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ABSTRACT

This psper describes a procedure for computing the maximum 1ikelihood
es.imates of the parameters of the distribution of the sum of three inde-
pendent exponential random variables. By fitting sample interevent time
da*a from a real system to this distribution, one can create a simulation

of Lhe system that exploits the regenerative representation of queueing

systems [3] to analyze the simulation's output by relatively elementary
statistical methods. The paper also describes computation of the sample

asymptotic covariance matrix and an implementation of the likelihood ratio

for testing six hypotheses that are special cases of interest. A set of

FORTRAN subroutines for executing these procedures appears in the Appendix.
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1. Introduction

The purpose of this paper is to describe a procedure for computing
the maximum 1ikelihood estimates (MLE) of the parameters of the distri-
bution of the sum of three independent exponentially distributed random
variables. Although the case of equal parameters yields an Erlang distri-
bution, for which the MLE are known, the more generai case has received
little attention in the statistical Viterature. Two possible reasons for
this omission occur to the writer. Firstly, since the corresponding MLE
equations are not amenable to analytical solution, one needs to employ
numerical analytic techniques to solve them. Conceptually, the presence
of multiple maxima makes this an onerous approach. Secondly, since the
distribution has three parameters, the principle of parsimony encourages
one to use alternative two parameter distritutions whenever a fit of equal
or almost equal quality can be obtained. These distributions include the
gamma, lognormal and Weibull. Choi and Wette [1] describe a procedure for
computing the gamma MLE. Thoman, Bain and Antle [13] describe a procedure
for computing the Weibull MLE. Although both procedures rely on the
Newton-Raphson iterative method no unusual problems arise. For the log-
normal distribution the MLE relate directly to the MLE for the corresponding
normal distribution. Johnson and Kotz [9] discuss issues related to the
NLE for these distributions, including bias removal.

Given the attractions of alternative distributions, a relatively strong
Justification for pursuing the research presented here seems in order.
Recent developments in the field of discrete event simulation provide this
Justification. In [5,6] Fishman points out that in the simulation of
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queueing systems one could use the exit of the system from the empty and
idle state to demarcate the sample path of a stochastic process of interest
into independent segments each of which obeys the same probability law.
This demarcation enables one to use relatively elementary statistical
methods to compute point and interval estimates for population parameters
of interest [5,6]. The most appealing theoretical feature of this obser-
vation is that the i.i.d. property holds regardless of the distributions

of interarrival and service times. The most unappealing feature arises
when either the activity level increases or the number of servers increases
for a given activity level. In particular, the frequency with which the
system exits the empty and idle state declines dramatically. In turn,
this can result in excessively long simulation runs if one is determined

to collect a prespecified number of i.1.d. segments.

In (2] and [3] Crane and Iglehart introduce the more general notion
of a regenerative process into the analysis of simulation output. In
particular, any state can serve as a demarcating state, provided that
statistical behavior after entry into that state is independent of behavior
prior to entry and that the state occurs infinitely often. States with
these properties are called regenerative. If pne can identify all such
states then cne can use the most frequently occurring one to demarcate the
specified number of i.i.d. segments. If the interevent distributions are
exponential then all states can serve this demarcating purpose. Since
exponentiality is too restrictive an assumption in general, Crane and
Iglehart [4] attempt to identify approximate regenerative states. Their
procedure calls for a careful scrutiny of the particular system being
simulated.




T g YT o e RSTI L Tr T e o
) i TR T PRETERL L SR s

- An alternative approach to realizing the regenerative property arises
when interevent times have continuous unimodal distributions. Then a
theoretical basis exists for approximating each of these distributions
by the distribution of the sum of an arbitrary number of independent
exponential random variables. In particular, one way to look at this is
to consider the polynomial approximation to the corresponding characteristic
function where the reciprocals of the roots of the polynomial, which are real

.r

for unimodality, are the means of thg exponential random variables.  If one

adopts this characterization then interevent times in the simulation become sums

of independent exponential random variables. Suppose, interarrival times are

representable as the sum of two independent exponential random variables

. and service times are exponential. Then by adding a new entry to the
state vector that characterizes which of the two stages the next arrival
occupies, one provides the mechanism for realizing regenerative states.
If service times are representable as the sum of three independent ex-
ponential random variables then three additional entries in the state vector
to keep track of the number of jobs in each stage enable one to exploit the
regenerative property again. The price paid for this ability is the
increased bookkeeping for the state vector, an effic 2at approach to which
is described in [7].

Although the foregoing discussion motivates the use of distributions

of sums of independent exponentials, a procedure for

implementing the approach is practice remains to be developed. Ideally,

ocne would like to fit such a distribution by the distribution of the sum

N of a large number of exponential variates and,' through a formal hypothesis

i testing procedure, reduce that sum to the minimal nunber necessary to

- —————r

= _~ Yrhis assunex @ polynomial in fw where § = VSV .

-
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account for variation in the data. The present paper describes a first
step in this direction in Section 2 by fitting the sum of three independent ex-
ponential random variables and then testing six hypotheses designed to

reduce the length of the state vector. In particular, Section 2 describes a

procedure for finding the MLE,their sample asymptotic covariance matrix
and for using the likelihood ratio to test hypotheses. The steps outlined
in Section 2 are implemented in a set of FORTRAN subroutines in the

Appendix.
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2. The Procedure

Let Yl’ Y2 and Y3 be independent random variables from E(a),
E(b) and E(c), respectively, where E(6) denotes the exponential
distribution

e'x/e/e 0sXx<o 0 <9

(m f(x) =

0 elsewhere.

Then X =Y, + Y, + 73 has the probability density function (p.d.f.)

(2) f(x,a,b,c) = g(x,a,b,c) + g(x,b,a,c) + g(x,c,a,b)

) where
5 s, 3(%40,05) = 06”9/ (6-4)(8-0).
p

Given a sample x,,....xn from (2), we wish to compute 3.-5. ¢, the
MLE of a, b and ¢, respectively. These follow from maximization of

the Tikelihowod function

n
- (4) L= n f(xi.a.b.c) .
5 i=]
Here a, ﬁ. ¢ asymptotically have the trivariate normal distribution
with means a, b, and ¢, respectively,and the minimum variance covariance
watrix ) , where [10]




(5)

(6)

-6~
- 2 r - =1
£ 2 £n L g| 34nLl 3 fnl gl 2 nl 3 4&n
3 da ab [ 9 3c
;- e[ aeni)? aenl 2énl
- ab | b ac

To obtain the MLE one usually solves

n 3f(x N: bic)
—--—--——a £n L = z L . i ' @ 0 g = a,b.c
36 i=] f(x,.a.b.c) 30

simultaneously for a, b and c. In the present case (6) does not admit

an amalytical solutton. MNoreover, the only sufficient statistics appear

tO be x1.....x

" which do little to ease the computational burden of a

nunerical solution.

Feasible Region

Although the possibility of multiple maxima makes maximization of L

difficult in general, we can reduce some of this difficulty by noting

tha

(7)

*

-

f(x,a,b,c) = f(x,a,c,b) = F(x,b.a,¢)
= f(x,b,c,a) = f(x,c,a,b)

= f(x,C,b,a) .




This implies that L has at least 6 maxima of equal magnitude. Intro-

ducing the coastraints
(8) asbsc

removes this ambiguity. One can also show that

) ¥ %

leads to

(10) a+b+c=1X
X= (Un) ]
= = (1/n X, .
= !
|
kS, Now the constraints (8) and (10) imply
EH
é an 0s2as¥-c
= Y-as2s¥
§' ' which define the feasible region in the a-c space of Figure 1 where
,?%, maximization of L is to cccur.
»§' The arcs and nodes of the feasible region in Figure 1 play 2

special role here. In particular, arcs AB, BC and AC correspord to
hypotheses 1, 2 and 3 in Table 1 and nodes 8, A and C cérrespond to the
Erlang nypotheses 4, 5 and 6. In addition to examining these special cases
in the process of maxihization of L, one can use the Vikelihood ratio test
to evaluate the effect of assuming that one of these special cases repre-

sents the underlying structure of f in (1). This issue is discussed shortly. '
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Figure 1

Computational Considerations

The search for a maximum for L has now been rvestiicted to the tri-

The set of FORTRAN subprogram Visted in the Appendix

angle in Figure 1.

effects a grid search on a in user specified increments of & over

"

{0, X/31 and for each a performs a binary search for ¢ in

LY




Table

f(x,a,b,c)

PP i SRS
b T

<9-

1

af(x,a,b,c)

dd

af(x,a,b,c)
3 b

e R e A e

Distributions and Derivatives Under Alternative Hypotheses

2 f(x,a,b,c)

ic

b

g(x,a,b,c)+g(x,b,a,c)*+g(x,c,a,b)
g(x,b,c,0)+g(x,c,b,0)
g(x,a.c,c)[x(a-c)-ac]/a2+g(x,c.a.a)
g(x.c.a.a)[x(c-a)-ac]/c2+g(x.a.c.c)
9(x,¢,0,0)

xg(x,¢,0,0)/¢c

ng(x,c.O,O)lzc2

h](x,a,b,c)

h3(x,c,a)

hz(x,c.a)

hl(x,b,a,c)

hi (x,b,c0)

h](x,c,a,b)

hy (x,¢,b,0)

h,(X,3,¢)

h3(x,2,¢)
g(x,¢,0,9)(x/e-1)/c
xg(x.c.O,O)(x/c-Z)/c2

RZQ(X.C.O.O)(xlcv3)/2c3

h} (3»9.6.9)"9(*.0.6‘0)[1/9*3&/02-\/(6‘0)-1/(9*0)]*Q(X'%O 'O)/(¢‘B)w(x'° '0v¢)/(0'0}

ha(x,ﬁ.o)”g(x.o.0.9)[I/p*x/ez*Z/(n-O)]*g(x.0,9.0)[(D-G)K*B(O*p))/(o-ﬂ)ﬂz

h3(x'9.o)”9(*-0.0.8)({(0*9)x*eo][x/ez~1/p-2/(o-0)]*X-G}/nz*Eg(ﬁ.ﬁ'a.o)/(ﬁ*o)
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[(Ylé)IZ,XlZQJ to within the tolerance 6. The search for ¢ solves

3&n L/sc = 0, Expression (10) yields 6 and the search for the maximum

is effected by computation and comparison of £In L for each computed set of

5, B and E. Since substantial experience with the UPDATE subroutine using

a complete grid search in ESTIMA failed to reveal more than one maximum,

ESTIMA was modified to terminate the search once a maximum has been found.
The ARC and NODE subroutines enable one to check the arcs AB, BC and

AC and the nodes A, B and C for solutions that might give improvement.

Also HYP123 and ERLANG use the results of ARC and NODE, respectively, to

test the hypothases in Table 1.

Computation of Covariance Matrix

The estimation of the covariance matrix under Ho, H], H2 and H3 uses

(12) E{ adnl s dnl | . " Jm af(x,a,byc) | af(x,a,byc) | 1 i
38 3¢ 0 38 3¢ f(x,a,b,c)

“together with the expressions in Table 1 in ESTIMA and HYP123. These sub-

routines employ numerical integration, as described in [12, p.923) to

evaluate ) , using 5. 8, E in place of a, b and ¢ respectively. Although

. the weights in the W and Y arrays apply for double precision computation,

expariance has siown little loss of accuracy by using single pracision.

Figura 2 offers ai. example of the output for 100 observations drawn from

f(x,1,5,12).

Likeiihood Ratio Test

Since parsimony clearly has advantages in modeling, one wants to test
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the hypotheses in Table 1 to see if one or two parameters can be elimi-
nated from the representation (1). Let L(X, ;i’ Bi’ Qi) denote the
maximum of the likelihood function under Hi where i = 0 corresponds
to (1) and X = (X],...,Xn). For example, L(X,a],b],c1) = L(i,o,b],c])
and  L(X,a,,b5Cy) = L(¥,2,:35,C,). Then the likelihood ratio

(13) Ry = L(XaayabgsCy /L{Laagabycy) 1= 1oeeesb

lies in (0,1). The closer R; is to rnity the niore credible is the
hypothesis. Although the distribution of Ri under Hi is bevond our
reach it is know" ihe: as n increases the distribution of -2 £n Ri
converges to the chi-square distribution with degrees of freedom equal to
the number of constraints imposed by the hypothesis [10]. For H]. H2 and
H3 there is 1 degree of freedom; for H,, Hs-and HS' there are 2 degrees
of freedom. Therefore o

K5(1-0)12
(14) pr(Ri 2 e )=21-a

where x%(l-u) denotes the 1 - a critical value for ¥ degrees of
freedom and f =1 for i=1,...,3 and f=2 for i =4,...,6,
Table 2 shows critical values of Ri corresponding to tests of selected

sizes.
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; MAXINUN LIKPLTHOOD ESTIMATION
f ToTmesesssmssoses Tossemessese
i P(X) =G (X, A, B8,C) +G (X, B,A,C) +G {X,C,4,B)
==a | G(X,T,P,R) =T#EXP (~X/T) /{ (T=P} % (T=R) )
§ N= 100 SAMPLE MPAN= 0,209 WWTE 02 SAHPL? VARIANCF= 0.250988F 03
? DELTA= 0.697 1558~ 02
A= 0.078065% 00 B= 0.553364F 01 C= 0.148639% 02

COVARIANCTE MATRIX

; 0. 13736°8 01 -0.359012% 0V 0.304326% 01
7
: 0. 1958908 02 -0. 2224818 02

0.316986E 02

COPRELATYON ®ATRIX

0. 100000® 01 -0.692083° 00 0.46 11847 00
0. 100000E 01 -0. R92826F 00
i 0. 1000008 01
: G HYPOTHESIS 13 A=0, B<sC
E B= 0.646436E 01 C= 0.1845038 02
| VAR (8) = 0.170784R 02 VAR(C)= 0.361412P 02 COV (B, C) =<0.2310858 02

CORE{B,C)=~-0.930138F 00

LIKRLIHOOD PATIO= 0,781€58® 00

JHYPOTHESIS 2: A=B<=C

B> 0.296668F 01 C= 0.157813» 02
VAR(R) = 0.57502¢% (00 VAR (C)= C.102919¢ 02 Cov(B,Cy==0, 1715438 01

CORR{R,C)==0.70515V" Q0

s LYKTLIHOOR BATIO= 0,722563% 00




 HYPOTHPSIS 3:  AC=B=C

k= 0.272369F-01 C= 0.104437F 02
VER(A) = 0.256362% 00 VAR (C)= 0.950815F 00 COV(R,C)==0.172593% 00
TOPP(A,C)==-0.349580F 00

LTKELTHOOD RATIO= 0.575515F 00

HYPOTLESIS 4: A=B=0

C= 0.209147F 02
«95 LOWEP POINT= 0.172517. 02 «95 UPPRR POINT= 0.257062F 02

LYKRLIHOOD RATYO= 0,198087m-04

HYPOTHESIS 5: 3=0, B=C

C= 0.104573% C2
+95 LOWER POINT= 0.914665r 0 «95 UPPFT POINI= 0.120730F 02

LIXK®LIHOOD RATIO= 0.5637€¢38 0V

HY POTHESIS 6: A=B=C

C= 0.6971535% (1
<95 LOWBR POINT= (0,R205197 0t «95 UPPER POIK™= 0.,783313F 01

LIKSLIHOOD RATIO= 0.676001R=-03

. Figure 2 (continued)
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Critical Values of Ri for Tests of Selected Sizes
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0.01 0.025 0.05 0.10 0.25
0.9999 0.9995 0.9983 0.9921 0.9505
. 9900 .9750 .9500 .9000 .7500

In the case of 2 d.f. the chi square distribution is E(1). There-

fore, Rf is the probability that under Hi (i=4,5,6) one would observe
a likelihood ratio less than' Ri'

Ry = 0.5658 and Rg = 0.3201.

For example, under H5 in Figure 2

Confidence Intervals

Let us first concentrate on H4. He and HG‘ Under K, Ei = Xf(1=3)
and n Ei/c has the chi-square distribution with (i-3)n/2 degrees of
freedom. The ERLANG subroutine uses this fact to compute a confidence
interval for ¢ and relies on the CHISO subroutine to provide critical
values of chi-square.

For Ho. H\. H2 and H3 no similar theory is available. However, if
n is sufficiently large, one can compute approximate individual confidence
intervals for a, b and ¢, using the estimated variances in the corresponding
covariance matrix. Experience with the set of subprograms in the appendix
has revealed that even for n ~ 100 the sample var(a), var(b), var(c) are
large relative to 5. b and ¢ respectively.

2

THere Ry 1is called the P-value. See (8].
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Bias Considerations

In small and moderate size samples 5, b and ¢ are biased. In
particular, experience has shown that 5 overestimates a and 6
underestimates c. Since ¢ does most to affect the shape of the tail
of the distribution we especially want to consider ways of reducing bias
for this quantity. One approach to bias reduction uses the jackknife
method [11].

The elementary form ¢f the jackknife method removes bias to order

1/n. Suppose c is computed using n observations and E(]) and 6(2)

are
computed using the first m = n/2 observations and the last m = n/2

observations respectively. Then one can easily show that
(15) T e 2e - (clV) 4 5@y

is free from bias to order 1/n. Notice that the computation of ¢
requires 3 passes through the estimation procedure,

More powerful jackknife methods of bias reduction are available [11].
Our reluctance to incorporate any one of them into the estimation pro-
cedure is a consequence of the additional cost they imply. However, a
user of the estimation procedure in the Appendix can easily write a bias

reduction program to use in conjunction with ESTIMA.
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4, AppendixJr

SUBROUTINE ESTIMA(X,N,NUN)

C

CONMENT THIS SUBROUTINE CONDUCTS A GRID SEARCH ON A IK INCREMENTS OF

Y DELTA

C

INTEGER I,J,K,M N ,NUM

REAL A,B,C,AS,BS,CS,AA(6),BB(6) ,CC(6),CORR(3,3)},CO0V{3,3),D(3,N),
2 DELTA,DBN,P,H(3) ,LC,LIKE({6) ,LLP,LOGX,MAXLLP,UC,W(15),X(N),
3 XBAR,XSUN,Y(15)

DATA #/.2395781703,.5601008428,.8870082629, 1.22366440215,
1.57804872163,1.94475197653, 2. 34150205664,2. 77404192683,
3.255603346480,3.80631171823,4,458477753808,5.27001778443,
6.359563086973,8.03178763212,11,5277721009/

DATA Y/.0933078120,.4926917403, 1.2155954121,2.2699495262,
3.6676227218,5.4253366274,7.5659162266, 10.1202285680,
13.1302824822,16.6544077083, 20, 7764788994,25,.6238942268,
31.4075191698,38.5306833065,48.0260855727/

1 PORMAT (1HY, 25X YHAXINUN LIKBLIHOOD ESTIMATION!/26X, twcrcccncvcncuw

2emmm= "'""""'/,22!."(:‘ =G ‘X'A'B'c’ +G(X. B.A.C) "G (X.C.I.B) '//22:
3, 'G(E,TyP,R)=T¢BXP (=X/T) /7 ((T=P) ®(T=R)) ' //UX,*N=",15," SAMNPLE M
8BAN=',P13,.6," SANPLE VARIANCE=',E13,6//30X, *DELTA=* ,E13.,6//12X
S,'A=¢,813.6," B=*,713,6," C=%,P13.6//7

2 PORMAT (* SFP HYPOTHRSIS*,12//7//7)

3 FORMAT (31X,°COVAPTANCP HMATRIX'//15X,3(R13.6,5X)//33X,2(R13.6,5X)/
2/51X,B13,6/4/31X,'CORRELATION MATRIX'//15X,3 (B13.6,5X)//733X,2(213.6
3,8y 2/51X,R13.6//7/77)

wsun=0

LOGX=0

DO 100 I=1,N

LOGX=LOGX4ALOG (X (1))
100 XSUN=XSUR$X (X)

XBAR=ISUN/N

a=0,

DELTA=XBAR/ (3. *NUN)

N=NUR-1

LLP=0

DO 150 TY=1,N

NAXLLP=LLY

AS=A

BS=B

€8sl

L PV ]

& u

- eveaime vwe maaa

YYhis set of FORTRAN subroutines computes the maximum 1ikelihood estimates of
a, b and ¢ in f(x,a,b,c) for Hy through Mg in Table 1. X denotes the
floating point data array, N denotes the sample size and NUM denotes the
resolution DELTA = X/(3*NUN) for conducting the grid search.
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LC=(XEAR=-}) /2.
UC=XBAR=2.%}
CALL UPDATF (X,N,XBAR,LC,UC,A,B,C,DELTA, 1,LLF)
IF (MAXLLF.FQ.0.) MAXLLF=LLF
IF (MAXLLF.GT.LLF) GO TO 160
150 A=A{DELTA
160 A=AS
B=BS
C=Cs
c
COMMENT APC AND NODE S®ARCH ON THE BOUNDARIEBS OF THE FEASIBLE REGION
C
DO 170 1=1,13
CALL ART (X, N, XBAR,A,B,C,DELTA,MAXLLF,I, AA(T),BB(I),CC(I),LIKE(I))
170 CALL NODE(N,XBAR,LOGX,A,B,C,MAXLLP,I,
2AR(143),BB(I43),CC(T43) ,LIKE(I+3))

C
COMMENT OUTPUT COMPUTATIONS POLLOW
C

§5Q=0

DO 180 I=1,3

DO 180 J=T,3
180 D({X,J)=0
DO 190 T=1,¥
190  3SSUSSSQ4 (X (T)~XBAT) %82
$8Q=55Q/ (N~ 1)
WRITE (3,1) N,XBAF,SS5Q,DBLYALA,B,C
I=0
IP (A.FQ.0.AND.B.LT.C)
IF (A.RQ.B.AND.B.LT.C)
IF {(A.LT.B.AND.B.EQ.C)
IP (A.BQ.0.AND.B.F0.0)
IF (A.EQ.0.AND.B.BQ.C)
IP (A."Q.B.AND.R.EQ.C)
IP (I.F0.0) GO T0 200
WRITE (3,2) 1
GO TO 450
200 DO 330 Y=t,18
CALL COMPUT(HY (1) ,1,B,CoA,1,H(Y),P)
CALL 7OMPUT(Y(I),Y,A,C,B,1,K(2),F)
CALL COMPUT(Y(I) V1,R,B,C,o1,H(3) ,F)
P=EXP (F)
DO 300 J=1,3
DO 300 K=J,3
300 DEI,KY=D(J,K)+H(J) *H (K) «FeW (1)
DEN= (D (1,1) *D(2,2)*D(3,3) +2.*D(1,2) *N(2,3)%D(1, )
2=D{2,20¢D (1, 3) % 2=-N(3,3)*D(1,2) *¢2=D{1,1)*D (2,1) ¢¢2) s\
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cov(l, )=(D({2,2)*D(3,3) =D (2,3)**2) /DEN
CovV{1,2)=(-D(1,2)*D(3,3)4D(1,3) *D(2,3)) /DEN
cov(l,3)=(D(1,2)*D(2,3) -D(1,3)*D(2,2)) /DEX
COV(2,2)=(D (1, 1) *(3,3) =D (1,3)**2) /DEN
COv(2,3)=(-D{1,1)*D(2,3)+D{1,2) *D(1,3)) /DEN
COV(3,3)=(D(1,1)*D(2,2) =D (1,2)*+*2) /DEN
DO 400 T=1,3
DO 400 J=%1,3

800 CORR(I,J)=COV(I,J)/SQRT (COV(I,I)*COV(J,J))
WRITE (3,3) cov(t, 1) ,CovV(1,2),C0V(1,3),C0V(2,2),COV(2,3),
2C0V (3,3) ,CORR(Y,1) ,CORR(1,2) ,CORR(Y,3),COPR(2,2),CORR(2,3),
3COFR (3,3)

c
COMMENT CHECK HYPOTHESPES 1,2 AND 3
o
CALL HYP123 {X,N,XBAR,LOGX,DRLTA ,MAXLLP,AR,RB,CC,LYKR)
C
COMNENT CHECK HYPOTHRSES 4,5 AND 6
c

DO 500 I=1,3
500 CALL ERLANG (N, XBAR,LOGX,MAXLLF, I)
END

DOUBLE PRRCISYION PUNCTION G (Y,THETA,PHYI,RHO)
c
COMMENT COMPUTRS THETA®EXP (~Y/THETA)/ ({THETA-PHI) *(THET A=RHO))
Cc
FEAL PHI,RHO,S,THETA,Y
REBAL*8 ARG,CHECK,2,22,222
G=0
IF (THETA.EQ.0.) RETURN
ARG=Y/THRTA
5'31. 7
Z=THETA/((THETA-PHI)* (THBTA=RHO))
IF (z-LT. 0.) S==§
IP (ARG.L®. 174,673) GO TO 25
10 ARG==ARG4DLOG (DABS (2Z))
IP (ARG.LT.-180.218) PRTURN
G=S*DEXP (ARG)
RETURN
25 Z2Z=DRBYXP (ARG)
CHECK=(10D=78) *222
Z2Z=DABS (2)
IF (22.LT.CHECK) RETURN
G=2/322
RETURN
END
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SUBROUTINE UOPDATB(X,N,XBAR,LC,UC,A,B,C, DELTA,J,LLP)

c

COMMENT PERFORMS BINAFY SEARCH ON T PUR GIVEN A

C
IRTEGER J,¥N
REAL A,B,C,CC,DEL,DELTA,DERYIVC,LC,LLP,NC,W{12), X(N) ,XBAR,V(16)
DATA V/O..O..O.,l.,\.,o. ,0- '0.'0-'0..10'0.. 0».0.'00 "20,
DATA “,1. .10505000.“0 '0- ,0..0. ’-‘Q .‘1-.-05.‘0,
CC=(LC+UC) /2.

100 cC=CC

B=XBAR®W (J) 40 %W (J48) 4C*¥ (J48)
A=XBAR®V (J) +A*V (J+U) $B*V (J48B) +C*V (5 412)
CALL COMPOT (X,N,A,B,C,J,DERIVC,LLF)
IF (DBRIVC.GB.0) uLC=C
IF (DBSRIVC.LE.0) OC=C
CC=(LCHUC) /2.
DEL=ABS (C-CC)
* {DBL.GT.DELTA) GO TO 100

= RETURN
- %? END
ot SUBROUTINE CONPUT(Y,N,T,P,R,J,DERIVC,LLY)
ol c
CONNENT CONPUTES LOGLIK®LIHOOD DERIVATIVE WITH RESPRCT 10 C
C

INTEGR®? I, J,K,N

|REAL DWPIVC,LLPF,P,R,T,Y'¥)

R¥AL*8 P,G,GP,GR,GT

LLP=0

DERIVC=0

G0 TO (100,200,300,400}, J
100 D00 150 K=1,H

GT=G (Y (X),T.P,F}

GP=G (Y (X) ,P,T,R}

GR=G(Y(KX),R,T.,P)

P=GT4GP4GR

LLP=LLPF4DLOG(Y)

GT=GY/P

GP=GP/Y

GR=GR/P
150 DERIVC=DNERRI VCHGR® (1, /7R4Y (K) /RO* 241, 7 {P=RY}$ V. /7(*=R)})

24GP/ (P-R) 40CT/ (T-R)

RETHRN
200 DO 250 K=1,M

GP=2G (Y (K) ,P,R,0)




GR=G (Y (K) ,B,P,0)
F=GP4GP
LLF=LLFDLOG (F)
SP-GP/F
GP=GR/F
250 DERIVC=DRPIVCHGP/(P=F) +GP* (Y (K) /R¥%2-1,/(R=P))
PETURN
300 DO 350 K=1,M
GP=G (Y (K} ,P,B,F)
GR=G (Y (K) ,R,P,P)
F=GF+GP* ( (P=F) ¢¥ (K) =P¥®) /P a2
LLF=LLF4DLOG (F)
GP=GR/?
GR=GR/Y
350 DRBFIVC=DPRIVCHRR® (1. /F4Y (K) /R%e2-2, / (R-D))
24GP¥( (2=P) *Y (K) + P* (P4R) ) / ( (R~ D} #Pos2)
\ RETURN
400 DO U50 K=1,M
GT=6 (Y (K) , TR, F)
GR=5 (¥ (K) ,P,T,T)
F=GTEGH® ((P=T) oY (K)=T¥F) /p=e2
LLP=LLF+DLOG (D)
GY 36T /T
GRaGR/®
US0 DEFIVC=DEFIVC2.%GT/(TeR)
24GRE(((PT) 2Y(K)wT#F) & (¥ (K) /RO 2=1, /R=2, /7 {F=T) ) 4¥ (K} =T) /R @82
RFTURN
BND

SUBROUTINE ABC(X.N.XB!?.A.H.C.D?L?A.&&ILL?;I.AA.BB.CC.LIKF)

¢

CONNENT COMPUTES SOLUTIONS POF APCS AND APPLIES TO HYPOTHESES 1,2 A&D 3
c ' :

INTEGE® I.N

REAL A, AA,B,B8,C, 00, DRLTA, L IKP, NAXILP, U (6), K (H) ,XBAR

Da!‘ U"QS.Q z“??"..3!‘1‘3.‘."‘..5,

CALL UPGRTP(X,H.xﬂAF.XBAP'"(I!.XBR&*"(I#J',Il.BB.CC.DElTl,I+\,
2LIKE)

IP (MAXLIP.G*,LIKR) PFTURY

Az AR

=88

Cal(

HAXLLP-LIKP
. RPTURN
END




SUBROUTIN¥ NODF(N,XBAR,LOGX,A,B,C,MAXLLP,I,AA,BB,CC,LIKP)

COMNENT COMPUT®S SOLUTICNS POP NODES AND APPLIRS TO HYPOTHESES 4,5,6

g
L

) ) ,W...
e g{g,,« rrs T PT

<Ou o] S0

. PR . ”' " P | .

9.

™

INTEGER I,N

REAL A,AA,8,BB,C,CC,LYK®,LNG2,L0GX, NAXLLP,XBAR,W (9)
DATA w/0.,0.,¢333333,0.,.5,.333333,1.,.5,.333333/,10G62/.693147/
LIKE=~=N* (I* {(1.4+ALOG (XBAR/T) ) 3, *W (I)*LOG2) + (I-1) *LOGX
AR=XBAR*W (I)

BB=XBAR*W (I+3)

CC=XBAR®WN (I +6)

IF (LLF.GT.LIKE) ERTUFN

A=A

B=BB

C=CT

NAXLLF=LIK®

RETURN

END

SUBROUTINE HYP123(¥,N,XBAP,LOGX,DRLTA,NAXLLF,AA, 88, CC,LIKE)

CONNENT PERFORNS OUTPUT ANALYSES POP HYPOTHESRS 1,2 RND 3

™

& i P o

INTRARER T,J,K (9) ,KA,KB,KC,L,N
REAL A AN (R).D.BR(€Y,C,CC(6),CRB,CCC,CBC,CCBR,CCCC, CCBC,DFLTA,
Dt2,.2) ,DPYN,F,HB, HC,LIKP2{6) ,LOGX,LRATIO ,NAXLLP, U(6),W (1%),
X (N} (XBAF,Y (15)
DATAN K/1,1,2,2,3,3,1,2,1/
DATA U/.5,.3333133,.3371333,1,,1,,.5/
DATA ¥/.2395781703,.5601008428,.8870082629, 1,22366U40215,
1.57004R072163,1, 904875197653, 2. 30150205664,2. 776006192683,
3, 20964134600, 3,. AC6311TYN23,4,45847775348L,5,2700177844 1,
h, 3595634A973,B8,03178763212,11,5277721009/
DATA Y/.9033078120,,.4926917403, 1.2155950121,2.263949526 2,
; JLERTE22T21P ,5,82593468274,7.5659162266,10.1202208%6890,
13.1302828R22,16.6544077083,20.77607R8994,25,6238942268,
11 U075191A098, 30 ,5106933065,48.02608557277
FORMAT (¢ HYIPOTHPSTS 1V A=0, BS=C' /N
FOURAT (¢ MYPOATHRSIS 2: A=RL=C /)
FORMAT {* 1HYPOTHRSIS 3: AL=3=C '/ ))
PORMAT (15X, *A=* ,B13,6,5%,'8=¢,E13.6,5X,*C=',EB13.6//" SFE Hye
20THESIS ',12//7/77)

2
3

2

A

£ -
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5 PORMAT (22X, *B=*,B13,.6,5X,'C=',E13.6//9X,VAR(B} =*,F 13,6, 5%, *VAR(C)
2=%,B13.6,5X,'COV(B,C)=',B13,6//28X, *COPR(B,C)="',BEt3.6//25X, *LIKELI
JHOOD RATIO=',EB13.6/////)

6 PORMAT (22X, *A=' ,B13.6,5X,'C=',F13.6//9X, 'VAR(A} =*,R13,5,5X, * VAR {C)
2=1,B13.6,5X,*COV(A,C)=*,P13,6//28X, 'CORR{A,C)="',R13,6//25X, *LIKRLI
JHOOD RATIO=*,B13.6/////)

DO 500 I=%,3

IF (I.EQ. V) WRITE (3,1)

IFP (I.BQ.2) WRITF (3,2)

TP (I.B0.3) WRITE (3,3)

L=0

KA=K {X)

KB=K{(I+3)

KC=K (I+46)

L=I

DO 100 J=KA,KB,KC

JJI=J+3

IP (LIKB(I).LT.LIKE{JN)) L=JJ

A=AA {L)

B=8B(L)

C=CC (L)
100 LIKB(I)=LIKR(L)

L=0

IF (A.RQ.0.AND.B.FQ.0) L=@
& iy ‘lIEQOOQ AND, B.EOOC) L=5
; IF (A< RBQ.B. AND.B.FQ.C) L=6

IF (L.LT.8) GO TO0 150

WRITR (3,%) A,8,C,1L

GO TO %00

150 LEATIO=vXP(LIKB(I)~KAXLLP)

PO 175 J=1,2

DO 175 L=J,2
175 D, L) =0

DO 4795 J=1,15

5 GO 10 (200,300,400), Y

2 200 CALL COMPUT(Y(J),1,A,C,B,2,HB,F)

; CALL COMPUT (Y (3),1,A,8,C,2,HC,F)

s GO TO 850

: 300 CALL CONPUT ¢Y (J),1,C.B, A,0,HB,P)

CALL CONPUT(¥(J),V.\,B,C,3,HC,F)
GO TO 450
8§00 CALL CONPUT(Y(J),V,C,B,X,)3,H8,F)
CALL COMPOUY (Y (J),V,A,B,C.l,HC,P)
4S50 P=BXP(P)
D(Y, 1) =D(Y, 1) $HBew 20PN (J)

4 D (2,2) =D (2,2) $HCOw2epoy {)

B 475 D(1,2)=D(V,2) +HDBeHCOPOY (J)

& B DEE=(D(V,9) *D (2,2} =D (1, 2) *o2) ox
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CBB=D (2, 2) /DBN

CCC=D (1, 1) /DEN

CBC==D{1,2) /DEN

CCBC==D{1,2)/SORT(D(1,1) *D(2,2))

IF (I.®Q.1) WRITE (3,5) B,C,CBB,CCC,CBC,CCBC,LRATIO
IF (I.BQ.2) WRITE (3,5) B,C,CBB,CCC,CBC,CCBC,LRATIO
IF (I.BQ.3) ¥RITE (3,6) A.C,CBR,CCC,CBC,CCBC,LRATIO
CONTINUE

RETURN

END

SUBROQUTINF ERLANG(N,XBA® ,LOGX,MAXLILF,Y)

COMMENT PERFORMS OUTPUT ANALYSES POR HYPOTHESES 4,5 AND 6

INTEGER I,N

REAL C,CHISQ,DF,LC,LLF,L0G2,LOGX,LRATIO,MAXLLF,UC,¥ (3),XBAR
DATA W/0.,0.,1.7. L0G2/.693147/

PORMAT (' HYPOTHESIS 4:  A=B=0Q'//)

PORMAT (* HYPOTHESIS 5:  A=0, B=C'//)

PORMAT (* HYPOTHESIS 6:  A=B=C'//)

PORM&T (32X, 'C=?,B13.6//8Y,'.95 LOVER POIKT=',B13.6,5X,'.95 UPPER P
20INT=*,313.6//25X, ' LIKELIHOOD RATIO=*,RB13.6/////)

C=XBAR/I

DE=2, ®T N

LC=DF*C/CHISQ (DF,.975)

UC=DF*C /CHISQ (DF,.025)

LLF==N* (I* (1. $ALOG {C) ) +¥ (I) *$LOG 2} 4 (I=1) *L0G X

LRATIO=EXP (LLP~NAXLLP)

IF (I.BQ.1) HRITE (3,1)

IP (I.BQ.2) WRITZ (1,2)

IF (I.®Q.3) WRITE (3,3)

WRITE (3,4) C,1C,UC,LRATIO

RETOURN

BND
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FUNCTION CHISO (DF,P)

CONNENT CONPUTES CRITICAL VALUE OF CHI-SQUAKRE FOR PROBABILITY P

AND DF DZGREES OF PREEDOM

INTEGER X

REAL C(3) ,D {3

BEAL DP.P.Q.T.XP,RUN,OEﬁ.Y,SQDF.SQH&LF.YZ,Y3.YQ.YS.Yﬁ,Y?,H(7)
DATA C/2.515517,.802853,.010328/,D/1.432788,.189269,.001308/
NON=0

DEN=1,

Q=P

IF (P.LB..5) GO TO 5

Q=‘c -p

T=SQRT (ALGG (1. /Q**2)}

DO 10 I=%,3

NON=NUN{C (T) *T**(I-1)

DEN=DEBN4D (I)*Te ]I

XP=T-RUN/DEN

IF (P.GB..5) 5C TO 15

XPz«Xp

=Xp

SQDP=SQRY (¥}

SQUA LP=SQR? (. 5)

Y2ayey

Y3nyey2

Y4=Y 30y

¥S=Y4ey

Y6=Y5e¢Y

Y7=Y6ey

H(1) =Y /SQRALP

H(2) =2.¢(12~1,) /3.

HE3) = (Y3=~T.¢Y) ®SQHALP /9,

8 ‘.’ 2= fs.ta*““. ‘!2"32-) /005«.

H{5) =(9.*Y5+256,%Y3-033, ¢¥) sSQUALP/USSO,
HE6) =(12.9Y6-203,8VU-G23, 2Y241472.) /25615,
H(?)F'(3753.‘Y7+03%1.‘Y5-28951?.‘?]*289717.‘Y)OSQRI$F19185°00.
CHISQ=1,

0 20 I=1,7

CHISQ=CHISO4H (I) /SQDPeeY

CHYSQ=CRISQ®DF

RETURN

BKD

i
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