examples of Section 2.4, multiple asymmetric solutions occur when b/a
(57. ,1 b)/(2V- AR/4) > 1. 5, (or equivalently 57. 3 b/ff AR z 0. 75), as seen from Figures
7-9. Thus, the parameter 57.3 b/ITAR appears reasonable for predicting the
'-ccurence of multiple asymmetric as well as of symmetric solutions.

The correlations in Figure 39 predict the occurrence of lift hysteresis wherever
57.3 b/ir IAR>0. 18, although the area of the hysteresis loop is seen to be dependent
on other planform characteristics as well, such as sweep back angle, twist and
taper ratio. Thus, the method predicts the occurrence of lift hysteresis for wings
with negative lift curve slopes only approximately 1/5 as abrupt as thought necessary
based on the idealized constant downwash angle criterion. This may be due to the
ratio d 1/da being much less than it AR/57.3 over local regions of the wing with
stalled or parially stalled flow. Additional analysis of the parametric computations
and dynamic wind tunnel testing are required to further substantiate the correlation
in Figure 39.
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5

CONCLUSIONS AND RECOMMENDATIONS

A nonlinear lifting line theory, with an unsteady wake, has been developed and has
been applied to the prediction of forces and moments on aircraft undergoing a
pitching motion through the stall region. The procedure is an outgrowth of the steady
state, nonlinear lifting line approaches in Reference 1-3, which predicted the occur-
rence of multiple solutions to the lifting line equations under certain conditions. The
present theory predicts the occurrence of lift hysteresis and of rolling and yawing
moments, even at zero yaw angle, for wings where section characteristics exhibit
a negative lift curve slope of sufficient steepness subsequent to stall. It is anticipated
that the theory (and parametric computations presented herein) may serve as a guide
in predicting the susceptibility of various aircraft des!gns of moderate to high aspect
ratio and low sweep angle to adverse stall and departure characteristics.

5.1 CONCLUSIONS

Conclusions relating to the namerical computations and to the assumptions in the
theory are summarized below.

(i) The method has been programmed for solution on the CDC Cyber 70
computer. Computer solutions are simple to execute and reasonably
economical, requiring about one-minute of micro-proccssor time for a
complete pitch sweep and hysteresis loop.

(ii) Computations by the present method agree reasonably well with previous
more exact, unsteady, linear, two-dimensional and three-dimensional
theories down to aspect ratios of 3 and less for wings of zero sweep.

(iii) The present method compares well with steady state T-2C test data (aspect
ratio 5.07), both for lift and rolling moment. No lift hysteresis effect
appeared in the test data, but both test data and theory showed the occurrence
of zero-beta rolling and yawing moments in the stall region.

(iv) The present theory predicts the occurence of lift hysteresis (and of
zero beta rolling and yawing moments) when the parameter 57.3b/TAl > 0.18
(-b is the maximum negative lift curve slope of the two-dimensional airfoil
sections comprising the wing). The angle of attack range over which these
effects occur, and their severity is found to increase with increasing b
and with decreasing aspect ratio. Other planform parameters, such as sweep-
back angle,twLst and taper ratio have also been shown to affect the extent
of these adverse stalling characteristics to a lesser degree.
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(v) The converged solutions obtained at angles of attack for which multiple
roots exist are non unique and depend upon the starting solutions used In
the integration procedure.

(vi) The iteration procedure used in the present method employed a special
logic, which used either the converged solution from the previous time
step as the initial iterate (unstalled) case, or set the initial iterate for
downwash angle equal to zero over a wing panel (stalled case). This
special logic was somewhat empirical, and led to the elimination of solu-
tions with saw-tooth stalling patterns. However, the special logic
delayed stall during pitch-up motions, and postponed destall during pitch-
down motions, thereby maximizing the zone over which lift hysteresis
(and zero beta rolling and yawing moments) occur.

(vii) The formulation does not include geometric effects of sweep angle and
dihedral angle on the effective section angle of attack. These effects
should be included to produce satisfactory correlation with test data,
particularly for the s ideslip case.

5 2 RECOMMENDATIONS

Recommendations for Improving the present method, by removing several of the
restrictive assumptions noted above, by conducting additional comparisons with test
data, and by generalizing the procedure for a wider class of aircraft configurations
(e.g. lower aspect ratio fighters) are given below.

(i) A less empirical approach is required for selecting a particular loading
when multiple solutions exist. This would lead to an improved prediction
of the angle of attack zone over which lift hysteresis and attendant zero-beta
lateral moments may exist. One approach may be the Introduction of rate
dependent equations for the vortlcity on the wing. Such a formulation may
require chordwise relocation of the control poiLit and/or modification of the
time stepping procedure (see also iv below).

(Ui) A more definative evaluation of the method should be carried out by conducting

wind tunnel tests with a model which may be pitched and yawed continuously
while obtaining instantaneous readings of forces and moments. It is
recommended that the model consist of a circular fuselage with replaceable
straight wings of various aspect ratio and of known two-dimensional section
characteristics, In order to determine limits of applicability of the method.
Pressure data should be obtained over the wing, so that transient span and
chordwise load distributions may be obtained and compared with those

predicted by the theory.
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(Lii) The formulation should be extended to treat yaw and dihedral effects directly,
rather than by simulating a yawed wing by a skewed wing. In addition, a
capability for time dependeat yawing motions should be incorporated into the
program In order to provid ý for coupling the lifting line formulation with the
equations of motion for an aircraft.

(iv) In order to extend the method to lower aspect ratio fighter type wings, it Is
recommended that the lifting line formulation be expanded into an unsteady,
nonlinear, lifting surface theory. The new formulation would employ at
least two spanwise lifting lines, and control points for satisfying flow tangency
would be placed at two or more chordwise positions. The expanded theory
would also include unsteady effects on chordwise load distribution, and
might provide insight into the mechanism of dynamic stall. The later effects
are excluded from the current lifting line formulation, which assumes that
chordwise load distributions are always steadystate.
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MULTIPLE SOLUTIONS (3-D)
UNSTALLED
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-I ACTUAL

2-0 LIFT CURVEI FULLY STALLED
LL" WITH NONLINEAR p--
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Figure 1. Nonlinear Two-Dimensional Section Lift Curves Which Yield
Multiple Solutions of the Lifting Line Equations
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Figure 24. Wing Planform Geometry and Vortex Element Placement
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WING SHOWN SKEWED
TO REPRES'NTYAW

VORTEX SPAN STATION i

SI TRAILING VORTEX
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ik 2

Ax V."oAt k 3

.,... -k = 4
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11 T
BODY PRIMARY WING 'I

IMAGE VORTICES
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k= M

Figure 3. Vortex Elements for Unsteacy Wake Formulation
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Figure 4. Image System Trailing Element G=,ometry
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_ •)PRESENT METHOD
<1 HAND COMPUTATIONS
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c = 0.257

0.2•

0 1 2 3 4 5

DISTANCE TRAVELED BY WAKE BEHIND
TRAILING EDGE IN CHORD LENGTHS

Figure G. ComparLon of Discrete Vortex Wake Model with Wagner Function

(Continuous Vortex Wake) for Two-Dimensional Flow
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TABULATION OF SYMMETRICAL AND ASYMMETRICAL LOADINGS FOR
2 PANEL SOLUTI ON, AR=4 WING WITH b/a=4, ACLCLMAX 0.7,AND'p/Q 1=1.3.

LOADING LOADING
NO. SYMBOL TYPE I CLI/CLMAX CL2/CLMAX CL2/CL1

() SYMMETRIC 0.98 0.98 1.00

A SYMMETRIC 0.65 0.65 1.00

Q SYMMETRIC 0.40 0.40 1.00

A•ASYMMETRIC 0.96 0.84 0.87

ASYMMETRIC 0.91 0.40 0.44

0 ASYMMETRIC 0.46 0.40 0.87

1.4

cap

1.2 I

1.0 -- [

0.8 - 2D LIFT I

-J CURVE ACLIC
.,MAX

0.6- dCL.
da dCL=

0.4 - - d ot

(1.2 /da•l

0 .02 114 0.6 0.8 1.0 1.2 1.4 1.6 1.8 z0
a EFF/6!1

Figure 10. Example of the Occurance of Six Possible Loadings with a Tri-Linear

Lift Curve
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X CONTROL POINT -- X CONTROL POINT
0) 3c/4 @ c/4

-E~~~~ .-• .:. - . • .- .• c/4

2.5 3/44

20 -' -

1.5

C [STABILITY LIMIT. EQUATION (52), WITH a= 2xr]

USE % OF INDICATED VALUE FOR THE
CONVERGENCE LIMIT

RANGE OF C VALUES USED
FOR SAMPLE CALCULATIONS

0
0 1 2 3 4 5

h/c = A9/N

Figure 11. Predicted Stability and Convergence Limits for Iteration Procedure
with a Single Vortex Element
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RECTANGULAR WING
ASPECT RATIO 6
SECTION LIFT CURVE SLOPE a= 2w'

0.8 STEADY

STATE

JONES, REFERENCE 19

0.6

0OPRESENT METHOD
N =14,M =20, n 1

A DJOJODIHARDJO AND WIDNALL,
REFERENCE 20

0.2

0 I I I
1 2 3 4 5

DISTANCE TRAVELED, Axi/

Figure 12. Effect of a Step Change in Angle of Attack on 1,ift, X• - 6.
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1.0

RECTANGULAR WING
ASPECT RATIO 6

SECTION UFT CURVE SLOPE a 2fr

0.8 AxlE= 10.25

AxlE" 1.25

0.6 1.25

A0.25 Ax/E'R25

-,,J

0.4
PRESENT METHOD
N = 14, M = 20, n= I

A FROM REFERENCE 20
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o I i I I
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Figure 13. Effect of a Step Change In Angle of Attack on Span Load Distribution

At =6
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.-.. (WAG NE R FUNCTION)

AR =15

0.8 12

000, 9

6

0.6 4

1 3

14 2

0.2 SOLID LINES BY CURRENT METHOD
RECTANGULAR WING
N= 14, M= 20, n= 1
SECTION LIFT CURVE SLOPE a= 21r

0 I , I I
0 2 4 6 8 10

DISTANCE TRAVELED, Ax/I

Figure 14. Effect of Aspect Ratio on Lift Following a Step Change in Angle of

Attack
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LINEAR THEORIES

STEADY STATE
1.0- SLENDER BODY THEORY

-" ' -PRANDTL LIFTING LINE METHOD (FREFERENCE 22)

C<• 0.5 VORTEX LATTICE METHOD (REFERENCE 21)

PRESENT METHOD
0 N= 14, M= 20, n= 1, Ax/E= 10.25

N = 14, M = 1, STEADY STATE

,, II I

0 5 10 15 20
ASPECT RATIO

Figure 15. Comparison of Present Method with Steady State Theories for

Rectangular Wing
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2.0
CASE (DINTENDED TO REPRESENT NACA 641 A212 AIRFOIL Re = 3 X 1O6

CASE (JINTENOE[ TO REPRESENT NACA 641 A212 AIRFOIL Re= 6 X 06

CASE INTENDED TO REPRESENT NACA 641 A212 AIRFOIL Re >6 X 106
1.6

.CASE

S1.2 -z
LU3

L&.
U-
LU0

S0.8 @
U-

0.4 - [IATASETS 11, 12 AND 13 NOTED BY As FOR PRE STALL
as & SAME AS 1, 2 & 3 FOR CORRESPONDING POST STALL
as. THESE REPRESENT DATA FOR -30 T.E. DEFLECTION.

0 •II I I
0 4812 16 20 24 28

ANGLE OF ATTACK, a p 'degree:)

A LIFT COEFFICIENT

CCAS

u2

LUU .0.1 30

z4 U-

0.2

• .11.2.-

I I I I I I
0 4 8 12 16 20 24 28

ANGLE OF ATTACK,ap (degrees)

B. PITCHING MOMENT COEFFICIENT ABOUT 25% CHORD POINT

Figure 17. Section Characteristics of NACA 64 A212 and T-2C Airfoils
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Figfjre 17. Section Characteristics of NACA 641 A212 n d T-2C Airfoils (Concluded)
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1.6 f

Il

1"6

LL

L.4 CAS0L 4 REPRESENTS Re = 3 X 10' NACA 64-209
CASE 5 REPRESENTS Re = 6 X 106, NACA 64-209
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-Figure 18. Noflinear Airfoil Section Characteristics Used for Parametric

Calculations
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Figure 18. No'jinear Airfoil Section Characteristics Used for Parametric

Calculations (Concluded)
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0 TEST DATA

PRESENT METHOD WITH SECTION
DATA NO. 11 OF FIGURE 17.

a INCREASING
a DECREASING 0

00

0
0,ee 0

01.:

A. ZERO YAW ANGLE T-2C L'ATA FROM REF. 23.
N. =0.20. Re=4X 106
GRiT OFF

TEST DATA
0 3100

A PRESENT METHOD WITH SECTION
DATA NO. 11 OF FIGURE 17.

a INCREASING

1.0 a DECREASING

0~~ - 1

8e ±100= ±10NG

Fiue19. Comparison of Present Method with T-2C Wind Tunnel Data for Lift
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TEST DATA FROM REF. 23
Re =-,,4x i06 BASED ON E
0 GRIT OFF, A GRIT ON

CALCULATED BY PRESENT METHOD
SHOWN BY LINE WITH ARROWS

N = 20, M = 1, SECTION DATA
FROM CURVE NO. 11 OF FIGURE 17

4

=,,

2

+1
0 

-

-2 I I ! I I
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0
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LL4.
U,,, PRESENT METHOD

00
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--J

L I , 1
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Figure 20. Commai ison of Present Method with T-2C Wind Tumnel Data for
Rolting Moment at Zero Yaw Angle
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1.2

2D LIFT CURVE NO. 4
FROM FIGURE 18

1.1 /I
1.0

CL

O.9

118

117[

11.6
AR =5,07, r 0.(495, A= Z270

A. NEGATIVE LIFT CURVE SLOPE 0(97 PER DEGREE i; 00, aT = 00, y= 00, RB= 0.11.9 b/2
PITCH RATE = 8 DEG/SEC
SIDESLIP = 6, AaR =0
N= 14, M=4
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1.2 -

20 LIFT CURVE NO. 6
FROM FIGURE 18.

1.1 -
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11.9 -

0.8

0.7
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B. NEGATIVE LIFT CURVE SLOPE =0.125 PER DEGREE

Figure 21. Effect of Negative Lift Curve Slope on Lift Hysteresis, Aspect

13atio 5.07
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2D LIFT CURVE NO. 7
1.1 FROM FIGURE 18

S1.0

CL

0.9

0.8

0.7

0.6

C. NEGATIVE UFT CURVE SLOPE= 0.075 PER OEGREE

NOTATIONS ON FIGURES A & B
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1.2

20 LIFT CURVE NO. 8
FROM FIGURE 18

1.0,

CL 'Ci'8 / // / "

0.8

0.7 _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _

0.6 L__-__ _L_
0 4 8 12 16 20

a, (6*m.)

0. NEGATIVE LIFT CURVE SLWPE = 0.040 PER DEGSEE

Figure 21. Effect of Negative Lift Curve Slope on Lift Hyst-eresis, Aspect Ratio

5. 07 (Concluded)
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1.3

1.2

20 LIFT CURVE NO. 4
FROM FIGURE 18

1.0 -CL 10-

S, 

0.9-

0.7

(16
AR =8.0, =0.495, A 2-270

A. NEGATIVE LIFT CURVE SLOPE= 0.97 PER DEGREE i 0., aT = 00, 7y D, RB= 0119 W2
PITCH RATE 8 DEG/SEC
SIDESLIP= 0, AaR= 0

N= 14, M= 4

1.3

1.2
20 LIFT CURVE NO. 6
FROM FIGURE 18

1.1

1.0
CL

0.9

0.8

1.7

0.6
0 4 8 12 16 20

ap (drees)

&. NEGATIVE LIFT CURVE SLOPE= 0.125 PER DEGREE

Figure 22. Effect of Negative Lift Curve Slope on Lift Hysteresis, Aspect

Ratio 8.0
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1.3

1.2

2D LIFT CURVE NO. 7

1.1 - FROM FIGURE 18

S~1.0 -

CL
A 0.9 -

Q18

0.7

0.6,

C. NEGATIVE LIFT CURVE SLOPE = 0.075 PER DEGREE

NOTATIONS ON FIGURES A & B

1.3

1.2

2D LIFT CURVE NO. 8
1.1 FROM FIGURE 18

CL

0.9

0.8

0.7(16 - t
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0. NEGATIVE LIFT CURVE SLOPE = 0.040 PER DEGREE

Figure 22. Effect of Negative Lift Curve Slope on Lift Hysteresis, Aspect Ratio 8. 0

(Concluded)
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1.1 FROM FIGURE 18 /

1.0

CL

0.8
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0.6

AR= 12.0,1"=O.495, A=2270
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Figure 23. Effect of Negative Lift Curve Slope on Lift Hysteresis, Aspect Ratio 1 2. 0
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0.9

R8

0.7

0.6~
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1.1 FROM FIGURE 18/

1.0

CL

0.9

0.8/

0.7

0.6
0 4 8 12 16 20 24

ap, (degrees)

*0. NEGATIVE LIFT CURVE SLOPE =040

Figurc 23. Effect of Negative Lift Curve Slope on Lift Hysteresis, Aspect Ratio

12. 0 (Concluded)
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R = 507, r= 0.485, A= 2270

V If, aT= e, If 00, RB = 0.119 b/2
PITCH RATE 8 DEG/SEC

SIDESLIP- 10 DEG, AaR= 0
N=- 14, M- 4

0.01
20 LIFT CURVE NO. 4
FROM FIGURE 18
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A. NEGATIVE LIFT CURVE SLOPE 0.97 PER DEGREE
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20 LIFT CURVE NO. 6
FROM FIGURE 18
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-0.0: I I
B. NEGATIVE LI FT CURVE SLOPE- 0.125 PER DEG REE
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FROM FIGURE 18
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C. NEGATIVE LIFT CURVE SLOPE= 0.075PER DEGREE
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20 LIFT CURVE NO. 8
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D. NEGATIVE LIFT CURVE - 0.040 PER DEGREE

Figure 24. Effect of Negative Lift Curve Slope on Bolling Moment Hysteresis at 100

Sideslip Angle,Aspect Ratio 5.07
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AR = 8.0, "r = 0.495, A- 2.270
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SIDESLIP = 10 DEG
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S~Figure 25. Effect of Negative Lift Curve Slope on Bolling Moment Htysteresis at 100
-• Sideslip Angle, Aspect Ratio 8. 0
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AR = 12.0,7 = 0.495, A= 2.27"
OV 0,aT= 0°, = 00, RB= 0.119 b/2
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Figure 26. Effect of Negative Lift Curve Slope on Rolling Moment Hysteresis at 100

Sidcslip Angle, Aspect Ratio 12.0
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ITCH RATE 8 DEG/SEL b= 0.91 ?'ER DEG
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Figure 27. Effect of Taper Ratio on LIfU Hysteresis, Aspect Ryatio 8. , Lift Curve

#4 from Figure 1S
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AR = 8.0, A= Z270, i= 0

a.T= 0, "f= 00, RB 0.119 b/2
PITCH RATE= 8 DEG/SEC, b= 0.125 PER DEG
SIDESLIP= 0, N= 14, M =4
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Figure 28. Effect of Taper Ratio on Lift Hysteresis, Aspect Ratio 8.0, Lift Curve

#6 from Figure 18
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AR = .0, A= 2.70, i
aT--,= 0o, R8 ' 0.119 b12
PITCH RATE = 8 DEG/SEC, b = 0.075 PER BEG
SIDESLIP= 0I, N = 14, M = I
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Figure 29. Effect of Taper Ratio on Lift Hysteresis, Aspect Ratio 8.0, Lift Curve

#7 from Figure 18
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Figure 30. Effect of Negative r~ft, Curve ,Slope on Lift Hysteresis, Aspect Ratio

8. 0, Swcepback Angle) 20°.
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Figure 31. Effect ot Twist on LfW. Hysteresis, Aspect Ratio 8.0, 2D Lift Curve #4
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AR = 8. 0, r = 0 495, A= 2.270 SIDESLIP= 00, AaR =0

i= 0I, 7= 0I, RB = 0.119b/2 N= 14,M=4
PITCH RATE = ±8 DEG/SEC
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Figure 32. Effect of Twist on Lift Hysteresis, Aspect Ratio 8.0, 2D Lift Curve #6
from Figure 18;' 
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AR = 5.01, -r m 0.495, A= 2.270 SIDESLIP = 00 SOLI OSYMBOLS WITH
"i= 00, aT= OG,/= e, RB= 1119b/2 - - R= 0 (OPEN SYMBOLS) AaR= ±1- ON ..R WINGPITCH RATE = t8 OEG/SEC N= 14, M 4 PANELS AT ap 14.40

CL

20 LIFT CURVE NO. 4
FROM FIGURE 18
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Figure 34, Effect of Roll Perturbation at a -14.4 Degrees or. Lift Hysteresis,

Aspect Ratio 5. 07S~79



AR = 5.07, " 0.495, A= 2.270 SiDE SLIP = 00 SOLID SYMBOLS WITH
i= 0, aT = 0I, '= 00, RB = 0.119 b/2 AaR= 0e( "MBOLS) Aa(" -1OL/RWING
PITCH RATE = ±8 DEG/SEC N = 14, = PAN4LS AT p= 14.40
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Figure 35. Eff wt of RolU Pertu rbatton at ap 14.4 .'egrses on Zero leta Ro'llng

V Moment, Aspect Ratio 5.07
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AR &O,=8 0.495, A= Z270 SOLID SYMBOLS WITH
i= 00, a R- 110.119 b/2 AaR =+1 ON L/R WING
PITCH RATE =±8 DEG/SEC PANELS ATa = 1240

SIDESLIP = 0I
AaR = 0* (OPEN SYMBOLS)
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Figure 36. Effect of Roll Perturbation at a p = 12.4 Degrees on Lift Hysteresis

Aspect Ratio 8.0 81



AR = &80,-= 0.495, A= Z270  SOLID SYMBOLS WITH

i= 60,aT= 0I, y= f0 , RB= 0.119 b/2 AaR = ±10 ON L/R WING
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Figure 37. Effect of Roll Perturbation at cyp = 12.4 Degrees on Zero Beta Rolling

Moment, Asio.et Ratio 8.0
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AR = 5,07, r= 0.495, A= 2.270
= 00 a = 0 ,7= 0, R0.119 b/2
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Figure 38. Effect on Number of Spanwise Vortex Elements N o.w Lift
Hysteresis, Aspect Ratio 5.7
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2.0 CODE

SYMBOL AR ir A ,T L.
A 5.07 0L495 2.271 00 ACLH

0 8.0 0.495 2.270 00
aO 8.0 1.00 2.270 00

1.5 r 8.0 0.20 2.270 00
"0 8.0 0L495 2.270 00-+30
t0 8.0 0.495 2.27r 00--3 A -

6 B.0 0.495 200 0: t .- ' 3.5

"0 12.0 0.495 2.270 00

1.0 MAXIMUM VALUE FOR
iv' EN4VELOPE OF"ZERO HYSTERESIS BY

CURRENT COMPUTATIONS 0 MAXIMUM
<] 6 ACLH "AaH

0

2- MAXIMUM VALUE FOR
0' ZERO HYSTERESIS WITH

6 'ALONG SPAN

00
0.5 1.0 1.5 . 2.5 3.0

57.3 bdff AR

Figure 39. Lift Hysteresis Correlation
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