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A MODEL FOR TIlE DOPPLER SPKEAD GF BACKSCATTERED SOUND FROM

A COMPOSITE ROUGHNESS SEA SURFACE

by

Ilerward Schwarze

ABSTRAC'

A theoreti cal model for the doppler spread of backscatl ci'ed
acoustic waves from the rough sea surface is described on the
basis of a two component sitructure (facet model) of tlihe sea
sut'face. The facet statist ics are derived for a general gaussian
sea surface. The results are evaluated for a Piexson-Moskowitz.
spec rum, A procedure for choosing ihe facet. length is developed.
Approximatc, simple formulae for the Fieison-Moskowitz case are
given. The general result for hle doppler spraead of the back-
scattered acoustic wave is evaluated for a sea surface spectrum
due to Scotli and examples for doppl r spectra are given for dif-
ferent windspeeds, wind directiois, grazing angles and acoustic
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I NTRODUCTION

The import ant problem of scatteri ip. of acoustic waves from the rough

nmoving i;sea sturface has often ber', invtestigated, but a gexncral, uxact,

and tractable solution has not ;•et been obtained.
lFor special cases, solutions are . .oWn, e.g. for the cases wher tilhe

ampi itudes of the sea surface waves are much siiallcr [Ref. IA or
much largeI [Ref. 2] than the Icng.th of the incident. wave.

hotr aibitiai 'v ioughinesses of the sea surface, approximate solutions
at .! btat~n'1u by applying the small-scal': backscatter'ing result s to
a compositc-loughnilss sea-surfacc model [Refs. 3, 4, 5, O]. This
means that thlie s-iall waves with lerngIhis up Io some" 10 cm, cautsingthe

esc,natt o0 "BrBagg" scattering, are carried by long waves. The long
wa•es am e approximated by plane facets whose movements depend on the
Iaige--scal ( roughness of t-he sea surface.

In this paper, the iinterest is focussed on the frequency spreading
oL a backscattcvcd monochromiat-ic acoustic plane wave.. This case is
of special iit erest in active, sonar applications because the moving
sea surface limits the detectability of lo•1ly-movinmg (arg'gts..
Special effort has been devoted to obtain a set of fol'idulae that. are
simple Io ust- ini already existing sonar models especially in the
RAIBAC prograin system developed at SACLANTCEN ýRef. 7].

The main text of this paper contains the re.sult~s obtained, together
with some physical explanat ions. All mathemat ical devivations and
proofs are given in appendices. r
in the m, uin text., the existing rcsonant seat ering theo'y is first.
leviewed and the ¶'acet.s are then inmrodmuced. The stlatistical prop-
er ties of tie facets are gi.ven in terrts of the sea-surface covariance
fLtIct io.n or' t he t hrc-e-dimensi onal sea-surface speci ruin. The. concepv
is applied t o the small-scale roughness results. Several special
cases are considered.
The genel'al forniallsm is wotked out in several examples of idealized
sea-surface spectra and the computer results ape shown.

1. RESONANT BACKSCATTERTNG THEORY FOR SMALL SEA-SURFACE ROUGHNESS

Thf, x)iCd-T11(t i-v ,J~in~wii in it1 i 1, i.ý ii.mý4ed- A sonrre S( x- 0. )-
illuminates a suirface area A - ab with a plane wave of frequency fo

atid pressure amplitude P 0 " The distance r 0  is considered miuch
I arger than / A . Without loss of' generality the y-coordinate of S
is set to zero. Besides the specular reflection, 11he rougl) sea saIr-
face caises a scat.ered field in all directions. Fi' backscatte'ing,
so(u ce S and receiver R coincide.

Time doppler spectrum ; (f) of the backscattered uave p(t is the
Fouri-e' t ransform of it.s cor'elation functicon, vi-z:

T.l:{Ip*(t)p(t+T)j oxpj-2- 11T4 dt [Eq.1]

where Ev ... ' denotes expectation and * the conjugate complex.
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FIG. 1 GEOMETRY FOR SCATTERING FROM THE SEA SURFACE
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A normal .... t ion i introduced, yielding a backscattcring doppler
dezis it y

CP(I) 2A[ q. 2

Start.iing from Ref. 8, for exainp•c, the basic eqiJ& 1on for the back-
scat tering doppler density for the slightly r'oIgh sea surface is

W(f) (4<) sir'yOkl4X 3 (-Zkocosyo, 0, . [Eq. 3]

In Eq. 3, ko = \= f. is thou wave parameter of tle acoustic plane

wave and X3 (kx .k7 ,K ) is tihe three-dimtnsional wave parameter

frequency spectrum of the sea surface. The wave paranmetor k -

was introduced hereý instcad of the wave number l 2r7 because it

offers some notalional advantage. Equation 3 is derived in detail
in App. B. When integrated over' f, Eq. 3 become!; the back-
scat tering strenlgth, known from ti.e literaturie [Refs. 9, 4].

The general small-scale roughn-iess result is simplified by tire
assumpi ion that the dispersion relation

2rrf 2  g k [Eq. 4]

is valid, where g is the gravity constant.
Using tile relations in App. A, Eq. 3 is written in terms of the
frequejncy angle spectrum F2 (fI Cp)

2g" k 0 sin1yC

Cp(f) %'(f&, o) [Eq. 5]
*Sfoa

Lw(cg03-n) 6(f'-f 0 -fC)+W(fj', o) 6(f-f 0 +fJ*)],

where

S gk= (s [Eq. 6]

is the dispersion relation. In Eq. 5, F, (ff, wp) and W(f, cp)
arc t he frequency a igi e spect rum and t he wave-mixing funct i on-,
respect ively.

The mixing function describes the ratio of incoming and otl.going
surface waves for a given wave paramet er vect or or a gi ven frequency
and direct ion. The int roduction of this fuict iOin leads to the same
results as (lie theory of Netunann and Pierson [Ref. 10, p. 330] but
it is felt that the formulation used here is simpler. ) For details
of the definition of W and its r'elation to the wave paxametcir
frequency spectrium Xs the reader is refet'red to App. A.

4



A simpltoc pact i cal case i s the ontil1 dtl cct iona I sea-surface spect rum
wi t li W = C). 5, wh i ci seems i casonal) , for sioti'u sur fact' wave s. In
this case il- obi elaths

s Sillt y%

c! '-'i (to)[ K f-f 0'- o ) t- 6(f-fo f ) E

S73 I

Eqiiat ions 5 antd 7 aPe consi dered to he valid uitder the following
cundi t ionsl

1) » i .>1  2frrsIt y "Bragg" scattering, [Eq. 8]
Rayl elgit t heo'y

C
T

Ih st anldard deviat ion [Ref. 1 1]
of t lit-, sea Sullrface
lit'i g-itI

2) \ <<, A I1plicjit assumption [Eq. 9]
0 0for Eqs. 5 and 7,

explanat ion
s(-ee App. B

3) r > A Assunmption of incident [Eq. 10]
0 plante wave,

, - >0.05 0 Apptroximation rule for [Eq. 11]
k the 'aaidity of the

dispersion relation,
rr. I

As miost acotist ic wav'le('ngt is ill sonar appl ications are betweeit O.1
and I ni I he (>11nd1 it ion of Eq. S is often tot fullt.illed. Therefore
it is -tcC'sdt\ to iut i'odtceC thet COmilpOSite seOt) "ihtesS sea s,.irface
model whtich ,irIcuvttlnts tlits condition, This model js developed

ill th i next chapter.

'2. IDOPPLER SPECTRUM FOR A COMPOSITE-ROU1GH1NE'SS SEA SURFACE

2. 1 lot rodu-t oiy

Tie dcl ivat i (iS of this chaptetI' are based Oilthie facet model as used
by Bachmann [Re'fs. 5, 14] for Ihli cal cu l at ion of the backscatlering
st vei'e h.

The f acet llOdt I assunies bas i cal ly a two- colnpOlletlt st I'll cttl'e o t I lte
loitgh-movl i lug sea suIrface- the, small-scalet high-fiequlelcy T'ouglites5
(x'it~Cse,,) l'esponsible Ito it" resonant scatt(!ving are cat-- ;d by
the low-f1'C-qneltcy lar'ge-scale sca-surface waves (swell). These
carti'ee waves are locally approximtated by plant facets of finite
ext tnid. The n\ovemenits of thtse facets Ila\t intthieices o01 the back-
scat i. ering St LeCIg- t1 and ibe doppl cr sh i ft s of t hle backscattered sotund.

In thet fii st pait oft this chiapt c' the facet model is developed and
thie st at isti ts 1l tih facets ate calculated, in tlihe second part, the
('I te't S 01 Ilit f a ltO~t'llt S ol t hle small-scal t rougiliess resvlt S are
con.- ideted,

ColtsI. ti te5

SA



2.2 1 acet st ati-St jcs

The Facet s are st at ist ical ly descri bed by a fivui-dimexisioxial. random
p rocess: t heictc irlinat ions c y and c, and thle v'elocitie 10 x,, UvrI
anld itt, .If t 1vw 1 OcX dent a coast ic-wave c vecto lFie s inl thle x-z planie,
thli inC I rieiceS o-f, CN and itx canl bie considered small and are
iiegl ectved [Ref . 141. Coxiseqi6--it I one dealsL w ithi a t liree-dizcris i ona 1
process on I and 1. le facet can be rcpr'cseit ed by a st.raiglht line,
Itins reducWing thle mathlemxat i cal effort.

As -it is assutmed t hat thle sea stir face is described as a gaussian
ii oucs s, thle facet itiovemezit is a]lso eons idex'ed t o be normal di st rib-

aited. As the mcan valus -SOf' the St oclSias c variabl es c = e~)
ulX(t ) and u,,(t) are zero by defiuittioxi, thliir covariance miatrix
is suifficient fox' t heir comiple-te descript ion.

Thte gcoiiet zy shown ill Fig. 2 is used in I lie cal culatilon. To obtain
all express ion for' c (t ) and b (t ), theV sea 'kutl ace function
I ( xg YS t )j ,=(j is appl'oximat ed by a I east-sqiaie-cri'ioF s ra iglit 1 inc

f (x, t)=c(t ) x + b) [Ea. 12]

ill the inter~val IxzV * Thrs yields

cýt - 11x)YT [Eq. 13)]
L3  xlixyt)d

and I

b(t )=. h(x, y, t ) dx .[Eq. 14]

LL

0 t Obkt d -~_ VlA x E(i,. 15.]

For'I Ire- hvi-i'ionltal vel ocity lt x t he foillowl ig,4 argument appl ies.
From thex i near' ilboor y o1 suirface waves it fol lows that thec
borizwnita] Ipar't i le v'elocity t inl the x-dlred i on is

-g Mxn )*[Eq. 16]

b
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FIG. 2 GEOMETRY FOR THE FACET DESCRIPTION
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The hor ontal velocity of the facet u. is defined as the mean
horizontal particle velocity on thli facet,

V
1,

(t 1 udx [Eq. 17]x LJ
2

inserting Eq. 10 into Eq. 17 gives
t

U (t) E L,.(l t) h(-, L y, t)j dt + L(to). LEq. 18]
X~ t L 2 .' ' - 2' x

t

From EqN. 13, 15 and 17 the variances and cross-variances of the
facet movement are calculated. The results are given below, the
derivation of the formulae is found in App. C

L
Et~ •} _ 4 rC(x, 3,, = r 3 Lx 2x

E.2 ,J C , - 3x + 2x_'• dx, [Eq. 10]13 j 0 L- 1 L3 /

B 111 21 P62C(xv,-J (I -. dx, [Eq. 20]
t z L =O

and
92 T til

L.u2C1(0, y, t) - C(L, y, t) - C(-L, y, t)jjdt dt 1  =o

-w y=0

[Eq. 21]

The cross variances are

L

E 12 flc(x, y, T) x-f dx [Eq. 22]

0
"T :=

and

Et u1 , F t. xUU = 0. [Eq. 23]

Using the results of App. A, the above equations can be written in
terms of the wave parameter frequency spectrum or the frequency angle
spectrum. As the latter is of importance in the applications, the
formulation of' the facet. statistics in terms of F 2 (f, :P) is given
here.



It is •-

CZ? 144 I2 (f a (La cos 2 sin)2 dfdy , [Eq. 24]

-- T
E1 ~~ 2g~ ~'F~(f ) (La- cos aLn

E I (1Af co(jr cos al, dfdcp, [Eq. 25]

2-T•• p p F2 (f, c) (1 - co aL)

t x 27 J (2rf)' dfdc' [Eqo 26]

and

-12 r,
It u, I F2 (f, •) (2W(f, cp) - 1) 27f

j J

sin al
-ila 2 1 [q 7

+ -( - cos aL) df'dcp [Eq. 27"
L. ,' Ldt .,,

whereo
(27F)2 cos)a CO . [Eq. 28)

g

The deri vat ion of ti.1. above formulae is also found in App. C.

The horizontal avlocity is uncorrelal-ed to C and uL , as is
seen from Eq. 2.3. As C , u7 and u.- are assumed to be normally
distri but ed7 Ux is therefore independent of e and uz* Then
thle three-dimensional probability density w3 (c, Uz1 itt) has the
fo i-

w3 (c , , uz ) () W2 (C I (X) , [Eq. 29]

u2

W1 (I) exp [Eq. 30]

N(ux, O cx)

9



aTI (I

(2H 2p2 +cwade, iv) - e••• -r exa

z z z

[Eq. 31]

The abbrex iations in Eqs. 30 and 31 ale

e C AE7 , aj2'Y7§= 7VEL c2 x Ttju., [Eq. 32]

a d
t; 7 tt z

": [Eq. o33

Equat ion 29 (de-scribes, the facet statistics and is used in the
fo.llox iig lot- the calculat-ion of the doppl-er density.

2. 3 Choice of tile facet length

The facet. statist ics as derived in the preceding section depend
entirely on the facet length L. In practical cases, this I has
t o be chioseii, i fly choiice is direced by vwo ij]nfiuences. First.i y,
the facet l ength shkould be greatev than the wave length of the
incident. acoustiic wave to reduce the finite aperture error as much
as possible. That leads to thli condition

L, >> Xe a [Eq. 34]

Secotidly, the sea-surface roughness ,hL) on the facet. should be
,mich small.er than the acoustic wave leingt.h X 0 to fulfil the

Rayleigh condition [Eq. 8i

X » alL) . [Eq. 35]

It seems to be extremely complicated to calculate the finite
aperture error and the finite roughness error and to choose that
facet length, LOp-_,t where the sumn of both i. a minimum. Therefore
the fol lowing procedure for choosing the facet length is performed:
A inmber N is chosen that- tr-ansforms the two above inequalities
[Eqs. 34 and 35] to tile equations

I, 0 N [Eq. 36]

and
N - (L) . [Eq. 37]

Combining t.hem gives

L * Gh(L) = X . [Eq. 38]

10



This impilcit equation has to be solved to find the facet length L.
The number N is a quality number tnat shows how far L is away fr-om
the limit where the conditions for the validity of the composite sea
surface model are no longer valid, If N is less than about 2, this
indicates that. the facet niodel wilL yield no correct results.

4
To solve Eq. 38, an expression for ih(L) has to be found. The
roughness r(t) on the facet. is

!-(x7, t) i hi , y, tY. .y0t- f(x, t) , [Eq. 39]

where f(x, t) is the facet equation in Eq. 12.

Th-c mean square error p2 (t) is a random variable in time

+I_2

]2 (r r2 (x, 3:) dx . [Eq. 40]

9

The sea-siurface roughness 7h(t ) is the expectation of P2 (t)

C,(L) = EtIP 1 2 [Eq. 41.]

Usintg App. A, is it shown in App. C that this takes the form

L

E IP2 C(0,--),¾ G+, y, T [Eq. 42]To)-: (x, Thy=i=o(l + v)dX

or, written in terms of the frequency angle spectrum F2 (f, p),

+rr

E1 t) 0( ) -- __- cos aL- -sin aL+2 - dfdcp,
1 2 a 2I aL I2a 2

[Eq. 43]

where the factor a is seen from Eq. 28,

With Eq. 42 or Eq. 43 it is possible to solve Eq. 38 by an interactive
procedure for a practical ease., where C(x,, y, x) or F2 (f, T) is
known explicitly, This will be investigated in Chapter 3.

11
a: I



2.4 The Doppler spectirum

The doppler spectrum for an arbitrarily rough surface takes into
account the facet movements whose statistics weie described in the
preceding chapter.

The grazing axiilc y0  and inc incident frequency f 0  are modulated
by the facet inclination C(t) and the facet velocities ux(t) and
uz(t) respectively and accordingly tlhe small scale result in Eq. 5
is changed.
The modulation changes y0 and f. to Statistic variables of the
following form

1) Influence of the facet slope

Yf(t) = Y0 +C(t) [Eq. 44]

2) Influence of the facet velocities

2f 0
ff(t) f -f-- [Uz(t)sil yf (t) - ux(t) cos yf(t)]. [Eq. 45]

To obtain the backscatter'ed doppler density cp(t"), the weighted
sum for, all C , u., and uz has to be taken. Using Eq. 6 one
f i nds

02k Sir, Yf

of

rlv(I) e dud

This integral can be solved in closed form o.or a small facet
slope C and other minor- ncglections that ai"e found, together
with a derivation of the general result, in App. D. The general
formula for the doppler density e0(f) is

C(f) = g cos/S y0 _yo _

c3 4fc sin y0

1(f - _F (f o) W(f*, Tr) I [Eq. 47]

+ "/(- + oý'- F,( ) W(f* o ) 1+
+ (f+f)5 F,(f+,o f+io]1

12



whevc (

= g cosyo(f~fo) 5  [E.f '+ ="r [Eq. 48] 1

+ N( ,u,, oa) [+3 3 (1- c7 P

6, 7 -z z) (ua + m, +) [Eq. 40]
C Cz' 2

+ 3(4 + ()7 n', + 1,+4

+P a 2 , -+ -iii9+1

In Lq. 4( thc abbreviations are

(f- f 0 ¥i 0o) c
+. = , [ Eq.; 50]

- L+ 2_ +o C2 '-o1

o , [Eq. 51]

tan yo

OCF CCx PCX 79a2  - - - -,- - , [Eq. 52]

U2 w ai 2 Y, C aI tan yo

and

9 a- t-t anY + tanyi0 . [Eq. 53]
2 2a7 1- a2 taii y.X z

From this general result every required simplificat ion can be
easily deduced. For example, if the facet. slope is considered of
.ilttle influence ii a certain case, the expression I- in Eq. 4()

reduces to +

_1u- • o ) ta•l n Y0  . [Eq. 54]

1i
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Anotber special case is the assumption of an onmiidirectional sea
surface spectrtum 1`3. (f) and a mixing function W 0 0. 5 (see App. A).
Using Eq. A.26, the doppler density for this case can easily be found.

The general result of Eq. 47 has been programmed on a computer for
sea-surface spectra of practical imrortance. These applications are
discussed Lin the ne.:t chapter.

3. APPLICATIONS

3.1 Examples of sea-surface spectra

For demonstrating the use of the model described i,, the preceding
chapi crs a sea-surface spe-ct-rum needs to be chosen as an example.
This spectrum shoul]d have a wel1 defined frequency and directionality
variation with the wind speed and wind direction. On the other hand
it should be mathematically simple enough to allow the calculation of
the facet statistics with not. too much effort. Therefore the well
known Pivrson-Moskowitz spectrum was chosen for the facet. statistics
in slightly modi Vied form. It can be found in App. A, Eqs. A.50 and
A.51, and is !given here, for convenience

COS C - Cp0
F 2 ("I c) F, (- ,) [Eq. 55]

x

whe t,ý

' (f) , f > =" [Eq. 56t]S2TT )4 f • 5 7

and

x I cp dcp Ca = 0.0081 and B = 0.74.

The mixing function W used for these caltculations is given by
Eq. A.40.

For the calculation of the doppler density a more flexible spectrum
was employed, which takes into consideration the frequency dependence
of the surface-wave directivity. This spectrnm, due to Scot't [Ref. 15]
is found in Eqs. 60 and A.64 of Appendix A.

3.2 Variances of facet slope and velocities

In this sect ion the general formulae for thel facet, statistics
[Eqs. 24 to 28] are evaluated for the Pierson-Moskowitz sea-surface
spectrum. Again the derivations are found in App. C, the results are
given in the following.
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Eq. 56. 'I'liis sp,.ctrv~jtj is insertecd iiit~o Eq~s. 2-4 to 27 . Theni the

jut gra ion,,li te frpelc is per'form~ed, yieldinlg

2 _O "1 
~i 48

/ 4S\-4Sil 13 lIEq 57]

- u', C i tiuc, d~,p

s i l l t i c 1 1 1d1 S, [ E q . 5 8 ]

TT

a2 COS (p ( p 'o 1

'-Th Sill U0  U

+ Si ~ [Eq. 59]

22

and = L g 0"l(" 0  '

2

Csit 0  + + o 0~ 40) - YOE. 
0

212

klick3
Si t UO k2 Costic Eq. 601]

a 10  COS 
It

0 0

2g ~

uo -2 d~15



The constants k1 to k5 arc k = -10/6 3, kg = 8/189,
- 4/9, k, - 4/03, and K5 = 10/1,9. Thle functions Si, Ci

and S are tlhe sine initegral, the cosine integr'al and the Fresnel
.integral [Ref. 13], respect ively.I

The vaianices ill Eqs. 57 to 00 have bcen progranmued on a digital
coiip'itt_, using numerical inttegation m echni.ques. .inspection of
tOw equat ions shows that. the va'ijances alt'I fItitlctiol of the
followi rig form

Ci

f7 7L

, f3 [Eq. 63]

Sf 
4

(k)-
V $T

v

and

Pe ....C f 5

¶Ilieefectl results ave shown as a finction of L//v 2  rather
than tlie facet lengt-h , tLtIs eliminatring the vaa'iation of the
results as a function of the windspecd v.

The remaining parameter's are the direction angle Cp0 , the
directlion angle cp of the mixing func,.ioni, and the exponent n
of the cosine directivity function, Ii Figs. 3 to 12 the facet

stat istics are shown l'on cp = 00, 450 and 900 and n = 2
and n =: 4. From the figtres, the facet statistics can be found
for ptact ical cases.

Tlhe important region for L/vr between 0.1 and 1 s2/m is shown ill
a linear scale in addit ion to the general double logarithmic plots.
'lic facet slope 0 e diverges for L 4 0; therefore the curves in
figures Rb and 7b stavt- at the maximum valuei on the a -:caIe.
For _ L..< 0.1, Figs. 3a and 7a should be used.

For certain applicat ions it is desirable to have analytical
expressions for the variances. This can be achieved by approximate
sc.lutions of Eqs. 57 to 60 for a 0 << I and a0 >> 1 and combining
the ril-stlts, Again, the derivations are found in App. C; for the
important practical case ii = 2 it is

for a 0 << I

S--lji .3.85-32ao) ens2 
0P + (1.31--u ao) sins er]
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Zx _ *

z 2

v 8 (3 cos2 c + sill2C) [Eq. 644]

ac z 8(1 - 2W. ) C cos-

v 3TT V-O (1-0.596 6 /i)

- 7.413 1 10- cos p (1- 2Wo) (- 1.732 ),
V 
2

for ac >> 1

N, + / (2ao -¶,)sinc-•e 2 cos2 + - "r CP

O'z 2co 1 (2a, - ") T

_vC L COS2 C0 + sin'

[Eq. 64b]

V 3-5 L

=cz 16(1- 2W0 ) c (Cos' - n')O an +
v4 4 1Cos CPO

V 3ao TTA/

+ 4-os (-1+aoIsin~o)] ,if C P 0

[2 k(2ao)J , if C = 0.

The dimension of a and a Cz/v is in radians, the other quantities
are dimensionless.
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With a simple inte-rpolation focrnula it is possible to combine the
limiting cases in Eq. 04 to gencral valid formulae that can more

easily be used than the numerical integr'ation procedure described
earlier in this chapter. The intevpolation formula appropriate
for Eq. 64 is

f(x) =. [Eq. 6S]
I•-- + i )I/

The function!s f 1 (x) and f 2 (x) are the approximations for
a0 < I dud ao >> i n Eq. o4(, respectively, with onemodifica-

tion: the appi-oximation for Gi should read

=T [(0-.S+12Kr afj) Cos2 C + (I1.31 + J1In a. I) Sir?~ ]
C C C [Eq. 66]

L

to provide a defined function for all values - The exponent m

in Eq. 65 can be chosen arbitrarily; m - 2 has shown to approx-
imate the equations with sufficient accuracy.

The relations in Eq. 64 contain the facet length L as the independent
variable. For practical applications this length L has to be
chosen. The calculat io. " L :4 .-. A ..... -he nex-*-rbnr.

3.3 Calculation of the facet length

The facet length L is calcutlated following the general procedure of
Sect. 2.3. The starting equation is Eq. 38, which is evaluated for
the Pierson-Moskowitz spect rum [Eq. 55]. First, the variance

C= EJ p2 j is calculated, employing Eq. 42

IT

22v 4  cosn(to- ) [Eq. 67]h O efos
n 0

( 1 2 2cosu 2 sinu+)S0+ dcp
0 0

where u is defined in Eq. 61. The derivation of Eq. 67 can be
found in App. C. From Eq. 67 it is seen that

al = kfia' [Eq. 68]

therefore the results in Figs. 13 and 14 are given in this form.
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As for thc facet. stat istics. t lie limiting formwz for a << and
a 0 >> I are calculated in App. C. It is, for n 2:

for a 0 <--

v0 288 L

[Eq. 69]

for a 0 » 1

x• 2g

For these liniliting fotrms, Eq. 38 is solved in closed form, giving

for a0 << 1

L -1

4 + sill :0 PXo •'- ( 3c~os• + .......

[Eq. 70]

and for a >> 1
0

1/X0

The two parts of Eq. 70 are interpolated tu a general formula
with the result.

L _ [Eq. 71
X I ( I cos2cp-T + sill . CPO'

This is an i~mportant result, as it relates the surface parameters
of wind speed v and wind direction cpc and the acoustic wave
length X to the facet length L. Equation 71 is plotted in
Fig. 15, fogetlher with the exact result. obtained by the solution
of Eq. 38 with an iterative procedure on the digital computer.
The figure shows that the maximu~m error does, not exceed 20%; thus

-- 1.9



the apt)oxlinjatioii should be suf'ficient in most cases. It is furtlier
seen that the quality ri,'mber N = L [Eq. 30] is always greater thait

10, therefore the errors induced by°t he facets are negligible and
tilt- j)rol)lem of choosing tihe facet leiigtlt does not. need further
invest igat ion.

TVi samle procedure was performed for thie, exponentt 11 = 4 of tile.
di 'uctivity law, tilie result is shown ilt Fig. 10. Figures 15 and 10
are similar, the only di.ffrtince is a largei \'aviat ion of L wit Ih
tile direction angle p0 .

3.4 Resitl t i ug doppl er specl ra

The computer t'esult.s for doppler speetra wil now be discussed, tihe
facet statst iscs being calculated as described in the preceding
sect ion. The doppler-density spectra usie Eqs. 47 and 48; 1 lie sea
surface spect rum t'2 (f, cP) employed chliere is tie sprt runm due to
Scott [Eq. A.60] and the mixing function W(f, Q) is found in Eq. A.04.
This choice of the sea-surface spectra seems to be tile best possibil-
its' at piesenti. It should be understood, howev!er, that the general
result fon the doppler density of backscatte.'ed sound can be eval-
uated fot an.)- sea-sttrface spectrum wrintten in a fornt used here.

In Fig. 17 the influence of thlt' grazing angle yo on the doppler
density is demonstrated. The x-axis shows the doppler shift f -f

In hertz, the y-axis shows the doppler density cp(f) in h/Hz. The
angle y 0  is changed from 20 to 200, thec wjind speed is v=- 8 m/s,
the incident acoustic frequency i.s 3.5 kHz, and tIhe main dij eel iin

of --he su-rface Wav Cs poini s away f rom the soinlld s•uttlce. This causes

an asymnittry ill tile specti'num, which is explaiined as follows. The
corclat ion between f he facet slope and the facet vert ical velocity
is negative in this case; this means th fat a large angle bel.ongs to

a negative velocity. This velocity cutsses negative doppler shift;
as the slope is greater for the ncgat ive velocity than for the
pisitive velocil y tle backscattered energy is great e-. Ill this

iiguul'e the sea-surface spectrtun is ornuidirectional in the freqluency
range where resonant scattering occturs: about 2.7 Hz or 20 cm wave--

lengthI. The lack of symmiLt y is due oi ly t~o the facet movement.

It the orientation, of the sea surface specturni is 900 off the
incident. wave vector, this effect does not occur, as is seen from
Fig. 18.

At this point it is instructive to compare these results with those
of another, very simple approximat ion. lii this approximat.-ion the
variances of ux and tzi are calculated as second-order moments
of the sea-surface spectrunt, This is the special case of the facet
model with facet length L = 0. The slcpe of the sea surface is not
considered.

Figure 19 shows the result of the approximation for a limiting
frequency tLg -= I Hz, Compared to the previous figure it can be
said that for small grazing angles, y0 ý 20 to 60, the differences
are up to 20 dB. Moreover, Ithe asyn1metry of tihe curves, which must
be expected from ph, ysical reasons, is not iztcorporated in the model.
The small asyinmetries it, the frequency region from 0 to 2 Hz are due
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becatuse the Bragg frequency iG shi"tcd to the omnidirectional, part,
of the sea-surface spectrum, Tile Ilniting frequency is f = 5 lz I
ill this case; this means that for f0 = 33 ldlz the Bragg frequency

is f1 8.25 Hz and accordingly the spectral density cp(f) is
almost symmetrical.. In this figure thc modified Scott sea-surface
spectrum is used. If, instead, the unmodified spectrum is used u;-
to f" = 5 Itz and above a omiidirectional spectrum, the result of
Fig. 8 is obtained. The asynunetry of the lowcr acoustic frequencies
is considerably higher than in the previous fig-ure. For fo = 33 kllz
tin-: curves are almost identical. This shows that the choice of the
limiting, freqitcncy and the modification of the Scott spectrum is
impo;rtant'. A comparison with measurements will. be necessary to find
out -the optimum values for this parameter.

The last three figures show the results for the doppler dehnsity at
higher wind speeds. The limiting frequency was chosen as fg 2. 5 lz
In Fig. 29 all parameters are the same as in Fig. 28ý, except that the
wind speed is doubled. In Fig. 30 the direction angle is changed to
PO =- 900, thus giving symmetric curves in this crosswind case.
Figure 31. shows an example for an extreme wind speed v = 32 m/s,
where even the low acoustic frequency fo = H0O ttz produces a doppler
spectrum with a double gaussian shape instead of 6-function peaks.

CONCLUSION

A theoretiAcal model, for the doppl.r spread of the backscat tered4t.. ... • .. . . .. c-C

acouSti C. "a'i S Ii IJ t II th7 I0L2JL Sea itrLLaCe is dieveloped ti. makes use
of a two-componont st.i-Ictot're (facet. model) of the sea suriace.

The mode] requires a description of the statistical properties of the
sea-sul'face t'oughinss includifng the directivity arid the mixing of
incoming and outgoing waves in one direction as a function of frequency.
The concept of the-,mixing function is necessary to obtain asymmet-
rieal doppler sptectra as a function of the wind direction. The
parameters of this function need experimental verification; in par-
ticular, the optimal value for the limiting frequency is not yet known.

The gene-ral result of this paper is a set oforfmi f Ina' for hnl ) the
facet, statistics and the doppler spectrum in terms of the sea-surface
covariance funct ion or the sea-surface spectrum. The results can be
used in two ways:

1. Measured sea-surface data are used to fit the parameters
iF analytical spectra such as the Pierson-Moskowit z spectrum ol the
Scott spectrum.

2. Meashrred spectra are inserted into the general formulae.

The p-ocedure, de, eloped for the choice of the facet length L shows
that tihe qualit3 numbefl N = L/X 0 , where X0  is the acoustic wave-
Ie igili, is ne.ýver smallor than 10, thus the aperture error due to
finite facet length can be neglected.
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onliy to the different results of the small-scale roughness back-
scattering. They depend linearily on the sea-surface spectrum and
have nothing to do with the facet movements and the correlation
between slope and vertical velocity. This effect. can be quite
important, if the sea-surface ,ij,ectrtru is asslumed to be direct.ional
up to high frequenciCs.

Figure 20 shows the same case as before but for- fg - 5 liz, where
the asymmet-rical effect is clearly seen. * I .he facet slope is

considered for, the simple approximationr, a considerable change
occurs in the rcsults. The staitdard deviat ion ce of the facet
slope tends to iufinity when L approaches zer*o. To avoid numer-
ical instability a facet length of 1, = 0.0001 m was taken. 1in
Fig. 21 the result is shown. As is to be expect ed, the influence
of" the grazing angle Yo is smaller and the total backscattered
power' is much higher.

These considerable differences, show the need for tlie facet model in
the doppler-spread calculation.

The result of the facet theory lies betw,•eea tile extremes of the two
ptŽeviouLs figotves and is shown in Fig. 22. Here the asymmetry of
the curves depends on both the cort' lat ion of the jacet. slope and
velocity- and the asymmetric rte-iults of tlhe r-esonant backscat.tering.

'The cur1ves depend quite sttrongly on tle I imtitintg ft'equeicv fg
which is specially apparent i t' I e9,nds to int'ioity, leadin g to a
spectiumn that has a directi vity up to ihlie higho-st ftrqueic1 ci.eSo This
case is shown in Fig. 23 for t he same paaran,1ters as. n tlie previous
figures. In fact, the figutre containus only one blanch of the usual
tw a n nz l vc-ne 6 -function occurs in the Bragg-scat t ei ing case.

This is cI course a somewhat academic example.

Figu re 24 shows thlie variat ion of the dopplei density with thie
or' exit ati( n angle CPO for a grazing angle Yi ýs 00 , a wind speed
v - 8 ni/s, and an incident. frequency CO 3.5 khl7. The angle CP
is vat i.ed from 00 to 1800 in steps of 20c, Of cour'se, for p =

and QC -- 18oo the aict isynmiet cic result occtrs . The infilence of
Co each(es from abcut. 5 dB variat. ion at. low doppler' freqiencies to

10 dB at about 10 Hz doppler shift . Aga.ix, the sea-suolface spectrum
is cons_,det ed omntiCiC.rectional at t-he Brag- frequency of about 2.7 fyz.

Figures 25 and 26 show the influence of the wind spee-d for a fully
developed sea. The grazaing angle y is 6°0 the or ent~at ion angle
cp is 0o, and the acoustic frequency f is 3. 5 kliT. In Fig. 25
tfe wind speed varies from 2 mr/s to 32 m7s in geometrical. progres-
sLion, in Fig. 26 from 2 to 20 m/s liiearily. Fow low witnd speeds
the facet model is secn to be superfluous, as the doppler density
consistss -Ni-t uaIly of two 5-functions due to the Bragg resonant
scaitering. *or high winid speeds :he backscat tered eu2negy is con-
side'able Iighe r, but Jt is spread over a higher f'reqtiency range;
the batckscat, iered energy at, the Bragg frequency does niot change
consi de'rabl y.

The next -ii-g-res show tihe dependent.c of the resutIlts on tihe incident
aco)ustic flequiency f0  F'igu ic 27 shows the doppler density versus

the normal ized ivoequeutcy At __0 t or f= 0.33, ., 3.3, 10 andfo i
f C)-f=-

33 kltz For tVie low frequency Fo 33C litz the Rayleigh condition
;s fulltilled; thus the doppler spectral density consists of two
sharp peaks. With increasing frequency tle facets become more impor-
t aut all,' at the. same tLime the asymmetr-y of the curves disappears,
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The general results for the statistics of the facets are evaluated I
for a Pierson-Moskowitz spectrum. Ali approximate closed-formn
solution is obtained.

For the numerical evaluation of the general result for the doppler
spectraldensity, a more general sea-surface spectrum due to Scott
is employed, which contains the Pierson-Moskowitz spectrum as a
special case.

Examples for different wind speeds, wind directions, grazing angles,
and acoustic frequencies are calculated via a computer program.
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APPENDIX A

SEA-SURFACE DESCRIPTION

A.l Introductor y

The sea surface h(x, y, t) is considered as a stationary three-
dimensional process that is assumed to be gaussian distributed.
Then the statistical properties of this process are completely
described by its covariance function C, which is defined as

C(x, Yi, tY, x 2 , Y 2 , t2 ) = EIh(x 1 , Yi, $) h(x 2 , Ya, t2 ) 1. [Eq. A.1l

The symbol El... I denotes expectation.

Because of the assumption of stationarity in space and time, the
covariance function is dependent only on the difference of the
variables. The following notation is used

X1 - X2 = X, Y1 - Y~a = YY tl - t2 = Eq. A.2_'

where x and y are spatial displacements, T is the time
displacement.

The covariance function is related to the three-dimensional wave
parameter frequency spectrum Xs(k., ky, f) via the three-
dimensional Fourier transform

+OD

X(k, ky, )= T C(x,y,) exp-j2rr(-kxx- kyy + fT)f dxdyd)

and [Eq. A.3]

C(x, =YF XS(k,k yf) explj2r(-kx- k y+ f-r)1 dkxdkdf,

where both, X3  and C are real-valued functions and f is the
frequency. The components kx arld k of the wave parameter k
are

k2 + k2 =k 2  and [Eq. A.4]
x y

where X is the wavelength of the corresponding surface wave.
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Equation A.3 states that the sea surface, with the assumptions made,
i s described by the covariance function C or, the wave parameter
frequency function X3.

In the following, both forms are considered in more detail.

A.2 The wave parameter frequency spectrum

Assuming that the dispersion relation, (Eq. 4 of the main text) is
valid, the three-dimensional spectrum X3 (k ,k y, f) can be written
as

X3 (kx, k y/f) X2 (kx, ky) W[kx sgn (f), ky sgn (f)] [6(f-f*) + 5(f+f:*)]

[Eq. A.5]

where

f* = + k2 [Eq. A.6]
2TT X y

In Eq. A.5, the function X3 (k_ xky) is the wave parameter spectrum.
X(k k ) contains the orientational information of the frozen sea
surface' The "mixing function" W describes the ratio of incoming
and outgoing waves for a given wave parameter vector. The function
W(x,y) has the properties

0 •5 W(x,y) S5 1

and [Eq. A.7]
W(x,y) =l-W(-x,-y).

It is used in Eq. A.5 with the complicated argament WLkxsgn(f),kysgn(f)]
to fulfill the symmetry relations imposed on the wave parameter
spectra Xa(kx, k f) and X2 (k ,k) , namely

X 2(kx, ky, f) = X3 (-kx, -k -f)

and [Eq. A.81

X2 (kI k, k ) -= X2 )-x' -ky

which are necessary to obtain a real covariance function.
Apparently, the normalization for X8  and X. has to be

C(ooO) JfiXs(kxky, f) dkxdkydf

and -m[Eq. A.9]

C(OO't =%fir X2(kx ky) dkxdky j
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Ine oasxc equation LEq. A.SJ will now be formulated in terms of other -
functions describing the statistics of the sea surface as well.

First, a description in polar coordinates is given. Equation A.9 is
rewritten as

•= I X2 (k, k dk dk [Eq. A.10], x v"

=jf X2(kcsc , ksin C)kdkdcp , [Eq. A.1l]

O --TT

where Ch is the standard deviation of the sea-surface height and

Kx = k cos k, = k sincp . [Eq. A.12]

Instead of the wave- parameter angle description, a frequency-angle
description can be used. Defining a function F2 (f, e) via the
normalizing equation

h J j F 2 (fc p) dfdp [Eq. A.13]

o -IT

the relationship to X2 (kx, k ) is

8i-? f 5  2rf2  2rrf2

F2 (f IC) = gf X22  coseP, -- sing p [Eq. A.14]

or

X2(kX9 ky 2 f, arctan , [Eq. A.15]
y

where again the dispersion relation of Eq. A.6 is used.

F2 (f, c0 ) has the symmetry property

F 2 (f, p) = Fa(f, C .- rr . [Eq. A.16]

Inserting Eq. A.15 into Eq. A.S gives

X(,K f - g F 2 ft7,arctan9I)W[kxsgn(f), ky sgn(f)]
Y f - rr f.

[8(f - f*) + [f+ f*)] [Eq. A.17]
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The mixing function W(kxk Y) can be re-olaced by another function
W(f, cp) with the arguments f and e0. This function has the
property

0 :S; w(f, P!I

and [Eq. A.18]
W(f, p) = 1-W(f, cr+) . J

Although the argument of W has changed, the letter "W" is used for
both functi:ons, as there is no danger of confusion. Introducing
Eq. A.18 into Eq. A.17 yields

Xp(k,,k f) =82f*$ F2gt  
. arctan )W f*, arctan -)

6(f -f*.)+ 6 (f+ f*) [Eq. A.191

where u(x) is the unit step function

0 x<0

x=(x) 2 [Eq. A.20]

1 x> 0

In many practical cases the dependance of F2 (f, P) on ep is not
known and therefore neglected. Then a wave-parameter spectrum
X1 (k) normalized via

= X, (k) dk [Eq. A.21]

describes the sea surface. The relation to X2 (k, k,) is

,2 + ) 2r i X2 (k, ky). [Eq. A.22]

Using again the dispersion relation of Eq. A.6, a frequency spectrum
FI(f) introduced that is related to X, (k) via

or (f r 2rf Eq. A.23]

X1(h) = '7 k FJ T~

where F, (f) is normalized with

Yh = r F1 (f) df . [Eq. A.24]
0
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As •1

F2 (f T) dp= r1 (f) [Eq. A.25]

-r

the relation to F2  is

F1 (f) = 2rv%(f,cr) , [Eq. A.26]

if Fe is not dependent on w.

In the case of omnidirectionality the mixing function W is
normally set to 0.5. Inserting now Eq. A.26intoEq. A.19: one
obtains, for this special case of practical importance

X (kx, ky., f) -FP (f*)[6(ff-.f*) + 8(f*f*)]. [Eq. A.27]4 (2 17f ") -

In this special case the relation

V (i. L1 fI = v (L' I I L- I IcfI')F~ .A.8-3-X y7-1'- 1xi7'1--y1'' 1-' [I. A.8

holds, which is not valid in general.

A.3 The covariance function

A.3.1 General

All .v,:lations .... B re C p-n. A . .1 o . . . . ."-O-f--l f--. . ." .

domain have consequences for the covaciance function C(xy, T)

according to the Wiener theorem of Eq. A. 3. In- this chapter the
relations are listed with a few comments.
Intýroducing Eq. A.5 into Eq. A.3, one obtains

C(x,y,T) = T ky)[W(kxkky) exp{j2rr(Trf*-kxx-kyy)1

+ (I-W(kx, ky) expi~j2Tr(-Tf*-kxX-kyy)l]dkdk

± dkx dky

[Eq. A.29]

If T 0 , the , ovariance function C(x, y, o) of the "frozen"

sea surface is obtained, which. of course, is independent, of the
mixing function W.
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Equation A.29 can be written in real form using the symmetry
relations of X2  and WO To show this, the following theorem
is applied. If f(x,y) = fr(x,Y)+j fj(x,y) = f*(-x, -y)
(x : conjugate complex) then its Fourier transform is

F(X,Y) = f(x,y) exp I2Trj(xX+yY)I dxdy

U

U
= 2j f r(xY) cos [ 2(xX + yY)] -f.(x,y) sin[27(xX + yY)] dxdy.

o -C

[Eq. A.30]

In this case it is

f(kxky)= X 2 (kxk y)[W(kxk y)expl2njTf*• + ( 1-W(kx, ky)expI-2rrjIT ff*],

[Eq. A.31]

which equals f*(-kx, -ky) as can be shown simply. Therefore one
obtains from Eq. A.29

C(x,y,¶) = jJ X2 (kx,,k y)cos 2nf¶ cos 2 rT(kxx + k yy)

+4 [2(t iL, L )i cin rf*.r I--n-r4-11 ~ A dL, AL,I y -X X y

[Eq. A.32]

The introduction of polar coordinates according to Eq. A.12 gives,
in the comp]ex form

"k +T1

C(x,y,T) = X 2 (kcoscp, ksincp) {W(k, ej) exp[21Tj(¶f*-k x-k Y)]

o -7-

+ [i -W(k, c:)] exp[2Tj(-Tf*-kxx-k yy)]I kdkdcp, [Eq. A.33]

where

W(k,c) • 1 1
and [Eq. A.34]

W(k,w) = 1 - W(k, ; :T)
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The real form is

0 +TT

C(x,Iy,T) IjX o p i p o T -f*cs2Tk(csc snp

0 -1rr

+ [2W(k,cp) -1] sin 2rTT f* sin 2rk (xcos cp+ ysin cp) Ik dk dtp.

[Eq. A.35]

Using again the dispersion relation, one obtainis for the complex
form in Eq. A..33

C(x,y"r) = ,X(ýý o ,2Tf 2  in p)

o -TT

W(f, tc' cxpl 217j[¶f -- (xcos cp+ ysin cp)il

g g

[Eq. A-36]

Where W(f, Cp) ha-s the property of Eq. A-34.

For the real. form one obt~ai ns
- TT

2(2 2TTf2 2,T j 2  co (fcsý2Trf ) 2

C(x,yT) x 9-0 cp -Sn i.P){COS 2nf (xcos cP+ ysin CO

o -7r\

(2Tf)ýý8T2f

[E~q. A-37]

Using Eq. A.14, Eqs. A_16 and A.37 are formuLlated in termis of

F2( f, ceý) ,yielding

C(x,Y,T) j- Ff, C)( W( f, T) exp I2T~j [ Tf 2¶- 1- (CS ysin ~)J
0 -7

[Eq. A-38]



and

C(xy,w) =j j F2 (f, p),cos2TfTcos[ ()f) C(osp+ysinCP)]g
o -TT

+[2W(f•,) l]sin,2nf- sin[ (21f)2 (XCOSCP+ysin P)] dtdf

g

[Eq. A.39]

Because of the symmetry properties in Eqs. A.16 and A.34 the
integration over c0 can be performed from -</'2 to +nT/2 ,

taking the result twice.

A.3.2 Special case

Now a special case is considered, which simplifies the general
formulae. The simplification is applied to Eq. A.39; for the
other i-elations quite similar formulations apply. For the mixing
function W(f,ep) the following equation is assumed

w , for tP - CP 1-< CP, TT
W(f,'p) = [Eq. A.40]

i W 1 ese where

Inserting in Eq. A.39 yields

as +T/ 2

C(x,y,T) = 2 F2 (f,cp) cos 2irfr cos [( 2f)2 (xcos-I+-ysIn)ep)] dtp

0o -T/g

cpw+7r/2

k ,W LL g - WI.J Y

cpOw-i-/2 [Eq. A.41]

The second term in Eq. A.41 can be written in this form because the
int.cgrand I has the property I(ep) - I( CP±).
In the extreme case Wo1 and cpw=O0 Eq. A.41 takes the form

. </2

C(X,y,T) = 
2  j F2 (fIP) cos [2rrf- - iff)2 (xcos cp+ ysin icp)] dp df.

g

o -<7/2

[Eq. A.42]

This case is oftein assumed in the literature, e.g. [Ref. 10].
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For an extremely %implified sea surface, namely a pure sine wave
with frequerncy f( , travelling in the direction co' Eq. A.42 is

isoVll' iicl ,G'8d t,.,1m. In this. case, F2 (f, 0) has. the form

Fr(tep) = -+- [6(f-fo, cp-cp0 ) + 5(f-fo, 6f- f 0 -Q)] [Eq. A.43]

and C(x,y-,T) is

2 ~~ 2Trfo )2 T
( o C[2o21f 0T--(-e()) (xcosCP +ysin CP)], f if [<

h0 g 2co•s[2Thfom+ (xcoseo+ysin co)], if 1•I> •-
g "2

[Eq. A.44]

The other' extreme is W. = 0.5. Then the result is

* +r

C =,~,) jJ Fd (f,") cos 2rfl cos [-2-rL)(xcos vp-'- ysin e)] dcp df.
g

0 -7r

[Eq. A.45]

If; in addition, F2 is independent of Py Eq. A.45 becomes

C(xvT) = F, (f) cos 29TfT Jo / +y2 ] df , [Eq. A-40]
0

where J (x) is the Bessel function of oider zero.

The complex form of Eq. A.46 is

C(x,y,r) T 7 Fr (f) Jo [ (2T'f)f2 g
0

[Eq. A.47]

If the two-sided version of F;' (t),

F 2(f) F, V lf) [Eq. A.4.F]

is used, Eq. A.47 becomes

C(x,y,-) T F( f) exp{2Trjr f J (2+Tf) x ] d [Eq. A.49]
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A. 3.3 Examples

For use in the application of the general theory, two versions of
sea-surface spectra that are of practical importance are, described.
The first is the well-known Pierson-Moskowitz spectrum that has the
form F', (f)

F2 (f,c) cos(cp- CP) , [Eq. A.501
x1n

wher e

4 (f) expl-o( )-. } Eq. A.511

and

Xn = cosn(p -po) = 2n+l 2 LEq. A.52]
-n r(n+l)

(n-])!!
-T 2(n [Eq. A.53]

Equation, A.53 holds, if n is an even number. The cons1 ants a and
S iii Eq. A.5i are

0 = 0.0081
arid [Eq. A.54]

5 = 0.74

In the same equation, v is the wind speed.

For" calculation purposes, Eq. A.51 Is too complicated, therefore
it is slightly modified to give a spectrum very similar to the
Phillips spectrum. The modification is

FI(f) a 2.)5 [fEq. A.55]

0 , else

where fs is tho frequency, for which the equation

NS

r exp- g( ) g if df [Eq. A.56]

o (2,) 4 f5 fvJ (2TT ffs
holds. The solution of Eq. A.56 is

f s=--s-4/ [Eq. A.57]
2rrv
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The second spectr'um, due to Scott [Ref. 15], takes into consideration

a frequency-dependent directivity of the surface waves. The spectrum
has the form

i (f,cp) F1A ( Ff)lcos( - [Eq. A.581

where

S5.5.Hz [Eq. A.59]
2rf

and A is a normalizing factor.S

Unfortunate]y, Eq. A.58 violates Eq. A.16 and hence gives no real
covariance function when transformed into the time, domain. Therefore
Eq. A.58 is -interpreted as a producL of' a two-dimensional spectrum
and a mixing function W(f,cp):

F (f,cp) A sF1 (f) [i ( 2-•S) .3s + Is'in )O Ij

[Eq. A.60]Ice K4,-2
• . .,-, -_-- °- o - F . ..... 1

cosC( -I ) 12S + fsin(I

and

A - 1 [Eq. A.62]
r co( - po 0 s C PO 2s[[jCos ( Z)i + Isill f)t51

.TT L-J

I-(2s + 1) [Eq. A.63]

2s" "r2 (s +4)

Equation A.61 is still unsatisfactory as it does not give the
omnidirectivity of the high-frequency surface waves.
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Therefore the Scott spectrum is mcdified by introducing

I p - CPO
B + I cos( 2 2S

W(f,) -.---- , [Eq. A.64]
2B + -os S + fsI! as

2\ 2

where

B f }2 [Eq. A.65]
fg9

and fg is a limiting frequency.

For f * 0 , the spectrum is omnidirectional for all surface waves,
for fg 4  it gives the unmodified Scott spectrum.
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APPENDIX B

SMIALL SCALE ROUGITNESS BACKSCAT'TERING AND EXTENSION OF THE THEORY

The theory of backscattering of acoustic waves from the moving sea
sim face is well established for the case of small-sea surface
roughtiess. For sake of completeness, the theory is derived inl this
appendix, together with a possible extension of t he accuracy of the
results. However, this extension is not further investigated in the
main text.

B. ] Exist ingL t heory

Thi geometry of Fig. 1 of the main texi, is used.

Combining the results of Ref. 8, pp. 13 and 34 the pressure of a
scattered plane wave incident to an aperture ab is approximately
in the far field (r-4.o )

p(i",ycO,*t) = S'fP expj2rrj(-k r+f t01r 0 0 0

+a/2 +b/2

i r expf2ru k [x(a - cos yo ) + y5 + 2sin y0 h(x,y,t)] I dx dy ,

-a/2 -b/2
[-Eq. B.1]

wh~ et c'

Ct cos y " cos w0

P --- cos y • sinl

f frequency of incident plane wave

k - wave parameter of incident plane wave =
0

p0 = pressure of incident plane wave

and

1x 9,yyI)= sca-surface function as used in Eq. A.1.

The incident wave is assumed to be in the x-z plane (co =) ,
wlich can be done withouti loss of generality.
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Insertiung Eq. B.1 into Eq. 1 of the main text yields

sin Zy- P k

r

+n a/2 b/2

IfIfIJI expj-2Trj k[xi (a -cosy 0 ) + yij 0 exp I-2TTj f 0 ti
- -a/2 -b/2

expI21Ti k 0E[x9 (a - cos y 0) + yq]1 exp 2Trj f 0 (t+T)

E( expI-4Trj k0 sin y .[h(x]3yit)- h(xgy 2 ,t+¶) 1)

expf-2rrfTldxldx~dy2dyyd . [Eq. B.2]

With the substitution. x. -x =c x,, y - Y y and following
the derivation in Ref. 8, p. 59 one obtains

sin2 y . p' ab
s "f.P Pt k expf-(4Trk, * sin yo) C(O,O,O)f

+ a b

(1- 1) (1- Ly) expj(4rik siny )2 C(X.yT)l

-- -a -b

exp{-2rj[(f- f0) T - x k0 (CL- cosy)- yk 0 0]1 dxdy dT. [Eq. B.3]

It is assumed that a>>IxI and b>>»y[ for all values of x and y
where C(xy, ) is different from z~ro. Then the integration in
Eq. B.3 can be performed to infinity and .L. and 4 are neglected
against 1. It follows that a

sin2 Y.P2 abk-s
r.2cLf• - -0 exp[1-(4Trko0si~n Y0), C(O,O,O)

4-•

Jff expl(4rrk0siny 0 ) 2 C(x y*T)1

expI-2njE (f - fo) T - k0 X(a - cos y)- k0 y] dx dy dT

[Eq. B.41

For the slightly rough sea surface, it can be assumed that

(4nk0 sinY0 )a C(O,O,O)«l<< [Eq. B.5]

and the exponential in Eq. B.4 is expanded in a power series and only
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the firs&h twc terms are considered. It is

expl(4~k sinYO)' C(x,y, T )wIl+(4TTk sin)y C(x,y,T) , [Eq. B.6]

giving, for Eq. B.A j

0(faCLIP) y PO ab P0 [6(f-f 0 ,k (Ox- cos y ), k0 ¢)2• 0 0

[Eq. B.7]

+ (4nrk sin y0 )2 X3 (k0 (•-, cos , ko, f-fo)].

Equation B.7 makes use of Eq. A.3 and the integral representation
of the 6-function. The first term in Eq. B-7 denotes the specular
reflection, the second the scattering term. In this case of back-
scattering, Eq. B.7 takes a special form by putting c= • and
Y = Y0 . Using the definition for the backscattering doppler density

(f,c,~ )ra [Eq. B.8](P(f ) = - ,
P ab

the result is

CP(f) = (47) 2sin4yo0 1 X3 (-2k 0 CosyoOf-f 0 ). [Eq. B.9]

This is Eq. 3 of the main text. When integrated over f, Eq. B.9
becomes the backscattering strength q in Eq. 10 of Ref. 5.

If the dispersion relation [Eq. 4] is considered valid, the spectrum
X 3 (kxkyjf) is replaced by the two-dimensional frequency angle

spectrrum Applying Eq. A.19 one outains for Eq. B.9

2g'2k0 sin 4

0

C(f) - • F2 (f*,O0) [f*T) 6(ff* )+W~*O 8(-f'

[Eq. B.10]

which is Eq. 5 of the main text.

Equation B.10 can be simplified by the assumption of omnidirectionality
of the wave parameter freqLuency spectrum for the slightly rough sea
surface. In this caseJ W = 0.5 (see App. A) and the sea surface is
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dcscribcd by the frequency SpeCtrum -1 (f). Using Eq. A.2

oi)e obtains

45
CP(f = sl YoF (gft 0 ) [I(D-f.-f *) + 5 (f-fO+f*)]. [Eq. B.11]

This equation, when integrated over f gives the result known from
Eq. 18 of Ref. 5.

B.2 Extension of the iteor- for the doppler spectrum of the

sma] 1-scale roughness sea surface

The presenit theory, as is seen from Eq. B,10 gives two 6 -functions
for the backscatter'ed doppler spectrum of an incident monochromatic
plane wave.
A possibfl extension would be to consider one more term in the
series expansion of Eq. B.6ý This third term has the form

T3 = 4(4rk0 siny )4 C'(x,y,T). [Eq. B.12]
2 0 0

Here only this term is- considered.

Inserting Eq. B.12 into Eq. B.4 gives

11 y p abk 2

(2si y P2 a exp{-(4nk 0 sin l )2 cC(O,O,o)

+as

jj4(47rkS sinI y 0 ) C(, yyr)'
•-w

exp{-2rj[(f-f 0 )T - k 0 x(a- cosy0 )- kY ] dx dy dT.

[Eq. B.13]

Equation B,13 has to be added to the first order result Eq. B.7
t.o obtain a second-order, formula.

For the covariance function, onmli-directionality and W = 0.5
is assumed. Then C ( x, y, ,) is represented by Eq. A.49, which
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is iose. ied into Eq. B.13, yielding

-f-tm 4 i--

((f,,)= G) JJF(f) F(ff) exp{27rjf1Tr expj2Tujf 2  --

TT j~y (2T~ 1x2 +
g g

cxp{-211j[(f-f T k ) x(ct- cos y 0 )- kY y } d df2 dxdy dT,

[Eq. B.14]

wh e rc

sinl 2 p 2ab k2 p 4
G =-- 2r20 0 (4rrk sin y ) expl-(4rk 0 sin y a C(0,O,O)j . -

2r• ~[Eq. B.15] -

Equation B.14 can be integrated over T in closed form. The result
is

= GJJ 2 F(f 1 )F(f 2 ) jo g'-)2 A/.7 ]J gZT7J

expr2Tj k [x(ct-cos y0 + y ]16(f1+f2 -f+f )dfi df, dx dy.

[Eq. B.16]

Next. the integration over fl or f2 is performed. The result,
after integration over f2 , is

•(3)(f';8) G F (f,)F (f-f -f, )a°L

-" [2TT,(f-f.-fj rX)2+ ]

expI271j k 0[x(a- cos Yo ) + y] df1 dx dy. [Eq. B.17]

Changing tc polar coordinates, where

x = R cos cp

y = R sin p
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gives

t(t)(f,CLO) =G F(f) F(f-f -fj a Oo ) R a -J-

-- 0 -IT

exp! 2j R k ( -cos y)+ P" cos( cp -)R dR dp ddf,

[Eq. B.18]

where
CC - cos Ya and sin

cos 1$ = " an sin__ = • , " -....

(a-cos y)2 + 2" (AOLc- Cos Y 0 )2 + r2

Integration over p gives a Bessel function again+W 0 F( 2T-f3.)• [ 2TT(f-fo- fl.)]2]

0(3)(fa,,)=G F(fj)F(f-f 0 -flJ 0 -2 - RJJ 0 [_RJ

-m0

2r JO[21R k 0 J(- cos y 0 )a + Cl0 RdR df+ . [Eq. B.19]

Using a result from Ref. 12ý, p. -412 and Ref. 1.3, p. 334

T J 0 (at) Jo(bt) J,(ct) t dt

1 b: + c2 - a2 [Eq. B.20]-- - ' if J[cosAJ = I --- _1=
rnbc sin A 2b c

0 otherwise

and inserting into Eq. B.20 gives the final result, which is
written down for the backscatteving case using the normalized
backscattering doppler density as defined in Eq. 2

()f 4k 0 g2 sin y0 exp{-(4rrk 0.sinyo)2 C(O,O,O)1

dft.

F(f 1 ) r(f-.f-f f f E1) [Eq. B.21]

I fjf-ff)2 sin A (f
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The integration over f1  is performed only fox, those values of
fI, where jsinA(f) JCl.

For cosA A one obtains

f2 (f-f0-f )2 g fC0 0
cos A= + . [Eq. B.22]

2(f-,f 0 -f1 )2 2f2 2(rrcf 1 )2 (f-fO-f )2

The evaluation of Eq. 11.21. seems possible only by numerical methods.
This is not investigated here.
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APPENDIX C

STATISTICAL DESCRIPTION OF THE FACETS

C(. I introductory

The starting equations for the derivations of the statistical
properties of the facets are Eqs. 12 to IS of the main texn.
These equations lead to the facet inclination 7c, the vertical
and horizontal velocities lix and uz , and the crossmoments.
Further on in this appendix the sea-surface roughness on the
facet ah(L) is calculated. For, ah(L) , Eqs. 39 and 40 are
the st r'ting point.

This appendix has two sections. Firstly, a genieral result in
terms of tile sea-surface covariance function C(xy, i) is
deri.ved which is evaluated in the second section for a Pierson
Moskowitz sea-surface spectrum.

C.2 General results

C. 2.1 Formulation in terms of the covariance function C(x.y, 1)

Tie facet is represented by a straight line

f(x, t) - (t) 4+ b(t) , [Eq. C.1]

such that the mean-square error c(t) between the surface
oiinction h(x Y=yt) -O and tile facet, equation f(x,t)

L/2

e(t) 1 [h(x,y,t) - e(t)x-b(t)]2 dx [Eq. C.2]

- L/2

is a minimum. Taking the derivative of e(t) with respect to
c(t) and b(t) leads to the equations

c(t) ;U x h(x,y,t) dx [Eq. C.3]

-1-/2

and
1,/2

b(t) - ] (x ) dx . [Eq. C-4]
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The velocities in vertical and horizontal directions are repeated
here for completeness. It follows from Eqs. 15 and 18 of the main
text that

L/2
S(t) _• h~x,y,t)

u = -", x yt dx [Eq. C.5]
-L/2

and

t

u(t)0 El J (L, y, t, h( L~,y, t,) dt1.+ux (t 0) [Eq. C.6]

to

The roughness on the facet p2 (t) is expressed by the mean-
square error e(t), normalized by the facet length L. It is

= 1 e(t) ,
L

which is identical to Eq. 40 of the main text.

All these quantities are stochastic variables with the mean values
zero and variances that depend on the sea-surface properties and
the facet length L

The calculation of the variances and cron.svrjn__C -s sdem, a-tratod
in detail, for one example. The facet slope C(t) has the variance

L/2 L/2

Etl22 I "IA./ r~ x 1 h(X 1 5YY1 ,jt) I X2 h- OQ 2 It,y1,t) "x1 dx2

-L/2 -L/2
[Eq. c.?]

where t 1 = t2  and yj = Ys .

Taking the expectation E inside the integral and using the
rect-function

rect x = 1[q. C.8]
0, else

one obtains

(0

[44 1 L L E6h(x 1 ,y 1 3 t.)h(x,y 2 ,t 2 )}dxd

[Eq. C. 9 1
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From Eq. A.1 it is seen that the expectation in Eq. C.9 is the I
covariance function C(x, ,xjy 1 9 yg,t 1 ,9) of the sea surface.
As stationarity in space and time is assumed, C depends only
on the space and time differences. Therefore the substitutionsX = X -I- Xg, Y = Y1 - Ya and -r - ti - to are made, which trans-form Eq. C.9 to

'a .144 PPX+X 2  X9CXyTd q q .. P
E eI - v (x,+x) x, rect- rect-c(x,y,T) dxdx. [Eq. C..J]t L L

The integration over xa is performed by considering two cases
x>O and x<O. For x>O one obtains

LI 3 L/2-x

E 1 I44 C(x,,) +---- dx [Eq. C.11]'ta• •- ' 2 -L/

0 -/

L

3 fC(XyT) 3 --5- dx . [Eq. C.12]
L f L L0

For x < 0 the result is

0

Ee 2  
= (.+•f xY)(13 a + 2 2-) dx. [Eq. C-.131

Combining Eqs. C.12 and C.13 gives

L
ET rC(x~yT XEtc 2 i 12 X + 2cx. [Eq. C.14]

It was mentioned before that this expectation has to be taken
for t1  t 2 ) and Yi = y2 , viz. for T y = O. Then
C(xyy7) r=y=O, is an even function in x Therefore Eq. C.14

is rewritten as

L

ECa1 -
2 4 C(xy Tf, -3 + 2 dx. [Eq. C.15]

which is Eq. 19 of the main text.
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The calculation of Et{ux and EtU2 is performed analogously.

For E u2 the fact is used that

ý2 C(x,y,T)

T Y--,T0

is an even function in x, while E {fti2 is calculated using the

relation that Et1Ux = 0 and therefore C(x,y,T) 0 0 for r-+.,

The results are Eqs. 20 and 21.

For the crossmornents a similar derivation applies. For Etic Ux}
one has

ti2 L/2

EtICUxI = LI x1 h(x, ,Y) ,t :) u(x 2 ,ya ,t2 ) dx1 dx2 . [Eq. c.16]

-L/2 -L/2

Again, the substitutions y - Y2 = y , t1 - t2 = T and for the
first summand x _- x = for the second x, +L x, are made.

i2 2
It follows

EIc it 1 g x +k C(x,y, TI) d11' d= x
-L ITy=O

+1 x -(x y''dT' d-x o.C17
C(.,'. T--O -E~.. ,

o- y=O

As C(xvyT)fy=T=O is even in Y., the integral over C is uneven

in x Therefore both summands cancel out. and the result is

E.{e u =1 0 . [Eq. C.18]

The same argument leads to

E= 0 . [Eq. C.19]

This is Eq. 23 of the main text.

For Etle uzl the result is different from zero.
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T t, is

1=-c• r£ I'o
L/2 [/2L' U ,E1 X ,t dx1j dx2 4

-/ 
[Eq. C.20]

12 x + x. x2 -bC(x,yT")
= 1_ (x + x~a) roct--- ect - dx dx 2
L4 L L T Ir=o

[Eq. C.21]

The integration over x2  is performed for x > 0 and x _< 0. It
follows for x > 0 that

wL •T I x x2 --- dx [Eq. C.22]

L
12 y=O -I,/2

I'. , , T ) x dx. [Eq. C.23]
0 x •=--

For x _5 0 the result is

o

Et rie_= I )c x+--- dx. [Eq. C.24]t k L 4 j 2
-L , y=T=O

The f'r rtion

I", x .- if x > 0

2 2

f'(x) = [Eq. C.25]

L x +-2L if x _<_ 0
2 2

is uneven in x. As is also uneven in x , the result
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i-s

L

-CIxYT) X2
LJC U 1=- 2x -b-) xdx [Eq. C.26]

wl iclh is Eq. 22 of the main text.

Next the roughness E is calculated. Inserting
Eq. C.2 into Eq. C.6 and taking the expectation gives

L/2

E I !jP E{[Ih(x,y,t) - c(t) x - b(t)]- I dx [Eq. C.27]

-L/2

Inserting Eqs. C.3 and C.4 for e(t) and b(t) gives, after, a
str'aightforward calculation,

L/2 L/2 L/2

Ep I j Eh1 2 (X,y,t) jdx- _- -J Ejxlh(x1 ,y 1 ,t 1 )x 2 (x 2 ,y 2 ,)ldxldx 2

-L/2 -L/2

1,/2 L/2

f E{h(x 1 ,y, ,t. ) h(x2,y 2 ,t 2 )j dx1 dx22L J _-•

-1/2 -L/2 [Eq. C.28]

Now the integration technique used for tle facet statistics is

applied again, giving

12~ j[F + X2 X2
Et~P•1 = C(OOO) -h- (X+X2) x2 1ect,--reCt--C(x,sy,&)% dx,t0L L

x 4 X2  
x2

[2 JJ ct - C(x,y,T) (x dx, [Eq. C.29]

The integration over' x 2 yields the final result

L

Et'I p2 } C c(0,0,o) - J C(x,y, -) - + -I dx [Eq. C.30]

which is Eq. 42 of the. main text.
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C, 2. 2 Formulation in terms of the frequency angle spectrum
I.,* (f,cp)

The derivations make use of the relationship between the covariance
function C(xy,T) and t;he frequency angle sea-surface spectrum

'2 (fCp). This relationship is calculated in Eq. A.39 and is
repeated here foi convenience

C(x,y,7T) =F F(fc)ICos 2TIT cos (x cos e0+y sin 2 r)1

-TI o

+ [2W(f,Cp) - 1] sin 2nf¶ sin [(2if)2 (x cos c+ y sin cp)] dcpdf.

g
[Eq. C.31]

This equation is inserted into the expressions for the facet
statistics and the roughness on the facet a7h. Then the
integration over x is performed. The calculation is given
for one example, all other formulae follow in a similar manner.

From Eq. C.15

oscPjI- + 2L+-xd fEt3 11 ý F2 (f,C)co CO go L- L3 xa f

[Eq. C.32]

As T =0., themixing function W(f,cp) has no influence.

The integration over x is performed giving

VTT

-17 C)
E2•2 } c Pr F• f,• (1+cosaL)-.-- +(l-cosaL) 1_2

Et•,l =A F 2 (f.c , La• LI

12 sin a LI dfdp , [Eq. C.33]
L 2 a 3

where the abbreviation

a ' cos Cp [Eq. C.34]
g

is used. Equation C.33 can be shown to be

EI r'e' (TLa Cos- 2sn 2d c [Eq.C35½U• 1• ,~ F2 i"p aL - ddpCC
iA JJ a4 2
-TT o

which is Eq. 24 of the main text.
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The calculation for the other moments and the crossmonixnt is not.
made here as it is straight forwaid and follows thie above derivation
strictly. The resulting formulae are found in the main text.

C.2.3 Limiting cases

To gain a bett.er uinderstaxnding of the physical meaning of the
expressions derived in the preceding section it is inst.Arictive
to consider two limiting cases. They are connected with the cor-
relation distance xR of the surface covariance function C(xy,T).
The distance XR is defined as the 3 dB-width of C(xs,y,) in the
x-direction. The two cases L >> xR and 1 <<XR are considered.

a) L >> xR

If the facet leng-th L >>XR, then C(x,y,T) f 0 for all values
of x in the order of L , that means, x can be neglected against

L
1 in the formulae for the facet statistics. This gives immediately
the limiting cases

L

Et{ OW j L C(x1 y,¶) 1 y=.r=O d1 x, [Eq. C.36]

0

L

Etiufl '2e rC(x'yT) 0dx, [Eq. C.371z -~a P iy=T=O

¶ t 1

E2g12 gifr C(0,y,T) dt dt 1 ,... [Eq. C.381

and L

Et{e UZI- 12 jaj 2 YiT y=q=O x dx. [Eq. C.39]

0

For the roughness on the facet E tp ] follows

L

E t IPI1 (ooo)c'(X,y,T)IrT. dx. [Eq. C.40]
0

From the equations it is seen that all facet statistics [Eqs. C.36
to C.39j tend to zero for L -m while Etl{' equals the sea-

surface roughness C(OOO) in the limiting case L -4 .

Again, the above expressions are formulated in terms of the frequency
angle spectrum F 2 (fw0).

71



UI
For comi,le-tencss the results are listed below I

Et C W f sin aL df dcp , [Eq. C.411

si aa

,. COS--' 0

L Lo aL df d [E

-rr 0

Sa a
-1-'1 0 m-[Eq. C.443

and :

1"" -TT o

E, t22}m 2F(f,0) dfdcp) Wfp F2(f,c) i -i aL dfdco. [Eq. C 45]

t , a 2

-To -I to

b) L <is

In this case it can be assumed that C(xy, T) changes very little
in the. integration range 0 to L . Therefore C(x, y, T) is
expanded in a power series and the first two terms are considered.
This gives the limiting cases

Et C2 I - cx$ 0 x-O ' [Eq. C.46]

E t 112 I a2C(O,O,r-) [Eq. C-47]

z ýT2  Im =0

E {u2 dtdt [Eq. C.48]t x ax 2  X=y-T x =o

2C(x, y, T)

E - -I6T ax [x=y-T=O [Eq. C.491

and

Et I }P 0 . [Eqý C.50]
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In ternms of the frequency angl u spectrumu F2 (f, c) the above
equations are

EtIEtzf JfS F2 (fvP) a2 dfcd , [Eq. C.51]

-TT o

E{ 1 J'F2 Od F 2 (fCP) (27r.f) 2 df dcp , [Eq. C.52]
-t o

Tr

-17 0

and

--7 90Ej tic VIJIFtr F2 (f',CP) [ 2W( f ,cp) -1 ] 2rrfa df dcp . Eq. C. 54]

-Tr a

C.3 Application to a Pierson-Moskowitz spectrum

C.3.1 Solution for general directivity

For. practical .puitoses the general formujae in Eqs. 24 to 28 of
the main text have to be evaluated for a special frequency angle
spectrum FP (f, p) and a mixing function W( f,ep). The functions
chosen are a Pierson-Moskowitz spectrum and a simple mixing
function. which is found in App. A in Eqs. A.50, A.51 and A.40.

First, the expression for Ejt• 2 } is derived. Inserting Eq. A.50
with Fq. A,55 into Eq. C.33 gives

2 4 An £-, Cos n(•op (+cos aL) + (1- cos aL) 12

-- T 0

-12 sinl al I df dcp [Eq. C.55]

L 2 a 3

In Eq. C.55y the factor a is an abbreviation seen from Eq. C.34
an d

A [Eq g [Eq. c.56]

n (2rr) 4 x
n

where x is defined in Eq. A.52.
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Equatiot, C.55 is integrated over f ill closed form. Thu derivation
is leng-thy but straightforward. t is denoted that

U

If= -• (+ coshbf -y- + (l-cosbf);r I - 3-b-fif-6I ibf 2 df
f
s

[Eq. C.57]

where

(2rr) 2'L cos P aL2

b = = [Eq. C.58]

With the substitution u = bf2 and continuous application of
partial integration, Eq. C.57 becomes

0f 72 3 u4 u 72 12 u2 ju&
0 0 0

+ sin1 2 + u6 cos u d.uE. -9
+ si u°72 3061, 7-37t +-72 t, E, .9

lu 01

Where
wher a 0 cos p = bfs

and
(2Trf s)' L / Lg

a = - [Eq. C.60]
o ~g v

As +he a 
4

n4ory- ony- -- iron -AP% pa n orfnrn d niulnor i -al 1i- -yin +he d4- J -Ih

computer, the problem of numerical stability occurs for small u0
Therefore an approximation for 1u I < 0.2 is calculated by
expanding the sine and cosine terms in Eq. C.59 in a power series
and taking the first few terms.

This leads to

2
3L F7 u2  u4  u2  o

If C= 20 +2 c-oL di] , if IuLI <0.2 [Eq. C.61]
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Inserting the result for I in Eq. C.55 gives finally

IT

E 1 21 _av Co (i 48- P,Et{} = a~a I~ ¢-o -7 2
Px L g 0o u0 U---

+ cos it Li+ co sn n u u)

GOSU 10- 1 51 U0  US--

0 0 0 0

[Eq. C.62]

- u 2 Ci( u 1)} dcp if ut > 0.2
0 01I)0-

and

2caV 4  2Q U; C(uolEticZ P n- nL 2 g2 Cos"( - CPO) -- 4- -40 0

if u ! 0.2
0

This is Eq. 57 of the main text.

For the other facet statistics the calculations are made in a
similar way. The main steps are listed below.

Inspection of Eqs. 25 and 26 of the main text shows that Et1U. j2
t z

and Etux} a'-C identical in, respect to th integratio over the
frequency f. Inserting the Pierson-Moskowitz spectrum into
Eq. 25 gives

gA2 TT cos n(p- c )(1 - cos aL)
E = --U I df dp. [Eq. C.63]
t z n co T fc P

-IT fs S2r ~ c)

The integral If is in this case

f - cos bf2 -df [Eq. C.64]
fsf 5 (2rrf -cos e)

with the sol8ution

(g2nvuL [+k-i+•)cos 2 uLsinu + -i du
f 6 g 2 f1"u ~ 2f2

[Eq. C.651
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The approximation of Eq. C.65 for small u is

( - 3_A + i.9u + ui sai n u dfU if ju, <0.2

6ge f S 2 8 720 I. u'Uo'
0

[Eq. C,66]

Inserting tlhis into Eq. C.63 gixvs the result

TT

+=------ COs (+1) , if U
2Qr V' 0 + 2 v

no
s:V u Xn0

+ Si UI dcp if I u1>0.2
2u2 iu,) ~ ~ 0[Eq. C.67]

and

Etu 2  
-3Cosflc~h2 -U. + -a' S

t x n 0 2 0 720 2 ow •.3 /S xn

if IL I_ 1 0,2

= - 2v Pccsnluw-c€0){1+ cos uo(-i 12.)
tX 3S•'•x L2• • 2,

11

. Sid 10 U

F-or + Si(ju i) dep if 1u 2>0.2 , ru_
2 2

and [Eq. C.68]
2'*e n !3 19u8

E, I___u2-- S cs U- ep) u 11
N 30i~L 22  0 l- 0 720

+ý-- Si(Iu I)d , duJif I S" 0.2
2

Equat ions C.6, and C.68 are Eqs,. 58 and 59 ofI the main text,
r1c'6,)C Ict ivoly.
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The cruesmoment Et•uz is derived in the following way. With
the Pierson-Moskowitz spect:ýum and the mixing function W(fl)

w, if ýO - CR, < ,1 <
W(f,p) 2 [Eq. C.69]

else

Equlation 27 of the main text has the form

E I C-12 A, 2TCosnp-CP [2W(f, ep)sn

-7 fs

-sin al + (1--cosaL)} dfdaL [Eq. C..70]

As W(f,cp) is independent of f in this special example,, the
integral over f has the form

-1 -- 4 - (- df __ -I,. = ] -sin al. + 2 1 -•o al |L -. .. --_

f f ( a La " -

fs

The result of the integration is

si ll U + k 2  + .?os u -,+ -+- k, ) --
If 2i u3 o3

2f3t U UU
2 k5• ý,1uj u

- 2 k 5 u ( - s [Fq. C.72]

wher'e S(x) is the Fresnel integral and the constants k1  to k
have the values k1 - -- 10/63, k =8/189, k 3 - 4/9,
k4  4/63 , and kS  1.6/189.

Now Eqs. C,72 and C.69 are inserted into Eq. C.70, giving tile
desired result



cplw+ T7/ 2

24(1 - 2W ) ,"A
E t 11/ 2 , I cos (cP-CpLf.•3 ~.;

k<4k
-- +k1  + Cos+ -- + k5 -)V

-2]ý k 5 U 10 )~ d~, if >0 >0. 2-0k• 2/ oIIos

[Eq. C.73]

The factor beforc the integral is

24(1- 2 W 0) 17A n 1L2(1 - 2W )OLV3

7 5 x [Eq. C.74]
l~f3  g~ 8 L xn

then Eq, C.73 equals Eq. 60 of' the main text. !'.or small
hi< 0. 2, Eq. C.73 is approximated by

Ow +v/ 2
12(1- 2W ) a v 3

'~cu ____ 0 c0s (cp-%)

gQ04. L x
n •w.rr/2

( u 2()() F-. "j / t t \I
7- - u 1 -- k5 'UO' )/dcp, if u, 1<0.2

6 5670 0 2 0\2 -r 0

[Eq. C.7-]5

The roughness on the facet, EJ p2  is derived in a similar form,
The starting equation is Eo. 43 of the main text- in which the
Pi.erson-Moskowitz spectrum is inserted. It is, in this case,

1 fK cos aL --a%2) aL -sinaL+ 2 + ;df.
a L2 a La L2 a

f 5
[Ed, C.76]
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The rcsult of the integration is

_ 2 2cos0ti 2sin.u

.. . +---_P + U3 [Eq. C.77]l f ( 4 &u u4 0 '14

Fr small u101 <0.2 this i6 expanded in a power series and

the first terms are taken. Inserting Eq. 0.77 into Eq. 43 gives
the result for 11u 1 > 0.2 and Nu0 I -s- 0.2

iT

Ep2  2a v0 u 2cos u 0  2 sin u 0
g COSJ " c C - 1.P 2 U dcpsePa Xg xn 0 0 0

n0

if Ii >0.2 [Eq. C.7S]

an d

2 cv4 fT I nU2-- 2av'€'n os p-, 72

P, - COS., ep 1"' f 1• 0.2
n Xno

This is Eq. 67 of the main text.

The factor before. the integral is the explicit expression of

2 A 2c-v4

f - [Eq. C.79]
S n

C.3.2 Approximale Ana-ly' ic soluticn for cosine squdLre directivity

The expressions of Eqs. 57 to 62 of the main text derived in the
preceding sect ion ar(- evaluated !-ere for the case n = 2, the
cosine squaru directivity law, to obtain an approximate analytic
solution that, does not need a digital computer for numerical
evaluation. For most practical cases 1hese approximations are
considered of sufficient accuracy.

In this section, the expressions of Eq, 64 are derived.

C .3. 2. 1 t

a) a 0 $<Cl

(2rrf. )21 1 . Lg
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The starting point is Eq. C.62 for u. = aa cos < 0. 2.

The sine integral Ci([u 1) is expanded in a series, giving

CT 2 Co,( - ) 4 4 U3(Y +-u - + ""d
0- 214 4 4 S~x0 L2 g 40- - [Eq. C.80]

The underlined terms in Eq. C.80 are neglected, with the result

U2  C5 os(Cp-Cpo )COS 2 Cp (jUI - ') 7G T-- L dJ . [Eq. C.81]

0

I1his integral can be solved in closed form with the substitution
cc, • x, the result being

=2 4 a y+ -Z .+ 1 + 1 + Pm2)4 2 3 4

sin2  1 1 1 - 1 1)()2 .
[Eq. C.82]

Equation C.82 equals %T2 i.. Eq. 64 of th main text.

b) a0 >> 1

If a 0 >> 1, this also has the consequence that u 0 = a cos C0

is much greater than one in most of the range from 0 to T.:4nwAi r-rr j f. = '17 +h ,, n 4- 4 ncessay - sp- .

the integral in ,q. C.62 into two parts, one for u 1<< and

one for u >> 1. If u >> 1, the cosine integral Ci( I u 0 I ) in
Eq. C.62 is replaced by its asymptotic expansion for lar-ge
arguiments. Then it can be shown that, nuglecting all terms
contailing powers more than 1/u 2 , Eq. C.52 takes the simple
form

TT/2-E: '

CY 18 [ ~s -dEq. C.83]1

o n oj W v h

For the integration range Cp C to C Z+ h

approximation for small. u 0 in Eq. C.81 has to be taken. The
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suni of both giv-es the desired result. The choice of C' contains
a certain amount of arbitrariness; (for lack of a better possibility
e I = -L was taken.

a.

Then it can be shown that the part. of the integral where u0 << 1
can be neglected, therefore Eq. C.83 gives the complete result.
The integration of Eq. C.83 is straightforward. leading to the
f'o in

VT 1

C 8 oP v~ [pCos2 cp + sin CP (tan2pc] a0 +
TTg a 2  L 0 0 0a

0

[Eq. C.84]

The tanp tepros is expanded for arg-uments near , giving
the resLtlt

aY 2  1.8 cc o( + 2aa-.7,) sin [Eq. C,85]

which is pari of Eq. 64

C.3.2.2 z - Etuj

"V V

a) a 0 <1

From Eq. C.67 it is seen that for a0 << the vertic<al vel,'city
has the variance

VT

22. cosd(c-cp0 )dp, [Eq. C.86]

"V 3 T•T 0o

which leads easily to

* •[Eq. C.87]
S~ 2J;

Tliis is the result given in Eq. 64 of the main text.
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b) a0 >>l

Again, Eq. C.67 shows the approximation for a >> 1
0V

Tr

_z _____ cos• (cp- ) dcp [Eq. C.88]

311 U0 41

as all sine and cosine terms cancel out if the sine integral is
expanded into an asymptotic expansion. This is a form of the
integraTId identical to that, of Eq. C.83. Therefore the same
argument applies and the result is

C7z)2 2a 2 
2 a -T T

g 301 oseC5 + CsiOSP TT , [Eq. C.89]

which is listed in Eq. 64

C. 3. 2.3 CTx X~f~

V0 V

a) a° << 1I

The asyt-'ptotic expansion of the sine integral si (x) in
Eq. C,69 shows that also here the sine and c(: ;ine terms cancel
out leaving an integral ol the form

/ o \a v 4 a ' - r 1; 1( - % - . . ..2 . .

U I UO v uy. k d-4, * Lrq-. %-yv

The evaluation of Eq. C.90 gives

2

x+ (3 COS 2 t.P + Sin12 Cp ) EEq. C.91]
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1)) a 0  I1

The sine and cosinie tel'ms cancel Out n this case, too. Then it
follows from Eq. C.68 that

7v cA I Cos 2 kp- cp')dc [Eq. C,92]351.e TT L¢ 0z V

which leads to the result

2
v. =[Eq. C.93]31." • (L-)a,=

-L--2

C. 3.2.4 C E~ C .

a) a <<i

For small auguments the sine integral in Eq. C.75 tends to zet'o.
The t. crm with u3  is neglected against uti leaviyg an it gal
of t-he form 0 

l

I ¢, z 1 2 ( 1]- 2 W ) , a v2

- - - 'Icos, (Tp- c) cos ep

ilv-, rr! 2

- 7 2. co s, ] dc , [Eq. C.94]

'or most practical cases is seems reasonable to assume that
c,0 =p�". For this special case the above integral is e valuated.
Application of known integration formulae gives

24c(!-,2WO) cos iy, 6IJT•a

," 1 7  19".vs.5 , .jq, C. 95]
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where

Yn= on = Cos nr1, [Eq. C.96]

0 r(n+i)

Numerical evaluation of Eq. C.95 and Eq. C.96 gives Eq. 65 of
the main text.

b) a 0 >> 1

This case leads to a similar form to that for the standarddeviation cc of the facet slope. Starting from Eq. C..73, all
terms containing sine and cosine functions cancel out, the
fresnei integral can also Le neglected in this case. The
remaining equation is simply for 1P 9 •w

aC=z 16 (l - 2W 0 ) a v2  Cos, (T -
.o)- 3g L=! a'° c dc . [Eq. C.971v 3 0 ` 1 L T a ge Cp _ i / 2 C o oS C

The integrand is diverging at e = " But, as it is known that
t.he . -+--and of ..... . r.gina.Rl iL•-•i -ai is vanishing for Cos T 0,as is seen from Eq. C.94, again the technique of splitting the
integral is performed. The contribution for small cos c can be
neglected. Two cases have to be considered: CP= 0 and cp 0.

The first case leads to

. 16(1- 2W )cL "V o if CO = 0. [Eq. C.98]

The evaluation gives approximately

S 16(l-2W0 ) 2 gn 2a if =© = 0 . [Eq. C.99]V 3 at T 0

The general case tp 0 0 leads to the form

rr/2-e, 0 +-r/2
CT 16(1-2v ) + f [ cos 2 ! 2sino cost sinac

v 3a •r8 -C os 2 Cos3aO V i-..Lr/2 i!/2+e, 
s

sin• C sin2 C)
+ Cdc. [Eq. C.100]
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The result of the integration is

G;z 16(1-2Wo) + os 1 S 14cos CPO S•Cos 2 co° - _.ing12 c
3av 4 F( 0 2 cov 3 a,, • rj Lk z-Cos 0o

+ 4 cos C0 (I+ a sinI) , [Eq. C.iOl]

where tJhe approximation

/I+ sin -+

ft •-2r 2a0 [Eq. C.102]
i1- sin(-:±.+ )

2a°

is used. Eq. C.101 is a part of Eq. 64 of the main text.

C. 3.2. 5 C Et 2
2V ,

a) a <<1

Starting from the second part of Eq. C.78 one obtains

(7 2 2 ct a2 T

___ or
36 $ -e Cos k(cPO-Cosipd E.C13

0

which leads directly to the desired result

(3 cos 2c + sil 2 cp O0 [Eq. C.1041

v 18"16 0

This is part 1 of Eq. 69 of the main text.
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b) a 1>>
0

For a large a0 , the bracket in Eq. C.78 (first part) reduces

to 4 as all other terms can be neglected against it. Then the
integral is solved quite easily. Starting from

TT

""c Cos2,(CP-t) dcp [Eq. C.105]

gives

-h r [Eq. C.106]

v2 S 2 g

which is part 2 of Eq. 69 of the main text.
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APPENDIX D

CALCULATION OF THE DOPPLER SPECTRUM FOR

AN ARBITRARY SEA-SURFACE ROUGHNESS

The starting point for the calculation is Eq. 46 which is
repeated here for convenience

0 k 4 s in4 yf ,

cp(f) 2e fff tY F(f )

L3 ff f O) fS ff

[Eq. D.1].

Making use of Eq. 6 and replacing kof by fgives a fom

of Eq. D.l better, suited for the following calculations
-

f 2ff si'4 Yf

[w(fiyn)6(e-ff- f*)+W(4f,o ) 8 (f-ff w( Uz, ux) de duz dux

LEq. D.2]

To solve this threefold integral, Eqs. 44, 45 and 29 are inserted
and the integrations are performed step by step. As it is
assumed that a is a small angle, the following approximation
is valid £

sin yf = sin (y ±) siny + e Co

and

Cos Yt = Ios (y +E) cosy 0 Y [Eq. D.3]
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'rh tir st. intcgiat ion is perfoi med over -the varivble u

Becau~se of' the 6 -function, this is possible by setting

- -= 0 [Eq. D.4]

and inser-tling into Eq. Dl the value uz_+ that fulfils Eq. D.4.
"It i s

2 f g f CO-SYf2 1*t c-S (u i' coosV
So-- (,z sin Yg - Ix c Yp yf) F• . c

[Eq. .s5]

inserttitrg Eq. 4S into Eq. D0 S, the square root can be drawn
approximately, as cz and ax are very much smaller than c.

Applying Eq. D.2 and using the abbreviation Eq. 6

tg Coes V0

I, [q. D.6]0 ,

the result is

U Cos Y . it- iy
f-f. ± t f- ±it+ x (2f T f*)+ 7 (-2f itf)=0

1 0 c 0 C 0

[Eq. D.7]

As t'"£ is very much sinaile' than f it, is neglected in the
ter.s with it and uz. Fu-thrmore, sin , f is replaced in

Eqo D..7 by sin y0, which simpljtj.es thie mathematicalt effort
cotnsiderably ind cauises a negligible error in all practical cases,
"where Y is a small ang1 e. Then Eq. D.7 becomes

(I-f : f-*-) -
C-+ + i cotan y [Eq. D.8]

21"4 sin yl

Inser-t ing il. into Eq. 45 gives, for the doppler frequency ff

F (Z9t-+) F T io [Eq. D.9]

ailld l(1' C4

• 0'[Eq. D.l0]
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Inserting Eqs. D.8 and D.9 into Eq. D.2 and using Eq. gives

= J_ j+sin4 (y E +:)

f Silly Co 3l COS osYo

(f -/jf*) 5 F, (f* 0) W(f* TT w;(, a)
0 ? ,

+V/ (f+f'o) 5 F2 (f_ 0) W(f.j 0) w2 (C, Uz+)] Wi(ux) de dux

[Eq. D.11]

[V /(f - f*) F2 (f* o)W(f* -rT) T
f sin Y I , c 3 cos3  yC

0'0 Sy0

+ Ff) F2 (f* o)W(f+ 0) 1+]

[Eq. D.12]

where

(- + +Sin )t w+ COty w) (W, u7.W2.,+) dE dux [Eq. D.13]

The function w2 (ec, +) is rewritten in the form

w2 (e, 1z_,+) N(u 0 , Ca) N(c, me,+ ,o) , [Eq. D.14]

whe r'e

Pcz OC I~-,

and

Ia p2 [Eq. D.15]
c cz



Utsi ng the well known rel ai ions for the higher moments of I (e normal
distribution density, Eq. D.13 is integrated over £ , yielding

0 , aj [L(sin yo + cos y0 11 ,+) 4

441

+6 cos2 Yo (sinlo + cos yo m-+ )2 + 2 + 3 COS 4 y W, (u dx.

[Eq. D.16]

The product,

P N(ut+, NO , at) w. (UL) [Eq. D.17]

is split lip int~o a term containing the variable u ard one
without u * It is

P -- NC7,_,+a,) N(,,a) [Eq. D.18

Whc re

, + f i[Eq. D.19]
a2+ 2 f sin y

S= an [Eq. D.20]

2

ita U Y a

u_,+ x[Eq. D.21]

F X- + a2 (0,1 +c" tan.2 y)
z x z

amtl
(7 aT tan y

x z
a = [Eq. D.22]

2 + 2 t2
(7,, + tan y

To obtain the final result, the iniegrat.ion over ulx is now
performied, applyi ng again the relai ion for the moment. calculation
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w

"ot iioi'nial ptocessCs. it ib

,+ -N(u +, 0 ,1) cos4 Yo

r •*< + 6 aF*2 (aJ + n?) +3 c4+ + cyo m 2 V,_

[Eq. D.23]

where

£€ ax PCZ [Eq. D.24]

c 2 ýa ±ýt Cran 2

N z

and

cr e U rz P C Z U- t a ri ,mC + = - t + tan y [Eq. D.25]

a 2 + (72 tan2 y
X z 0

Tihe combinationi of Eqs. D.12 and D.23 gives the general. result of
Eqs. 47 and 49 of the main text.
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