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ABSTRACT

A linear -predictive form of the quadratic classifier (the optimal decision rule
for Gauissian random processes) is developed and applied to the discrimination
and classification of radar target signatures. ' The classifier was devised to tin-
plemeiit a sequential probability ratio test (SPHT), that Is, consecutive radar
returns are observed until the target can be classified with a prescribed pr~ba-
bility of error. Because of the linear -predictive formulation, the computational
and storage requirements for the classifier arc related only to the number of
returns necessary to predict the signature and not to the length of signature ob-

V served; a classifier with modest storage and computational requirements can be
employed to classify signatures consisting of an arbitra~rily large number of
radar returns. The classifier is related to several results in mean-square fil-
tering theory and has an interpretation in terms of the maximum entropy and
mnaximumn likelihood spectral estimates for the target signatures.
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FOREWORD

This report describes a decision rule structure for the discrimination of two

discrete-time random processes. The structurb is recursive and its discovery

was motivated by a desire to perform sequential discrimination of targets tracked

by a radar. For sequential discrimination, an object is illuminated with consecu-

tive radar pulses until a classification of the object, can be made to within a pro-

determined probability of error.

The approach taken brings some results from estimation theory (in particular,

linear prediction) to bear.on the discrimination problem. The structure of the

decision rule can be related to esttmator/correlator receiver realizations for

Srandom signal detection problems and both formulations have some common im-

portant characteristics. Because the linear prediction can often be performed

with a relatively short history of the process, only modest amounts of .iorage and

computational resources are required - even when the process is observed over a

long time interval.

The sequential decision rule described here has been implemented in real time

and operatem in conjunction with the TRADEX radar at Kwajalein, M.1. The real-
time implementation has been given the acronym LEAD for Linear Estimation 6nd

Discrimination.

The report is written in the context of the radar discrimination problem and is

presented in a largely tutorial format. It should be noted, however, that the

results are applicable to target discrimination involving other types of sensors

(sonic, optical, etc.) and to other similar detection and identification problems as

well. The reader with a basic knowledge of statistical decision procedures will
find that the results are derived in a straightforward manner and that the report

is self-contained. Several references are provided for the related material on

mean-square filtering and spectral analysis.

vi
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THE APPLICATION OF LINEAR PREDICTION

TO SEQUENTIAL CLASSIFICATION OF RADAR TARGET SIGNATURES

I. INTRODUCTION

This report describes a new form of quadratic classifier (the optimal decision rule for

Gaussian random processes) that is being used for discrimination and classification of radar

"target signatures.* The classifier is sequential in nature and is well suited for real-time oper-

ation. The signatures are observed a few returns at a time and a classification may be made

after any number of observations. Since most forms of the quadratic classifier can be applied

only to signatures consisting of some fixed number of returns, this sequential form provides

the following advantages:

(a) Signatures of targets that are easy to discriminate are classified with a

relatively small number of returns. This saves time that would be wasted
if it were required to observe the signature for a larger, fixed number of

returns, and permits a greater number of such targets to be discriminated

in a given real-time interval.

(b) Signatures of targets that are diffiqult to discriminate can be observed for

an arbitrarily large number of returns before classification. This capa-

bility, which derives from our special formulation of the sequential deci-

sion rule, leads to a higher percentage of correct classifications of these

targets than could be achieved if classifications were restricted to signa-

tures with a fixed maximum number of returns.

The sequential classifier has no greater storage and computational requirements than a simi-
larly configured non-sequential quadratic classifier, and when both are applied to signatures

having the same number of returns, classification results are identical. However, because it

permits targets to be discriminated with a varying number of observations, the sequential form

of the classifier results in a more efficient use of radar resources and an overall improvement
in discrimination performance.

The sequential decision rule on which the classifier is based is characterized by a set of
recursive decision stages. Each stage consists of the observation of returns from one or more

pulses illuminating the target, and an attempt to classify the target based on these and all pre-

viously observed returns. The process is repeated through successive stages until a classifica-

tion can be made at a prescribed level of confidence.

This report shows that a realization of the sequential decision rule can be obtained that

consists of two basic steps: linear prediction followed by an "incremental" classification. At

each decision stage, a linear prediction, based on previous observations, is made of the radar

returns to be observed during that stage. An error term, formed as the difference between the

predicted and the observed values of the signature, is then applied to an "incremental" quadratic
classifier. The output of the incremental classifier is accumulated in a sum of previous outputs

and compared to a set of thresholds to make a classification decision.

"*The term "signature" refers to the time-ordered returns from a set of consecutively trans-
mitted radar pulses illuminating a given target.



The classifier structure suggests two modes of operation: a normal mode in which predic-

tion of the radar signature is based on the returns observed in all previous decision stages, and

an extended mode in which prediction of the signature is based on the returns observed in only

some fixed maximum number of previous stages. It is important to note that while signature

prediction in the extended mode is based on the radar returns observed in only a subset of the

previous stages, signature classification is based on the returns observed in all previous stages.

The extended mode of operation leads to important advantages in computer storage and

execution time. A sequential classifier with modest storage and computational requirements

can achieve the performance of a non-sequential classifier with much larger storage and compu-
tational requirements. In addition, since the computation during each stage of extended opera-

tion is constant and proportional to the (fixed) number of returns used for prediction, computa-

tional requirements place no upper limit on the ultimate length of signature that can be observed.

The use of the sequential classifier in extended mode has produced some outstanding results.

Two examples will illustrate these.

Table I shows the results of applying a sequential classifier to 500 simulated signatures
each of a re-entry vehicle (RV) and a fragment from the associated missile final stage (tank).

TABLE I

CLASSIFICATION RESULTS FOR A SEQUENTIAL CLASSIFIER
USED IN THE NORMAL MODE*

Classification

Number Total Number Errors Average Number
of Decision of Signatures Classified (percent) of Radar Returns

Stages RV Fragment RV Fragment RV Fragment

1 1 78 100.0 0.0 1.0 1.0

2 9 116 11.1 0.0 1.9 1.3

3 18 155 16.7 0.0 2.4 1.7

4 48 182 8.3 0.0 3.4 2.1

5 95 215 7.4 0.0 4.2 2.5

6 147 231 4.8 0.0 4.8 2.8

7 203 260 3.9 0.8 5.4 3.2

8 257 288 3.5 0.7 6.0 3.7

9 286 297 3.8 4.0 6.3 3.9

10 333 317 3.9 1.9 6.8 4.3

11 378 325 3.4 2.8 7.3 4.4

12 401 335 3.2 3.6 7.6 4.6

13 418 341 3.3 3.8 7.8 4.8

14 432 345 3.5 3.8 8.0 4.9
15 445 354 3.6 4.5 8.2 5.2

16 457 366 3.5 4.9 8.4 5.5

16t 500 500 5.8 20.4 9.1 8.3

' Dual-polarized simulated signatures at L-band.

t Remaining signatures classified according to a single default thrcshold.



The classifier was exercised in the normal mode (i.e., the returns from all previous decision

stages were used to predict the signature) and a single radar return was observed at each deci-

sion stage. The table lists for each stage the number of signatures of each target classified,

the cumulative error rates, and the average number of returns used to classify the signatures.

For a given signature to be classified at a given stage, the classifier output for that signature

must fall outside a pair of widely separated thresholds. After sixteen decision stages, all the

unclassified signatures were classified according to a single default threshold. It was found

that the final error rates of 5.8 and 20.4 percent were the same as those for a non-sequential

quadratic classifier based on sixteen returns, while the average number of returns used for

classification was only 9.1 for the RV and 8.3 for the fragment. In other words, the average

classification time was approximately cut in half.

Table II shows the results of classifying the same signatures using a classifier with con-

siderably reduced storage requirements. This classifier was used in the extended mode; pre-

diction of the signature wss based on a maximum of three previous returns. The final error

rates and average number of returns for each target are almost identical to those in Table I.

This classifier has storage and computational requirements that are about 1/16 of those for the

TABLE U

CLASSIFICATION RESULTS FOR A SEQUENTIAL CLASSIFIER
WITH REDUCED STORAGE REQUIREMENTS USED IN THE EXTENDED MODE*

Classification

Number Total Number Errors Average Number

of Decision of Signatures Classified (percent) of Radar Returns

Stages RV Fragment RV Fragment RV Fragment

1 1 76 100.0 0.0 1.0 1.0

2 11 115 9.1 0.0 1.9 1.3

3 24 149 12.5 0.0 2.5 1.7

4 63 179 6.3 0.6 3.4 2.1

5 106 214 5.7 0.5 4.1 2.6

6 166 243 5.4 0.4 4.8 3.0

7 218 263 4.1 0.8 5.3 3.3

8 257 289 3.5 1.4 5.7 3.7

9 294 305 3.4 2.3 6.1 4.0

10 329 318 3.0 2.8 6.5 4.2

11 369 327 2.7 4.0 7.0 4.4

12 401 336 2.7 4.2 7.4 4.6

13 418 349 3.1 5.2 7.6 4.9

14 431 353 3.2 5.1 7.8 5.0

15 448 363 3.3 5.5 8.1 5.3

16 454 368 3.3 5.7 8.2 5.5

16t 500 500 6.0 20.0 8.9 8.2

' Dual-polarized simulated signatures at L-band.

t Remaining signatures classified according to a single default threshold.
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previously cited non-sequential classifier; yet it obtained the same error rates and classified

the targets with approximately half the number of returns.

As a second example, a sequential classifier was applied to the signatures of an experi-

mental RV and one of its decoys. Both objects were contained in a cloud of chaff. Figure 1

shows the operating characteristic (plot of RV error rate vs decoy error rate) for sequential

and non-sequential quadratic classifiers with identical storage requirements. The non-

99.9 0.1

500 SIGNATURES AT C-BAND
DUAL-POLARIZED COHERENT RADAR

W9'9.5, O 's-0

4 '

S99.0 1 - .0

"SEQUENTIAL CLASSIFIER

-Fig. 1. Comparison of performance
of sequential and non-sequential qua-

95 -- -0------- • , dratic classifiers.

NON-SEQ0UENTIAL,-- CLASSIFIER

50.0 SO ;.0

0.5 1.0 5.0 0.0 0 - 0.0
FALSE ALARM RATE (percent)

sequential classifier observed ten returns of each signature. The sequential classifier, applied

in the extended mode, observed an average number of returns that varied between points on the

operating characteristic. but which was generally in the range of 25 to 35. The performance
improvement is clearly significant. For example, at the 10-pereent decoy error (false alarm)
rate. the non-sequential classifier had an RV error (leakage) rate of about 40 percent while the

sequential classifier had a leakage rate of about 11 percent. Note that since the average number
of returns observed by the sequential classifier was generally in the range of Z5 to 35, some
signatures were observed for a larger number of returns. Thus, the performance of the se-
quential classifier could probably not have been matched by even a (larger and computationally

more expensive) non-sequential quadratie classifier designed for signatures with the average

number of returns.

These examples illustrate the advantages that can be obtained by using the special sequential
form of the quadratic classifier. The remainder of this report describes the classifier in detail

and discusses its method of implementation. Section II develops the theory of the classifier
while Sec. III deals with computational issues. Section IV relates the sequential classifier to

the current literature in linear mean-square prediction theory and provides the justification for
the use of the classifier in the extended mode. In addition, Sec. IV provides an interpretation

of the classifier in terms of maximum likelihood and maximum entropy spectral estimation.
Finally, Sec. V summarizes results.

50~0 - - 90.



II. DEVELOPMENT OF THE SEQUENTIAL QUADRATIC CLASSIFIER

A. Basic Form of the Sequential Decision Rule

Two-class sequential decision procedures have been employed in a number of applica-
tions.i'4 For the application of these procedures to radar signature discrimination, an observa-
tion vector Kk is formed from samples of the radar signature at the kth decision stage. In the
so-called "fixed-boundary' sequential probability ratio test (SPRT), the likelihood ratio for the
observation vector xk is evaluated and compared to thresholds TA > TB. If the value of the
likelihood ratio is greater than TA or less than TB3 then Class 1 (wj1 ) or Class 2 (w 2 ) is decided,
respectively.

P(Xk f w I) > TA -(I

P(XkIW2) I<TB-WB 2

Otherwise, the process continues for another stage. A fixed number of additional observations
are made and appended to the observation vector; a new likelihood ratio is formed using the
conditional multivariate densities for the larger observation vector, and the process continues
until one of the boundaries (thresholds) is crossed. The probabilities of misclassification are

related to the thresholds by the following equations.

Prob[ Errorj wi] = TB(TA - 1)/(TA - TB) (2a)

Prob[Errorl " 2 1 = (1 - TB)/(TA - TB) (Zb)

In lCie most general type of SPRT, the thresholds are not fixed at constants TA and TB but
change at each decision stage. For example, the thresholds or "boundaries" can be made to
converge gradually to a single value as shown in Fig. Z(a). This forces the classifier to make
a decision after some maximum number of stages k0 . For the case of general time-varying
boundaries, Eqs. (2) do not apply.

A special case of time-varying boundaries is illustrated in Fig. Z(b). The boundaries
remain fixed at TA and TB until the (k0 )th stage when both are changed to a common intermediate

To

.2 3o .. NUMBER OF STAGES

Fig. 2. Types Qf decision boundaries (13

for sequential classification.

THRESHOLD

TAI

1 2 3 .. k NUMB-ER OF STAGES
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value TO. This special case of time-varying boundaries differs from the fixed-boundary case
00

only in that a decision is suddenly forced after ko stages. If k° is sufficiently large so that most

observation vectors are classified before ko stages, then Eqs. (2) provide a good approximation

to the errors. Obviously in any practical implementation, sequential decision processes cannot
be allowed to continue indefinitely so that if it is desired to guarantee classification of all ob-
servation vectors, decision boundaries of one of the forms of Fig. 2 must be employed.

B. Recursive Form of the Sequential Decision Rule

For the application of the SPRT to radar signature discrimination, the observation vector

is partitioned as

xk-1

xk = [----- (3)

and constructed as shown in Fig. 3. Here x is the observation vector at the (k - 1)th stage
and Axk represents the new observations at the kth stage. The dimension of &Kk is equal to
nap where Ap is the number of new returns observed per stage (which is assumed to be the same
for all stages) and n ; the number of scalar items of information available from each return.

PP

-, TIME

OP~L I k1 PREVOUS
kcth STAGE -i OBSERVATIONS

_____________-ITIME }NEW
k- OSERVATIONS

Fig. 3. Construction of observation vector for sequential
classification of radar signatures.

In particular, if the radar is narrowband and noncoherent with only the principal polarization
(PP), then n will be equal to 1. If the radar is coherent with only PP, or if the radar is non-
coherent with both principal and orthogonal polarizations (OP), then n will be equal to 2. If the
radar is coherent in both PP and OP, then n will be equal to 4.*

* Our formulation models the coherent signatures from each polarization as samples from two
correlated real random processes (representing amplitude and phase or real and imaginary
parts). An alternative formulation would treat the signatures as samples from a single
complex process.
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The likelihood ratio in Eq. (1) can be written in the recursive form

k (=.k kI W k) (4)

Note that when the new observations Axk are independent of the previous observations x k-i'
the first term in Eq. (4) depends only on Axk and so the decision rule is considerably simplified.
In order to achieve independence for signatures described by Gaussian statistics one can, by the
use of Karhunen-Lobve rnalysis, transform the observations into a coordinate system where
they are uncorrelated and therefore independent. This is the approach taken in Refs. 3 and 4.
Our approach is somewhat different. It will be shown that when the observations are jointly
Gaussian. but not necessarily independent, one can separate the decision rule into a step con-
sisting of a linear estimation of the new observations and a step involving a likelihood ratio test
based on the prediction errors. It can further be shown (see Sec. IV) that this is essentially a
different path to achieving independence. The prediction errors used for classification are
uncorrelated and represent only the new or "innovations" information present in the new

observations.

C. Decision Rule for Jointly Gaussian Observations

If the observations xk are jointly Gaussian. then the probability densities in Eq. (1) are

given by
i iil

p(Xk1'i) = F.)Ap iK l 1F/ exp[- Qk1  ; i = 1.2 (5a)

with

21T I-1 1QR =X-k (K) 1Xk -M k) (5b)

where rn k is the mean vector and Kk is the covariance matrix for the observation vector A k of.th k k fkO
the i class. Qk is the squared Mahalanobis distance between the observation vector and the
mean vector of the ith class and is explicitly defined here because of its importance in deriving

the ensuing results.

The conditional probability densities appearing in Eq. (4) for the new observations a k can
be derived by first noting that

P('klXk w) =P(A k" Xk-1 i = P(Xkl•wi) (6)

P(i - I _ i( ji) p(A k-1 I (i)

Thus, substituting Eq. (5) one obtains

_______ i Q

- i /j exp[-
P('ýý-khX-k-l' wi) 1 1

Sw)=()(k-1)fl~p I K 1 l' exp. - ji Q&1Ikt 1

l expf- • k 1

( n~p i z 6k Ik
|IZr 1 k11Z I K I'itz 'K i/ep- ] .( •r-• )nk-1



where

Qi Q (8)k k Qk-i 8

Let the mean vector and the covariance matrix be partitioned to correspond to the partitioning

of the observation vector, i.e.,

] k-1l Kk Bk

-= E k

It is shown In Appendix A that the corresponding inverse covarlance matrix can be expressed

in partitioned form as

Kk-1 +Gk kk G

2i :,Ek (90)

where

G ok ---- Bk k - k .-- -)

T -T

It is further shown in Appendix A that th Qk is of the form

T1 -1i

-Ek = 1 ( Gx -kT Ek(X_ -1•)(3

where

k= k + GkTXk-1 -- k--l) (±4)

and that

I KkjlEk =D I Kkl 1 (15)

'* In order to reduce the complexity of notation, the class index superscripts (i) will be dropped
in Eqs. (9) through (15). It should be understood that the results apply to both classes.

&Qk= (ýak--E) TE k1 (~i k)(18



By substituting Eq. (15) into Eq. (7), one obtains
I ep-i bQ' (16)

P(kk 1 = (**-k1Aop wE 177ll/ 2 exk[.• (1k6

where AQi is given by Eq. (13). This shows that the conditional density of •k is a Gaussian

density with mean vector _ k and covariance matrix Ek.

That the conditional density P(Aki 2_k-1) is Gaussian when p(2ýk) is Gaussian is well-known

(see Ref. 5, Appendix to Chap. 7). The mean of the conditional density E k' regarded as a func-

tion of the previous observations _k-i' is known in statistics as the regression of Ax k with

respect to _xk-i and it is the maximum a posteriori estimate of Anxk. What is most important

here is that the mean of the conditional density for Gaussian processes is a linear function of

the previous observations (Eq. (14)]. Therefore, the sequential classification algorithm can be

decomposed into two simple steps; namely (1) a linear-predictive estimation of the new observa-

tions and (2) an evaluation of the likelihood ratio for the conditional densities [Eq. (4)]. The

dimensionality of the vectors and matrices employed in this second step is nAp, i.e.. it is the

dimension of just the new observations at each stage.

D. Interpretation as Sequential Quadratic Classifier

One can interpret the decision rule for non-sequential likelihood ratio tests when the proba-

bility densities are Gaussian as a quadratic classifier. That is, the likelihood ratio test is

interpreted as forming a second-order polynomial boundary in the observation space between

the two regions in which observation vectors are classified as Class 1 or as Class 2. As such.

quadratic classifiers are employed to classify observation vectors even with non-Gaussian

statistics; one considers the classifier as defining a second-order decision boundary which is

fitted to the first and second moments of the observation vectors. The SPRT for Gaussian

statistics can also be interpreted as a (sequential) quadratic classifier. In this situation,

however, the observation space and the decision boundary increases in dimensionality with each

successive stage.

Let hk represent minus twice the log of the likelihood ratio at the kth stage. Then, from

Eqs. (1) and (5) the sequential decision rule is

IKk1 1 f<-2 lnTA- W1
hk =Qk1 -Qk1 + 'nInK k > -2 InT W (17)

k 2B

where Qk and Q are the squared Mahalanobis distances defined by Eq. (5b). The left side of

Eq. (17) has the same form as a standard quadratic classifier for observation vectors at the kth

stage. The classifier can be expressed in a recursive form by applying Eqs. (8) and (15) to

Eq. (17) or by applying Eqs. (4) and (16) to Eq. (1). The result is

hk=hk< +hk nTA-
hkhk1+6hkI>--Z In T B - W2 (1 8a)

Ahk = 1. 2 + In • (18b)
I E k



where AQk and 2 are defined by Eq. (13) and where at the start of the recursion one has
Ei = Ki and ho = 0. Note that in the sequential form of the classifier we need to deal with only

an incremental classifier [Eq. (18b)] at each stage. The dimension of vectors and matrices in

the incremental classifier is equal to nAp. The change in the squared Mahalanobis distances
Q at each stage involves a linear prediction of the new observations xk from the previous

observations Xkt as discussed earlier. Equations (13) and (14), used to compute the AQ

can be written in an alternative form as

i iT ()-1 Ci (19a)
A~k =1k (Ek) -k

I i= A i6 (19b)-k Z--k- -k

'5i kii=xGk.1 i = 1, 2 (19c)

where

I[ 1 k.__1 i
2ik-1 Xýk-i --- k-

Ai (Z0)-Las k 4x-k - Am- k

ndwih meanr e moe. •i ik

and where n = 0. The prediction/classification sequence is very clear from this formulation
with the mean removed. At each stage in the classification sequence a prediction •i of the

i -knew observations is made by Eq. (19c). An error term !kis then formed in Eq. (19b) and this

is used in Eq. (19a) to evaluate the change in the squared Mahalanobis distance AQ1. These
changes are then used in the incremental classifier decision rule, Eqs. (18).

E. Extension of Results to Long Signatures

If the statistics of the radar signaturcs to be classified do not change over an extended
period of time, then one would expect that there would be some number ks - 1 of previous ob-
servations called the prediction order for which the estimate 4k of the new observations would
be no worse than it would be if the estimate were based on an infinite number of previous obser-

vations. That this is in fact true is shown in Sec. IV. Consequently, one can base the prediction
of the radar signature on the observations acquired in only the previous ks - 1 stages, but con-

tinue to exercise the classifier for any number of stages k > ks. By operating the sequential
classifier in this "extended mode," one can obtain the approximate performance of a classifier
with much larger computational and storage requirements. In fact, one gains an ability to

process long signatures that for reasons of excessive computation or storage requirements
could not be processed with other classifiers. The benefits of operating a sequential classifier

in the extended mode already have been demonstrated in Sec. I.

One can imagine that the sequential classifier views a signature through a sliding window
that never exceeds (ks - i) Ap radar returns in length. Since the classifier output [hk] at the
kth stage is an accumulation of results from all previous stages [Eqs. (18)], the classification

10



decision is based on all returns seen by the classifier up through the kOh stage, even if some of
the earlier returns are currently outside the window. In this way the sequential quadratic clas-
sifier is able to obtain the effect of a much larger classifier at a fraction of the overhead. The
next section discusses some of the practical issues of storage and computational requirements

in detail.

III. COMPUTATIONAL CONSIDERATIONS

A. Computation and Storage of Classifier Parameters

The equations that implement the sequential classifier [Eqs. (18) through (20)] involve a set

of (fixed) matrix parameters Gi and E which are derived from partitions of the covarianceof(fxe) atixpaamtes k an k

matrices for the two classes of signatures. The covariance matrices [as well as the mean vec-

tors which appear in Eq. (20)] can be estimated from a set of training signatures for each of the
two classes.

Computation of the and the Ei is carried out prior to any real-time operation of theCoptain fth k adtek

classifier. In fact, since the classifier operation involves not El itself but its inverse and its
determinant, these latter quantities also are computed and stored prior to any real-time opera-
tion. The parameters of the classifier can be conveniently stored as a symmetric matrix

I- nAp - nAp - nAp -. -- nAp -1

(Ei)i Gi
i

( 3)

-'--

Gi
kk

K111

Pi (E )i ()-)

'E i )-i
ks

and a set of vectors

dz lE 1
d d k ln --kl 2- (22)

•kk

dt



and

M I-
mk knAp

k kn p (Z3)
k 

s

L - J._.. 1
from which the mean vectors for any stage can be obtained as a partition (as shown). A special
form of storage for the matrices Pi of Eq. (21) has been developed for use with FORTRAN so
that the matrix partitions can be accessed directly and used with matrix manipulation programs
from the IBM Scientific Subroutine Package. This special form of storage is described in
Appendix B.

The matrices E1 are equal to the first-stage covariance matrices K1. The matrices Gk
and E for k > 1 are computed from the partitions of the k stage covariance matrices viak

Eqs. (11) and (12). If Eq. (10) is also employed, then a convenient recursive algorithm results
for computation of the classifier parameters. One begins with the full-stage covariance ma-
trices K' partitioned in a form corresponding to the partitioning of the Pi.

S

e K

ii

K- B3

2 iDz
k i

L_- •... Bk

Kk i (24)
s D3

3

L

At the first step of recursion, K1 EI is inverted (by any conventional procedure) and stored
in P1. The determinant I which is usually obtained as a by-product of the inversion is re-
tained and used to form the first element of the vector d. At the second step of recurcion,

i and E are computed from Eqs. (11) and (12). The matrix E is inverted and the results

(E )" and GCJ are stored in P1. The determinant I E2' is retained and employed to form the
second element of the vector d. Equation (10) is then used to compute the inverted second-

S-4 1 1 1stage covariance matrix (K Z) which replaces the partitions K4, 13, and D, of Eq. (Z4) in
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storage and the process continues. At the kth step of recursion, one has stored the partially

inverted covariance matrix

I II I

I i
iI

(I - -

kk

SII

from which one can readily proceed to compute the partitions Gk an k fP n h nes
covariance matrix needed for the next step. The partitioned parameter matrices P. ~he full-

(55iD

ss

B. Real-Time Computation and Storage Requirements

Storage requirements for a sequential classifier that is designed to observe a maximum of
ksAp radar returns in the normal mode of operation are the same as those for a non-sequential
quadratic classifier using that same number of returns. The primary storage allocation is for
two symmetric matrices of dimension ksnAp which requires ksnAp • (ksnAp + 1) words.

TABLE III

COMPUTATIONS TO EVALUATE &Qi

Computed Item Multiplications Additions or Subtractions

-i iT i 2

= AXi _Aj -nApk -k -k

iT i np(nAp + 3) np(nAp + 1)(k) kE) _k z z
1. 3 1. 21

Total (k - 2) (nAp)Z + 2 nAp (k - 1) (nAp)2 + 1 nAp

The central processor time required to execute the classifiers in real time can be approxi-1 2
mated by the time required to compute the squared Mahalanobis distances Q and Qk or their

1. 2 k kchanges AQk and AQk. Table III lists the number of computations required to evaluate AQk at
the kth stage. Both the number of additions and the number of multiplications per stage are ap-
proximately equal to k(nAp) for k.< ks and equal to ks(nAp)Z thereafter. In other words, for the
normal mode of operation [k < ks , the computation is proportional to k and to the square of n

13



S(ks~th
and Ap. If the number of arithmetic operations is summed over all stages up to the (ks)

the total number of multiplications is ksnAp(ksnAp + 3)/Z and the number of additions is

ksnAp(ksnAp + 1)/?, both of which are identical to the number of operations required to eval-

uate a non-sequential classifier of corresponding size. Thus, the total computational effort

is the same for both types of classifiers when applied to signatures with the same number of

returns. However, since the number of computations performed per stage by the sequential

classifier is distributed so that it increases linearly with the number of stages, the real-time

computational resources set aside for classifier evaluation in the normal mode of operation

must be large enough to permit evaluation at the final most computationally expensive stage.

This has the effect of doubling the total real-time computational resources, that must be allocated

to the classifier, although in the early decision stages this time is not used. While this may at

first seem wasteful, more careful consideration of the application usually will show that it is

p. ssible to ration the unused time to lower priority computer tasks not related to classifier

evaluation.

In the extended mode of operation, all the allocated time is used. Further, since the com-

putational requirements at each stage are constant [proportional to ks(nAp) ], there is no limit

to the number of returns that may be observed in order to classify a target.

IV. RELATIONS TO MEAN-SQUARE FILTERING AND SPECTRAL ANALYSIS

The sequential classifier as formulated in this report is intimately related to certain prob-

lems in mean-square filtering and spectral estimation. It is in this context, in fact, that the

classifier assumes its greatest significance and a better understanding of the classifier opera-

tion in both the normal and the extended mode emerges.

In order to relate the sequential classifier to the important literature in mean-square fil-

tering and spectral analysis, we will restrict our attention for the most part to the case where

the radar signature has only one component (i.e., PP) and the number of returns observed at

each stage is one. Thus, the signatures can be modeled by single (univariate) discrete-time

random processes which we will generally assume to be stationary. None of these special

restrictions are absolutely necessary; the results can be formulated to include the more gen-

eral case treated in the earlier portion of this report. However, generalization serves only to

complicate the algebra and adds very little to the understanding of the basic relations.

It should be observed that whereas much of the literature referred to in this section is

couched in terms of temporal averages of the random processes, we shall adhere to our use of

ensemble averages. This should pose no particular problems as far as the results are con-

cerned, since they can be formulated from either point of view. In addition, it will be assumed

throughout that the mean of the signatures has been removed so that the random processes can

be treated as zero-mean processes.

This section begins by showing that the predicted estimate Alk of Eqs. (19) is the optimal

linear mean-square estimate of the random process (the signature) regardless of the process

statistics. For this result, none of the special restrictions cited earlier except the zero-mean

condition are applied. Next, it is shown that when the processes are univariate and stationary,

the set of recursive relations [Eqs. (10) through (12)] used to compute the classifier parameters
7

reduce to the classical recursive relations originally formulated by Levinson. The sequential

classifier is then interpreted in a canonical form involving a pair of linear-predictive filters

and an optimal classifier for two white Gaussian noise processes. Finally, the classifier is

14



interpreted in terms of the maximum likelihood and maximum entropy spectral estimates for

the processes.

A. Linear Mean-Square Prediction of the Radar Signatures

The problem to be considered here is that of determining the best Linear estimate Ax k of the
observations L•X k at the kth stage from the set of previous observations x k-1 in the sense that

E- = EfIJ k _kz] (Z6)

is minimum. The (arbitrary) linear estimate can be written in the form

Ak = Gk T (Z7)k-k-1

Jt will be shown that the particular linear transformation GT required to minimize Eq. (26) is
given by Eq. (44).

In preparation for this result, we first define the estimation error : k as

-_k -'n*xk - Aý_ k (28)

and state the following basic theorem of mean-square estimation which is known as the
orthogonality principle. The proof of the theorem is given in Appendix C.

Theorem: Let the estimate ALk be defined so that the error
T

f k is orthogonal to the observations xk-i; i.e., E[_E kik-4I
is a matrix of zeros. Then Axk minimizes Eq. (26) and the
minimum mean-square error is given by

&2 =-Et T 4KkM-k(29)

This theorem can be used to show that the optimal prediction matrix Gk is given by Eq. (11).
The theorem requires that

E ~ ~T 1E[Ek-X1] 0 . (30)

By substituting Eqs. (27) and (28) in Eq. (30) and employing the definitions in Eq. (9b), one has

E (,n - GT X ýT 1- k G T KE[(Xk--Gk xk-4) kk4l]= BT k k-I k- (3k)*

from which Eq. (11) follows directly. By substituting the same equations in Eq. (29), one can
obtain an expression for the minimum mean-square error:

Tr T

•min -E-kT 'ný--k] = E[tr E kZT

n- % k Xk 2k- k

= tr{Dk ( G Bk) (32)

'Equation (31) represents the Yule-Walker equations in statistical estimation58 or the normal
equations in regression analysis.8
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Then, by virtue of Eqs. (11) and (12), Eq. (32) reduces to
si = tr E k 

(33)

That is, the minimum mean-square error is the trace of the conditional covariance matrix.

The structure of the sequential classifier can be depicted as in Fig. 4. The classifier con-
sists of a pair of (discrete-time) linear mean-square predictive filters each of which is designed
to estimate one of the processes to be classified. The two resulting error processes Ek and

2 are then fed into a box that implements Eqs. (18) and which represents a quadratic classifier

-- k

+ 0 I.
+__,

P DLINEAR X&ki)(Ek k P D Ik hk(clossifier output)
FILTER I 2 "r2'-1 2 COMPARE

(input process) -• ('•k Eh) TO THRESHOLDSKIEI

2 I LINEAR
PREDICTIVE
FILTER 2

Fig. 4. Structure of sequential classifier.

for the two error processes that result when a signature of each class is applied to its corre-
sponding filter. That the quadratic classifier for the error processes can be expressed as a
sum of outputs from the incremental classifier as in Eq. (18a) is a result of the fact that the

error c is uncorrelated with the previous errors c k-i' € k-2' etc. This fact in turn follows
from the orthogonality principle expressed in the theorem. The classifier is optimal for
Gaussian input processes and will be further interpreted for general random processes in
Sec. IV-C. However, let us first consider how the matrix Gk that defines the linear-predictive
filter can be more easily computed when the processes are univariate (i.e., when the signatures
consist of the PP amplitude only) and stationary, and the number of pulses observed per stage

is equal to one.

B. Recursion Relations for Classifier Parameters

A set of recursion relations for the computation of the classifier parameters was described
in Sec. II. The recursion consists of Eqs. (10) through (1Z) with starting value El = K1 . For
the special case when the processes to be classified are univariate, and a single time sample
(radar return) is observed at each stage, we have nAp z 1. The matrices Bk and Gk defined
in See. II then become column matrices or "vectors" and the matrices Dk and Ek degenerate
to scalars. For this special case, the variables will be represented by lowercase symbols
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bk' SW dk, and ek. The recursion relations Eqs. (10) through (iZ) can be written in this

notation as

K1k- + 1- El9 [k~ T (34)k L~2C] ek k
L 0 0

_9k K 1k-1b (35)

e =~dk -11T b (36)Sk k Kk -k

If, further, the random processes are stationary, the covariance matrix has the special

Toeplitz form

"R(O) R(l) . . . R(k-1)"

R(i) R(O)

Kk . (37)

R(0) R(i)

R(k-i) R(i) R(O)

where R(i) represents the correlation function for the process evaluated at lag i.* If Eq. (37) is

compared with Eq. (9b), one can observe that

"R(k - 1)"

bk (38)

and that

dk R(O) (39)

Let us now define the reversal of a vector as another vector whose components are the

components of the original vector in reverse order. For the vector bk' one has

R(l)

b =rev b (40)

R(k -- K
Observe that since the process is zero-mean the covariance is equal to the correlation.
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from which it follows that

bk = (41)

L(k --- )

In, ai- '.,r to derive a simplified set of recursion relations, Eq. (35) will now be written in a form
involving the reversals of g k and b k Equation (35) can be written in the equivalent form

Kk--gk =ý _bk .(42)

If both vectors in Eq. (42) are replaced by their reversals, then in order to maintain a true

relation, the matrix Kk.I must be replaced by one obtained from itself by reflecting it first
about the main diagonal and then about the reverse diagonal. However, because Kk.-i has the

special form [Eq. (37)] (i.e., it is symmetric and Toeplitz), these two operations leave it un-
changed. Therefore, one has the relation

Kk-=1k-= bk (43)

and thus

=~Kk_41 (44)

The &sired simplified recursion now follows directly, because from Eqs. (44), (34), and (44)

one can write

K .1. .

k-2[ ] R k-1 (46)k-

__ k-i

K k -2 0 b k- 1 + - 1 [R (k - 1) - Fk -• k- 11 (45)

where

Rk = +) -- /e (46)
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and where from Eqs. (35), (36), and (39) we have

T (48)ek -- R(0) -jgk bk-k

Equations (46) through (48) represent a concise form of the recursion relations to compute the

filter coefficients for a univariate stationary process. These are identical to the recursion

relations derived by Levinson and others."14

Most of the literature related to linear-predictive filtering and the associated statistical

models defines the vector of filter coefficients as the reversal ofg k" A comparison of our

terminology to that which is most common in the literature is made in Table IV. Equations (46)

through (48) can be written in the alternative terminology as

A = [+p + L:-] +" (49)

= [R(p+1)-a _TrpI/ep+{ (50)
SPp+t p +

e = R(O)-a - r T (51)
P~i-p -p

The variable Pk is the so-called reflection coefficient in linear-prediction theory or partial cor-

relation coefficient in statistics. An engineering interpretation of the reflection coefficient is

given in Refs. 12 and 14. By substituting Eq. (34) in Eq. (36), one can show that

2
ek = ek1(1 --Pk-i) (5Z)

which can be used as an alternative to Eq. (48) or Eq. (51) in the recursion. Since, by virtue of

Eq. (33), ek represents the mean-square error in prediction of the process using k - I previous

observations, ek will always be greater than or equal to zero. Equation (52) thus implies that

1Pk1 must be less than or equal to one, which in turn implies that the mean-square error is a

decreasing function of k. This is the key justification for the use of the sequential classifier

in the extended mode. When a number of decision stages ks or a prediction order ',- - is

reached such that the mean-square error "levels off" and/or approaches zero, then there is no

need to consider any higher orders of prediction. In terits of classical statistical models one

can say that the signatures are adequately modeled by an autoregressive process of order ks - i.

Autoregressive processes are discussed in various references in the statistical literature

(e.g., Refs. 5 and 8); such processes are represented exactly by a weighted sum of some num-

ber p of their past values plus white noise. Equation (52) implies that since the mean-square

error of prediction of a process is a decreasing function of k, one can model an arbitrary

discrete-time random process to any desired degree of accuracy by an autoregressive process

of finite order p. This implication can be further interpreted when the results are presented

from a spectral analysis point of view.
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TABLE IV

COMPARISON OR TERMINOLOGY FOR SEQUENTIAL CLASSIFIER
TO THAT USED FOR LINEAR-PREDICTIVE OR AUTOREGRESSIVE MODELS

p ----- -1

- --- I I

x Xk-1 xk s1 Sin- sn

.- k-i -. n-i

k-1 p

= ~T Z (a)x=~xr T i ZT 9 '-
j=i i=i

Kk R(l) R(O) Rp R(i) R(0) .

K R(k - 1) R -0 j R0) .[R(p-R) . . R(0)

"R(k - 1) R(i)

R(k - 2) R(Z)

bk = r •

LR(i) R (p)j

bk = Kklgk--r = Rpap

K-1 b R-19k = Kk_ k a = r
-p p-P
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r ~1

Fig. 5. Prediction branch of sequential I + + ,
classifier. i
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C. Relations to Spectral Analysis

Figure 5 depicts one branch of the sequential classifier. The linear-predictive filter has

been represented in the frequency domain by its z transform

-k+lz

-k+2
z

Gk(z)= ' (53)

-i
z

where z is the discrete-time frequency variable equal to ejZxfT and T is the time between

samples of the process (the radar pulse repetition interval). Note that when the input xk is the

process which the filter was designed to predict, the output process e k is uncorrelated, i.e.,

ek6k,k-j ;j k4 ks
E[kck'J] = 1 eksk,j ; k> k (54)

This fact has been discussed extensively in the literature and follows directly from the theorem

in Sec. IV-A. During the period when the classifier is used in the normal mode, the filter

is time varying (i.e., the coefficients gk depend on the time index k) and the erro~r has a flat

spectrum whose level is ek. When the classifier is used in the extended mode, the filter be-

comes time invariant with prediction coefficients -g k and the error process Ek becomes (to

any desired degree of approximation) a white process with spectral level ek . If the input

process xk is Gaussian, then the error process is also Gaussian and is referred to as the in-

novations process of xk. The filter H(z) = i - G(z) (shown within dotted lines in Fig. 5) that

generates the error from the input is called the innovations filter. The innovations process is

defined as a white Gaussian process obtained through a causal and causally invertible filter 1 5

[this is clearly the case for H(z)]. The importance of the innovations filter in general is that it

can be used in the inverted form to generate the input process from white Gaussian noise. This

technique has been used extensively for the artificial generation of speech,-14 and has recently

been studied in connection with the generation of ei ,nbles of radar signatures to approximate

live flight test data.16
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The innovations filter provides an approach to obtaining an estimate of the spectrum of the

input process. Since the output process is white noise with spectral level ek, one has

ek(f) G ek (55)x• (f = Gk- (eJZ~fT)IZ

which implies that the process xk can be represented to any desired degree of approximation

by a system function with k poles. Equation (55) is identical to the so-called maximum entropy

spectral estimate.7-19 The maximum entropy spectral estimate is the spectrum of the "most

random" Gaussian process (i.e., that with maximum entropy) whose correlation function matches

the correlation function of the process xk on the lag interval [-k + 1, k - 1] (Refs. 11 and 19).

Another spectral estimate that will be of interest is the maximum likelihood spectral esti-* k
mate S x (f) (Refs. 20 and 21) which can be interpreted as the power output of a narrowband causal

filter of duration k centered at frequency f that minimizes the power due to frequencies other

than f (Ref. 21). It can be shown that the maximum likelihood and the maximum entropy spectral

estimates are related 11Z, as

k

1 (56)
S (f) j__ S (f)

The spectral analysis methods provide an important interpretation of the classifier. In

particular, from the definition of the power spectral density for discrete time signals ,3 one

can write

E [ (ck)21 = T $/ZT S: (f) df = TS1/ZT 11 -Gk(eJZ1fT)IZ Sx(f) df (57)

where Sx(f) is the true spectrum of the input. Observe that Eq. (57) holds regardless of the

input process: it is not necessary to assume that the input is chosen to make ck a white process.

The classifier output hk, given recursively by Eqs. (18), can be expressed using Eqs. (19a) and

(15) as

k(E .1) Z k(E .2 I2 K 1hk Z Llý -- + ln k k < ks (58)

j= e. j eKkI

When the classifier is used in the extended mode, its output is given by

k k (e
hk hk + (e -- •- • 2E ) kef

s ek j=ks+1 ek s j=ks +1 k s

(59)

By applying Eqs. (55) through (57) to Eqs. (58) and (59), one can express the mean Value of the

classifier output as

1 /ZT S.(f) 1./2T Sx(f) K
Elhk] = T • df-T 7ZS. df + ln k4 k (60)

sZT M} "/2T Sk(f) 1k2s
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and

_/_T Sxf) 1/ZT SXtf)ek
E[hk] =E[hk I +(k-ks) T 1/ 7T-- df- T k d+ ;ln ; k>ks

s Sj s (f) SZ s (f) \e)]

(61)

where S1 (f) and S2 (f) are the maximum likelihood spectral estimates and S1 (f) and Sk (f) are
the maximum entropy spectral estimates for the two processes to be identified. Equations (60)

and (61) show how the spectra of the processes are employed by the sequential classifier to

perform the classification. When the classifier is used in the normal mode [Eq. (60)], the mean
classifier output involves a comparison of the spectrum of the input process to the maximum
likelihood spectral estimates of each of the two classes of processes to be identified. When the
classifier is used in the extended mode [Eq. (61)], the mean output involves, in addition, a com-
parison of the input process spectrum to the maximum entropy spectral estimates of the pro-
cesses. Clearly, if the classifier is used in the extended mode for a large number of decision
stages k >> ks, the mean classifier output will depend more on the maximum entropy than on
the maximum likelihood spectral estimates. Since, in general, the maximum entropy estimate

provides a higher degree of resolution than the maximum likelihood estimate, use of the clas-
sifier in the extended mode should be more sensitive to the fine structure of the spectra. On
the other hand, since the maximum likelihood method tends to produce a smoother spectral
estimate whose amplitude more accurately represents the true power level, use of the classifier
in the normal mode should be more sensitive to the overall power level of the spectra. In addi-

tion, if the random processes are ergodic, then for k >> ks, the actual value of the classifier
output becomes proportional to the difference of the integrated spectral quotients expressed in

Eq. (61). That is

S•I/ZT Sx(f) 1I/ZT Sx(f) ek's

hk (k-kS) T ,,kT df-T§i/.T -k df +ln k>> kV-I/ZT -Si (f $ (f eks

(62)

To see this, observe that if the processes are ergodic, then for k >> k s

k
-(s.) -2(k-ks) E[(E.) ] 2 (63)

j=ks +1

By using Eq. (63) in Eq. (59) and applying Eqs. (55) and (57), one obtains the desired result

[ Eq. (6Z)).

V. SUMMARY

This report describes a sequential form of the quadratic classifier (the optimal decision
rule for Gaussian random processes) and its application to the discrimination and classification
of radar signatures. A special formulation of the classifier shows that each decision stage con-
sists of two steps; namely (a) linear prediction of nbscrvations to be made at the given stage and
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(b) application of the error between the actual and predicted observations to a.ni incremental clas-

sifier to make a classification decision.

The storage and computational requirements for the sequential form of classifier are the

same as those for a non-sequential quadratic classifier when both are applied to signatures with

the same number of returns, and classification results are identical. However, the sequential

classifier has the ability to classify signatures by observing only a relatively small number of

returns and so can provide a definite real-time advantage.

In addition, the sequential classifier can be c-,o -ated in an "extended mode" to classify

signatures with more returns than those used to di. n the classifier. As a result, the se-

quential quadratic classifier can approximate the perturmance of a non-sequential classifier at

a fraction of the storage and computational requirements. Since the sequential classifier rap-

idly classifies easily identifiable signatures and extends its observation time on more difficult

signatures, it makes better use of the radar resources and can achieve a higher overall level

of performance.

The sequential classifier as formulated here is intimately related to estimation-theoretic

results in mean-square filtering, autoregressive time series analysis, and innovations process

concepts. In particular, the linear prediction step produces the optimum linear mean-square

estimate of the signature based on the previous observations regardless of the process statistics;

when the input to the classifier is a signature from one of the classes that it was designed to

recognize, then the prediction error process for that signature is white noise. The incremental

classifier is the basic recursive component in a classifier designed to optimally discriminate

the two white Gaussian noise processes.

The classifier can be related to some recent results in spectral estimation. These relations

provide an interpretation of the classifier in the frequency domain.
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APPENDIX A

COMPUTATION OF THE CONDITIONAL DENSITY

FOR GAUSSIAN OBSERVATIONS

The purpose of this appendix is to show that the density for Ax k-1 conditioned on x k.1 is

Gaussian and given by Eq. (16) whenever the observation vector x k is Gaussian. To show this,

it is necessary to prove Eqs. (13) and (15).

To prove Eq. (13). one first obtains the inverse of the covariance matrix in partitioned form

by an adoption of the well-known Gauss-Jordan technique24 to partitioned matrices. One starts

with the relation

KkKk1 = I (A-I)

and performs certaii, "elementary operations" on both sides of the equation in order to reduce

Kk to the identity matrix. At the jth step in the process one has the relation

n(J) K = A(J) (A-2)
k

where R(j) is the reduced covariance matrix after performing some number of elementary op-

erations, and A(j) is the matrix resulting from performing those same operations on the identity

matrix. When R(j) has been reduced to the identity matrix, A(j) is the desired inverse.

Table A-I lists the steps involved in deriving the partitioned inverse covariance matrix.

First, the upper row of partitions is multiplied by K1I, then the upper row is multiplied by

Bk and subtracted from the lower row, and so on. The resulting partitioned inverse is shown

in the last step and repeated here using the matrices defined by Eqs. (11) and (12).

K-1 G -1 GT -G E l
Kkl~-1 k k Gk k k

Kk (A-3)

Equation (A-3) can be written in the equivalent form

K -I= k1 + k 1(GT 1 (A-4)

By applying Eq. (5b) to Eq. (8) and employing Eqs. (A-4), (3), and (9a), one arrives at the
result
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TABLE A-I

OPERATIONS TO DERIVE PARTITIONED INVERSE
OF COVARIANCE MATRIX

StRep j (j_ A

r Kk_ Bk I 0

I I

k-1
II

-- --------- i --
BkT D 0 0

k-1 k k-l

wh~r Ek=k~B1Kk~~k I -BKLi I

r I KIB] K 0 ][ -EI"TK
+k••,B k k-1 K o

T -10 Ek Il

Sk-i

IV k

0' .. .. -ET TKE-

o,', L-< k : : k, k-l



&Qk k-Mk)l k2kmk) (2 k-i -Mk-i) k-i(Z k-i k-1)

= [-GGkxk.A -m kt) + T -mk)] Ek• [-G'(_ki -nk + (k-_ -M~k-1

(A-5)

which proves Eq. (13).

To prove Eq. (15), note from Eq. (A-Z) that at any step j the determinants satisfy

I R(J)- • I AKkI . (A-6)

If one evaluates this at the third or fourth step in Table A-I, one can obtain the desired result.

In particular, for j = III one has

I Ek I K1•21 = I K-1 I (A-7)

which proves Eq. (15). Equation (15) when substituted in Eq. (7) leads to the conditional density

given by Eq. (16). The additional result, Eq. (13), shows that this density is Gaussian.
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APPENDIX B

PARTITIONED SYMMETRIC STORAGE

The parameter matrices P1 and P 2 of Eq. (21) are stored in a special form that will be

called wpartitioned symmetric" form. The partitioned symmetric storage form permits the

partitions of a symmetric matrix to be conveniently accessed for processing in FORTRAN. The
storage mode is in the form of a large linear array and is completely compatible with the stor-

6
age modes used for subroutines in the IBM Scientific Subroutine Package.

To access a partition, one needs to have a pointer (index) to the first word in the partition.

Partitions along the main diagonal are stored in symmetric form; that is, only the elements
above and including the main diagonal are stored (by column). Partitions off the main diagonal
are stored in general form; that is, all their elements are stored (by column). This is illus-

trated in Fig. B-1. Figure B-Z illustrates the difference between symmetric storage and par-

titioned symmetric storage for a 6 X 6 matrix with the indicated elements and partitions.

II8-S-4U11)1113- 9- 43G6Si

P11  P12  P13  P14  p15  P16I t

E G 2 P22 P23 P24 IP2S P26

I P33 P3 35  P36E I II

2 P44  I P4 P462 I .. . . . I
IP55 P56p p

I -1

SYMMETRIC STORAGE PARTITIONED SYMMETRIC STORAGE

P;1  P11 T

SYMMETRIC E-1 P12  
P12 E_1

FORM I P22 P22

P13  P13

P23 P23  G

GENERAL P33  P14FORMP14 P24

P24  P33
P34  P34 E2 1

SYMMETRIC -1 P44 P44  2

FORM E2 1 P15  P15

P25 P25

P3 5  P35
GENERAL GP P4
FORM 3 p16  G3

P16  P26

P26 p36

SYMMETRIC E P36 P46

FORM 3P4 P25
P56  P56 E3

p66  p66

Fig. B-I. Partitioned symmetric storage. Fig. B-Z. Comparison of symmetric and
paitioned symmetric storage forms.
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APPENDIX C

PROOF OF THE ORTHOGONALITY PRINCIPLE

The proof of the theorem stated in Sec. IV-A is given here. The proof follows that of

Papoulis.25

Theorem: Let the estimate A_ be defined so that the error c is

orthogonal to the observations _xk-.1' i.e., E[e kXkT] is a matrix of

zeros. Then AXk minimizes Eq. (26) and the minimum mean-square

error is given by

2 E[f T AX•min k -k

Proof: First note that since Ek is orthogonal to xki,' -k is also

orthogonal to any linear transformation of x k-1* That is, since

E[kk=i] 1 0 1, then E[_k(A k 1 )T] = 0 for any

matrix A. Now let H be any matrix of predictor coefficients and

let G be the matrix that results in c k orthogonal to x ki. The

prediction error using H is thus given by

'&Kk - HTxk-1 = OE k + (G - H)W xk-i

where c k is the error that results when G is used. Since Ek is

orthogonal to any linear transformation of x k-1 [and, in particular,

the transformation (G - H)T], the mean-square error is given by

E[I L5_k - HTrx k-1 1 = E[ kIZ] + E[I (G - H)Txkf1z]

which is minimized for H = G. Further, since c k is orthogonal to

any linear transformation of Xk-l, one has

S [TE T G[T E[T
mmin k=kE = E[ _k( k=-k-1

Q.E.D.
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