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«TH A DISCUSSIOH OF THE BLIND ANGLE 

BY 

LAWRENCE DAVID BECKER 

Q 
«a;. Abstractt This raport reviews the underlying theory of the phased 

array and then examines one of Its most limiting problems—-the blind 

angle« The theory of the phased array is developed by studying a 

simple two element array and then progressing to multi-element arrays« 

Following this, the1 progressive phase shift is incorporated into ths 

driving currents and its result examined. 

The blind angle phenomenon is presented and then a physical reason 

for its occurrence is sought« The mutual coupling concept is demonstrated 

by examining mutual impedance as a function of spacing. Then the two 

predominate theories, surface wave and modal, offering a physical insight 

into the phenomenon are examined. Considerable attention is devoted to 

the "Ghost Hede Hypothesis" of Oliner, et al. and the work of Louie 

Stark. 
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INTRODUCTION 

The last quarter century has witnessed the introduction 

of many new devices in the electronics field. Few, however, 

match the potential of the antenna array systems for enhancing 

capability in the fields of radar and communications. The arrays, 

and specifically the phased arrays, provide a means for scanning 

large areas of space in extremely short periods of time. They 

allow beam shapes to be varied for different applications from 

the same system. By scanning electronically, they remove the 

problems associated with mechanical scanning, specifically the 

starting and stopping of directional antennas. The advantages 

to be gained by these applications are almost limitless. How¬ 

ever, to make use of these systems requires a modicum of under¬ 

standing of their operation. Unfortunately, most of the litera¬ 

ture on this subject is written on such a plane that the under¬ 

graduate student never obtains a thorough understanding of the 

basic physics involved in the array theory. Therefore, the 

primary purpose of this paper is to present this basic theory 

in such a manner that an undergraduate student with little more 

than a basic electric fields course will be able to garner a 

physical realization of this theory. Additionally, I have at¬ 

tempted to explain on approximately this same level one of the 

more serious problems that affect the phased arrays—the blind 

angle. 

IT”— 
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THE PHASED ARRAY ANTENNA 

Radiation Pattern from a Dipole 

As all technical papers must start with certain assump¬ 

tions, I will assume that the reader has studied electromagnetic 

radiation and has come in contact with a dipole antenna. For 

those wishing a thorough treatment of this subject, I suggest 

they consult a book such as Rao1 or Hayt.2 If we use a short 

dipole, assume a constant current along its length, and choose 

the coordinate system and orientation of Figure 1 the electric 

field pattern at a large distance from the antenna (radiation 

or far field pattern) can be described analytically as: 

E = K Volts/meter (D 

This field is sketched in Figure 2. You will note that the 

pattern has no <p dependence but radiates its distinctive sin0 

pattern everywhere in a circle around the dipole. 

Suppose we wished to keep the sin9 pattern but wanted to 

stop radiation at various values of ¢- to approximate the pattern 

shown in Figure 3. It seems apparent that some means is neces¬ 

sary for cancelling the radiation at <j> = 0° and 180°. This could 

be accomplished by placing perfect electric conductors around 

the dipole at these angles. In fact, that particular process is 

the basis for the parabolic reflectors you see used on radar 

antennas. However, you will recall that electromagnetic fields 

■.m i ,1 ‘Ü . ■ II1 SSISRiiflÉÉis - 
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Fig. 2a.—|e| pattern as a function of 0 

Fig. 2b. — |e| pattern as a function of ¢) 
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Fig. 3.—Desired pattern in XY plane 



are linear and hence the theory of superposition can be applied. 

In this case, if we could add the negative of the dipole's radi¬ 

ated field to it at these chosen angles of ¢, then we should be 

able to obtain the desired pattern. 

Two Element Array 

The problem with this plan is obtaining the negative of 

the dipole's pattern in only a few directions. To accomplish this 

it is necessary to recall that electromagnetic radiation travels 

at a finite velocity, and therefore, it takes time for radiation 

to move from the dipole to some exterior point. With this in 

mind, we examine the result of placing two identical short dipoles 

a small distance apart, for example, one half wavelength (X/2). 

Next we will feed these dipoles from the same generator located 

equidistant from each of them so that the signal arrives at each 

antenna at the same time or, more simply, in phase. Also, we 

assume the generator produces a sinusoidal current of amplitude 

A and frequency uQ. 

Using Figure 4 as a reference, we pick an observation 

point A at some large distance from the two elements along the 

<J> = 90 line. You will note that at this point you are equi¬ 

distant from both elements, so the radiated energy from each ele¬ 

ment reaches you at the same time. Hence, from superposition, 

the E field at the point is: 

ET0TAL = E1 + E2 (2) 

Due to the way we chose to feed the elements 
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ANT 2 

ANT 1 
» A 

Fig. 4.—Observation points around a two element array 
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Therefore , 

etotal = 2E1- 

Next, we choose an observation point B at tne same dis¬ 

tance but along the line <J> = 180°. Continuing to feed the ele- 

ments in phase we follow the radiated signal from element 1 (see 

Figure 4) as it moves toward our observation point. At time tQ, 

the signals at elements one and two are identical and we assume 

they are both at their maximum, A (see Figure 5a). As the wave, 

or signal, from element one starts toward the observation point, 

the field at element two continues to vary at the generator rate, 

Figure 5b. Assuming the medium between the elements is free 

space, then, at time t2 (Figure 5c) when the radiated signal 

from element one has traveled the one half wavelength distance 

to element two, the current from the generator has moved through 

one half cycle and the signal at antenna 2 now has value -A. 

From this point on out to the observation point, the two signals 

travel together and again the total field is their sum. Hence, 

the field at any point outside the area between the elements and 

along the (J> = 180° line is: 

ETOTAL = e1 + E2' 

= A + (-A) , 

= 0. 

From symmetry the field along the <p = 270° line is equal 

to the field along the <{> = 90° line? likewise, the ¢ = 0° line 

equals the <{> = 180° line. We now have obtained the beginnings 
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Fig* 5b.—Field amplitudes 
1 has moved to position of arrow; 
to change. 

at t^. Signal from antenna 
antenna 2's field continues 

Fig. 5c. —Field 
has reached antenna 2. 

amplitude at t2» Signal from antenna 1 
Amplitudes are equal and opposite. 
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of the pattern we wanted, or at least we have a null at the 

¢=0° and 180° points. To complete this analysis, we examine 

the field at some point C between ¢) = 90° and 180°, say 135°. 

An examination of Figure 4 shows that the signals now won't 

actually travel the same distance as in the first case nor 

intercept the other radiating element as in the second case. 

To analyze this situation, it is convenient to make 

the simplifying assumption that since the observation point 

is a large distance (in terms of wavelengths) from the center 

of the two elements, then the signals from the elements travel 

in essentially parallel paths to the observation point (much 

like light from a distant star to different points on the earth) . 

See Appendix I for a discussion of the error involved in this 

assumption. Since the E fields add, what we need to find is 

the difference between the fields at the observation point. 

As was shown in the analysis of the <Jj = 180° line, the differ¬ 

ence between the fields is due only to the distance the signals 

must travel to reach the observation point. The parallel path 

assumption we made now enables this difference to be easily 

calculated using simple trigonometry. 

In Figure 6 you see the paths the signals travel from 

each antenna. Since we assume that we are dealing with plane 

waves, we can draw a line perpendicular to the signal path of 

element 1. When this line, which represents a line of equal 

phase, reaches element two then the signals from that point 

on travel the same distance. Therefore, it is the distance 

signal one travels further than signal two which determines 
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Fig. 6.—Additional distance antenna I's signal travels 



the total strength of the field at the observation point. We 

know the distance between elements one and two (½ wavelength); 

we also know the angle ¢) between the center of the array (the 

two elements) and the observation point. Due to the parallel 

lines this is the same angle for the radiated signals. There¬ 

fore, the distance differential (d) we seek is: 

d = distance differential (3) 

= distance between elements x cos (180-())) 

= -(distance between elements x cos ¢). 

If we use the distance between elements in wavelengths, then we 

will obtain our distance differential in wavelengths. 

From physics we know that one wavelength in space is the 

distance the wave travels in one complete time cycle of the gen¬ 

erator. Therefore, if we know the distance in wavelengths, we 

can easily compute our position in the generator cycle and hence 

can know the amplitude of the current at that point. Then we 

know the amplitude of the field and can add the two together. 

At <)) = 135° the distance differential is: 

d = \/2 (-cos 135) 

d = .35X. 

So the distance through the cycle is .35 cycles. 

We assumed the generator started on a maximum; so from 

Figure 7 the value of the amplitude is: 

E2 = -.59A, 

IetotalI = A + <--59A) 
= .41A. 

TOTAL 
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From the preceeding discussion, I think it is evident 

that the field will increase from 0 at <|> = 0° to a maximum of 

2A at <f> = 90° and return to 0 at (() = 180°. The process will 

repeat for the range from (J> = 180° to ¢) = 360°. Thus by placing 

two dipoles one half wavelength apart and feeding them in phase 

we have obtained the pattern we wanted without adding any ex¬ 

ternal modifications such as reflectors. 

Let's stop for just a moment to consider what we have 

seen. By placing two antennas a ½ wavelength apart and feeding 

them in phase, we have caused a significant modification of the 

antenna pattern of the individual elements to occur. We saw 

that this modification occurred due to the addition of the 

radiated fields of the elements. We found that the difference 

in the field strength of each element was caused by the extra 

distance the wave had to travel to arrive at the same final 

position. Note also that the extra distance traveled is due 

to the location of one element relative to the other. 

With this in mind, we examine the result of varying the 

spacing between the elements. We will change this distance by 

moving the elements along the ¢=00 and 180° line. First, 

any movement of the elements along this line will not change 

the fact that a point on the <J> = 90° line from the center of 

the array is still equidistant from both antennas and hence, 

the fields there will always be in phase (arrive at same time) 

and yield twice the field of either element at that distance. 

If we examine the field along the <f> = 180° line we will 

note an important result of varying the element spacing. At h 
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wavelength the fields were 180° out of phase and cancelled, but 

at either smaller or larger spacing, the fields won't completely 

cancel and hence, we no longer have a null on this bearing. 

Figure 8 shows the total field at element 2 due to element 1 as 

a function of spacing. The first thing to notice from the 

figure is that the field is periodic of period one wavelength; 

also there is only one point within a one wavelength spacing 

where the fields go co zero. My choice of % wavelength spacing 

for the initial example should now be clear. Another result of 

using the A/2 spacing is apparent if you examine equation (3) 

derived earlier; for convenience let: 

s = distance between elements in wavelengths 

then (2) d = -(S cos ¢) 0° <_ ip < 360° 

Therefore with 5=½ 

l 
0 

90 
180 
270 
360 

-¾ 
0 

0 
-½ (5) 

Using Figure 7 you will note that the amplitude of the 

field of one element at the other varies from: 

d 

-½ 
0 
½ 
0 

-½ 

amplitude 

-1 
1 

-1 
1 

-1 

Multiplying these values times E and adding them to the 

field of the other antenna yields the original pattern. Now if 

' '__ • 
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we make the spacing smaller, equation (2) shows that |d| will 

stay less than À/2. This will yield a pattern that has the same 

maximum at (J) = 90° and 270° but never reaches a complete null 

at <j> = 0° and 180° (Figure 9) . 

If we make the spacing greater than A/2, equation (2) now 

shows that d will vary through a total distance greater than one 

wavelength. From Figure 7 you can see that the value of the 

field amplitude of the antenna at the observation point (rela¬ 

tive to the amplitude of the field due to the other antenna) 

will vary from some number greater than -1 through -1 to 1 to -1 

and on to the starting point and then back. To see this effect 

let’s choose a separation of one wavelength. Using equation (3) 

and Figure 7 the following results are obtained; 

£ d amplitude 

0 
45 
60 
90 

120 
135 
180 
225 
240 
270 
300 
315 
360 

-1 
-.707 
-.5 
0 
.5 
.707 
1 
.707 
.5 
0 

-.5 
-.707 
-1 

Again assuming the field from one antenna is constant at 

1 everywhere and adding the field obtained above, we obtain the 

pattern plotted in Figure 10. We still have the field maximums 

located at 90° and 270°, but we also have added maximums at 0° 

and 180°. The beams at 90° and 270° are called the main beam 

. M'MiB 1 
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Fig. 9, -Pattern of a two element array with less 
than ¼ wavelength separation. 
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of the array because they are always there regardless of spacing, 

and the other beam is called a grating lobe. Normally the grating 

lobe is not desired since it reduces the radiated power in the 

direction of the main beam. If we continue to increase the in¬ 

terelement spacing, we will continue to add more grating lobes 

until, in the limit of infinite spacing, we obtain an infinite 

number of grating lobes——the original single element pattern. 

Multi Element Array 

When actual arrays are constructed they normally use 

many more than the two elements we have examined. However, the 

principles we have developed are still applicable; they are just 

applied to more elements. For illustration, let's examine a co- 

linear four element array. To remain consistent, I will restrict 

the current to each element to be in phase and set the inter¬ 

element spacing to be .75 wavelengths (see Figure 11). I have 

already demonstrated that the far field pattern is nothing more 

than the summation of the individual element patterns at any 

given point. Therefore, to find the pattern of this array we 

need do nothing more than determine a way of adding all the 

element patterns. Looking along the ¢1 = 90° line we see that as 

before the patterns all add in phase, giving us a maximum E field 

strength of 4 times the strength of one antenna. Along the 0 = 

180° line let's examine the total field at antenna 4 to find the 

field radiated from the array. Let the field due to antenna four 

be a maximum of amplitude A. The field due to antenna 3 has 

traveled .75 A; so, from Figure 7 it has amplitude 0. Likewise, 
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# 4 

# 3 

,p* 
TT 2 

.75X1 
i I 
-* ? 1 

I 
¢ = 0° 

Fig. 11.—Arrangement of a four element array 
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antenna 2*s signal travels 1.5 A for an amplitude of -A and 

antenna I's signal goes 2.25 A for an amplitude of 0. This 

yields a total radiated strength of: 

ET = E1 + E2 + E3 + E4 = A & + 0 - 1 + 0] , 

et = 

which indicates a total null at this point. Examine now the 

4> = 120° direction. Assuming again that the amplitude from 

antenna 4 is at a maximum of A then antenna 3*5 signal travels 

-d cos (p wavelength furtherr antenna 2's -2d cos ¢, antenna I's 

-3d cos ¢. Using Figure 7 this yields a total field of: 

Et = A Q-. 7 + 0 + .7 + 1] 

Et = A. 

Repeating this same process for a number of angles of ¢, I ob¬ 

tained the values listed below; their plot is found in Figure 

12. 

4) Vs E2/A E3/A e4/a |et/a| 

0 0 -1 
10 .21 -.99 
20 .75 -.84 
30 .95 -.30 
40 -.17 .59 
50 -.94 .97 
60 .71 0 
70 .12 -1 
80 -.77 .07 
90 1 1 

100 -.77 .07 
110 .12 -1.0 
120 .71 0 
130 -.94 .97 
140 -.17 .59 
150 .95 -.30 
160 .75 -.84 
170 .21 -.99 
180 0 -1 

0 10 
-.07 1 .15 
-.28 1 .63 
-.59 1 1.06 
-.89 1 .53 
-.99 1 .04 
-.71 1 1 
-.04 1 .08 
.68 1 .98 
114 
.68 1 .98 

-.04 1 .08 
-.71 1 1 
-.99 1 .04 
-.89 1 .53 
-.59 1 1.06 
-.28 1 .63 
-.07 1 .15 
0 10 

H=. 

Í 
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Fig. 12.—Radiation pattern of a four element array 
with 3/4 wavelength spacing. 
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The first thing that is apparent from Figure 12 is the symmetry. 

If we examine the range of <p from 0° to 180°, it is identical 

to the 180o-360° range. Therefore, let’s examine the 0o-180° 

range. You will note that the largest or main lobe appears at 

the (j) = 90 position as it has done in both previous examples. 

This main beam is always broadside to the array and hence, this 

array is known as a broadside array. In addition to the main 

beam there are now smaller beams. These are known as the side- 

lobes and appear as local maximums between the nulls. In the case 

of the 4 element array both side lobes are the same magnitude. 

With larger arrays this is not generally the case. Unlike the 

example with one wavelength spacing this array produced no grat¬ 

ing lobe. However, if we increased the interelement spacing 

sufficiently, in this case to one wavelength, then instead of 

the pattern in Figure 12, the side lobes would be closer together 

and a grating lobe would appear at (j) = 0° and 180°. The pattern 

realized with this one wavelength spacing is shown in Figure 13. 

It was obtained as in the other examples, and the interested 

reader is urged to apply these methods to produce it. 

As a result of the proceeding discussion, I believe we 

are now in a position to make a few general statements regarding 

antenna arrays. First, regardless of the number of antennas 

involved, the far field pattern is nothing more than a summation 

of the fields of the individual elements. Second, by feeding all 

the elements with in phase current the main beam always forms 

broadside to the array. The fact that the element currents are 

uniform in amplitude and differ at most by a phase constant has 

ÉÍ|ft:il 
- - ; ■'''..'•-'i -:, T-Ä;- 
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Fig. 13.— Radiation pattern of a four element array 

with one wavelength separation. 
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resulted in this type of array being called a uniform array.3 

Third, the addition of more elements spaced equidistant results 

in not only a narrower main lobe but the appearance of side lobes. 
T 
j 

Finallyf varying the interelement spacing results in the changing 

of the side lobe position, of the beamwidth of the main beam, 

and, if the spacing is large enough, in the appearance of grating 

lobes . 

Array Mathematics 

It should be obvious by now that the method we have chosen 

for determining the far field pattern of our arrays is extremely 

cumbersome. Therefore, let us see if we can deduce a mathematical 

expression that will provide the desired informatior,. We know 

that the E field in the far zone of a short dipole antenna ori¬ 

ented along the Z axis is given by: 

Ee ' 1¾ e-jkR sin 9 kav (4) 

If we assume a small antenna of length H with a uniform 

current distribution thens 

■H/2 

and 

jj-dv = J: J-dv = JI-dl = IH, 

V -H/2 

E = JiSMS e"jkR sin 0 
6 4ïïR e Sln 0 (5) 

where: k = 

n = intrinsic impedance of the medium 

R = distance from element. 

This, then, is the field from each of our array elements. 

However, you will recall that the variation in the pattern was 

'ïfi; -ïr® 
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due to the different distance each ray had to travel to arrive 

at the same point. We already determined the difference between 

each element as d cos ¢. Therefore, if we are computing the 

distance R from an element, we can represent it as: 

R = r - d cos $ (6) 

where r = distance to point from reference 

d = total spacing between reference and the 
element which we are concerned with 

This then allows us to write the field for an array ele¬ 

ment as: 

E = jknIH sin e e“3k&-d cos ¢1 
4ttR 

. , -jkr ejk d cos * = jknIH Sin 0 e J -^- (7) 

The R in the denominator is an attenuation factor rather 

than a phase factor as was R in the numerator. As a result the 

difference in distance for attenuation is negligible and so we 

make the approximation: 

R = r, 

which allows the field to be represented by: 

+jk d cos (j) . 
E = jknIH sin 8 —- e ^ (8) 

[ 

From our example with 4 antennas all spaced the same dis- 
I 

tance apart we wrote the expression for the difference in distance 

traveled as -Id cos (() for the second antenna, -2d cos (() for the 

third, and -3d cos for the fourth. This process would continue 

indefinitely leading to the general conclusion that each field 

referenced to the first antenna could be shown to travel 

: ' i 
ï 

' f. 

’ ! 
.,. - " ■' : , , . •. v ; • ' ‘ .. . . • . • i 
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-(n-l)d cos In an n element array, therefore, we could write 

an expression for the total radiated field taking the first 

antenna for a reference with d = 0 as: 

ETOTAL e jkr sin 0[i+e+jkd cos ^+e+j2kd cos <J>+. . .+e+j (n-l)kd cos <0 

(9) 

For ease of explanation let me make the following substitutions: 

(10) 
E = jknIHe-jkr 
o 4ïïr 

'I' = kd cos <j> 

Then we can rewrite the expression as: 

(11) 

TOTAL ~ Eo sin e Cl + + e+j2^ +...-+ e+j(n-l)^ 

To avoid having to deal with negative fields 

tion: 

(12) 

we can use the rela- 

Power = |e|2 

Resistance 

/P = [_Ej 

/Resistance 

and deal only with the magnitude of the total E field. 

(13) 

(14) 

Therefore 

ETOTAL “ Eo sin 0 I1 + + e+j2* +•••.+ e+3(n-l)i^ (15) 

The discerning reader will immediately recognize this as a geo¬ 

metric series. For those not so fortunate, this type of series 

4 as discussed in most advanced calculus books.4 The end result 

is that this series can be written as: 

•• C' ! - .-.7 ¡¿■rr':' ^ . -— 

■ 'M 

•.v 

• • ; 
- / :■ 
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EÎ0TAL = Eo sin 0 
1 - 

+j^ 
(16) 

1 - e 

and with a little manipulation (see Appendix II) this yields 

ET0TAL Eo Sln 0 
sm 

sin f 

(17) 

Examining this expression shows that we have the original 

field or pattern of a single element, E sin 6, multiplied by a 

factor sm 

sm 

which came about solely as a result of the spacing 

between the elements or, more simply, the geometry of the array. 

The first term is known as the element pattern and the second as 

the array factor. 

The development of this array factor makes it much simpler 

to compute the radiation pattern of the array than did our orig¬ 

inal approach. Whenever the denominator goes to zero, i.e., ÿ = 

0, 27T, 4tt •••, the numerator will also be zero leading to a value 

of n. This corresponds to the main beam and grating lobes of 

the array. In between these points the numerator can reach zero 

while the denominator has some value, leading to a value zero for 

the field which is equivalent to a null. For example if n = 4 

and ÿ = tt/2 then the numerator equals zero and the denominator 

is sin ïï/4. 

All that remains now to solve for the angles of ¢) that 

yield the maximum and the nulls is to determine the particular 

value of ÿ that is required, and then solve for <J>. As an exam¬ 

ple, let's look at our four element array with interelement 

spacing of 3À/4. 

iSilifelii 
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etotal a 

sin 

sin 

sin 2\p 

. tí) 
sin J- 

(18) 

1) The maximum occurs at ip = 0, ± 2tí, ± 4tt 

2) Nulls occur at sin 2ÿ = 0 

2\p = Mr n = ± 1, ± 2, ± 3, • 

utt ip = 

3) Solve for <fi ^ = kd cos 

- 2ïï 3À 
- — • — GOS $ 

= — TT COS (p 

(J> = COS 
-1 21 

37T 

In 1 and 2 it is apparent that an infinite number of maxi¬ 

mums and nulls occur. However, since 4> can only range from 0° to 

.o 
360 this places a bound on the number of maximums and nulls in 

this range. In fact, the arrays are symmetrical about the (p = 0°, 

180° plane so all that is necessary xs to compute <J> within this 

o 
180 range. 

4) Locate main beam: ¢=0 

<}> = cos 

o 

-1 2-0 
3 71 

90 

Look for grating lobes: ¢ = 1 277, ± 4tt, 

a - _„-l j. 2 *277 tp = COS + - 
377 

-1 4 
$ = COS ± —77 

No real angle (f> can have a cosine greater than 1, therefore, 

there are no grating lobes. 

5) Locate nulls: ¢ = + tt/2, ± 77, ± . 

A __-1 2*77/2 
¢, = cos --— 

1 3 77 
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íj) j 

tz 

*3 

<¡>3 

<¡>4 

¢4 

70.5° 

COS ^ 

48.2° 

cos~^ 

0 

2 » Tf 
3 TF 

COS 
-1 2-2ÏÏ 

3 TF 

not defined 

Using negative n yields ip = -tf/2, -tf, -ll, 

= 109.5° 

¢.2 = 131.8° 

¢^3 = 180° 

resulting in: 

Returning to our previous calculation for this array you 

will note that the results agree and the method is much simpler. 

Another advantage in using this form is the rapidity with 

which you can determine the existence of a grating lobe. To 

accomplish this merely substitute the interelement spacing you 

wish to use and compute tp for the complete range of ¢. If tp 

never reaches 2n, then no complete grating lobe exists. In the 

lexicon of the array people, the range of iji that exists when <p 

is rotated through 360° is called the visible range of the array. 

We have now done a reasonably good job of emulating a 

reflector type antenna except for its ability to turn the reflec¬ 

tor and move its beam. Obviously, it is impractical to move our 

array in order to move the beam. Therefore, let's examine the 

means of obtaining the pattern to see if some practical means of 

moving the beam can be found. 
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The Phased Array 

In the broadside array developed earlier, we found that 

the main beam formed when the fields of all the antennas added 

in phase. At all other points this addition continued to take 

place but the fields were no longer in phase; consequently the 

total pattern strength declined. It seems reasonable then to 

conclude that we must find a means of obtaining this in phase 

addition at some point other than (ji = 90°. 

The reason we had this in phase addition was due to the 

signals leaving the antennas in phase and traveling the same 

distance to the observation point. If we move the observation 

point in the ¢() direction we change the distance that the in¬ 

dividual signals must travel. For our argument, however, let's 

assume that we have our familiar two element array with ¼ wave¬ 

length spacing, that we are at an observation point on the <f> = 

30° line, and that the signals have arrived in phase. Next, 

let's return along the paths the signals traveled and determine 

what they must have looked like when they left the antenna. 

The first signal, we will assume, traveled an integral 

number of wavelengths and we will use it for a reference. The 

second signal is in phase with the first, but it traveled an 

integral number of wavelengths plus d cos <(> further. From our 

assumed array geometry this means the second signal traveled 

d cos = X/2 cos 30° = .43À 

further than the reference. To arrive in phase with the first 

it must have reached its maximum .431 ahead of the reference. 

ÄIÖ1 if mm 
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Therefore, its current generator must be ahead of the reference 

generator by .43X which translates to a phase lead of 154.8°. 

Consequently, if we run the generator of the second antenna 

154.8 ahead of the reference antenna then the radiated fields 

will add in phase at <J) = 30°. 

Changes in the beam direction, therefore, are accomplished 

by merely varying the relative phasing of the feed currents be¬ 

tween elements. For illustrative purposes let's return to the 

four element array with .75 wavelength spacing. Initially we 

said the only difference between the individual radiated signals 

was the added distance they traveled. Now we must also take 

into account the phase difference. As I have just shown this 

phase difference translates to a spacing along a signal path so 

it has the same dimension as the kd cos <p and hence, can be added 

directly to it. Therefore, we can represent the difference in 

signals by: 

kd cos <f) + a (19) 

where a is the phase difference. The current in any antenna 

relative to the adjacent antennas can be represented by: 

I = A e 
la 

(20) 

where: A = The magnitude of the feed current 

a = Progressive phase change between elements 

The radiated field of each element is then 

E = jknIHe~jkR = jknAHe~jkReja 
4ttR Tïïr sin 0 (21) 
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The total radiated field of all elements is: 

JTOTAL 
jkr|AHe~-^r 

Tirr- sin 8 ! + e+jkd cos e+j2kd cos tei2“ 

+ e+j3kd cos <p ej3a 
(22) 

We have a, 2a, and 3a because a represents the phase shift between 

each element and is therefore na away from the reference. Making 

the same type of substitution we did earlier we can represent the 

total field by: 

E 
TOTAL E 

_ jknAHe -jkr 

sin 0 [l + e+j* + e+j2* + e+j3*] (23) 

ip = 

4irr 

kd cos ij) + a 

or 

E 
TOTAL Eq sin 0 

sin Si 

sin 

Using a progressive phase shift a of - 60° yields 

(24) 

2ïï t ™o 
T- ’ ~T~ cos 4 - 60 

¢, = cos"1 2.(-*+60O) = 
3ïï cos '1 Í 1))+60°) 

l 270^1 

From the equation for ET0TAL we see that the value of ip 

for nulls, main beams, and grating lobes is still the same. 

Solving for <p yields: 

Main beam: ^ = 0 

^ = cos 127ÏÏ® 

4> = 77.2° 
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Grating Lobes: ijj = ± 2ïï, ± 4ïï r 

-1 36 Cü+60° 
270« ¢) = COS 

-1 ij) = cos 1.56 no grating lobe for + 2ïï 

-1 -360o+60° 
$ ~ COS 

270° 

-1 $ = cos -1.1 no grating lobe for - 27t 

Nulls 
3ïï 

ip = ± n/2, ± n, ± — ± 2n, 

(p = cos 
1 ±90O+60° 

2700 

<p = 56°, 96° 

COS 
-1 ±180O+60° 

2700 

<t> = 27°, 116° 

(p = COS 
-1 ±270O+60° 

2700 

<p = 141° for ¢ = - no real angle for ¢ = - 

4/ = ± 2tt does not yield a real angle 

The main beam is now located at ±77°, with nulls at ±27°, ±56°, 

±96°, ±116°, ±141° and as before no grating lobe. This pattern 

is plotted in Figure 14. The values of the side lobes for this 

plot were estimated by picking the value of <)> halfway between two 

adjacent nulls. This is not totally accurate but yields a close 

approximation. Comparing Figure 14 with Figure 12 you will see 

that the main lobe has shifted about 13° and the beginning of a 

grating lobe is apparent at ItfO . 

Since the symmetry is about the 4» = 0°, 180° plane (due 

to the cos (() dependence in ¢) both the main beam and the back 

lobe are approaching each other. You may question what will 

'~'vv~"v:7r-' .. •" 

; ;. & t ? v ..V _• -f . 



Fig. 14.—Radiation pattern of a four element array 
with 3/4 wavelength separation and a progressive phase shift 
a of -60°. 
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occur when they overlap. As is apparent, this will occur when 

the main beam is pointing off the end of the array along the 

¢-0 direction. To obtain this we require \p to be zero when 

¢=0°. Putting these values into the 4 element array and solv- 

ing for a yields: 

ÿ = kd cos <|) + a 

a = ijj - kd cos ¢ 

a = 0 - kd cos (0) 

a = -kd 

If a = +kd then the main beam forms along the ¢ = 180° line. 

Figure 15 shows the pattern of the array with a = -270°. As 

predicted the main beam now appears along the line of the array 

or off the end. This firing off the end has led to the name of 

"End-Fire" for this configuration. You will note now the 

presence of grating lobes at ± 109°. Comparing Figure 15 with 

Figure 14 you will see that the total grating lobe has appeared 

without any change in the element spacing. Suppose we wished to 

suppress the grating lobes while still maintaining the end fire 

array. Examination of t|> showed that the end fire case required 

the phasing angle to equal (± kd). Some minor manipulation 

yields: 

^ = kd (cos ¢-1) (25) 

The grating lobe occurs when the denominator of the array factor 

equals zero. 
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j.. o/T19' • Radiation pattern of a four element array 

of -270°.W eng seParation a progressive phase shif 
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kd (cos ¢-1) = n2ïï (1st grating lobe n = 1) 

kd = -■ 
COS ¢-1 

cos ¢-1 

If we do not want a grating lobe then set ¢ = 180° and solve for d 

2 

Using the same procedure on the broadside array yields a maximum 

spacing without a grating lobe of : 

Id| < 1A 

What is immediately obvious is that the maximum spacing 

required for a no grating lobe condition is less for the end fire 

than the broadside case. As long as we are dealing with fixed 

beam arrays this really presents no problem since we would attempt 

to build it as close to broadside as possible. However, as you 

have probably deduced, what we have actually developed is a basis 

for sweeping the beam. If we could devise a way for varying the 

phase of the driving currents, then we could move the beam to 

any point we so desired. The excursion of our beam would then 

be the important point in determining the interelement spacing. 

A discussion of the means of changing the phase and hence, the 

beam location is beyond the scope of this paper. The process, 

though, is not a limiting factor and can be accomplished by 

simply using a series of delay lines between the generator and 

each element. This would not provide a continuously variable 

it! 



beam but would allow a discrete set of beam locations. Never¬ 

theless f we have succeeded in synthesizing the rotating radar 

reflector antenna by an array of stationary antennas. 

Let's pause here for a moment and consider what we have 

developed. From the proceeding discussion you should now have 

a rather thorough understanding of the physics of phased array 

radars. You have seen the development of the interaction of the 

radiated fields that is the direct causal factor in the beam 

formation. You have seen the development of the underlying 

theory that allows the beam to be electronically scanned to any 

direction off the array. You have seen the effect on the array 

of adding elements and varying the element spacing. You have 

learned the meaning of side lobe, visible region, broadside and 

endfire array. What you have not, however, been exposed to is 

a much larger body of information. When arrays are considered, 

seldom will you find yourself dealing with only one dimension. 

We have not considered beam broadening as the array is scanned. 

You must also learn the process of pattern multiplication, a 

useful tool for designing arrays. We have only examined a co- 

linear array of short dipoles while the real world concerns it¬ 

self with arrays of slots, horns, spirals and every imaginable 

type of antenna arranged in an almost infinite number of geom¬ 

etries. My purpose, however, is not to scare you away from the 

subject but hopefully to whet your appetite so that you will 

pursue these challenging areas. I believe that if you understand 

the basics I presented, you can attack these other areas with the 

ÍÍPr:^57::>r 
m-'iM 



confidence that comes from knowing that all they represent are 

applications of this basic theory. 

You are probably now asking, "Why, if these phased arrays 

are so great, do I continue to see rotatable fixed beam antennas?" 

Unfortunately, as you have probably guessed, the simple explana¬ 

tions that I have provided are pure theory and have not addressed 

the practical problems that do exist. Although the problems that 

do exist are basically the same ones that apply to any antenna, 

there is one that merits special attention because it is found 

only in arrays. 



THE BLIND ANGLE 

When an array beam is swept across the entire array, i.e. 

from <j> = 0° to 180°r we find that as the beam approaches certain 

angles, called blind angles, it goes through sharp reductions in 

radiated power. After the particular angle is passed the beam 

just as suddenly re-appears or regains its expected level. 

In order to explain this phenomenon we must develop a 

reason for its occurrence and then examine it. I believe that 

the explanations can be reduced to two very general ones: 

a) the power is being stored and not radiated 

b) the power is being reflected and not radiated 

In case (a) if the power is being stored then we must in¬ 

vent an infinite means of storage. This arises from the fact 

that in none of the literature I have examined has a case of a 

beam forming after a finite period of time been found or even 

proposed. Therefore, if the power is being stored, the storage 

medium must have an infinite capacity. While I have found noth¬ 

ing to disprove this idea I don*t believe it offers any real 

understanding of the problem. Consequently, let us look at case 

b. 

This reason is attractive because it permits a very wide 

latitude in our explanations. It requires rly that some means 

of producing a mismatch between the feed and the antenna or 
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between the antenna and the surrounding medium be developed. 

From the theory we developed earlier a means of developing this 

mismatch is not available. Once we leave this theoretical realm 

and examine the real array we find a non-predicted development. 

Let’s take an infinite array and terminate each elemeni. n a 

matched load so that no reflections can occur. Then connect a 

generator across the center element in place of the load and 

measure the radiation pattern. From our earlier theory we would 

expect to find the pattern to be identical with the pattern of 

the single element? in the case of a short dipole# a sin 0 vari¬ 

ation with 4) symmetry. However, actual measured results show 

that this is not the case. r What is obtained is a pattern 

with definite variations of the field in the <j) plane (Figure 

16). The only modification that we have made to the element is 

to include it in proximity to other elements. By terminating 

these other elements in matched loads we expect no reflections 

to occur. Thus, how do we explain this obvious interaction? A 

term in common usage to explain this is "mutual coupling." 

Mutual Coupling 

This concept shouldn’t be new to you. When you were study¬ 

ing circuits you encountered a coupling concept in treating induc¬ 

tors. There was no physical connection between two coils but they 

did display a definite effect from each other. When we consider 

coupling between antenna elements we may or may not be discussing 

the same exact phenomena, but we do find a definite interaction 

between two physically unconnected elements. Carter8 in 1932 

__ 
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Fig. 16.—Element radiation pattern showing blind angles 



obtained a measurement of this coupling through a mathematical 

process known as the induced emf method. He published his re¬ 

sults in the form of an impedance that was dependent on the ele¬ 

ments, their spacing and their geometry. In the intervening 

years others have made additions to Carter's results by consider- 

9 
ing more complicated geometries. 

In order to demonstrate the effect that this mutual im¬ 

pedance can cause, I considered the case of an array of two short 

dipolGS With the geometry shown in Figure 17. Then using the 

,, 10 equivalent circuit of Figure 18 and results obtained from Jasik 

the following equations for the load impedance ZT . of each cir- 
L1 

cuit were obtained. 

I 

1 ZL1 = Z11 + S Z12 

'l2 = Z 22 
+ îiZ 

21 (26) 

Where : 

Zll' Z22 = self impedance of the antenna element 

Z12f Z21 = mutliai impedance between elements 1 and 2 

^l' *2 =: curreni:; flowing in the individual circuits 

Since the antenna elements are identical 

Z11 Z22 

By reciprocity: 

Z12 - Z21 

elements 
This procedure is general and could be extended to n 

...TrT'^;ríTT■-nr• ‘>■ ’i 
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[J Fig. 17.—Geometry of dipoles for impedance calculation 
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I used half wave dipoles with a self impedance of 72 ohms 

and assumed the circuits were matched to their generator with 

ohms. To phase the array I held one generator fixed and 

varied the phasing of the second. Figure 19 shows the impedance 

of one of the elements as seen from the generator as a function 

of scan angle. Various curves are for different element spacings. 

I have also plotted the impedance that would be seen if there were 

no mutual coupling. It is apparent from this plot that the effect 

that mutual coupling has on the input impedance is considerable, 

and the fact that the majority of work on the blind angles con¬ 

siders mutual coupling to be the root cause of them is readily 

understood. 

Of course, stating that mutual coupling is the rodt cause 

of blind angles is one thing? showing a physical relationship be¬ 

tween them is an entirely different matter. However, what I 

have demonstrated so far should make it conceivable that a pro¬ 

cess does exist that changes the parameters of the system. And 

if we can change the parameters sufficiently, then we may be 

able to develop enough mis—match inside the system to cause a 

reflection coefficient approaching unity and consequently, a 

major reduction in the transmitted energy. 

Surface Wave Theory 

Though there have been many theories advanced as to the 

exact nature of the blind angle, there appear to be only two 

* 
Only the result for one element is shown since the other 

element is identical and the results are the same, however, they 
are shifted in phase and reversed. 
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»ajor areas of i„quiry that of£er , Qf 

the surface wave and the modal theories. The surface wave 

concept is linked very closely with attempts to explain a means 

of mutual coupling and a reading of the available literature 

tends to indicate that this theory developed from attempts to 

explain that phenomenon. The concept and behavior of the sur¬ 

face wave is explained in considerable detail in many books and 

articles, see for example Waldron11 and Barlow.12 For our pur¬ 

poses, however, this type of wave is one which has an imaginary 

propagation constant along a surface, leading to propagation and 

a real propagation constant normal to the surface which demands 

attenuation from any component leaving the surface. These waves 

generally form at an interface between two dissimilar materials 

With different permitivity constants. They are especially ap¬ 

parent when a dielectric sheet is sandwiched between a perfect 

electric conductor and free space. The basic explanation using 

these waves is that the elements of the array cause a modifica¬ 

tion in the immediate surrounding medium. This modification takes 

the form of a changed refractive index which allows the existence 

of a surface wave. Bates13 was one of the first to use the sur¬ 

face wave as an explanation. He assumed that the aforementioned 

condition existed to support the wave. These same conditions 

caused the apparent spacing of the elements to increase. This 

occurs because the velocity of the wave decreases in the modified 

region leading to a decrease in wavelength. This increased spac¬ 

ing can cause a grating lobe to move into the visible region 

lV ■ ■ ; ' 
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within the modified space. Since this grating lobe does not 

exist in free space, then the power in the grating lobe does 

not reach the free space region but is trapped along the array 

surface. Bates expected these grating lobes to coincide with 

the blind angles in the array. This idea became known as the 

"internal grating lobe." 

Alien‘d also used the surface wave theory. However, he 

assumed that the elements of the array, in addition to being 

responsible for the modified environment, would both scatter 

and absorb energy from the surface wave. This interference 

would not be $ independent and hence would lead to preferred 

directions for the wave. Since this argument was applicable 

to each column in the array (assuming that the progressive phase 

shift exists for columns), there would be an accumulation of these 

effects. He called this effect coupling and assumed the accumu¬ 

lation would be significant along certain directions which cor¬ 

responded to the blind angle. 

15 
A. Oliner developed an important theory which I'll 

examine later but as a consequence he showed that the surface 

wave could only exist at those angles known as the blind angle. 

This, of course, has important ramifications for the entire sur¬ 

face wave theory. Both the surface wave and the blind angle 

occur simultaneously, negating a cause and effect relationship 

and implying the existence of some unknown causal factor. 

Shortly after Oliner1s work Lawrence Lechtreck, in an 

attempt to explain these angles, did some research on the 

N"’ • •••r--:: .i, . . • -.- V " 
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coupling between the elements. He theorized that the mutual 

coupling took place as a wave phenomena. To support this 

hypothesis he devised experiments in which he measured the 

coupling intensity and phase delay as a function of element 

spacing. His results support a uniform slow wave hypothesis 

for coupling. He suggests on the basis of his research a 

reason for the blind angle which is very similar to that pro¬ 

posed earlier by Allen. Briefly, he expresses a reflection 

coefficient for the array as a function of the coupling. He 

then demonstrates that the coupling adds out of phase and stays 

very small except at those particular angles where the blind 

angle exists. In those particular directions the coupling adds 

in phase and becomes significant-leading to a large reflection 

coefficient. An important point to Lechtreck's theory is that 

it appeared after Oliner and even while using some of his 

material, Lechtreck's research tends to indicate that the sur¬ 

face wave is always present in some degree, contrary to Oliner's 

hypothesis. 

About a year later Oliner in collaboration with George 

Knittel and Alexander Hessel16 published a paper in which they 

again examined the surface wave. Their conclusion was that the 

surface wave could only exist at the blind angle; the same con¬ 

clusion Oliner had reached earlier. This time, however, they 

claimed that in reality the surface wave didn't exist. In its 

place they hypothesized the existence of a leaky wave. They 

claimed to show that this -type of wave can exist at all times 

on the array surface and will cause the blind angle phenomena. 

.T.V’? __ .:_ i r~' im- i.- mu iartTiiiiirnf linn t-.í-ii*,; Vi-; 
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This latest theory not withstanding, Amitay et al., in 

1972 published a book in which they reverted back to a type of 

surface wave to explain the coupling. They reported the leaky 

wave idea without comment and even went so far as to state that 

the surface wave as normally used can not be a lossless wave 

and hence, contradicts the surface wave assumptions. They used 

a form of a surface wave which they referred to as a forced sur¬ 

face wave but as I'll show later they displayed some ambivalence 

toward these results. 

Modal Theory 

The second major area, the modal theory, attempts to show 

the blind angle as a result of various propagating and attenuat¬ 

ing modes. The existence of these various modes requires that 

different regions exist with different refractive indices. It 

is immediately evident that these are the same conditions re¬ 

quired for the surface wave. In fact, as you will see, some of 

the researchers in this area have also done work in the surface 

wave area. Basically, this theory predicts that certain wave 

modes will exist in the dielectric but be below cut-off in air. 

Hence, if an equivalent network is developed for this array the 

modes that fail to exist in air will cause short circuits across 

the network leading to reflection coefficients of unit magnitude. 

The basic work on this theory appears to have been done by 

A. Oliner and R. Malech. Their result is known as the "Ghost 

Mode Hypothesis ■' and I would like to present it in considerable 

detail since I believe it is a very important work. In this 
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report Oliner uses his unit cell techn-jue. A unit cell can be 

thought of as a waveguide centered on the racuator and extending 

indefinitely in the direction of radiation. Its walls are E 

and H fields and are derived from the symmetry of the array 

and its excitation. These walls do not perturb the field dis¬ 

tribution but are present because of field symmetries. Once the 

walls are present the field outside the unit cell may be com¬ 

pletely ignored, allowing an examination of the array by looking 

at only one element. Oliner uses an array of narrow slots fed 

by rectangular waveguides and covered with a thin dielectric 

layer. A unit cell in this structure is depicted in Figure 20. 

The basis for his idea is that a number of propagating modes 

will exist in the dielectric material but will become evanescent 

once they enter the surrounding region of free space . He derives 

on the basis of this assumption an equivalent network to repre¬ 

sent those that display this property. He uses an earlier deriva¬ 

tion in which he shows that input contributions from individual 

modes can be represented by impedances that add directly in ad¬ 

mittance form. In this particular hypothesis, Oliner designs 

a system in which only one propagating mode, the second order 

mode, meets the stated constraints. That is, the second order 

mode is the only mode that is present in the dielectric region 

and fails to exist in the free space region. This restriction 

allows him to represent the unit cell with the equivalent net¬ 

work of Figure 21. The two modes, first and second, are dis¬ 

played as parallel transraission lines due to developing the 

equivalent network as an admittance. B in the network 
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represents the susceptance of all higher order inodes and the 

transformer is a means of depicting the feed system. 

From simple transmission line relations, he develops 

the following equation for the normalized input admittance in 

the rectangular waveguide : 

B le 

2e 
j + 

j+ cot K1 d 
le 

_cot K^^d+j 

,^le, 

- 

V 
le 

V 

cot K2£d 

cot K2Ed+j 

V 
2e 

V, (27) 

V 
le 

and 
V 
2e 

V. 
are related to the transformer and can be ignored 

because they are well behaved. The term containing Y1 and 

corresponds to the first mode and also can be ignored since it 

exhibits no rapidly varying behavior. 

However, looking at the second mode some interesting occur¬ 

rences take place. Since by assumption propagation occurs in the 

dielectric, Y2£ and K2£ are real; Y2 is imaginary, however, be¬ 

cause the mode does not propagate in the free space region. There 

fore the factor 

j + 
2s 

cot K0 d 
2s 

cot K2ed + ^ 2e 

is purely imaginary. It offers no contribution to the active 

conductance. In fact, it must propagate in free space and 

. '1..1 .. 
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carry away real power before it; makes any contribution to the 

conductance . 

The susceptance, however, is affected. Oliner shows 

that the form of Y2 and Y2£ are dependent on the plane (E or 

H) of scan. He shows that they can be represented by: 

2e K 
2g 

oj e U) £ 

K K 

(28) 

(29) 

for E plane and 

ï2e - Ï2£ 
UH 

_ K2 
=-4=-: 

(30) 

(31) WU ~ OJU 

for H plane, where e1 is the relative dielectric constant of the 

layer. For the E plane scan the factor becomes: 

It K?e cot K2e 
.^WTj 

cot Kn d- 
2e 

f.. k2e ] 

íkítJ 
(32) 

You can see that it is possible for the denominator to g< 

to zero when 

K 
cot k« d = '2e 

2e K (33) 

When this occurs the numerator is finite, hence, the susceptance 

becomes infinite and the array plane becomes a short circuit. 
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Since the active reflection coefficient is related to the active 

admittance by : 

1- 

r = (34) 

1+ 

the reflection coefficient |r |2= 1. Hence we have a total re¬ 

flection of the wave, and an element null at the angle for which 

(33) is satisfied. By using the relationships 

k = k sin e (35) 

K 
mn k sin 0 + 

2ïï 

D xJ 
m (36) 

numbers 

this null angle as: 

K 
2c 

■-[si sin 9 - 
fell 

* 
(37) 

K 1L 
IT - sin 0 - 

fell 

-1 ¼ 
(38) 

His claim then is that this angle must be nearer to broadside 

than the angle corresponding to the onset of the grating lobe 

because is still imaginary for it. 

He goes on to show the same occurrences for the H plane 

with the added requirement that d, the thickness of the dielectric, 

must be larger than for the E plane scan« What he has demonstrated 

is the existance of a null in the array pattern prior to the onset 

of the grating lobe—a blind angle! 

•jt) i ^ -, •'! .i :r ’ H!-n , 
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And not only has he demonstrated its existence but he has pro¬ 

vided a means of prediction. I believe this particular work is 

of considerable importance because it, for the first time, offers 

some reasonable explanation as to what precisely is occurring. 

In Knittel's paper in which he proposed the leaky wave 

concept, he also examined the blind angle using this ghost-mode. 

He agreed that this was the proper format for explaining the 

phenomenon but he concluded that the original idea needed re¬ 

finements. He confined these modifications to studying higher 

order modes and changes in the susceptance they caused. He also 

more fully examined the entire range of the phasing and its 

effect on the equivalent circuit. The importance of this paper, 

however, is that it does support the original theory and extends 

it without any major modifications. This, of course, does not 

imply that the problem has been adequately explained. Quite the 

contrary, serious problems still continued to exist. The way 

the equivalent network was developed tends to indicate that the 

blind angle is directly proportional to the inter-element spac¬ 

ing, i.e., the closer the spacing the closer to broadside is the 

angle. This appears logical since the mutual impedance data 

published by Carter and others showed that the impedance, al¬ 

though oscillatory, increased in amplitude with the highest 

value located at the closest spacing. In practice, however, the 

blind angle reaches a minimum separation from broadside and 

closer element spacing moves it out.14 Wasylkiwskyj17 confirmed 

that the overall coupling (not impedance) in the array peaked at 

some inter-element spacing and then decreased with a further 



63 

decrease in spacing. Unfortunately^ this fact did not seem 

apparent or even implied in the two theories. 

An examination of these theories shows that they are 

both related to solving the boundary value problem at the in¬ 

terface of the array and the surrounding medium—i.e., matching 

the modes on both sides. The two authors have both assumed the 

existence of a single mode in the feed line. Amitay, et al., 

demonstrated that this use of a single mode was undependable. 

He showed that the problem could be more accurately made to 

conform with empirical data by incorporating more modes. For 

his publication he studied up to eighteen modes for the feed 

and instead of producing an equivalent network he solved the 

boundary value problem with integral equations. 

18 
Later, Louis Stark published a paper in which he re¬ 

ported that he could predict the location of the blind angle 

and also show that it did not continue to move toward broad¬ 

side monotonically as the spacing decreased. The developed 

equation is shown here and the physical geometry of the array 

is shown in Figure 22. 

i+r n 
i-r i 

(39) 

where 

m=-C0 „=-00 kYin,n 



i 
i: 
* 
ï' 

I, 
< 
¥; 

a 
•i 

i i 
7 
4 

; ¿ 
Y 

¿ 

l 
t 

2 

4 

I 

' 

ir 

'Hi' 

f»- 
ii:t 

Stark's 
Fig. 22.—Geometry of array used to develop 
equations. 

mr-rr- 
n«;. > 't- Tr»! 

; -W. 

v_" : H r • 
mi-; 



I 
»I 

65 

P î! 21 = n 6l 
00 oo 

o 2ab I 
m=-œ 

k 2 -h2 
n *mn mn 

kY 12 n=“0o A rm,n 
I = -Y 

12 

and 

r\ _ 00 ^ ä 

Y - n âk Y V k2**'h2 . - n_ ^rr ¿ ¿ _n Tmrík mn 
m=-oo n=-oo ky_ _ 12 12 

22 o 2ab 
mf n 

where 

i - r 
p = normalized driving point admittance 

I?n = 2 
1 61 

exp(-jB y) dy cos ~ exp (-jh Z) dz 
111 n 

slot 

jY - wave susceptance of next higher mode 

n = wave admittance of the TEt n mode 
1 # U 

6 - width of element in y direction 

L - length of element in x direction 

a = spacing between centers of elements in y direction 

b - spacing between centers of elements in x direction 

k - free space wave number 

h - propagation constant in z direction 

f t Y - propagation constant in x direction 

The particular angle at which the equation goes to infinity is 

found from the relations: 
i 1 

t « 
/ i 
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An important point to note is that the term was derived 

by using only a single mode—like Oliner and Knittel. The second 

term is a correction factor introduced by the next higher mode 

thereby showing the coupling relationship that Wasylkiwskyj 

reported. 
1 
u 
J 

1 « 
'1 I 

Other Work f 
! 

Most other research during the last ten years has taken 
» 

the attitude that the blind angle exists, that it is caused by \ 

some form of mutual coupling, and that the problem, therefore, 

is to avoid it or limit its effects. Although many papers us- 

ing this approach have been published, there are two that I I 

believe illustrate the theories X have presented. The first 

• 19 . 
written by Agrawal is primarily based on Alleys and Lechtreck’s ! 

1 
theories of a summation of coupling terms. Agrawal accepts the ’ 

» 

theory that the summation is caused by the periodicity of the 
» 

array. He attacks the problem by destroying this periodicity. 

Using a probability technique he designs an array with random 
j* 

spacing between the elements. His procedure works and he suc¬ 

ceeds in eliminating the blind angle lending credence to the 

surface wave concept. 

20 
S. W. Lee, on the other hand, approaches the problem by 

looking at the modal theory. Through the incorporation of an 

inductive iris within the open end of the feed waveguide, he 

succeeds in changing the mode structure of the radiating elements. 

This change in structure forces the blind angle to move further 

from ¿roadside than the one radiated by the unmodified structure. 
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Through the use of integral equations and mode matching he is 

able to predict this change. 

& 
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CONCLUSION 

I believe that it is safe to state that the blind angle 

is definitely caused by mutual coupling. The coupling can be 

represented by many different ways be it mutual impedance, 

coupling coefficients or scattering parameters. Regardless of 

which we wish to use, we must eventually develop a reflection 

coefficient of unity to support the blind angle. The ghost 

mode hypothesis and its subsequent theory (Knittel, Stark) 

offeT a physical insight into the problem which appears at 

this stage to be, if not the correct explanation, at least one 

that answers most questions and offers a good chance of accurate 

predictions. As far as the coupling itself is concerned, the 

various authors have shown that it is affected by element size, 

spacing, dielectric constant of the surrounding medium, and the 

periodicity of the array structure. Whether it is actually a 

surface wave or a leaky wave or something entirely different is 

not definitely known. Our understanding in research today is 

probably best demonstrated by two statements: 

1) Amitay, et al., states in 1972, "Our understanding of the 

array resonance phenomenon is still incomplete." 

21 
2) M. T. Ma, published a book in 1974 on phased array 

radars in which he totally ignores blind angles. 

■«l-' ? : ^ 1 rj-/ f 

: 

a* r> 



'fmm 

APPENDIX I 

Refer to Figure 23. Assume we know a, R and d. We need 

to find B and y and compare them. 

Y = arctan 

B = |_R X sin oT] -d 

R X cos a 

Dî X sin 00 -d Y = arctan 

B = arctan 

= arctan 

B = arctan [_R X sinc0+d 

Making use of an inverse trig function relationship,22 i 

can show the difference between the angles y,B; y,a; ct,B 

Y-B = arctan - arctan 2^ 
a a 

= arctan 
B B + 2d 
A 

B+2d 

= arctan 
A2+B2+2Bd 

= arctan 2Ad 

A2+Bz+2Bd 

_ 2dR cos a 

cos2 a + R2 sin2a+d2 -2Rd sin a+2Rd sin a-d2 
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= arctan 

y-B = arctan 

2dR cos g 
R^Tcõ^^aTsTrra ) 

2d cos a 
R 

If we examine the worst possible case, i.e., a = 0° or 180° then 

the difference is: 

^ 2d 
arctan — 

K 

If d = X/2 and R = 10X then the difference is: 

arctan ^-= 5.7° 

If d = X/2 and R = 100X then the difference is: 

arctan = .57° 

For a frequency of 100 M H Z a distance of 100X is only 300 meters. 

The difference between X and a using the same procedure as above 

yields : 

d cos a 
R-d sin a 

Again looking at the worst possible case (a = 0) this yields: 

arctan § = j <Y - B) 

Therefore, if R is much greater in terms of wavelengths 

than d, the approximation of parallel lines is quite accurate. 
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APPENDIX II 

To obtain the equality: 

1 - e-jn* 

1 - e"^ 

sm 
nip 

sin ¿ 
2 

Proceed as follows: 

1) 
- e"^ 

1 - e jl* 
1 - e-2jI# 

1 - e"2^ 

4 

jn«P 
eÆ e-^ 

ej^ - e~^— 

2) 
ji 

jM 

jl(l-n) = 1 

3) 
jJll¿ e-jiîiÜ S 2 

e3 li _ 75? 

sin 
nip 

sin i 

• » 
ji 

jni 

-illi 
- e J 2 

jni|) _ 2 

j|- . e-ji 
= (1) 

sin ni 

sin i 
2 

and the proof is complete. 
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