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CONTEXT 

The Aviation Research Laboratory of the University of Illinois is 

investigating synthetic imaging displays and conçuter-augmented flight 

control for the Office of Naval Research. Mr. Gerald Malecki, Assistant 

Director of Engineering Psychology Programs, is the technical monitor of 

the research. Professor Stanley N. Roscoe was the principal investigator 

during the initial phase of study and experimental apparatus development 

covered by this report. Professor Robert C. Williges is serving as 

principal investigator for the continuing effort while Professor Roscoe 

is on academic leave during 1975-76. 

The research is directed toward (1) the isolation of minimum sets of 

visual image cues sufficient for spatial and geographic orientation in the 

various ground-referenced phases of representative flight missions, (2) the 

generation and spatially integrated presentation of computed guidance 

commands and fast-time flight path predictors, and (3) the matching of the 

dynamic temporal relationships among these display indications for conçat- 

ibility with computer-augmented flight performance control dynamics, both 

within each ground-referenced mission phase and during transitions between 

phases. The investigative program draws selectively upon past work done 

principally under ONR sponsorship or partial sponsorship, including the 

ANIP and JANAIR programs. 
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Program Progress and Plans 

During Phase I of the current contract, the Aviation Research 

Laboratory systematically investigated the relationships between the 

movement of the controls and the response of the airplane and demon¬ 

strated substantial improvement in pilot performance as a consequence 

of their reorganization. By the completion of Phase I, all planned 

control modifications, specifically the digital control system have 

been incorporated into the GAT-2 simulator. No additional work on this 

task is contemplated for the initial year of Phase II. 

To study experimentally the effectiveness of alternate sets of 

visual cues, the Aviation Research Laboratory has developed a highly 

versatile computer-generated display system to present dynamic pictorial 

images either on a head-down, panel-mounted CRT or on a head-up 

television projection to a large screen mounted in front of the pilot's 

windshield on the Link GAT-2 simulator. Due to the great flexibility 

of the pictorial display, visual cues and flight status information 

can be manipulated experimentally. Experimentation to isolate the 

visual cues sufficient for approach and landing is in progress. 

The incorporation of predictive indications of successive future 

states is currently under investigation during Phase II. Experiments 

will be conducted to determine the number and temporal spacing of 

flight path predictors to be integrated into the forward-looking 

flight view. Determination and software implementation of command 

guidance symbology compatible with the synthetic forward-looking contact 
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analog and predictive flight path presentations will also be undertaken 

It is the ultimate objective of this program to develop, during the 

second year of Phase II, a reconfigured cockpit with integrated sensor 

and computer-generated imaging displays and computer-augmented controls 
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INTRODUCTION 

During flight simulation experiments and pilot training it is 

often desirable to project an accurate representation of the outside 

world over which a simulator is theoretically flying. In the past, such 

methods as prefilmed movies and "flying" television cameras have been 

used and in recent times computer generated dynamic graphics have been 

attempted. At the present time, real time computer graphics can not 

compete with some of the earlier methods on the basis of complexity and 

realism of display but with the performance of digital hardware 

increasing and the price decreasing, the computer may soon equal or 

surpass other display methods. There exists a need for fast three 

dimensional graphics projection programs to be used with computer 

hardware to create these dynamic displays. To be effective, this 

software must not only project images quickly and accurately but must 

also be versatile, transportable, and well organized so others can 

understand, use, and experiment with it. Reliance on expensive graphics 

hardware must be avoided to keep the simulation cost effective. 

The display program described herein is an attempt to meet the 

above criteria and to form a program which can be used in full or in 

part. A number of old and proven graphics techniques as well as a 

synthesizing procedure newly developed for this program are employed. 

Modularity concepts are used throughout allowing execution time speed- 

ups from the replacement of Fortran modules with assembly language 

equivalents. This modularity also permits easy interfacing to auxiliary 
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graphics hardware and software such as matrix multipliers and predictor 

displays. 

Having been developed on a Digital Equipment Corporation PDP 11, 

the interfacing of this program to the Aviation Research Laboratory's 

Raytheon 704 computer and Singer Link Gat 2 simulator will be used as an 

application example and evaluation of software transportability. 

Development and application were performed on small inexpensive 

computers but the program is designed to be upward compatible to larger 

machines where dramatic performance increases and display realism should 

result. 
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APPROACH 

LANGUAGE CONSIDERATIONS. Since hiqh speed execution Is of prime 

importance In a real time simulation, assembly language seemed to be the 

ideal language for this program. Previous display programs, however, 

have shown that the resulting assembly language code is not very 

transportable or flexible and is nearly impossible for anyone but the 

original programmer to understand. The most common scientific 

programming language in use today is Fortran. A good Fortran compiler 

can produce relatively time efficient code thus making Fortran the 

choice of language for this program. 

A number of steps were taken to offset the slow execution time 

of the Fortran display program, the first being integerization. 

Floating point arithmetic uses twice the memory and requires about three 

times the execution time of Integer mode arithmetic. Integer arithmetic 

is also compatible with integer array processors such as hardware matrix 

multipliers which are only capable of operating in integer mode. 

MODULARITY IN PROGRAMMING. A very modular program structure was 

chosen in order to simplify experimentation and application and to make 

the program easy to understand. A short main program consisting mostly 

of calls to symbolically named subroutines allows a person unfamiliar 

with the program to easily understand the display sequence. 

Many array processing subroutines are used to transform, clip, 

and project Images therefore a common calling structure was adopted to 

provide simple interchangeability of array processing functions if 

desired. Experimenting with various versions of the main program was, 
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for this very reason, qreatly simplified. Substitutinq one type of 

projection routine for another, for example, was simply a matter of 

changing the subroutine call but leaving the string of dummy variables 

unchanged. 

ORGANIZED BUFFER STRUCTURE. The many buffers needed to process 

large quantities of graphics information can make a graphics program 

rigid or extremely flexible depending on the buffer structure. The 

buffers in this program were arranged about the following guide lines. 

1) Buffers must be easily concatenated by the array processors. 

2) Buffers with the same type of data must always have the same 

data structure. 

3) Index data and display data should be in separate buffers 

whenever possible. 

This buffer structure, along with the common calling 

conventions, make this program easy to work with. 

DISPLAY ALGORITHM. The graphics techniques used to convert a 

three dimensional data base into a two dimensional screen projection 

have been well developed and established. Start and end points which 

define lines are multiplied by a four by four transformation matrix to 

translate and rotate them into the proper reference frame relative to 

the observer's eye. A modified, highly efficient version of the Cohen 

and Sutherland clipping algorithm is then employed to eliminate any off 

screen lines and to clip lines which are partially on the screen. 

Finally, a pyramid projection is performed projecting the start and end 

points and thus the lines onto a display screen. To increase projection 
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speed a frame synthesizing method 1s used. Interpolations are made 

between display points 1n consecutive frames. Since only addition 1s 

required to add the small delta values (see the synthesizer subroutine 

explanation), frame synthesis time is very low. A much smoother display 

results. The subroutine explanations further describe graphic 

projection and transformation functions. 

PERIODIC UPDATING CONSIDERATIONS. In past display programs it 

has been said that far away objects seem to move slower and thus need to 

be updated less often than close objects. This may be true for 

translational movement but the argument does not hold when rotation is 

employed. When an aircraft is banking, for example, the most distant 

object (the horizon perhaps) is rotating at the same rate as the closest 

object. If far away points are only updated periodicically, geometric 

distortions can resuH as far away lines lag behind in the rotation. 

The easily concatenated buffers used in this display program 

permit periodic updating of points through proper arrangement of the 

main program. This feature may have some u¿e in translation and very 

slow rotation applications but in general, and in the main program 

shown, periodic transformations are avoided in order to preserve 

realism. 
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execution speed of assembly language, many of the complex but repetitive 

arithmetic functions are performed by calling very small subroutines. 

These subroutines are referred to as plug-in replacement modules. Great 

execution time speedups result from replacing the modules with their 

Fortran callable assembly language equivalents which can be written 

especially for the computer being used. 

COMMUNICATION THROUGH COMMON BLOCKS. Subroutines and the main 

program only use data transmission through dummy variables when 

absolutely necessary. Symbolically named common blocks are instead used 

to simplify the main program and make it easy to understand. 

UNIVERSAL INTERFACE CAPABILITIES. A program such as this can 

find many applications in aviation and other fields making it imperative 

to have some sort of simple modification which can be made to Interface 

the display program to various forms of simulators and controls. The 

IGAT subroutine performs this task by establishing a common convention 

for passing display control information to the display program, 

Rewriting this short subroutine for the simulator being used allows the 

rest of the software to become compatable with that simulation. 

EXTERNAL PROGRAM INTERACTION. Simultaneously running programs, 

such as predictor displays, can place objects to be displayed into the 

display data base using the auxiliary display buffers provided for this 

purpose. The program using these buffers can specify which type of 

transfromations are desired on the presented data. Lines to appear 
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stationary in space require translation and rotation transformations 

while only a rotational transformation is needed to put objects in a 

reference frame relative to the aircraft's position. Any combination of 

pitch, bank, heading, x, y, or z can be specified as a transform making 

sixty-four reference frames available to the external user. 

NAVIGATIONAL MAP OVERLAY FEATURE. Integer mode arithmetic limits 

data base size to plus or minus 32767 units. Through the use of 

variable scale factors these units can represent any dimension desired. 

The scale of one foot per unit may be good for flight at pattern 

altitude while a scale of three inches per unit may be more appropriate 

for final approach where a finely detailed and precise picture is 

desired. Before the display program is run, maps can be set up which 

have these scales. At run time a new map can be overlayed into the data 

base and the projection scale factors changed simultaneously resulting 

in a smooth map transition. This feature combines the large range of a 

coarse map with the precision of a fine map. 

Maps of the same scale can be used to extend the display data 

base's effective size. Using appropriate x, y and z offsets, maps can 

be strung together to provide an almost limitless world size. Far away 

objects can be eliminated or simplified on appropriate maps to give 

desired fade out effects and eliminate horizon brightness due to section 

line crowding at low altitudes. 

NONCLIPPED PROJECTION. The process of clipping lines is very 

time consuming. In order to increase picture complexity and maintain 

high execution speed a nonclipping projection method has been devised. 
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Small objects, such as runway markers and vertical poles, which tend to 

leave the screen all at once, benefit from this routine which simply 

eliminates the whole line from the screen if any part of that line falls 

off the screen. This method is not used on large lines which must be 

clipped. 

COORDINATE SYSTEM. In order to keep the program well organized, 

a universal coordinate system has been adopted. Figure 1 shows this 

convention. 

VARIABLE FIELD OF VISION. Projection geometry is affected by how 

far away from the viewing window (projection screen) the observer is and 

by the size of the window (screen size). A variable field of view 

permits this program to be used with many observer and display screen 

configurations. The field of view can effectively be changed by 

widening the data base and retaining a forty-five degree viewing 

pyramid. This data base distortion takes place after the rotation and 

translation transformations have been completed. The IMATRIX subroutine 

concatenates the window transform to the rotation and translation 

transform resulting in the need for only one data base transformation. 

Although the standard procedure for field of vision control is 

data base multiplication along the x and y axes for viewing angles of 

less than forty-five degrees to each side, z axis division was chosen. 

Integer overflow of the data base is thus avoided. This limits the view 

to a square window. Through program modification, however, an 

appropriate amount of x axis or y axis division can accommodate a 

rectangular window projection. Figure 2 shows windowing. 
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a) Data base Image 
within the 
viewing pyramid. 

b) Windowing performs 
Z dimensional 
compression. 

c) Effective 
field of 
view. 

Figure 2. Windowing. 
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MEW is a fractional constant used in the windowing transform 

to control z axis scaling. Window geometry defines this value as: 

MEW = Tangent (Field of View) 

where field of view is the angle from the z axis. This angle can be 

submitted during program initialization. MEW is calculated by the 

initialization subroutine. 

niSPLAY FILTERING. Start and end points of lines tend to move in 

jerky, discrete steps due to the integer data base format. At great 

distances from points this effect is not noticeable but when lines fall 

near the base of the viewing pyramid, annoying distortion results. The 

IGEN and ISYNTH subroutines have methods which reduce this bad effect. 

The IGEN subroutine must convert points' coordinates into 

floating point mode in order to clip the lines they represent. If it is 

found that an end point is near the base of the viewing pyramid, the x, 

y and z coordinates are multiplied by a scaling constant thus reducing 

truncation error upon integer conversion and projection. This action is 

referred to as accuracy scaling. 

Screen point hysteresis is used in the ISYMTH subroutine. A 

projected line's start and end points are given threshold values 

(hysteresis constants) in the plus and minus x and y directions which 

they must cross in order to produce screen point movements. Movements 

in one continuous direction will be smooth as one threshold will always 

be exceeded and the screen line will move accordingly. Small jerky 

movements in both directions, however, will not be reflected on the 

screen if the projected line errors are smaller than the hysteresis 
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constant. At high altitudes, hysteresis has no beneficial effect and 

can be turned off to save computation time. In cases where jerky motion 

is desired (air turbulence effects for example), hysteresis can be 

turned off. The hysteresis screen point filter, which is a threshold 

type filter, was chosen over screen point averaging due to its superior 

rapid response characteristics. 
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PROGRAM STRUCTURE 

The display proqram consists of three major sections; the 

display driver, navigator, and the control program. 

Graphic subroutines comprise the driver. Upon the receipt of a 

data base and space coordinates (x,y,z,pitch,bank,heading), the driver 

performs all necessary transformations and synthesizing to produce an 

accurate projection on a display screen. 

The navigator keeps track of the simulator's position, handles 

data base overlays and offsets, and is used to interface a simulator to 

the display driver. 

The control program is the main program of the Fortran display 

program. It consists of many calls to navigation and display driver 

subroutines and controls their order of execution. 

BUFFER STRUCTURE. A three dimensional data base consisting of 

lines represented by start and end points is submitted to the display 

driver. A two dimensional screen projection consisting of start and end 

points results. Many transformations occur to produce the results and 

buffers are used to store intermediate results. 

Since four by four matrix multiplication is used to transform 3D 

points into the proper reference frame, a four by one vector is used to 

specify a 3D point. Another buffer is used as an index to these points 

and the index code tells whether the point is a start or continue point. 

The index therefore applies to the points even after the transformation 

has been completed. A positive index value represents a start point. 

The first element of the index buffer will always be a start point and 
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will thus always be positive. The first index element serves a dual 

purpose. The 3D buffer length (number of 3D points) is submitted as the 

first index element. The index can be used in two ways. The end of the 

data base can be sensed by an index code of zero or the first index 

element can be used as a process lenoth. Hardware which requires a 

transfer address and length is easily accommodated with this form of 

indexing. 

A combined data and index buffer is used to define 2D lines. A 

display code, a start point (x and y screen value), and an end point 

produce five array entries. The code indicates whether the line is to 

be displayed or not. 

A delta value corresponding to each 2D point is stored in the 

same type of buffer format as 2D points. The code, however, has no 

significance and is simply used as a filler value so 2D points and 

corresponding delta values have the same array subscript numbers. 

The total number of buffers used is determined largely by the 

control program and the program application. Figure 4 shows the buffer 

structure for the control program used for the aircraft simulation. 

Figure 3 illustrates the buffer formats just described. 
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1 code 

X Start 

Y Start 

X End 

Y End 

-1 code 

X Start 

Y Start 

2D Buffer 

Figure 3. Buffer formats. 

Delta X 

Delta Y 

Delta X 

Delta Y 

Delta X 

Delta Y 

Delta Buffer 

IMAGE 

Figure 4. Buffer structure 
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SUBROUTINE CALLING CONVENTIONS. In order to make array 

processinn subroutines easily usable, array processing subroutines have 

been given similar calling structures which follow the followino 

conventions. 

CALL SUBROUTINE (in,index,out,k,m,n) 

where: 

in * input array 
index* index to input array and possibly output array 
out * output array of subroutine results 
k * input array pointer 
m * index array pointer 
n * output array pointer 

The called subroutine starts operating on arrays at the pointer 

locations and leaves the pointers pointino at the last element processed 

plus one upon return. 

NUMERICAL STRUCTURE. For versatility and execution time speedups 

sixteen bit integer, two’s complement arithmetic is used. To retain 

precision, multiplication is accomplished by calling subroutines which 

have thirty-two bit product capabilities. The Fortran versions of these 

routines convert data to floating point to do this while their assembly 

language equivalents generally use the thirty-two bit capabilities of 

the computer's multiplication hardware. 

Fractions are expressed by positioning the binary point to give 

fifteen bits of fractional precision and one sign bit. 

Many calculations involve the multiplication of a trig function 

by a nonfractional unit. A subroutine has been provided to perform the 

operation by taking the sixteen most significant bits of the thirty-two 

bit product of the fraction multiplied by the integer. 
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Sine and cosine lookup tables are generated upon program 

initialization resulting in the speedup of trigonometric operations. 

CONTROL PROGRAM. The control program shown in figure 6 can be 

used as-is but is meant to be more of a guideline as to what can be done 

with the display driver and navigation subroutines. The circular flow 

chart which accompanies it (figure 5) provides a time domain 

representation of the processes being performed in the display program. 
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jfc Entry point 

Figure 5. Display loop sequencing. 
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main proqram****************************************** 
display loop sequencinq is controlled by this proqram. 
main program****************************************** 

data assiqnments. , 4 , , /0 . 
common /base/ idbaiAOOj.indexailOOj.idauxiSOj.indauxiZO) 
common /base3/ i3d(400),i3daux(80) 
common /mtx/ iv(16),iview 
common /proj/ i2d(400) 
common /synth/ new(400),iold(400),idelta(400).nframe.ihyst 
data ipassltipass2,ipass3,ipass4,ipass5/-l,0,0,0,1/ 
data model,mode2/l,2/ 

control program, initialization section, 
call init 

control program, display loop section. 
call igat 
call imatrx 
k=l 
m=l 
n=l 
kk=l 
mm=l 
nn=l 
call isynth (ipassl) 
call imx (idba,indexa,i3d,k,m,n,model,iv) 
call igen (i3d,indexa,i2d,kk,mm,nn) 
call isynth (ipass2) 
call imx (idba,indexa,i3d,k,m,n,model,iv) 
call igen (i3d,indexa,i2d,kk,mm,nn) 
call isynth (ipass3) 
call imx (idba,indexa,i3d,k,m,n,model,iv) 
call iproj (i3d,indexa,i2d,kk,mm,nn) 
call isynth (ipass4) 
k=l 
m=l 
n=l 
kk=l 
mm=l 
call imx (idaux,indaux,i3daux,k,m,n,mode2,iv) 
call igen (i3daux,indaux,i2d,kk,mm,nn) 
inav is not used in this version of the display program. 
this is where it would appear if it was. 
call inav 
call isynth (ipass5) 
go to 1 
end 

Figure 6. Main program. 
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GRAPHICS SUBROUTINES 

The graphics subroutines are now presented. A more detailed 

description of many of the graphics techniques can be found In 

reference 5. 

IMX SUBROUTINE. This array processing subroutine multiplies the 

Input array which consists of four by one vectors, each representing a 

point In space, by a four by four transformation matrix (IV) and stores 

the resulting four by one vectors In the oittput array. Standard pointer 

conventions are followed 1n the subroutine call and an Index code of 

zero Is recognized as the last vector to be multiplied. The resulting 

output Is the transformed data base which represents points In the 

viewer's reference frame. Figure 7 shows the IMX subroutine. 

Rapid matrix multiplication can be accomplished by replacing 

this subroutine with a hardware matrix multiplier setup and Initiate 

routine If such hardware Is available. In this event, transfer address 

Information can be taken from the dummy variable string and the first 

Index array value can be used as a length parameter. 

The IMODE variable determines whether a full or partial 

transform will be made. 

M0DE1 OPERATION- The transformations specified by the complete IV 

matrix are performed. Pitch, bank, heading, x, y, and z are 

considered. 

M0DE2 OPERATION- Only the rotational transformations are performed. 

This corresponds to the aircraft's reference frame as opposed to 

the ground reference frame 1n the MODE 1 case. 
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subroutine imx (idb,index,13d,k,m,n,mode,iv) 

c imx-----—---- 
c the display points are multiplied by the transformation 
c matrix. 
c imx-*----- 
c 
c data assignments. 

dimension idb(400),index(100),i3d(400),ivsave(3) ,iv(16) 
c 
c mode 2 decision and matrix modification, 

if (mode.eq.l) go to 4 
do 2 i=l,3 
ivsave(i)=iv(i+12) 

2 iv(i+12)=0 
c 
c matrix multiplication. 
4 jx^idbfk) 

jy=idb(k+l) 
jz=idb(k+2) 
do 5 j*l,3 
jl^ivU) 
j2=iv(j+4) 
j3=iv(j+8) 
j4=iv(j+12) 
ja=imul (jxjl ) 
jb=imul(jy»j2) 
jc=imul(jz»j3) 

5 i3d(n+j-l)=ja+jb+jc+j4 
k=k+4 
m=m+l 
n=n+4 
if (index(m-ll.ne.O) go to 4 

6 if (mode.eq.l) return 
c 
c mode 2 matrix restore, 

do 7 i=l,3 
7 iv(i+12)=ivsave(2) 

return 
end 

Figure 7. IMX subroutine. 
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IMATRX SUBROUTINE. IMATRX creates an integer transformation 

matrix from the coordinates provided in the REF common block 

(IX,IY,IZtIPIT,IBNK,IHDG). Fast generation of sines and cosines of 

angles are accomplished through lookup tables. The tables range from 1 

to 360 degrees in one degree steps. 

A rotation matrix is created using standard graphics equations 

derived from geometric principles. Pitch, bank and heading are 

considered. All trigonometric calculations use fifteen bit fractional 

arithmetic. The nine rotational elements of the transformation matrix 

are also expressed in this form. 

A translation matrix is created by effectively adding the 

reference position (IX, IY, IZ) to the data base elements. The 

translation matrix is concatenated with the rotation matrix resulting in 

a complete transformation matrix. In the transformational sense, the 

translation is performed first (positioning the aircraft in the proper 

place), then the rotation is performed (rotating the world about the 

aircraft giving the impression of pitch, bank, and heading). Figures 8 

and 9 show the rotation and translation matricies. 

Field of view is corrected for by multiplying the translated and 

rotated data base by the window transform. The IVIEW constant is 

submitted by the program user through a data base entry or by default 

upon initialization. The transformation matrix is appropriately 

modified to perform field of vision corrections through dimensional 

compression upon data base multiplication. The IMATRX subroutine 

is shown in figure 10. 
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Figure 8. Rotation matrix. 
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a) Translation matrix. 
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0 1 0 0 
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b) Windowing matrix. 

Figure 9. Translation and windowing matricies. 
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3 
c 

subroutine imatrx 

imatrx---- 
the transformation matrix, iv, is created. 
imatrx--- 
common /ref/ ix,iy,iz,ipit,ibnk,ihdg 
common /mtx/ iv(16),iview 
common /trip/ isin(360),icos(360) 
matrix calculations rotation section. 
iasisin(ipit) 
ib-isin(ibnk) 
ic=isin(ihdg) 
idsicos(ipit) 
ie=icos(ibnk) 
ip=icos(ihdg) 
ig=imul (ip.ie) 
ihsimul(ic,ib) 
ii=imul(ip,ib) 
ij=imul(ic,ie) 
ik*imul(ih.ia) 
il=imul(ij,ia) 
im=imul(ii,ia) 
1n=imul(ia,ia) 
iv(l)=ig+ik 
iv(2)=-1i+il 
iv(3)=imul(ic,id) 
iv(5)=imul(id,ib) 
iv(6)=imul(id,ie) 
iv(7)=-ia 
iv(9)=-ij+im 
iv 10)=ih+1n 
iv(ll)=imul(ip,id) 
translational calculations, 
do 3 i=l,3 
iasiv(1) 
ib=iv(i+4) 
ic=iv(i+8) 
idsimul(ix.iaj 
1e»imul(iy,ibj 
ip^imul(iz,ic) 
iv(i+12)=-id-ie-1p 
windowing calculations. 
id=iv(15) 
iv(3)=imul(ia.iview) 
iv(7)=imul(ib.iview) 
iv(ll)=imul(ic,iview) 
iv(15)*1mul(id,iview) 
return 
end 

Figure 10. IMATRX subroutine. 
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ISYNTH SUBROUTINE. This subroutine uses screen coordinate 

interpolation to synthesize many images from just two real frames. 

Since end points of lines move in nearly straight lines and at an almost 

constant velocity over a short period of time, the synthesized frames 

are very good approximations to the real projection. Only addition of 

interpolation constants (delta values) is needed to synthesize an image 

thus avoiding clipping, transforming, and projecting. The synthesizer 

was found to produce no noticable geometric distortion and resulted in a 

higher projection rate. The frame synthesizer works out of four buffers 

in the following way. 

PASS 1- Delta values are calculated for each projected line's 

screen end points. 

delta x= (new x-old x)/number of frames 

delta y= (new y-old y)/number of frames 

If an old frame line's code indicates that the line is turned 

off (not to be projected), no delta values are calculated for it. Only 

lines which are turned on in the new and old frame will be projected. 

Since PASS 2 only uses the old frame code, this code is changed to 

indicate the proper condition if necessary (a line leaves the screen in 

this way). The delta values are added to the old screen end points 

creating an updated old frame. The updated frame is then projected. 

PASS 2 THROUGH N- During the intermediate frames, between the 

first and last pass, the delta values are added to the updated old frame 

and it is projected. 

PASS N- The new frame's points and corresponding codes are 
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transferee! to the old frame buffer and new display points and codes are 

transferred from the projection buffer to the new frame buffer. The old 

frame is then projected. 

If screen point hysteresis is being used, projection buffer 

points are checked to determine whether the hysteresis value has been 

exceeded. If it has, the projection buffer point gets transferred to 

the new frame buffer. If not, the new frame buffer retains its previous 

point. Figures 11 and 12 show the details of the frame synthesis. 
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subroutine isynth (ipass) 
jjypth****** ****************************************** 
nframe frames are synthesized out of just 2 base frames, 

pass 1: delta values are calculateded. 
pass 2 to nframe-1: delta values are added, 
pass nframe: a new frame Is transferred, 

projection occurs on every pass. 
Isynth************************************************ 

data assignments 
common /synth/ new(400),1old(400),1delta(400),nframe,Ihyst 
common /proj/ 12d(400) 
common /crt/ dbuf(800) 
1=1 
showlt transfers a new Image to the display generator, 
call showlt 

pass number decision, 
if (ipass) 1,2,3 
If (ihyst) 33,33,53 

pass 1 action. 
iold(i)=-1 
go to 15 
1f (iold(i).lt.O) go to 15 
do 14 j=l,4 
idelta(1+j)=(new(i+j)-1old(1+j))/nframe 
1old(1+j)=1old(1+j)+idelta(1+j) 
j=1old(1+l ) 
k=1old(1+2) 
l=1old(1+3) 
m=iold(i+4) 
atllne (xl ,yl ,x2,y2) draws a Une from points 1 to 2. 
call atllne (j,k,l,m) 
1=1+5 
If (new(i)) 11,40,13 

pass2 to nframe-1 action, 
do 22 j=l,4 
1old(i+j)=1old(1+j)+idelta(i+j) 
j=1old(1+l) 

Figure 11. ISYNTH subroutine part a. 
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k=iold(i+2) 
l=iold(i+3) 
m^ioldÇi+A) 
call atHne (j.k.l ,m) 

23 i=i+5 
2 if (iold(i)) 23,40,21 
c 
c pass nframe action (last pass). 
30 i=i+5 
33 do 31 ja0,4 

iold(i+j)=new(i+j) 
31 new(i+j)ai2d(i+j) 

if (iold(i).le.O) go to 92 
jaiold(i+l) 
k=1old(i+2) 
l=iold(i+3) 
m=iold(i+4) 
call atline (j,k,l,m) 

92 if (i2d(i)) 30,40,30 
c 
c pass nframe action with hysteresis. 
50 i»i+5 
53 do 51 j=l,4 

iold(i+j)=new(i+j) 
ihl=i2d(i+j)-3 
ih2=i2d(i+j)+3 
if (ihl.gt.new(i+j)) new(i+j)=ihl 

51 if (ih2.ît.new(i+j)) new(i+j')=ih2 
iold(i)=new(i) 
new(i)=i2d(i) 
if (i2d(i).le.O) go to 52 
3=iold(i+l) 
k=iold(i+2) 
l=iold(i+3) 
m=iold(i+4) 
call atline (.j.k»l»m) 

52 if (i2d(i)) 50,40,50 
c 
40 return 

end 

Figure 12. ISYNTH subroutine part b. 
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I GEN SUBROUTINE. When a clipped two dimensional projection of an 

array of transformed data base points is needed, the I GEM subroutine is 

called. This is a time efficient version of the Cohen and Sutherland 

projection and clipping algorithm. The followina features are 

incorporated to effect the speedup. 

1. Point swapping during clipping is eliminated. 

2. Old screen point values are used for continue point projection 

values if they are found to be valid. 

3. Redundant on or off the screen checking is eliminated. 

4. A five element code is used instead of a four element code. 

Standard array processing subroutine calling and pointer conventions are 

used. 

The ICODE and PUSHER subroutines are used exclusively by IGEN. 

ICODE creates codes which indicate whether a point is off the screen and 

to which side of the screen it lies. PUSHER does the actual clipping by 

pushing a line's end point to the viewing pyramid boundry it intersects. 

Due to this complexity of this subroutine, flow charts are 

presented in addition to the subroutine listings in figures 13 through 

18. 

.
.
.
_

_
_

.
.
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Start pt. action Continue pt. action 

Data base value-»-start pt. 

Data base value-►end pt. 

Previous end pt.-^ start pt. 

Data base value -»end pt. 

Buffer the end point for 

latter use. 

Update data base pointers 

by 2 coordinate points. 

Code the start and end pts. 

-<C_Line off screen? 
No 

> 

Buffer the end point for 

latter use. 

♦ 
Update data base pointers 

by 1 coordinate point. 

Code the end point. 

Old code is valid for 

the start point,_ 

Set project code to 

•1 (don't display). 

Figure 13. IGEN flow chart part a. 
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Accuracy scaling. 

5! 
Convert to integer. 

** Can not use the old screen pt. 

Project the start point. 

Go to 22 

Figure 14. IGEN flow chart part b. 



Figure 15. IQEN flow chart part c. 
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subroutine igen (jd,index,j2d,k,m,n) 
c igen- 
c igen controls the clipping and projection of clipped lines, 
c refer to the flow chart and Tables for operation. 
c igen--- 
c 
c data assignments. 

dimension j2d(400),jd(400),index(100) 
logical cl(5),c2(5),cb2(5) 

c 
1 if (index(m)) 2,2,3 
c 
c continue point action. 
2 jxl=jxb2 

jyl=jyb2 
jzl=jzb2 
jx2=jd(k) 
jy2=jd(k+l) 
jz2=jd(k+2) 
jxb2=jx2 
jyb2=jy2 
jzb2=jz2 
k=k+4 
m=m+l 
do 11 i=l,5 

11 cl(i)=c2(i) 
call icode (c2,jx2,jy2,jz2) 
do 4 1=1,4 

4 if (cl(i).and.c2(i)) go to 25 
if (.not. cl(5)) go to 6 
if (c2(5)) go to 20 
do 12 1=1,5 

12 cb2(i)=c2(i) 
xl=jxl 
yi*jyi 
zl=jzl 
x2=jx2 
y2=jy2 
z2=jz2 

Figure 16. IGEN subroutine part a. 



5 call pusher (x2,y2,z2,xl,yl,zl,cb2) 
if (.not.cb2(5)) go to 5 
if (z2.qt.500.) go to 55 
x2=x2*50. 
y2:sy2*50. 
z2=z2*50. 

55 jx2*x2 
jy2sy2 
jz2az2+l. 

20 j2d(n+l)=j2d(n-2) 
j2d(n+2H2d(n-l) 

22 call ipyra (jx2,jz2,jp) 
j2d(n+3Hp 
call ipyra (jy2,.jz2,jp) 
j2d(n+4)=jp 
j2d(n)=l 
n*n+5 
if (index(m-l).eq.O) return 
go to 1 

c 
c start point and following continue point action. 
3 jxl=jd(k) 

jyl=jd(k+l) 
jzl*jd(k+2) 
jx2=jd(k+4) 
jy2=jd(k+5) 
jz2=jd(k+6) 
jxb2=jx2 
jyb2=jy2 
jzb2=jz2 
k=k+8 
[11=111+2 
call icode (cl,jxl Jyl,jzl) 
call icode (c2,jx2fjy2tjz2) 
do 7 i=l ,4 

7 if (cl(i).and.c2(i)) go to 25 
6 xl=jxl 

yisjyi 
zl=jzl 
x2=jx2 

Figure 17. IGEN subroutine part b. 
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y2*jy2 
z2*jz2 
If (cl(5)) go to 8 

60 call pusher (xl,yl,zl»x2,y2,z2,cl) 
if (cl(5)) go to 8 
do 9 isl,4 

9 if (cl(i).and.c2(i)) go to 25 
go to 60 

8 If (c2(5)) go to 21 
do 13 1=1,5 

13 cb2(1)=c2(i) 
10 call pusher (x2,y2,z2,xl,yl,zl,cb2) 

if (.not.cb2(5)) go to 10 
21 if (zl.gt.500.) go to 30 

xl=xl*50. 
yl=yl*50. 
zl=zl*50. 

30 if (z2.gt.500.) go to 31 
x2=x2*50. 
y2=y2*50. 
z2=z2*50. 

31 jxl=xl 
jyisyi 
jzl=zl+1• 
jx2=x2 
jy2=y2 
jz2=z2+l. 
call ipyra (jxl,jzl.jp) 
j2d(n+l)=jp 
call ipyra (jyl,jzl.jp) 
j2d(n+2)=jp 
go to 22 

c 
c nonvisible line elimination. 
25 j2d(n)=-l 

n=n+5 
if (index(m-l).eq,0) return 
go to 1 
end 

Figure 18. IGEN subroutine part c. 
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ICODE SUBROUTINE. A five element code is generated to indicate 

where in space a 3D point lies in relation to a viewing pyramid. The 

first four elements of the code are the same as the Cohen Sutherland 

code. The fifth code element tells whether a point is on or-off the 

screen. This eliminates the need to test the other four code elements 

to determine if a point is on the screen. 

Code Element 

1. The point is to the left of the x=-z plane 
2. The point is to the right of the x=z plane 
3. The point is below the y=-z plane 
4. The point is above the y=z plane 
5. The point is within the viewing pyramid 

The planes used in this code describe the viewing pyramid within which 

visible points lie. The ICODE subroutine shown in figure 19 describes 

the coding algorithm. 

PUSHER SUBROUTINE. The mathematics used to clip a line are 

performed here. First, code elements are checked to determine towards 

which screen boundary a line's end point must be pushed. The 

mathematics (see figure 20) are then performed and the line is recoded. 

Floating point arithmetic is used for pushing the points to the screen 

boundry due tr, the need for high precision when clipping long lines 

which intersect the viewing pyramid near its base. 
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subroutine Icode (codejx.jyjz) 
c icode-— 
c a 5 element code is assigned to the point jx,jy,jz 
c based on which side of the planes the point falls, 
c code (1,2,3,4,5) is the code, 
c 1= point is to the left of the jx^-jz plane 
c 2* point is to the right of the jxa3z plane 

3* point is below the jyB-jz plane 
4= point is above the jysjz plane 

c 5s point is within the viewing pyramid 
c icode--- 
c 

logical code(5) 
code(5)s.true. 
if (jx.lt.-jz) go to 1 
code(l)=.false. 

11 if (jx.gt.jz) go to 2 
code(2)=.false. 

22 if (jy.lt.-jz) go to 3 
code(3)=.false. 

33 if (jy.gt.jz) go to 4 
code(4)=.false, 
return 

1 code(l)=.true. 
code(5)=.false, 
go to 11 

2 code(2 )=. true. 
code(5)=.false, 
go to 22 

3 code(3)=.true. 
code(5)=.false, 
go to 33 

4 code(4)=.true. 
code(5)=.false, 
return 
end 

Figure 19. ICODE subroutine. 
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subroutine pusher (xl,y1,zl,x2,y2,z2,code) 

c pusher- 
c line clipping is performed, point xl,yl,zl is pushed 
c toward point x2,y2,z2 until a pyramid intersection occurs, 
c the pushed point is then recoded. 
c pusher- 
c 

logical code(5) 
if (code(3)l go to 1 
if (code(4)) go to 2 
if (code(l)) go to 3 

c 
c push left. 

ta(zl-xl )/((x2-xl)-(z2-zl)) 
zl*t*(z2-zl)+zl 
xl=zl 
ylat*(y2-yl )+yT' 

go to 4 \ 
c 
c push up. 
1 t=(zl+yl)/((yl-y2)-(z2-zl )) 

zlst*(z2-zl)+zl 
xl=t*(x2-xl)+xl 
yl=-zl 

go to 4 
c 
c push down. 
2 t=(zl-yl)/((y2-yl)-(z2-zl )) 

zl=t*(z2-zl)+zl 
xl=t*(x2-xl)+xl 
yl=zl 

go to 4 
c 
c push right. 
3 ts(zl+xl)/((xl-x2)-(z2-zl )) 

zl=t*(z2-zl)+zl 
xl=-zl 
yl=t*(y2-yl)+yl 

c 
c recode. 
4 i=xl 

j=yi 
k=zl 
call icode (code,i,j,k) 
return 
end 

Figure 20. PUSHER subroutine. 
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IPROJ SUBROUTINE. In many cases It Is desirable to project many 

small objects without the clipping restriction, that is, to not project 

the line if any part of it falls off the screen. Projecting lines in 

this manner not only eliminates the need for clipping but for coding of 

points as well. IPROJ treats a set of points as a list of start and end 

point pairs and converts them into screen coordinates. If a line is off 

the screen, it sets the project/no project code to no project and moves 

on to the next line. This is a very small subroutine, intended for 

assembly language replacement. 

Divide instructions on most computers have an overflow on divide 

warning feature which can very efficiently be used to eliminate most of 

the off screen point checking. The projection functions are: 

screen x= 28000*(x/z) 

screen ys28000*(y/z) 

If x/z or y/z are greater than one, the point is off the screen. Due to 

the same two conditions, accumulator or register overflow will also 

result and a warning flag will be set. Thus, this flag can be used as a 

project/no project indicator. An added bonus is the fact that divide 

instructions usually run about three times faster when overflow abort 

occurs, wasting less time on unprojected points. Mote that any point 

with a negative z must still be eliminated by the software as it falls 

behind the viewing pyramid. The Fortran version of this subroutine is 

shown in figure 21. 



39 subroutine iproj (in,index,iout,k,m,n) 
c iproj---.. 
c nonclipped lines are projected, if any part of a 
c line falls outside the viewing pyramid , it is eliminated. 
c iproj. 
c 
c data assignments 

dimension in(400),iout(400),index(100) 
1 if (in(k+2).le.0.or.in(k+6).le.0) go to 2 
c 

x*in(k) 
y=in(k+l) 
zssin(k+2) 
out=x/z*25000. 
if (out.gt.25000..or.out.It.-25000.) go to 2 
iout(n+l)=out 
out=y/z*25000. 
if (out.gt.25000..or.out.It.-25000.) go to 2 
iout(n+2)=out 

c 
x=in(k+4) 
y=in(k+5) 
z=in(k+6) 
out=x/z*25000. 
if (out.gt.25000..or.out.It.-25000.) go to 2 
iout(n+3)=out 
out!sy/z*25000. 
if (out.gt.25000..or.out.It.-25000.) go to 2 
iout(n+4)=out 
iout(n)=l 
go to 3 

c 
2 iout(n)=-l 
c 
3 k=k+8 

m=m+2 
n=n+5 
if (index(m-l).ne.0) go to 1 
return 
end 

Figure 21. IPROJ subroutine. 
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NAVIGATIONS SUBROUTINES 

The navigational subroutines, IGAT and INAV, provide the display 

driver with a data base and reference and scale information. The 

display subroutines then produce an accurate projection. The form which 

navigational subroutines take is largely dependent on program 

application and what equipment is being used. Two types of reference 

information are used. 

NAV - Navigational simulator reference parameters. 

Simulator position information is passed between program units in 

floating point mode allowing a large range of simulator movement. 

Since the display driver operates in integer mode, map overlays 

must be used to extend display range if overflow is to be avoided. 

The XFSET and ZFSET are the ground plane offsets of the map bei no 

used. The NAV positions (XPOS and ZPOS) minus the offsets put the 

reference parameters within the integer range of plus or minus 

32767. 

REF - Graphical reference parameters. 

Display driver integer mode references of x, y, z, pitch, bank, 

heading intended for direct use by the display driver are included 

in the REF common block. The field of vision parameter is also 

passed to other program units through REF. 
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IGAT SUBROUTINE. Simulator coordinates are read, filtered and 

scaled to provide REF information. Navinational data is passed to the 

other program units through NAV. In the case of the GAT 2 simulation 

for which this version of IGAT is written (figures 22 and 23), 

positional information is obtained by calling subroutines which examine 

analog to digital converter outputs which represent the simulators 

position. 

I NAV SUBROUTINE. Map overlays and their appropriate offsets and 

scaling are handled here. Map decisions are based on simulator 

position. The actual data base swapping is performed in this 

subroutine. This subroutine has not been used extensively and is not 

used in the example control program. A simple version of INAV is shown 

in figure 24. 



c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 

1 
1000 

1002 

subroutine iqat 
i qa t************************************************** 
sinqer link gat2 simulator interface program 
simulator coordinates are read and filtered, 
this is a good example of a simulator interface 
program but it was found that better filtering is 
needed for practical applications, 
igat************************************************** 

data assignments 
integer da2,dr2,de2,pi,ya,ba,qapi,paro,rayé,rc.vp.sinh,cosh 
integer thl ,th2,xramp,yramp,da,dr,de 
common /nav/xpos,ypos,zpos,xfset,zfset,iscale 
common /ref/ix,iy,iz,ipit,ibnk,ihdg 
data ixn,ixo,izn,izo,iyo,istart/5*0,l/ 

ramp calculation decision, 
if (istart) 2,2,1 
write (13,1000) 
format (' type 1 for ramp calculations,0 for no ramp') 
read (13,1002) irmp 
format (il ) 
istart=0 

c 
c get gat parameters 
c dalyad2 and gatxy subroutines provide positional data 
2 call dalyad2(da,dr,de,da2,dr2,de2,ba,ya,pi,paro, 

c raya.gapi,rc,vp,sinh,cosh,al,thl ,th2,xramp,yramp) 
call gatxy(igatx,igaty) 

c 
c calculate heading angle 

sine=sinh 
if (cosh.eq.O) cosh=l 
cosine=cosh 
angle=sine/cosine 
ihdg=atan(anqle)*57.29578 
if (cosh.It.5) ihdg=ihdg+180 
if (ihdg.lt.l) ihdg=ihdg+360 

c 
c create x and y coordinates with offset values, 
c scale the values. 

z=igaty 
x=igatx 
iz=z*16.-(zfset/4.) 
ix=x*16.-(xfset/4.) 

Figure 22. IGAT subroutine part a. 
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adding the ramp value, 
if (irmp)10,10,6 
iz=iz+(yramp/128) 
ix=ix+(xramp/128) 

boundary correction: parti, position estimation 
ixest=1xn+(ixn-ixo) 
izest^izn+iizn-izo) 
boundary correction: part2, correction 
idiffx*ix-ixest 
idiffz=iz-izest 
if (idiffx.lt.-20.or.idiffx.gt.20) go to 9 
if (idiffz.lt.-20.or.idiffz.gt.20) go to 9 
if (idiffx.gt.8) ix=ix-16 
if (idiffx.lt.-8) ixsix+16 
if (idiffz.gt.8) iz=iz-16 
if (idiffz.lt.-8) iz=iz+16 
go to 10 

positional filtering, three trial averaging, 
continue 
i=(ix+ixn+ixo)/3 

j=(iz+izn+izo)/3 
1xo=ixn 
ixn=ix 
i X=1 
1zo=izn 
1zn=iz 
iz=j 

altitude filtering, two trial averaging. 
iy=al-120 
i=(iy+iyo)/2 
iyo=iy 
iy=i 

pitch and bank calculations. 
ipit=pi/12 
if (ipit.lt.l) ipit=ipit+360 
ibnk=ba/12 
if(ibnk.lt.1) ibnk=ibnk+360 
return 
end 

Figure 23. IGAT subroutine part b. 
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subroutine inav 
inav- 
this navigational subroutine does two things: 
1. switches to the low altitude data base if altitude 
drops below 500 feet and turns on screen point hysteresis. 
2. switches to the high altitude data base if altitude 
goes above 750 feet. 
inav----- 

common /base/ idba(400),indexa(100),idaux(80),indaux(20) 
common /base2/ idbb(400),indexb(100) 
common /ref/ ix,iy,iz,1pit,ibnk,ihdg 
common /synth/ new(400)liold(400),ideita(400),nframe,ihyst 

if (iflag.eq.l.and.iy.lt.500) go to 1 
if (iflag.eq.0.and.iy.gt.750) go to 2 
return 

switch to low data base and turn hysteresis on. 
do 10 i"!,400 
itemp=idba(i) 
1dba(i)=idbb(i) 
idbb(i)=itemp 
do 11 i=l,100 
itemp=indexa(1) 
indexa(i)=indexb(i) 
indexb(i)*itemp 
ihyst=l 
iflag=0 
return 

switch to high data base and turn hysteresis off. 
do 20 i=l ,400 
itemp=idba(1) 
idba(i)=idbb(i) 
idbb(i)=itemp 
do 21 i=l,100 
itemp=indexa(i) 
indexa(i)=indexb(i) 
indexb(i)=itemp 
ihyst=0 
iflag=l 
return 
end 

Figure 24. INAV subroutine. 
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COMPUTATIONAL SUBROUTINES 

IPYRA SUBROUTINE. An equation often used in point projection is 

the pyramid projection equation. 

screen x= 30 x/ 3D z * (k/2) 

The variable k is the screen width. Division by z gives the projection 

depth perspecive. IPYRA is a small assembly language plug-in replacable 

module which performs this function. The following Fortran version of 

the IPYRA module (figure 25) can be used on any computer and converts 

data to floating point mode to perform the division and retain accuracy. 

Great execution time speedups result from assembly language replacement 

of this module. 

The thirty-two bit product capabilities of a sixteen bit 

computer's multiplication hardware are utilized to retain accuracy in 

the division and multiplication in the assembly language version shown. 

IMUL SUBROUTINE. As stated previously, multiplication of a 16 

bit fractional constant by an integer is a common occurance. Accurate 

fractional multiplication is performed by IMUL. 

The fraction and integer are multiplied and the top sixteen bits 

of the thirty-two bit product are taken as the result. Binary point 

placement for the fraction is accomplished in this way. The Fortran 

module shown in figure 26 converts data to floatinq point mode to retain 

high accuracy while the assembly lanauane version uses thirty-two bit 

hardware product capabilities as IPYRA does. Overall display pronram 

speedups of up to four hundred percent have been obtained by assembly 

language replacement of IMUL. 
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subroutine ipyra (i,j,jp) 
ipyra.....— 
the pyramid projection function is accurately performed. 
jp=(i/j)*25000. 
this subroutine is assembly language replacable. 
ipyra.... 
ri=i 
rj*j 
JP=(ri/rj*25000.) 
return 
end 

Figure 25. IPYRA subroutine. 

function imul(i,j) 
imul fortran module----- 
imul is an assembly language replacdble module, 
imul performs i*j/32767 
imul fortran module-—— 
ris1 
rj=j 
imul*ri*rj/32767.0 
return 
end 

Figure 26. IMUL subroutine. 
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INITIALIZATION 

INIT SUBROUTINE. Lookup table generation and data base read-in 

are performed by the initialization subroutine. Variable program 

parameters are assigned default values which are redefined by parameter 

control statements in the users data base if default is not specified 

(see data base format section). Figures 27 and 28 show the INIT 

subroutine. 

BLOCK DATA SUBROUTINE. All common blocks are allocated by the 

block data subroutine. Initialization of synthesizer buffers and other 

display buffers and variables are also performed. The block data 

subroutine shown in figure 29 is used with the sample control program. 
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subroutine 1 nit 
ini £************************************************** 
init reads in and generates parameters and data base blocks, 
i nit************************************************** 

data assignments. 
common /base/ idba(400),indexa(100),idaux(80),indaux(20) 
common /base3/ i3d(400),i3daux(80) 
common /crt/ dbuf(500) 
common /mtx/ iv(16),iview 
common /nav/ xpos.ypos.zpos.xfset.zfset.iscale 
common /trig/ isin(360),icos(360) 

default value assinnments. 
iview*32767 

initialize the display buffer and screen 
call getup 
call opnfH (dbuf,740) 

the initial display start point is now chosen. 
find the immediate position of the simulator. 
call gatxy(igatx.igaty) 
xfset^igatx 
xfset=xfset*64. 
zfset=igaty 
zfset=zfset*64.+3000. 
iscale=l 

read the default/setup card, 
read (21,1001) isetup 
format (il) 
if (isetup.eq.O) go to 12 

read the field of view parameter, 
read (21,1002) field 
format (flO.O) 
field=fiel d/360.*6.28308 
iview=sin(field)/cos(field)*32767. 

read in the 4 data base blocks. 
i=l 
nbuf=0 
read (21,1000) indexa(i),(idba(i*4-4+j),j=l,3) 
format (i2,3l6) 
idba(i*4)=l 
i=i+l 
if (indexa(i-l).ne.O) go to 1 
nbuf=nbuf+l 

Figure 27. INIT subroutine part a. 
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if (nbuf.ne.3) go to 1 
indexa(l)=i-l 

read (21,1000) indaux(i),(idaux(i*4-4+.j),j=l,3) 
idaux(i*4)=l 
i = i+l 
if (indaux(i-l).ne.O) go to 2 
indaux(l)=i-l 

generate the sine and cosine tables. 
do 11 i=l ,360 
a=i 
asa*6.28318/360.0 
isin(i)=32767.*sin(a) 
icos(i)=32767.*cos(a) 
return 
end 

Figure 28. INIT subroutine part b. 

block data******************************************** 
the display's common blocks are set up and initialized. 
bl ock data******************************************** 

common /base/ idba(400),indexa(100),idaux(80),indaux(20) 
common /base3/ i3d(400),i3daux(80) 
common /crt/ dbuf(800) 
common /mtx/ iv(16),iview 
common /nav/ xpos,ypos,zpos,xfset,zfset,iscale 
common /proj/ i2d(400) 
common /ref/ ix,iy,iz,ipit,ibnk,ihdg 
common /synth/ new(400),iold(400),idelta(400),nframe,ihyst 
common /trig/ isin(360),icos(360) 

data i2d/400*0/,new/400*0/.nframe/5/ 
data iv/15*0,32767/ 
data ihyst/0/ 
end 

Figure 29. Block data subroutine. 
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DATA BASE FORMAT 

A simple data base read-in format was Incorporated into the 

display program to allow for simple data base manipulation, A data base 

may be on cards, tape or disc as dictated by the data read-in section of 

the initialization subroutine. 

The first card (or card image) indicates whether or not set-up 

parameters will be included in the card deck. A zero in column one is 

used to specify that default values should be used. A one in column one 

indicates that set-up parameters will be given. If the first card has a 

one in column one, the following cards will contain set-up information 

such as field of view and initial position. 

After the set up has been completed (by default or definition), 

the actual data base can be read in. The data base consists of three 

dimensional start and continue points. Integer mode is used and it is 

recommended that values be kept between plus and minus 20000. Each card 

contains a code and a coordinate in the following format. 

12 16 16 16 
Code X y z 

Code Meaning 

01 = start point 
-1 = continue point 
00 = continue point and end of data base block 

The display program described expects three data base blocks to 

be read in. The first two will be processed by the IGEN subroutine and 

the third will be processed by IPR0J. The predictor symbol buffer is 

read as the fourth block. This block is matrix multiplied (mode 2) and 

is projected by IGEN. A sample data base is shown in Appendix A. No 



clipping is performed by IPROJ, therefore small objects should be in 

block three. Only lines that must be clipped are included 

and two. Higher projection rates result from making block 

as small as possible. 

in block one 

one and two 
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DISPLAY PERFORMANCE 

The speed at which images are projected is determined by program 

configuration, equipment used, and data base complexity. Higher display 

speeds are obtained when assembly language replacement modules are used. 

Table 1 gives the performance of the display program in various 

configurations. 

Although no thorough error analysis was made of the image 

quality, the following can be said. The picture geometry is good due to 

the strict mathematics used in projection. Objects keep their proper 

shape and perspective and don't come apart as they often do when 

approximation methods are used for projection. Motion quality can be 

described as fair. Due to the sixteen bit integer calculations, motion 

is not as smooth as may be desired but screen filtering has helped this 

situation considerably. Frame synthesizing results in a very natural 

smoothing of movement. 

A computer with more precision would greatly increase projection 

speed, eliminate the need for any floating point calculations, and 

increase image accuracy and motion quality. 
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PROGRAM 

TABLE 1 

PROGRAM PERFORMANCE 

COMPUTER OPERATING 
SYSTEM 

COMPILER DISPLAY RATE 
(50 LINES) 

FLY V03 POP n/40 RT 11 FORTRAN IV 2 FRAMES/SEC. 

A. FOR POP 11/40 RT 11 FORTRAN IV 6 FPS 

B.FOR POP 11/40 RT 11 FORTRAN IV 9 FPS 

DISP.F POP 11/40 UNIX FORTRAN IV 1.5 FPS 

A. RAY RAYTHEON 704 XRAY INLINE * 4 FPS 

A. RAY RAYTHEON 704 XRAY INLINE 7 FPS 

B.RAY RAYTHEON 704 XRAY INLINE 11 FPS 

C.RAY RAYTHEON 704 XRAY INLINE 20+ FPS ** 

* RAYTHEON 704 FORTRAN IV INLINE COMPILER 
♦♦ESTIMATED DISPLAY RATE. 

11 
F. 
ï 
1 

FRAME IPYRA AND IMX AND MATRIX DISPLAY 
SYNTHESIS IMUL ASSEMBLY IPROJ ASSEMBLY MULTIPLIER RATE 

FLY V03 2 FPS 

A. FOR X 6 FPS 

B.FOR X X 9 FPS 

DISP.F X 1.5 FPS 

A. RAY X 4 FPS 

A. RAY X X 7 FPS 

B.RAY X X X 11 FPS 

C.RAY X X X X 20+ FPS ** 
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CONCLUSION 

That which was set out to be accomplished In this project was, 

for the most part, successfully accomplished. The resulting program 1s 

transportable, easy to work with, and relatively time efficient. It was 

unfortunate that assembly language replacement of subroutines had to be 

used to obtain high projection rates, but the fact remains that a 

complete Fortran version of the program exists and can be run on any 

system which handles Fortran if speed is not of prime importance. In 

the writing of many of the assembly language modules it was found that 

translating the Fortran program into assembly language was very easy due 

to the program structure already being available. 

The Fortran display program is already finding application in a 

predictor display simulation and in the future, more ground based 

simulations will be incorporating this program. One of the most 

interesting applications may be the installation of a small computer and 

display system inside an actual aircraft, using radio navigation signals 

to obtain references for the display. Very efficient, integerized 

software is essential for a small computer acting in this capacity 

therefore the basic structure of this program can be used here also. 

Unlike old display programs (typically called landing displays), 

this program, with its map overlay feature, can be used as an overall 

flying display. Cross-country trips as well as simple landings can be 

performed. Another interesting application of this program is space 

flight. With the essentially limitless data base sizes provided by map 

overlays, a complete takeoff, docking, and reentry can be performed. 



The map overlay feature Is one of the most powerful parts of the display 

program and has not, up to this time, been developed or used 

extensively. 

Basically, this display program has added easy to work with 

visual capabilities to many simulations where none were available 

before, without the use of expensive graphics hardware. 
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SAMPLE DATA BASE 

This data base consists of the runway, center lines, and 
approach bar shown below. 

z: 
Origin 
0,0,0 

A-l. Data base form. 

The following lines show the data input format for this data 
base. 

1 setup data base 
45.0 field of view parameter 
01 25 
-1-00025 
-1-00025 
-1 
00 
01 
-1 
01 
-1 
01 
-1 
01 
00 
01 
-1 
01-00015 
00 15 

25 
25 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1800 
1800 

0 
0 

1800 
200 
400 
600 
800 

1000 
1200 
1400 
1600 

•00200 
25-00200 
25-00200 
25-00200 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0- 

data base block 1 
runway 

data base block 2 
center lines 

data base block 3 
approach bar 

The initialization shown in subroutine INIT reads four data base 
blocks, the fourth being the predictor symbols. 

Care is taken to assure that the program's buffers are large 
enough to accomodate the whole data base. 
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Image complexity: 50 lines Display rate: 11 frames per second 

Display contents: Runway, center Unes, numbers (both ends), taxiway, 
ramp area, 3 predictor symbols, 3 approach bars, 
10 landing lights, ground texture. 

A-2. Sample projection. 



APPENDIX B 

ASSEMBLY LANGUAGE MODULES 
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* ipyra-- 
* Ipyra subroutine module for raytheon 704 
* the call Is: call Ipyra (1,j,jp) 
* the result 1s: jps1*28000/j 
* Ipyra.. 

ntry Ipyra 
Ipyra 

j 
cl 
pool 

ladr 
jadr 
jpadr 

d 
Idx 
Idw* 
stw 
Idx 
Idw* 
mpy 
dlv 
Idx 
stw* 
smb 
jsx 
d 
d 
d 
d 
d 
d 
d 
d 
end 

pool 
jadr 
0 
j 
ladr 
0 
cl 
j 
jpadr 
0 
r.ret 
r.ret 
pool 
0 
20000 
5 
0,0 
0 
0 
0 

B-l. Raytheon 704 IPYRA assembly language module. 

This assembly language module Increases the projection rate 

and utilizes the Raytheon 704 multiply hardware to the fullest 

extent. The Intermediate thirty-two bit product 1s stored In the 

accumulator (least significant bits) and In the Index register. 
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* 1mul------- 
* raytheon 704 imul assembly function module 
* the call is: iout=imul(i,j) 
* the result is: iout=i*j/32768 
* imul-----—- 

ntry imul 
calad d 0 
i d 0 
imul equ $ 

d 0 
stw calad 
cax 
ixs 3 
nop 
Idx* 0 
sxp 
jmp 
Idw* 
stw 
Idx 
ixs 
nop 
Idx* 

$-2 
0 
i 
calad 
4 

0 
sxp 
jmp $-2 
Idw* 0 
mpy i 
cxa 
Idx calad 
ixs 2 
nop 
Idx* 0 
sxp 
jmp $-2 
stw* 0 
Idx calad 
ixs 5 
nop 
smb r.exec 
jmp r.exec 
end 

B-2. Raytheon 704 IMUL assembly language module. 

The IMUL function module can be replaced wich this assembly 

language version decreasinq matrix multiplication time. 



63 

; Ipyra assembly language module 
;1pyra.-.-. 
; this pyramid projection subroutine performs the 
; function: ipyra(i,j)a (1*254/j)+256. 
; this function is written for the pdp 11/40 computer. 
; ipyra.-. 
.globl ipyra 
.glob! imul 
.radix 10 
r0a%0 
ri=sn 
r5=%5 
pc=%7 

ipyra: tst (r5)+ 
mov o(r5)+,r0 note: @ is represented by the ° symbol. 
mul #254,rO 
div o(r5),r0 
add #256,rO 
rts pc 

; imul--—--—-— 
; this is the fractional multiply subroutine assembly 
; language module, written for the pdp 11/40 computer. 
; 1mul(i,j) is the call 
i i*j/32767 is the result 
; imul--- 

imul: tst (r5)+ 
mov o(r5)+,r0 
mul o(r5),r0 
div #32767,rO 
rts pc 
.end 

B-3. PDP 11 assembly language modules. 

These two assembly language modules can increase display rate on 

a PDP II computer running under an RT-11 fortran compiler. The IPYRA 

version shown above not only multiplies by a scale factor (254) but 

adds a constant to the result as well. This scales and shifts the 

image into plasma panel coordinates, as this was the output device 

fcr the application where this subroutine was used. 
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