
Ci
rH

w
O
•a.

AVIATION RESEARC
LABORATORY
INSTITUTE OF AVIATION

UNIVERSITY OP ILLINOIS AT URBANA-CHAMPAIGN

TECHNICAL REPORT

ARL-7S -B/ONR-78-1

MAY 187' D D C

JUL 21 ,9T6

Contract: N00014-76-C-0081

Work Unit Number: NR 196-133

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

PRKPARBD FOR

ENOINEERINO PSYCHOLOOY PROORAMB

OFFICE OF NAVAL RESEARCH

SECURITY CLASSIFICATION of THIS page r*W»«n D»««

REPORT DOCUMENTATION PACE _
nun 7~ |2. GOVT ACCESSION

ARL-76-5/ONR-76-1 [

READ INSTRUCTIONS
BEFORE COMPLETING FORM

-—*n miiubkh

T
_A VERSATILE ^COMPUTER-GENERATED DYNAMIC

3isplay/_'-—--—---'

Technical».

- q UHff 'RERO^r

s. »u^newfr

/0.
Bruce Arthur/Artwick

■pERFÕSÍÍm^ORGANTfXTION NAME AND ADDRESS

Aviation Research Laboratory
Institute of Aviation
University of Illinois, Savoy, Illinois 61874

«I. CONTROLLING OFFICE NAME AND ADDRESS (/(

Office of Naval Research
Engineering Psychology Programs

TÍ l AbpRESSf/l dllUfnt from CçAtrollInt Olltc»)

»URWIRU URtr-WEFOyr ÑÜlfBER

8. CONTRACT OR GRANT NUMBERf«;

S' NG0014-76-

10. PROGRAM ELEMENT, PROJECT, TASK
AREA » WORK UNIT NUMBERS

16. DISTRIBUTION STATEMENT fol Ihlt Report)

May jjl76 [(/oL/70^n
"TAGES

63
IS. SECURITY CLASS, (ol thU np

Unclassified

is* declassification/downgrading
SCHEDULE

Approved for public release; distribution unlimited.

17. DISTRIBUTION

18. SUPPLEMENTARY NOTES

20. ABST

Flight displays Aviation Instrumentation Landing Displays
Contact Analog Displays Predictor Displays Image Synthesis
Attitude Displays Three Dimensional Graphics Navigational Aids

.Display Programs Pursuit Displays Attitude Displays
I.i-gr Graphics_Cockpit Instrumentatlou-Flight Simulation-
T (Continu* on rovoroo aid* It nacaaaary and Identity by block number)

This report describes a real-time, dynamic, computer-driven visual
display program which is written in the Fortran programming language.
Versatility, efficiency and ease of use are stressed in the development,
resulting in an easy to interface to dynamic display which can be
implemented economically with a bare minimum of graphics hardware and
a sixteen bit mini-computer which has Fortran capabilities. Modular /
structure is stressed and speedup methods are discussed including the

DD , jan^73 1473 EDITION OF I NOV 65 IS OBSOLETE Unclassified

SECURITY CLASSIFICATION OF THIS PAGE fH7i»n Del

SICUItlTV^lAMiriOTION OP THU >»A0gf1Wi«n Data Enfnd) ^YyL

"S

Unclassified

use of a matrix multiplier. A unique frame synthesizing feature is

described in detail. Sample data base structures and display images

conclude the report.

ACCESSION for

Mis White Section ¢1

DOC Boff Sc.'bn □
WAKSOWCa □
JOSt IfiCAlltlN.

If.
OICTIIICaTIOtt/AYAIUSlinY COOES

õtsi. Air(T.l. su.-sr St'UIAL

ñ

Unclassified

SECURITY CLASSIFICATION OF THIS PAOEfWi»n Data Enlatad)

AVIATION RESEARCH LABORATORY

Institute of Aviation

University of Illinois at Urbana-Champaign
Willard Airport

Savoy, Illinois
61874

Technical Report

ARL-76-5/ONR-76-1

May 1976

A VERSATILE COMPUTER-GENERATED DYNAMIC FLIGHT DISPLAY

Bruce Arthur Artwick

Prepared for

ENGINEERING PSYCHOLOGY PROGRAMS

OFFICE OF NAVAL RESEARCH

Contract: N00014-76-C-0081
Work Unit Number: NR 196-133

DISTRIBUTION STATEMENT: APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

.. HUI 11 I

i

CONTEXT

The Aviation Research Laboratory of the University of Illinois is

investigating synthetic imaging displays and conçuter-augmented flight

control for the Office of Naval Research. Mr. Gerald Malecki, Assistant

Director of Engineering Psychology Programs, is the technical monitor of

the research. Professor Stanley N. Roscoe was the principal investigator

during the initial phase of study and experimental apparatus development

covered by this report. Professor Robert C. Williges is serving as

principal investigator for the continuing effort while Professor Roscoe

is on academic leave during 1975-76.

The research is directed toward (1) the isolation of minimum sets of

visual image cues sufficient for spatial and geographic orientation in the

various ground-referenced phases of representative flight missions, (2) the

generation and spatially integrated presentation of computed guidance

commands and fast-time flight path predictors, and (3) the matching of the

dynamic temporal relationships among these display indications for conçat-

ibility with computer-augmented flight performance control dynamics, both

within each ground-referenced mission phase and during transitions between

phases. The investigative program draws selectively upon past work done

principally under ONR sponsorship or partial sponsorship, including the

ANIP and JANAIR programs.

ii

Program Progress and Plans

During Phase I of the current contract, the Aviation Research

Laboratory systematically investigated the relationships between the

movement of the controls and the response of the airplane and demon¬

strated substantial improvement in pilot performance as a consequence

of their reorganization. By the completion of Phase I, all planned

control modifications, specifically the digital control system have

been incorporated into the GAT-2 simulator. No additional work on this

task is contemplated for the initial year of Phase II.

To study experimentally the effectiveness of alternate sets of

visual cues, the Aviation Research Laboratory has developed a highly

versatile computer-generated display system to present dynamic pictorial

images either on a head-down, panel-mounted CRT or on a head-up

television projection to a large screen mounted in front of the pilot's

windshield on the Link GAT-2 simulator. Due to the great flexibility

of the pictorial display, visual cues and flight status information

can be manipulated experimentally. Experimentation to isolate the

visual cues sufficient for approach and landing is in progress.

The incorporation of predictive indications of successive future

states is currently under investigation during Phase II. Experiments

will be conducted to determine the number and temporal spacing of

flight path predictors to be integrated into the forward-looking

flight view. Determination and software implementation of command

guidance symbology compatible with the synthetic forward-looking contact

iii

analog and predictive flight path presentations will also be undertaken

It is the ultimate objective of this program to develop, during the

second year of Phase II, a reconfigured cockpit with integrated sensor

and computer-generated imaging displays and computer-augmented controls

TABLE OF CONTENTS

INTRODUCTION .

APPROACH .

Language Considerations .

Modularity ln Programm^nq ..

Organized Buffer Structure .

Display Algorithm .

Periodic Updating Considerations .

PROGRAM FEATURES .

Plug-In Replacement Modules .

Communication Through Common Blocks .

Universal Interface Capabilities .

External Program Interaction .

Navigational Map Overlay Feature .

Noncllpped Projection .

Coordinate System .

Variable Field of Vision .

Display Filtering . .

PROGRAM STRUCTURE.. . . .

Buffer Structure .

Subroutine Calling Conventions .

Numerical Structure .

Control Program . . .

^ - I ^ .«llLIIlllJWII|jlilWI|p)i||i

vil

LIST OF FIGURES

Figure Page

1 Coordinate system . 9

2 Windowing. 9

3 Buffer formats . 14

4 Buffer structure . ,, H

5 Display loop sequencing. 17

6 Main program. 18

7 I MX subroutine. 20

8 Rotation matrix. 22

9 Translation and windowing matrldes. 22

10 IMATRX subroutine . 23

11 ISYNTH subroutine part a. 26

12 ISYNTH subroutine part b. 27

13 I GEN flow chart part a 29

14 IGEN flow chart part b. 30

15 IGEN flow chart part c. 31

16 IGEN subroutine part a. 32

17 IGEN subroutine part b. 33

18 IGEN subroutine part c. 34

19 KODE subroutine .. 35

20 PUSHER subroutine. 37

21 IPROJ subroutine. 39

22 IGAT subroutine part a 42

23 IGAT subroutine part b. 43

24
44

25

26

27

28

29

INAV subroutine . . .

IPYRA subroutine . . .

IMUL subroutine . . .

INIT subroutine part a

INIT subroutine part b

Block data subroutine

46

46

48

49

49

1

INTRODUCTION

During flight simulation experiments and pilot training it is

often desirable to project an accurate representation of the outside

world over which a simulator is theoretically flying. In the past, such

methods as prefilmed movies and "flying" television cameras have been

used and in recent times computer generated dynamic graphics have been

attempted. At the present time, real time computer graphics can not

compete with some of the earlier methods on the basis of complexity and

realism of display but with the performance of digital hardware

increasing and the price decreasing, the computer may soon equal or

surpass other display methods. There exists a need for fast three

dimensional graphics projection programs to be used with computer

hardware to create these dynamic displays. To be effective, this

software must not only project images quickly and accurately but must

also be versatile, transportable, and well organized so others can

understand, use, and experiment with it. Reliance on expensive graphics

hardware must be avoided to keep the simulation cost effective.

The display program described herein is an attempt to meet the

above criteria and to form a program which can be used in full or in

part. A number of old and proven graphics techniques as well as a

synthesizing procedure newly developed for this program are employed.

Modularity concepts are used throughout allowing execution time speed-

ups from the replacement of Fortran modules with assembly language

equivalents. This modularity also permits easy interfacing to auxiliary

2

graphics hardware and software such as matrix multipliers and predictor

displays.

Having been developed on a Digital Equipment Corporation PDP 11,

the interfacing of this program to the Aviation Research Laboratory's

Raytheon 704 computer and Singer Link Gat 2 simulator will be used as an

application example and evaluation of software transportability.

Development and application were performed on small inexpensive

computers but the program is designed to be upward compatible to larger

machines where dramatic performance increases and display realism should

result.

3

APPROACH

LANGUAGE CONSIDERATIONS. Since hiqh speed execution Is of prime

importance In a real time simulation, assembly language seemed to be the

ideal language for this program. Previous display programs, however,

have shown that the resulting assembly language code is not very

transportable or flexible and is nearly impossible for anyone but the

original programmer to understand. The most common scientific

programming language in use today is Fortran. A good Fortran compiler

can produce relatively time efficient code thus making Fortran the

choice of language for this program.

A number of steps were taken to offset the slow execution time

of the Fortran display program, the first being integerization.

Floating point arithmetic uses twice the memory and requires about three

times the execution time of Integer mode arithmetic. Integer arithmetic

is also compatible with integer array processors such as hardware matrix

multipliers which are only capable of operating in integer mode.

MODULARITY IN PROGRAMMING. A very modular program structure was

chosen in order to simplify experimentation and application and to make

the program easy to understand. A short main program consisting mostly

of calls to symbolically named subroutines allows a person unfamiliar

with the program to easily understand the display sequence.

Many array processing subroutines are used to transform, clip,

and project Images therefore a common calling structure was adopted to

provide simple interchangeability of array processing functions if

desired. Experimenting with various versions of the main program was,

4

for this very reason, qreatly simplified. Substitutinq one type of

projection routine for another, for example, was simply a matter of

changing the subroutine call but leaving the string of dummy variables

unchanged.

ORGANIZED BUFFER STRUCTURE. The many buffers needed to process

large quantities of graphics information can make a graphics program

rigid or extremely flexible depending on the buffer structure. The

buffers in this program were arranged about the following guide lines.

1) Buffers must be easily concatenated by the array processors.

2) Buffers with the same type of data must always have the same

data structure.

3) Index data and display data should be in separate buffers

whenever possible.

This buffer structure, along with the common calling

conventions, make this program easy to work with.

DISPLAY ALGORITHM. The graphics techniques used to convert a

three dimensional data base into a two dimensional screen projection

have been well developed and established. Start and end points which

define lines are multiplied by a four by four transformation matrix to

translate and rotate them into the proper reference frame relative to

the observer's eye. A modified, highly efficient version of the Cohen

and Sutherland clipping algorithm is then employed to eliminate any off

screen lines and to clip lines which are partially on the screen.

Finally, a pyramid projection is performed projecting the start and end

points and thus the lines onto a display screen. To increase projection

5

speed a frame synthesizing method 1s used. Interpolations are made

between display points 1n consecutive frames. Since only addition 1s

required to add the small delta values (see the synthesizer subroutine

explanation), frame synthesis time is very low. A much smoother display

results. The subroutine explanations further describe graphic

projection and transformation functions.

PERIODIC UPDATING CONSIDERATIONS. In past display programs it

has been said that far away objects seem to move slower and thus need to

be updated less often than close objects. This may be true for

translational movement but the argument does not hold when rotation is

employed. When an aircraft is banking, for example, the most distant

object (the horizon perhaps) is rotating at the same rate as the closest

object. If far away points are only updated periodicically, geometric

distortions can resuH as far away lines lag behind in the rotation.

The easily concatenated buffers used in this display program

permit periodic updating of points through proper arrangement of the

main program. This feature may have some u¿e in translation and very

slow rotation applications but in general, and in the main program

shown, periodic transformations are avoided in order to preserve

realism.

PROGRAM FEATURES

PLUG-IN REPLACEMENT MODULES. In order to retain the hiqh

6

execution speed of assembly language, many of the complex but repetitive

arithmetic functions are performed by calling very small subroutines.

These subroutines are referred to as plug-in replacement modules. Great

execution time speedups result from replacing the modules with their

Fortran callable assembly language equivalents which can be written

especially for the computer being used.

COMMUNICATION THROUGH COMMON BLOCKS. Subroutines and the main

program only use data transmission through dummy variables when

absolutely necessary. Symbolically named common blocks are instead used

to simplify the main program and make it easy to understand.

UNIVERSAL INTERFACE CAPABILITIES. A program such as this can

find many applications in aviation and other fields making it imperative

to have some sort of simple modification which can be made to Interface

the display program to various forms of simulators and controls. The

IGAT subroutine performs this task by establishing a common convention

for passing display control information to the display program,

Rewriting this short subroutine for the simulator being used allows the

rest of the software to become compatable with that simulation.

EXTERNAL PROGRAM INTERACTION. Simultaneously running programs,

such as predictor displays, can place objects to be displayed into the

display data base using the auxiliary display buffers provided for this

purpose. The program using these buffers can specify which type of

transfromations are desired on the presented data. Lines to appear

.... -.^

7

stationary in space require translation and rotation transformations

while only a rotational transformation is needed to put objects in a

reference frame relative to the aircraft's position. Any combination of

pitch, bank, heading, x, y, or z can be specified as a transform making

sixty-four reference frames available to the external user.

NAVIGATIONAL MAP OVERLAY FEATURE. Integer mode arithmetic limits

data base size to plus or minus 32767 units. Through the use of

variable scale factors these units can represent any dimension desired.

The scale of one foot per unit may be good for flight at pattern

altitude while a scale of three inches per unit may be more appropriate

for final approach where a finely detailed and precise picture is

desired. Before the display program is run, maps can be set up which

have these scales. At run time a new map can be overlayed into the data

base and the projection scale factors changed simultaneously resulting

in a smooth map transition. This feature combines the large range of a

coarse map with the precision of a fine map.

Maps of the same scale can be used to extend the display data

base's effective size. Using appropriate x, y and z offsets, maps can

be strung together to provide an almost limitless world size. Far away

objects can be eliminated or simplified on appropriate maps to give

desired fade out effects and eliminate horizon brightness due to section

line crowding at low altitudes.

NONCLIPPED PROJECTION. The process of clipping lines is very

time consuming. In order to increase picture complexity and maintain

high execution speed a nonclipping projection method has been devised.

8

Small objects, such as runway markers and vertical poles, which tend to

leave the screen all at once, benefit from this routine which simply

eliminates the whole line from the screen if any part of that line falls

off the screen. This method is not used on large lines which must be

clipped.

COORDINATE SYSTEM. In order to keep the program well organized,

a universal coordinate system has been adopted. Figure 1 shows this

convention.

VARIABLE FIELD OF VISION. Projection geometry is affected by how

far away from the viewing window (projection screen) the observer is and

by the size of the window (screen size). A variable field of view

permits this program to be used with many observer and display screen

configurations. The field of view can effectively be changed by

widening the data base and retaining a forty-five degree viewing

pyramid. This data base distortion takes place after the rotation and

translation transformations have been completed. The IMATRIX subroutine

concatenates the window transform to the rotation and translation

transform resulting in the need for only one data base transformation.

Although the standard procedure for field of vision control is

data base multiplication along the x and y axes for viewing angles of

less than forty-five degrees to each side, z axis division was chosen.

Integer overflow of the data base is thus avoided. This limits the view

to a square window. Through program modification, however, an

appropriate amount of x axis or y axis division can accommodate a

rectangular window projection. Figure 2 shows windowing.

li

a) Data base Image
within the
viewing pyramid.

b) Windowing performs
Z dimensional
compression.

c) Effective
field of
view.

Figure 2. Windowing.

10

MEW is a fractional constant used in the windowing transform

to control z axis scaling. Window geometry defines this value as:

MEW = Tangent (Field of View)

where field of view is the angle from the z axis. This angle can be

submitted during program initialization. MEW is calculated by the

initialization subroutine.

niSPLAY FILTERING. Start and end points of lines tend to move in

jerky, discrete steps due to the integer data base format. At great

distances from points this effect is not noticeable but when lines fall

near the base of the viewing pyramid, annoying distortion results. The

IGEN and ISYNTH subroutines have methods which reduce this bad effect.

The IGEN subroutine must convert points' coordinates into

floating point mode in order to clip the lines they represent. If it is

found that an end point is near the base of the viewing pyramid, the x,

y and z coordinates are multiplied by a scaling constant thus reducing

truncation error upon integer conversion and projection. This action is

referred to as accuracy scaling.

Screen point hysteresis is used in the ISYMTH subroutine. A

projected line's start and end points are given threshold values

(hysteresis constants) in the plus and minus x and y directions which

they must cross in order to produce screen point movements. Movements

in one continuous direction will be smooth as one threshold will always

be exceeded and the screen line will move accordingly. Small jerky

movements in both directions, however, will not be reflected on the

screen if the projected line errors are smaller than the hysteresis

I
I

-...m ..’ ■ • - m ■ m ipBppp

n

constant. At high altitudes, hysteresis has no beneficial effect and

can be turned off to save computation time. In cases where jerky motion

is desired (air turbulence effects for example), hysteresis can be

turned off. The hysteresis screen point filter, which is a threshold

type filter, was chosen over screen point averaging due to its superior

rapid response characteristics.

12

PROGRAM STRUCTURE

The display proqram consists of three major sections; the

display driver, navigator, and the control program.

Graphic subroutines comprise the driver. Upon the receipt of a

data base and space coordinates (x,y,z,pitch,bank,heading), the driver

performs all necessary transformations and synthesizing to produce an

accurate projection on a display screen.

The navigator keeps track of the simulator's position, handles

data base overlays and offsets, and is used to interface a simulator to

the display driver.

The control program is the main program of the Fortran display

program. It consists of many calls to navigation and display driver

subroutines and controls their order of execution.

BUFFER STRUCTURE. A three dimensional data base consisting of

lines represented by start and end points is submitted to the display

driver. A two dimensional screen projection consisting of start and end

points results. Many transformations occur to produce the results and

buffers are used to store intermediate results.

Since four by four matrix multiplication is used to transform 3D

points into the proper reference frame, a four by one vector is used to

specify a 3D point. Another buffer is used as an index to these points

and the index code tells whether the point is a start or continue point.

The index therefore applies to the points even after the transformation

has been completed. A positive index value represents a start point.

The first element of the index buffer will always be a start point and

13

will thus always be positive. The first index element serves a dual

purpose. The 3D buffer length (number of 3D points) is submitted as the

first index element. The index can be used in two ways. The end of the

data base can be sensed by an index code of zero or the first index

element can be used as a process lenoth. Hardware which requires a

transfer address and length is easily accommodated with this form of

indexing.

A combined data and index buffer is used to define 2D lines. A

display code, a start point (x and y screen value), and an end point

produce five array entries. The code indicates whether the line is to

be displayed or not.

A delta value corresponding to each 2D point is stored in the

same type of buffer format as 2D points. The code, however, has no

significance and is simply used as a filler value so 2D points and

corresponding delta values have the same array subscript numbers.

The total number of buffers used is determined largely by the

control program and the program application. Figure 4 shows the buffer

structure for the control program used for the aircraft simulation.

Figure 3 illustrates the buffer formats just described.

14

1 code

X Start

Y Start

X End

Y End

-1 code

X Start

Y Start

2D Buffer

Figure 3. Buffer formats.

Delta X

Delta Y

Delta X

Delta Y

Delta X

Delta Y

Delta Buffer

IMAGE

Figure 4. Buffer structure

15

SUBROUTINE CALLING CONVENTIONS. In order to make array

processinn subroutines easily usable, array processing subroutines have

been given similar calling structures which follow the followino

conventions.

CALL SUBROUTINE (in,index,out,k,m,n)

where:

in * input array
index* index to input array and possibly output array
out * output array of subroutine results
k * input array pointer
m * index array pointer
n * output array pointer

The called subroutine starts operating on arrays at the pointer

locations and leaves the pointers pointino at the last element processed

plus one upon return.

NUMERICAL STRUCTURE. For versatility and execution time speedups

sixteen bit integer, two’s complement arithmetic is used. To retain

precision, multiplication is accomplished by calling subroutines which

have thirty-two bit product capabilities. The Fortran versions of these

routines convert data to floating point to do this while their assembly

language equivalents generally use the thirty-two bit capabilities of

the computer's multiplication hardware.

Fractions are expressed by positioning the binary point to give

fifteen bits of fractional precision and one sign bit.

Many calculations involve the multiplication of a trig function

by a nonfractional unit. A subroutine has been provided to perform the

operation by taking the sixteen most significant bits of the thirty-two

bit product of the fraction multiplied by the integer.

I

B

16

Sine and cosine lookup tables are generated upon program

initialization resulting in the speedup of trigonometric operations.

CONTROL PROGRAM. The control program shown in figure 6 can be

used as-is but is meant to be more of a guideline as to what can be done

with the display driver and navigation subroutines. The circular flow

chart which accompanies it (figure 5) provides a time domain

representation of the processes being performed in the display program.

17

jfc Entry point

Figure 5. Display loop sequencing.

18
main proqram**
display loop sequencinq is controlled by this proqram.
main program**

data assiqnments. , 4 , , /0 .
common /base/ idbaiAOOj.indexailOOj.idauxiSOj.indauxiZO)
common /base3/ i3d(400),i3daux(80)
common /mtx/ iv(16),iview
common /proj/ i2d(400)
common /synth/ new(400),iold(400),idelta(400).nframe.ihyst
data ipassltipass2,ipass3,ipass4,ipass5/-l,0,0,0,1/
data model,mode2/l,2/

control program, initialization section,
call init

control program, display loop section.
call igat
call imatrx
k=l
m=l
n=l
kk=l
mm=l
nn=l
call isynth (ipassl)
call imx (idba,indexa,i3d,k,m,n,model,iv)
call igen (i3d,indexa,i2d,kk,mm,nn)
call isynth (ipass2)
call imx (idba,indexa,i3d,k,m,n,model,iv)
call igen (i3d,indexa,i2d,kk,mm,nn)
call isynth (ipass3)
call imx (idba,indexa,i3d,k,m,n,model,iv)
call iproj (i3d,indexa,i2d,kk,mm,nn)
call isynth (ipass4)
k=l
m=l
n=l
kk=l
mm=l
call imx (idaux,indaux,i3daux,k,m,n,mode2,iv)
call igen (i3daux,indaux,i2d,kk,mm,nn)
inav is not used in this version of the display program.
this is where it would appear if it was.
call inav
call isynth (ipass5)
go to 1
end

Figure 6. Main program.

19

GRAPHICS SUBROUTINES

The graphics subroutines are now presented. A more detailed

description of many of the graphics techniques can be found In

reference 5.

IMX SUBROUTINE. This array processing subroutine multiplies the

Input array which consists of four by one vectors, each representing a

point In space, by a four by four transformation matrix (IV) and stores

the resulting four by one vectors In the oittput array. Standard pointer

conventions are followed 1n the subroutine call and an Index code of

zero Is recognized as the last vector to be multiplied. The resulting

output Is the transformed data base which represents points In the

viewer's reference frame. Figure 7 shows the IMX subroutine.

Rapid matrix multiplication can be accomplished by replacing

this subroutine with a hardware matrix multiplier setup and Initiate

routine If such hardware Is available. In this event, transfer address

Information can be taken from the dummy variable string and the first

Index array value can be used as a length parameter.

The IMODE variable determines whether a full or partial

transform will be made.

M0DE1 OPERATION- The transformations specified by the complete IV

matrix are performed. Pitch, bank, heading, x, y, and z are

considered.

M0DE2 OPERATION- Only the rotational transformations are performed.

This corresponds to the aircraft's reference frame as opposed to

the ground reference frame 1n the MODE 1 case.

2°
subroutine imx (idb,index,13d,k,m,n,mode,iv)

c imx-----—----
c the display points are multiplied by the transformation
c matrix.
c imx-*-----
c
c data assignments.

dimension idb(400),index(100),i3d(400),ivsave(3) ,iv(16)
c
c mode 2 decision and matrix modification,

if (mode.eq.l) go to 4
do 2 i=l,3
ivsave(i)=iv(i+12)

2 iv(i+12)=0
c
c matrix multiplication.
4 jx^idbfk)

jy=idb(k+l)
jz=idb(k+2)
do 5 j*l,3
jl^ivU)
j2=iv(j+4)
j3=iv(j+8)
j4=iv(j+12)
ja=imul (jxjl)
jb=imul(jy»j2)
jc=imul(jz»j3)

5 i3d(n+j-l)=ja+jb+jc+j4
k=k+4
m=m+l
n=n+4
if (index(m-ll.ne.O) go to 4

6 if (mode.eq.l) return
c
c mode 2 matrix restore,

do 7 i=l,3
7 iv(i+12)=ivsave(2)

return
end

Figure 7. IMX subroutine.

mrnmrnmmmmmmmmmmmm
^1vr "«i. »''U1

21

IMATRX SUBROUTINE. IMATRX creates an integer transformation

matrix from the coordinates provided in the REF common block

(IX,IY,IZtIPIT,IBNK,IHDG). Fast generation of sines and cosines of

angles are accomplished through lookup tables. The tables range from 1

to 360 degrees in one degree steps.

A rotation matrix is created using standard graphics equations

derived from geometric principles. Pitch, bank and heading are

considered. All trigonometric calculations use fifteen bit fractional

arithmetic. The nine rotational elements of the transformation matrix

are also expressed in this form.

A translation matrix is created by effectively adding the

reference position (IX, IY, IZ) to the data base elements. The

translation matrix is concatenated with the rotation matrix resulting in

a complete transformation matrix. In the transformational sense, the

translation is performed first (positioning the aircraft in the proper

place), then the rotation is performed (rotating the world about the

aircraft giving the impression of pitch, bank, and heading). Figures 8

and 9 show the rotation and translation matricies.

Field of view is corrected for by multiplying the translated and

rotated data base by the window transform. The IVIEW constant is

submitted by the program user through a data base entry or by default

upon initialization. The transformation matrix is appropriately

modified to perform field of vision corrections through dimensional

compression upon data base multiplication. The IMATRX subroutine

is shown in figure 10.

22

Cos H Cos B
+

Sin H Sin P
Sin B

-Cos H Sin B
4*

Sin H Sin P
Cos B

Sin H Cos P 0

Cos P Sin B Cos P Cos B -Sin P 0

-Sin H Cos B
+

Cos H Sin P
Sin B

Sin H Sin B
+

Cos H Sin P
Cos H Cos P 0

0 0 0 1

P= Pitch Ba Bank H* Heading

Figure 8. Rotation matrix.

1 0 0 0

0 1 0 0

0 0 1 0

X Y Z 1

a) Translation matrix.

1 0 0 0

0 1 0 0

0 0 IVIEW 0

0 0 0 1

b) Windowing matrix.

Figure 9. Translation and windowing matricies.

..■ ff”" 1

i #*

F «
ti.

ß
ii

23

ii

w*4

(¡:

c
c
c
c

3
c

subroutine imatrx

imatrx----
the transformation matrix, iv, is created.
imatrx---
common /ref/ ix,iy,iz,ipit,ibnk,ihdg
common /mtx/ iv(16),iview
common /trip/ isin(360),icos(360)
matrix calculations rotation section.
iasisin(ipit)
ib-isin(ibnk)
ic=isin(ihdg)
idsicos(ipit)
ie=icos(ibnk)
ip=icos(ihdg)
ig=imul (ip.ie)
ihsimul(ic,ib)
ii=imul(ip,ib)
ij=imul(ic,ie)
ik*imul(ih.ia)
il=imul(ij,ia)
im=imul(ii,ia)
1n=imul(ia,ia)
iv(l)=ig+ik
iv(2)=-1i+il
iv(3)=imul(ic,id)
iv(5)=imul(id,ib)
iv(6)=imul(id,ie)
iv(7)=-ia
iv(9)=-ij+im
iv 10)=ih+1n
iv(ll)=imul(ip,id)
translational calculations,
do 3 i=l,3
iasiv(1)
ib=iv(i+4)
ic=iv(i+8)
idsimul(ix.iaj
1e»imul(iy,ibj
ip^imul(iz,ic)
iv(i+12)=-id-ie-1p
windowing calculations.
id=iv(15)
iv(3)=imul(ia.iview)
iv(7)=imul(ib.iview)
iv(ll)=imul(ic,iview)
iv(15)*1mul(id,iview)
return
end

Figure 10. IMATRX subroutine.

24

ISYNTH SUBROUTINE. This subroutine uses screen coordinate

interpolation to synthesize many images from just two real frames.

Since end points of lines move in nearly straight lines and at an almost

constant velocity over a short period of time, the synthesized frames

are very good approximations to the real projection. Only addition of

interpolation constants (delta values) is needed to synthesize an image

thus avoiding clipping, transforming, and projecting. The synthesizer

was found to produce no noticable geometric distortion and resulted in a

higher projection rate. The frame synthesizer works out of four buffers

in the following way.

PASS 1- Delta values are calculated for each projected line's

screen end points.

delta x= (new x-old x)/number of frames

delta y= (new y-old y)/number of frames

If an old frame line's code indicates that the line is turned

off (not to be projected), no delta values are calculated for it. Only

lines which are turned on in the new and old frame will be projected.

Since PASS 2 only uses the old frame code, this code is changed to

indicate the proper condition if necessary (a line leaves the screen in

this way). The delta values are added to the old screen end points

creating an updated old frame. The updated frame is then projected.

PASS 2 THROUGH N- During the intermediate frames, between the

first and last pass, the delta values are added to the updated old frame

and it is projected.

PASS N- The new frame's points and corresponding codes are

25

transferee! to the old frame buffer and new display points and codes are

transferred from the projection buffer to the new frame buffer. The old

frame is then projected.

If screen point hysteresis is being used, projection buffer

points are checked to determine whether the hysteresis value has been

exceeded. If it has, the projection buffer point gets transferred to

the new frame buffer. If not, the new frame buffer retains its previous

point. Figures 11 and 12 show the details of the frame synthesis.

..

26

subroutine isynth (ipass)
jjypth****** **
nframe frames are synthesized out of just 2 base frames,

pass 1: delta values are calculateded.
pass 2 to nframe-1: delta values are added,
pass nframe: a new frame Is transferred,

projection occurs on every pass.
Isynth**

data assignments
common /synth/ new(400),1old(400),1delta(400),nframe,Ihyst
common /proj/ 12d(400)
common /crt/ dbuf(800)
1=1
showlt transfers a new Image to the display generator,
call showlt

pass number decision,
if (ipass) 1,2,3
If (ihyst) 33,33,53

pass 1 action.
iold(i)=-1
go to 15
1f (iold(i).lt.O) go to 15
do 14 j=l,4
idelta(1+j)=(new(i+j)-1old(1+j))/nframe
1old(1+j)=1old(1+j)+idelta(1+j)
j=1old(1+l)
k=1old(1+2)
l=1old(1+3)
m=iold(i+4)
atllne (xl ,yl ,x2,y2) draws a Une from points 1 to 2.
call atllne (j,k,l,m)
1=1+5
If (new(i)) 11,40,13

pass2 to nframe-1 action,
do 22 j=l,4
1old(i+j)=1old(1+j)+idelta(i+j)
j=1old(1+l)

Figure 11. ISYNTH subroutine part a.

27
k=iold(i+2)
l=iold(i+3)
m^ioldÇi+A)
call atHne (j.k.l ,m)

23 i=i+5
2 if (iold(i)) 23,40,21
c
c pass nframe action (last pass).
30 i=i+5
33 do 31 ja0,4

iold(i+j)=new(i+j)
31 new(i+j)ai2d(i+j)

if (iold(i).le.O) go to 92
jaiold(i+l)
k=1old(i+2)
l=iold(i+3)
m=iold(i+4)
call atline (j,k,l,m)

92 if (i2d(i)) 30,40,30
c
c pass nframe action with hysteresis.
50 i»i+5
53 do 51 j=l,4

iold(i+j)=new(i+j)
ihl=i2d(i+j)-3
ih2=i2d(i+j)+3
if (ihl.gt.new(i+j)) new(i+j)=ihl

51 if (ih2.ît.new(i+j)) new(i+j')=ih2
iold(i)=new(i)
new(i)=i2d(i)
if (i2d(i).le.O) go to 52
3=iold(i+l)
k=iold(i+2)
l=iold(i+3)
m=iold(i+4)
call atline (.j.k»l»m)

52 if (i2d(i)) 50,40,50
c
40 return

end

Figure 12. ISYNTH subroutine part b.

28

I GEN SUBROUTINE. When a clipped two dimensional projection of an

array of transformed data base points is needed, the I GEM subroutine is

called. This is a time efficient version of the Cohen and Sutherland

projection and clipping algorithm. The followina features are

incorporated to effect the speedup.

1. Point swapping during clipping is eliminated.

2. Old screen point values are used for continue point projection

values if they are found to be valid.

3. Redundant on or off the screen checking is eliminated.

4. A five element code is used instead of a four element code.

Standard array processing subroutine calling and pointer conventions are

used.

The ICODE and PUSHER subroutines are used exclusively by IGEN.

ICODE creates codes which indicate whether a point is off the screen and

to which side of the screen it lies. PUSHER does the actual clipping by

pushing a line's end point to the viewing pyramid boundry it intersects.

Due to this complexity of this subroutine, flow charts are

presented in addition to the subroutine listings in figures 13 through

18.

.
.
.
_

_
_

.
.

29

Start pt. action Continue pt. action

Data base value-»-start pt.

Data base value-►end pt.

Previous end pt.-^ start pt.

Data base value -»end pt.

Buffer the end point for

latter use.

Update data base pointers

by 2 coordinate points.

Code the start and end pts.

-<C_Line off screen?
No

>

Buffer the end point for

latter use.

♦
Update data base pointers

by 1 coordinate point.

Code the end point.

Old code is valid for

the start point,_

Set project code to

•1 (don't display).

Figure 13. IGEN flow chart part a.

30

Accuracy scaling.

5!
Convert to integer.

** Can not use the old screen pt.

Project the start point.

Go to 22

Figure 14. IGEN flow chart part b.

Figure 15. IQEN flow chart part c.

32

subroutine igen (jd,index,j2d,k,m,n)
c igen-
c igen controls the clipping and projection of clipped lines,
c refer to the flow chart and Tables for operation.
c igen---
c
c data assignments.

dimension j2d(400),jd(400),index(100)
logical cl(5),c2(5),cb2(5)

c
1 if (index(m)) 2,2,3
c
c continue point action.
2 jxl=jxb2

jyl=jyb2
jzl=jzb2
jx2=jd(k)
jy2=jd(k+l)
jz2=jd(k+2)
jxb2=jx2
jyb2=jy2
jzb2=jz2
k=k+4
m=m+l
do 11 i=l,5

11 cl(i)=c2(i)
call icode (c2,jx2,jy2,jz2)
do 4 1=1,4

4 if (cl(i).and.c2(i)) go to 25
if (.not. cl(5)) go to 6
if (c2(5)) go to 20
do 12 1=1,5

12 cb2(i)=c2(i)
xl=jxl
yi*jyi
zl=jzl
x2=jx2
y2=jy2
z2=jz2

Figure 16. IGEN subroutine part a.

5 call pusher (x2,y2,z2,xl,yl,zl,cb2)
if (.not.cb2(5)) go to 5
if (z2.qt.500.) go to 55
x2=x2*50.
y2:sy2*50.
z2=z2*50.

55 jx2*x2
jy2sy2
jz2az2+l.

20 j2d(n+l)=j2d(n-2)
j2d(n+2H2d(n-l)

22 call ipyra (jx2,jz2,jp)
j2d(n+3Hp
call ipyra (jy2,.jz2,jp)
j2d(n+4)=jp
j2d(n)=l
n*n+5
if (index(m-l).eq.O) return
go to 1

c
c start point and following continue point action.
3 jxl=jd(k)

jyl=jd(k+l)
jzl*jd(k+2)
jx2=jd(k+4)
jy2=jd(k+5)
jz2=jd(k+6)
jxb2=jx2
jyb2=jy2
jzb2=jz2
k=k+8
[11=111+2
call icode (cl,jxl Jyl,jzl)
call icode (c2,jx2fjy2tjz2)
do 7 i=l ,4

7 if (cl(i).and.c2(i)) go to 25
6 xl=jxl

yisjyi
zl=jzl
x2=jx2

Figure 17. IGEN subroutine part b.

34

y2*jy2
z2*jz2
If (cl(5)) go to 8

60 call pusher (xl,yl,zl»x2,y2,z2,cl)
if (cl(5)) go to 8
do 9 isl,4

9 if (cl(i).and.c2(i)) go to 25
go to 60

8 If (c2(5)) go to 21
do 13 1=1,5

13 cb2(1)=c2(i)
10 call pusher (x2,y2,z2,xl,yl,zl,cb2)

if (.not.cb2(5)) go to 10
21 if (zl.gt.500.) go to 30

xl=xl*50.
yl=yl*50.
zl=zl*50.

30 if (z2.gt.500.) go to 31
x2=x2*50.
y2=y2*50.
z2=z2*50.

31 jxl=xl
jyisyi
jzl=zl+1•
jx2=x2
jy2=y2
jz2=z2+l.
call ipyra (jxl,jzl.jp)
j2d(n+l)=jp
call ipyra (jyl,jzl.jp)
j2d(n+2)=jp
go to 22

c
c nonvisible line elimination.
25 j2d(n)=-l

n=n+5
if (index(m-l).eq,0) return
go to 1
end

Figure 18. IGEN subroutine part c.

35

ICODE SUBROUTINE. A five element code is generated to indicate

where in space a 3D point lies in relation to a viewing pyramid. The

first four elements of the code are the same as the Cohen Sutherland

code. The fifth code element tells whether a point is on or-off the

screen. This eliminates the need to test the other four code elements

to determine if a point is on the screen.

Code Element

1. The point is to the left of the x=-z plane
2. The point is to the right of the x=z plane
3. The point is below the y=-z plane
4. The point is above the y=z plane
5. The point is within the viewing pyramid

The planes used in this code describe the viewing pyramid within which

visible points lie. The ICODE subroutine shown in figure 19 describes

the coding algorithm.

PUSHER SUBROUTINE. The mathematics used to clip a line are

performed here. First, code elements are checked to determine towards

which screen boundary a line's end point must be pushed. The

mathematics (see figure 20) are then performed and the line is recoded.

Floating point arithmetic is used for pushing the points to the screen

boundry due tr, the need for high precision when clipping long lines

which intersect the viewing pyramid near its base.

o
 o

36

subroutine Icode (codejx.jyjz)
c icode-—
c a 5 element code is assigned to the point jx,jy,jz
c based on which side of the planes the point falls,
c code (1,2,3,4,5) is the code,
c 1= point is to the left of the jx^-jz plane
c 2* point is to the right of the jxa3z plane

3* point is below the jyB-jz plane
4= point is above the jysjz plane

c 5s point is within the viewing pyramid
c icode---
c

logical code(5)
code(5)s.true.
if (jx.lt.-jz) go to 1
code(l)=.false.

11 if (jx.gt.jz) go to 2
code(2)=.false.

22 if (jy.lt.-jz) go to 3
code(3)=.false.

33 if (jy.gt.jz) go to 4
code(4)=.false,
return

1 code(l)=.true.
code(5)=.false,
go to 11

2 code(2)=. true.
code(5)=.false,
go to 22

3 code(3)=.true.
code(5)=.false,
go to 33

4 code(4)=.true.
code(5)=.false,
return
end

Figure 19. ICODE subroutine.

37
subroutine pusher (xl,y1,zl,x2,y2,z2,code)

c pusher-
c line clipping is performed, point xl,yl,zl is pushed
c toward point x2,y2,z2 until a pyramid intersection occurs,
c the pushed point is then recoded.
c pusher-
c

logical code(5)
if (code(3)l go to 1
if (code(4)) go to 2
if (code(l)) go to 3

c
c push left.

ta(zl-xl)/((x2-xl)-(z2-zl))
zl*t*(z2-zl)+zl
xl=zl
ylat*(y2-yl)+yT'

go to 4 \
c
c push up.
1 t=(zl+yl)/((yl-y2)-(z2-zl))

zlst*(z2-zl)+zl
xl=t*(x2-xl)+xl
yl=-zl

go to 4
c
c push down.
2 t=(zl-yl)/((y2-yl)-(z2-zl))

zl=t*(z2-zl)+zl
xl=t*(x2-xl)+xl
yl=zl

go to 4
c
c push right.
3 ts(zl+xl)/((xl-x2)-(z2-zl))

zl=t*(z2-zl)+zl
xl=-zl
yl=t*(y2-yl)+yl

c
c recode.
4 i=xl

j=yi
k=zl
call icode (code,i,j,k)
return
end

Figure 20. PUSHER subroutine.

38

IPROJ SUBROUTINE. In many cases It Is desirable to project many

small objects without the clipping restriction, that is, to not project

the line if any part of it falls off the screen. Projecting lines in

this manner not only eliminates the need for clipping but for coding of

points as well. IPROJ treats a set of points as a list of start and end

point pairs and converts them into screen coordinates. If a line is off

the screen, it sets the project/no project code to no project and moves

on to the next line. This is a very small subroutine, intended for

assembly language replacement.

Divide instructions on most computers have an overflow on divide

warning feature which can very efficiently be used to eliminate most of

the off screen point checking. The projection functions are:

screen x= 28000*(x/z)

screen ys28000*(y/z)

If x/z or y/z are greater than one, the point is off the screen. Due to

the same two conditions, accumulator or register overflow will also

result and a warning flag will be set. Thus, this flag can be used as a

project/no project indicator. An added bonus is the fact that divide

instructions usually run about three times faster when overflow abort

occurs, wasting less time on unprojected points. Mote that any point

with a negative z must still be eliminated by the software as it falls

behind the viewing pyramid. The Fortran version of this subroutine is

shown in figure 21.

39 subroutine iproj (in,index,iout,k,m,n)
c iproj---..
c nonclipped lines are projected, if any part of a
c line falls outside the viewing pyramid , it is eliminated.
c iproj.
c
c data assignments

dimension in(400),iout(400),index(100)
1 if (in(k+2).le.0.or.in(k+6).le.0) go to 2
c

x*in(k)
y=in(k+l)
zssin(k+2)
out=x/z*25000.
if (out.gt.25000..or.out.It.-25000.) go to 2
iout(n+l)=out
out=y/z*25000.
if (out.gt.25000..or.out.It.-25000.) go to 2
iout(n+2)=out

c
x=in(k+4)
y=in(k+5)
z=in(k+6)
out=x/z*25000.
if (out.gt.25000..or.out.It.-25000.) go to 2
iout(n+3)=out
out!sy/z*25000.
if (out.gt.25000..or.out.It.-25000.) go to 2
iout(n+4)=out
iout(n)=l
go to 3

c
2 iout(n)=-l
c
3 k=k+8

m=m+2
n=n+5
if (index(m-l).ne.0) go to 1
return
end

Figure 21. IPROJ subroutine.

M
M

M
M

H
M

M
M

M
M

H
M

M
M

i

40

NAVIGATIONS SUBROUTINES

The navigational subroutines, IGAT and INAV, provide the display

driver with a data base and reference and scale information. The

display subroutines then produce an accurate projection. The form which

navigational subroutines take is largely dependent on program

application and what equipment is being used. Two types of reference

information are used.

NAV - Navigational simulator reference parameters.

Simulator position information is passed between program units in

floating point mode allowing a large range of simulator movement.

Since the display driver operates in integer mode, map overlays

must be used to extend display range if overflow is to be avoided.

The XFSET and ZFSET are the ground plane offsets of the map bei no

used. The NAV positions (XPOS and ZPOS) minus the offsets put the

reference parameters within the integer range of plus or minus

32767.

REF - Graphical reference parameters.

Display driver integer mode references of x, y, z, pitch, bank,

heading intended for direct use by the display driver are included

in the REF common block. The field of vision parameter is also

passed to other program units through REF.

41

IGAT SUBROUTINE. Simulator coordinates are read, filtered and

scaled to provide REF information. Navinational data is passed to the

other program units through NAV. In the case of the GAT 2 simulation

for which this version of IGAT is written (figures 22 and 23),

positional information is obtained by calling subroutines which examine

analog to digital converter outputs which represent the simulators

position.

I NAV SUBROUTINE. Map overlays and their appropriate offsets and

scaling are handled here. Map decisions are based on simulator

position. The actual data base swapping is performed in this

subroutine. This subroutine has not been used extensively and is not

used in the example control program. A simple version of INAV is shown

in figure 24.

c
c
c
c
c
c
c
c
c

c
c

1
1000

1002

subroutine iqat
i qa t**
sinqer link gat2 simulator interface program
simulator coordinates are read and filtered,
this is a good example of a simulator interface
program but it was found that better filtering is
needed for practical applications,
igat**

data assignments
integer da2,dr2,de2,pi,ya,ba,qapi,paro,rayé,rc.vp.sinh,cosh
integer thl ,th2,xramp,yramp,da,dr,de
common /nav/xpos,ypos,zpos,xfset,zfset,iscale
common /ref/ix,iy,iz,ipit,ibnk,ihdg
data ixn,ixo,izn,izo,iyo,istart/5*0,l/

ramp calculation decision,
if (istart) 2,2,1
write (13,1000)
format (' type 1 for ramp calculations,0 for no ramp')
read (13,1002) irmp
format (il)
istart=0

c
c get gat parameters
c dalyad2 and gatxy subroutines provide positional data
2 call dalyad2(da,dr,de,da2,dr2,de2,ba,ya,pi,paro,

c raya.gapi,rc,vp,sinh,cosh,al,thl ,th2,xramp,yramp)
call gatxy(igatx,igaty)

c
c calculate heading angle

sine=sinh
if (cosh.eq.O) cosh=l
cosine=cosh
angle=sine/cosine
ihdg=atan(anqle)*57.29578
if (cosh.It.5) ihdg=ihdg+180
if (ihdg.lt.l) ihdg=ihdg+360

c
c create x and y coordinates with offset values,
c scale the values.

z=igaty
x=igatx
iz=z*16.-(zfset/4.)
ix=x*16.-(xfset/4.)

Figure 22. IGAT subroutine part a.

43

adding the ramp value,
if (irmp)10,10,6
iz=iz+(yramp/128)
ix=ix+(xramp/128)

boundary correction: parti, position estimation
ixest=1xn+(ixn-ixo)
izest^izn+iizn-izo)
boundary correction: part2, correction
idiffx*ix-ixest
idiffz=iz-izest
if (idiffx.lt.-20.or.idiffx.gt.20) go to 9
if (idiffz.lt.-20.or.idiffz.gt.20) go to 9
if (idiffx.gt.8) ix=ix-16
if (idiffx.lt.-8) ixsix+16
if (idiffz.gt.8) iz=iz-16
if (idiffz.lt.-8) iz=iz+16
go to 10

positional filtering, three trial averaging,
continue
i=(ix+ixn+ixo)/3

j=(iz+izn+izo)/3
1xo=ixn
ixn=ix
i X=1
1zo=izn
1zn=iz
iz=j

altitude filtering, two trial averaging.
iy=al-120
i=(iy+iyo)/2
iyo=iy
iy=i

pitch and bank calculations.
ipit=pi/12
if (ipit.lt.l) ipit=ipit+360
ibnk=ba/12
if(ibnk.lt.1) ibnk=ibnk+360
return
end

Figure 23. IGAT subroutine part b.

44

subroutine inav
inav-
this navigational subroutine does two things:
1. switches to the low altitude data base if altitude
drops below 500 feet and turns on screen point hysteresis.
2. switches to the high altitude data base if altitude
goes above 750 feet.
inav-----

common /base/ idba(400),indexa(100),idaux(80),indaux(20)
common /base2/ idbb(400),indexb(100)
common /ref/ ix,iy,iz,1pit,ibnk,ihdg
common /synth/ new(400)liold(400),ideita(400),nframe,ihyst

if (iflag.eq.l.and.iy.lt.500) go to 1
if (iflag.eq.0.and.iy.gt.750) go to 2
return

switch to low data base and turn hysteresis on.
do 10 i"!,400
itemp=idba(i)
1dba(i)=idbb(i)
idbb(i)=itemp
do 11 i=l,100
itemp=indexa(1)
indexa(i)=indexb(i)
indexb(i)*itemp
ihyst=l
iflag=0
return

switch to high data base and turn hysteresis off.
do 20 i=l ,400
itemp=idba(1)
idba(i)=idbb(i)
idbb(i)=itemp
do 21 i=l,100
itemp=indexa(i)
indexa(i)=indexb(i)
indexb(i)=itemp
ihyst=0
iflag=l
return
end

Figure 24. INAV subroutine.

45

COMPUTATIONAL SUBROUTINES

IPYRA SUBROUTINE. An equation often used in point projection is

the pyramid projection equation.

screen x= 30 x/ 3D z * (k/2)

The variable k is the screen width. Division by z gives the projection

depth perspecive. IPYRA is a small assembly language plug-in replacable

module which performs this function. The following Fortran version of

the IPYRA module (figure 25) can be used on any computer and converts

data to floating point mode to perform the division and retain accuracy.

Great execution time speedups result from assembly language replacement

of this module.

The thirty-two bit product capabilities of a sixteen bit

computer's multiplication hardware are utilized to retain accuracy in

the division and multiplication in the assembly language version shown.

IMUL SUBROUTINE. As stated previously, multiplication of a 16

bit fractional constant by an integer is a common occurance. Accurate

fractional multiplication is performed by IMUL.

The fraction and integer are multiplied and the top sixteen bits

of the thirty-two bit product are taken as the result. Binary point

placement for the fraction is accomplished in this way. The Fortran

module shown in figure 26 converts data to floatinq point mode to retain

high accuracy while the assembly lanauane version uses thirty-two bit

hardware product capabilities as IPYRA does. Overall display pronram

speedups of up to four hundred percent have been obtained by assembly

language replacement of IMUL.

I
I
I
I
I
I
I
I
I
ï
I

c
c
c
c
c

c
c
c
c

46

subroutine ipyra (i,j,jp)
ipyra.....—
the pyramid projection function is accurately performed.
jp=(i/j)*25000.
this subroutine is assembly language replacable.
ipyra....
ri=i
rj*j
JP=(ri/rj*25000.)
return
end

Figure 25. IPYRA subroutine.

function imul(i,j)
imul fortran module-----
imul is an assembly language replacdble module,
imul performs i*j/32767
imul fortran module-——
ris1
rj=j
imul*ri*rj/32767.0
return
end

Figure 26. IMUL subroutine.

47

INITIALIZATION

INIT SUBROUTINE. Lookup table generation and data base read-in

are performed by the initialization subroutine. Variable program

parameters are assigned default values which are redefined by parameter

control statements in the users data base if default is not specified

(see data base format section). Figures 27 and 28 show the INIT

subroutine.

BLOCK DATA SUBROUTINE. All common blocks are allocated by the

block data subroutine. Initialization of synthesizer buffers and other

display buffers and variables are also performed. The block data

subroutine shown in figure 29 is used with the sample control program.

48

subroutine 1 nit
ini £**
init reads in and generates parameters and data base blocks,
i nit**

data assignments.
common /base/ idba(400),indexa(100),idaux(80),indaux(20)
common /base3/ i3d(400),i3daux(80)
common /crt/ dbuf(500)
common /mtx/ iv(16),iview
common /nav/ xpos.ypos.zpos.xfset.zfset.iscale
common /trig/ isin(360),icos(360)

default value assinnments.
iview*32767

initialize the display buffer and screen
call getup
call opnfH (dbuf,740)

the initial display start point is now chosen.
find the immediate position of the simulator.
call gatxy(igatx.igaty)
xfset^igatx
xfset=xfset*64.
zfset=igaty
zfset=zfset*64.+3000.
iscale=l

read the default/setup card,
read (21,1001) isetup
format (il)
if (isetup.eq.O) go to 12

read the field of view parameter,
read (21,1002) field
format (flO.O)
field=fiel d/360.*6.28308
iview=sin(field)/cos(field)*32767.

read in the 4 data base blocks.
i=l
nbuf=0
read (21,1000) indexa(i),(idba(i*4-4+j),j=l,3)
format (i2,3l6)
idba(i*4)=l
i=i+l
if (indexa(i-l).ne.O) go to 1
nbuf=nbuf+l

Figure 27. INIT subroutine part a.

49
if (nbuf.ne.3) go to 1
indexa(l)=i-l

read (21,1000) indaux(i),(idaux(i*4-4+.j),j=l,3)
idaux(i*4)=l
i = i+l
if (indaux(i-l).ne.O) go to 2
indaux(l)=i-l

generate the sine and cosine tables.
do 11 i=l ,360
a=i
asa*6.28318/360.0
isin(i)=32767.*sin(a)
icos(i)=32767.*cos(a)
return
end

Figure 28. INIT subroutine part b.

block data**
the display's common blocks are set up and initialized.
bl ock data**

common /base/ idba(400),indexa(100),idaux(80),indaux(20)
common /base3/ i3d(400),i3daux(80)
common /crt/ dbuf(800)
common /mtx/ iv(16),iview
common /nav/ xpos,ypos,zpos,xfset,zfset,iscale
common /proj/ i2d(400)
common /ref/ ix,iy,iz,ipit,ibnk,ihdg
common /synth/ new(400),iold(400),idelta(400),nframe,ihyst
common /trig/ isin(360),icos(360)

data i2d/400*0/,new/400*0/.nframe/5/
data iv/15*0,32767/
data ihyst/0/
end

Figure 29. Block data subroutine.

pwKUwwiK wm* ^ - www .

50

DATA BASE FORMAT

A simple data base read-in format was Incorporated into the

display program to allow for simple data base manipulation, A data base

may be on cards, tape or disc as dictated by the data read-in section of

the initialization subroutine.

The first card (or card image) indicates whether or not set-up

parameters will be included in the card deck. A zero in column one is

used to specify that default values should be used. A one in column one

indicates that set-up parameters will be given. If the first card has a

one in column one, the following cards will contain set-up information

such as field of view and initial position.

After the set up has been completed (by default or definition),

the actual data base can be read in. The data base consists of three

dimensional start and continue points. Integer mode is used and it is

recommended that values be kept between plus and minus 20000. Each card

contains a code and a coordinate in the following format.

12 16 16 16
Code X y z

Code Meaning

01 = start point
-1 = continue point
00 = continue point and end of data base block

The display program described expects three data base blocks to

be read in. The first two will be processed by the IGEN subroutine and

the third will be processed by IPR0J. The predictor symbol buffer is

read as the fourth block. This block is matrix multiplied (mode 2) and

is projected by IGEN. A sample data base is shown in Appendix A. No

clipping is performed by IPROJ, therefore small objects should be in

block three. Only lines that must be clipped are included

and two. Higher projection rates result from making block

as small as possible.

in block one

one and two

52

DISPLAY PERFORMANCE

The speed at which images are projected is determined by program

configuration, equipment used, and data base complexity. Higher display

speeds are obtained when assembly language replacement modules are used.

Table 1 gives the performance of the display program in various

configurations.

Although no thorough error analysis was made of the image

quality, the following can be said. The picture geometry is good due to

the strict mathematics used in projection. Objects keep their proper

shape and perspective and don't come apart as they often do when

approximation methods are used for projection. Motion quality can be

described as fair. Due to the sixteen bit integer calculations, motion

is not as smooth as may be desired but screen filtering has helped this

situation considerably. Frame synthesizing results in a very natural

smoothing of movement.

A computer with more precision would greatly increase projection

speed, eliminate the need for any floating point calculations, and

increase image accuracy and motion quality.

f
I

..

11
I

D
11

PROGRAM

TABLE 1

PROGRAM PERFORMANCE

COMPUTER OPERATING
SYSTEM

COMPILER DISPLAY RATE
(50 LINES)

FLY V03 POP n/40 RT 11 FORTRAN IV 2 FRAMES/SEC.

A. FOR POP 11/40 RT 11 FORTRAN IV 6 FPS

B.FOR POP 11/40 RT 11 FORTRAN IV 9 FPS

DISP.F POP 11/40 UNIX FORTRAN IV 1.5 FPS

A. RAY RAYTHEON 704 XRAY INLINE * 4 FPS

A. RAY RAYTHEON 704 XRAY INLINE 7 FPS

B.RAY RAYTHEON 704 XRAY INLINE 11 FPS

C.RAY RAYTHEON 704 XRAY INLINE 20+ FPS **

* RAYTHEON 704 FORTRAN IV INLINE COMPILER
♦♦ESTIMATED DISPLAY RATE.

11
F.
ï
1

FRAME IPYRA AND IMX AND MATRIX DISPLAY
SYNTHESIS IMUL ASSEMBLY IPROJ ASSEMBLY MULTIPLIER RATE

FLY V03 2 FPS

A. FOR X 6 FPS

B.FOR X X 9 FPS

DISP.F X 1.5 FPS

A. RAY X 4 FPS

A. RAY X X 7 FPS

B.RAY X X X 11 FPS

C.RAY X X X X 20+ FPS **

54

CONCLUSION

That which was set out to be accomplished In this project was,

for the most part, successfully accomplished. The resulting program 1s

transportable, easy to work with, and relatively time efficient. It was

unfortunate that assembly language replacement of subroutines had to be

used to obtain high projection rates, but the fact remains that a

complete Fortran version of the program exists and can be run on any

system which handles Fortran if speed is not of prime importance. In

the writing of many of the assembly language modules it was found that

translating the Fortran program into assembly language was very easy due

to the program structure already being available.

The Fortran display program is already finding application in a

predictor display simulation and in the future, more ground based

simulations will be incorporating this program. One of the most

interesting applications may be the installation of a small computer and

display system inside an actual aircraft, using radio navigation signals

to obtain references for the display. Very efficient, integerized

software is essential for a small computer acting in this capacity

therefore the basic structure of this program can be used here also.

Unlike old display programs (typically called landing displays),

this program, with its map overlay feature, can be used as an overall

flying display. Cross-country trips as well as simple landings can be

performed. Another interesting application of this program is space

flight. With the essentially limitless data base sizes provided by map

overlays, a complete takeoff, docking, and reentry can be performed.

The map overlay feature Is one of the most powerful parts of the display

program and has not, up to this time, been developed or used

extensively.

Basically, this display program has added easy to work with

visual capabilities to many simulations where none were available

before, without the use of expensive graphics hardware.

56

REFERENCES

1. Bell, J. W., Bottlik, I. P., Lucero, A. B. Simulation techniques for

airborne electro-optical imaging systems. Wright-Patterson Air

Force Base, Ohio: Air Force Human Resources Laboratory, Technical

Report, January 1975,

2. Hoolko, R. L. Design of a digital computer-driven cathode-ray-tube

display system. Savoy, Ill.: University of Illinois at Urbana-

Champaign, Institute of Aviation, Aviation Research Laboratory,

Technical Report ARL-73-11/AF0SR-73-7, 1973.

3. Hummel, T. L. A digital computer-generated contact analog landing

display. Savoy, Ill.: University of Illinois at Urbana-Champaign,

Institute of Aviation, Aviation Research Laboratory, Technical

Report ARL-73-9/AF0SR-73-5, 1973.

4. Kelley, K. C. A computer graphics program for the generation of

half-tone Images with shadows. Urbana, Ill.: University of

Illinois Thesis, 1970.

5. Newman, W. M., Sproull, R. F. Principles of interactive computer

graphics. New York: McGraw-Hill, 1973.

6. Schaumacher, R., Brand, B., Gilliland, M., Sharp, W. Applying

computer-generated images to visual simulation. Detroit: General

Electric Company Report, 1970.

■

58

SAMPLE DATA BASE

This data base consists of the runway, center lines, and
approach bar shown below.

z:
Origin
0,0,0

A-l. Data base form.

The following lines show the data input format for this data
base.

1 setup data base
45.0 field of view parameter
01 25
-1-00025
-1-00025
-1
00
01
-1
01
-1
01
-1
01
00
01
-1
01-00015
00 15

25
25

0
0
0
0
0
0
0
0
0
0

1800
1800

0
0

1800
200
400
600
800

1000
1200
1400
1600

•00200
25-00200
25-00200
25-00200

0
0
0
0
0
0
0
0
0
0
0
0
0
0-

data base block 1
runway

data base block 2
center lines

data base block 3
approach bar

The initialization shown in subroutine INIT reads four data base
blocks, the fourth being the predictor symbols.

Care is taken to assure that the program's buffers are large
enough to accomodate the whole data base.

59

Image complexity: 50 lines Display rate: 11 frames per second

Display contents: Runway, center Unes, numbers (both ends), taxiway,
ramp area, 3 predictor symbols, 3 approach bars,
10 landing lights, ground texture.

A-2. Sample projection.

APPENDIX B

ASSEMBLY LANGUAGE MODULES

61

* ipyra--
* Ipyra subroutine module for raytheon 704
* the call Is: call Ipyra (1,j,jp)
* the result 1s: jps1*28000/j
* Ipyra..

ntry Ipyra
Ipyra

j
cl
pool

ladr
jadr
jpadr

d
Idx
Idw*
stw
Idx
Idw*
mpy
dlv
Idx
stw*
smb
jsx
d
d
d
d
d
d
d
d
end

pool
jadr
0
j
ladr
0
cl
j
jpadr
0
r.ret
r.ret
pool
0
20000
5
0,0
0
0
0

B-l. Raytheon 704 IPYRA assembly language module.

This assembly language module Increases the projection rate

and utilizes the Raytheon 704 multiply hardware to the fullest

extent. The Intermediate thirty-two bit product 1s stored In the

accumulator (least significant bits) and In the Index register.

62

* 1mul-------
* raytheon 704 imul assembly function module
* the call is: iout=imul(i,j)
* the result is: iout=i*j/32768
* imul-----—-

ntry imul
calad d 0
i d 0
imul equ $

d 0
stw calad
cax
ixs 3
nop
Idx* 0
sxp
jmp
Idw*
stw
Idx
ixs
nop
Idx*

$-2
0
i
calad
4

0
sxp
jmp $-2
Idw* 0
mpy i
cxa
Idx calad
ixs 2
nop
Idx* 0
sxp
jmp $-2
stw* 0
Idx calad
ixs 5
nop
smb r.exec
jmp r.exec
end

B-2. Raytheon 704 IMUL assembly language module.

The IMUL function module can be replaced wich this assembly

language version decreasinq matrix multiplication time.

63

; Ipyra assembly language module
;1pyra.-.-.
; this pyramid projection subroutine performs the
; function: ipyra(i,j)a (1*254/j)+256.
; this function is written for the pdp 11/40 computer.
; ipyra.-.
.globl ipyra
.glob! imul
.radix 10
r0a%0
ri=sn
r5=%5
pc=%7

ipyra: tst (r5)+
mov o(r5)+,r0 note: @ is represented by the ° symbol.
mul #254,rO
div o(r5),r0
add #256,rO
rts pc

; imul--—--—-—
; this is the fractional multiply subroutine assembly
; language module, written for the pdp 11/40 computer.
; 1mul(i,j) is the call
i i*j/32767 is the result
; imul---

imul: tst (r5)+
mov o(r5)+,r0
mul o(r5),r0
div #32767,rO
rts pc
.end

B-3. PDP 11 assembly language modules.

These two assembly language modules can increase display rate on

a PDP II computer running under an RT-11 fortran compiler. The IPYRA

version shown above not only multiplies by a scale factor (254) but

adds a constant to the result as well. This scales and shifts the

image into plasma panel coordinates, as this was the output device

fcr the application where this subroutine was used.

DISTRIBUTION LIST

Director, Engineering Psychology (5 cys)

Programs, Code 455

Office of Naval Research

800 North Quincy Street
Arlington, Virginia 22217

Defense Documentation Center (6 cys)
Cameron Station

Alexandria, Virginia 22314

Lt. Col. Henry L. Taylor, USAF

OAD (E&LS) ODDR & E

Pentagon, Rm 3D129

Washington, DC 20301

Dr. Robert Young

Director Human Resources Research

Advanced Research Projects Agency

1400 Wilson Boulevard

Arlington, Virginia 22209

Human Factors Plans, OP987P7

Office of the Chief of Naval

Operations

Department of the Navy

Washington, DC 20350

Dr. A. L. Slafkosky
Scientific Advisor

Commandant of the Marine Corps
Code RD-1

Washington, DC 20380

Assistant Chief for Technology, Code 200

Office of Naval Research

800 N. Quincy Street

Arlington, Virginia 22217

Office of Naval Research (6 cys)
International Programs

Code 1021P

800 North Quincy Street

Arlington, Virginia 22217

Aircraft Instrumentation Program,

Code 211

Office of Naval Research

800 N. Quincy Street

Arlington, Virginia 22217

Director, ONR Branch Office

ATTN: Dr. C. E. Davis

536 South Clark Street

Chicago, IL 60605

Director, ONR Branch Office

ATTN: Mr. R. Lawson
1030 East Green Street

Pasadena, CA 91106

Dir., Naval Research Laboratory (6 cys)

Technical Information Division

Code 2627

Washington, DC 20375

Mr. John Hill

Naval Research Laboratory

Code 5707.40

Washington, DC 20375

Dr. Andreas B. Rechnitzer

Office of the Oceanographer

of the Navy

Hoffman Building II
200 Stoval Street

Alexandria, VA 22332

Dr. Heber G. Moore

Hqs., Naval Material Command

Code 0331

Department of the Navy
Washington, DC 20360

Mr. Arnold Rubinstein

Naval Material Command, NAVMAT 0344

Department of the Navy

Washington, DC 20360

Commander, Naval Air Systems Command

Crew Station Design, AIR 5313

Department of the Navy

Washington, DC 20360

Commander, Naval Air System Command

Human Factors Programs

AIR 340F

Washington, DC 20360

Commander, Naval Air Systems Command

ATTN: Mr. T. Momiyama
Advance Concepts Division, AIR03P34

Washington, DC 20360

Dr. Herbert J. Mueller
Naval Air Systems Command

AIR-310, Research Admin.

Washington, DC 20360

Mr. George Tsaparas
Naval Air Systems Command

NAVAIR 340D
Washington, DC 20360

CDR Thomas Gallagher

Bureau of Medicine & Surgery

Operational Psychology Branch

Code 513
Washington, DC 20372

Dr. George Moeller
Head, Human Factors Engineering Branch

Submarine Medical Research Laboratory

Naval Submarine Base

Groton, CT 06340

CDR James Goodson
Chief, Aerospace Psychology Division

Naval Aerospace Medical Institute

Pensacola, FL 32512

Bureau of Naval Personnel

Special Assistant for Research Liaison

PERS-OR

Washington, DC 20370

Dr. Fred Muckier

Manned Systems Design, Code 311

Navy Personnel Research and

Development Center

San Diego, CA 92152

CDR Robert Wherry

Human Factors Engineering Branch

Crew Systems Department

Naval Air Development Center

Johnsville
Warminster, PA 18974

CDR Robert Kennedy

Human Factors Engineering Branch

Code 5342
Pacific Missile Test Center

Point Mugu, CA 93042

Mr. Ronald A. Erickson

Head, Human Factors Branch,

Code 4075

Naval Weapons Center
China Lake, CA 93555

Systems Engineering Test

Directorate

ATTN: Mr. F. Hoemer

U. S. Naval Air Test Center

Patuxent River, MD 20670

Mr. Richard Coburn
Head, Human Factors Division

Naval Electornics Laboratory Center

San Diego, CA 92152

Mr. James L. Long
Weapons Systems Research (N-332)

Naval Education & Training Command

Naval Air Station

Pensacola, FL 32508

Human Factors Dept., Code N215

Naval Training Equipment Center

Orlando, FL 32813

Dr. Alfred F. Smode
Training Analysis & Evaluation Group

Naval Training Equipment Center

Code N-00T

Orlando, FL 32813

Dr. Gary Poock
Operations Research Department

Naval Postgraduate School

Monterey, CA 93940

Technical Director
U.S. Army Human Engineering Labs

Aberdeen Proving Ground

Aberdeen, MD 21005

U.S. Air Force Office of

Scientific Research
Life Sciences Directorate, NL

1400 Wilson Boulevard

Arlington, VA 22209

Chief, Human Engineering Division

Aerospace Medical Research Lab

Wright-Patterson AFB, OH 45433

(.

Lt. Col. Joseph A. Birt

Human Engineering Division

Aerospace Medical Research Laboratory

Wright Patterson, AFB, OH 45433

Dr. Stanley Deutsch
Office of Life Sciences

Headquarters, NASA
600 Independence Avenue

Washington, DC 20546

Dr. Clyde Brictson

Dunlap and Associates, Inc.

115 South Oak Street

Inglewood, CA 90301

Mr. Edward Connelly

OMNEMII, Inc.

Tyson's International Bldg.
8150 Leesburg Pike, Suite 600

Vienna, VA 22180

Dr. E. Jones, Life Sciences Dept.
McDonnell Douglas Astronautics Co.-East

St. Louis, MO 63166

Mr. Gail J. Borden

Human Factors Research, Inc.

Santa Barbara Research Park

6780 Cortona Drive

Goleta, CA 93017

Dr. Gordon H. Robinson

University of Wisconsin - Madison
Department of Industrial Engineering

1513 University Avenue
Madison, WI 53706

Dr. W. S. Vaughan

Oceanautics, Inc.

3308 Dodge Park Road

Landover, MD 20785

Director, Human Factors Wing

Defense & Civil Institute of
Environmental hedicine

Post Office Box 2000
Downsville, Toronto, Ontario

CANADA

■■
■.-i.™»-,!™

Dr. Malcolm L. Ritchie

Professor, Human Factors Engineering

Wright State Universtiy
Dayton, OH 45431

Dr. Lloyd Hitchcock

Human Factors Engineering Branch
Crew Systems Department

Naval Air Development Center

Warminster, PA 18974

