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PREFACE 

This report was prepared as part of Rand's DoD Training and Man- 

power Management Program, sponsored by the Human Resources Research 

Office of the Defense Advanced Research Projects Agency (ARPA).  With 

manpower issues assuming an ever greater importance in defense planning 

and budgeting, the purpose of this research program is to develop broad 

strategies and specific solutions for dealing with present and future 

military manpower problems.  This includes the development of new re- 

search methodologies for examining broad classes of manpower problems, 

as well as specific problem-oriented research.  In addition to provid- 

ing analysis of current and future manpower issues, it is hoped that 

this research program will contribute to a better general understand- 

ing of the manpower problems confronting the Department of Defense. 

This report presents a methodology for using supervisory evalua- 

tions of military personnel in models of manpower performance.  Although 

the measurement of performance is crucial to many manpower models, fre- 

quently the only measures available are those obtained from supervisors. 

Past research has shown, however, that such ratings may be subject to 

biases, perhaps unintentional, making it difficult to determine the 

extent to which the ratings reflect "true" performance or the super- 

visor's own implicit rating scale. 

This report provides a way of correcting for these biases.  In 

particular, since researchers may want to assess the contribution of 

various factors to individual performance—often nArough the use of 

multiple regression models—it is necessary to 'Aave a method of aijust- 

ing the subjective measure of performance.  The resulting approach to 

the problem—the multi-scale model—suggests that supervisory evalua- 

tions of individuals are subject to two types of biases.  The first Is 

the familiar location bias—that is, some supervisors may grade "easy" 

while other grade "hard." The second is a scale effect—that is, some 

supervisors may exaggerate differences among individuals while others 

may minimize these differences. The generic name for the methodology 

presented here—the multi-aaale model—derives from the latter bias. 
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This research was motivated by previous Rand research under the 

DoD Training and Manpower Management Program that was concerned with 

measuring the cost of on-the-job training for first-term enlisted per- 

sonnel.  Indeed, the basic idea was first sketched out in Robert M. 

Gay, Eatimaing the Cost of On-the-Job TrainirujAn Military Oaaupations: 

A Methodology and Pilot Study,  The Rand Corporation, R-1351-ARPA, 

April 1974.  It was decided to extend the brief discussion of the 

model contained there, both because the use of supervisory ratings is 

important to manpower planners and researchers in general and because 

on-going research at Rand dealing with first-term enlisted personnel 

performance requires such a model. 

This report presents the model in the context of an extension to 

the classical regression model.  The report is technical in nature and 

assumes that the reader has a good understanding of standard econometric 

theory. 

Finally, although the methodology presented here was originally 

developed to deal with the supervisory ratings problem, it may be ap- 

plicable to a number of other econometric problems, such as seasonal 

adjustment and other cases in which data fall into natural groupings. 



-v- 

SUMMARY 

Subjective evaluations of Individual performance, such as those 

provided by supervisors, may be subject to certain kinds of biases. 

Yet subjective evaluations are a common and frequently the only source 

of information about a person's performance and can therefore be an 

important element In the application of manpower policy.  Furthermore, 

the development and application of appropriate manpower policies may 

depend on measuring the effects of specific variables on individual 

performance; it is therefore important to correct for biases in sub- 

jective evaluations of individual performance. 

Tliis report is concerned with the development of statistical and 

econometric techniques for correcting for biases in models of individual 

performance.  The approach developed here is a variant of the classical 

linear regression model.  Specifically, it la proposed that supervisory 

ratings may be subject to two types of bias.  The iccation  bias results 

when supervisors systematically overestimate or underestimate individual 

performance.  The Battle  bias results when supervisors exaggerate or 

minimize differences among t lie individuals rated.  This latter effect 

gives rise to the name of the model developed here—the multi~aaale 

model.     Finally, the multi-scale estimators are applied to the problem 

noted in an earlier Rand report about estimating the cost of on-the-job 

training in the military.  Indeed, that problem was the genesis of the 

multi-scale approach and illustrates the value of the multi-scale model. 

Although the model was developed to deal with subjective supervisory 

ratings, the multi-scale model may be applicable to a wide variety of 

other estimation problems where observations can naturally be categor- 

ized into specific subgroups. 

Several specific multi-scale estimating techniques are developed, 

including equal total variance, equal residual variance, maximum like- 

lihood, and least squares.  These differ primarily In the way the scale 

parameters are estimated.  Asymptotic, results are derived for each of 

the four techniques.  However, because of the difficulty In deriving 

small sample properties analytically, Monte Carlo experiments were 
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conducted.  The asymptotic and Monte Carlo results, taken together, 

suggest some practical guidelines for estimation of the multi-scale 

model.  Maximum likelihood and equal residual variance techniques 

yield consistent parameter estimates.  However, for small sample sizes 

and configurations for cases with large random errors, the equal total 

variance residual estimator is preferred. 



-vli- 

ACKNOWLEDGMENTS 

The authors gratefully acknowledge the contributions of Roberta 

Jean Smith, whose computational assistance was invaluable, and of Gus 

Haggstrom and Bridger Mitchell, who provided many thoughtful and con- 

structive comments on earlier drafts of this report.  The authors accept 

responsibility for any errors or omissions that may remain. 

-- 



-ix- 

CONTENTS 

PREFACE   iii 

SUMMARY     v 

ACKNOWLEDGMENTS   vii 

Section 
I.  INTRODUCTION   1 

II.  THE MULTI-SCALE MODEL   3 

III.  ESTIMATION OF THE MULTI-SCALE MODEL  9 
Estimation Strategies and Techniques   10 
The Existence of Solutions and a Method of 

Computat ion   15 

IV.  PROPERTIES AND CHARACTERISTICS OF THE ESTIMATES   18 
Consistency and Asymptotic Normality   18 
Asymptotic Variance of 6 - 9   24 
Summary of Estimates   26 

V.  MONTE CARLO RESULTS   27 
Monte Carlo Methodology   27 
Estimator Distributions   31 
Sample Size   32 
Heterogeneous Explanatory Variables   39 
The Scale Parameter  , 40 
Summary   42 

VI.  AN AP'MCATION OF THE MULTI-SCALE M0DE1  45 

VII.  CONCLUDING REMARKS   48 

Appendix 
MAXIMUM LIKELIHOOD AND LEAST SQUARES ESTIMATES   51 

REFERENCES   63 

Preceding page Hank 



-1- 

I.  INTRODUCTION 

Subjective evaluations are an important element of military man- 

power policy, both in the application of present policies and in thü 

development of new policies. For example, measures of performance in 

the ^orm of subjective ratings by an individual's superior play a 

crucial role in determining promotions and duty assignments and illus- 

trate the application  of military personnel policy.  Similarly, the 

development  of new personnel policies frequently depends on measuring 

the effects of specific factors on individual performance. 

Although subjective evaluations are clearly an important input 

to manpower policy, these measures have certain inherent difficuluies. 

In particular, they are likely to reflect the biases of those provid- 

ing the ratings.  In some instances, these biases may be deliberate 

and applied only selectively (e.g., because of personality conflict 

between the rater and ratee) and cannot therefore be properly con- 

trolled for.  It is probably more common, however, for these biases 

to be unintentional and systematically applied, a result of the fact 

that raters may use different implicit rating scales or may perceive 

matters differently.  Some raters may consistently grade "easy" or 

"tough." 

This report develops a methodology—the multi-scale model and its 

corresponding estimators—for estimating the systematic biases inherent 

in the subjective measures (of such variables as individual performance) 

that are often used in the development and application of manpower policy. 

Specifically, it is argued that subjective measures of, say, individual 

performance may include two types of biases. The first, the location 

bias, is the familiar problem that occurs when some raters systemati- 

cally overestimate and others systematically underestimate the "true" 

variable. The second, the scale  bias, occurs when some raters exag- 

gerate the differences among those who are rated while other raters 

minimize these differences. 

The approach adopted here incorporates these biases into the tra- 

ditional classical regression model. However, the presence of the 
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scale bias Invalidates the standard estimating techniques, so that it 

becomes necessary to develop special multi-scale estimators.  The 

practical importance of the multi-scale model and estimators is two- 

fold.  The techniques provide a way of properly estimating such param- 

eters of the underlying model as the effects of «ducatiou, military 

training, mental aptitude, etc. on individual performance.  The model 

also enables the analyst to construct "corrected" measures—adjusted 

for the Inherent biases—of the subjectively estimated variables. 

In the next section, we provide a brief discussion of the origin, 

structure, and applications of the multi-scale model.  Section III dis- 

cusses some basic issues in estimating the multi-scale model and sug- 

gests and derives five specific estimating techniques.  Section IV 

examines the mathematical and statistical properties of the estimates. 

Since the small-sample superiority of any of the estimates cannot be 

proved, we have conducted an extensive series of Monte Carlo experi- 

ments Involving the principal estimation techniques.  The results of 

these experiments are reported in Section V.  Section VI applies the 

multi-scale model to the supervisory rating problem discussed earlier. 

Section VII outlines possible extensions of the model. 
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II.  THE MULTI-SCALE MODEL 

The multi-scale model is a variant of the classical linear regres- 

sion model in which the dependent variable is subjected to a linear 

transformation that varies from group to group.  Thus, for the ith 

observation the observed dependent variable y is related to the "true" 

dependent variable z by 

yij= aj+ Vij • ^ 

The model is multi-scale  in that the location parameter a and the scale 

parameter 6 may take on different values in each of the J subsets Into 

which the observations are partitioned.  The value of the unobserveci de- 

pendent variable is determined by the classical model 

zij = V + eij ' (2-2) 

whore X  is a vector of independent variables and the E  a set of in- 
1J 2  ^ 

dependent random variables with mean \i  and variance O .  The problem is 

to estimate the three vectors of parameters, a, ß, and 6.  Inasmuch as 

only scale effects are being Investigated, all values of 6. are assumed 

to be strictly positive.  The full model can be written 

ylj =aj +Xij(6jß) + (6
j
Eij) ■ (2-3) 

Classical regression analysis has been extended to a number of 

cases in which the coefficients may vary in some fashion across subsets 

of observations.  It is standard practice, for instance, to use separate 

intercept terms or separate coefficients for subsets of observations 

sharing some common attribute.  Indeed, whole sets of procedures, known 

generally as analysis of covariance, have been devised for determining 

whether sets or subsets of coefficients differ among subsets of observa- 

tions.  (See Chou [1] and Johnston [2].)  In a related area the pooling 

_ 
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of cross-section and time series data poses a number of estimation 

problems that i ave been exhaustively analyzed in the literature on 

error components models.  (See Wallace and Hussain [3], BallesLra and 

Nerlove [4], Nerlove [5], [6], and Hsiao [7].) This report represents 

an extension of the literature on different coefficients and intercept 

terms to a case where the coefficient vector may differ by a scale 

factor among subsets of observations.  The parameter vector y = 6 ß 

in Eq. (2.3) may take on different values for each subset of observa- 

tions j; however, unlike the case of pooling data, the parameter vec- 

tors differ by a scale factor rather than being identical or totally 

different.  Because the 6 is a multiplier of ß as well as the e  , 
J J J 

the problem is more than a problem of heteroscedasticity. Hartley and 

Jayatillake [8] have, in fact, analyzed the case where the variance of 

the error term may differ by subset. 

The problem is also more than a nonlinear regression problem, 

since in its conventional interpretation the nonlinear regression prob- 

lem can be written as 

y - g(x,e) = e , (2.4) 

whereas (2.3) can only be written as 

f(y,x,e) -  e . (2.5) 

The problem created by (2.3) is, strictly speaking, a multi-scale prob- 

lem.  We believe that the multi-scale model has considerable applica- 

bility in economics and the social sciences in analyzing data containing 

rating-scale phenomena, in analyzing pooled cross-section and time series 

data, and in analyzing time series data involving subannua1 observations. 

Because to the best of our knowledge this model has not been ana- 

lyzed previously, this report derives and discusses a variety of estimat- 

ing techniques and suggests guidelines for using the various estimates. 

Although some guidance is obtained from asymptotic properties of the 

estimates, our recommendations are principally based on the results of 

a series of Monte Carlo experiments.  We do not explore in any detail 
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the properties of the estimates or even the existence of estimates. 

Rather it is our desire to focus on the multi-scale model itself, on 

practical problems of one choice and computation of estimates, and on 

the application of the model to problems of statistics and econometrics. 

We have attempted to minimize the mathematical derivation and stream- 

line whatever proofs are given.  This last is at the expense of mathe- 

matical rigor but in keeping with the general nature of the report. 

The empirical problem that led us to estimate the multi-scale 

model arose in a study of on-the-job training in the Air Force.  Pro- 

ductivity indices were created for individual airmen on the basis of 

quantitative but somewhat subjective information provided by the air- 

man's supervisor.2 Multiple observations were available from individual 

supervisors.  The parameters ^ and 6. in (2.1) reflect the fact that 

each supervisor apparently used a different rating scale. Moreover, 

these differences were reflected in the mean scores (^) and in the 

standard deviations (6^ of the subsamples.  Figure 1 plots the cost of 

on-the-job training (OJT) for individual airmen grouped under the 12 

supervisors in the sample.  The standard deviations of ÜJT costs range 

from $214 to $4297 across ehe 12 supervisors.  Since supervisors typi- 

cally oversee small numbers of Individuals, statistical analysis of the 

data is impossible unless data from different supervisors are pooled 

together.  Consequently, it was necessary to combine a rating-scale 

model (2.1) with a behavioral model (2.2). We would expect that sta- 

tistical inference involving any variables containing rating-scale 

phenomena would give rise to the multi-scale model.  Similar applica- 

tions could relate to personnel evaluations, classroom performance, or 

other situations where personal ratings might be used. 

Economists have only recently and then infrequently come to use 

data based on ratings.  As a result, the most useful application of the 

multi-scale model for economists may be in the area of pooled cross- 

section and time series data.  Pooled data usually involve combining 

1See Gay [9] and Gay and Nelson [10]. 
2The cost of OJT for each airman was estimated as the difference 

between the airman's productivity, which v j provided by his super- 

visor, and his wages. 
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tlme series data on firms, states, or countries.  If the dependent 

variable Is In the form of an aggregate quantity, such as fuel con- 

sumption or liquid asset balances, there will be huge scale differences 

among the different units combined in the analysis.  The theoretical 

model may express the quantity demanded in the ith market at time t as 

a function of prices and income distribution parameters in the market: 

K 
qlt = ßo + J1 

ßkPltk + Wit + ßK+2
0lt + eit '      (2-6) 

where qit = quantity demanded in the ith market in period t, 

Pjj.^ ■ price of commodity k in the 1th market in period t, 

Mit = mean income of potential buyers in the 1th market in 

period t, and 
2 

Oit ■ 'ariance of income of potential buyers in the ith market 

in period t. 

If the analyst is a good theorist, he may be able to specify a priori 

the relevant variables, the functional form, the distribution of e  , 

and whatever dynamic properties the demand may exhibit.  The scaling 

problem Is often handled by jslng another variable either to scale q 

by defining a new variable 'lit/xit or to use it In a weighted regres- 

sion.   Only rarely, if ever, is there theoretical justification for 

the choice of such a variable. 

The application of the multi-scale model could eliminate the need 

to specify an artificial scaling variable x  by estimating the appro- 

priate scale for each firm or state as well as the parameter vector ß. 

Alternatively, one might use dependent variables of the form Aq/q or 

In q to take care of the scaling.  But unless such a functional rela- 

tionship is suggested by theoretical considerations, these measures may 

be Just as artificial as the choice of x  .  Consequently, the multi- 

scale model may be a good substitute for several conventional practices 

To be sure, economists have paid considerable attention to the 
properties of Elt, particularly Eee', in estimating behavioral equa- 
tions from pooled data. 
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In pooied data „here scale problems exist.  Moreover, even „here scale 

problems are only suspected, the multi-scale model can be used to test 

for the presence of scale effects.  This „ould provide another tool In 

the kit to determine to „hat extent sets of coefficients are the same 

or different.  The multi-scale model permits coefficients to differ 

but remain proportional across sets of observations. 

A third application of the multi-scale model would be in demand 

or supply „.odels estimated from quarterly or monthly data „here there 

Is a strong annual cycle.  If it is expected that the parameters ß and 

the variance of the error are also subject to tne cycle, the multi- 

scale model can be used.  This could be „ritten 

where J is the month, t is the year, and *, is a dummy variable for 

month i.  Examples of data subject to strong seasonal fluctuations 

„ould include grain sales, military enlistments, heating fuel consump- 

tion, and number of ne„ entrants to the labor market.  With strong 

seasonal fluctuations, better estimates of ß can often be made by uslng 

annual data instead of monthly or quarterly data.  The absent of a 

long time series of data or the presence of structural changes in tht 

market often make the use of subannual data necessary. Moreover, the 

seasonal pattern itself is often of interest. The estimates a and 8 

from (2.7) can be used, in fact, to construct seasonally adjusted 

le 

le 

variables, 

There are probably other applications for the multi-scale model, 

such as In estimating age-earnings profiles „here ehe effects of educa- 

tion and ability differ by age; ho„ever, applications for time series 

and pooled cross-section and time series data „ould seem to be the most 

likely uses for economists. 
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III.  ESTIMATION OF THE MULTI-SCALE MODEL 

The assumptions of the multi-scale model basically reflect the 

assumptions of the classical normal linear model.  In particular, we 

assume 

yij = aj + W + eij) '    i ' 1, .... Tj ,      (3.1) 
j - 1. .... J 

2 
where the e  are independent random variables each distributed N(0,a ), 

X.. = (X i, .... X  ) is a vector of known constants of dimension K. 

The T cases or observations (T = ^ T ) are partitioned into J subsets, 

as indicated.  The vectors a = (a , ..., a ), 6 = (6 , ..., 6 ), and 

ß = (ßj* •••» 8») are fixed unknown parameters.   The only restriction 

is that 6, > 0 for all j. 
j 

Equation (3.1) does not constitute a complete model.  In particu- 

lar, estimates of the Cora 6 = k6, ß = ß/k and o  = o /k are observ- 

ationally equivalent as k varies.  To identify these parameters, the 

multi-scale model requires an additional condition on the set of param- 

eter vectors.  It seems most  natural to place some restriction on the 

vector 6, and we deal with the strictly separable function 

G(6) = G1(61) + ... + GJ(6J) - 0 (3.2) 

2 
as a basis for identifying 6, ß, o .  Assuming that the geometric mean 

of the (S.'s overall observation is 1 leads to 

[ Ij IB « - 0 . (3.3) 

Hsiao [7] has analyzed the error components problem as a random 
coefficients model.  The treatment of a and 6 as random variables may 
prove to be a fruitful approach; however. In this report a and 6 are 
fixed parameters. 
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In the case of the supervisory ratings application, e.g., (3.3) requires 

that the supervisors provide on average unbiased ratings, in the geo- 

metric sense of the term "on average." 

The choice of constraint is a matter of some Importance.  For in- 

stance, either changing the weights T or Introducing tha  "bias" by 

setting J. T In 6 » a, a »» 0 win change both the absolute and rela- 

tive values of the parameters ß, 6, o .  Hence the identifying restric- 

tion is in every sense an integral part of the model. 

A similar identification problem may arise between the location 

parameter and the Intercept term ß0, if one exists.  We assume, however, 

that the equation z  = X ß goes through the origin.   There is no 

possible confounding of intercept terms in this case.  The identifica- 

tion of intercept terms is usually less Important to the analyst than 

the identification of coefficients. 

• 

ESTIMATION STRATEGIES AND TECHNIQUES 

The analyst may choose any of a variety of strategies in estimat- 

ing the behavioral parameters ß of the multi-scale model.  He may choose 

to estimate a, ß, and 6  together by applying maximum likelihood (ML) 

estimation, least squares (LS) estimation, or some other technique pro- 

ducing simultaneous estimates of all parameters.  Such a strategy in- 

variably requires iterative methods of estimation and possibly requires 

Note that it is necessary to estimate both  the ous and ß if one 
desires a "corrected" measure of the dependent variable, since 

Zi - ^ij " aJ
)/6

J ' 
so that 

h - Wj - V/5J • 
A plausible assumption would be that aj equals zero on average (where, 
in this Instance, we mean arithmetically "on average"), so that the 
side condition for a becomes 

I  Vj - 0 . 

In the remainder of this report, we will assume, without loss of gen- 
erality, that ß. equals zero. 
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the construction of special software packages.  A simpler strategy 

would be to try to adjust y  for the effects of a and 6 prior to 
J J .1 

estimating ß.  One method of doing this is to standardize the y  in 

different subsets for means and variances and the" to regress the ad- 

justed variable z on X by means of ordinary least squares (OLS).  The 

apparent advantage is in the costs of estimation, and the apparent 

sacrifice is in not using information on X and ß in developing esti- 

mates of a and 6.  A third strategy, of course, would be to ignore 6 

entirely and estimate the parameters a and ß using OLS.   We have 

already assumed that the scale parameters are distributed around 1.0. 

This last strategy is the one implicitly adopted in pooled regressions 

where the multi-scale model is not used.  In summary, the three esti- 

matirn strategies are 

I.  ML, LS estimates of a, ß, 6 

11.  OLS estimates of 6 with "adjusted" y 

111.  OLS estimates of a, ß 

Although strategies 11 and 111 may have the meager appearance of 

straw men, there is no guarantee that adopting the more elaborate ap- 

proach of strategy 1 uniformly produces the best results.  Figure 2 

shows the strategy and technique producing minimum mean-square error 

in estimates of ß in one series of Monte Carlo experiments conducted 
2 

for this study.  Individual experiments differ according to R  (the 

coefficient of determination) and the variance of In 6 in the multi- 

scale model.  Perhaps surprisingly each strategy offers a region of 

superiority.  Where all 6 values are near unity, strategy III is superior 

in that it is better to ignore 6 than try to estimate it.  Where the R 

is small (less than .30) and where the X  have similar distributions 

for different values of j, strategy II is superior.  There apparently 

is little error due to standardizing values of y in this homogeneous 

case.  However, where the X  have quite dissimilar distributions 

Actually, the third strategy consists of OLS with dummy vari- 
ables for a (since a fourth strategy could be to ignore both the a 
and ß). 
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R2 
I.   Maximum likelihood 

HI.   Equal total variance 

' ' ' ' I ' I I I I 
0.5 

Var (4^-8) 
1.0 

Fig. 2 — Regions of superiority for different estimators 
of the multi-scale model 
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across subsets (not shown), this region of superiority is sharply re- 

duced.  Since strategy II ignores the effects of X and ß in estimating 

6, its value depends crucially on the homogeneity of the X^ across 

subsets.  In the remaining areas of Fig. 2, strategy I provides better 

estimates of 6. 

We derive and evaluate five estimating techniques for the multi- 

scale model:  (1) OLS; (2) the technique for adjusting the dependent 

variable before using OLS, referred to here as the equal total vari- 

ance (ETV) technique; (3) ML estimation; (4) LS estimation; and (5) 

another simultaneous technique that determines 6  such that there is 

equal residual variance (ERV) across subsets.   The first four have 

been mentioned previously; the last technique is heuristically deter- 

mined based on the expectation that, if 6 is controlled for, the vari- 

ance of the residuals should be approximately equal across subsets of 

observations. 

Each of the five techniques provides four sets of conditions, which 
2 

can be associated with the parameters a, ß, 6, and a .  If treatment of 
2 2 

degrees of freedom is standardized,  the conditions for a, ß, and O arc 

Identical for each of the five estimating techniques.  The details for 

ML and LS estimates are provided in the appendix.  Thus, as in the case 

with OLS, the Intercept terms a cm be estimated after the other param- 

eters, because the following equation defines the estimator of 6  for 

all methods. 

«3 - P, - «JV • "■4) 

where X is the mean for subgroup j. Hereafter, in fact, we eliminate 

O from the model by redefining y^ and \      as yi - v. and X  - X^. 

Thus, the multi-scale model is 

yij-
6j(XlJß+eij)   ' (3-5) 

^hus, techniques (3), (4), and (5) belong to broad strategy I 

outlined earlier. 

Maximum likelihood estimates do not provide for adjustments for 
degrees of freedom.  Here, as in other applications, we use ML esti- 

mates for degrees of freedom. 
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The condition for ß Is 

i  = (X'X)'1 X'z . (3.6) 

where z^ = Y^/ty     Thus In all cases the condition for ß is simply 

the OLS regression of z on X. 

Finally, in each case we choose 

-2 
0    =T^ ^H(if-v)2« (3-7> 

where 2J + K represent the total numbe- of parameters in a, ß, and 6. 

The only differences among the five estimating techniques are the 

conditions associated with estimates of 6.  These are listed below, be- 

ginning with ML, I.S, and ERV, the three simultaneous techniques.  The 

parameter A in ML and LS is a Lagrange multiplier attached to the side 

condition.  The results are for the general form of the side condition 

(3.2).  In particular, for each j = 1, ..., J, 

MI 

ETV 

: v^ft1""1^)2 "°2 "•8-3) 

:    —I  y(Zil|     = V,  a constant (3.8.4) 

OLS:     6=1. (3.8.5) 
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The conditions for ERV, i V, and OLS follow directly from the defi- 

nitions of the techniques.  ERV, for instance, required the variance of 

the residuals to be equal in each subset, and ETV requires the variance 

of the adjusted dependent variable to be equal across subsets, while OLS 

merely accepts 6 as a constant.  The conditions for ML and LS, however, 

are taken from the first-order conditions for the maximization or min- 

imization carried out in the two techniques.  The derivations appear 

In the appendix.  LS and ML estimates .ire formulated as Lagrange multi- 

plier problems because they represent the extrema of function subject 

to a single constraint.  The conditions for LS and ML both involve the 

cross-product between the residual e.. = (y ./6. - X .ß) and the ad- 

justed dependent variable within each subset.  The cross-product is 

equal to a  for ML estimates and to zero for LS estimates, once corn- 

on pensation has been made for the side condition.  Under side conditi 

(3.3) with weights T. - 1 instead of T., the expression 

36. f-tT = 1 • (3.9) 
.1 J 

This results in numerically identical estimates for ML and LS.  As Is 

shown below, this is the only such side condition that produces identi- 

cal results for ML and LS estimates. 

The third technique, ERV, requires that the residual variance be 

equal (to O across subsets. This condition is superficially similar 

to (3.8.1) and, in the limit, ML and ERV produce identical results. 

Equations ^3.8.4) and (3.8.5) are the conditions for ETV, based on the 

adjusted dependent variable, and OLS. Neither condition uses the full 

information of the model and can produce efficient estimates of ß only 

in some very special circumstances, 

THE EXISTENCE OF SOLUTIONS AND A METHOD OF COMPUTATION 

The system of normal equations produced by any of the simultaneous 

estimation techniques does not yield a closed form solution.  For the ML 

normal equations there is a unique solution where all 6  > 0 if and only 
' .1 
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If the data matrix obeys some quite reasonable conditions.  More gen- 

erally there are 2 solutions to the system of ML equations.  Only one 

solution will have all values of the 6^ > 0. The 2 solutions may be 

thought o' as J pairs of values for 6 , A + |B | and A - |B |, where 
T J     J        J J  A    J 

JB. | > A .  There are 2 combinations but only one where 6 > 0. 

The necessary and sufficient couditlons for this result can be 

simply stated. Let Y represent the T x J matrix, which places values 

of Y,  in separate columns according to subgroup.  Define Q = Y'Cl - 

X(X,X)~1X,)Y, where M » I - X^'X)"^' is an idempotent matrix.  Then 

the necessary and sufficient condition for a unique positive solution 

for the ML equation is that 

det |Q| t  0 

or that Q be of full rank (rank = J).  This condition will not hold if 

(1) the columns (variables) are not linearly independent; (2) there is 

a perfect fit between Y  and X  for all observations in any subgroup; 

(3) there is no variation in Y  in any subgroup; and (4) there is only 

one observation in any subgroup. Assuming the existence of a solution 

in the ML case requires (1) a proper specification of the variables and 

(2) the elimination of any subgroup satisfying any of the conditions 

(2) - (A). 

To compute the estimates of the multi-scale model, we have developed 

an iterative approach that converges rather quickly to a set of param- 

eters satisfying (3.4), (3.5), (3.6), (3.7) and one of the conditions 

(3.8.1)—(3.8.3).  This is an approximate solution to the system of 

equations, but as indicated, only one of several possible solutions 

where the system is quadratic.  Negative roots of the quadratic have 

been eliminated since these produce negative estimates of 6 .  This 

computation procedure has been applied in literally thousands of re- 

gressions in the Honte Carlo experiment and In no case did it yield 

unreasonable or outlandish results. 

This result was provided by Gus C. Haggstrom. 
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The estimating procedure can be described In six steps beginning 

with raw data, not grouped by subset.  Documentation of this program 

has been provided by Smith [11].  The steps are as follows: 

1.  Raw data are ordered by subgroup.  Sample means are calcu- 

lated by subset for the dependent and Independent variates, 

and these variates are then expressed in terms of deviations 

from the subgroup means.  (This permits the vector of inter- 

cept terms to be estimated after all other parameters have 

been estimated.) 

2.  Initial trial values of the ^ are obtained from the standard 

deviations of y^ in each subgroup. These are normalized to 

conform to the logarithmic constraint (3.3).  An "adjusted" 

dependent variable is found by dividing y  by the estimate 

of 6y     (This  is simply the ETV procedure.  If ETV estimates 

are desired, it is necessary only to calculate the OLS based 

on the adjusted dependent variable.) 

3. Initial estimates of § are obtained by regressing the adjusted 

dependent variable on the Independent variates. 

4. Given the estimates of ß. new estimates of 6 are obtained (and 

the Lagrange multiplier X  where applicable).  A gradient search 

technique (Newton's method) is used to find the appropriate 

Lagrange multiplier.  Acceptable accuracy can usually be found 

within about five iterations.  Given the proper A, the values 

of 6 can be calculated directly from the J equations involv- 

ing 6. 

5. Steps (3) and (4) are repeated until the values of ß and 6  con- 

verge.  A criterion is used that the maximum change in any 6., 

whi :. is the most sensitive parameter, must be less than .001. 

Usually, fewer than tour iterations are required. 

6. Given values of ß and 5, estimates of a  can be calculated. 

Data processing has been performed on the IBM 370/158.  The average 

cpu time per estimate has been 4 seconds with 250 total observations, 50 

subgroups, and two independent variables for the ML technique.  Average 

cpu for the ETV technique (basically a single regression) is 1.1 seconds. 
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IV.  PROPERTIES AND CHARACTERISTICS OF THE ESTIMATES 

Ideally we would like to be able to derive the small-sample dis- 

tributions of the five ec^imating techniques and base our choice of 

estimates principally on these theoretically determined distributions. 

Only large-sample properties and distributions of the estimates can be 

examined; consequently, the ultimate basis for our choice of estimates 

will be the Monte Carlo experiments of Section V.  An analysis of the 

statistical properties and mathematical characteristics of the esti- 

mates contributes to an understanding of the estimation problem and 

provides more guidance in the choice of estimates. 

This section is devoted to two topics: (1) the consistency and 

asymptotic normality of the estimates and (2) asymptotic variance of 

the estimates. 

CONSISTENCY AND ASYMPTOTIC NORMALITY 

The characteristics of the multi-scale model do not lend them- 

selves to a mathematical analysis of small-sample properties.  Neither 

unbiasedness nor minimum variance, for instance, c^n be demonstrated 

for finite sample sizes.  We must restrict ourselves to the asymptotic 

properties.  In the multi-scale problem, where observations are grouped 

into subsets, the question of consistency is complicated considerably 

by the fact that sample size can be increased by increasing the number 

of observations per subset (T ) or by increasing the number of subsets 

J, or both.  When sample size is increased by increasing the number of 

subjects J, however, the number of parameters to be estimated also in- 

creases—two new parameters for each new subset. 

In general, we note that if £. is a parameter vector-  of m elements, 

then £ is said to be a consistent estimator of C if 

plim  E, =  K 
n/m * * 
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That is, merely assuming that n -► ^ may not be sufficient to guarantee 

that a probability limit exists for the 5 veator.       This takes on a 

special importance for the multi-scale model since m = 2J + K, where K 

is the number of explanatory variables in the model.  Therefore, since 

n = T. • J (if the subgroup size is the same for all subsets), then 

n/m approaches T./2 in the limit as n is increased by increasing J. 

The implication of this is that when sample size is increased by add- 

ing more subsets, the probability limit as n ► « for the. parameter 

vector 6, where Ö = ((', a, 6), does not exist. 

The probability limit for the entire Ü vector exists only when 

T  >■ o° for each subgroup so that we can speak of consistency only when 

the number of observations per subset increases without bound.  That 

is, the "large sample" in the multi-scale model means many observations 

per subset.  'I his is unfortunate in a way because, as the number of 

observations per subset grows, the need to pool data from different 

rating systems diminishes.  Moreover, practical limitations may require 

tiiat additional observations be created through increasing the number 

ot subsets rather than their thickness.  Thus, one can add supervisors 

to the sample but not necessarily the number of cases each supervisor 

evaluates.  Monte Carle experiments must be used to assess the estimat- 

ing techniques under different sample configurations. 

ML Estimates 

Under some very general conditions maximum likelihood estimates 

are consistent, jointly asymptotic normal, and jointly asymptotically 

An extreme example is the problem ot estimating n means with n 
observations posed by Kendall mid Stuart [121, p. 61; and Zellner |13], 

p. 114. 

"It is important to note t lal while the probability limit foi the 
8 vector may not exist for ,1 >  , the probability limit lor fS mav very 
well exist for J ► a>.     However, I- cause we rely on the consistency ol 
a  and 6 to show the consistenc; u ii,  we cannot show the consistency 
of Q  when I ► ".  Nevertheless, t e Monte Carlo results in Section V 
suggest that the marginal dist- ib.tion lor B may converge when I • ', 
holding subset size constant.  fhifl has the import ml implication that 
when one can increase sample Biz« only through the addition ol   more 
subsets, one can get more precise estimates of 0—the parameter vector 
likely to be of most concern t< t e analyst—even though the estimates 

of a and 6 are not consistent. 
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efflcient.  Hoadley [14] and Bradley and Gart (15) have considered the 

case of Independent, not identically distributed random variables, 

such as Y^ in the multi-scale model.  The authors conjecture, but have 

not verified, that with appropriate restrictions on the constants X 

the multi-scale model satisfies the conditions of Hoadley and of Bradley 

and Gart; and the ML estimates are consistent, jointly asymptotically 

normal, and jointly asymptotically efficient. 

Furthermore, the satisfaction of certain necessary conditions for 

consistency can be proved directly.  As indicated previously, there is 

a unique solution to the ML equations with all 6 > 0 under rather weak 

restrictions.  This solution is the ML estimate.  This result will also 

hold in the limit as all T. + ».  Moreover, it can he shown that the 

set of normal equations for the ML estimates In the limiting case have 

the following solution: 

plim 3=6 

plim 6=6 

^2   2 
plim o = a 

plim A = 0 . 

This implies that ML equations in the limiting case yield the true 

parameter values as a solution.  This line of reasoning does not fully 

establish the consistency of ML estimates, since we have not demon- 

strated the existence of a sequence of values of the parameter vector 

6 for which 9 is the limit; however, we are reasonably confident in 

our conjecture that ML estimates are consistent. 

LS Estimates 

We have already made reference to the fact that least squares esti- 

mates are identical to ML estimates under side condition (3.3).  This 

is because under (3.3), conditions (3.8.1) and (3.8.2) become 
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LS: ^ 1 (if - ^ yt 2 A (A.2.2) 

Here X and X are Lagrange multipliers corresponding to condition (3.3). 
^2 

Since a is the same for all j, (4.2.1) and (A.2.2) yield identical 

solutions.  The appendix demonstrates that for (3.8.1) and (3.8.2) to- 

gether with (3.A), (3.6), and (3.7) to yield identical estimates of a, 
2 

B, 6, and a  ,   then 

G(6) = c y T lim 6 + C = 0 o '- j     j   1 (A.3) 

where c and C are arbitrary constants.  A corollary to this is that 

where (A.3) does not hold, ML and LS estimates will be different for 

at least some values of y and X.  Moreover, this difference la gener- 

ally independent of sample size, so that LS estimates are different 

from ML estimates at all sample sizes even in the limiting case and, 

therefore, are inconsistent. 

ETV Estimates 
■A, 

Under ETV estimates of (3 are the OLS estimates from a regression 

of y (adjusted for variance) on X.  In particular , 

5 - I f- (X'xrVy 
J-l 6j 3 J 

(A.A.I) 

where X is the T. x K matrix of independent variables for subgroup j 

Under any normalization rule, the ratio 6J&,   from (3.6.2) is 
j n 

!i ^ V2 /(T - 1) 

I y^/n. 
Lh lh' - 1) 

(A.5) 
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Taking probability limits as T ^ ■» and T -*■ <» yields 

6   5. jo    + w4 \2 
pllm ^- = r3" I "^  

«h  6h \ o2 + % 

(4.6) 

where w. Is the 11m 1/(T - iXß'X'X ß) (the "explained variance") and is 

assumed to exist and be non-zero.  The consistency of the ratio ö./oh 

depends on having the same explained variance in each subset.  Thus, 

if the rows of X. can be viewed as coming from a distribution that is 

more homogeneous than the distribution of X^, then w. will be smaller 

than u>. and pllm (ö./ö.) will be too small.  This result should be quite 

intuitive.  Under ETV the value of 6 is determined without any informa- 

tion on X .  The technique attributes to 6  any variation regardless of 

source.  If X'X = X^X2 = ... = X^Xj this would seem to be a perfectly 

appropriate technique for any sample size. 

The exact degree of Inconsistency in ß (defined as pllm 0/ß) can 

be determined where there are only ^wo subsets of observations.  We 

assume further that 

11m ^- X,X1 - l lim - X^X2 , (4.7) 

where p is the ratio of the variance of the two subsets.  The proba- 

bility limit ß as T1 = T2 > <» is 

pllm ß « ß l1 + (1 ^ p) - r(l - p) 
(1 + p) + r(l - p) 1 + P 

(I + p) +  r(l - p) 
(1 + p) - r(l - p) 

(4.8) 
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2 1 
The parameter r Is the limiting value of the R of the model.  The 

limiting values of plim B/3 as p and r approach extreme values ampli- 

fies on the results of (4.5).  In particular 

lim plim ß/ß = 1 (4.9.1) 

P-*1 

lim plim ß/ß = 1 (4.9.2) 
r-K) 

1 
\ 4 

lim plim ß/ß = (f-—- | (4.9.3) 
p-x» (M 
lim plim ß/ß = P ^ P  . (4.9.4) 

2 
As the degree of heterogeneity or as R diminishes, the degree of incon- 

sistency in ß also diminishes.  The fact that ETV works hest (in the 
2 2 

limit) for models with a small R  is because O  tends to swamp the 

values ß'X^X ß and ß'X^ß (see (4.5)).  This therefore reduces the 

error from ignoring the explanatory variables in estimating 6. 

ERV Estimates 

The most important point to make about ERV estimates is that they 

approach ML estimates as all T -»• <».  Equality of ERV and ML estimates 

at all values of y and X require that there be no difference between 

(3.8.1) and (3.8.3).  This requires 

In particular, 

12   2 

JL (üii + (i)2) 
r
 ^  2^1,2   2," 

a + 2 (Wj + w2) 
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.   *   3G 6i        2 

Mi^-l0    =0  ' J  =  ! J  • (4.10) 

This yields 

^l(^v)v+x%^V-° (4.11) 

^3 r. ra11 j- the seco■", term wii1 ^" ••"• ^»"«»r. »« if B is the ^ as the i squares e8tlMte of 6 ^ 

"*-»«*«• ^ the Jtb e^et.1    g,   in  fact,   ls  the least / 

Mti»t. based on all „baervationa.    H^ever,  aa T.  -. - ,„ aU  .    th(. 

Hit  (4.10)   la aatlafled,  and EKV and ML eatlnatea are equlvalent 

A practical proble, in applying „y is that  in „odela „ith «U 

a«P e aiae. and a hlgh R
2.   the probability o, obtaining aolotiona „ith 

imaginary co^onenta ia auba.antia!.     In cases where Ms ^^ 

adopted the procedure   (certainly unsound)  of settl„8 ,„.  ^^^ 
ponen, eqllal to ^    ^ pose8 _ ^^^ |>racticai ^^^ ^ 

of ERV. 

ASYMPTOTIC VARIANCE OF ft -  0 

that th' llteratUre "" aSynPt0ti- PrOPertleS 0f *■ eStl"'tes •»«•«■ that the asymptotic variance of 9 - 6 is 

lim Var  (0 - e)  = - r"1rö) F 
T    ^«o T '     (Ö)   , for all J   , (4.12.1) 

1 

l8-|(Jf-v) That is. y/.iL _ Y   Q\v   S_Ä_2      .. y 

5J 

yß-Olf 0.  (x-x.)  XI  ^ . 
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where 

/ 92 log L\ 

\      ae2    ; 
r(0) = E -^-i£fi_Ji . (4.12.2) 

This suggests an estimator for the variance of the estimates of the 

multi-scale model.  Under this estimate it can be shown that variance- 

covariance of the behavioral parameters ß will not be equal to 

-2 
|- (X'X)"1 , 

unless 

2 
9 log L  n // ION 
^3636  " 0 • (4'13) 

The appendix shows that (4.13) holds if and only if X'X is equal for 

every subset j.  Thus, the "t-statistics" for ß from the classical 

normal model will hold asymptotically for the multi-scale model if and 

only if the moment matrix X'X is the same for every subset. 

If the independent variables do not have the same dispersion mat- 
^2       -1 

rix, a correction to o /T (X'X)  Is required.  This will be given by 

calculation of T     (6).  In the specific case of one variable and two 

subsets we have calculated the specific asymptotic variance of ß: 

Var (ß - ß) = 

2 2 
^2  /  2 + ß o Of        x 

T ^ x2 \2 + ß2o2 o2 /a2 

x1 x2  x, 

2   2       2 
where 0« * 0« • and a are the "variances" of x from the two subsets xl  x2      x 
and the total sample.  The value of the term in parentheses attains a 

2   2    2 value of 1.0 where 'Jv = av    - av  ,  but otherwise is greater than unity. x   xj^   xj^ 
Hence the asymptotic variance of ß is at least as great as the variance 

of ß in the classical normal model. 
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SUMMARY OF ESTIMATES 

We have presented some of the mathematical characteristics and 

statistical properties of ML, LS, ERV and ETV In this section and In 

the appendix.  Table 1 briefly recapitulates the most Important fea- 

tures of all five methods of estimating the multi-scale model.  The 

results of this section suggest, If anything, that ML estimates display 

the fewest bad features If one Ignores computational cists.  Neverthe- 

less, there are many cases where ML estimates have Impressive asymptotic 

properties but are not the best estimates In small-sample situations. 

In the absence of any specific guidance on small-sample properties, our 

method has been to rely on Monte Carlo experiments to determine the 

superior estimating techniques.  This is the subject of the following 

section. 

Table 1 

FEATURES OF MULTI-SCALE ESTIMATES 

Feature MLa LS ERV ETV OLS 

Type of solution  Iterative     Iterative Iterative        Nonlteratlve  Nonlteratlve 

Invariance of 6 

to (3-2)       Not Invariant Not Invariant Invariant        Invariant     Invariant 

Values of S Real Real May be complex    Real N.A. 

Positive      May be negative^ Positive If real  Positive 

Consistency      Consistent    Inconslstentr Consistent       Inconsistent*1  Inconsistent 

Adjusted for degrees of freedom. 

Actually, solutions to normal equations for a, provided solutions exist. 

Consistent and positive if (3.3) holds. 

Consistent If pllm 1/T  (ß'XjX ß) is equal across subsets. 
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V.  MONTE CARLO RESULTS 

Specification of an estimator's distribution is an important as- 

pect of the development of any econometric estimating procedure.  Such 

information assumes a special importance in the present study insofar 

as several alternative estimators have been developed for estimating 

the parameters of the multi-scale model.  Therefore, knowledge of the 

statistical properties of these alternatives is important not only for 

establishing the statistical reliability of any given estimate, but 

also for selecting the appropriate  multi-scale estimator under differ- 

ent sample conditions.  Indeed, it was stated at the outset that no 

single estimator is dominant over the entire range of possibilities. 

Instead, the appropriateness of any of the multi-scale estimators de- 

pends, among other things, upon the sample size, the signal-to-noKse 

ratio, and the degree to which the model is multi-scalf. 

Other than for consistency, the statistical properties ot the 

alternative estimators cannot be derived analytically.  Wc must there- 

fore resort to numerical approximations through the setup of Monti- 

Carlo experiments to obtain the distributional properties of the multi- 

scale estimators.  A description of the experimental approach and the 

results from these experiments is given below. 

MWrE__CARLO METHODOLOGY 

Since we were able to establish only the consistency of I he- multi- 

scale estimators on an am-lvtical basis, we have- had to resort to Monte 

Carlo experimentation to determine other statistical properties of the 

estimators.  The strategy used in these experiments is, for the most 

part, dictated by the results derived previously.  For example, sample 

si/e may be increased either by increasing the number of subgroups or 

by increasing the number of observations per subgroup, and the effects 

of these two alternatives may be considerably different.  Therefore. 

1„ 
:'or a more complete description of the Monte Carlo methodology 

and results, see Cooper |17]. 

s 
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sample composition, as well as sample size, must be an explicit part 

of the experimental design.  Before dealing with these specifics, how- 

ever, we first outline the general approach used in the experiments. 

Given the basic multi-scale model, 

yij= aj+ VV+ ei) ' 

and specified values for the a, 6, and ß vectors and for the X matrix, 

we conducted Monte Carlo experiments by simulating values for the e 

vector.  The elements of the e vector were drawn from a normal popula- 

tion and the number of cases run for each experiment van  determined 

according to the number required to yield a stable representation of 

the parameter distributions. 

A number of experiments were conducted for different formulations 

of the multi-scale model, us  indicated below. 

Model Specification 

Two specifications of the model were tested, one with two explan- 

atory variables and one with five explanatory variables.  Only the two 
2 

variable version is reported here.  The parameter values were:  ß = 1.0 

and ß« = 2.0.  The two explanatory variables were uncorrelated. 

Sample Size 

As noted previously, sample size in the multi-scale model has two 

That is, a concern in conducting Monte Carlo experiments is how 
many cases must be run before the estimated distribution« of the param- 
eter estimates "reasonably reflect" the true distributions.  Although 
a precise reflection would require an infinite number of cases, such 
an approach is, of course, not feasible.  Instead, the procedure was 
to run 200 cases for one of the fJiperiments, with a summary printed 
every 20 cases.  These summary statistics were then examined to deter- 
mine where the estimated distributions began to stabilize—that is, 
where the addition of another 20 cases did not appreciably change the 
estimates of the distributions.  For medium to latge samples, the num- 
ber of cases required was 20; for very small samples, the number of 
cases required was 100.  The number of cases is reported with the re- 
sults.  For a more complete description of the approach, see Cooper [17]. 

2 
The five variable results are reported in Cooper [17].  They yield 

essentially the same results as the two explanatory variable specification. 
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dimensions:  the number of observations per subgroup and the number 

of subgroups.  Accordingly, experiments were conducted for a number 

of different sample sizes and configurations.  Complete results are 

reported for one "larger" sample experiment:  five subgroups with 50 

observations per subgroup—the so-called 5 x 50 sample.  Det'iiled re- 

sults are also reported for one "small" sample situation—live sub- 

groups with five observations per subgroup (denoted the 5x5 sample)— 

and for one "medium" sample configuration—j0 subgroups with five 

observations per subgroup (denoted the 50 x 5 sample).  Sunanary results 

are also reported for the following sample sizes (where the first num- 

ber shows the number of subgroups and the second shows the number of 

observations per subgroup):  10 x 5, 25 x 5, 100 x 5, and 25 x 10. 

Finally, experiments were conducted for one sample configuration where 

the number of observacions per subgroup varied:  50 subgroups with an 

average of five observations per subgroup (as few as three and as many 

as 10), denoted the 50 x 5 (var) sample. 

Explanatory Variables 

The explanatory variables were chosen such that the correlation 

between the two was zero.  Two sets of experiments were conducted with 

regard to ?he explanatory variables.  In the first, the explanatory 

variables were drawn from homogeneous populations--that is, the ex- 

planatory variables for each subgroup came from the same population. 

In the second, the explanatory variables were drawn from heterogeneous 

populations—that is, the populations from which the explanatory vari- 

ables were drawn differed by subgroup.  In half of the subgroups, the 

standard deviation of the underlying population for each of the explan- 

atory variables was twice that for the other half of the subgroups.2 

These two sets of experiments are referred to as the homogeneous and 

heterogeneous cases, respectively. 

Although the explanatory variables were drawn from two popula- 
tions with zero correlation, the sample correlation for the actual 
variables used was 0.08. 

2 
To clarify the procedure, the two explanatory variables for the 

homogeneous case were each drawn from a normal population with mean 
zero and standard deviation of 10.  Once the particular set of homo- 
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Slgnal-to-Nolse Ratio 

The signal-to-noise ratio is based on the "true" model, as given 

previously in Eq. (2.2), rather than on the observed model given in 

Eq. (2.3).  Three different signal-to-noise ratios were tested, yield- 
2 

ing true R s of 0.1, 0.5, and 0.9. 

g and 6 

One a vector was used for all the experiments; the elements of 

the a.  vector were generated from a uniform distribution.  Four dif- 

ferent 6 vectors were used in the experiments.  Each was generated from 

a log-normal distribution and normalized such that the geometric mean 

equaled one.  The only difference in these 6 vectors is the set of 

parameters describing its corresponding normal distribution.  In each 

vector, the mean of its corresponding normal was zero; for 6.., the 

standard deviation was 0.1; for 62, it was 0.25; for 63, it was 0.5; 

and for 6., it was 1.0.  This yielded four 6 vectors, where the geo- 

metric mean of each was one, but where the variances were 0.04, 0.33, 

3.57, and 411.1. 

It will be shown later that the multi-scale estimators are un- 

affected by the 6 vector (so long as the geometric mean equals one). 

geneous explanatory variables was drawn, it was used for the remainder 
of the experiments (that is, the Monte Carlo experiments were not con- 
ducted for "random" explanatory variables).  In the heterogeneous case, 
for half of the subgroups, x^ and X2 were the same as for the homogen- 
eous case (i.e., drawn from normal populations with mean zero and a 
standard deviation of 10).  For the other half of the subgroups, x, 
and X2 were each drawn from normal populations with mean zero and 
standard deviation of 20.  Again, once the basic set of heterogeneous 
explanatory variables was drawn, it was used for the remainder of the 
heterogeneous experiments. 

Since each of the estimating techniques estimates the 6 vector 
by merely subtracting out the subgroup means, the distribution of the 
elements of (5 does not affect the estimation.  A uniform distribution 
was chosen for convenience only. 

2 
Again, note, that one 6 vector was used for any given set of ex- 

periments.  The term "variance" is not meant to imply randomness nor 
that the 6 elements were redrawn. 

3 
For convenience, the particular 6 vector used for the multi-scale 

estimators was the one where the variance equals 3.57. 
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However, the variability of the elements of 6 determines when it is 

worthwhile to use one of the multi-scale estimators rather than just 

relying on ordinary least squares. 

Estimators 

As shown previously, least squares yields identical results to 

maximum likelihood when the 6 vector is normalized such that the geo- 

metric mean of the elements equals one; otherwise it yields inconsistent 

estimates.  Therefore, Monte Carlo results are presented only for three 

multi-scale estimators:  maximum likelihood (MLE), equal residual var- 

iance (ERV), and equal total variance (ETV).  As a basis for comparison, 

ordinary least squares with dummy variables for the subgroup intercepts 

(OLS-DV) was also used. 

The foregoing constitutes the basis of the Monte Carlo experiments. 

These experiments are addressed to two principal questions:  (1) Which 

is the preferred multi-scale estimator under alternative sample and 

model configuration? and (2) When is the multi-scale approach to be 

preferred to least squares with dummy variables for the intercepts? 

ESTIMATOR DISTRIBUTIONS 

As noted previously, the small sample distributions for the multi- 

scale estimators cannot be derived analytically.  Since the Monte Carlo 

approach just outlined suggests that we examine the multi-scale esti- 

mators under a variety of conditions, it is desirable to simplify these 

comparisons as much as possible.  In this regard, a useful first step 

is to  'tain the functional form of the distributions so that the com- 

parisons can be made in terms of the "sufficient statistics" for the 

distributions.  Our concern will be with the distribution of ß, since 

a and &  can, for the most part, be regarded as nuisance parameters. 

Thus, while ß is known to be asymptotically normal, we must rely on 

Monte Carlo experiments to demonstrate the small sample distributions. 

To generate the distributions of ß, 1000 cases were run on the 
2  , 

10 x 5 sample, with homogeneous explanatory variables, and an R of 
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O.5.1 The results from these experiments, which are given in Table 2, 

suggest that the MLE and ETV estimators for ß are approximately norm- 

ally distributed.  The areas shown for both parameters of both esti- 

roitors closely approximate the theoretical normal distribution. 

The above finding has the imporcant implication that the multi- 

scale estimators can be described fully by their means and variances. 

The problem of comparing the estimators is correspondingly simplified. 

With respect to choosing among the estimators, the criterion that will 

be used is that of the minimum mean squared error (i.e., the sum of 

variance and the bias squared). 

SAMPLE SIZE 

The two dimensions of sample size in the m-ilti-scale model raise 

a potentially important distinction for the composition of the sample, 

since the number of parameters to be estimated equals 2J + K, where J 

is the number of subgroups and K is the number of explanatory vari- 

ables.3 Therefore, the more subgroups there are, the more parameters 

there are to estimate such that, for a given number of observations, 

there are fewer degrees of freedom and the ratio of observations to 

parameters der ines.  In the discussion below, detailed results are 

presented for the 5 x 50 sample and for the 50 x 5 sample.  Summary 

statistics are then reported for (1) increasing sample size by adding 

subgroups and (2) the effect of sample composition holding sample size 

constant.  These experiments are all based on homogeneous explanatory 

variables. 

The 5 x 50 Sample 

Tie Monte Carlo results for five subgroups with 50 obfervations 

although 20 to 100 cases are sufficient to yield reasonably ac- 
curate estimates of the means and variances of the distributions, 1000 
cases were required to reflect the entire shape of the distributions. 

2Also shown in Table 2 is a computer generated normal distribution, 
based on 1000 cases. This shows how the results from even 1000 cases 
can deviate modestly from the theoretical distribution. 

3Note that since each subgroup has its own intercept term, there 

is no general constant term. 
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Table 2 

DISTRIBUTIONS OF THE MLE AND ETV ESTIMATORS AND 
THE NORMAL VARIABLE3 

Normal MLE ETV 

Actual0 
Computer- 
Generated0 VB2 B2 - B2 

A*                — 

Bl-Bl B2-B2 

(1) (2) (3) (4) (5) (6) 

Mean 0 -0.025 0.983 1.975 1.109 1.455 

Std.   dev. 1 1.019 0.117 0.165 0.115 0.103 
A 

0 Areas 

< -36 0.0013 0.0 0.002 0.002 0.005 0.003 

-36 to -26 0.0214 0.019 0.023 0.029 0.020 0.023 

-26 to -16 0.1360 0.147 0.129 0.123 0.121 0.122 

-16 to 0 0.3413 0.332 0.347 0.357 0.352 0.354 

0    to +16 0.3413 0.346 0.350 0.335 0.341 0.340 

+16 to +26 0.136 0.134 0.123 0.127 0.140 0.137 

+26 to +36 0.0214 0.021 0.026 0.026 0.021 0.020 

> +36 0.013 0.001 0.0 0.001 0.0 0.010 

Based on 1000 cases. 

Actual probability distribution for a standardized normal variable, 
c 
Probability distribution for a standardized normal variable as 

from the random normal variable generator on the computer. 

per subgroup are given in Table 3.  These show the intuitively appeal- 

ing result that all three multi-scale estimators have essentially the 

same properties in the large sample.  This is to be expected for two 

reasons.  First, all three estimators were shown to be consistent when 

the explanatory variables are drawn from homogeneous populations.  Since 

consistency is defined in terms of increasing sample size holding the 

number of subgroups constant, and since the 5 x 50 sample would be con- 

sidered "large" by most measures, we would expect the means of the 

distributions for all three estimates to be approximately the same. 



-34- 

Table 3 

MONTE CARLO RESULTS FOR THE 5 * 50 SAMPLE' 

(Five subgroups with 50 observations 
per subgroup) 

' 

R2 Estimator0  ßl SV    MSE 

.1    MLE 1.099 0.193 0.203 

ERV 1.108 0.197 0.209 

ETV 1.094 0.189 0.1^8 

.5    MLE 0.991 0.011 0.011 

ERV 0.991 0.011 0.011 

ETV 0.989 0.011 0.011 

.9    MLE 0.989 0.003 0.004 

ERV 0.999 0.003 0.004 

ETV 0.993 0.004 0.004 

NOTE:  Explanatory variables drawn from a homogeneous 
population. 

The basic model is given as y^i = cxj + 6j (ßj^ • XJJ 
+ 62 ' x2i + ui)"  The results are based on 20 cases and 
homogeneous explanatory variables. 

Maximum likelihood (MLE), equal residual variance 
(ERV), and equal total variance (ETV). 

ßl  =■ 1.0; 02 = 2.0.  ß^ refers to the mean for the 
experiments; SVj refers to the variance; and MSE. refers 
to the mean squared error. 

M2 

^2 
sv2 MSE2 

1.957 0.401 0.403 

1.971 0.405 0.406 

1.945 0.398 0.401 

1.995 0.025 0.025 

1.987 0.025 0.025 

1.987 0.025 0.025 

2.010 0.002 0.002 

2.010 0.002 0.002 

2.001 0.002 0.002 

Second, consider the methods of estimation.  The ETV estimator 

explicitly assumes that differences in the within-subgroup variances 

of the dependent variable are due exclusively to differences in the 

scale parameters.  Since this assumption is in fact correct when the 

xs are drawn from homogeneous populations and when the number of ob- 

servations per subgroup is large enough to avoid small sample problems, 

the ETV estimator provides consistent estimates.  Moreover, since the 

MLE and ERV estimators are different from ETV only so long ay differ- 

ences in within-subgroup variances of the dependent variable are partly 
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attributable to factors other than the scale parameter, and since this 

is not the case for homogeneous xs and large samples per subgroup, we 

would expect that the MLE and ERV would yield essentially the same 

estimates as ETV, as shown in Table 3. 

The net result, then, is that all three estimators yield essen- 

tially equivalent estimates in the large sample.  Given that ETV is 

considerably less expensive to run, one would generally prefer to em- 

ploy ETV in the large sample situations when the explanatory variables 

are homogeneous across subgroups. 

The 50 x 5 Sample 

The results for the sample of 50 subgroups of five observations 

each, given in Table 4, offer several interesting contrasts to those 

from the 5 x 50 sample.  First, the variance of the ETV estimator is 

Table A 

MONTE CARLO RESULTS FOR THE 50 x 5 SAMPLE 

(50 subgroups with five observations 
per subgroup) 

a 

6, sv MSE, 
R   Estimator1 

0.1    MLE 1.094 0.269 0.278 

ERV 1.250 0.399 0.461 

ETV 0.961 0.190 0.192 

0.5    MLE 0.962 0.026 0.027 

ERV 1.097 0.036 0.046 

ETV 0.842 0.021 0.046 

0.9    MLE 0.979 0.006 0.006 

ERV 1.012 0.009 0.010 

ETV 0.817 0.004 0.038 

M2 

h sv2 MSE2 

1.832 0.438 0.466 

2.123 0.610 0.626 

1.599 0.327 0.488 

1.926 0.052 0.058 

2.186 0.064 0.098 

1.630 0.036 0.173 

1.983 0.003 0.003 

2.040 0.003 0.005 

1.628 0.003 0.141 

See notes to Table 3. 
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always equal to or less than that for either MLE or ERV. In fact, this 

always holds regardless of sample size, explanatory variables, or model 

specification. 

Second, althouth ETV always has the smallest variance, it it not 

always the preferred estimator on the basis of the mean squared error 
2 

criterion.  For low R s, ETV does have a smaller mean squared error 

than either MLE or ERV.  However, MLE has a much smaller mean square 
2 

than the ETV for high R s, because although the explanatory variables 

were drawn from homogeneous populations, the variables themselves will 

almost necessarily be heterogeneous when there are as few as five ob- 

servations in a subgroup.  Therefore, ETV will be biased in the small 

sample, where small sample refers to the number of observations per 

subgroup, even though it is consistent, because ETV attributes all 

differences in within-subgroup variances in the dependent variable to 

the scale parameter when, in fact, some of it is due to differences 

in the variation of the explanatory variables.  MLE and ERV, however, 

explicitly take such differences in within-subgroup explanatory vari- 

able variaticiis into account, thus leading not only to consistent 

estimates, but to estimates that are also unbiased. 

Although ETV has the smallest variance, it is sufficiently biased 

when there are few observations per subgroup that its mean squared 
2 

error is larger than MLE and ERV for high R s.  Moreover, ETV does 
2 

relatively worse as the true R of the model increases for two reasons: 
2 2 

(1) the bias in ETV increases as R increases and (2) for higher R s, 

bias plays a relatively more important role in the mean squared error 
2 

criterion (since the variance decreases as R increases). 

Finally, MLE is generally preferred to ERV since the MLE variance 

tends to be much less than that for ERV.  Both will be unbiased, though. 

The 5 x 50 and 50 x 5 samples yield three <r «rtant conclusions. 

First, the three multi-scale estimators all yie . approximately the same 

results when there are many observations pet subgroup. Second, when 

there are few observations per subgroup, ETV has the smallest variance 

We conjecture that this result occurs because ETV uses a less 
complicated procedure for estimating the 6 vector. 
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of the estimators.  Third, though, ETV is biased when there aie few 

observations per subgroup.  Although this bias is not sufficient to 
2 

counteract the savings in variance for low R s, it more than offsets 
2 

this savings for high R s—the result being that ETV is preferred for 
2 2 

low R s and MLE for high R s. 

Sample Size 

The effects of sample size on the parameter distributions are a 

necessarily important question.  Of particular importance is the effect 

on the parameter estimates when sample size is increased through the 

addition of new subgroups, since this will often be the only way of 

increasing the sample in situations where the multi-scale model is 

applicable.  In the standard linear regression model, the effect of 

sample size can be solved analytically:  (1) the least squares esti- 

mator is unbiased, regardless of sample size, and (2) the variance of 

the least squares estimator is proportional to sarple size.  In the 

multi-scale model, however, the result is less clear, for every time 

a new subgroup is added, two more parameters are also added. 

Summary results, showing the marginal distributions of K for dif- 

ferent sample sizes, holding the number of observations per subgroup 

constant, are reported in Table 5.   These show the perhaps surprising 

result that Increasing the sample through the addition of subgroups 

reduces the variance of B" almost in proportion to the number of ob- 

servations, as with the standard linear regression model, even though 
2 

each additional subgroup adds two parameters.   That is, although the 

addition of more parameters somewhat reduces the benefit of the addi- 

tional observations, this reduction is modest.  This is an important 

For simplicity in presentation. Table 5 reports the sum of mean 
squared errors for Bi and B^. rather than the separate mean squared 
errors.  Noce that we can perform this simple addition since both x. 
and X2 are uncorrelated. 

2 
This holds for MLE and ERV since both are unbiased.  It is also 

apprcximately true for ETV at R2 = 0.1, since the bias for ETV is small. 
For higher R2S, however, this does not hold for ETV, since the bias 
in the ETV estimator at higher R2s does not fall as more subgroups are 
added. 
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Table 5 

SUMMARY MONTE CARLO RESULTS FOR HOMOGENEOUS 
EXPLANATORY VARIABLES:  MEAN SQUARED 
ERROR AS A FUNCTION OF SAMPLE SIZE 

MSE1 + MSE2 for Sample Slze
b 

R2  Estimator*1 5*5 IQ x 5 25 x 5 50 ., 5 100 x 5 

0-1    MLE 4.670 3.A85 I.268 0.744 0.336 

ERV 9.493 5.220 1.718 1.087 0.621 

ETV 3.411 2.860 1.09] 0.680 0.331 

()-5    MLE 0.535 0.406 0.179 0.085 0.040 

KRV 1-008 0.563 0.326 0.144 0.108 

ETV 0.50] 0.558 0.271 0.219 0.196 

ü-9    MLK 0.093 0.041 0.013 0.009 0.007 

ERV 0.132 0.044 0.020 0.015 0.007 

ETV ".360 0.283 0.178 0.179 (1.201 

■1,. 
See note h, Table 3. 

b 
error Mean squared error for ^j plus mean squared e.. 

for 62.  R.sults for 5 <   5 and 10 n  5 samples are based 
on 100 cases, results for 2 5 - 5, 50 > 5, and 100 * 5 
samples based on 20 eases. 

practical result since, as noted above, the only means of adding more 

observations in situations where the multi-scale model is the appro- 

priate specification may be through the addition oi more subgroups. 

Sample Compos i t ion 

Finally, consider the effect of sample composition, holding the 

number ot observations constant.  It Is clear Irom the results shown 

in Table 6 that the more subgroups there are (and, hence, the more 

parameters), the less precise are the estimates of 0,  Yet, with the 

exception of ETV, which becomes severely biased as subgroup size is 

reduced, the effects of sample composition are not as large as one 

might expect.  Note further that most of the gain trom increasing sub- 

group size, again with the exception of ETV, occurs when the subgroup 
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Table 6 

SUMMARY MONTE CARLO RESULTS FOR HOMOGENEOUS 
EXPLANATORY VARIABLES:  MEAN SQUARED ERROR 

kS  A FUNCTION OF SAMPLE COMPOSITION 

MSEj^ + MSE2 for Sample Size
b 

R2  Estimator3 5 x 50 25 x 10 50 x 5 50 x 5(var) 

0.1    MLE 0.606 0.507 0.744 n.a. 

ERV 0.615 Ö.561 1.087 n.a. 

ETV 0.599 0.485 0.680 n.a. 

0.5    MLE 0.036 0.039 0.085 0.089 

ERV 0.036 0.049 0.144 0.109 

ETV 0.036 0.074 0.219 0.250 

0.9    MLE 0.006 0.006 0.009 0.017 

ERV 0.005 0.006 0.015 0.010 

ETV 0.006 0.047 0.179 0,220 

aSee note b, Table 3. 

See note b, Table 5. 

size is increased from five to ten observations.  The estimates are 

quite unaffected if the subgroup size is variable.  In fact, ERV ac- 

tually does better in the variable subgroup size sample than in the 

constant subgroup size sample, thus suggesting that it benefits more 

from the introduction of a few large subgroups than it is hurt by the 

presence of very small subgroups. 

HETEROGENEOUS EXPLANATORY VARIABLES 

When the explanatory variables are not homogeneous across all 

subgroups, ETV yields inconsistent estimates of the parameters.  The 

reason is obvious.  ETV attributes all differences in within-subgroup 

variances of the dependent variable to the scale parameter.  However, 

when the explanatory variables themselves are heterogeneous across 

subgroups, this is not appropriate.  MLE and ERV will still be con- 

sistent when the explanatory variables are heterogeneous. 
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Monte Carlo results for the 5 * 50 sampl. with heterogeneous ex- 

planatory variables are given in Table 7.  They show the expected flnd- 

ing that ETV is biased and inconsistent when the explanatory variables 

are heterogeneous, but that MLE and ERV are both unbiased.  As a result, 

both MLE and ERV are generally to be preferred to ETV.  For very low 

R s, ETV is to be preferred in spite of its inconsistency, since in the 

5 x 50 sample the smaller variance for ETV more than offsets its bias. 

Table 7 

MONTE CARLO RESULTS FOR HETEROGENEOUS 
EXPLANATORY VARIABLES:  5 x 50 SAMPLE 

R  Technique 

.5 

MLE 

ERV 

ETV 

MLE 

ERV 

ETV 

MLE 

ERV 

ETV 

0 1 

ßl 

SV. MSE. 

1.175 0.120 0.150 

1.183 0.121 0.154 

1.091 0.109 0.117 

0.981 0.009 0.010 

0.983 0.010 0.010 

0.775 0.005 0.056 

0.992 0.004 0.004 

1.007 0.006 0.006 

0.678 0.002 0.105 

ß, 

B2 

SV, MSE, 

1.944 0.423 0.427 

1.956 0.434 0.436 

1.833 0.350 0.378 

2.005 0.035 0.035 

2.011 0.034 0.034 

1.651 0.018 0.140 

2.004 0.003 0.003 

2.028 0.006 0.007 

1.470 0.001 0.282 

The 50 x 5 sample shown in Table 8 yields largely the same results, 

ETV is very biased for medium to high R2s, so that MLE and ERV are 

again generally preferred to ETV.  As before, MLE yields better esti- 

mates than ERV.  In general, these results illustrate the importance 

of heterogeneity in the explanatory variables. 

THE SCALE PARAMETER 

The scale parameter 6 is clearly what distinguishes the multi- 

scale model from the classical linear regression model.  Therefore, 6 

determines when it is appropriate to use one of the multi-scale 
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Table 8 

MONTE CARLO RESULTS FOR HETEROGENEOUS 
EXPLANATORY VAKlABLES:  50 * 5 SAMPLE 

*l h 

R2 Technique Bl 
sv1 MSE h sv2 MSE2 

.1 MLE 1.138 0.182 0.201 1.810 0.188 0.199 

ERV 1.311 0.285 0.382 2.155 0.220 0.244 

ETV 0.924 0.122 0.128 1.543 0.117 0.326 

.5 MLE 0.956 0.016 0.018 1.948 0.047 0.049 

ERV 1.028 0.022 0.023 2.123 0.052 0.067 

ETV 0.686 0.009 0.107 1.286 0.017 0.527 

.9 MLE 0.985 0.004 0.005 1.984 0.003 0.003 

ERV 1.103 0.005 0.006 2.073 0.006 0.012 

ETV C.604 0.002 0.158 1.092 0.001 0.825 

estimators or ordinary least squares (with dummy variables for the 

intercepts).  In general, one would expect that, as the variance of 

the scale parameter increases, the desire'ilitv of using one or more 

of the multi-scale estimators (over ordi-iiary least squares) also in- 

creases.  Conversely, as the variance of the scale parameter Is smaller, 

one would expect the ordinary least squares estimator to do better. 

(Indeed, in the limit when all of thi 6s equal     dentically, we 

know from the Gauss-Markov theorem ' 'Mit   ordinal    ast squares is the 

"best" estimator.) 

So long as the geometric mean oi the  scale parameter equals one, 

the multi-scale estimators are unaffected by the variability of the 

scale parameter.  Therefore, the multi-scale estimators can be ex- 

amined independently of the scale parameter, for a given normalization 

rule.  In contrast, 0LS-DV clearly depends on the variability of the 

scale parameter.  To determine the sensitivity of OLS-DV to the scale 

parameter specification, four 6 vectors were generated, as noted 

earlier.  Each of these can be described in terms of the variability 
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of the elements.   Finally, a fifth 6 vector with all the elements set 

identical to one is used as a base case. 

The Monte Carlo results from experiments conducted on these dif- 

ferent 6 vectors are shown in Table 9.  They show the expected result 

that as the elements of 6 become more widely dispersed—I.e., as the 

variance of 6, V. increases—OLS-DV yields poorer estimates.  These 

results also suggest that there is a tradeoff—or efficiency frontier— 

that defines the appropriate estimator to use.  For example, OLS-DV 

is clearly the appropriate estimator when all the 6s are set identi- 

cally to one.  Tb a is, there is no need to employ the multi-scale 

model when the true model Is not in fact multi-scale. 

As the 6s diverge from unity, it begins to pay to use one of the 

multi-scaK techniques.  In particular, tor low R s one will want to 

use ETV when the variance increases to somewhere between 0.0 and 0.U4. 
2 

For high iTs (in the 50 > 5 sample), one will want to use MLE when the 

variance of 6 g.a much larger than zero. 

SUMMARY 

The Monte Carlo results allow us to assess the perfornance ot sev- 

eral competing estimators when the true model is multi-scale in nature. 

They show that no single estimator is dominant over the entire range of 

possible sample sizes and model specifications   Instead, the appropriate 

ness o<" any single estimator depends on a number of factors:  (1) sample 

size, (2) sample composition, (3) signal-to-noise ratio, (4) the degree 

of heterogeneity In the explanatory variables, and (5) the degree to 

which the multi-scale moi'el is multi-scale.  These can be combined to 

That is, for any given 6 vector, say 6 , the variance of the 6s 
is given simply by 

.1 

v6 = i  I  «a -V2 • 
j=i    J 

The 6 vectors used In Table 9 were each generated from log normal dis- 
tributions.  The reason that V^ In the 5 x 50 sample differs <"rom V^ 
in the 50 x 5 sample Is simply that five 6s were drawn from each vec- 
tor In the first case, while 50 were drawn in the second. 
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Table 9 

MONTE CARLO RESULTS:  COMPARISONS OF MEAN SQUARED 
ERRORS FOR OLS-DV AND MULTI-SCALE ESTIMATORS 

(Homogeneous explanatory variables) 

K8E. * MSB. for 

2 
Sample  K )l,s-i)V 

Multi-Scale 

MI,E    ERV    ETV 

3 ■ W \'&  '  0.0 V6   --  0.0. ^ . 0.24 Vfi = 1.6« V6 - J5.} 

0.1       0.535 0.645 0.860 2.100 44.01 0.606 0.615 0.599 

0.5       0.032 0.0)7 0.093 1.160 41.51 0.0)6 0.036 0.(36 

0.9      0.005 0.008 0.061 1.070 19.54 0.006 0.005 0.006 

50   "   5 V6  =  0.0 Va  =  0.04 V^  =  0. ii V6  =   ).57 V^  =  411 

0.1 0.674 0.717 1.028 5.587 55J.8 0.744 1.087 0.680 

"•5 ()-()('l 0.068 0.128 1.709 198.7 0.085 0,144 0.219 
()-y 0-()<)7 "••HI 0.050 1.561 195.8 0.009 0.015 0.179 

yield regions when particular estimators are to be preferred, such as 

that shown earlier In Fig. 2 for the 50 x 5 sample. 

The Monte Carlo results do enable us to make the following general 

statements. 

• Ordinary least squares with dummy variables is, of course, 

appropriate when the model is not multi-scale.  It is also 

preferred when the degree to which the model is multi-scale 

is very small (even though 0LS is inconsistent). 

• Maximum likelihood always does reasonably well.  It is al- 
2 

ways consistent, and for medium to large R s it is the 

"best" estimator when there are few observations per sub- 

group. 

• Equal residual variance, though always consistent, is 

never the preferred estimator.  Though it generally does 

reasonably well, it sometimes yields estimates with larger 
2 variance, particularly with low R . 
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•  Equal total variance sometimes does very well and some- 

times very poorly.  It always yields estimates with the 

least variance and is generally preferred for low R2s. 

When the explanatory variables are drawn from hetero- 

geneous populations, it yields inconsistent estimates— 

an inconsistency that becomes severe at medium to high 
2 

R s.  Even when the explanatory variables are drawn from 

homogeneous populations, the heterogeneity that occurs 

when subgroup sizes are small makes the bias more than 

large enough to offset any savings in variance. 

These statements provide some practical guidelines for the appli- 

cation of the multi-scale estimators.  To begin with, the within- 

subgroup standard deviation of the dependent variable should be calcu- 

lated to determine whether the model appears to be multi-scale.  If 

the within-subgroup standard deviations are normalized such that their 

geometric mean equals one, then the variance of these standard devia- 

tions can be determined.  If this variance exceeds about 1.0 for very 

small samples or about 0.05 for large samples, then it probably pays 

to use the multi-scale model. 
9 

Second, tht ETV estimates should be calculated.  If the R is 
2 

small, then the ETV is probably the best estimator.  If the R is mod- 

erate to large, then the explanatory variables should be examined to 

determine whether they are homogeneous.  If not, then the maximum 

likelihood estimates should be computed and used. 
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VI. AN APPLICATION OF THE MULTI-SCALE MODEL 

The multi-scale model can be put into some perspective by apply- 

ing it to an actual estimation problem. The example used here—Gay's 

problem of estimating the cost of on-the-Job training for airmen— 

actually served as the genesis of the multi-scale model. 

In trying to estimate the cost of on-the-job training for first- 

term aircraft maintenance specialists in the Air Force, Gay had to 

rely on supervisory estimates of the individual's productivity during 

his first term of duty. As shown in Table 10, in addition to the 

familiar problem of supervisory bias (i.e., the location effect, o), 

the variances of the dependent variable differed considerably accord- 

ing to subgroup, thus pointing toward the applicability of the multi- 

scale model. 

Table 10 

SUBGROUP MEANS AND STANDARD DEVIATIONS FOR GAY'S STUDY3 

Number j 
of Standard 

Subgroup Observations   Mean   Deviation   ETV  Ml.E   ERV 

1 4 $ 3,A61 $  254 0.27 0.27 0.28 

2 3 4,184 1,987 2.08 1.62 1.17 

3 3 11,017 4,297 4.49 J.69 1.48 

* 5 6,359 3,223 3.37 3.25 2.87 

5 7        3,176     214   0.22 0.25 0.25 

6 5 5,314 409        0.37    0.35    0.33 

^                       1                    5,596             985 1.03    0.96    0.86 

8 3 2,514 624        0.65    0.55    0.68 

9 4 3,634 1.092 1.14    0.80    0.74 

10 6 7,690 1.736 1.82     1.87     1.80 

11 8 12,225 2,593        2.71     3.05     3.45 

12 U 8.084 732        0.77    0.88    0.98 

Mj 1.58    1.46     1.42 

Vj 1.69    1.41     1.33 

SOURCE:     Robert  M.  Gay,  Eatimating  the Coat of On-the-,lob 
Training in Military Oaoupations:    A Mlthoäotogy and Pilot 
Study,  The Rand Corporation,  R-1351-ARPA,  AprlV 1974,  p.   28. 
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As can be seen in Table 10, Gay's sample consisted of 64 observa- 

tions spread across 12 subgroups.  The variance of 6 Implied by the 

ETV estimator (i.e., the simplest transformation of the data) is 1.69, 

which suggests that OLS-DV will not yield the best results.  There- 

fore, the multi-scale model is probably appropriate. 

Two primary specifications were considered: 

COST.   =  8,   *   EXP.   + ß,,   •   ED,   + ß..   •  APT,   + ß.   •   S.  + ßc   •  W.  + 6. 
il iz 13 14        15        11 

(6.1) 

and 

COST.   =   ß.   •   EXP,   + ß0   •   ED,   -i   ß     •   APT.   + B,   •   S.   + ß     •  W, 
il i I iJ i4i5i 

+  ß.   •   TECH,  + e, (6.2) 
D 11 

where COST = cost of on-the-job training for the tth individual, 

EXP  = years of possible civilian job experience, 

ED. = years of education, 
i 

APT. = percentile score on mechanical aptitude test, 

S. = dummy variable for whether the individual is from 

the north (equals 1 if from the south and zero 

otherwise), 

W = dummy variable for whether the individual is white 

(equals 1 if white and zero otherwise), 

TECH. = percentile score on the performance test in tech- 

nical training and, 

ü, = error term. 

The results are given in Table 11.  From the results in Table 10, 
2 

we know that the 0I,S-DV is not appropriate.  Given the R shown for 

Eq. (6.1) in Table 11, ETV yields probably the best estimates.  How- 
2 

ever, the R  for version (6.2) is probably sufficient to warrant use 

of MLE.  Moreover, there is also considerable heterogeneity in the 

explanatory variables among subgroups.  This will tend to make ML 
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Table 11 

ESTIMATES FOR GAY'S OJT MODEL:  EQS. (6.1) AND (6.2) 

quation EXP BD APT S w TECH H2 

(6.1) OLS-DV -95.79 -692.7 -35.6 287.7 294.4 0.17 
(199.6) (270.6) (17.75) (504.3) (534.8) 

MLE -28,29 -406.4 24.90 -65.78 483.2 0.26 
(104.2) (141.3) (9.26) (263.2) (279.2) 

ERV -6.45 -424.2 -25.16 -110.0 464.4 0.27 
(104.4) (141.6) (9.28) (253.8) (279.8) 

ETV -JH.52 -364.6 -22.08 -15.41 467.1 0.21 
(105.2) (142.7) (9.36) (265.9) (282.0) 

(6.2) OLS-DV -129.3 -662.6 -19.81 205.5 550.0 -89 63 0.21 
(197.6) (267.1) (19.85) (499.0) (548.4) (53 55) 

MLE -34.55 -379.5 -10.15 -127.H 724.3 -80. 79 0.36 
(99.57) (134.6) (10.00) (251.5) (276.4) (26 99) 

ERV 52.01 -358.4 -5.82 -194.9 804.5 -112 7 0.42 
(104.5) (141.3) (10.50) (263.9) (290.0) (28 32) 

ETV -62.80 -342.8 -10.67 -74.95 652.4 -64 95 0.28 
(101.9)   (137.7)  (10.23)  (257.3)  (282,7)  (27.61) 

estimates even more attractive.  Finally, it is interesting to note 

that all three multi-scale estimators yield similar coefficient esti- 

mates, estimates that differ considerably from the OLS results. 

The estimated standard errors appearing in Table 11 are derived 
^2    -1 

from the eslmate O (X'X)  rather than from the more general informa- 

tion matrix that takes into account all parameter values.  Thus, these 

estimated standard deviations are conditional on estimates of 6.  The 

only difference between these standard errors and the OLS errors ij 

that a is calculated on the basis of T - 2J - K degrees of freedom 

rather than T - K - 1 degrees of freedom as in OLS.  It is possible to 

calculate the more general variance-covariance matrix oi  the coef- 

ficients by calculating and storing the matrix values X'X. for each 

subgroup J during the processing of the data.  However, the estimates 

of Var (6 - ß) are not a byproduct of obtaining ß as in the case of OLS. 
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VII.  CONCLUDING REMARKS 

The multi-scale model offers a potentially valuable tool for 

analyzing manpower problems where the variables of concern are obtained 

by subjective measurement, such as supervisory ratings of individual 

performance.   Specifically, it is suggested that measures obtained by 

subjective evaluations, such as supervisory ratings, may include two 

types of biases:  the location bias and the scale bias.  Although the 

location bias can be handled in multiple regression models through 

familiar dummy variable techniques, the scale bias poses special esti- 

mation problems and necessitates the development of a multi-scale 

estimator. 

Of the several multi-scale estimating procedures developed, three 

are found to be appropriate for real-world applications:  (1) OLS (with 

dummy variables), (2) ETV, and (3) MLE.  Although maximum likelihood Is 

the only one of these three procedures always to yield consistent esti- 

mates, OLS and ETV may be more appropriate from an efficiency stand- 

point when consistency is less of a concern—e.g., in small sample 

situations.  In particular, OLS is the appropriate technique in small 

samples when the true model is only "modestly" multi-scale; ETV is 

appropriate when there is a scale problem but the R2 is small; and MLE 

is appropriate when there is a scale problem and when the R2 is moder- 

ate to large. 

The resulting estimates are useful in two respects.  First, the 

multi-scale approach allows the analyst to estimate the parameters in 

multiple regression models when the dependent variable is subject to 

the scale transformation.  These estimates can then be used to con- 

struct "corrected" estimates of the dependent variable. 

Some of the limitations of the multi-scale approach and some pos- 

sible directions for future research are that the multi-scale model, 

as we have structured it, is not necessarily appropriate for all prob- 

lems in which the dependent variable is obtained through subjective 

As noted previously, the multi-scale model may be appropriate in 
other cases where the data fall into natural groupings. 
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evaluation.  Ii particular, our formulation requires cardinal  measures 

of the dependent variable, not the ordinal  measures one often finds on 

supervisory evaluation forms.  When cardinal measures are available, 

though, the multi-scale approach is probably worth investigating, as 

Implied by our analysis of Gay's model.  Second, like other techniques, 

the multi-scale approach is not valid for cases in which the measure- 

ment bias is selective.  Indeed, the essence of the multi-scale approach 

rests in the notion that the measurement bias is consistent and syste- 

matic within subgroups. 

Finally, the problem, as it has been structured here, allows for 

only one measured observation per "true" observation—e.g., one super- 

visory rating per individual. Sometimes, though, there may be several 

subjective evaluations (i.e., measured observations) for each true ob- 

servation, such as several supervisors rating one individual. It 

would therefore be desirable to extend the basic multi-scale framework 

to allow the multiple observation case. 

This is the case in Gay's current work. 
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Appendlx 

MAXIMUM LIKELIHOOD AND LEAST SQUARES ESTIMATES 

This appendix derives estimates of the multi-scale model, assum- 

ing that the vector of location parameters a Is zero.  Thus, 

yij * W + eij) '    i " 1. 1 Tj 

J  = If  1»  •••!  J (A.l) 

X..1 may be a vector everywhere equal to unity.  The side condition 

Is a strictly separable function 

G(6) = 0 (A.2) 

with a particular form 

J T.  In 6    = 0 (A. 3) 

We write the parameter vector 6 as 

e - (M.o*) 

MAXIMUM LIKELIHOOD ESTIMATES 

ML estimation utilizes the property that the e.. are normal Inde- 
2        ■' 

pendent d( lates with Ee » 0 and EEE' ■ 0 I.  The likelihood function 

can be written 

T 

n      n    (2Tro262 ) 
J-l  1-1   \ 2 / 

exp ^("y-Vij6) (A.4) 

—     J -T 2    2 \ 
(2Tro )        n    6      J 

j-l    J 
exp 

Preceding page blank 

(A.5) 
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ML estimates are found through maximization of the logarithm of the 

likelihood function, adding a term with a Lagrangian multiplier to 

account for the side condition (A.2): 

log L - - 1 ln 2W0
2 - I  Tj 1„ 4] - ^ n(^ - Xlj6) + XOM) . 

FIRST-ORDER CONDITIONS 

The ML estimates 9 are solutions to the equations 

Partial differentiation yields four sets of equations, 

3_ 
36 

(A.6) 

3 
39 log L = 0 • (A.7) 

^■^Sp^-VV»2) ■ü (A-8-1) 

J 

j = 1, .... J     (A.8.3) 

aX log L = G(6) = 0 • (A.8.A) 

The first two conditions yield ML estimates to the classical normal 

model: 

B - (X'X)"1 X'z ,A.9) 
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and 

? 11 (•* - hf)' (A.10) 

where 

1J yli/6J 

For condition (A.8.3), where the logarithmic form (A.3) of the 

side conditions Is used, the equation may be written 

T-Ilr1-^ir1-11 - x>°2 •     i'1 J-    (A-11) 
j j \ 6

J     
1J /(S

J 

Equation (A.11) Is a quadratic equation In 1/6 .  Only the positive 

root, however, satisfies the nonnegatlvlty conditions for 6. 

The necessa-y and sufficient condition for the existence of a 

unique solution to this system of equations with all 6  > 0 Is that 

det |Q| f« 0 

where Q - Y'MY, M Is the T x x idempotent matrix I - XU'X)-^', and 

Y Is the T x J matrix, which assigns the values of Y  to separate 

columns according to subgroup.  Thus, 

11 

Ijl 

'12 

0 

0 

T 2 
2 

TJJ 
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Some of the implications of this condition are discussed in Section 

III. 

Properties of Ml. Estimates 

Asymptotic properties for the multi-scale model can be defined as 

T •*■  •» for some or all j 

J ► oo 

T -► oo and J -> » 

The usual theorems for ML estimates apply only where the number of 

parameters is fixed or  at least bounded.  Since the number of param- 

eters in 0 is J + K + 1, it will remain fixed only as the number of 

subsets remains fixed.  Hence we are able to define consistency only as 

T  ► ■ for all J ^ 1 ,] . 

We conjecture that with certain restrictions on the data, ML estimates 

are consistent (in this sense), joint asymptotically normal, and 

asymptotically efficient. 

The literature on the asymptotic properties of MI, estimates (see 

LeCam [16]) suggests as an estimate of the dispersion matrix of the 

parameters in the limit 

lim .T (9 - 9) » r"1^) , 

A.12) 
T -► °° , 

where 

r(0) = E i-iSLL . 
36 

An estimator of the asymptotic distribution of the ML estimates can be 

calculated from the matrix of seond partial derivatives.  In particular 



where 
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^All A12 A13 
-1 

F 1(e*   - I A21 A22 A23 |  . (A.1J) 

A31 A32 A33 

2 
All ' E 3 12S L = " ^2 (X,X) (A.13.1) 

3ß      a 

A21 ' A12 ~ E  3696 (A.13.2) 

A,2 = E-
3-^f^ (A.13.3) 

2 
A^ = E 8 lo^7

h (A.13.4) 

A31 = A13 = 0 (A.13.5) 

A32 = A23 = 0 ' (A.13.6) 

^2    -1 
The value O (X'X)  will be recognized as the estimate of the 

variance-covariance of the ß coefficients in the classical normal re- 

gression model.  The need to adjust these estimates to take account of 

the presence er" the vector ü depends on the inverse of the matrix TO). 

If A'  - A12 ■ 0, then 

-1 

r"1^) 
11 0 0 

0 A22 0 

0 0 A. 33 

n 0 0 

0 A22 0 

K" 0 
^ 
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Thus.   eh. „sua! estimators of the variance-covarlance Mtrlx „til h. 
provided by r lm   a a„d only lf 

2 
A      =  um    3    log L      _ 

12      Tj-x»      3(s9e      - 0  . (A 14) 

In this case lim ^(8) Is a block diagonal matrix, and the var /T 
fi - 6) is merely -a A^1.  in general> condltlon ^^  ^  ^ 

hold.  Suppose the model (A.l) and (A.3) Is transformed to replace 6 

with its value as determined by the side condition: 1 

^Kvvvf (A.15) 

To simplify the problem further, we have assumed that all subsets con- 

tain n observations (T - nJ).  The expected value of the partial deriva- 
tive is 

P  a"  log L l 
E    36.36     =-;-r (XftB - XJXJB)   , (A.16) 

ÖJ 

for all j.  The only way for these values to be zero for all parameter 
values is for 

Vi ■•••■%. (A.17) 

Hence If the raw mm.nt  „atrlces tend to equality In the limit,  then 

2 
E 3 loR-L- _ o 

3Ö3ß  " 0  ' (A.18) 

and  the asymptotic  variance  of  6  is merely 
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f- (X'X)"1 

Thus, the "t-scores" In the regression program would require no special 

adjustment (except for degrees of freedom) in this special case,1 

The addition of the vector 6 to the classical linear model should 

in general increase the variance of 6.  However, this cannot be demon- 

strated here for the multivariate case.  The asymptotic variance of ß 

is 

Var (0 - 0) - 2- (A11 - A^-^r
1 . (A.19) 

according to the rule for invariance of a partitioned matrix.  A  , 

A12, and A21 are as previously defined. A  represents 

_ 9  IOR L 

^62 

The diagonal elements of this matrix are 

aV( 
4na + ß'x'x 3 

+ ^ w) 
and the off-diagonal elements are 

a26 
— (2na2 - ß'X.'X.ß) 

The adjustment to be made to the asymptotic variance of ß can be 

shown exactly for the case with one behavioral parameter in ß and two 

subsets.  Using side condition (A.3) to replace 6 , 6 with a single 

In all estimates, we reduced the total number of degrees of free- 
dom by 2J + K to take account of the number of parameters in Ct, ß, 6. 
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value of 6 results in the following matrix foi 

2 ae -■ 

where again both subsets are of size n: 

Ex' 6 (Elxl - W  0 

lim Var (9 - 6) ?. Iß /. .2  .2.   4n + 3^x 
T |6 (Z1X1 " Z2X2) 

2^ 2 

6^ 

0 

(A.20) 

It can be shown that the limiting value of the variance of 6 is 

2 /       2  2 
a  /  2 + ßax 

TEx \ 2 
+ »^ Vo (A.21) 

The expression before the parenthesis Is the Var ß in the classical 

normal model.  The expression in parentheses takes on a minimum value 
1 where 

Vi    V2 
T/2  " T/2 ~ * 

Where the variances of subsets 1 and 2 differ, the Var ß takes on larger 

values.  For ß = 1 and 

T    2 _ 2 
J*l      0 J*l 
T/2   y T/2 

lim Var ß is nearly twice as great as where the subset variances are 

equal 
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LEAST SQUARES ESTIMATES 

LS estimation minimizes the sum of squared residuals subject to 

the side condition in the vector 6.  In particular, 

S2 = J i ^ " j i (*f " XiJß)  + XG(Ö) • (A-22) 

The first-order conditions with respect to B and 6 are 

11 (X1J «f " ViJ6) (A-23-l) 

and 

,2 

J      J 

^■■M C-Vhr**^- <*.2j.2) 

(A.23.1) differs from the same condition for ML estimates (A.8.1) only 

by a constant (-1/20 ), and hence yields the same conditional estimates 

for 6. 

Under side c «Hltlon (A. 3) LS and ML esMmates of ß and 6 are 

identical.  The first-order conditions for is and ML are 

ML : ^l(?f "V)?f •(l-"s2 (A-24-1) 

"■ tHif-v^-K 
J ■ !' •••« J • (A.24.2) 

Inasmuch as c^ is constant for all J, then (A.24.1) and (A.24.2) differ 

only by a constant and, thus. 
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X*  = 2(1 - X)a2 . (A.25) 

Moreover 6=6 and 6=6.  Asymptotically, LS estimates have all 

the properties of ML estimates plus 

*    2 
plim A = 20  . (A.26) 

It can be proved that for ML and LS estimates to be equivalent 

the side condition must be in the identical form of (A.3).  Take any 

side condition G(6) = 0 that is strictly separable in the 6 . The ML 
•s J 

condition for 6 is 

Tj J\6J    1J /6J   \     Ti 3y 
(A.27) 

For LS the condition is 

TijU;   ij K;  2 

6* 

= l-X^i~ • (A.28) T   ,* 
j 36. 

J 

The conditions are equivalent so that 6=6 and 6=6 under some 

weak conditions if and only if the right sides of (A.27) and (A.28) are 

the .same for every subset and do not depend on any element of 6 or 6. 

Thus, at most we could have 

=A^- = f(G) . (A. 29) 
Tj 36j 

But since G = 0, then f(G) = c , a constant.  Since G is strictly 

separable into G1(6.) + ... + G (6 ), 9G/36. can be written as G'. 

Thus, 



J 

Simple Integration yields 
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Gj T^ Co ' (A-30) 

Gj - coTi   In «Sj +C1 . (A.3D 

where both co and C1  are arbitrary constants.  Thus, for LS and ML to 

be equivalent, we must have 

J 

G ■ c ^ T In 6 + C  . (A.32) 
J=l J    J 

In (A.3) c = 1 and C - 0. 
o        1 

For a function G not satisfying (A.30) either for small samples 

or in the limit, then LS and ML estimates are not equal in the limit 

and LS yields estimates that in general are inconsistent. 
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