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A MODEL VFOR THE DOPPLER SPREAD CF BACKSCATTERED SCUND FROM
A COMPOSITE ROUGHNESS SEA SURFACE

by

Herward Schwarze

ABSTRACT

A theoretical model for the doppler spread of backscattered
acoustic waves from the rough sea surface is described on the
basis of a two component siructure (facet model) of the sea
surface, The facet statistics are derived for a gencral gaussian
sea surface., The results are evaluated for a Pierson-Moskowitlz
spectrum, A procedure for choosing the facet length is developed,
Approximate, simple formulae for the Fierson-Moskowitz case are
given. The general result for the doppler spread of the back-
scattered acoustic wave is cvaluated for a sea surface spectrum
due to Scott and examples Tor doppler spectra are given tor dif-
ferent windspeeds, wind directiogs, grazing angles and acoustic

froguancios
freguencies, i
b
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INTRODUCT ION

The important problem of scattering of acoustic waves from the rough
moving sca surfacce has often beern investigated, but a general, cxact
and tractable solution has not jyet been obtained,

For special cases, solutions are @ aown, e¢.g. for the cases where the
amplitudes of the sca surface waves are much smaller [Ref. 11 or
much larget [Ref, 2] than the leongih of the incideni wave,

For arbitrary toughnesses of the sca surface, approximate solutions
are ¢btained by applying the small-scale backscattering results to

a composite—-toughness sca-surface model [Refs. 3, 4, §, 0j. This
means that the small waves with lengtihs up to some 10 cm, causing the
1esonant o1 "Bragg" scattering, are carried by long waves, The long
waves ate apptroximated by plane facets whose movements depend on the
lavge--scale roughness of the sca surface.

In thits papet, the interest is tocussed on the freguency spreading
ol a backscattcred monochromatic acoustic plance wave, This case is
of special interest in active sonar applications becausce the moving
sea surface limits the detectability of dlowly-moving targets.,
3pecial cffert has been devoted to obtain a set of fonailae that are
simple to use in alrcady cxisting sonar models, cspecially in the
RAIBAC program system developed at SACLANTCEN [Ref, 7].

The main text of this paper contains the results obtained, together
with some phyvsical explanalions, All mathematical derivations and
proofs are given in appendices. 3

In the miin text, the existing resonant scattering theory is first
reviewed and the facets are then introduced. The statistical prop-
erties of the facets are given in terems of the sca-surface covariance
tunction or the three—-dimensional sea-surface spectium, The concepu
15 applied to the small-scale roughness results, Several special
cases are consideced,

The general formalism is worked out in several cexamples of idealized
sca-surltace spectra and the computer results arce shown.

1. RESONANT BACKSCATTERING THEORY fFOR SMALL EEA-—SUR]“ACE ROUGHNESS
The geometry shown in Fie. 1 is used, A source S(X.al. O, ZG)

1}luminates a surface area A = ab with a plane wave of trequency f
atd pressure amplitude pg. The distance rg is considered much
larger than /& . Without loss of generality the y-coordiunate ol S
1s set to zero, Besides the specular reflection;, the rough sea sur-
face cavses a scattered field in all divections, For backscattering,
soutce S5 and receiver R coincide.

The doppler spectrum  3(f) of the backscattered wave p(t) is the

Fouries transtorm ot its corrclation function, viz:

o«

B(r) = j E{p*(V)p(t+1) ] expl-2r §fT} at (Eq.1]

where El...} denotes expectation and * the conjugate complex,

(9]

T S U D P TPV SR P S AP T T WL 3t v




/

n S

o /
IR
J/ -
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A normal .atzon is introduced, yiclding a backscattering doppler
density

w(i‘) = M_.- . [EQ- 2]

po A

Starting from Ref. 8, for example, the basic equztiou for the back-~
scattering doppler density for the slightly roagh sea surface is

o(tf) = (47)" sin*yok§ Xy (~2kocos Yo, 0, £-1,) . (Eq. 3]
1 fo ) . .
In Eq. 3, ky = )\—-\= —— is the wave parameter of the acoustic plane
o C

wave and X3 (k_,k ,f) is the three-dimensional wave parameter
. x ¥y o . 1
frequency spectrum of the sca surface, 7The wave parameter k = &~
was introduced here instead of the wave number 27 s becausce it

offers some notational advantage. Equation 3 is derived in detail
in App. B, When integrated over , Eq. 3 becomes the back-
scattering strength, known from the literature [Refs. 9, 4],

The general small-scale roughness result is simplified by the
assumpt ion that the dispersion rclation

2 = gk [Eq. 4]

is valid, where g is the gravity constant.
Using the relations in App. A, Eq. 3 is written in terms ot the
frequency angle spectrum Fo (1, o)

.
2" kgsinty,

w(f) = Fg (£, 0) [Eq. 5]
fo*s

(W(rg, m) 8(f=Lo=18) +W(f, , 0) 8(f=1o+1)],

where

. ‘gk cuUSsS Y ]
. R (5q. o]
T

is the dispersion relation. In Eq. 5, F,(f, ®) and W(f, o)
arc the frequency angle spectrum and the wave=mixing tunctiomn,
respectively,

The mixing function describes the ratio of incoming and outgoing
surface waves fer a given wave parameter vector or a given frequency
and direction. The 1ntroduction of this function leads to the same
results as the theory of Neumann and Pierson [Ref. 10, p. 330] but
1t is fell that the formulation used here is simpler. ) For details
of the definition of W and its relation to ithe wave parametcor
frequency spectrum X, the reader is referred to App. A.




A simple practical casce 1s the omnrdirectional sca~surface spectrum
with W = 0,5, which scems 1ecasonabie for short surface waves. In
this case one obtains

) 4
P sint Yo ko

(1) = — P () 6=t =10) + 8(L=to+15)].

2y’ [Eq. 7]

Equat ions § and 7 are considered to be valid vnder the following
cundit ions:

1) )\Q >> CTh e 2TMsin YO "Bl‘agg" scatt cx‘ing’ [Eq. 8]
Rayleigh theory
op:  standard deviat ion [Ref. 11]

ot the sea surface
height

2) )\o<< J A Implicit assumption [l:)q. 9]
for Eqs. 5 and 7,
cxplanation
see App. B

i

3) 1-°>>JA Assumpltion of incident [Eq., 10]
plane wave
Ny 1 >(0.05 m Approximation rule for [Eq. 11]
k the vailadity ot the
dispoersion relatiaon,
E 1

©1
iy e -

As most acoustic waveiengths in sonar applications are between 0,1
and 1 m, the condition of Eq. & is often not fuliilled, Therefore
it 1s necessary to introduce the composite roughness sea surface
model; which circumvents this condition. This model is developed
in the next chapter,

Z. DOPPLER SPECTRUM FOR A COMPOSITE-ROUGHNESS SEA SURFACE
z2.1 Introductory

The derivations of this chapter are based on the facet model as used
by Bachmann [Refs. 5, 14] for the calculation of the backscattering
strength,

The facet model assumes basically a two-component structure of the
rough-moving sca surtace: the small-scale high—trequency roughness
(ripples), responsible tor the resonamt scattering are car:ied by

the low—=f{1requency large-scale seca-surtace waves (swell). These
carricer waves are locally approximated by plane facets of finite
extend, The movements of these facets havk influences on the back-~
scattering strength and the doppler shifts of the backscattered sound.

To the first part ot this chapter the tacet model is develeped and
the statistics ot the tfacets are calceculated, 1In the scecond part, the

eftects of the tacet movements on the small-scale roughuess results arc

consildered,



2.2 Facet stat lbﬁ't,_ir(‘.sj

The facets are statistically described by a five~dimensional random
process:  the inclinations €x and ¢y and the velecities ux,, Uy,
and u,. 1t the iucident acoustic=wave vector lices in the x-z plane,
the influcnces of €y and u, can be considered small and are
neglected [Retf. 14].7 Conseguently one deals with a three—-dimensional
process only and the facet can be represented by a straight ling,
thus veducing the mathematical effort,

As 1t 1is assumed that {he sca surface is described as a gaussian
process, the tacet movement is also considered to be normal distrib-
uted. As the mean values of the stochastic variables e = ex(t),
ux(t) and u,(t) are zero by definition, their covariance matrix
is sulficient for their complete description.

The geowetry shown in Fig. 2 is used in the calculation, To obtain
an eapression for €(t) and b(t), the seca surface function
hix, v, 1”\,:0 is approximaied by a least-square-error straight line

f(x,t) =e(t)x+b [Ec. 12]
in the interval |.\|<—£- . This yields
L
2
o 12 o
e(t) = f—- J x h(x, v, t)dx [Eq. 13]
Ry
2
and L
2
1 r
b(t) = -~ [ h(x, v, t) dx . [Eq. 14]
‘L
2

The vertical velocity u, follows from Eq. 14

1.
T
T RIS R B TE PR TS R [Eq. 15)
”1, = v -—I JI 51 X . L. ]
"7

For the horizontal velocity uy the following argument applies.
F'rom the linear theory ot surface waves it follows that the
horizontal particle velocity u in the x-=direction is

all = g ah X 7 t [qu 1()]
at 3x
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FIG. 2 GEOMETRY FOR THE FACET DESCRIPTION




The hori.ontal velocity of the facet uy, 1is defined as the mean
horizontal particle velocity on thc facet

__DNL"‘

ux(t) =

ol ET)

J udx (Eq. 17]

| S H ol

Inserting Eq. 10 into Eq. 17 gives

t
u (t) =« 2 nd, vy, 1) = n(=%, 3, 1)) at, +u(ts) TEq. 18]
x ) L. 2:3) 1 53 Yo 1 1 x'to ). LEq.
"a

From Egq~. 13, 15 and 17 the variances and cross~variances of the
facet movement ave calculated. The results are given below, the
derivation of the formulae is found in App. C

L
@y =24 [ : 1 _3x 2 i
Et{C l Is J C(x, v, T)ly-_-_o (1‘ L e )de [hq. 10]
' (o] =0
L
_ 2] =22 [d°cC(x, v, 7) 5) .
E fu? ] T o o= 1-7 ) dx, [Eq. 20]
o y=u 3
T=0
i
and
Tty
. g
E full = - = Jf[zc(o, ¥, t) =C(L, ¥, t) = C(-L, vy, t)]dt dt, |r=0 *
-0 \r:O
[Eq. 21]
The c¢ross variances are
|
L 1
12 PBC(X, Yo T) ( xz)
E, {e u = . — —————— X - — ) dx Eq. 22
t{ z} La J a..r |\'=0 L [ q ]
o ~
T=0
and i
{
Etge u, b o= Et{uxuz} = 0, [Eq. 23] ;

Using the results of App. A, the above equations can be written in
terms of the wave parameter frequency spectrum or the frequency angle
spectrum, As the latter is of importance in the applications, the
formulation of the facet statistics in terms of Fy,(f, ®) is given
here,



i

1t is
+ 1T ®» .
E : E} — ]44 r. P P‘E(f] :.iz) . al., 0ol al-)z dfd [E 24] B
1€ =05 . (La cos F*=2sin* W, Q. 2 ;
. e .
+ 17 e
2e° Fo (£, ) (1 =cos aL) _
E {u? ] - = f f 2l o)l dfde (Eq. 25]
e 1° L (271 cos ©)°
- U
+7 ®
2¢° p p Fa(f, ) (1 - cos al) )
E 12 ST s . Py dfd E . 20]
N 2J J (2rf)? ©s [Eq
-7 o
and
i+ =
~12 r l"
; - | N W £ _
E fewu, ] =) ) et ®) (2W(F, @) = 1) 2nf
' -7 O
sin aL 2
[— — + (1 - cos aL)1 dfdey , [Eq. 27]
C a’ La® J
where
21r)? cos @
a = . [Eq. 28)

The derivation ot the above formulae is also found in App. C,

The horizontal velocity wuyx is uncorrelated to € and u,, as is
scen from Eq. 23, As €, u, and u, are assumed to be normaily
distributed, uy is therefore independent of € and u,, Then
the three~dimensional probability density ws(e, u,, uy) has the
form

wy (€, u_, “x) = wy (€, uZ) Wy (ux) s [Eq. 29]
where
1 u® _
wy () = =———— ex - ——— [Eq. 30]
1 x P -
VA Oy Zox

= N("x’ O, Ux)




and

2
( ) ] 1 uz 2p52%§+ e?
wale, u ) = s CXP 3 el — |t

, _ - o
ZWUCOLJl pcz 2(2 pGL ) cz ozge: z
[Eq. 311

The abbreviations in Egs. 30 and 31 are

o, = JE 2], o, =B w1, 0 = JE {u 7] [Eq. 32]

€ t z
and
E{C uT}
po, = ——— . [Eq. 33)
GC 01
Equation 29 describes the facet statistiecs and is used in the ]
Tolloving tor the calculalion ol the doppler density. l

2.7 Choice of the facet length

The facet statistics as derived in the preceding section depend
cntively on the facet length L, In practical cases, this L has
to he chosen., The choice iz directed by two infiuences, Firstily,
the facet length shiould be greater than the wave length of the
incident acoustic wave to redice the finite aperture error as much
as possible, That leads to the condition

L >> Ag . [Eq. 34]

Sccondly, the seca-surface roughness o (L) on the fTacet should be
mich smaller than the acoustic wave 'longih Ay to fulfil the
Rayleigh condition [Eq. 8]

Ao >>ay (L) [Eq. 35]

It seems to be extremely complicated to ceolculate the finite
aperture error and the finite roughness error and to choose that
facet length, Lopt. where the sum of both iz a minimum. Therefore
the tollowing procedurc tor choosing the facet length is p(,r{'or‘med:
A rumber N 1is chosen thal transtforms the two above inequalities

' [Eqs. 34 and 35] to the equations

_ I == %o = N [Eq. 36] \

e and :‘

3 Ao ‘
'—N—‘ - Ull(l) . [Eq- 37]

Combining them gives

L * o (L) = A\ . [Eq. 38]




This impiicit equation has to be sclved to find the facet length L.
The number N is a qualily nunber tnat shows how far L is away from
the limit where the conditions for the validity of the composite sea
surface model are no longer valid, 1If N is less than about 2, this
indicates that the facet model will yield no correct results.

To solve Eq. 38, an expression for oh(L) tias to be found. The
roughness r(t) on the facel is

»(x, £) = h{x, y, ‘)l\mo' f(x, t) , {€q. 39]

where  f(x, t) is the facet equation in Eq. 12,

The mean square errorv pa(t) is a random variable in time
I,

T3
M 2 )

JT (x, t)dx . [Eq. 40]
L

2

-

PP (1) =

it ]

The sea~-suirface roughness O;(t) is the expectation of p% (1)
z — 2
G}\(L) ) Et’p } e [EQ’ 4]]

Using App. A, is it shown in App. C that this takes the form

L
Fo P 2x | x® o
Et{p §==C(o,«),o)-% ] C(x, vy, T)ly:T:O(l-Téd-I;)dx (Eq. 42]
o

ory written in terms of the frequency angle spectrum F,(f, o),

+TT ®

[/ .
. rJr‘ g 4 o) 6 . 0
Ef{p* (t)= F,(f leo—mr—i| 1=— 208 al= — sin al+2+=——r 1) d{'d
{p% (1)} (J R 2 (f,9) TR L aeLE/ cos a Y sin a T2 o2 P,
-7 .

[Eq. 43]

where the factor a is seen from Eq. 28.

With Eq. 42 or Eq. 43 it is possible to solve Eq. 28 by an interactive

procedure for a practical case, where C(x, y, x) or Fy(f, ®) is
known explicitly, This will be investigated in Chapter 3.

11

R )

.



2.4 The Boppler spectrum

The doppler spectrum for an arbitrarily rough surface takes into
account the facet movements whose statistics were described in the
preceding chapter,

The grazing angle Y, and tne incident frequency fy are modulated
by the facet inclination e(i) and the facet velocities ux(t) and
uz(1) respectively and accordingly the small scale result in Eq. 5
is changed.

The modulation changes Yy, and {5 1o statistic variables of the
following form

1) Influence of the facet slope
Ye(t) = vo+e(t) . [Eq. 44]

2) Influence of the facet velocities

21
ff(t) = foﬂ-wzz [uz(t)siJLYf(t) —le(t) cos‘yf(t)]. [Eq. 45)

To e¢btain the backscattered doppler density o(f), the weighted
sum for all €, u,, and u, has to be taken. Using Eq. 0 one
finds

pep kgf sin* yg

F;(f?, o)

w(f) = 2¢° 1] =5
—- f'f
[W(ED, ™) (£ == 13) +W(EG, 0) 8(f-1.+10)]. [Eq. 46]

wy (€, u, ux) dedu_ du_ .

This integral can be solved in closed form ror a small facet
siope € and other minor neglections that are found, together
with a devivation of the general result, in App. D. The general
formula for the doppler density (f) is

/ $
. v cCOos Y

cd 4fy sin vy,

[/ (- £5)% Fo (£l , o) W(EtE, m) I_ [Eq. 47]
+ (f+f§)5 FP(fz,O)W(f:,O) I+] »

12
e




whereo

¥ /Q cos Yo (15 16)°
£, = [Eq.
mc

and

e . 4 3 32
T =N, 0,0,) {304 (1-07)

EN

0ol =08 ) (0F +on? L) [Eq.

+ 3c4 + 003 o8 + ot +1 -
s T

In Eq. 49 the abbreviations arc

(f = i’o;i'g) c

215 sin vy,

./cr?_ + 0 tan®y,
A rg ~

oy ¥ ’ [Eq.
tan yg,
004 Pex %% ‘
o, = —_— ——— [Eq.
J;i + 'qu- tan?’ Yo g, tan Yo

and

Op 0., Pe, Y_ +tanayo
mo o, = 2 + tanyy . [Eq.
3 . .2
t ol tan” vy,

w2

From this general result every required simplification can be
easily deduced, For example, if the facet slope is considered of
little influence in a certain case, the expression I_ + in Eq. 49
reduces to 4

I = Mu ,0,0,) tany, . [Eq.
-, — o+

a_ L= , [Eq.,

o~ i

48]

49 ]

50)

51]

53]

54




Anoither special case is the assumption of an omnidirectional sea
surface spectrum  Fy () and a mixing function W = 0.5 (seec App. A).
Using Eq. A.20, the doppler density for this case can easily be found,

The general result of Egq. 47 has been programmed on a computer for

sca~surface spectra of practical importance. These applications are
discussed in the net chapter,

3. APPLI1CATIONS

3.1 Examples of seca~-surfacce spectra

For demonstrating the use of the model described in the preceding
chapicers a sca-surface spectirum needs to be chosen as an example,
This spectrum should have a well defined frequency and directionality
variation with the wind specd and wind direction, On the other hand
it should be mathematically simple enough to allow the calculation of
the facet statistics wilh not too much effort, Therefore the well
known Pierson-Moskowitz spectrum was chosen for the facct statistics
in slightly modified form, It can be found in App. A, Egs. A.50 aud
A.51, and is igiven here for convenience

cos" (0 - ®y)

Fa(fy CP) = Fl(f) - ’ [Eq' 55]
xn
wher e -
. aeg? g 4
> - = > " = A
Fy (f) s £>1r =5—=J8 (Eq. 56]
0 , else
and

il
Xn = fc(;sn C,pd(‘,p, a = 0.0081 and B = 0,74.
=T

The mixing function W used for these calculations is given by
Eq. A.40,

For the calculation of the doppler density a more f{lexible spectrum
was employed, which takes into consideration the frequency dependence
of the surface-wave directivity, This spectrum, duc to Scott [Ref., 15]
is found in Eqs. 00 and A.04 of Appendix A,

3.2 Variances of facet slope and velocities

In this section the general formulae for the facet statistics

[Eqs. 24 to 28] are evaluated for the Pierson-Moskowitz sea~surface
spectrum, Again the derjvations are found in App. , the results are
given in the following, !




PR

The starting point is the Picrson=-Moskowitz spectrum of the form of
Eq. 50. This spectrun is inserted into Bgs. 24 to 27, Then the
integration over the fregquency 1 1s performed, yvielding

TV
a v 18 8
3 .
Oe EES .B_.)—\-.__.}::-——:—- rC()b (w—q)o) i? 4 ._.;_q
1 1
n 3 L0 1 a
G S . 2 8 .
4+ cosugl-1*t —— - ) + sin ug (W ~=— - a3, fEq. 57
0 = ¢ a
uy g Uy ug

- ug Ci('uol)} de

i
2av°
a, = _——-—-rcosn(fp'wo) 1+ cos up <i - :}é"‘)
/B x_ o ‘l °

n

g B3

sin ug ‘“o’
+ ‘-2"'-—' + -—--—‘—" Sl(‘uo‘) ) [EQ' 58]
Uy
3
T :
2q v® { n Uo
52 = cos - 1+ cosuyf -1+t b
% B x 17 J (0=) | ° (\\ 2
e Sin ug fu, |8 .
5 + Z Sl(\uol) dep [Eq. 59] "
and -
@ Py
12(1 - 2W, Jav? P n, \
Etgculi = O€Z = T J cos (P —Ps '
8 xn L e O -
w2
Ky ky ky Ka ] ,
sin Ug :;o- + ky 1 cos Uy E%- + ;l—c-)- + ks - “o) - -l-;%- [ Eq. 60] ;
- i
/ — 2'u | ‘
- iy [+] i
-2ks ug V7 ‘“o' "L'S( p )\ de , !
/ 1
wheve :
ug = ag COS Y (Eq. 61]
and
2mf )® L J B Lg '
ao = = 5 [EQ“ 6‘2]
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The constants k; to ks are k = -10/03, kg = 8/189,

ky = ~4/9, Kk, = -4/03, and ks = 16/189., The functions Si, Ci
and 8 are the sine integral, thc cosine integral and the Fresnel
integral [Retf'. 13], respectively.

The variances in Egs. 57 to 00 have been programmed on a digital
computer, using numcrical integration techniques. Iospection of
the equations shows that the vaviances are functions of the

following {orm '

[ e

ke

G. . )
= = fa("i> , [Eq. 03]

3
V Ve ]
a
£z - L
i i‘ (—:)

v Ve, ]
and 1
1
Oz T, i

Per 5o T TE\F)
ez b
i
i
;
Thevefore, the results are shown as a functiou of L/+v? rather 1

than the {acet length 1, tlins eliminating the variation of the
resulis as a function of the windspeed Vv,

The remaining parameters are the direction angle ¢, , the
divection angle ot the mixing function, and the cxponent n
of the cosine directivity function. 1In Figs. 3 to 12 the facet
statistics are shown lor @y = @, = 0°, 45° and 90° and n = 2
and n = 4, From the figures, the facet statistics can be found
for practical cases,

The important region for L/v¥ between 0,1 and 1 s°/m is shown in
a linear scale in addition to the general double logarithmic plots.,
The facet slope o diverges for L =+ 03 therefore the curves in
figures 3b and 7b start at the maximum value on the oe-scale.

-

For L. < 0.1, Figs. 3a and 7a should be used.

A%

For certain applications it is desirable to have analytical
cxpressions for the variances., This can be achieved by approximate
sojutiouns of Eqs. 57 to 00 for a, << 1 and a4 >>1 and combining
the results, Again, the derivations are found in App. C; for the
important practical case n = 2 it is

for a, <<1 ) )

,,,,,, o e—

Oe = % [(3085—3%30) COSE (po +(l‘.31—% ao) Sillgwoj

OO |
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TP T T T

.

ag
=~/ -2 = 6.8 + 1072
2/8

— =,/ % (3 cosgcpo + singcoo) [Eq. 64.3]

0., 8(1-2W;)acosm,

= P (1-0.596 vV ag)

= 7.413 - 1072 cos @y (1=-2Wy) (1= 1,732 ./L:) R
v

for ag >>1

v 18 a / a (2ap =) ,aj
= cos” g + ———— sin“Q,

e T sg"’(l;_aj"

o, [ 2a 1 . (2ap -m) |
v VT v/ cos o, +———n—sn.n$°
38 g
)
[(Eq. 64b]
o
X =/2 1 i
v 3 ® L
€5
v
3
o 1l+cos
€z _ 16(1'12“"’)0‘ f[(coscho -1sinqy) o T2 %
v 330 - JB l-cos P
1 s if @ # 0
1 + 4 cos @ (-1+a°|sincpo|)J
[2 m(zao)] , if @, = 0.
\
The dimension of o_. and cyez/v is in radians, the other quantities 3

are dimensionless,




With a simple interpolation tormula it 1s possible to combine the
limiting cases in Eq. 04 to general valid formulac that can more
easily be used than the numerical integration procedure described
earlier in this chapter, The interpolation formula appropriate
for Eq. 04 is

£(x) = - . [(Eq. 65]
( 1 . -1 )1/“‘
£y (x) f?(x)

The functions f;(x) and t;(x) are thec approximations for

a,~< 1 and ag>>1 1in Eq. 04, respectively, with onemodifica ~ 1

tion: the approximation for o, should rcad

o d/a [(3.85+ |en a ]) cos® w +(1.31+ |%za ') sin’® w ]
[Eq. 66]

to provide a defined function for all values L « The exponent m 1
in Eq. 65 can be chosen arbitrarily; m = 2 has shown to approx-—
imate the equations with sufficient accuracy,

The relations in Eg. 04 contain the facet length L as the independent
variable. For practlcal appllcatlons this length L has to be

chosen, The calculation oif L is discussed in the next chapter, ;
3.3 Calculation of the facet length j
) ]

The facet length L is calculated following the general procedure of
Sect. 2.3. The starting equation is Eq. 38, which is evaluzted for
the Pierscn-Moskowitz spectrum [Eq. §55]. First, the variance

ci = Etfpeg is calculated, employing Eq. 42

T H
of = 2ot cosn(co-too) [Eq. 67]
Bx g
n
1 1 2 2 2 si
s _ + cOS |.,lQ + sinu d@ ,
4 uf ud uy U,

where U, is defined in Eq. 061. The derivation of Eq. 67 can be
found in App. C. From Eq. 67 it is seen that

%3;1 = fea (»—‘;—-) ; (Eq. 68]

therefore the results in Figs, 13 and 14 are given in this form,

18
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As for the Tacet statistics, the liwmiting forms tor a°<K:1 and

a, >> 1 are calculated in App. C. It is, for n = 2:

for a°<3\1

h_ a 082 in~ L
—= 288(3@05 P, t+ sin mc) 3
[Eq. 69]
for a, >> 1
/&1
VB B 2¢

For these limiting forms, Eq. 38 is solved in closed form, giving

for a°~é<l

I 1

Ko i/ 5 (3cos® Py *-81n w )

[Eq. 70]

and for a°>>]

The two parts of Eq, 70 are interpolated to a general formula
with the result

L= + 1e78 - (Eq. 71]

}\ \[2_%.8_ (3 coscp + sinyg) c(f%\__)‘
<]

This is an important result, as it relates the surface parameters
of wind spred v and wind direction ¢, and the acoustic wave
length A to the facet length L. Equation 71 is plotted in
Fig. 15, together with the exact result obtained by the solution
of Eq. 38 with an iterative procedure on the digital computer,

The figure shows that the maximum errov does not exceed 20%; thus

P

LT,




the approximation should be sufficient in most cases., It is further
scen that the quality nomber N o= L [ Eq. 30] is always greater than

- , A - .o
10, therciore the crrors induced by®the facets are negligible and
the problem of choosing the facet lenglh does not need further
investigation.

The sanmce proccedure was performed for the exponent n = 4 of the
divectivity law, the result is shown an Fig., lo. Figures 15 aud 10
are similar, the only difference is a larger variation of L with
the direction anglce o, .

3.4 Resulting doppler spectra

The computer rvesults for doppler spectra will now be discussed, the
1acet statistlics being calculated as described in the preceding
section, The doppler-density spectra use Egqs. 47 and 48; the sea
surface spectrum F;(f, ©) ecmployed chere is the spectrum due to

Scott | Eq. A.60] and the mixing function W(f, ©) is found inEq. A.04,
This choice of the sca-surface spectra seems to be the best possibil-
ity at present, It should be understoocd, however, that the general
result for the dopplei density of backscattered sound can be eval-
uwated for any sea-surfacce spectrum written in a form used here.

In Fig. 17 the influence of the grazing angle vy, on the doppler
density is demonstrated, The x-axis shows the doppler shift - f,
1n hertz, the y-axis shows the doppler density o(f) in 1/Hz. The
augle v, 1is clanged from 29 to 20°, the wind speed is v = 8 m/s,
the incident acoustic {requency is 3.5 kHz, and the main direction
of the surface waves puinits away from the sound source. This causes
an asymmetry in the spectrum, which is explained as follows: The
correlation between the Tacet slope and the facet vertical velocity
is negative in this case; this means *hat a large angle belongs 1o
a ncgative velocity., This velocity czuses negative doppler shift;
as the slope is greater for the negative velocity than for the
positive velocity the backscattered energy is greater, In this
figure Lthe sca-surface spectrum is omnidirectional in the freguency
range wherve resonant scattering occurs: about 2,7 Hz or 20 cm wave-
length, The lack of symmetry is due o1ly to the facet movement.

1t the orientation of the sea surface specturm is 90° off the
incident wave vector, this effect does not occur, as is seen from
Fig. 18.

At this point it is instructive to compare thesc results with those
of another, very simple approximation, 1In this approximation the
vaviances o uy, and u; arve calculated as second-order moments

of the sea-surface spectrum, This is the special case of the facet
model with facet length L = 0. The slcpe of the sea surface is not
considered.

Figure 19 shows the result of the approximation for a limiting
frequency tg = 1 Hz, Compared to the previous figure it can be
said that for small grazing angles, vy, = 2° to 09, the differcnces
are up to 20 dB. Moreover, the asyumetry of the curves, which must
be expected from physical reasons, is not incorporated in the model.
The small asymmetlries in the freguency region from 0 to 2 Hz are due




because the Brage frequency is shifted to the omnidirectional part

of the sca-surfacce spcecctrum, The limiting frequency is f, = 5 Hz

in this case; this means that for fy = 33 Kkliz the Bragg %requcncy
is f¥ = 8.25 Hz and accordingly thc speetral density o(f) is
almost symmetrical. Iv this figure the modified Scott sea-surtface
spectrum is used, If, instead, the unmodified spectrum is used up

to fy = §5 Hz and above a omnidircctional spectrum, the result of
Fig. %8 is obtained., The asymmelry of the lowcr acoustic frequencies
is considerably higher than in the previous figure, For f5 = 33 kHz
the curves arc almest identical. This shows that the choice of the
limating frequency and the modification of the Scott spectrum is
important. A comparison with mcasurcments will be necessary to find
out -the oplimum values for this parameter,

The last three figures show the results for the doppler density at
higher wind speeds, The limiting frequency was chosen as fg= 2.5Hz .
In Fig, 20 all parameters arc the same as in Fig, 28, except that the
wind speed is doubled, 1In Fig, 30 the direction angle is changed to
Wo = 90°, thus giving symmetric curves in this crosswind case,

Figure 31 shows an example for an extreme wind speed v = 32 m/s,

where even the low acoustic frequency f5, = 100 Hz produces a doppler
spectrum with a double gaussian shape instead of é-function peaks.

CONC1SION

roretical model for the doppler spread of the backscat tered
c 1tic waves fvom the rough sea suwrfage is developed th - makes use
f a two=compouent structure (facct nmnodel) of the sea surrace. ‘

8
b
- =

-

]

The model requires a description of the statistical properties of the
seg=-surface roughness including the directivity and the mixing of
incoming and outgoing waves in one direction as a function of frequency.
The concept of the-mixing function is necessary to obtain asymmet-
rical doppler spectra as a function of the wind direction. The
parameters of this funetion need experimental verification; in par-
tienlar, the optimal value for the limiting frequency is not yet known,

The general result of this paper is a set of formulae for both the
facet statistics and the doppler spectrum in terms of the sea-surface
covariance function or the sea-surface spectrum, The results can be
uscd in two ways:

1, Measured sea-suirtace data are used to fit the parameters
«f analytiecal spectra sueh as the Pierson~-Moskowitz spectrum o1 the
Scoil spectrum,

2. Meciasured spectra are inserted into the gencral formulae.

The procedure, deiveloped for the choice of the facet length L shows
that i1he quality number N = L/A, , where A, is the acoustic wave-
length, is never smaller than 10, thus the apercure error due to
finitc facet lengih can be neglected.

bl et L 0 G e R ke T S T e Y m“' S



only to the different results of the small-scalce roughness back-
scaltering, They depend linearily on the sca-surface spectrum and
have nothing to do with the facet movements and the correlation
between slope and vertical velocity., This effecl can be quite
important if the seca-surtace speclium is assumed to be directional
up to high frequencies.

Figure 20 shows the samc case as before but tor fg = 5 Hz, where
the asymmetrical effect is clearly seen. 10 the facet slope is
considered for the simple approximation, a considerable change
oceurs in the results, The standard deviation ge of the facet
slope tends to infinity when I, approaches zero, To avoid numer-
ical instability a facet length ot L = (.0001 m was taken. 1In
Fig. 21 the result is shown, As is to be expccled, the intluence
ot the grazing angle Yo is smaller and the {otal backscattered
power is much higher,

These considerable differences show the need tor the tacet model in
the dopplere-spread calculation,

The result of the facet theory lies betweea the extremes of the two °©
previous figures and is shown in Fig. 22, Here the asymmetry of

the curves depends on both the correlation of the tacet slope and
velocity and the asymmetric results of the resonant backscattering.

The curves depend quite strongly on the limiting f'vrequency fg R
which 15 specially apparent it t‘g tends to intinity, leading to a
spectrum that has a directivity up to the highest trequencies, This
case 1s shown 1n Fig, 23 tor the same parameters as in the previous
figures, In fact; the tigure contains only one branch of the usual
two, as only ane A-function occurs in the Bragg-scattering case,
This is ol course a somewhat academic example.

Figure 24 shows the variation of the doppler density with the

orientaticn angle @ for a grezing angle Yo = 62 , a wind speed

v = 8 m/s, and an incident frequency _, = 3.5 kHz. The angle

1s varied from 02 to 180¢ in steps of 20°, Of course, fov ¢ = 0o

and 0, = 180¢ the antisymmetric result occurs, The inf luenge of

P, teaches from abecut § dB variat ion at low doppler frequencies to ,]
10 dB at about 10 Hz deoppler shitt., Again, the seca-surtace spectrum

15 considered omnidirectional at the Bragg frequency of about 2.7 Hz,

Figures 25 and 20 show the intluence ot the wind speed Tor a fully
developed sca. The grazing angle v is 6%, the orientation angle
) is 00, and the acoustic ’('P(‘quenc?' t 1s 3.5 kliz, In Fig. 25
tfe wind speed varies from 2 m/s to 32 m?s in geometrical progres-
ston, in Fig. 26 from 2 to 20 m/s linearily, Fow low wind speeds
the facel model is seen to be superfluous,; as the doppler density
consists vivitually of iwo &—tunctions due to the Bragg resonant
scaltering, tor high wind speeds the backscattered enz2rgy is con- 3
siderable higher, but it 1s sprecad over g higher frequency range; ;
the backscattered energy at the Bragg frequency does not change |
considerabliy.

The next fagures show the dependence of the results on the incident
acoustic freguency f . Figure 27 shows the doppler density versus
A _ U~ 1

the normalized (veguency & = ey tTnr fo = 0,33, .5 3.3, 10 and
o f
23 kHs.  For the low trequency L'o = 33C Hz +the Ravleigh condition

is fulltilled; +thus the doppler spectral density consists of two
sharp peaks. Wiih increasing trequency the facets become more impovr-—
tant and at the same time the asymmetry of the curves disappears,

22 “J



The general resultis for the statistics of the facets are evaluated
for a Pierson-Moskowitz spectrum, An approximate closed-form
solution is obtained.

For the numerical evaluation of the general result for the doppler
spectral density, a more general sea-surface spectrum due to Scott
is employed, which contains the Pierson-~Moskowitz specirum as a
special case.

Examples for different wind speeds, wind directions, grazing angles,
and acoustic frequencies are calculated via a computer program,
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FIG, 18 DOPPLER SPECTRAL DENSITY @ (f) vs DOPPLERSHIFT f - f
Parameters: see Fig. 17
except: Wind direction; ®=90° {crosswind)
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except: Limiting frequency: fg =5 Hz
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except; Limiting frequency: fg = 5 Hz

39




Doppler Spectrum (f) (-i}_z-)

Doppler Spectrum «p(f) (H1—z)

1076

1078

\\\\}\;\\

|
7
4

//’f// 7 \\\
10710 //% /// \ &\

=
N
o
//
/
o
//A

v N
10712 /L——- NN
| \\\\
1074 llll}llll LIV et IH\ LIt
-0 -8 -6 -4 -2 0 2 4 6 8 10
f-fo (Hz)
FIG, 23 DOPPLER SPECTRAL DENSITY ®(f) vs DOPPLER SHIFT f- f,
Parameters: see Fig. 17
except: Limiting frequency; fg e
107¢
10-8 Pty N
_ /% \
lo‘IU

107" 7/ | S \

107 L L b e e e i e
-0 -8 -6 -4 -2 0 2 4 o) 8 10
t-fo (HZ)
FiG. 24 DOPPLER SPECTRAL DENSITY & (f) vs DUPPLER SHIFT f - fo

Paremeter: Wind direction (.Bc- 0 o 1330
Centre frequency: f =35 kMz
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Wind speed: veg n.s
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APPENDIX A

SEA-SURFACE DESCRIPTION i

A.l Introduclory

The sea surface h(x, y, t) is considered as a stationary three-
dimensional process that is assumed to be gaussian distributed.

Then the statistical properties of this process are completely '
~described by its covariance function C, which is defined as

-C(xl, Yis t1s X5, ¥as tg) = E{h(x1; Yis t1) h(xg, ya, ta) | [(Eq. A.1]

The symbol E{...} denotes expectation,

Because of the assumption of stationarity in space and time, the
covariance function is dependent only on the difference of the
variables. The following notation is used

Xp = X3 T X, V1 = Ya =Yy, 43 - tg =717 , [Eq. A.2]

where x and y are spatial displacements, T is the time
displacement.

The covariance function is related to the three~dimensional wave
paramefcv frequency spectrum Xz (ky, ky, £f) wvia the three-
dimensional Fourier transform

+“
r .
Xa(kx,ky,f) = JJJ1C(x,y,T) exp§~32n(—kxx-kyy + fT)} dxdydT\
-y ]
and } [Eq- A-3]
+Q

) rr . R
c(x,y,T) =Jjjﬂxa(kx,ky,f).exp{32v(—kx§;-kyy-kt7)} dkxdkydf,/

where both, Xy and C are real-valued functions and f is the
frequency. The components kx and ky of the wave parameter k
are

k-'; +1é’y = k® and k =

>

s [Eq. A.4]

vhere X 1is the wavelength of the corresponding surface wave.
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Equation A,3 states that the sea surface, with the assumptions made,
is described by the covariance function C or the wave parameter
frequency function Xg.

In the following, both forms are considered in more detail.

A.2 The wave parameter frequency spectrum

Assuming that the dispersion relation, (Eq. 4 of the main text) is
valid, the three-dimensional spectrum X,(kx,ky,f) can be written
as

Xy (kyy ko £) = Xg (ky k) Wik sgn (£), kg san (£)] [6(£-£7) + 8(£+£7)],

[(Eq. A.5]
where
£* = /E% NE +IE [Eq. A.6]

In Eq. A,5, the function X;(k_,ky) is the wave parameter spectrum,
Xy(k_,k_ ) contains the orient3tional information of the frozen sea
surface, The "mixing function" W describes the ratio of incoming
and outgoing waves for a given wave parameter vector, The function
W(x,y) has the properties

0 < W(x,y) =1

and [Eq. A.7]
W(x,y) = 1~-W(-x,-y) .

It is used in Eq. A.5 with the complicated argument Wlkysgn(f),kysgn(f)]
to fulfill the symmetry relations imposed on the wave parameter
spectra X,(kx,kv,f) and Xa(kx,ky), namely

Xa(kx,ky,f) = X,(—kx, -ky, -f) -

and .
| [Eq. A.8]

Xa (K, k) = Xol(=ky, -k)
which are necessary to obtain a real covariance function.
Apparently, the normalization for Xy and X; has to be

+oo

(0,0,0) =fﬂ’x,(kx,ky,f) dic, dic df

arld ~-= [EQ' Aog_]

v 2 [T Ok .
€(0,0,0" 'L)?J Xa (ky, k) di dk .
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rne basic eguation LEq. A.5] will now be formulated in terms of other
functions describing the statistics of the sea surface as well,

First, a description in polar coordinates is given., Equation A.9 is
rewritten as

", D it A ek

] i
P

2 = . . .
o, f Xa(kx,ky) dk dky (Eq. A.10] :
et §
o 47 \
- j:[ X;(kcos ®, ksing) kdkd e [Eq. A.11]
Qo =TT j

wherc %1 is the standard deviation of the sea~surface height and

k. = kcoso, ky = ksing , (Eq. A.12]

Instead of the wave- parameter angle description, a frequency-angle
description can be used. Defining a function Fy(f, ¢) via the
normalizing equation

® 41T
oi = IJP ¥y (L, ) dfde [{Eq. A.13]
o =1

the relationship to Xz(kx,kv) is

8n® £@ 2mt? 2mE°
Fo(f, @) = p X cos @, sin (Eq. A.14]
g g &
or
= k
& 3* X
X (kx, ky) = -8—11?:’-‘:——- Fg (f s, arctan -;—) » [Eq. A.lS]

M

where again the dispersion relation of Eq. A,6 is used,

F,(f, ©) has the symmetry property
Fa(f, ) = Fa(fy @ t ) . [Eq. A.léj

Inscrting Eq. A.15 into Eq. A.5 gives

ga

LT kl .
X,(kx,ky,f) = W Fg(f’ ’apctanl—(%_>W[kxsgn(t), ky sgn(f)]

[6(f-f%)+ &(f+£%)], [Eq. A.17]




The mixing function W(kx,ky) cau be replaced by another function
W(f, ¢) with the arguments” f and ¢ . This function has the
property :

0< W(f, )<

and [Eq. A.18]
w(fJ CD) = 1—W(f, wiﬂ) .

Although the argument of W has changed, the letter "W" is used for
both functions, as there is no danger of confusion, Introducing
Eq. A.18 into Eq. A.17 yieclds

P

X (k_,k_,f) = g F, [ £ tan ¥ )l e* tan 1L+ mui-f)
a(ky,k , ) = Fepa Fe » arclan = "7, arctan I T -

[6(f-f*¥)+ 5(F+£%)], [2q. A.19]

where u(x) is the unit step Function

0 x << Q
u(x) = L x =0 [Eq. A.20]
i >0 .

In many practical cases the dependance of Fz(f, ¢) on ©® is not
known and therefore neglected. Then a wave~-parameter spectrum
X; (k) normalized via )

o?] = f X, (k) dk [Eq. A.21]
[a]

describes the sea surface. The relation to xa(kx,kv) is

2 2 - 2 2 N
X, ( J K2+ ky > 2r./ Ko+ 1_<y Xa(kx,ky). [Eq. A.22]

Using again the dispersion relation »f Eq. A.6, a frequency spectrun

Fy (f) . introduced that is related to X; (k) via
F, (f ) = .4lf. X ‘ZTTfQ
1 o 1 =
or LEqg. A.23]

Xl (ll) = A/ '8‘1%3‘(' F1 (\{ 'lzi% ) ¥

where F;{f)_ is normalized with

r .
o, = ] F, (f) df . [Eq. A.24]
(o]




Rt
[

+i

jﬁ F, (f,0) do = F, (f) , [Eq. A.25]

-1
the relation to Fy; 1is

Fy(f) = 2nF,(f,m) , [Eq- A.26]

if F; is not dependent on ©.

In the case of omnidirectionalaty the mixing function W 1is
normally set to 0.5. Inserting now Eq. A.26into Eq. A.19, one
obtains, for this special case of practical importance

g

4(2nf¥)?

Foe¥)[8(£~£%) + 8(£+5%) ], [Eq. A.27]

Xs (Ko, Ky, £) =

)r’

In this special case the relation

=
St

[Eq. A,28]

holds, which is not valid in general,

A.3 The covariance function

A.3.1 General

All relations derived in Chap. A.1 for the wave-parameter frequency
domain have conseguences for the covariance function C(x,y,T)
according to the Wiener theorem of Eq. A.3. In this chapter the
relations are listed with a few comments,
Introduciug Eq. A.5 into Eq. A.3, one obtains

+o

r . Ny 3* i

Cix,y,7) = ’ xe(&x,ky)[w(ngky) exp{JZﬂ(Tf _kxx‘kVY)}
—-

+ (1.-W(kx,kyﬁ(wqﬂjZﬂ(—Tf*—kxxukyy)y]dkxdky.

[Eq. A.29]

If T =0, the .ovariance Tunctiou C{x,y,c¢) of the "frozen"
sea surface is obtained, which, of course, is independent of the
mixing function W,
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Equation A.29 can be written in real form using the symmetry
relations of X; and W, To show this, the following theorem
is applied, I{ f(x,y) = fr(x:Y)+j fi(x,y) = *(-x, ~y),

(* : conjugate complex) then its Fourler transform is

F6,Y) = [0 y) exp {2m5 X+ yY) | dxdy

- ZJT fr(x,y) cos [2m(xX +yY)] = fj(x,y) sin[ 27(xX + yY)] dxdy.

o =%

(Eq. A.30]
In this case it is F L
f(kx,ky) =X, (kx,ky)[w(kx, ky)exP{ 2mi7E%} + (1 - w(kx,ky)exp{-zrrjrrf*}],

[Eq. A.31]

which equals f*(—kx,—ky) as can be shown simply. Therefore one
obtains from Egq. A,29

[ ]
r %
C(x,y,T) = JJPXa(kx,ky)Icos 2nf¥1 cos 2mk,x + kyy)
<o
+ oWl L Y_1) gin 2 €7 cin2m(l: x+ L )} 4L 4dv .
[ AN "x, - 3, it | T eas e - s e b “x“ “} J 7} "‘“x“"y . AR

CTEq. A.32]

The introduction of polar coordinates according to Eq. A.12 gives, .
in the complex form K
w T
Clx,y,T) = f Jr’xa (k cos @, ksing) {W(k, ©) exp[ 2 (ri¥-k x-k y) ]

o =TT

+ [1 =W(k, ¢)] exp[ an(-Tf*_kxx_kyy)]} kdkdp, [Eq. A.33)
where

W(k,p) < 1

and

[Eq. A.34]

W(k, o) 1 - Wk, 7).
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The real form is

@ 417

C(x,v,T) = jfxz(k cos @, ksin ®) {cos 2m 1 £¥ cos 2m k (xcos ®+ ysin @)

o =TT

+ [2W(k,®) =1] sin 2r7 1% sin 2mk (xcos @+ ysin @)} k dk dy.
[Eq. AOSSJ

Using again the dispersion relation, one cobtains for the complex
form in Eq. A.33

: rr 2mi® 2mf? . 3
C(x,y,T) = J xa(-—--cos 0, sin :
; < -
GJ -\ €

2mf?

(W(f, o) exp{2mjl~f - (xcos ®+ ysin )1}

3 S ]
+ (1-W(t, ©)) expl 2mj[-re - 2 L

(xcos v+ ysin )]}

df do ,

[Eq. A.36]

where W({, ¢) has the property of Eq. A.34.

For the real form one obtains

19}

® T
~2 2 B 2
C(x,y_,'r)=JP )'\X? 2mt (:()Scp,zwgi in cp) cos 2nTfl Cos.g.‘;_ﬂﬂ_{x(:os ©+ ysin @)
L 34 g
Q  «T7

-~ )}————~8W2 2 arag,
[Eq. A.37)

Using Eq. A.14, Egs. A.30 and A.37 are formulated in terms of
Fo(f, &), yielding

L] +TT

C(x,y,7) = FLF Fa(f,cp)(\W(f,cp)exp{ZTTj['rf--ZTTf2

{(xcos @+ ysin )]}
[
o -m

+[1-W(f, w)] exp{2nj(-7f - 2”; (xcos @+ ysin CD)“) df de,

[Eq. A.38]
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and
[_J]

-
)2
C(x,y,7) =JPJP Fg (f,®){cos 2nfT cos [ L-2-%L(xcos o+ ysinp))
=T

(8]
3
+[2W(f,®) - 1] sin 2nf7 sin [ Q—E—f-L (xcos @+ ysin )] | do df .

[Eq. A.39]

Because of the symmetry properties in Egs. A.16 and A.34 the
integration over ¢ can be performed from -w/2 to +m/2 ,
taking the result twice,

A.3.2 Special case

Now a special case is considered, which simplifies the general
formulae. The simplification is applied to Eq. A.39; for the
other relations gquite similar formulations apply. For the mixing
function W(f,¢) the following equation is assumed

W, for |o-w |3, 1ol 3
_) o w 2 W 2
W(f,e) = [Eq. A.40]
l-W; s elsewhere
Inserting in Eq. A,39 yields
- +TT/2
3 i L 2 ) .
C(x,y,7) = 2 fU F, (f,¢) cos 2nfr cos [-(—-@—(xeoscw“ysmcwl dep
. g
o -m/2
ww+ﬂ/2
+ {2W,- 1) JP Fy {£f,%) sin 2rvf7 sin | %T_Tf.i_ {xcos ¢+ ysin )] dw] 4arf,
g
¢ ~7/2
w [(Eq. A.41]

The second term in Eg. A.41 can be written in this form because the
integrand I has the property I(g)=~I(p=xm).
In the extreme case Wy=1 and ¢,~=0, Eq. A.41 takes the form

- T/2

n 3
C(x,y,T) = 2J' JP Fo (f,0) COS[ZTTfT—ng—f)—-(XCOS o+ ysin )] dedf,
o ~-m/2
[Eq. A.42]

This case is oftzn assumed in the literature, e.g. [Ref, 10],
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For an extremely simplified sea surface, namely a pure sine wave
with frequency f, travelling in the direction ©os Eg. A.42 is
solved in clesed form.  In this. case, Fy(f,®) has.the form

3
h
Fo (£,0) = =~ [ 6(f - fo, ©-0) + 8(f=-fo, ©~0, )] [Pq. A.43]

and C(x,y,T) is

2 § (2”f0)2 ) . <
o1, cos[gﬂiOT-———Ef—— (xcosc&)-+y51n mo)], if lwol 3
C{x,y,T)=
(x:y,m) s , (2m1,)? . . m
h cos [ 20t T 4+ ———== (xcO0s © o *ysin @, )], it |m0|> s
[Eq. A.44]
The other extreme is Wo = 0,5, Then the result is
o 41T

2
C(x,y,T) = Jr JP Fo (f,®) cos 2nf1 cos [-(-g-g:f-‘-l—'(xcos W+ ysin ¢)] dep df.
o

-7
If, in addition, F; is independent of ©, Eq. A.45 becomes
L]
S (2mf)? — 4
Clx,v,7) = JP F; (f) cos 27fT JO [_g:_;:f_j__)___ 2 'l dE, [Eq. A.46]
S 2

[
where Jo(x) is the Bessel function of order zero,

The complex form of Eq. A.40 is

[
) a : CprZﬂij}-Fexp{—Zﬁij} (2mf)? — — )
Clx,y,7) = | ¥y (F) 3 [~—— S + 7] at.
2 © e
O ) —
[Eq. A.47]
If the two~-sided version of F, (f) ,
F(£) = 3w (], [Eq. A.4f]
is used, Eq. A.47 becomes
1
2n{)? —s _
C(%,y,T) =IF(1‘) exp{2mjr] \To[i——-—-)w J x4+ 32 ] df {Eq. A.49]
134
- 80
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A.3.3 Examples

For use in the application of the general theory, two versions of
sea-surface spectra that are of practical importance are. descrived.
The first is the well-known Pierson-Moskowitz spectrum that has the
form

Fy (£)

9

Fa (£,0) = cos"(p- @) (Eq. A.50]

where

and

: ()

=} + 2 =
xl] = J| Cosll(cp_:po) = 2n 1 e ——— LEq- A-Sz:]
o T(n+1)
1
v op n=1)20 (Eq. A.53]

=}

Equaiion A,53 hoids, if n is an even number. 7The cons’znts o znd
8 in Egq. A.51 are

0.0081

and [Eq. A.54]
" 0.74 L4

o)
i

w
it

In the same equation, v is the wind speed,
For caicuiation purposes, kEg. A,51 is too complicated, therefore

it is slightly modified to give a spectrum very similar to the
Phillips spectrum. The modification is

ag”

F, (1) = (2m)¥ €% 7 >

0 , else

where fg 1is the frequency, for which the equation

[ [ ]
P oag® g 4 r ag’ :
-8 (5—=— 1f = —— Eq. A.5%
J (zq)‘fs exp{ B(ZTTfV) } a ‘J (Zﬁ)‘fs [. q 5 :I
0 £
holds. The solution of Eq. A.56 is
fs=_Ji_i/B [Eq. A.57]
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The sccond spectrum, due to Scott [Ref. 15}, takes into consideration
a frequency-dependent directivity of the surface waves., The spectrum
has the form

- N -0 . -
I‘é (f,cp) = ASFI (f)ICOS(—T_O)'Qb y [Eq. A.SSJ
\
where
2ml

-~
and AS is a normalizing factor.

Unfortunately, Egq. A.58 violates Eq. A.,10 and hence gives no real
covariance function when transtormed into the time domain. Therefore
Eq. A.58 is interpreted as a product of a two-dimensional spectrum
and a mixing function W(f{,¢):

p-0 . ® - ~
5 (600 = k0 [ Leos (S2) 12+ hain(257) 1]
[ Eq. A.00]
P ~- P
| cos ('—j;—gm)lzs
RACEE O T~ ®w-w (Eg. A,61]
lcos(———-—n-) S+ 'bln( ° )'2&
and
As = . [Eq. A4.62]
s U
1 © -9 33 CO—C@ 3s
F lcos( —J | +-|sin( o—) ] dp
.‘:'n- ) ) - J
(25 +
_ T'(2s 7 1) . CEq. A.63]

22518 12 (54 1)

Equation A.601 is still unsatisfactory as it does not give the
omnidirectivity of the high-frequency surface waves,

I
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Thereforc the Scott spectrum is medified by introducing

" - Wo
B + . N . 3as
| cos(——)| |
W(f,0) = : - - o » [Eq. A.64
2B + |cos (EL?_EE)[QS + 'sin(:;;a%bmﬁas
where
= LY
B= (3) (Eq. A.65]
g

and fg is a limiting fregquency.

For fg + 0 , the spectrum is omnidirectional for all surface waves,

for fg + ® . it gives the unmodified Scott spectrum.
1
!
i
3
‘
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APPENDIX B

SMALL STALE ROQUGHNESS BACKSCATTERING AND EXTENSION OF THE THEORY

The theory of backscattering of acoustic waves from the moving sca
surface is well cstablished for the case of small-sea surface
roughness, For sake of completeness, the theory is derived in this
appendix, together with a possible extension of the accuracy of the
results. However, this extensicn is not further investigated in the
main text,

B.1 Existing theory
The geometry of Fig. 1 of the main text is used,
Combining the results off Ref, 8, pp. 13 and 34 the pressure of a

scattered plane wave incident to an aperture ab is approximately
in the far field (r=e)

siny P,

. : 2] 3 A —rom——————— , - ‘7 - — . ~
p(r,y,o,1) 3j - l\o expl2mj( k°r+t°t,)}

+a/2 +b/2

JP r expf2m; ko[x(a-cos Yo )+ yB + 2sin \ hi(x,y,t)]}l dxdy ,
—a/2 -b/2

[Eq. B.1]
where
Q = CcOSY * CcOs@®
g = ¢cosYy -« sing
fo = frequency of incident plane wave
. . 1
l‘o = wave parameter of incident plane wave =%
]
o = pressure of incident plane wave
and
h(x,y,t)= sca-suriace function as used in Eq. A.l.
The incident wave is assumed to be in the x-z plane (¢ = m),

which can be done without loss of generality. °
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Inserting Eq. B.l into Eq. 1 of the main text yields

sin®y - p: kg
2

‘(E:G‘JB) =

+= a/2 b/2
IIJ‘II exp{-2mj ko[x (a - cosy )+ v:B81} exp{-2mj £ ¢}

-» -a/2 =b/2
exp{2mj k(x5 (a - cos vy, ) + yaB81} explzmif, (t+7)]
E( exp{~4mj k, siny, « [h(x ,y1,t) - h(xs,ys,t+ T):”)
exp{<2mfT | dx; dxg dy, dygdT . [Eq. B.2]

With the substitution Xg =Xy = X, Yg = V1 =¥ and following
the derivation in Ref. 8, p. 59 one obtains

sin®y . 5 ab K

1(f,q,8) = = 2 exp{-(4mk, + siny,)? C(0,0,0)}
i P
r ; J‘ (1—-‘-—?—-) (1~ -—z—-) exp{(4rk_sinvy_ )? C(x,y.T)}

-®» ~3 ~b

exp{-2nj[(f~£f )T - x k (@ -cosy,)-yk,B8]}dxdydr. [Eq. B.3]

It is assumed that a>>|x| and b>> y' for all values of x and ¥y
where C(x,y,t) is different from zeéro, Then the int

egration in
Eq. B.3 can be performed to infinity and XL  and J%f are neglected

against 1, It follows that a

sinzY.p: abk% a
8(f,a,g) = = expi—«nkosm Y,)? ¢(0,0,0)}

oo
JL ] el Gmegsinyo® et

expl-2mi[ (£ = £ ) T-k,x(a=- cosy,)- k°y8]} dx dy dv .

LEq. B.4]

For the slightly rough sea surface, it can be assumed that
(4mk, siny,)? €(0,0,0) <<1 [(Eq. B.5]

and the exponential in Eq. B,4 is expanded in a power series and only
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the first two terms are considered. It is
exp{ (4mk, siny )® C(x,y,7) ba 1+ (4mk siny )® C(x,y,7) , [Eq. B.6]
giving, for Eq. B.4

sin®y p® ab K
L L [6(f-1 ,k (a=cosy,), k)

¥(f,a,B) =
’ e

[Eq:a B|7]
+ (4mk sin v, )? X3 (k (0~ cos vy, kB, f~£.)].

Equation B.7 makes use of Eq. A,3 and the integral representaticn
of the &-function, The first term in Eq. B.7 denotes the specular
reflection, the second the scattering term. In this case of back-~
scattering, Eq. B.7 takez a special form by putting =7 and

Y= Y- Using the definition for the backscattering doppler density

o(f) = 8(f,a,8)r’ , (Eq. B.8]
piab

the result is
w(f) = (4n)zsin4y°kg Xy (-2k cos v ,0,f-f ). [Eq. B.9]

This is Eq. 3 of the main text. When integrated over f, Egq. B.9
becomes the backscattering strength q in Eq. 10 of Ref, 5.

If the dispersion relation [Eq. 4] is considered valid, the spectrum
X,(kx,ky,f) is replaced by the two-dimensional frequency angle

spcetrum P {£,%). Applying Eq. A.15 one oblains for Eq. B.9

2g° k':)sin‘ Y
3
£

o(£f) = O Fg (£%,0) [W(EX,m) 8(f~£ ~£3) +W(£},0) 8(f-£ +£7)]

(Eq. B,10]

which is Egq. 5 of the main text,

Equation B.10 can be simplified by the assumption of omnidirectionality

of the wave parameter frequency spectrum for the slightly rough sea
surface., In this case, W = 0,5 (see App. A) and the sea surface is
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deseribed by the frequency spectrum  Fy (£). Using Eq. A.2
one obtains

Fy (1=, 1) [o(e=f ~£%) +5(f-£ +0)]. [Eq. B.11]

This equation, wheu integrated over f{ gives the result known from
Eq. 18 of Ref., 5.

B.2 Extension of the theory for the doppler spectrum of the

small-scale roughness sca surface

The present theory, as is scen from Eq. B,10 gives two g~functions
for the backscattered doppler spectrum of an incident monochromatic
plane wave,

A possiblt extension would be to consider one more term in the
series expansion of Eq. B,0., This third term has the form

PR
T, = %(4111{0 siny,) C°(x,y,T). [Eq. B.12]

Here only this term is considered.

Iuserting Eq. B.12 into Eq. B.4 gives

2

sin“y p° ab Kk
e (i,0,8) - e 7 expl-(4mk, siny,)® €(0,0,0)]

<

r
e
n 4
J]] i(dﬂko sin Yo) CB(X,YyT)
-

exp{-2mj[ (£-f )7 - k x(a ~ cos y,) - k,y 8]} dx dydr.

(Eq. B.13]

Equation B.1l3 has to be added to the first order result Eq. B.7
to obtain a second-order formula,

For the coveriance function, omni-~directionality and W = 0.5
is assumed., Then C(x,y,T) is represented by Eq. A.49, which
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15 inse.ted into Eq. B.,13, yielding

4 @ o

23 (1,0,8) = 6 [[f []F(6) P(55) explomier | expizmitar]
® 0

NERY- _— 2 _—
Jo [‘*"’(ZMJ—)— Aoy ]Jc [m(znfz———-) A y"]
"

g

exp{-:!ﬁj[(f—fc) T - kox(a - coS Yo) - koy 811 df, df, dx dy dr,

[Eq. B.14]
where
sin® v p°ab Kk? 4
G = °© 0 © (4mk_siny ) exp{-(4nk, siny )? €(0,0,0)}.
2r®
[Eq. B.15]

Fquation B.14 can be integrated over T in closed form. The result
is ~ .

T .
23 (£,0,8) - Gﬂﬂ““l)”%) Jc,[(zrr;1 )2 W]Jo[(iliﬁ- W]

expi2mj ko[x(a-cos yo) +yBlls(f, +fa—f+f°) af, df, dx dy.

[Eq. B.16]

Next the integration over f{; or f, is performed., The result,
after integration over 1; , is

+eo
] ) 2 f
¢ (0,0,8) =6 /(TP (eF (-5 =503, [( ") eE ]
JO[LZW(f-fO-tl)] x2+y2]

g

exp{2mj ko[x(a—-cos‘yo)-+3r3]} df, dx dy. [Eq. B.17]

Changing tc polar coordinates, where

X = R cos ®» ,

R sin ¢

«
i




gives

+to @ b7
| L
:(3)(£,a,8) = ijf F(fl)F(f-fo-fl)Jo[E.n_gl_)iR] Jo[Uﬂ(f-;a—tl )] R]
~% O T

expl2mj R k o/ (a - cos v, )t 82 cos(p - V)R dR dy df, ,
(Eq. B.18]

where
a4 - cos Y, B

and siny{ = .

V(2 - cos v, )? + 7 J(a = cosy, ) + g3

cos | =

Integration over ¢ gives a Bessel function again

Fe w
(2rf )3 [2n(f~fg~f )]3
Q(3)(f’@,s)=GIJr F(fl)F(f-fo—fz)Jg[ Trgl R]JO[ e~ 7 R]
~s O

g

217 Jo[ZﬂRl(o/(a—cos yo)a + aadeRdfl . [Eq. B.,19]

Using a result from Ref, 12, p., 412 and Ref. 13, p. 334

»
I =j‘ Jo(at) Jo(bt) Jo(ct) t dt
o
e 1 ba + CQ - ag [Eq. B-ZO]
— i 'lcosA,"—‘!—---—-lSl
mbhe sin A 2bce
L 0 s otherwise

and inserting into Eq. B.20 gives the final result, which is
written down for the backscattering case using the normalized
backscattering doppler density as defined in Eq. 2

8 8

+eo
df,

j F(£,) F(£-E =£;) \ [Eq. B.21]
e £3 (£-fo~f, )® sin A (f,)




The integration over f; is performed only for those values of
f,, where |[sinA(fy)]<1.

For cos A, one obtains

£3 (-1 -f;)°  °f2 cos® vy,
o] ] -]
CcOSs A= + o = - . [Eq. BOZZJ
2{£-f =1, )2 2f% 2(mef, )? (f-£f ~f, )2

The evaluation of Eq. B.21 seems possible only by numerical methods.
This is not investigated here,




APPENDIX C

STAT1STICAL DESCRIPTION GF THE FACETS

C.1 Introductory

The starting equations for the derivations of the statistical
propertics of the facets are Egs. 12 to 18 of the main texc.
These equations lead to the facet inclination o, thevertical
and horizontal velocities uy, and u, , and the crossmomentis.
Further on in this appendix the sea~surface roughness on Lhe
facet op(L) as calculated, For op(L) , Egs. 39 and 40 are
the st vting point,

This appendix has two sections, Firstly, a general result in
terms of the sea-surface covariance function C(x,y,T) is
derived which is evaluated in the sccond section for a Pierson
Moskowitz sea-surface spectrum.

C,2 Genergl results

Codol Formulation in terms of the covariance function C(x.y,T)

The facet 1s represented by a straight line
f(x,t) = e(1) + b(t) , (Eq. C.1]

such that the meazn-square error e¢{t) between the surface
tunct.ion h(x’y’t)lv and the facet equation f(x,t)

v=0
L/2
e(t) = Jth(x,y,t)—€(t)x—b(t)]2 dx (Eq. C.2]
-L/2

is a minimum, Taking the derivative of e(t) with respect to
e{t) and b(+) 1leads to the eguations

L/2
12 7 _ .
e(t) = = ¢ xh{(x,y,t) dx [Eq. C.3]
12
~1./2
and
1L/2
oy 1 T - -
b(t) = = ! h(x,y,t) dx . [Eq. C.4]
1.

~L/2
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The veioclties in vertical and horizontal directions are repeated
herc for completeness. It follows from Egqs. 15 and 18 of the main
text that

L/2
_ 1 ah(st:t')
u (6) = § | ——=— dx (Eq. C.5]
_L/z )
and
t
g | .
ux(t) =~ 'I':LJ [h(%.!y,t‘li "h(‘ %-:Y:t'l)] dt’l""ux(to) . [BQ» C-6]
.}

The roughness on the facet ¢®(t) is expressed by the mean-
square error e(t), normalized by the facet length L, It is

2 (t) = % e(t)

which is identical to Eg. 40 of the main text,

All these quantities are stochastic variables with the mean values
zero and variances that depend on the sea-surface properties and
the facet length L .

es 1

n

The calculation of the variances and crossvarianc s de t
in detail for one exaumple., The facet slope €(t) has the variance

m e
HH G =

12
Ltfez} = Ef(;? SJ Jf Xy h(x;,y1,t1) %3 hixg,ya,ta) dxy dxy },
©aL/2 CL/2
{Eq. €.7]
where t; = t; and y; = yz.
Taking the expectation E inside the integral and using the
rect~function
1, |xl=d
rect x = [tq. C.38] 3
0, else 2
onc obtains b
«
1 x Xa
Ef{ez] = ?%i fxlxz rect — rect e Efh(xy sy 5ty ) h(xg,ya st )] dx; dx, .
g L ¥
—0

{Ea. C> 9]




From Eq. A.1 it is seen that the expectation in Eq. C,9 is the
covariance function C(X;,X;,y;,Ya»t;,tg) of the sea surface.
As stationarity in space and time is assumed, C depends only
on the space and time differences. Therefore the aubstitutions
X=Xy =X, y =y -yg and 1T = t; -t; are made, which trans-
form Eq. C.9 to

-
X+x4
E fe?} = %—g—‘i-j‘j‘(xg+x) X rect—
-

rect% C(x,y,T)dxdxg. [Eq. C.10]

The integration over x; is performed by cdnsidering two cases
x>0 and x<0. For x>0 one obtains

Lﬁ

L 3 2 4 L/2~x
Xa X X3
f (x,y,7) -3 + —

E {e’} = dx [Eq. C.11]
~L/2
L
12 x . 2x% "
0
For x <0 +the result is
iZ ; / x x ) -
E fe?} = i?{ C(x,y,7) (1+3 S+ 2 -L-,—) dx . [Eq. C.13]
Combining Eqs. C.12 and C,13 gives
L
21 __ 12 P I , + 2 ’xla —~
Et{e b= = Clx,y,7) 1322 — ) ax. [(Ea. C.14]
L L L
~1L

It was mentioned before that this expectation has to be taken
fOl" t1 = tg’ and yl = Yas ViZe fOI‘ T = y = Oa Then
C(X’Y’T)[T=y=0 is an even function in x ., Therefore Eq. C.1l4

is rewritten as

L
) 3
E fe?} = _T;if C(x,y,7) U(1—3 T+2 -:5;) dx . [Eq. C.15]
o =0

which is Eq. 19 of the main text.

66

oo

TR e i Y SR R, e A




TR e ¥ o i Y S S R L7 TR s

The calculation of Etfui} and Etiuil is performed analogously.
For Et{u%} the fact is used that
3% C(x,y,T)

2
7 |yerco

is an even function in X, while Et{ui} is calculated using the
relation that Et{ux} = 0 and therefore C(x,y,7) =0 for 74w,
The results are Egs. 20 and 21.

For the crossmoments a similar derivation applies. For Et{e uy b
onc has

L/2 L/2
12
Et{e ux}': L_4: j f Xl l](xl,yl,trl) U(XQQYQ,tQ)dX1 dxg . [Eq. Colé:]
-L/2 ~1./2
Again, the substitutions yy -y =y , ty =t =71 and for the
first summand x; -z = x , for the second x +.2._ = X, are made,

It follows
T

(6]
12 g L
\=L° " —tn ly—::O

0 y=0

L
+f (x- %) Jr— C(x,y,7t) dr? =0 d.x} . [Ea. €,17]

As C(x’y’T)|y=T=0 is even in ¥, the integral over C is uneven

in x ., Therefore both summands cancel out and the result is

E feu } = 0. [Eq. C.18]

E fu,u b =0 . [Eq. C.19]

This is Eq. 23 of the main text,.

For Etie uy} the result is different from zero,

)

P

Ba
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It is
L/2 L/2
12 [~ P ah("ﬁ:)’.:t‘a) )’
Et§€ UZ} ——-’-F J J xl E{ll(xl » Y1 ’t}) at dx1 dxs
-L/2 ~1./2 2
[Eq. €.20]
N ( )
12 rp x + x, Xg ~0C(X,y,T
== |/ (x+x,) rect ————rect — dx dx, .
e JJ (xFx)rect = T o |3=0 3
- }y’:O

(Eq. €.21]

The integration over xz; is performed for x > 0 and x =< 0. It
follows for x > 0 that

L ) ~L/2=x
12 aC(x,y,T) x% L/
Etfe 1xz}anT f 3 =0 X Xy - 5 dx [Eq. C.22]
y=0 -[.//2
L
2 C{x,y x2
T - —I]:-‘— ’P_a___(_za(.ﬁ__}i_l’_l (% X~-—2‘—) dx . [Eq. C-23]
‘(.) !\’r:‘_"'l"_‘o

For x = 0 the result 1is

Et{e\'-‘}: _ 1z PMT_Z <I_X+-)£-> dx , [ Eq. C.24]
y=T=

The fur.ction

2
=X - %; , if x>0
3
( L x + X , 1if x= 0
2 2

Iol
O

is uneven in X . As

is also uneven in x, the result

o

!
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is
L

Lt““z] . fljgf ac(;;‘_ﬁ =0 (x - .’;f.) dx [Eq. €.26]
© ,y=0

wl ich is Eq. 22 of the main text.

Next the roughness ci = E¢{p®} 1is calculated, Inserting

Eq. C.2 into Eq. C.0 and taking the expectation gives

1/2
Et{pz} = % Jr E{[h(x,y,t) = e(t) x - b(t)]*} dax (Eq. C.27]

-L/2

Inserting Eqs. C.3 and C.4 tor &(t) and b(t) gives, after a
straightforward calculation,

L/2 L/2 L/2
i 2,1 " { 2 . 12 [ . Yldx, d
E't, P }-—-L-J E{h (x,),t)]dx—iTJ E{xlh(xl,)l,tl)xzh(xa,yg,t2 x, dx;
-L/2 -L/2 ~L/2
L/2 L/2
1 r Efh( : | t dx, d
_F J Xy 5yt ) h(xz,ve,t2) ) dxg dxp
-1L/2 -L/2

[Eq. €.28]

Now the integration technique used for the facet statistics is
applied again, giving

-]

2 e 12 x+ xp
Etgp b= (‘(0:0:0)"174' J(:)q(x"'xz)xa rect
-

X2
rect ~ C(x,y,T)dx dx,

L4
X 1t xg Xy

P
- I qurect 2 rect T Cx,y,T) dx dx, . (Eq. C.29]

The integration over x; yields the final result
L

f
B {o} = €(0,0,0) = § |clx,y,7)
[0

2x x3
— — —— 4 > . -
= (1 I + I,) dx , [Eq. C.30]

y=

which is Eg. 42 of the main text,




Ce2.2 Formulation in terms of the frequency angle spectrum
Fy (f, CO)

The derivations make usc of the relationship between the covariance
function C(x,y,T}) and the frequency angle sea-surface specttum
F(f,®). This relationship is calculated in Eq. A.39 and is
repeated here for convenience

7T ™
3
C(x,y,T) =J"JFF3 (f,0){cos 2mfr cOS[—Lg-TéLL (x cos 9+ y sin @) ]
=T O

211)>
(2rf) {x cosop+ysinep)]l} dpdf .

[Eq. C.31]

+ [2W(f,®) - 1] sin 2nf7 sin [

This equation is inserted into the expressions for the facet
statistics and the roughness on the facet op. Then the
integration over x is performed. The calculation is given
for one example, all other formulae follow in a similar manner,

From Eq. C.15

L T
- (2mf)* 1 3
Et{e“i = 24 L[‘J’VL),‘FE(f,cp)cos[—-—g-——x coscp_l(l- 3—5--*-%—- dx dop df
T o

18
O -
[Eq. C.32]
As 1T=0, thecmixing function W(f,®) has no influence.
The integration over x is performed giving
m e
2y - 2407 - 3 . 12
Et_{e } = n ” Fy (f,0) f(1+cosaL)aE-+(l—-coaaL) rPr
- 3 sinal} dfdey , [Eq. C.33]
L° ad

where the abbreviation

0 2
a = L:Eﬁl_ cos @ [Eq. C.34]

g

is used. Equation C.33 can be shown to be

4

™ %
) "N F (f Cp)
g2} = 144 a0 ¥ aLl _ ,ginal)>
Et‘e } L6 N La cos 9 251“»2 dfde [Eq. C.35]
-7 o

which is Eq. 24 of the main text,




The calculation for the other moments and the crossmonient is not
made herc as it is straight forwaird and follows the above derivation
strictly. The resulting formulae are found in the main text,

C.2.3 Limiting cascs

To gain a belter understanding of the physical mcaning of the
expressions derived in the preceding section it is instructive

to consider two limiting cases. They are comnnected with the cor-
relation distance xi of the surface covariance function C(x,y,7).

The distance xgp is defined as the 3 dB-width of C(x,y,T) in the
x~-direction, The two cases L >> XR and L <<xg are considered.

a) L > xR

If the facct length L>>xg, then C(x,y,T) ~ 0 for all values
of x in the order of L, that means, X can be neglected against

. . .L . . .
1 in the formulae for the facel statistics. This gives immediately
the limiting cases

L
t ! La g 2Y> Iy:.—.rr:O b q. .
T o
3% C(xy57)
z 2 C(x,y, 7
< — —
LL{UZ} Ay LJ 17 ly—-T-—O dx , [Eq. C.37]
o
T 1y
20
Efvd] m - =~ f f C(O,y,T)dldtyy . [Eq. C.38]
e Lc v J | Y= 1w
and
12 AC(x,y,T) 7
Etie uz} = ;g— - Iy=T=O x dx , [Eq. C.39]

For the roughness on the facet Et{pgl follows
L
4
Et{p } » €(0,0,0) - - jC(X,y,T)ly_:T=O dx . [Bq. C.40]
o

From the equations it is seen that all facet statistics [Eqs. C.30
to C.39] tend to zero for L + o« while E,{p°} equals the sea-
surface roughness C€(0,0,0) in the limiting case L = &,

Again, the above expressions are formulated in terms of the frequency
angle spectrum Fy (f,0).
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For complceteness the results are listed below

m ™
Fu(f,e)
E, {e?] o 24 ff 2 sinaLdf dy , [Eq. C.41)
1 L:! a
-7 0
M e
2g r sin alL
3 L5 : S 4L 42
E iG] w s | Ta(f,0) === o 4 99, [Eq. C.42]
=TT O
"gg Fa (£,9)
2 >
Et{ux§ 9 Jr r (2ﬂf)2 df deg, [Eq. C.43]
=TT O
v o0
12 . 51 L L
E feu la = j\Iﬁ(f,@)[ZW(f,@)-l]Zﬂf(-;%ﬁi—-r;cosaL)(ﬁfdm s
=T O
[Eq. C.44]
and
M ¢ ™ @
Eticz}exfjkk(f,w)dfdw— %th Fa(f,w)§3§-3£ af de . [Eq. C.45]
-TT O =T O
b) 1L << Xp

In this case it can be assumed that C(x,y,T) changes very little
in the integration range O to L . Therefore C(x,y,7) is
cxpanded in a power series and the firsi two terms are considered,
This gives the limiting cases

3% c(x,0,0)

E {e? | m - 2 , ) [(Eq. C.46]
’ ax” x=0
3%c(o0,0
E‘t{uzz} o = ( 5057) , [Eq- C.47:|

3T | r=0

Tty R ( )

' 3°C(x,y,T
3 o ———r e dt dt
Et{ux} g jf o dt dt,

Xemy=T=0 2 [Eq. C.48]
3%C(x,y,T) i
Beleud » = 5 |xey=r=0 7 (Eq. c.49]
and
Ef{olao. [Eq. C.50]
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In terms of the frequency angle spectrum  Fy (£,¢) the above
equations arc

Et{ez} ~ff Fy (£,9) a°df dy , [Eq. C.51]
~TT ©
E ) ~ff P, (£,6) (2n£)? df dy , [Eq. C.52]
-7 o
T e
Et{ui} NJPI Fp (f,0) (27f cos @) df do , [Eq. €.53]
-mT O
and
T %
Et{e uz} MH Fo (f,9) [2W(f,p)~1] 2nfadf do . [Eq. C.54]
-7 o
C.3 Application to a Pierson-Moskowitz spectrum
C.3.1 Solution for general directivity

For p"avtLbu, purposes thie generai formujae in Egs. 24 to Z8 of
the main text have to be evaluated for a special frequency angle
spectrum Fp {(f,9) and a mixing function W(f,®). The functions
chosen are a Pierson~-Moskowitz spcctrum and a simple mixing
function, which is found in App. A in Egs. A,.30, A.51 and A.40,
First, the expression for Etiez} is derived, Inserting Eg. A.50
with ¥gq. A.55 into Eq. C.33 gives

™ ®
24A cos (w - w)
Etiea} - - rrr 21 (1+cos alL) 3 =+ (1= cos ::tL)'12
d L L La L= ar
-7 o
12 .
- sinal} df dg . [Eq. €.55]
L2 a

In Eq. C.55, the factor a is an abbreviation seen from Eq, C.34
and

i

i (Z:)fz , [Eq. C.56]

where X is defined in Eq. A.52.




Equation C€.55 is integrated over f in closed form, The derivation
is lengthy but straightforward, .t is denoted that

«
1 3L 121 120, . g
‘f——s [(1+cosbia)—m— (1 - cos bf? TE baf551“bf]df

[Eq. C.57]

where
(Zm)°L cos © al®
== . (Eq. C.58]
g £
With the substitution u = bf°® and continuous application of

partial integration, Eq. C.57 becomes

- 2
If=— 3L [ 13 + 2‘ +cosu° (-—v-l--% 12 - 4)
Zfs 4 'y 3 u 72 12 uy 3 ufy

2 o
u 1 2 ug
+-sh1uo( B R >'+ j\COSll duJ s [Eq. C.59]
u
o

72 30110 311: 72

where
= - 2
Uy = ag cos @ = bfy
and
(2rf )°L /B Lg
a_ = = [Eq. C.60]
0 Q i
As the integratlicon cover ¢ 1is performed numerically in the digital
computer, the problem of numerical Stabillfy occurs for small u, .
u |<<0.2 is calculated by
3

a
Therefore an approximation for I
expanding the sine and cosine ter
and taking the first few terms,

. C.59 in a powar series

This leads to

3L 7 uz u; . ui cos u . )
If:zf“s 758 —320 77—-2—f du| , if |u°|<0.2 [Eq. C.01]
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|
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|

74




Inserting the result for Ie in Eq. C.55 gives finally

o

A 8 :
Ble”} = e [ cos™(p-p,){ 1 + 48
anLg o uo uc:

+ cos u, (—1+ u;) -iTS-) + sin uo(uo __2._.‘.@.)
) o

[Eq. C.62]

u? Ci(|u°|)} dp , if u > 0.2

. o vé 7u§ gut )
Et{e‘} —————m-——Jq cos"(w-wo) {"E—-”—Z%'_uiC1(lu°|)} dyp ,

This is Eq. 57 of the main text,

For the other facet statistics the calculations are made in a
similar way. The main steps are listed below.

Inspection of Eqs. 25 and 26 of the main text shows that E
h s

-
to nte

o~
e

'
;e

)
[ 2]
Q
o}
O
4

. - {21 <A e U
ana btlllx; are tJaenvicatr iin ¥eEs5pilu
frequency f. Inserting the Pierson-~Moskowitz spectrum into
Eq. 25 gives

PA T(Ts o cosn(cp—cpo)(l-—cos al)
E, {u¥} = —— jﬁ df de . [Eq. C,63]
vtz L3
-1 f

£3(2mf cos )
S

The integral If is in this case

-]
Pl - cos bf?

1. = ~ df [Eq. C.64]
£ é £3(2mf cos )? ’

with the solution

-
3 2 a
2m1.)° u u pu | .
= .(__..I_.____ [l‘f‘ (_1 +_é°_ cos u_ + : sinu_+ - c sinu 4. |,

£ 6g* fas u‘é




The approximation of Eq. C.05 for small u_ is

o}
(2mi)? 3 3w 19uf uag| 00 &
- 336, °'J sinugl ip ju|<o0.2 .
6g° £5° 2 8 720 z . u ¢
Lo |
"o
(Eq. C.66]
Inserting this into Eq. C.63 givzs the result
™
r 1 -1 3
){—2 + cosu -——'-}
o 2
3~/B n uy 2 Uy
sin u, iuo[
+ 2u: + —y Si (|u°|) dy , if |u°|>0.2 s [Eq. C.67]
and
s kN
200 1 19ut U .
E {ul} = J cos" (@~ cp){-l = uf o+ 2 + -2-’-~S:(!u°l}} de
:3JBZX O 2 8 720 /
if Ju | = 0,2
ol
For E {u_a,} the result is
1" x
T 2y
2 av® r Yo
Et{ui} = [c l(cp--(‘.po){l*l'cosug(-—-].'*' ——-)
338 17 & 2
u_ sin ug fu_|2 )
[} 0 . .
* = *— S:(|',1°|)jdcp s if Ju [>0.2,
and [Eq. 68]
2';1’6 F 1 ]
e g 3 Ju
L‘J{u‘} = cOs (cp cp ){— w2 ot
4, X 4o B B [«}
PEx 12 ¢ ui) 12 °°§® 720

L I?
+ -2 5i(]u I}} dg , if Ju | = 0,2
2 o]

anat;ona C.0; and C,68 are Eqs. 58 and 59 of the main Lext,
respcctively.
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The croussmoment E_{¢ u, } is derived in the following way. With
the Pierson-Moskowitz Spect“um and the mixing function W(f,q®)

Wys if Iw"mivl <3 ) ICDRJl( y
W(f,p) = ° 2 2 (Eq. €.69]
1-W, , else

Equaticon 27 of the main text has the form

m =
cos (w - %,)
B e, = Tiifa 2n jj [2W(e,) - 1]

-7 fg
~sin al 2
== + (1~ cos al)} df dy . [Eq. c.70]
a® La®
As W(f,p) is independent of f in this special example, the
integral over f has the form
” -
ro- [ L )zsinar, —2- (1 - cos aL‘l af | [Eg. C.71]
Loy [ a° La® !
£ J
s
The result of the integration is
L? 5{ ( k ) (k kg Ky
I. = sin u | —+ky) + 205 u_{—+ —+ kzu )-_"
£ 2¢3 u uw u y u?
s 0 0
T ) Toa ) |
., . ——— = e <y u r 1
- 2 kg u, N Ul 3 (2 3 (VLf;MQ.) , LFq. C.72]

where 8(x) is the Fresnel integral ard the constants k; to kq
have the values k, = - 106/63 , %, = 8/189 , ka = - 4/9, )
k, = - 4/63 , and kg = 16/189,

Now Egs. C.72 and C.69 &re inserted into Eg. .70, giving the
desired resalt i
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@, /2
24(1 —ZWO)nA 0
E, {feu cos (p~-@_ )
t z L3 0
s P-T1/2
K ke ke K
{sin 110/—-;—“}‘1{2) + cosuo(-—:+—+ ks u )- -—g—
\uQ ug ug u® ¢
——=
n
- 2 kg u, 4 3 Iuol (E

- S (/ EJ%%LL.)

) dp, if Ju_|>0.2

The tactor beforce the integral is

[Eq. C.73])
24(1-2 W ) mA

12(1-2W_ ) a v .
- —3 ; [Eq. C.74]
2 Yo ¢
I_fS Z B L X
th(n Eq. C,72 equals Eq.
i< 0,2 Eq.

60 of <
C.73 is

che main text.
approximated by

or small
mw+n/2
12(1 - 2W )av

T ——

L,Lfe uz,}

= JP cos (o ~ @ )
601 L ‘n /
~m/2
{u, 299
=

fl ' i
dep, if u, 2
)5 W <0,

[E(l' (‘075]
The roughness on the facet {p is derived in a similar
The starting equation is Ea. 4? of the main text,
Pierson-Moskowitz spectrum is inscrted.

oo

form,
the

in which
It is, in this case,
]

1 4 6
=<1 1 -
J 5‘1 a°L® [( :

s

L -—=sinal + 2+ 0
aL

Lzazl } df .
4

[ Eq.

Cc.76]




=
.

The rcsult of the integration is

2 cosu 2 sinu,
- g (3-d- e ittt ) (5a. c.771
t w, uf oy uy
Fer small Iub|‘<0.2 5 this is expanded in a power series and

the first terms are taken. Insecrting Eq. C.77 into Eq. 43 gives
the result for |u°|>'0.2 and fu°!51).2

TT .
4« . : 2cosug 2 sinu
Et.{pei =,__2§_1_V_Jl cos™ (@~ © ){_]I 12 . + o } do ,

2 o 2 4 < 3

Be® x_ ¢ 4w ue Yo Yo

it Ju | >0.2 [Eq. €.78]
and

- 200 VA n u®
B fp?) = ——— ] cos" (9~w,) S do, if Ju [=o0.2.
. Bgzx o] 72 ol
no

This is Eq. 07 of the main text.

The factor before the integral is the explicit expression of

2 A 2 vh
- = T - [Eq. €.79]
4 2 LbG. C.
ts Be™ >,
C.3.2 Approximale Analy'!ic soluticn for cosine squure directivity

The expressions of Eqs. 57 to 02 of the main text derived in the
precceding section arec evaluated here for the case n = 2, the
cosine squarce directivity law, to obtain an approximate analytic
solution that does not need a digiltal computer for numerical
cvaluation. For most practical cases these approximatious are
considered of sufficient accuracy.

In 1his section, the expressions of Eqg. 04 are derived.

¢.3.2.1 o, = JE (e}

a) aqn << ]

. (2mf)® 1 _ﬁJﬁ?Lg
o =

g v




The starting point is Eq. C.02 for u, = aj cos® < 0.2.

The sine integral Ci(luol) is expanded in a series, giving

a v 7u3  9ud :
02 = fws?(cp 0, i.—°_—--u=;(y+zniu |- =+ ...)} do . j
&xa ngz 4 40 s

The underlined terms in Eq. C.80 are neglected, with the result

o

2 _a | 2 2 S
Te = & J cos (w-mo) cos® © (ﬁzluol Y 4) dy . [Eq. C.81]
o)

Ihis integral can be solved in closed form with the substitution
cus =%, the result being

2 _ & 2 - 4_1 -1+ l - 1 1 +
Tq 8[3005 cpo{—-ﬁn a, =Y 4 1 3 3+4 on2)
. =1

b osind o (<ina,-y+Z o2 kel 1ol 0],
sin cpc( na_ ~Yy A > (1 > + 3 R K’mZ)J

Equation C.82 equals cz in Eq. 64 of th: main text,

b) a, >>1

It a°>>]4 this also has the consequence that u, = a, cos @
is much greater toan one in most of the range from 0 te T,
HAowever, if @ = T | then u, = 9, and it is n~cessary to split

the integral in Eg. C.62 into two parts, one for u°<é<l and
one for u_>>»1, If u_»>1, the cosine integral Ci(luol) in
Eq. C.02 is replaced by its asymptotic expansion for large
arguments. Then it can be shown that, neglecting all terms
containing powers more than l/ui s Eq. C.952 takes the simple
form

/2= al
av* 8 .
oz = ~— [ F + § nosn(w-¢d) l; dw:] . [Eq. C.83]
Brlfe® Ly n/2ter Yo
. . i T . a
For the integration range @ = 3 - e {to @ = 2 + e! , the

approximation for small wu  in Eq. C.81 has to be taken. The
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sum of both gives the desired result., The choice of €' contains
a certain amount of arbitrariness; (for lack of a better possibility

1
er = Py was taken,

]
Then it can be shown that the part of the integral where wun << 1
can be neglected, therefore Eq. C.83 gives the complete resuli.
The integration of Eq. C.83 is straightforward, leading to the
torm

T 1
R S—— T
. 18 a v* [ 5 2o ( s y 2 a,
g = -~ ¢ cos“@ + sin“¢ (tan - +
©BnC g ag i T 3+

o
[Eqe C.84]

, . . i .
The Lan?w terms is expanded for arguments near 7 5 gilving
the result

18 a
02 = 6xn5¢i +

o 18a (2a-m
e

sincho) [Eq. C.85]

which is part of Eq. 64

Co30202 OZ N Et{ui}

v

V
a) ao<<1

From Eq, C.07 it is secn that for a, << * the vertical velocity
has the wvariance

]

-~ 2 2'\1
<_7..) = - j % cosz(cp-cpo) de , [Eq. C.80]
v
3 g o

which leads easily to

)
2z = )2 . [Eq. €.87]
\2

This is the result given in Eq. 64 of the main text,
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Again, Eq. C.07 shows the approximation for a >>1

Tr
o, \2 - o0s” (0 =
(.\Z:) - L f =o° (°°3 ) dep s [Eq. C.88]
3'\/?” o Yo

as all sine and cosine terms cancel out if the sine integral is
expanded into an asymptetic expansion, This is a form of the
integrand identical to that of Eq. C,83. Therefore the same
argument applies and the result is

o, \2 2q 2ac-1T ) \
_,) = — (c:osacp + sin? o ) , (Eq. €.89]
v 3p1s g L ¢ °

which is listed in Eq. 64

co3.23 o JECE]

v

a) ao <<1

The asynptotic expansion of the sine integral si(x) in
Eqe Co09 shows that also here the sine and cc¢ :ine terms cancel
out leaving an integral ot the form

The evaluation of Eq. C,00 gives

I

2
o [0}
( ) = (3cos® ¥ + sin® @) . [Eq. C.91]
v 8,\/ e o] [a]

-
E
i
l

S bivins ot R b, SRR

PR R T




b) a, >> 1

The sine and cosine_terms cancel out n this case, too. Then it
follows from Eq. C.08 that

™

) 2a ve _ .

(_1) = r cose\w-wo)dw s {Eq. Cc.92]
BBI'STTLE g.e %

which leads to the result

g \2 a
(..2‘.) _ . [Eq. €.93]
e (1
\ Ve
Co3e2e4 o, Etia uz}
AY = v

a) a <<1
o

For small arguments the sine integral in Eq. C.75 tends to zero,

The term with ug is neglected against u, leaving an integral
of the form

i o pr'}'ﬂ/z
0. 12(1-2W JavP a
- o e .
v B g BOTS om J cos (w“wo)cos~n
_ ww—w,/z
1 16 [ a /ﬁf 8 N
T me— ‘\/ S N 'COSCPI dCQ » LEq. C.QA—J
G 379 2

For most practical cases is seems reasonable to assume that
Qc = Qe For this special casec the above integral is evaluated.
Application of known integration formulae gives

Va 16vﬁ52;‘

Te s 240(1~2 W) cos 0,

~ T T ) R




where
/2 I.a( nt+l ) o0~}
2
Y, = f cos" @ dyp = . [Bq. C.96]
° T'(n+1)

Numerical evaluation of Eq. C.95 and Eq. C.96 gives Eq. 65 of
the main text.

b) a, > 1

This case leads to a similar form to that for the standard
deviation o0g¢ of the facet slope, Starting from Bq. C.73, all
terms containing sine and cosine functions cancel out, the
fresnel integral can also ke neglected in this csse. The
remaining equation is simply for P, = @,

w°+n/2
Oeyz 16(1 - 2Wg) a v° {‘- cos® (cp-ao) C ]
, = - dy . Eq. C.97
v 3 gBr:’! L Pl Y cos®
T & coc-rr/z

The integrand is diverging at o = g— . But, as it is known that

t!’\_e inteérf!—-nrl C’P dhia aemd A

Tancd oL YRC origimal integral is vanishing for cos ¢ = o,
as is seen from Eq. C.94, again the technique of splitting the
integral is performed. The contribution for small cos @ can be
neglected. Two cases have to be considered: wé =0 and g, # 0,

The first case leads to

r.'/2.-1/a°
o 16(1-2W_}a
€z ° do .
= . f @ =0 . [Eq. €.98]
4 cos ¢ ° 1 0
v 3o “/B-n)];ﬂ/a.

The evaluation gives approximately

7 16(1—2W°)a

€z .
= 2 ¢n 2a if =0 . [Eq. C.99]
v 3 a% T 4‘\/8 -3 CPO

The general case D, # 0 leads to the form
m/2-¢1 cp°+'.T/2
2 . . .
Oy 16(1-2 v, Yo f . I [ cos® @ 2sin @, cos ¢, Sin @

—— = +

cos ®© cos® ®

v 1.4 T ArB
Jao VA CDO-TT/Z TT/Z'*‘C'

<+

sin® 9, sin® @
doy . (Eq. c.100]

cosd @
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The result of the integration is

1+ cos t‘pb

ez o 16(1-2W_)a ,'(

cos® @, - él- sinacpo) on
v 3atm 4@ i

1~ cos cpo

+ 4 cos w°(1-+ aélsirlwél)] R (Eq. C.101]

where the approximation

$
\
+
"
.
=
1
w3
+
o
—

N-—&lzac [Eq. C.102]

Pk
|
®
e
=
_——
H
+
= =
f —

L]

o213

is used, Eq., C.101 is a part of Eq. 04 of the main text,

a E 2
Ce3.2.5 _h ete”]
VQ \’2

a) a << 1
[+}

Starting from the second part of Eq. C.78 one obtains

[ h
\ 7P

Q a

2 2 q a2 T
Y= Pcos?(cp---cp ) cos® ¢ dep [Eq. C.103]
/ 368 ¢g° 6! °

which leads directly to the desired result

————

c Q
h

= YT (3 cosch° + singwo\ [Eq. C.104]
J,;. 1

This is part 1 of Eq. 09 of the main text.
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b) a > 1
o

to %, as all other terms can be neglected against it.
integral is solved quite easily., Starting from

- ™

( Gh) led J" 3 ( ) d
— = cos -— 3
o2 Yy 3 P =@, ®

which is part 2 of Eq. 69 of the main text.

I S

For a large aé s the bracket in Eq. C.78 (first part) reduces

Then the

[Eq. C.105]

[Eq. C.106]




APPENDIX D

CALCULATION OF THE DOPPLER SPECTRUM FOR
AN ARBITRARY SEA-SURFACE ROUGHNESS

The starting point for the calculation is Eq. 46 which is
repeated here for convenience

o(£) = zgzj]]wk fst: ik F, (£§ , 0)

£e
[
L

wﬁ?,n)Mf—ff—f§)+w0%,O)Mf-ff+f§d wy (€,u,u. ) de du_du_.

[Eq. D.1].
£

- gives a form
of Eq. D.1 better suited for the following calculations

o(f) = anif 81:1/__375 Fa(f’iﬁ,o)
CcOS F

Making use of Eq. 6 and replacing ke by

[W(f*{i y ME(E=f-£F) +W(tE, 0) 5(f - £+ f‘?)] Wy (€, uyu ) de du du

LEq. D.2]

To solve this threefold integral, Egqs. 44, 45 and 29 are inserted
and the integrations are performed step by step, As it is

assumcd that o is a small angle, the following approximation
is valid

sin yo = sin (Y°-+e) m siny + e cosy

and

COS =

Yy = cos (Y *te) a cosy, - [Eq. D.3]




The tirst intcegration is performed over the varisble u .

Because of the g~function, this is possible by selting

- f *‘x = 0 [Eg. D.4]

and inserting into Eq. D,1 the value u_ that fulfils Eq. D.4.

TL is 7=t
e,
) 21, /E"f cos ¥y
l-ii,.:!:If=f.-1°--——;~ (uz Sll‘lYf-lGCOSYf)ﬂ: - -

{Eq. D.5]

Inserting Eq. 45 into Eq. D,5, the square root can be drawn
approximately, as ¢, and o, are very much smaller than c.

Applying Eq. D,2 and using the abbreviation Eq. 0

= S B [_Eq' D|6]

the result is

u. €os vy.. u .-;inyf

54 - % Z ¥y =
(210:F 1°)+ (_2fo¢f°)—0 .

(Eq. D,7]

As 1c

terms with uw, and wu,, Furthermore, sinvyy is replaced in

is very much smaller than fo’ it is neglected in the

Eq. D.7 by siny . which simplities the mathematical efiort
considerably and caunses a negligible error in all practical cases,
where Yo is a small ang'e. Then Egq. D.7 becomes

S e w e
(f-f, ¥i ) e

“z,—,-i- = — ' + u cotan '{0 [Eq. D. 8]
21 o SinY,

Inserting it into Eq. 45 gives, for the doppler frequency ff ’

“ ’ - - ,7.*.

if‘(ul—,"‘) f .*.10 [Eq. Do()]
and taor l"’:—.

ﬁms y_ (r3t%)
2L o O
SAPRIEY . [Eq. D.10]
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Inserting Fqs. D.8 and D,9 into Eq. D.2 and using Eq. gives

S g

o(f) = J(;rsin‘ (\'6 +e)

f sin J e cos® -
o Yo . Yo

/(=55 P (% 0) WK m) we (e, 0, )

+./ (f+f°§)5 Fa(fj:,o)W(fif_,o) wa (e, u, )] wiluy) de du

[Eq. D.11]

= [/ (£-5)% Foig® o)w(e* m) T

R 3t 5 ¥ 3
+A/(f»-f°) Fz(ﬂ+,0)w(f+’0) .l,

[Eq. D.12]

where
-]
I_’+ = jj(sin yc+€. cos 'yc))4 Wy (ux) wy (€, uz_’+) de du_ . [Eq. D.13]
-y
The fuuction wp (€, u, +) is rewritten in the form .
-, .
e = K 0
w, (€, uz—,+) N(uz__’+, O,O'Z) N(e, Mg + 2 08) s [Eq. D.14]
where -
pez Ue: UL-—,+ .
m p—y
€,
o, ;,
and

* = 1_ a2 .
oy o, NE %, . [Eq. D.15]




Using the well known relavions for the higher moments of the normal
distribution density, DLq. D.13 is integrated over €, yielding

1_’_‘_ = IN(“L—-,'{” 0, crz) [ (sin Yot cosy, me_’+)4

2 .
+ 0 cos® v (sinvo + cos Y, m )? oga + 3 costy, 02:“] wy (u ) dx.

€~,+

[Eq. D.16]

The product.

P = N(ut_’_*_, O’Ot) W, (ux) [Eq. D.17]

15 split up into a term containing the variable u, ard one
without ug . It is

P = N{“_’+: U, 0y) N(HX’ mx_,+ ; 0) [Eq. D~18]
where
(f-1, 3 f:) e
o = , [Eq. D.19]
-t 21 siny
o] [
\/0'1 +oi tan® Yo‘
g, = ' , [Eq. D.20]
tan Yo
2
B 11_’+ 0% t.an Yo

(Eq. D.21]
2 (2 2 2 ’
o’ (Ux +o tan vo)

and
t
0y 0, tan vy, o
g = [Eq. D.22]
2 2 2
/ + tan® vy
VOx T, A ¥y
To obtain the final result, the integration over u is now
performed, applying again the relation for the moment. calcuiation

s ik




ot normal processes. 1t is

I”’_*_ = N(u__,+ , 0,0,) cos* vy,

[3 c::“ + 6 o¥? (o3 + ma_’+)+3 o8 + 6o m® _+wmt ],

b ~>
[qu 0323]
where
o) o, P
€ X €z 3
0p = [Eq. D-24_1
2 2 2 .,
ng+ Oz tan Yo
and
o a 0 u tan® y
e =z €2z =,t
m = . 2 + tan ¥, [Eq. D.25]
A 2 4+ o7 tan® ’
Ox o, “a Yo

The combination of Egs. D.12 and D,23 gives the general result of
Eqs. 47 and 49 of the main text,
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