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PREFACE

This report was prepared as part of Rand's DoD Training and Man-
power Management Program, sponsored by the Human Resources Research
Office of the Defense Advanced Research Projects Agency (ARPA). With
manpower issues assuming an ever greater importance in defense planning
and budgeting, the purpose of this research program is to develop broad
strategies and specific solutions for dealing with present and future
military manpower problems. This includes the development of new re-
search methodologies for examining broad classes of manpower problems,
as well as specific problem-oriented research. In addition to provid-
ing analysis of current and future manpower issues, it is hoped that
this research program will contribute to a better general understand-
ing of the manpower problems confronting the Department of Defense.

This report presents a methodology for using supervisory evalua-
tions of military personnel in models of manpower performance. Although
the measurement of periormance is crucial to many manpower models, fre-
quently the only measures available are those obtained from supervisors.
Past research has shown, however, that such ratings may be subject to
biases, perhaps unintentional, making it difficult to determine the
extent to which the ratings reflect '"true" performance or the super-
visor‘s own implicit rating scale.

This report provides a way of correcting for these biases. In
particular, since researchers may want to assess the contribution of
various factors to individual performance--often through the use of
multiple regression models--it is necessary to have a method of aijust-
ing the subjective measure of performance. The resulting approach to
the problem--the multi-scale model--suggests that supervisory evalua-
tions of {ndividuals are subject to two types of biases. The first is
the familiar location bias---that is, some supervisors may grade "easy"
while other grade "hard." The second is a scale effect--that is, some
supervisors may exaggerate differences among individuals while others
may minimize these differences. The generic name for the methodology

presented here--the multi-scale model--derives from the latter bias.
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This research was motivated by previous Rand research under the
DoD Training and Manpower Management Program that was concerned with
measuring the cost of on-the-job training for first-term enlisted per-
sonnel. Indeed, the basic idea was first sketched out in Robert M.
Gay, Estimaing the Cost of On-the-Job Training&n Mi litary Occupations:
A Methodology and Pilot Study, The Rand Corporation, R-1351-ARPA,

April 1974. It was decided to extend the brief discussion of the
model contained there, both because the use of supervisory ratings is
important to manpower planners and researchers in general and because
on-going research at Rand dealing with first-term enlisted personnel
performance requires such a model.

This report presents the model in the context of an extension to
the classical regression model. The report is technical in nature and
assumes that the reader has a good understanding of standard econometric
theory.

Finally, although the methodology presented here was originally
developed to deal with the supervisory ratings problem, it may be ap-
plicable to a number of other econometric problems, such as seasonal

adjustment and other cases in which data fall into natural groupings.
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SUMMARY

Subjective evaluations of individual performance, such as those
provided by supervisors, may be subject to certain kinds of biases.

Yet subjective evaluations are a common and frequently the only source
of information about a person's performance and can therefore be an
important element in the application of manpower policy. Furthermore,
the development and application of appropriate manpower policies may
depend on measuring the effects of specific variables on individual
performance; it is therefore important to correct for biases in sub-
jective evaluations of individual performance.

This report is concerned with the development of statistical and
econometric techniques for correcting for biases in models of individual
performance. The approach developed here is a variant of the classical
linear regression model. Specifically, it is proposed that supervisory
ratings may be subject to two types of bias. The location bias results
when supervisors systematically overestimate or underestimate individual
performance. The sc¢ale bias results when supervisors exaggeratce or
minimize differences among the individuals rated. This latter effect
gives rise to the name of the model developed here--the mult7-acule
model. Finally, the multi-scale estimators are applied to the problem
noted in an earlier Rand report about estimating the cost of on-the-job
training in the military. Indeed, that problem was the genesis of the
multi-scale approach and illustrates the value of the multi-scalce model.
Although the model was developed to deal with subjective supervisory
ratings, the multi-scale model may be applicable to a wide variety of
other estimation problems where observations can naturally be categor-
ized into specific subgroups.

Several specific multi-scale estimating techniques are developed,
including equal total variance, equal residual variance, maximum like-
lihood, and least squares. These differ primarily in the way the scale
parameters are estimated. Asymptotic results are derived for each of
the four techniques. However, because of the difficulty in deriving

small sample properties analytically, Monte Carlo experiments were
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conducted. The asymptotic and Monte Carlo results, taken together,
suggest some practical guidelines for estimation of the multi-scale
model. Maximum likelihood and equal residual variance techniques
yield consistent parameter estimates. However, for small sample sizes
and configurations for cases with large random errors, the equal total

variance residual estimator is preferred.
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I. INTRODUCTION
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Subjective evaluations are an important element of military man-

power policy, both in the application of present policies and: in the
development of new policies. For example, measures of performance in

the form of subjective ratings by an individual's superior play a

i . e

crucial role in determining promotions and duty assignments and illus-
trate the application of military personnel policy. Similarly, the
development of new personnel policies frequently depends on measuring
the effects of specific factors on individual performance.

Although subjective evaluations are clearly an important input
to manpower policy, these measures have certain inherent difficulcies.
In particular, they are likely to reflect the biases of those provid-
ing the ratings. In some instances, these biases may be deliberate
and applied only selectively (e.g., because of personality conflict
between the rater and ratee) and cannot therefore be properly con-
trolled for. It is probably more common, however, for these biases
to be unintentional and systematically applied, a result of the fact
that raters nay use different implicit rating scales or may perceive
} matters differently. Some raters may consistently grade "easy'" or
"tough."

This report develops a methodology--the multi-scale model and its
corresponding estimators--for estimating the systematic biases inherent
4 in the subjective measures (of such variables as individual performance)
that are often used in the development and application of manpower policy.
Specifically, it is argued that subjective measures of, say, individual

i performance may include two types of biases. The first, the location

bias, is the familiar problem that occurs when some raters systemati-
cally overestimate and others systematically underestimate the "true"
variable. The second, the scale bias, occurs when some raters exag-
gerate the differences among those who are rated while other raters
minimize these differences.

The approach adopted here incorporates these biases into the tra-

ditional classical regressicn model. However, the presence of the




scale bias invalidates the standard estimating techniques, so that it
becomes necessary to develop special multi-scale estimators. The
practical importance of the multi-scale model and estimators is two-
fold. The techniques provide a way of properly estimat {ng such param-
eters of the underlying model as the effects of educat {u, military
training, mental aptitude, etc. on individual performance. The model
also enables the analyst to construct "corrected" measures—-adjusted
for the inherent biases--of the subjectively estimated variables.

In the next section, we provide a brief discussion of the origin,
structure, and applications of the multi-scale model. Section III dis-
cusses some basic issues in estimating the multi-scale model and sug-
gests and derives five specific estimating techniques. Section IV
examines the mathematical and statistical properties of the estimates.
Since the small-sample superiority of any of the estimates cannot be
proved, we have conducted an extensive series of Monte Carlo experi-
ments involving the principal estimation techniques. The results of
these experiments are reported in Section V. Section VI applies the
multi-scale model to the supervisory rating problem discussed earlier.

Section VII outlines possible extensions of the model.



II. THE MULTI-SCALE MODEL

The multi-scale model is a variant of the classical linear regres-
sion model in which the dependent variable is subjected to a linear
transformation that varies from group to group. Thus, for the ith
observation the observed dependent variable y is related to the "true"

dependent variable z; by

=q, + 6,2 : (2.1)

The model is multi-scale in that the location parameter aj and the scale
parameter Gj may take on different values in each of the J subsets into
which the observations are partitioned. The value of the unobserved de-
pendent variable is determined by the classical model

z = xijB + ei (2.2)

ij i’

where xij is a vector of independent variables and the Eij a set of in-
dependent random variables with mean p and variance 0. The problem is
to estimate the three vectors of parameters, &, B, and 8. Inasmuch as
only scale effects are being investigated, all values of Gj are assumed
to be strictly positive. The full model can be written

= aj + xi (GjB) + ((SJ,e:1 ) . (2.3)

713 j ]
Classicai regression analysis has been extended to a number of
cases in which the coefficients may vary in some fashion across subsets
of observations. It is standard practice, for instance, to use separate

intercept terms or separate coefficients for subsets of observations
sharing some common attribute. Indeed, whole sets of procedures, known
generally as analysis of covariance, have been devised for determining
whether sets or subsets of coefficients differ among subsets of observa-

tions. (See Chou [1] and Joknston [2]}.) 1In a related area the pooling
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of cross-section and time series data poses a number of estimation
problems that iave been exhaustively analyzed in the literature on
error components models. (See Wallace and Hussain [3], Ballestra and
Nerlove [4], Nerlove [5], [6], and Hsiao [7].) This report represents
an extension of the literature on different coefficients and intercept
terms to a case where the coefficient vector may differ by a scale
factor among subsets of observations. The parameter vector Yj = 6j8
in Eq. (2.3) may take on different values for each subset of observa-
tions j; however, unlike the case of pooling data, the parameter vec-
tors differ by a scale factor rather than being identical or totally
different. Because the 6j is a multiplier of B as weli as the Ejj’
the problem i1s more than a problem of heteroscedasticity. Hartley and
Jayatillake (8] have, in fact, analyzed the case where the variance of
the error term may differ by subset.

The problem is also more than a nonlinear regression problem,
since in its conventional interpretation the nonlinear regression prob-

lem can be written as
y - 8(x,8) = ¢, (2.4)
whereas (2.3) can only be written as
f(y,x,8) = € . (2.5)

The problem created by (2.3) is, strictly speaking, a multi-scale prob-
lem. We believe that the multi-scale model has considerable applica-
bility in economics and the social sciences in analyzing data containing
rating-scale phenomena, in analyzing pooled cross-section and time series
data, and in analyzing time series data involving subannual cbservations.
Because to the best of our knowledge this model has not been ana-
lyzed previously, this report derives and discusses a variety of estimat-
ing techniques and suggests guidelines for using the various estimates.
Although some guidance 18 obtained from asymptotic properties of the
estimates, our recommendations are principally based on the results of

a series of Monte Carlo experiments. We do not explore in any detail
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the properties of the estimates or even the existence of estimates.
Rather it is our desire to focus on the multi-scale model itself, on
practical problems of one choice and computation of estimates, and on
the application of the model to problems of statistics and econometrics.
We have attempted to minimize the mathematical derivation and stream-
line whatever proofs are given. This last is at the expense of mathe-
matical rigor but in keeping with the general nature of the report.

The empirical problem that led us to estimate the multi-scale
model arose in a study of on-the-job training in the Air Force.1 Pro-
ductivity indices were created for individual airmen on the basis of
quantitative but somewhat subjective information provided by the air-
man's supervisor.2 Multiple observations were available from individual
supervisors. The parameters aj and Gj in (2.1) reflect the fact that
each supervisor apparently used a different rating scale. Moreover,
these differences were reflected in the mean scores (aj) and in the
standard deviations (Gj) of the subsamples. Figure 1 plots the cost of
on-the-job training (0JT) for individual airmen grouped under the 12
supervisors in the sample. The standard deviations of OJT costs range
from $214 to $4297 across che 12 supervisors. Since supervisors typi-
cally oversee small numbers of individuals, statistical analysis of the
data is impossible unless data from different supervisors are pooled
together. Consequently, it was necessary to combine a rating-scale
model (2.1) with a behavioral model (2.2). We would expect that sta-
tistical inference involving any variables containing rating-scale
phenomena would give rise to the multi-scale model. Similar applica-
tions could relate to personnel evaluations, classroom performance, Or
other situations where personal ratings might be used.

Economists have only recently and then infrequently come to use
data based on ratings. As a result, the most useful application of the
multi-scale model for economists may be in the area of pooled cross-

section and time series data. Pooled data usually involve combining

1See Gay [9] and Gay and Nelson [10].

2The cost of 0JT for each airman was cstimated as the difference
between the airman's productivity, which w:3 provided by his super-
visor, and his wages.
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time series data on firms, states, or countries. If the dependent
variable is in the form of an aggregate quantity, such as fuel con-
sumption or liquid asset balances, there will be huge scale differences
among the different units combined in the analysis. The theoretical
model may express the quantity demanded in the ith market at time t as

a function of prices 2nd income distribution parameters in the market:

K
2
e = Bp t kzl BrPre ¥ BraaMie ¥ Branie * €y (2.6)

= quantity demanded in the ith market in period t,

= price of commodity k in the ith market in period t,

= mean income of potential buyers in the ith market in
period t, and

0, = variance of income of potential buyers in the ith market

in period t.

If the analyst is a good theorist, he may be able to specify a priori
the relevant variables, the functional form, the distribution of Eit'
and whatever dynamic properiies the demand may exhibit. The scaling
problem is often handled by using another variable either to scale 9
by defining a new variable qit/xit or to use it in a weighted regres-
sion.1 Only rarely, if ever, is there theoretical justification for
the choice of such a variable.

The application of the multi-scale model could eliminate the need
to specify an artificial scaling variable Xl by estimating the appro-
priate scale for each firm or state as well as the parameter vector B.
Alternatively, one might use dependent variables of the form Aq/q or
In q to take care of the scaling. But unless such a functional rela-
tionship is suggested by theoretical considerations, these measures may
be just as artificial as the choice of x, . Consequently, the multi-

it
scale model may be a good substitute for several conventional practices

1To be sure, economists have paid considerable attention to the
properties of €44, particularly Eee”, in estimating behavioral equa-
tions from pooled data.



in pooled data where scale problems exist, Moreover, even where scale
problems are only suspected, the multi-scale model can be used to test
for the presence of scale effects. This would provide another tool in
the kit to determine to what extent sets of coefficients are the same
or different. The multi-scale model permits coefficients to differ
but remain proportional across sets of observations.

A third application of the multi-scale model would be in demand
or supply models estimated from quarterly or monthly data where there
is a strong annual cycle. If it is expected that the parameters B and
the variance of the error are also subject to the cycle, the multi-

scale model can be used. This could be written

9y, = oy + b GiMi(pth #iezd 3 (2.7)

-~

where j is the month, t is the year, and Mi is a dummy variable for
month i. Examples of data subject to strong seasonal fluctuations
would include grain sales, military enlistments, heating fuel consump-
tion, and number of new entrants to the labor market. With strong
seasonal fluctuations, better estimates of B can often be made 5y using
annual data instead of monthly or quarterly data. The absenc: of a
long time series of data or the presence of structural changes in the
market often make the use of sdbannual data necessary. Moreover, the
seasonal pattern itself is often of interest. The estimates q and &8
from (2.7) can be used, in fact, to construct seasonally adjusted
variables.

There are probably other applications for the multi-scale model,
such as in estimating age-earnings profiles where the effects of educa-
tion and ability differ by age; however, applications for time series
and pooled cross-section and time series data would seem to be the most

likely uses for economists.
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IITI. ESTIMATION OF THE MULTI-SCALE MODEL

The assumptions of the multi-scale model basically reflect the
assumptions of the classical normal linear model. In particular, we

assume

yij = (:t,j + 6j(xij8 + eij) . i= i, JETH Tj 5 (3.1)
= iy d

where the eij are independent random variables each distributed N(0,0z).
xij = (xijl’ Fonond Xin) is a vector of known constants of dimension K.
The T cases or observations (T = Z Tj) are partitioned into J subsets,
as indicated. The vectors a = (al, s 67 aJ), 6§ = (61, T GJ), and
B = (Bl’ S 8 BK) are fixed unknown parameters.” The only restriction
is that Gj > 0 for all j.

Equation (3.1) does not constitute a complete model. In particu-

24 82/k2 are observ-

lar, estimates of the form 6* = kg, B* = é/k and 0*
ationally equivalent as k varies. To identify these parameters, the
multi-scale model requires an additional condition on the set of param-
eter vectors. It seems most natural to place some restriction on the

vector §, and we deal with the strictly separable function

G(S) = 61(61) ¥ oo # GJ(GJ) =0 (3.2)

as a basis for identifying 6, B, 02. Assuming that the geometric mean

of the §,'s overall observation is 1 leads to

3

) T, Iné =0. (3.3)

1Hsiao [7] has analyzed the error components problem as a random
coefficients model. The treatment of a and § as random variables may
prove to be a fruitful approach; however, in this report o and § are
fixed parameters.
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In the case of the supervisory ratings application, e.g., (3.3) requires
that the supervisors provide on average unbiased ratings, in the geo-
metric sense of the term "on average."

The choice of constraint is a matter of some importance. For in-
stance, either changing the weights TJ or introducing t:e '"bias" by
setting z TJ 1n GJ = a, a ¥ 0 will change both the absolute and rela-
tive values of the parameters B8, §, 02. Hence the identifying restric-
tion is in every sense an integral part of the model.

A similar identification problem may arise between the location
parameter and the intercept term BO’ if one exists. We assume, however,
that the equation z1J = XijB goes through the origin.l There is no
possible confounding of intercept terms in this case. The identifica-
tion of intercept terms is usually less important to the analyst than
the identification of coefficients.

ESTIMATION STRATEGIES AND TECHNIQUES

The analyst may choose any of a variety of strategies in estimat-

ing the behavioral parameters B of the multi-scale model. He may choose
to estimate a, B, and § together by applying maximum likelihood (ML)
estimation, least squares (LS) estimation, or some other technique pro-
ducing simultaneous estimates of all parameters. Such a strategy in-

variably requires iterative methods of estimation and possibly requires

1Note that it is necessary to estimate both the a;s and 8. if one
desires a "correctedf‘measure of the dependent variable, since

zi = (Yij - aj)/cj ’

so that

z, = - a,)/8

{ (y1J J)J
A plausible assumption would be that a4 equals zero on average (where,
in this instance, we mean arithmetically "on average'), so that the
side condition for a, becomes

3
ZTiajso.

In the remainder of this report, we will assume, without loss of gen-
erality, that 80 equals zero.



<ll=

the construction of special software packages. A simpler strategy
would be to try to adjust yij for the effects of aj and GJ prior to
estimating f. One method of doing this is to standardize the yij in
different subsets for means and variances and the- to regress the ad-
justed variable Z on X by means of ordinary least squares (OLS). The
apparent advantage is in the costs of estimation, and the apparent
sacrifice 1s in not using information on X and B in developing esti-
mates of a and §. A third strategy, of course, would be to ignore §
entirely and estimate the parameters a and B using OLS.1 We have
already assumed that the scale parameters are distributed around 1.0.
This last strategy is the one implicitly adopted in pooled regressions

where rhe multi-scale model is not used. In summary, the three esti-

mation strategies are

I. ML, LS estimates of a, B, 6
I[I. OLS estimates of § with "adjusted" y
I1I. OLS estimates of a, B

Although strategies IT and II1 may have the meager appearance of
straw men, there is no guarantee that adopting the more elaborate ap-
proach of strategy I uniformly produces the best results. Figure 2
shows the strategy and technique producing minimum mean-square error
in estimates of B in one series of Monte Carlo experiments conducted
for this study. Individual experiments differ according to R2 (the
coefficient of determination) and the variance of 1n 6 in the multi-
scale model. Perhaps surprisingly each strategy offers a region of
superiority. Where all 8 values are near unity, strategy III is superior
in that [t is better to ignore 6 than try to estimate it. Where the R2
is small (less than .30) and where the Xij have similar distributions
for different values of j, strategy II is superios. There apparently
is little error due to standardizing values of y in this homogeneous

case. However, where the X have quite dissimilar distributions

1j

1Actually, the third strategy consists of OLS with dummy vari-
ables for a (since a fourth strategy could be to ignore both the a
and B).
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I. Maximum likelihood

II. Equal total variance

0 1 1 1 i [ 1 ) 1 1 |
0 0.5 1.0
Var (£» 8)

Fig.2— Regions of superiority for different estimators
of the multi-scale model
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across subsets (not shown), this region of euperiority is sharply re-
duced. Since strategy II ignores the effects of X and B in estimating
§, its value depends crucially on the homogeneity of the Xij across
subsets. In the remaining areas of Fig. 2, strategy I provides better
estimates of B.

We derive and evaluate five estimating techniques for the multi-
scale model: (1) OLS; (2) the technique for adjusting the dependent
variable before using OLS, referred to here as the equal total vari-
ance (ETV) technique; (3) ML estimation; (4) LS estimation; and (5)
another simultancous technique that determines § such that there is
equal residual variance (ERV) across subsets.1 The first four have
been mentioned previously; the last technique is heuristicallyv deter-
mined based on the expectation that, if 6 is controlled for, the vari-
ance of the residuals should be approximaté;y equal across subsets of
observations. |

Each of the five techniques provides four sets cf conditions, which
can be associated with the parameters a, B, 6, and 02. If treatment of
degrees of freedom is standnrdized,2 the conditions for a, B, and 02 are
identical for each of the five estimating techniques. The details for
ML and LS estimates are provided in the appendix. Thus, as in the case
with OLS, the intercept tarms O can be estimated after the other param-

eters, because the following equation defines the estimator of GJ for

all methods.

-8.%X.8, (3.4)

where X is the mean for subgroup j. Hereafter, in fact, we eliminate

a from the model by redefining yij and Xij as yij = _vj and Xij = ij.

Thus, the multi-scale model is

= § (X1 B+ € i . (3.5)

Y13 7 P31y j

1Thus, techniques (3), (4), and (5) belong to broad strategy 1
outlined earlier.

2Max1mum likelihood estimates do not provide for adjustments for
degrees of freedom. Here, as in other applications, we use ML esti-
mates for degrees of freedom.



The condition for B is

where 7z, = /3 . Thus in all cases the
i~ Y137%

~

=

B = @'x)7xs ,

the OLS regression of z on X.

Finally, in each case we choose

1 zz(f—ii-xe
DEESER S ) FY

).

(3.6)

condition for B is simply

3.7

where 2J + K represent the total number of parameters in a, B, and 6.

The only differences among the five estimating techniques are the

conditions associated with estimates of s,

These are listed below, be-

ginning with ML, 1.5, and ERV, the three simultaneous techniques. The

parameter A in ML and LS is a Lagrange multiplier attached to the side

condition.

(3.2). In particular, for each j=1, ..., 7,

MI.:

LS:

ERV:

ETV:

OLS:

§.6°

i A

~2

The results are for the general form of the side condition

(3.8.1)

(3.8.2)

(3.8.3)

(3.8.4)

(3.8.5)
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The conditions for ERV, | V, and OLS follow directly from the defi-
nitions of the techniques. ERV, for instance, required the variance of
the residuals to be equal in each subset, and ETV requires the variance
of the adjusted dependent variable to be equal across subsets, while 0LS
merely accepts § as a constant. The conditions for ML and LS, however,
are taken from the first-order conditions for the maximization or min-
imization carried out in the two techniques. The derivations appear
in the appendix. LS and ML estimates are formulated as LLagrange multi-
plier problems because they represent the extrema of function subject
to a single constraint. The conditions for LS and ML both involve the
cross-product between the residual gij = (yijlgj o ijé) and the ad-
justed dependent variable within each subset. The eross-product is
equal to 82 for ML estimates and to zero for LS estimates, once com-
pensation has been made for the side condition. Under side condition

(3.3) with weights '1‘i - 1 instead of Tj’ the expression

BE el - 8 1, (3.9)

This results in numerically identical estimates for ML and LS. As is
shown below, this is the only such side condition that produces identi-
cal results for ML and LS estimates.

The third technique, ERV, requires that the residual variance bhe
equal (to 82) across subsets. This condition is superficially similar
to (3.8.1) and, in the limit, ML and ERV produce identical results,
Equations (3.8.4) and (3.8.5) are the conditions for ETV, based on the
adjusted dependent variable, and OLS. Neither condition uses the full
information of the model and ean produce efficient estimates of B only

in some very special circumstances,

THE EXISTENCE OF SOLUTIONS AND A METHOD OF COMPUTATION

The system of normal equations produced by any of the simultaneous
estimation techniques does not yield a closed form solution. For the ML

normal equations there is a unique solution where all Gj > 0 if and only
L4
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if the data matrix obeys some quite reasonable conditions.1 More gen-
erally there are ZJ solutions to the system of ML equations. Only one

solution will have all values of the §, > 0. The 27 solutions may be

~

thought o as J pairs of values for Gj; Aj + lle and Aj - Ile, whare
]le > Aj' There are 2J combinations hut only one where 8j >0,

The necessary and sufficient counditions for this result can be
simply stated. Let Y represent the T X J matrix, which places values
of Y1 in separate columns according to subgroup. Define Q = Y'(I -
X(X'X)-1x')Y, where M = I - x(x'x)'lx' is an idempotent matrix. Then
the necessary and sufficient condition for a unique positive solution

for the ML equation is that
det |Q| # 0

or that Q be of full rank (rank = J). This condition will not hold if
(1) the columns (variables) are not linearly independent; (2) there is
a perfect fit between Yij and X1j for all observations in any subgroup;
(3) there is no variation in Yij

one observation in any subgroup. Assuming the existence of a solution

in any subgroup; and (4) there is only

in the ML case requires (1) a proper specification of the variables and
(2) the elimination of any subgroup satisfying any of the conditions
(2) - (4).

To compute the estimates of the multi-scale model, we have developed
an iterative approach that converges rather quickly to a set of param-
eters satisfying (3.4), (3.5), (3.6), (3.7) and one of the conditions
(3.8.1)--(3.8.3). This is an approximate solution to the system of
equations, but as indicated, only one of several possible solutions
where the system is quadratic. Negative roots of the quadratic have
been eliminated since these produce negative estimates of Gj. This
computation procedurez has been applied in literally thousands of re-
gressions in the HMonte Carlo experiment and in no case did it yield

unreasonable or outlandish results.

1This result was provided by Gus C. Haggstrom.
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The estimating procedure can be described in six steps beginning

with raw data, not grouped by subset. Documentation of this program

has been provided by Smith [11]. The steps are as follows:

1.

6.

Raw data are ordered by subgroup. Sample means are calcu-
lated by subset for the dependent and independent variates,
and these variates are then expressed in terms of deviations
from the subgroup means. (This permits the vector of inter-
cept terms to be estimated after all other parameters have
been estimated.)

Initial tri.l values of the 8j are obtained from the standard
deviations of yij in each subgroup. These are normalized to
conform to the logarithmic constraint (3.3). An "adjusted"
dependent variable is found by dividing yij by the estimate

of Gj. (This is simply the ETV procedure. If ETV estimates
are desired, it is necessary only to calculate the OLS based
on the adjusted dependent variable.)

Initial estimates of é are obtained by regressing the adjusted
dependent variable on the independent variates.

Given the estimates of B, new estimates of § are obtained (and
the Lagrange multiplier A where applicable). A gradient search
technique (Newton's method) is used to find the appropriate
Lagrange multiplier. Acceptable accuracy can usually be found
within about five iterations. Given the proper A, the values
of § can be calculated directly from the J equations involv-
ing §.

Steps (3) and (4) are repeated until the values of é and 8 con-
verge. A criterion is used that the maximum change in any Gj,
whi i is the most sensitive parameter, must be less than .001.
Usually, fewer than four iterations are required.

Given values of é and &, estimates of 0 can bhe calculated.

Data processing has been performed on the IBM 370/158. The average

cpu time per estimate has been & seconds with 250 total observations, 50

subgroups, and two independent variables for the ML technique. Average

cpu for the ETV technique (basically a single regression) is 1.1 seconds.
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IV. PROPERTIES AND CHARACTERISTICS OF THE ESTIMATES

Ideally we would like to be able to derive the small-sample dis-
tributions of the five ectimating techniques and base our choice of
estimates principally on these theoretically determined distributions.
Only large-sample properties and distributions of the estimates can be
examined; consequently, the ultimate basis for our choice of estimates
will be the Monte Carlo experiments of Section V. An analysis of the
statistical properties and mathematical characteristics of the esti-
mates contributes to an understanding of the estimation problem and
provides more guidance in the choice of estimates.

This section is devoted to two topics: (1) the consistency and
asymptotic normaiity of the estimates and (2) asymptotic variance of

the estimates.

CONSISTENCY AND ASYMPTOTIC NORMALITY

The characteristics of the multi-scale model do not lend them-

.

selves to a mathematical analysis of small-sample properties. Neither
unbiasedness nor minimum variance, for instance, cVn be demonstrated
for finite sample sizes. We must restrict ourselves to the asymptotic
properties. In the multi-scale problem, where observations are grouped
into subsets, the question of consistency is complicated considerably
'by the fact that sample size can be increased by increasing the number
of observations per subset (Tj) or by increasing the number of subsets
J, or both. When sample size is increasgd by incieasing the number of
subjects J, however, the number of parameters to be estimated also in-
creases--two new parameters for each new subset.

In general, we note that if § is a parameter vector of m elements,

then £ is said to be a consistent estimator of £ it

plim g = £

n/m-)‘m
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That is, merely assuming that n » © may not be sufficient to guarantee
that a probability limit exists for the £ vector.l This takes on a
special importance for the multi-scale model since m = 2J + K, where K
is the number of explanatory variables in the model. Therefore, since
n = Tj « J (if the subgroup size is the same for all subsets), then
n/m abproaches Tj/2 in the limit as n is increased by increasing J.
The implication of this is that when sample size is increased by add-
ing more subsets, the probability limit as m > «® for the parameter
vector é, where 6 = (E, &, 8), does not exist.

The probability limit for the entire 6 vector exists only when
’l‘i » © for each subgroup so that we can speak of consistency only when
the number of observations per subset inereases without bound. That
is, the "large sample' in the multi-scale model means many observations
per subset.2 This is unfortunate in a way because, as the number of
observations per subset grows, the need to pool data from dif ferent
rating systems diminishes. Moreover, practical limitations may require
that additional observations be created through increasing the number
of subsets rather than their thickness. Thus, one can add supervisors
to the sample but not necessarily the number of cases cach supervisor
evaluates. Monte Carle experiments must be used to assess the estimat-

ing techniques under different sample configurations.

ML Estimates
Under some very general conditions maximum likelihood estimates

are consistent, jointly asymptotic uwormal, and jointly asymptotically

DO . g : :

An extreme example is the problem of estimating n means with n
ohservat ions posed by Kendall ad Stuart [12], p. 615 and Zeliner [13],
p. 114,

) llL is important to note taat while the probability limit tor the
g vector may not exist for J » o, the probabilitv limit for {§ may very
well exist for J » . lowever, b cause we rely on the consistency of
a aud § to show the consistenc: o B, we camot show the consistency
of @ when J » ». Nevertheless. t e Monte Carlo results in Section V
suggest that the marginal dist>ib tion for B may converge when 1o+ o,
hotding subset size conmstant. his has the important impiication that
when one can increase sample s.o¢ onty through the addition 01 more
subsets, one can get more prec:se estimates of R--the parameter vector
likely to be of most concern to tie analyst--even though the cstimates
of a and § are not consistent.
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efficient. Hoadley [14) and Bradley and Gart [15] have considered the
case of independent, not identically distributed random variables,
such as Yij in the multi-scale model. The authors conjecture, but have
not verified, that with appropriate restrictions on the constants Xij
the multi-scale model satisfies the conditions of Hoadley and of Bradley
and Gart; and the ML estimates are consistent, jointly asymptotically
normal, and jointly asymptotically efficient.

Furthermore, the satisfaction of certain necessary conditions for
consistency can be proved directly. As indicated previously, there is
a unique solution to the ML equations with all gj > 0 under rather weak
restrictions. This solution is the ML estimate. This result will also
hold in the limit as all Tj + ®. Moreover, it can be shown that the
set of normal equations for the ML estimates in the limiting case have

the following solution:

plim B = B
plim 8§ =6
plim 82 = 02
plim A = 0 .

This implies that ML equations in the limiting case yield the true
parameter values as a solution. This line of reasoning does not fully
establish the consistency of ML estimates, since we have not demon-
strated the existence of a sequence of values of the parameter vector
6 for which 8 is the limit; however, we are reasonably confident in

our conjecture that ML estimates are consistent.

LS Estimates

We have already made reference to the fact that least squares esti-
mates are identical to ML estimates under side condition (3.3). This
is because under (3.3), conditions (3.8.1) and (3.8.2) become

N S -+ 5 [Q-L . Y P -
ML: Tj'ljz(sj xiJB)SJ (1 - Ao (4.2.1)
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y
LS: T— {( xije)—lll ", (4.2.2)
b S5

*
Here X and A are Lagrange multipliers corresponding to condition (3.3).
Since 32 is the same for all j, (4.2.1) and (4.2.2) yield identical
solutions. The appendix demonstrates that for (3.8.1) and (3.8.2) to-
gether with (3.4), (3.6), and (3.7) to yield identical estimates of a,
2
B, 8§, and 0°, then

6(8) =c_ ] T, limé, +¢C =0, (4.3)

where s and C1 are arbitrary constants. A corollary to this is that
where (4.3) does not hold, ML and LS estimates will be different for
at least some values of y and X. Moreover, this difference is gener-
ally independent of sample size, so that LS estimates are different
from ML estimates at all sample sizes even in the limiting case and,

therefore, are inconsistent.

ETV Estimates

Under ETV estimates of B are the OLS estimates from a regression

of y (adjusted for variance) on X. In particular,

w>

J
Z %— (x'x)'lxj'yj ; (4.4.1)

where X, is the T, x K matrix of independent variables for subgroup j.

i i

Under any normalization rule, the ratio gjlgh from (3.6.2) is
1
~ 2 =
é 2 /(T, - 1) 2
i K yiJ b , (4.5)
Sh

}X] yih/(Th -1)
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Taking probability limits as T -+ « and Th + o yields

1
A 2 =
§ § {o" +w,\2
plim 71'= SN Y (a— | ’ (4.6)
& Sh\o? +
w,

where wj is the 1lim 1/(T - 1)(B' XijB) (the "explained variance') and is

assumed to exist and be non-zero. The consistency of the ratio 6 /6
depends on having the same explained variance in each subset. Thus,
if the rows of Xj can be viewed as coming from a distribution that is

more homogeneous than the distribution of Xh’ then w, will be smaller

h|
than w and plim (Gj/Gh) will be too small. This result should be quite

intuitive. Under ETV the value of Gj is determined without any informa-

tion on Xj. The technique attributes to Gj

' = = Y!
source., If xlxl X2X2 5 o d XJXJ this would seem to be a perfectly

appropriate technique for any sample size.

any variation regardless of

The exact degree of inconsistency in B (defined as plim B/é) can
be determined where there are only two subsets of observations. We

assume further that

1 yix = 1
1im T, X'X, = 2 lm 3 XX, (4.7)

where p is the ratio of the variance of the two subsets. The proba-

bility limit B as T1 = T2 + w ig

—

1
4 4}
8 = 1 1+p)-r(1l-p) p (L+p) +r(l-p)
R S BT [(1+o)+r(1—o)] +1+p[(1+p)-r(1-p)] ;

(4.8)
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The parameter r is the limiting value of the R2 of the model.l The
limiting values of plim é/B as p and r approach extreme values ampli-

fies on the results of (4.5). In particular

lim plim é/B =1 (4.9.1)
pr1
lim plim é/B =1 (4.9.2)
r0
1
\ 4
2 l-r
lim plim B/B = (1 << ) (4.9.3)
r
pro
1 3
) G,
lim plim /8 = £ TR, (4.9.4)
r>1 1%

As the degree of heterogeneity or as R2 diminishes, the degree of incon-
sistency in é also diminishes. The fact that ETV works best (in the
limit) for models with a small R2 is because 02 tends to swamp the
values B'XinB and B'XéXZB (see (4.5)). This therefore reduces the

error from ignoring the explanatory variables in estimating §.

ERV Estimates

The most important point to make abouat ERV estimates is that they
approach ML estimates as all Tj + o, Equality of ERV and ML estimates
at all values of y and X require that there be no difference between

(3.8.1) and (3.8.3). This requires

lIn particular,

1,2 2

Jg 2 (W) + w)
- P02 2
o] +2(wl+w2)
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Ty -1 J 1j T, -1 J ij
9G § 2
+AWTJTO =0, d il csmm T, (4.10)
5 2
This yields
1 B B)x, 8+ -—§1——-02 =0 (4.11)
'rj-1j 33 ij ij adjr -1 T )

As T3 *> fgr all j, the second term will tend to zero. The first term
1s zero if B is the same as the least squares estimate of B based only
on observations in the jth subset.1 é, in fact, is the least squares
estimate based on all observations. However, as T, + w for all j, the
coefficient é estimated from the jth subset approaches é. Thus in the
limit (4.10) 1is satisfied, and ERV and ML estimates are equivalent.

A practical problem in applying ERV is that in models with small
sample sizes and a high R2, the probability of obtaining solutions with
imaginary components is substantial. In cases where this occurred, we
adopted the procedure (certainly unsound) of setting the imaginary com-
ponent equal to zero. This Poses a serious practical drawback to use
of ERV,

ASYMPTOTIC VARIANCE OF § - ¢
The literature on asymptotic properties of ML estimates suggests

that the asymptotic variance of 6 - 9 ig

lim Var (8 - @) = ; rie , for all § , (4.12.1)
T, + o

h|

1

Y A n y
_..j:i X a - - ' ' XJ‘
That is, 32(33 xijs) xijs 0 if B (xjxj) xj :



T

where

82 log L
re) =kt{- ———23——) ) (4.12.2)
36

This suggests an estimator for the variance of the estimates of the
multi-scale model. Under this estimate it can be shown that variance-
covariance of the behavioral parameters B will not be equal to

82

s |
'.IT_(X x) ’

unless

82 log )
——335§~i =0 . (4.13)

The appendix shows that (4.13) holds if and on{y if xixj is equal for
every subset j. Thus, the "t-statistics" for B from the classical
normal model will hold asymptotically for the multi-scale model if and
only if the moment matrix ijj is the same for every subset.

If the independent variables do not have the same dispersion mat-
rix, a correction to SZ/T ()(')()'-1 is required. This will be given by
calculation of r"l(e). In the specific case of one variable and two

subsets we have calculated the specific asymptotic variance of B:

n 82 2 + Bzoi
Var (B . B) = ’
T) <> \2 + 8%2 o? 10?2
xl x2 X

where oil. ox2, and oi are the "variances" of x from the two subsets
and the total sample. The value of the term in parentheses attains a

value of 1.0 where oi = oil = oiz, but otherwise is greater than unity.

~

Hence the asymptotic variance of B is at least as great as the variance

of é in the classical normal model.
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SUMMARY OF ESTIMATES

We have presented some of the mathematical characteristics and

statistical properties of ML, LS, ERV and ETV in this section and in

the appendix. Table 1 briefly recapitulates the most important fea-
tures of all five methods of estimating the multi-scale model. The
results of this section suggest, if anything, that ML estimates display
the fewest bad features if one ignores computational coists. Neverthe-
less, there are many cases where ML estimates have impressive asymptotic
properties but are not the best estimates in small-sample situations.

In the absence of any specific guidance on small-sample properties, our
method has been to rely on Monte Carlo experiments to determine the

superior estimating techniques. This is the subject of the following

section,
Table 1
FEATURES OF MULTI-SCALE ESTIMATLS
Feature M2 LS ERV ETV oLS

Type of solution Iterative Iterative Iterative Noniterative Noniterative
Invariance of B

to (3.2) Not invariant Not invariant Invariant Invariant lnvariant
Values of &P Real Real May be complex Real N.A.

Positive May be negativeC Positive if real Positive

Consistency Consistent Inconsistent® Consistent Inconsistentd Inconsistent

aAdjusted for degrees of freedom.
bActually, solutions to normal equations for 4, provided solutions exist.
CConsistent and positive 1f (3.3) holds.

dConslstent if plim l/Tj (B'XjXJB) is equal across subsets.
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V. MONTE CARLO RESULTS

Specification of an estimator's distribution is an important as-
pect of the development of any econometric estimating procedure. Such
information assumes a special importance in the present study insofar
as several alternative estimators have been developed for estimating
the parameters of the multi-scale model. Therefore, knowledge of the
statistical properties of these alternatives is important not only for
establishing the statistical reliability of any given estimate, but
also for selecting the appropriate multi-scale estimator under differ-
ent sample conditions. Indeed, it was stated at the outset that no
single estimator is dominant over the entire range of possibilities.
Instead, the appropriateness of any of the multi-scale estimators de-
pends, among other things, upon the sample size, the signal-to-noise
ratio, and the degree to which the model is milti-scale,

Other than for consistency, the statistical properties of the
alternative estimators cannot be derived analytically. We must there-
fore resort to numerical approximations through the setup of Monte
Carlo experiments to obtain the distributional properties of the multi-~
scale estimators. A description of the experimental approach and the

1
results from these experiments is given below.

MONTE CARLO METHODOLOGY

Since we were able to establish only the consistency of the multi-
scale estimators on an anclytical basis, we have had to resort to Monte
Carlo experimentation to determine other statistical properties of the
estimators. The strategy used in these experiments is, for the most
part, dictated by the results derived previously. For example, sample
size may be increased either by increasing the number of subgroups or
by increasing the number of observations per subgroup, and the effects

of these two alternatives may be corsiderably different. Therefore,

1For a more complete description of the Monte Carlo methodology
and results, see Cooper [17].
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sample composition, as well as sample size, must be an explicit part
of the experimental design. Before dealing with these specifics, how-
ever, we first outline the general approach used in the experiments.

Given the basic multi-scale model,

yij = aj + Gj(XiB + ei) ,

and specified values for the o, §, and B vectors and for the X matrix,
we conducted Monte Carlo experiments by simulating values for the €
vector. The elements of the € vector were drawn from a normal popula-
tion and the number of cases run for each experiment was determined
according to the number required to yield a stable representation of
the parameter distributions.1

A number of experiment: were conducted for different formulations

of the multi-scale model, as indicated below.

Model Specification

Two specifications of the model were tested, one with two explan-

atory variatles and one with five explanatory variables. Only the two
variable version is reported here.2 The parameter values were: Bl =1.0

and 82 = 2.0. The two explanatory variables were uncorrelated.

Sampie Size
As noted previously, sample size in the multi-scale model has two

1That is, a concern in conducting Monte Carlo experiments is how
many cases must be run before the estimated distributions of the param-
eter estimates ''reasonably reflect' the true distributions. Although
a precise reflection would require an infinite number of cases, such
an approach is, of course, not feasible. Instead, the procedure was
to run 200 cases for one of the rxperiments, with a summary printed
every 20 cases. These summary statistics were then examined to deter-
mine where the estimated distributions began to stabilize--that is,
where the addition of another 20 cases did not appreciably change the
estimates of the distributions. For medium to large samples, the nunm-
ber of cases required was 20; for very small samples, the number of
cases required was 100. The number of cases is reported with the re-
sults. For a more complete description of the approach, see Cooper [17].

2The five variable results are reported in Cooper [17). They yield
essentially the same results as the two explanatory variable specification.



-29..

dimensions: the number of observations per subgroup and the number

of subgroups. Accordingly, experiments were conducted for a number

of different sample sizes and configurations. Complete results are
reported for one 'larger" sample experiment: five subgroups with 50
cbservations per subgroup--the so-called 5 x 50 sample. Detniled re-
sults are also reported for one "small" sample situation--iive sub-
groups with five observations per subgroup (denoted the 5 x 5 sample)--
and for one 'medium" sample configuration--30 subgroups with five
observations per subgroup (denoted the 50 X 5 sample). Sunmary results
are also reported for the following sample sizes (where the first num-
ber shows the number of subgroups and the second shows the number of
observations per subgroup): 10 x 5, 25 x 5, 100 x 5, and 25 X 10.
Finally, experiments were conducted for one sample configuration where
the number of observiations per subgroup varied: 50 subgroups with an
average of five observations per subgroup (as few as three and as many

as 10), denoted the 50 x 5 (var) sample.

Explanatory Variables

The explanatory variables were chosen such that the correlation
between the two was zero.1 Two sets of experiments were conducted with
regard to rhe explanatory variables. In the first, the explanatory
variables were drawn from homogeneous populations--that is, the ex-
planatory variables for each subgroup came from the same population.

In the second, the explanatory variables were drawn from heterogeneous
populations--that is, the populations from which the explanatory vari-
ables were drawn differed by subgroup. In half of the subgroups, the
standard deviation of the underlying population for each of the explan-
atory variables was twice that for the other half of the subgroups.2
These two sets of experiments are referred to as the homogeneous and

heterogeneous cases, respectively.

1Although the explanatory variables were drawn from two popula-
tions with zero correlation, the sample correlation for the actual
variables used was 0.08.

2To clarify the procedure, the two explanatory variables for the
homogeneous case were each drawn from a normal population with mean
zero and standard deviation of 10. Once the particular set of homo-
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Signal-to-Noise Ratio

The signal-to-noise ratio is based on the "true" model, as given
previously in Eq. (2.2), rather than on the observed model given in
Eq. (2.3). Three different signal-to-noise ratios were tested, yleld-
ing true st of 0.1, 0.5, and 0.9.

0 and 6

One a vector was used for all the experiments; the elements of
the a vector were generated from a uniform distribution.1 Four dif-
ferent § vectors were used in the experiments. Each was generated from
a log-normal distribution and normalized such that the geometric mean
equaled one. The only difference in these § vectors is the set of
parameters describing its corresponding normal distribution. In each
vector, the mean of its corresponding normal was zero; for 61, the
standard deviation was 0.1; for 62, it was 0.25; for 63, it was 0.5;
and for 64, it was 1.0. This ylelded four § vectors, where the geo-
metric mean of each was one, but where the variances were 0.04, 0.33,
3.57, and 411.1.°

It will be shown later that the multi-scale estimators are un-

affected by the § vector (so long as the geometric mean equals one).

geneous explanatory variables was drawn, it was used for the remainder
of the experiments (that 1s, the Monte Carlo experiments were not con-
ducted for "random" explanatory variables). In the heterogeneous case,
for half of the subgroups, X1 and xp were the same as for the homogen-
eous case (i.e., drawn from normal populations with mean zero and a
standard deviation of 10). For the other half of the subgroups, Xq
and Xy were each drawn from normal populations with mean zero and
standard deviation of 20. Again, once the basic set of heterogeneous
explanatory variables was drawn, it was used for the remainder of the
heterogeneous experiments.

lSince each of the estimating techniques estimates the & vector
by merely subtracting out the subgroup means, the distribution of the
elements of § does not affect the estimation. A uniform distribution
was chosen for convenience only.

2

Again, note that one § vector was used for any given set of ex-
periments. The term "variance" 1s not meant to imply randomness nor
that the § elements were redrawn.

3For convenience, the particular § vector used for the multi-scale
estimators was the one where the variance equals 3.57.
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However, the variability of the elements of § determines when it is
worthwhile to use one of the multi-scale estimators rather than just

relying on ordinary least squares.

Estimators

As shown previously, least squares ylelds identical results to
maximum likelihood when the & vector is normalized such that the geo-
metric mean of the elements equals one; otherwise it ylelds inconsistent
estimares. Therefore, Monte Carlo results are presented only for three
multi-scale estimators: maximum likelihood (MLE), equal residual var-
iance (ERV), and equal total variance (ETV). As a basis for comparison,
ordinary least squares with dummy variables for the subgroup intercepts
(OLS-DV) was also used.

The foregoing constitutes the basis of the Monte Carlo experiments.
These experiments are addressed to two principal questions: (1) Which
is the preferred multi-scale estimator under alternative sample and
model configuration? and (2) When is the multi-scale approach to be

preferred to least squares with dummy variables for the irnctercepts?

ESTIMATOR DISTRIBUTIONS

As noted previously, the small sample distributions for the multi-
scale estimators cannot be derived analytically. Since the Monte Carlo
approach just cutlined suggests that we examine the multi-scale esti-
mators under a variety of conditions, it is desirable to simplify these
compa-isons as much as possible. In this regard, a useful first step
is to - ‘tain the functional form of the distributions so that the com-
parisons can be made in terms of the "sufficient statistics' for the
distributions. Our concern will be with the distribution of é, since
o and § can, for the most part, be regarded as nuisance parameters.
Thus, while é is known to be asymptotically normal, we must rely on
Monte Carlo experiments to demonstrate the small sample distributions.

To generate the distributions of é, 1000 cases were run on the

10 x 5 sample, with homogeneous explanatory variables, and an R2 of
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0.5.1 The results from these experiments, which are given in Table 2,
suggest that the MLE and ETV estimators for B are approximately norm-
ally distributed. The areas shown for both parameters of both esti-
mitors closely approximate the theoretical normal distribution.2

The above finding has the important implication that the multi-
gcale estimators can be described fully by their means and variances.
The problem of comparing the estimators is correspondingly simplified.
With respect to choosing among the estimators, the criterion that will
be used is that of the minimum mean squared error (i.e., the sum of

variance and the bias squared).

SAMPLE SIZE

The two dimensions of sample size in the milti-scale model raise
a potentially important distinction for the composition of the sample,
since the number of parameters to be estimated equals 2J + K, where J
is the number of subgroups and K is the number of explanatory vari-
ables.3 Therefore, the more subgroups there are, the more parameters
there are to estimate such that, for a given number of observations,
there are fewer degrees of freedom and the ratio of observations to
parameters dec’ ines. In the discussion below, detailed results are
presented for the 5 X 50 sample and for the 50 X 5 sample. Summary
statistics are then reported for (1) increasing sample size by adding
subgroups and (2) the effect of sample composition holding sample size
constant. These experiments are all based on homogeneous explanatory

variables.

The 5 x 50 Sample

The Monte Carlo results for five subgroups with 50 observations

lALthough 20 to 100 cases are sufficient to yield reasonably ac-
curate estimates of the means and variances of the distributions, 1000
cases were required to reflect the entire shape of the distributions.

2Also shown in Table 2 is a computer generated normal distribution,
based on 1000 cases. This shows how the results from even 1000 cases
can deviate modestly from the theoretical distribution.

3Note that since each subgroup has its own intercept term, there
is no general constant term.
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Table 2

DISTRIBUTIONS OF THE MLE AND ETV ESTIMATORS AND
THE NORMAL VARIABLE®

Normal MLE ETV
Computer- & = ~ = & =~ =
Actualb Generated® 1 B2 B2 B2 B1 B1 B2 B2
(1) (2) (3) (4) (5) (6)
Mean 0 -0.025 0.983 1.975 1.109 1.455
Std. dev. 1 1.019 0.117 0.165 0.115 0.103
é Areas

< =36 0.0013 .0 0.002 . 002 0.005 0.003

0 0
-36 to -26 0.0214 0.019 0.023 0.029 0.020 0.023
-26 to -16 0.1360 0.147 0.129 0.123 0.121 0.122
-16 to 0 0.3413 0.332 0.347 0.357 0.352 0.354
0 to +16 0.3413 0.346 0.350 0.335 0.341 0.340
+16 to +26 0.136 0 0.127 0.140 0.137
+26 to +36 0.0214 0 0.026 0.021 0.020

0 0

> +38 0.013 .001 0.0 0.010

.134 0.123
.021 0.026
.001 0.0

3Based on 1000 cases.
bActual probability distribution for a standardized normal variable.

cProbability distribution for a standardized normal variable as
from the random normal variable generator on the computer.

per subgroup are given in Table 3. These show the intuitively appeal-
ing result that all three multi-scale estimators have essentially the
same properties in the large sample. This is to be expected for two
reasons. First, all three estimators were shown to be consistent when
the explanatory variables are drawn from homogeneous populations. Since
consistency is defined in terms of increasing sample size holding the
number of subgroups constant, and since the 5 x 50 sample would be con-
sidered "large'" by most measures, we would expect the means of the

distributions for all three estimates to be approximately the same.
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Table 3

MONTE CARLO RESULTS FOR THE 5 x 50 SAMPLE?

(Five subgroups with 50 observations
per subgroup)

8" o8y
R? Estimator® By Yy MSE B, sV, MSE,
1 MLE 1.099 0.193 0.203 1.957 0.401 0.403
ERV 1.108 0.197 0.209 1.971 0.405 0.406
ETV 1.094 0.189 0.1°8 1.945 0.398 0.401
5 MLE 0.991 0.011 0.011 1.995 0.025 0.025
ERV 0.991 0.011 0.011 1.987 0.625 0.025
ETV 0.989 0.011 0.011 1.987 0.025 0.025
9 MLE 0.989 0.003 0.004 2.010 0.002 0.002
ERV 0.999 0.003 0.004 2.010 0.002 0.002
ETV 0.993 0.004 0.004 2.001 0.002 0.002

NOTE: Explanatory variables drawn from a homogeneous
population.

8The basic model is given as yj; = aj + 6y (By * x4
+ By * x93 + uj). The results are based on 20 cases and
homogeneous explanatory variables.

bMaximum likelihood (MLE), equal residual variance
(ERV), and equal total variance (ETV).

CBI = 1.0; By = 2.0. Ei refers to the mean for the
experiments; SV; refers to the variance; and MSEi refers
to the mean squared error.

Second, consider the methods of estimation. The ETV estimator
explicitly assumes that differences in the within-subgroup variances
of the dependent variable are due exclusively to differences in the
scale parameters. Since this assumption is in fact correct when the
xs are drawn from homogeneous populations and when the number of ob-
servations per subgroup is large enough to avoid small sample problems,
the ETV estimator provides consistent estimates. Moreover, since the
MLE and ERV estimators are different from ETV only so long as differ-

ences in within-subgroup variances of the dependent variable are partly
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attributable to factors other than the scale parameter, and since this
is not the case for homogeneous xs and large samples per subgroup, we
would expect that the MLE and ERV would yield essentially the same
estimates as ETV, as shown in Table 3.

The net result, then, is that all three estimators yield essen-
tially equivalent estimates in the large sample. Given that ETV is
considerably less expensive to run, one would generally prefer to em-
ploy ETV in the large sample situations when the explanatory variables

are homogeneous across subgroups.

The 50 x 5 Sample

The results for the sample of 50 subgroups of five observations
each, given in Table 4, offer several interesting contrasts to those

from the 5 X 50 sample. First, the variance of the ETV estimator is

Table 4

MONTE CARLO RESULTS FOR THE 50 x 5 SAMPLE®

(50 subgroups with f£ive observations
per subgroup)

Blc BZC
R®  Estimator® P1 SV;  MSE, B SV,  MSE,
0.1  MLE 1.094 0.269 0.278 1.832 0.438 0.466
ERV 1.250 0.399 0.461 2.123 0.610 0.626
ETV 0.961 0.190 0.192 1.599 0.327 0.488
0.5  MLE 0.962 0.026 0.027 1.926 0.052 0.058
ERV 1.097 0.036 0.046 2.186 0.064 0.098
ETV 0.842 0.021 0.046 1.630 0.036 0.173
0.9  MLE 0.979 0.006 0.006 1.983 0.003 0.003
ERV 1.012 0.009 0.010 2.040 0.003 0.005
ETV 0.817 0.004 0.038 1.628 0.003 0.141

aSee notes to Table 3.
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always equal to or less than that for either MLE or ERV. In fact, this
always holds regardless of sample size, explanatory variables, or model
specification.l

Second, althouth ETV always has the smallest variance, it it not
always the preferred estimator on the basis of the mean squarcd error
criterion. For low st, ETV does have a smaller mean squared error
than either MLE or ERV. However, MLE has a much smaller mean square
than the ETV for high st, because although the explanatory variables
were drawn from homogeneous populations, the variables themselves will
almost necessarily be heterogeneous when there are as few as five ob-
servations in a subgroup. Therefore, ETV will be biased in the small
sample, where small sample refers to the number of observations per
subgroup, even though it is consistent, because ETV attributes all
differences in within-subgroup variances in the dependent variable to
the scale parameter when, in fact, some of it is due to differences
in the variation of the explanatory variables. MLE and ERV, however,
explicitly take such differences in within-subgroup explanatory vari-
able variaticins into account, thus leading not only to consistent
estimates, but to estimates that are also unbiased.

Although ETV has the smallest variance, it is sufficiently biased
when there are few observations per subgroup that its mean squared
error is larger than MLE and ERV for high st. Moreover, ETV does
relatively worse as the true R2 of the model increases for two reasons:
(1) the bias in ETV increases as R2 increases and (2) for higher st,
bias plays a relatively more important role in the mean squared error
criterion (since the variance decreases as R2 increases).

Finally, MLE is generally preferred to ERV since the MLE variance
tends to be much less than that for ERV. Both will be unbiased, though.

The 5 x 50 and 50 X 5 samples yield three fr »rtant conclusions.
First, the three multi-scale estimators all yie . approximately the same
results when there are many observations per subgroup. Second, when

there are few observations per subgroup, ETV has the smallest variance

1We conjecture that this result occurs because ETV uses a less
complicated procadure for ectimating the § vector.
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of the estimators. Third, though, ETV is biased when there are few
observations per subgroup. Although this bias is not sufficient to
counteract the savings in variance for low st, it more than offsets
this savings for high st——the result being that ETV is preferred for

low st and MLE for high st.

Sample Size

The effects of sample size on the parameter distributions are a
necessarily important question. Of particular importance is the effect
on the parameter estimates when sample size is increased through the
addition of new subgroups, since this will often be the only way of
increasing the sample in situations where the multi-scale model is
applicable. 1In the standard linear regression model, the effect of
sample size can be solved analytically: (1) the least squares esti-
mator is unbiased, regardless of sample size, and (2) the variance of
the least squares estimator is proportional to sarple size. In the
multi-scale model, however, the result is less clear, for every time
a new subgroup is added, two more parameters are also added.

Summary results, showing the marginal distributions of B for dif-
ferent sample sizes, holding the number of observations per subgroup
constant, are reported in Table 5.1 These show the perhaps surprising
result that increasing the sample through the addition of subgroups
reduces the variance of B almost in proportion to the number cof ob-
servations, as with the standard linear regression model, even though
each additional subgroup adds two parameters.2 That is, although the
addition of more parameters somewhat reduces the benefit of the addi-

tional observations, this reduction is modest. This is an important

1For simplicity in presentation, Table 5 reports the sum of mean
squared errors for %1 and Eb, rather than the separate mean squared
errors. Noie that we can perform this simple addition since both Xy
and x; are uncorrelated.

2This holds for MLE and ERV since both are unbiased. It is also
apprcximately true for ETV at RZ = 0.1, since the bias for ETV is small.
For higher R¢s, however, this does not hold for ETV, since the bias
in the ETV estimator at higher R2s does not fall as more subgroups are
added.
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Table 5

SUMMARY MONTE CARLO RESULTS FOR HOMOGENEOUS
EXPLANATORY VARIABLES: MEAN SQUARED
ERROR AS A FUNCTION OF SAMPLE SIZE

MSEl + MSE2 for Sample Sizeb

R2  Estimator” 5x5 10 x5 25x 5 50 x 5 100 x 5

0.1 MLE 4.670 3.485 1.268  0.744 0.336
ERV 9.493 5.220 1.718 1.087 0.621
ETV 3.411 2.860 1.093  0.680 0.331
0.5 MLE 0.535  0.4006 0.179  0.085  0.040
ERV 1.008  0.503  0.326  0.144 0.108
ETV 0.501 0.558 0.271 0.219 0.196
0.9 MLE 0.093  0.041 0.013  0.009 0.007
ERV 0.132 0.044 0.020 0.015 0.007
ETV 0.360  (.283 0.178  0.179 0.201

aSee note b, Table 3.

hyean squared error for B} plus mean squared error
for 6}. Results for 5 x 5 and 10 x § samples are based
on 100 cases, results for 25 x 9, 50 x 5, and 100 x 5
samples based on 20 cases.

practical result since, as noted above, the onlv means of adding more
observations in situations where the multi-scale model is the appro-

priate specification may be through the addition of more subgroups,

Sample Composition

Finally, consider the effect of sample composition, holding the
number of observations constant. It is clear I'rom the results shown
in Table 6 that the more subgroups there are (and, hence, the more
parameters), the less precise are the estimates of B. Yet, with the
exception of ETV, whicn becomes severely biased as subgroup size is
reduced, the effects of sample composition are not as large as one
might expect. Note further that most of the gain trom increasing sub-

group size, again with the exception of ETV, o¢curs when the subgroup
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Table 6

SUMMARY MONTE CARLO RESULTS FOR HOMOGENEOUS
EXFLANATORY VARIABLES: MEAN SQUARED ERROR
A4S A FUNCTION OF SAMPLE COMPOSITION

MSE, + MSE, for Sample SizeP

R Estimator® 5 x 50 25 x 10 50 x 5 50 < 5(var)
0.1 MLE 0.606 0.507  0.744 n.a.
ERV 0.615 0.561  1.087 n.a.
ETV 0.599 0.485 0.680 n.a.
0.5 MLE 0.036 0.039  0.085 0.089
ERV 0.036 0.049  0.144 0.109
ETV 0.036 0.074  0.219 0.250
0.9 MLE 0.006 0.006  0.009 0.017
ERV 0.005 0.006  0.015 0.010
ETV 0.006 0.047  0.179 0.220

aSee note b, Table 3.
bSee note b, Table 5.

slze 1s iIncreased from five to ten observations. The estimates are
quite unaffected if the subgroup size is variable. In fact, ERV ac-
tually does better in the variable subgroup size sample than in the
constant subgroup size sample, thus suggesting that it benefits more
from the introduction of a few large subgroups than it is hurt by the

presence of very small subgroups.

HETEROGENEOUS EXPLANATORY VARIABLES

When the explanatory variables are not homogeneous across all
subgroups, ETV yields inconsistent estimates of the parameters. The
reason is obvious. ETV attributes all differences in within-subgroup
variances of the dependent variable to the scale parametzr. However,
when the explanatory variables themselves are heterogeneous across
subgroups, this is not appropriate. MLE and ERV will still be con-

sistent when the explanatory variables are heterogeneous.
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Monte Carlo results for the 5 x 50 sampl2 with heterogeneous ex-
rlanatory variables are given in Table 7. They show the expected f{ind-
ing that ETV is biased and inconsistent when the explanatory variables
are heterogeneous, but that MLE and ERV are both unbiased. As a result,
both MLE and ERV are generally to be preferred to ETV. For very low
st, ETV is to be preferred in spite of its inconsistency, since in the

5 X 50 sample the smaller variance for ETV more than offsets its bias.

Table 7

MONTE CARLO RESULTS FOR HETEROGENEGUS
EXPLANATORY VARIABLES: 5 X 50 SAMPLE

By 8,

R? Technique 1 5V, MSE, B 5V,  MSE,
.1 MLE  1.175 0.120 0.150 1.944 0.423 0.427
ERV.  1.183 0.121 0.154 1.956 0.434 0.436

ETV.  1.091 0.109 0.117 1.833 0.350 0.378

5  MLE  0.981 0.009 0.010 2.005 0.035 0.035

ERV.  0.983 0.010 0.010 2.011 0.034 0.03%

ETV.  0.775 0.005 0.056 1.651 0.018 0.140

.9 MLE  0.992 0.004 0.004 2.004 0.003 0.003
ERV 1.007 0.006 0.066 2.028 0.006 0.007

ETV.  0.678 0.002 0.105 1.470 0.001 0.282

The 50 X 5 sample shown in Table 8 ylelds largely the same results.
ETV 1is very biased for medium to high st, so that MLE and ERV are
again generally preferred to ETV. As before, MLE yields better esti-
mates than ERV. 1In general, these results i1llustrate the importance

of heterogeneity in the explanatory variables.

THE SCALE PARAMETER

The scale parameter § is clearly what distinguishes the multi-

scale model from the classical linear regression model. Therefore, §

determines when it 1s appropriate to use one of the multi-scale
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Table 8

MONTE CARLO RESULTS FOR HETEROGENEOUS
FXPLANATORY VARIABLES: 50 x 5 SAMPLE

8, 8,

R? Technique Pl sV, MSE, B 5V,  MSE,
.1 MLE  1.138 0.182 0.201 1.810 0.188 0.199
ERV  1.311 0.285 0.382 2.155 0.220 0.244

ETV  0.924 0.122 0.128 1.543 0.117 0.326

5  MLE  0.956 0.016 0.018 1.948 0.047 0.049

ERV  1.028 0.022 0.023 2.123 0.052 0.067

ETV  0.686 0.009 0.107 1.286 0.017 0.527

.9  MLE  0.985 0.004 0.005 1.984 0.003 0.003
ERV  1.103 0.005 0.006 2.073 0.006 0.012

ETV  C.604 0.002 0.158 1.092 0.001 0.325

estimators or ordinary least squares (with dummy variables for the
intercepts). In general, one would expect that, as the variance of
the scale parameter increases, the desirzhility of using one or more
of the multi-scale estimators (over ord.nary least squares) also in-
creases. Conversely, as the variance of the scale parameter is smaller,
one would expect the ordinary least squares estimator to do bhetter.
(Indeed, in the limit when all of thc &s equal . dentically, we
know from the Gauss-Markov theorem 'at ordina. ast squares is the
"best" estimator.)

So long as the geometric mean oi tha scale parameter equals one,
the multi-scale estimators are unaffected by the variability of the
scale parameter. Therefore, the multi-scale estimators can be ex-
amined independently of the scale parameter, for a given normalization
rule. In contrast, OLS-DV clearly depends on the variability of the
scale parameter. To determine the sensitivity of OLS-DV to the scale
parameter specification, four § vectors were generated, as noted

earlier. Each of these can he described in terms of the variability
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of the elements.1 Finally, a fifth § vector with all the elements set
identical to one is used as a base case.

The Monte Carlo results from experiments conducted on these dif-
ferent § vectors are shown in Table 9. They show the expected result
that as the elements of § become more widely dispersed--i.e., as the
variance of 6, Vd increases--0LS-DV yields poorér estimates. These
results alsc suggest that there is a tradeoff--or efficiency frontier--
that defines the appropriate estimator to use. For example, OLS-DV
is clearly the appropriate estimator when all the 8s are set identi-
cally to one. That is, there is no need to employ the multi-scale
model when the true model is not in fact multi-scale.

As the 6s diverge from unity, it begins to pay to usc one of the
multi-scalce techniques. In particular, for low st onc will want to
use ETV when the variance increases to somewhere between 0.0 and 0.04.
For high st (in the 50 x 5 sample), one will want to use MLE when the

variance of § gt much larger than zero.

SUMMARY

The Monte Carlo results allow us to assess the performance of sev-
eral competing estimators when the true model is multi-scale in nature.
They shiow that no single estimator is dominant over the entire range of
possible sample sizes and model specifications. Instead, the appropriate-
ness of any single ¢stimator depends on a number of factors: (1) sample
size, (2) sample composition, (3) signal-to-noise ratio, (4) the degree
of heterougeneity in the «xplanatory variables, and (5) the degree to

which the multi-scatle model is multi-scaie. These can be combined to

lThnt is, for any given § vector, say 61, the variance of the s
is given simply by

The & vectors used in Table 9 were each generated from log normal dis-
tributions. The reason that Vg in the 5 X 50 sample differs from Vs
in the 50 X 5 sample is simply that five 8s were drawn from each vec-
tor in the tirst case, while 50 were drawn in the second.
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Table 9

MONTE CARLO RESULTS: COMPARISONS OF MEAN SQUARED
ERRORS FOR OLS-DV AND MULTI-SCALE ESTIMATORS

(Homogeneous explanatory variables)

MSE, + MSE, for
Multi-Scale

Sample g ILS-DV MLE ERV ETV
5 ~ 50 Vg = 0.0 Vg =0.0. o 1026 ve=1.68 Vg = 35.3

0.1  0.535 0.645 0.860 2.100 49.01 0.606 0.615 0.599

0.5 0,032 0.037 0.095 1.160 41,51 0.036 0.036 0.036

0.9 0.005 0.008 0.061 1.070 39,54 0.006 0.005 0.006
50 = 5 Vg = 0.0 Vo = 0.04 =0.33 Vg =357 5 = 411

0.1 0.674 0.717 1.028 5.587 552.8 0.7446 1,087 0.680

0.5 0.061 0.068 0.128 1.709 198.7 0.085 0.144 0,219

0.9 0.007 0.011 0.050 1.561 195.8 0.009 0.015 0.179

yleld regions when particular estimators are to be preferred, such as
that shown earlier in Fig. 2 for the 50 x 5 sample.
The Monte Carlo results do enable us to make the following general

statements.

® Ordinary least squares with dummy variables is, of course,
appropriate when the model is not multi-scale. It is also
preferred when the degree to which the model is multi-scale
is very small (even though OLS is inconsistent).

® Maximum likelihood always does reasonably well. It is al-
ways consistent, and for medium to large st it is the
"best" estimator when there are few observations per sub-
group.

° Equal residual variance, though always consistent, is
never the preferred estimator. Though it generally does

reasonably well, it sometimes yields estimates with larger

variance, particularly with low R2.
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e Equal total variance sometimes does very well and some-
times very poorly. It always yields estimates with the
least variance and is generally preferred for low st.
When the explanatory variables are drawn from hetero-
geneous populations, it yields inconsistent estimates--
an inconsistency that becomes severe at medium to high
st. Even when the explanatory variables are drawn from
homogeneous populations, the heterogeneity that occurs
when subgroup sizes are small makes the bias more than

large enough to offset any savings in variance.

These statements provide some practical guidelines for the appli-
cation of the multi-scale estimators. To begin with, the within-
subgroup standard deviation of the dependent variable should be calcu-
lated to determine whether the model appears to be multi-scale. If
the within-subgroup standard deviations are normalized such that their
geometric mean equals one, then the variance of these standard devia-
tions can be determined. If this variance exceeds about 1.0 for very
small samples or about 0.05 for large samples, then it probably pays
to use the multi-scale model.

Second, the ETV estimates should be calculated. If the R2 is
small, then the ETV is probably the best estimator. If the R2 is mod-
erate to large, then the explanatory variables should be examined to
determine whether they are homogeneous. If not, then the maximum

likelihood estimates should be computed and used.
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VI. AN APPLICATION OF THE MULTI-SCALE MODEL

The multi-scale model can be put into some perspective by apply-

ing it to an actual estimation problec.

problem of estimating the cost
actually served as the genesis

In trying to estimate the
term aircraft maintenance specialists in the Air Force, Gay had to

rely on supervisory estimates of the individual's productivity during

his first term of duty.

familiar problem of supervisory bias (i.e., the location effect, a),
the variances of the dependent variable differed considerably accord-

ing to subgroup, thus pointing toward the applicability of the multi-

scale model.

SUBGROUP MEANS AND STANDARD DEVIATIONS FOR GAY'S STUDY®

Subgroup Observations

D - T - e

—
No-= O
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Ve

4SOURCE:

Training in Military Occupations:

Number

of
4
3
3
5
7
5
5
3
4
6
8

11

Table 10

Mean

$ 3,461
4,184
11,017
6,359
3,176
5,314
5,596
2,514
3,634
7,690
12,225
8,084

Standar
Deviati
$ 254
1,987
4,297
3,223
214

409

985

624
1,092
1,736
2,593
732

The example used here--Gay's

d
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ETV

.27
.08
.49
.37
.22
.37
.03
.65
.14

.82

.71
.77

.58
69

§

MLE

—

1.

27
.62
.69
.25
.25
.35
.96
.55
.80
.87
05
.88

.46
41
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1.

of on-the-job training for airmen--
of the multi-scale model.

cost of on-the-job training for first-

As shown in Table 10, in addition to the

ERV

.28
.37
.48
.87
.25
.33
.86
.68
.74
.80
.45
.98

W42
33

Robert M. Gay, Estimating the Cost of On-the-Job
A Methodology and Pilot
Study, The Rand Corporation, R-1351-ARPA, Apri! 1974, p. 28.
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As can be seen in Table 10, Gay's sample consisted of 64 observa-
tions spread across 12 subgroups. The variance of 8 implied by the
ETV estimator (i.e., the simplest transformation of the data) is 1.69,
which suggests that OLS-DV will not yield the best results. There-
fore, the multi-scale model is probably appropriate.

Two primary specifications were considered:

COST, = B, * EXP, + 62 . EDi + 63 * APT, + B4 . si + 65 * W, +¢

i 1 i i i i
(6.1)
and
COSTi B Bl . EXPi + 62 ¢ EDi 4 63 . APTi + 84 s Si + 65 s wi
+ B, * TECH + e, (6.2)
where COST, = cost of on-the-job training for the ith individual,

i
EXPi = years of possible civilian job experience,

EDi = years of education,
APT, = percentile score on mechanical aptitude test,

S, = dummy variable for whether the individual is from
the north (equals 1 if from the south and zero
otherwise),

W, = dummy variable for whether the individual i{s white
(equals 1 if white and zero otherwise),

TECHi = percentile score on the performance test in tech-
nical training and,

£, = error term.

The results are given in Table 11. From the results in Table 10,
we know that the OLS-DV is not appropriate. Given the R2 shown for
Eq. (6.1) in Table 11, ETV yields probably the best estimates. How-
ever, the R2 for version (6.2) is probably sufficient to warrant use
of MLE. Moreover, there is also considerable heterogeneity in the

explanatory variables among subgroups. This will tend to make ML
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Table 11

ESTIMATES FOR GAY'S OJT MODEL: EQS. (6.1) AND (6.2)

Equation EXP ED APT S W TECH R
(6.1) OLS-DV -95.79 -692.7 -35.6 287.7 294.4 0.17
(199.6) (270.6) (17.75) (504.3) (534.8)
MLE -28.29 -406.4 24.90 -65.78  483.2 0.26
(104.2) (141.3) (9.26) (263.2) (279.2)
ERV -6.45 -424.2 -25.16 -110.0 464.4 0.27
(104.4) (141.6) (9.28) (253.8) (279.8)
ETV -38,52 -364.6 -22.08 -15.41  467.1 0.21
(105.2) (142.7) (9.36) (265.9) (282.0)
(6.2) OLS-DV  -129.3 -662.6 -19.81 205.5 550.0 -89.63 0.21
(197.6) (267.1) (19.85) (499.0) (548.4) (53.55)
MLE -34.55 -379.5 -10.15 -127.8 724.3 -80.79 0.36
(99.57) (134.6) (10.00) (251.5) (276.4) (26.99)
ERV 52.01 -358.4 -5.82 -194.9 804.5 -112.7 0.42
(104.5) (141.3) (10.50) (263.9) (290.0) (28.32)
ETV -62.80 -342.8 -10.67 -74.95 652.4 -64.95 0.28

(101.9) (137.7) (10.23) (257.3) (282.7) (27.61)

estimates even more attractive. Finally, it is interesting to note
that all three multi-scale estimators yield similar coefficient esti-
mates, estimates that differ considerably from the OLS results.

The estimated standard errors appearing in Table 11 are derived
from the esimate 612()(')()-1 rather than from the more general informa-
tion matrix that takes into account all parameter values. Thus, these
estimated standard deviations are conditional on estimates of §. The
only difference between these standard errors and the OLS errors is
that 62 is calculated on the basis of T - 2J - K degrees of freedom
rather than T - K - 1 degrees of freedom as in OLS. It is possible to
calculate the more general variance-covariance matrix of the coef-
ficients by calculating and storing the matrix values ijj for each

subgroup j during the processing of the data. However, the estimates

of Var (é - B) are not a byproduct of obtaining é as in the case of OLS.
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VII. CONCLUDING REMARKS

The multi-scale model offers a potentially valuable tool for
analyzing manpower problems where the variables of concern are obtained
by subjective measurement, such as supervisory ratings of individual
performance.l Specifically, it is suggested that measures obtained by
subjective evaluations, such as supervisory ratings, may include two
types of biases: the location bias and the scale bias. Although the
location bias can be handled in multiple regression models through
familiar dummy variable techniques, the scale bias poses special esti-
mation problems and necessitates the development of a multi-scale
estimator.

Of the several multi-scale estimating procedures developed, three
are found to be appropriate for real-world applications: (1) OLS (with
dummy variables), (2) ETV, and (3) MLE. Although maximum likelihood is
the only one of these three procedures always to yield consistent esti-
mates, OLS and ETV may be more appropriate from an efficiency stand-
point when consistency is less of a concern--e.g., in small sample
situations. In particular, OLS is the appropriate technique in small
samples when the true model is only "modestly" multi-scale; ETV is
appropriate when there is a scale problem but the R2 is small; and MLE
1s appropriate when there is a scale problem and when the R2 is roder-
ate to large.

The resulting estimates are useful in two respects. First, the
multi-scale approach allows the analyst to estimate the parameters in
multiple regression models when the dependent variable is subject to
the scale transformation. These estimates can then be used to con-
struct "corrected" estimates of the dependent variable.

Some of the limitations of the multi-scale approach and some pos-
sible di}ections for future research are that the multi-scale model,
as we have structured it, is not necessarily appropriate for all prob-

lems in which the dependent variable is obtained through subjective

1As noted previously, the multi-scale model may be appropriate in
other cases where the data fall into natural groupings.



-49-

evaluation. Iu particalar, our formulation requires cardinal measures
of the dependent variable, not the ord7nal measures one often finds on
supervisory evaluation forms. When cardinal measures are available,
though, the multi-scale approach is probably worth investigating, as
implied by our analysis of Gay's model. Second, like other techniques,
the multi-scale approach is not valid for cases in which the measure-
ment bilas is selective. Indeed, the essence of the multi-scale approach
rests in the notion that the measurement bias is consistent and syste-
matic within subgroups.

Finally, the problem, as it has been structured here, allows for
only one measured observation per "true" observation--e.g., one super-
visory rating per individual. Sometimes, though, there may be several
subjective evaluations (i.e., measured observations) for each true ob-
servation, such as several supervisors rating one individual.1 It
would therefore be desirable to extend the basic multi-scale framework

to allow the multiple observation case.

1This is the case in Gay's current work.
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Appendix

MAXTMUM LIKELIHOOD AND LEAST SQUARES ESTIMATES

This appendix derives estimates of the multi-scale model, assum-

ing that the vector of location parameters o is zero. Thus,

= 6§, (X

yij j ij ) ’ i= 1, 1, ey, T

8 + Ei i

j=1,1, ..., J (A.1)

3

Xijl may be a vector everywhere equal to unity. The side condition

is a strictly separable function
G(8) =0 (A.2)
with a particular form

) T, In 6, =0 . (A.3)

We write the parameter vector 0 as
2
8 = (8,6,07)

MAXIMUM LIKELIHOOD ESTIMATES

ML estimation utilizes the property that the eij are normal inde-
pendent dc--iates with Ee = 0 and Eee' = 021. The likelihood function

can be written

I 55\ 1 2
L= 101 1 (2"0 8 ) exp | - —5— (y - 68X B) (A.4)
j=1 1=1 - 20* si S I S
2 ‘% d =1 1 Yy 2
- (2mo®) © 16, Vexp|- 41 2(3—1 - X, e) (A.5)
j=1 20° 1 1\° 3 .

Preceding page blank
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ML estimates are found through maximization of the logarithm of the
likelihood function, adding a term with a Lagrangian multiplier to
account for the side condition (A.2):

2
log L=-11n2m0° -] 1 In j-—%ZZ(S—i-xijB) + AG(6)
J 200 51\
(A.
FIRST-ORDER CONDITIONS
The ML estimates 5 are solutions to the equations
B log L =0 (A
7 log L = c o
Partial differentiation yields four sets of equations.
a—logL=1—ZZ(-x—;ﬁi'l-X' (x B)):Q (A
38 25\, 1§13
. 2
d T1 1 Jif
—-10gL=--——+-—ZZ( - X B)=o (A.
ao2 2 02 204 i1 Gj ij
1,1 vy Yij Ly %
a6 log L =-T =+ 1|5 - X B HagE -0,
J J oo 3\ 5j J
J=1, ..., J (A.
2 le L=G(5) =0 (A
3% los q A

The first two conditions yield ML estimates to the classical normal

model:

B=(x'x)"1 x'2 tine

6)

7)

8.1)

8.2)

8.3)

8.4)

9)
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and
~2 1 A ~\2
g = -.-r-z Z (zij - xijB) ’ (A.10)
ji
where
245 = Y13/¢

For condition (A.8.3), where the logarithmic form (A.3) of the

side conditions is used, the equation may be written

Loel?18 o A28 4o a2 ,
Tj}(gj xijs)gj (1 - Ao“ , =1, ooy J. (A.11)

Equation (A.11l) is a quadratic equation in l/GJ. Only the positive
root, however, satisfies the nonnegativity conditions for 6.
The necessary and sufficient condition for the existence of a

~

unique solution to this system of equations with all Gj > 0 is that

det |q| # 0

where Q = Y'MY, M is the T X T idempotent matrix I - X(X'X)_IX', and

Y is the T x J matrix, which assigns the values of Y to separate

columns according to subgroup. Thus, H
-&ll 0 el 0 1
11 o 0.
Y = le 5 0 .
im0
_;' 0o ... ;;;:'_
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Some of the implications of this condition are discussed in Section
III.

Properties of Ml. Fstimates

Asymptotic properties for the multi-scale model can be defined as

T, » = for some or all j ,

J-»oo,

Tj * @ and J +» o,

The usual theorems for ML estimates apply only where the number of
parameters is fixed or at least bounded. Since the number of param-
eters in 8 is J + K+ 1, it will remain fixed only as the number of

subsets remains fixed. llence we are able to define consistency only as

Tj » o for all j = 1, ..., J

We conjecture that with certain restrictions on the data, ML estimates
are consistent (in this sense), joint asymptotically normal, and
asymptotically efficient.

The literature on the asymptotic properties of ML estimates (see
LeCam [16]) suggests as an estimate of the dispersion matrix of the

parameters in the limit

iim VT (8 - 8) = I~ Y(o) |

AL12)
T-»w’
where
2
re) - g &8 L
a0

An estimator of the asymptotic distribution of the ML estimates can be

calculated from the matrix of second partial derivatives. In particular
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-1
Al A A
_1 =
I72) = - [ Ay Ay Ay, . (A.13)
Ay A3y Ag
where
5% 1og L 1
A,, =ES—=0B . _ 1 (x'x) (A.13.1)
11 2 2
aB g
32 log L
' - =
Ay = Apy = Eggl (A.13.2)
32 log L
Ay, = E *——‘2’5— (4.13.3)
36
82 log L
Ayy = E ————355— (A.13.4)
3(c™)
and
' = =
Ay = A, =0 (A.13.5)
' = =
AYy = Ay = 0. (A.13.6)

The value 82()(')()-1 will be recognized as the estimate of the
variance-covariance of the B coefficients in the classical normal re-
gression model. The need to adjust these estimates to take account of
the presence ¢f the vector § depends on the inverse of the matrix I'(6).

If A), = A, =0, then

21 = A
-1
-1
A, 0 0 /511 0o 0
rle =-{ o Ay, O =-1 o A;; o |-
-1
00 Ay 0 o aj;
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Thus, the usual estimators of the var

iance-covariance matrix will be
provided by r‘l(e) if and only if

" - lim 82 log L

A R )

In this case 1im F-l(G) is a block diagonal matri

X, and the var /T
(B - B) is merely -02All-l. In general, condition (A.14) will not

hold. Suppose the model (A.1} and (A.3) is transformed to replace 61

with its value as determined by the side condition:

To simplify the problem further, we have assumed that all subsets con-

tain n observations (T = nJ). The expected value of the partial deriva-

tive is
o 1 L 1
£ _og L. __1 ' .
£ 36,98 1z (X]X,8 Xix.8) , (A.16)
§
J
for all j.

The only way for these values to be zero for all parameter
values is for

X1X, = ... =X

171 i

3 ' (A.17)

Hence if the raw moment matrices tend to equality in the limit, then

32 log L

E 3698 - o, (A.18)

and the asymptotic variance of B is merely



-57-

02

rorv—1
T X'X) 7.

Thus, the "t-scores" in the regression program would require no special
adjustment (except for degrees of freedom) in this special case.l

The addition of the vector 8§ to the classical linear model should

~

in general increase the variance of B. However, this cannot be demon-

strated here for the multivariate case. The asymptotic variance of B
is

2

A _ -1 -1
Var (B - B) = (A11 - A12A22 A21) s (A.19)

'—!'Q

according to the rule for invariance of a partitioned matrix. All’

A12’ and A21 are as previously defined. A22 represents

El- 32 log L
262

The disgonal elements of this matrix are

0262 b

1 2 Tyt Tyt
————-(4n0 + B XlXIB + B'X!X B)
3

and the off-diagonal elements are

1 2 Yyt
025 p (an - B XIXIB) y
i°h

The adjustment to be made to the asymptotic variance of 8 can be
shown exactly for the case with one behavioral parameter in B and two

subsets. Using side condition (A.3) to replace 61, 62 with a single

lln all estimates, we reduced the total number of degrees of free-

dom by 2J + K to take account of the number of parameters in o, B, 6.
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value of 6 results in the following matrix io

gl- ﬁz log L
302 |’

where again both subsets are of size n:

2 8 2 2 =1
Lx 5 (le1 szz) 0
~ 2 Pe 2
lim Var (6 - 8) = %~ % (lel = ZZXZ) 4n + B7Ix’ 0
T-+o0 8
n_
0 0 3
&
(A.20)
It can be shown that the limiting value of the variance of B is
2 2
i1 e 7 2 | (A.21)
TIx" \2 + B cxloxz/;x

~

The expression before the parenthesis is the Var B in the classical
normal model. The expression in parentheses takes on a minimum value

1 where

~

Where the variances of subsets 1 and 2 differ, the Var B takes on larger

values. For B = 1 and

1im Var B is nearly twice as great as where the subset variances are
T-rc0

equal,
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LEAST SQUARES ESTIMATES

LS estimation minimizes the sum of squared residuals subject to

the side condition in the vector §. 1In particular,

y 2
s2 -7 ) efj =) X(di X je) + AG(6) . (A.22)
Ji 31\

The first-order conditioas with respect to B and § are

2 y
s _ i 5
36 2) [(xij :, xijxijs) (A.23.1)
and
32 Y44 y1 c(dz
_8 = =2 ): 5 - X B + A (A'23-2)
ij
b AT Gj

(A.23.1) differs from the same condition for ML estimates (A.8.1) caly
by a constant (- 1/20 ), and hence yields the same conditional estimates
for B

Under side c ndition (A.3) LS and ML esf.imates of B and § are
identical. The firsi-order conditions for 1§ and ML are

y A\ Y .
ML: 1o Z i X, .B e 5 Qa - )\)o2 (A.24.1)
T $ 117716
3 I\°) h|
LS: 1—[(——1),1 - X B*)——iyi =1,
toT * 11 o
1 3\8 %

=1, ..., J. (A.24.2)

Inasmuch as 82 1s constant for all j, then (A.24.1) and (A.24.2) differ

only by a constant and, thus,
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* AA2
A =201 - Ao . (A.25)

x A x A
Moreover 8 = B and § = §. Asymptotically, LS estimates have all
the properties of ML estimates plus

*
plim A = 20”7 . (A.26)

It can be proved that for ML and LS estimates to be equivalent
the side condition must be in the identical form of (A.3). Take any
side condition G(8) = O that is strictly separable in the §,. The ML

A j
condition for Gj is
y A y I\g A
T Z(A_il_ xij8)~,\—i‘1= (1 - A;i@%—)oz : (A.27)
3 3\8 85 3%,
For LS the condition is
*
1 z il X B Zii._ 1 A Ei oG (A.28)
T T M3 *x 27T * ’
jj j Gj h| an

" * A *
The conditions are equivalent so that B = B and § = § under some
weak conditions if and only if the right sides of (A.27) and (A.28) are
the same for every subset and do not depend on any element of B or 6.

Thus, at most we could have
= B 2@ (A.29)

But since G = 0, then f(G) = c» 2 constant. Since G is strictly
separable into 01(61) c DN GJ(GJ), 30/36j can be written as Gi.
Thus,
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. (A.30)

'_:-l L&)
]
n

Simple integration yields

Gj = coTj 1n Gj + C1 . (A.31)

where both S and C1 are arbitrary constants. Thus, for LS and ML to

be equivalent, we must have

J
C=c jz T, 1n GJ +c, . : (A.32)

In (A.3) e, ™ 1 and C1 = (.
For a function G not satisfying (A.30) either for small samples
or in the limit, then LS and ML estimates are not equal in the limit

and LS yields estimates that in general are inconsistent.
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