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... only when a rectangular taper is applied to the autocorrelation

function. Again, in computing conventional spectral estimates,

only a rectangular taper preserves the autocorrelation function in-

tact.

with

only when the available autocorrelation function iag values are

Fourier transformed in their original unmodified form. To reduce

the spectral window effects associated with this procedure, sor..e

conventional spectral analysis methods taper the autocorrelation

function.
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ABSTRACT

This tutorial paper describes the maximum entropy spectrum and the

Burg technique for computing the prediction error power and prediction er-

tor filter coefficients in the associated spectral estimation formula. The

maximum entropy spectrum is identical to the autoregressive spectral esti-

mator. ALso included in this paper is a discussion of the K-line spectrum,

which is the wavenumber analogvue of the frequency-domain rnaxumum entropy

spectrum, and the Burg technique modiiications necessary i%.,r its implemen-

tation.

The purpose of this paper is to providL: a complete and self-contained

account of the main features of the maximum entropy spectrum. Since many

of the relei'act mathematical derivitions are not found in the formal published

literature. they are incorporated in this paper. Supporting material and var-

ious sidelights of the rraximum entropy spectrum appear in the appendices.
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SECTION I

INTRODUCTION

The maximum entropy spectrum is an outgrowth of the deconvolution

filtering technique long used in oil-exploration data processing. A deconvolu-

tion filter is a whitening filter whose purpose is to sharpen the images of a

sceismic profile. John Parker Burg in the early 1960's noticed that high-

resolution power density spectra could be computed using the reciprocal of the

squared amplitude response of the deconvolution filter. This form of spectral

estimator was known as the Markov spectrum and is identical to the autore-

gressive spectral estimator independently developed and described in the sta-

tistical literature. Later Burg recognized that the. Markov spectrum is the

maximum entropy spectrum (Burg, 1967) of all possible power spectra agree-

ing with the measured autocorrelation function values. In addition, Burg de-

veloped a method (Burg, 1968) for directly calculating the coefficients of the

deconvolution filter (or p-ediction error filter) used in the spectral estimate.

This method produces more accurate spectra and minimizes the problem of

end effects.

Most of the problems encountered in conventional spectral estimation

are remedied by the maximum entropy spectrum and the Burg technique for

calculating the prediction error filter coefficients. For example, the inverse

Fourier transform of Lhe maximum entropy spectrum agrees with the measured

autocorrelation function values, whereas this is true in conventional spectral

estimation only when a rectangular taper is applied to the autocorrelation func-

tion. Again, in corrnuting conventional spectral estimates, only a rectangular

taper preserves the autocorrelation function intact. The maximum entropy

4.
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spectrum, on the other hand, always uses tVc autocorrelation function in un-

modified form. The Burg technique, furthermore, guarantees that the power

spectrum is always positive, that the prediction error filter is minimum phase,

and that the autocorrelation matrix corresponding to the prediction error filter

coefficients is always non-negative definite. With conventional spectral esti-

mates, a zero extension of the autocorrelation functioa is implicitly assumed.

In some cases, this assumption is unreasonable and produces negative power

in the spectral estimate. In all cases, the truncation of the autocorrelation

function produces lower resolution than the maximum entropy spectrum, which

achieves its increased resolution through an optimal extension of the autocor-

relation function.

The purpose of this survey paper is to discuss the important features

of the maximum entropy spectrum and the Burg technique and to present the

relevant derivations, which are often not readily available. The exposition re-

lies heavily on Burg's first two published papers. Section II deals with the

maximum entropy spectrum, Section III with the Burg technique, and Section

IV with the K-line spectrum, which is the wavenumber analogue of the maxi-

mum entropy spectrum. The appendices contain supporting material obtained

from a number of sources. which are referenred for the reader's benefit.

I-z
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SECTION II

THE MAXIMUM ENTROPY SPECTRUM

Given an infinite-length discrete time series (possibly complex) with
elements xT... &lT"" Xl2 x0 Xo a..." X X "" ) sam-

To I X T-1" Tas* sxr

pled at the time interval At, the associated NXN autocorrelation matrix is

- - i * .. * +N 1]x t t X"t+I " '" t+N-1

RN = xt+
RN xt+l

xt+N-1

I-
1r(0) r(l) ............. r(N-1)

Ir*(-) r(O) ............ r(N-Z)
[r*(N-1 ) r * (N-2) ....... : * r (O) _

where the vinculum denotes averaging over time, the asterisk denotes com-

plex conjugate, and the elements

T
- lira 1 I

r (j) = i I~ 2T''-" xtx (I -N~j :_N-I)
-T-.w ZT+1 E t -t.~N.l

t=-T

of the matrix are the autocorrelatin function values at the lags jAt. The

Haubocorrelation matrix is Hermitian (R = R , where the superscript H
N N

denotes conjugate transpose), T'plitz (having identical elements along each

diagonal), and non-negative dcfinite (VHRNV _ 0 for all non-zero N-com-

ponent column vectors V).

Il- I



Of all possible power spectra P(f) whose inverse Fourier trans-

forms

W/z
iZ 7rfj At

P(f) e df

_WIZ

agrec with the available autocorrelation function values r(j) from j = 1-N to

j = N-1, the maximum entropy spectrum (Burg, 1967) is the spectrumn maxi-

mizing the integral

SI log PM ')

WlZ

which is propcrLional to the entropy of a Gaussian band-limited time series

with power spectrum P(f) and bandwidth W = I/At corresponding to the

sampling interval At. Entropy maximization subject to the specified con-

straints on the power spectrum occurs when

log P(f)- bf -1Jjdf - rij
-WlZ j=I -N -wl2

reaches its maximum value through the proper chioice of the power spectrum

P(f). The quantities b. (j = 1-N. ... . -1, 0. 1. ... , N-1) are complex-

valued Lagrangian multipliers. To .atisfy the extremal condition. the partial

derivative of the integrand with respect to the power spectrum must be zero:

P0f i2Wfjat]
0 logP(f--- - b. P(f)

j=1 -N

11-2



N-I

le iz Wji fj,&t

Pin)
j= I-N

Thus the form of the maximum entropy spectrum is

= N-I N-i
Shie biz'

j= I-N j= I-N

-i Z ufat
where z = e . To make the power spectrum real-valued and to

satisfy the conditions r(-j) = r '", he Lagrangian multiplier b . must be-J

the complex conjugate b. of the multiplier b. whose subscript has the oppo-.1 J
site sign.

The equation

N-I

j= i-N

has Z(N-I) roots. If z is a root, then (z*)- is also a root if

b* zN-I + b* zN-Z * b + b
N-I N2 + ... +b 1 z +

+...+bN 2z-(N-Z)+ bNi -(N-i) 0,

11-3



then - 1

+ bN ( +...+ b + b

1 N-2

+ b'(4) +...+bNZ

IN-I

+ l( 27) =0+ bN 0

ThLs the number of roots for which I z1>1 is equal to the number of rootQ for

which Iz< I. If no roots lie on the unit circle, there are N-1 roots outside

the unit circle and N-i roots ixnside the unit circle. The denominator of the

maximum entropy spectrum can then be written

W.+a z + a z +...+a z ( 1 z

+ Nz+.-.+ Nz -

where PN is r-eal. All of the roots within the unit circle are incorporated

in the factor at the left. Thus the maximum entropy spectrum is equal to

PNI

where the N-component column vectors V and A are, respectively,

U-4



-II

*0 I I
SV Z and A a a

N - -i f(N-l)A
a l

The constraints embodied in the matrix equation

"I P( VVH N VV df =RN

V AA V

r(O) r(.1) ... .... r(N-)

r*(1l) r:'*N-Z)'.*:.* r(0 )

determine P and the components a 2 , a 3 ,..., aN of the column vector A.
N -3

Multiplication on the right by the column vector A yields

W/2
"P•N V(VHA) df= RNA

-W /Z (V A)(A V)

or

N ~ dz = %A z =
H A-5

zA V

11-5



where the contour-integral path runs counterclockwise along the unit circle.
-i2VffAt

ORevera al of the clockwise path a = e corresponding to increasing

frequey cy eliminates the minus sign in the expression for dz. The j-th

cOmFinent of RNA is

PN zj Zdz

H
Since the factor vHA contains all of the rocts within the unit circle. the

other factor AH V is never equal to zero within the unit circle. For all com-

ponents j from 2 to N, the power of z is non-negative and the integrand

contains no poles within the unit circle. For j = 1, however, there is a

simple pole at z = 0 whose residue is

z--.0 ul * '"*2.=1
- rzl+a* z + a z + ... + aN z

Canchy's residue theorem implies, therefore, that the first component of

RNA is PN and that the remaining components from the second through the

N-th are zero. Thus the maximum entropy spectrum is

PN /W PN At

vH AAH NV iZNfj

+ A a. 1

j=l

-*herc P and a., a3, .. a are solutions of the matrix equation
N 2 31' N

11-6



IL

r(O) r(l) ........ r(N-l) I
*N

r (1) r(O) r(N -0)

-- Rearrangement of the bottom N-I rows produces I

•mr(0) r(il ........ a(-2 a 2 r'1)

• ..... .1-Zt

r (1) r(i)... r(N-3) -a r (1)

. (N-I ) r(N-O ) e .... •r(N) -a r (N-

or

"""t-I t-1 xt- xt-(N-I -a t-I

"- xt-z -3 : t-2 xt

.. **. :

t -(N -1) rN Nxt_-(N - N r

the design equation for an optimum (N-1)-point-long forward prediction filter

with weights (-a., -a3 . . . ,-aN) as shewn in Figure JI-lla). Taking the

V N

complex conjugate yields

"x* 
x11-7(

the esin euaton fr a opimu (Ni) -oin-log fr'sard redctin flte
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r(O) r (1) (N2 a 2  r(I)( 
-

r(0) r0) r ......... r (N-3) -a r(Z)

ir(N-) r(N ........... r(; - - _ r(.
S"* " *.0

S~or

. ,i 0

_• -a; x
Xt+ I t, I N, ......... xtNIN-j t+ 1

L x -

• .0:

t+N N t+NI

the design equation for an optimumn (N-I)-point-long backward prediction

filter with weights (-a-N x-a, -a2 ), as shown in Figurejl--l(b).

If the: prediction filter output is subtracted from the actual valv.e x t, the

result is the prediction error, which can be produced from a filter with

unity weight at zero lag and the negative of the prediction filter weights at

their respective lags. Figures UII-(c) and II-l(d) illustrate the forward -ard

backward pretliction error filters. The term P N in the maximum entropy

spectrum formula is the mean square error of the prediction filter and

the power of the prediction error filter output•

rN [N~ (N 2 ".. .... r(: N

• - . •

* 9-

i . . . . . . . . . . . . .. . . . .. . . . . . . . . . . . . .. . . . .. . . . . . . . . . . . . ... . . . . . . ... .-*. . . . .,.*- -



* *-1 * x *E a t t t+..... xt+ N
ajx t+Ia ý

xx

Exxt+ 1 +

x a.

-. x t+N- A,

N-1 2

x*

= xt - (-aj+ 1 xt-j - t

Inverse Fourier transformation of the maximum entropy spectrum

produces autocorrelation function estimates at lags greater than N•-1. Addi-N -itwiNtt
tion of the element z = e to the vector V permits the (N+ 1) X

(N÷ 1) autocorrelation matrix to be determinedt-

II-10
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N df

SH.

r (O) r(l) -- . - - -r(N -1) r N ) "-r r( :.....o%-rNZ , ( -1
* I

*90 * 0

* %
, . . r

R*

r (N-1) r (N 2-)....r(e) r1

r (N) r (N-i) ..... r (1) I r(O)

Multiplication on the right by the extended prediction error filter column

vector and transformation to the z-plane yields

NJ -NI. : RNdlLN]I

where the contour path runs counterclockwise along the unit circle. The
N-1 H(N+ l)-st component is zero since all poles of the integrand z I/(A v) lie

outside the unit circle. The value r (N) can be determined from the equa-

tion for the (N+ 1) -'A component. Repeated application of this procedure

yields the values r (N+ 1), r (N+ Z), etc., from the matrix equation

II-11



r(O) r(il) .......... r(N-I 1 PN
*N

r (1) r(O) .......... r(N-2) a 0

r (N-1) r (Na-) r(0) 0

r (N) r (N-) .... r () 0

r (N+j) r (N-i+j) .. r (1) 0

Figure II-2(b) illustrates how the backward extension of the autocorrelation

function is accomplished using the complex conjugate of the backward pre- •

diction filter. Figure II-Z(aldepicts the corresponding forward extension with

the complex conjugate of the forward prediction filter.

When this maximum entropy method of autocorrelation function extension

determines the unavailable lag values, the resultant power spectrum

p~f M W r (j) z]=W(j) e

j=-w j_- -.

is the maximurn entropy spectrum. This fact can be verified by prernulti-
plying the power spectrum by W (V1A) and applying the method of undetermined

I ~H)Pf HA• ~)"- Ncoefficients to the coefficients of z 0, z , .. z ,(-1 z -N ... (N ...)

r( AN~) rff (N-V A)..r (ij) H

j= -4 A
Conventional spectral estioates with taper functions (Bartlett, Haoring,

Hamming, Parzen, etc.) are exactly equal to the convolution of the maximrdre-

entropy spectrum with the frequency window corresponding to the particular

tapering method employed:

detrmne te navilbl lg alusth rsutan pweIsecru

P•,f) I-e'rU)2t "rU• e -12 wf At



r(1) r(2} ............... r(N-2) r(N-1)

-aN -a ......... a -a2

r(+ ") """ r(N+ 1)

r2j) .)........ r(N-1+j) r(N+ j)

-a 4  -. -a -a 2

(a) Forward Extension

r(-N+ 1) ri -N+ 2) ................ r(-Z) r(-l)

0 0

- -a 3 ... ................ -a N-i aNJ

r(-N- 1)

r(-N-j) r(-N+ I-j) .....r(-3-j) r(-Z-j)
f0 0 0

-a -a ............. aI /"
r(-N-1-j)

"(b) Backward Extension

FIGURE 11-2

EXTENSION OF THE AUTOCORRELATION FUNCTION

11-13
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N-i f+WZ

I -iZifk~t -iZw(j-k)kAt

F w.;'rZkJt e U e d4'

fj= -(N-1) -W/-

I,,I lw r~ e, 6

j=-.(-N-1) kt= ..•/
N-I

L +-iZvfkAt

3E i wir(k)e Wk Ik

sirejanncae ± integ3rers '3 I f3theKoekrdla prtr n is the

taper weighting for t.he autocorrelation function r(j).

The equations
N-I

I r(j-k) (for- "

j= 0

sn-14

+ W .. .... .•



a in the autocorrelation function extension matrix equation imply that

* _j
aj2 a. 1  E a- tqxj 0 - j+ I t-.j 't-k : aj t t-k t Xt-k

j=0 .j=0.

or that the crosscorrelation function between the forward prediction error

filter output q and the time series valses x b.fure the filter output time
t t-k

is zero for all positive values of k. Similarly, the equations

N-1 -1
0:E a j+l xt+j Xt+k a j+1 xt+ xt+k x t+k Pt

j=0 j=0

imply that the crosscorrelation function between the backward prediction

error filter output p and the time series values xt+ k after the filter output

time is also zero for all positive values of k. For the values of k from I to

N-I, this result is a consequence of the fact that the (N-l)-point-long predic-

tion filter is optimum. For the values of k greater than or equal to N, this

result is a consequence of the maximum entropy assumption. If this assump-

tion is correct, the (N-i)-point-long prediction, filter is also the infinitely long

optimum prediction filter, and the predictability of x cannot be improved by using

the time series values Xt+k at lags k whose absolute value is N or greater.

If the predictability of xt can be improved, the entropy or uncertainty of the

time series x is less than

t~
W/2 PN At df.

-{W/Z VHAA V

Since the forward predictiorn error filter output qt is a linear com-

bination of earlier time series values xt-k and the backward prediction error

filter output Pt is a linear combination of later time series values xt+ k' the

equations

II-1 5



N- N-i1___

qtqt-j qt ak+l xtj = a t - = 0 (jl)
_ k= 0

a 0

Pt+j Pt ak+l xt++ t ak+l xt+j+kPt = 0 (l)
Lk= 0 k= 0

Ptp 1k+ xt+k = k+l xt+Pk t tPt PN
k=O k= 0

Lk- 0 k= 0

imply that the prediction error filter output has a white power spectrum, that

the filter output power is P N and that the filter output power density is P N/W

or P NAt. Figure 11-3 portrays the relationship between the input power spectrum

and the white prediction 'rror filter output power spectrum correspo iding

to the maximum entropy assumption. The maximum entropy assumption that

the prediction error filter output is white is equivalent to an autoregression

model of order N-I for a second-order zero-mean stationary time series.

The maximum envcopy spectrum is known as an autoregressive spectrum in

the statistic•a literature (e. g. : Jones, 1974; Gersh and Sharpe, 1973). The

assumed whiteness of the forward and backward prediction error filter outputs

proviCes a means of testing the maximum entropy assumption: if the spectra of

the prediction error filter outputs are not approximately white, the maximum

entropy spectrum is not a good spectral estimate. This fact is useful in

determining the best length for the prediction error filter. More formal

11-16



' pi

Input Prediction Output Time Series
Time Error N With White Power

Series Filter Density Spectrum PN At

Input Power Spectrum= PoOutput Power Spectrum
Power Response of Prediction Error Filter

PNAt
N

N-I 2
+ iZelfj %t1 + a.÷ 1 e

j=l

FIGURE 11-3

ASSUMED RELATIONSHIP BETWEEN PREDICTION ERROR FILTER
OUTPUT POWER SPECTRUM AND INPUT POWER SPECTRUM
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methods of identifying the order of the autoregression model such as Akaike's

final prediction error (FPE) criterion (Akaike, 1969; Akaike, 1970a; Akaike,

1970b; Akaike, 1971a) and Akaike's information critenion (AIC) (Akaike, 1971b;

Akaike, 1972a; Akaike, 1972b; Akaike, 1974) provide a means of objectifying

the maximum entropy spectrum. These methods are apparently not widely

known in the geophysical literature. Likewise, methods of estimating the

spectral mean and variance are available in the statistical literature (Kromer.

1969).

Since all zeroes of

N-i

j=l

lie outside the unit circle, all zeroes of the forward prediction error filter

z-transform

N-i

A(z)~ i+ ZE ai 2
j=l

also lie outside the unit circle because the roots of A(z) are simply the com-

plex conjugates of the roots of AH V. Thus the forward prediction error filter

is a minimum phase filter. Since its output does not precede any of its input

points, it is also a causal filter. The z-transform

1 1 = 1 + c ziC( A(z) N-I :L j+I

1+ E aJ+ 1 Zi j=l

j=l

of the inverse to the forward prediction error filter can be expanded in a

power series with no negative powers of z since the forward prediction error

filter has no zeroes on or inside the unit circle. The inverse of the forward
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prediction error filter is also a causal minimum phase filter. The inverse

filter can be used to construct the time series x

Am n

sinc

C k+ 1 q t-k c Ck+ 1 a j+ 1 xt-j-k

k=o 0= 0LJ=O
92

in m, Nm- 1) 1_

c a

= or t-m
M- 0

since

N-1 j -min-N-1)9

E a aj+1 Zi Ck+ I = c m-n-l a n+ 1zM

j=o /k-- 0 M=OL n=o0

gJ
m-= 0

Thus the input time series can be generated from the forward prediction error

filter output using a causal filter (the inverse of the forward prediction error

filter). The process is causally invertible: the causal forwird prediction error

filter produces the forward prediction error filter output. If the maximum
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entropy assumption is satisfied (i. e., if the time series qt is white), then i.

the forward prediction error filter output is the innovations sequence (Kailath,

1970; Kailath, 1968; Kailath and Frost, 1968; Frost and Kailath, 1971; Kailath

and Geesey, 1971; Kailath and Geesey, 1973; Gevers and Kailath, 1973; Aasnaes

and Kailath, 1973) corresponding to the time series xt when it is a second-order

zero-mean stationary time series. Figure 11-4 diagrams the relationship between

the innovations sequence and the input time series. An equally apt ann more

succinct name for a prediction error filter is an innovations filter (as shown

in Figure 1l-4)The backward prediction error filter is a maximum phase filter

(a minimum phase filter if the direction of time is reversed). When the maxi-

mum entropy assumption is valid, it generates a backward innovations sequence

from present and future values of the time series xt. In the vast majority of

practical geophysical processing situations, the optimum prediction error

filter coefficients tend to zero as the length of the filter increases. Conse-

quently, the prediction error filter output approaches an innovations sequence

as the filter length increases indefinitely.

To solve the prediction error filter design matrix equation, a simplified

form of a recursive algorithm first developed by Norman Levinson (Levinson,

1947) and later presented in the statistical literature (Durbin, 1960) is available.

The (N+1)-point-long prediction error filter can be created from the N-point-

long prediction error filter through the determination of the single coefficient

N+1
N+1 in the (N+l)-point-long filter:

r(0) I r(1)*...... r(N-1) 'r(N) I 1 -

r() r(o):.... r(I?-Z) 1:r(!- 1) a (aN
2 N+

VNl
r0 .. : +N+l

r(N-1) r (N-2)*.e...r(O) 1r(1) a L(a
(N)I r(N-1)-oor(1 r)01
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Innovations SequenceInu
(White Forward Pre- Time

diction Error Filter Output) Series

Forward Prediction Error Filter)]

FIGURE 11-4

RELATIONSHIP BETWEEN T711 INNOVATIONS SEQUENCE
AND THE INPUT TIME SERIES
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PN ÷

N, NN÷IN
N ~ F~ll

- .:"aN÷ :
* N+21 I

* I

.00
L• LP~j 0

where

N-i•N-a. r* (l *-J)
N ~ 3+1

j=0

Setting

N+1aN+l " IPlN

yields the prediction filter weights (A+ aN+N PV = 0) and the power PN+I

of the (N+l)-point-long prediction error filter output:

+ r (aN+' )I - "a-a
PN a *- aNl N+l N+l N+

N+l [ N ,JJ N N+lkaN+l

The NXN solution proceeds recursively from the one-by-one problem, where

[()] [a = 1= 1

The amplitude of the coefficient aN+l must not exceed one if the (N+I) X
N+ 1

(N+l) autocorrelazon matrix RN+l is non-negative definite. This condition

is equivalent to specifying that the predic-ion error filter's z-transform has

no zeroes inside the unit circle (see Appendix A). A survey paper (Kailath,

1974) on linear filtering theory discusses some of the implications of Levinson's

algorithm.
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V

I. Since
r(O) r(-).r(N -1) 1 0 ..- o --------eoO

r (1) r(0) o...o.o..... r(N-2) aN %. so
a 000. "0.

000OO 000.@ 3 •* .

3 0 .

* oN N-1 0.
r (N-1) r (N-Z) .oo~or(O) aN aN~** ,a 2

NN

: . N- ".. - I0*
"'!~.ir(-l N-).....o rP0 N ,-1 *"-*904

a*o..o, op

0 0.0. 0...

0 . p

the determinant of RN is

N

IRNI=H Pi

j= 1

and the inverse of R is
N

: P *o..0 1 (al N N*
1 0 o.. o0- 0 0 " (a 3 -.. .o... aN

Sgo

N 0 * 0 N-p .*...... a N-
a2 1 og*M * .. N _-i.. •. • ONR -. Ia~

0 : \ N- 0 •.
0 a ng 0 6

N N - 00 : "•. 4D 00 0•• 00 -.
-a 1 ".1 ("1 0 0 0 0 2)

a a z 1 *go 0 0" 1 .0 ........... .... 1
aN . 2 I O ..........
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because

0 a 1 ........a1 )N riO1) r(l) ..--. **-- r(N-l) 0 0
6.2 a3. N

I N

% a * %
" .. 6* 0 L •%• •

* 0 0 % % 0 •o
: .• •a. 1 0

00 % N N*-I %-Z
r (N-1) r (N-2).--..r(0) a aI.l a

N N-1 z

PN 0 .................. 0

0* P

N -

P 0

0 . . . . . . . .o . . . .0 0 P 1

(The ze-'oes to the right of the main diagonal in the last matrix occur because

the matrix is Hermitian, and this fact is true since the matrix to the left of

the Hermitian autocorrelation matrix is the conjugate transpose of the matrix

to its right.)

If w is substituted for r(N) in the (N+ 1) X(N+ 1) autocorrelation matrix

R N+1' the determinant is

R I = IRN C + w* w + w w -rww

where c is a term not involving w or w andIRN-1 w is the coefficient for w

Since the is also the product of the prediction error powers

P through PN+l' it is also equal to

=+ PNI 11 a N+ (aN+lI

r I _11 •
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t(

j N+ IThe determinant is maximized when a 0 or, equivalently, when w = wSN+ I

so that r =P and
N

N-I

w a+ r(N-j)

j=-

As shown earlier, r(N) = w is the maximum entropy extension of the auto-
0

correlation function. An alternate but equivalent entropy definition requires

that the determinant RN+ I be maximized by the proper choice of r(N) in

order to maximize the entropy of the time series x (McDonough, 1974).
t

The fact that the maximum entropy autocorreh-tion function extension de-

scribed here does indeed maximize the determinant IN 1I means that the

two entropy definitions are consistent. Since the autocorrelation matrix is

non-negative definite, the autocorrelation function value r(N) must lie on or

within the w-plane circle described parametically by w + e PN* The maxi-

mum entropy autocorrelation function extension places the value r(N) precisely

at the center of the circle. Any other choice of r(N) is biased in the sense that

it adds information not based on the autocorrelation matrix RN. Thus, when
N*

the autocorrelation matrix RN is precisely known and nothing is known about

the autocorrelation function at lags of N or greater, the maximum entropy

spectrum is the most reasonable power spectrum possible.
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II.

SECTION MII

THE PURG TECHNIQUE

The Burg technique (Burg, 1968) is a method for computing the pre-

diction error filter coefficients directly from a finite-length time series x

(t= 1, 2, ... , T-l, T). By using the Levinson recursion relationship described

earlier, this procedure guarantees that the forward prediction error filter is

minimum phase and that the associated autocorrelation matrix is non-negative

definite. Minimizing the average power of both the forward and backward

prediction error filter outputs to obtain the filter coefficients provides g.eater

reliability in their estimation. In this algorithm, no assumptions about the

time series before or after the measured values are made, so that end effects

are avoided. The advantages of the Burg technique are particularly pronounced

when the number of points in the time series xt is small.

Since the coefficient of a one-point-long prediction error filter is one,

"both the forward and backward prediction error filter outputs at time t are

equal to xt. Computation of the predliction error power for the one-point-long

filter initializes the Burg technique:

T

P = T xt xt t
t= I

The autocorrelation function value r(O) is equal to P 1 .

Once the N-point-long prediction error filter outputs and coefficients

are known, the (N+ 1) -point-long prediction error filter is formed from the N-

point-long prediction error filter through the determination of the single coeffi-
N+ Icient aN+ I in the (N+ 1)-point-long filter. With the aid of the Levinson recur-

sion relationship between the N-point-long and (N+ 1) -point-long prediction

111-1
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error filters, the forward and backward (N+ 1) -point-long filter outputs

can be expressed as a linear combination of the N-point-long filter out-

puts:

N+ I N+ I N N
q a +qqt+ N = N+ 1Pt + t+ N

pN~ Pt qN+I N Nl) N

NPt + N+I D t+N

N N
where q and pt are the outputs at time t from the N-point-long forward

and backward prediction error filters, respectively. Figure M-1 illustrates

this relationship, which was first stated explicitly in the literature by
N+ 1

Andersen (Andersen, 1974). The coefficient a is chosen to minimize
N+ I

the average

NT-l 2(-)a~lP N

I E I [•N + N+1 Nj 2  I N N+I q NEN+ 1 2 (T-N) 4 t+N aN+ I t Pt aN+ 1) tN

t= 1

T1 N (pN) N N N+I N+ 1
t1 Np t + q ( N N+ 1

N t+ NNt+

+ (qt+N aN+l + (Pt ) qt+ N(aN+) 1

of the forward and backward pre-.iction error powers. EN+ 1 is a minimum

when its partial derivatives with respect to the real and imaginary parts of
N+ 1

aN+ I are zero:
OENI OENI

N+ 1 N+1

N+1 N+l
8Re aN+ Ilm aN+ I
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N
+ . /___tt N

a N 2--®---"--- a N,
N+ N+ 1

0 t+ N

xo N N®- - /

SNt N+It+1 Nt N

2 ---.------ (N

N+, I + N

(a) Forward Prediction Error Filter Output: q a N+ q+

FIGUREN\I-1

tO NF TE tT t+EN

N+ 1 1

N+1 N N1\*

(b) Backward jPrediction Error Filter Output:p Pt p N+ N 1/ q t+ N

FIGURE IM-1

FORMATION OF THE (N+ 1) -POIN T-LONG PREDICTION ERROR FILTER
OUTPUTS FROM THE N-POINT-LONG PREDICTION ERROR FILTER

OUTPUTS USING THE LEVINSON RECURSION RELATIONSHIP
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1 [T-N * N-N

so that is chosen to be
aN+ 1 T-N

*t+N
N+L t=l

aN+l "T

+ N t+N

t= I

Since the summation in the numerator is the inner product between the vectors

(pit P21 ... I PT-N ) and (q N+V q N+2' " ' q t)and the denominator is the

sum of the squared 'nagnitudes of these two vectors, the absolute value of
N+1 2 3 N+ 1

aN+ 1 never exceeds one. If the absolute values of a 2 , a 3 , .3.. aN+ 1 are

all less than one, then the forward prediction error is minimum phase (see
N+I1

Appendix A). Substitution of aN+ 1 into the expression for E yields
N+ 1 N+lI

E I ~~T-N N N +qN qN1aNI(a+I

E+ 2 (T-N) + t t +N( t +N)][laN+ I N+l1)j

The (N+ 1)-point-long forward prediction error filter is determined

from the Levinson recursion relationship:

1] 1 0

N+I1 N aN)
a2 2  aN

a:N IINN+
" " + aN+ 1 "

aN+ lj N 1
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The prediction error power for the (N+ 1)-point-long filter is also determined

from the Levinson recursive relationship:

P P [ N+1 I N+1I [q
N = 1 N -aN+l aN+l )

SN+V=r I.a~ (N1

. This power is, in general, not equal to EI• "If the absolute value, of a 2'2
3 N+1

a3 ' "". a+ are all less than one, then the -natrix RN l is positive

definite since the successive determinants

all k
Sl~ fj Pj i (k ,.. N+ 1)

"j=l

are all positive. If desired, the corner elements r(N) and r *(N) in the matrix

RN+ 1 can be recurs'vely determined from the bottom row of the (N+ 1)-point-

long prediction error filter design matrix equation:

N S/N+I 1)

r(N) = - (a+ I r(N)-j).

j=l

Thus the matrix P N+ I can be determined from P and the successive pre-

diction errur filters.

From the prediction error power PN and the N-point-long prediction

error filter coefficients, the maximum entropy spectrum

pN~t

P(f) N N

j+l 2

j=l
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corresponding to the Burg technique can be calculated. Empirical comparisons

of the maximum entropy spectrum using the Burg technique with the maximum

entropy spectrum using estimated autocorrelation functions (e. g., Radoski,

Fougere, and Zawalick, 1974) indicate greater resolution and spectral accuracy

is possible with the Burg technique. As far as known, however, there are no

definitive statistical studies to support this claim. Furthermore, there is no

known objective method for determining the crder of the autoregression model

when the Burg technique is used. Akaike's criteria appear to be inextricably

linked to autocorrelation functions estimated by the formula

T-j
1 E *~r(j) = - ) xt x

T-j t t+
t= 1

The statistical evaluation of maximum entropy spectra using the Burg technique,

therefore, appears to be an area meriting more detailed scrutiny. At the

present time, the choice of the prediction error filter length for the Burg

technique is a matter of subjective judgment.

Since the Burg technique computes the prediction error filter coefficients

and filter output power directly, the autocorrelation function is not needed for

the maximum entropy spectrum. In fact, the autocorrelation function lags 0 to

N-1 or the order N-1 maximum entropy spectrum or the N-point long predic-

tion error filter and its output power contain equivalent information. Figure mT-z
illustrates the relationships between these three functions. A knowledge of

one permits the other two to be determined. Figure III-Z presents some, but by

no means all,of the ways to accomplish the transformations between these

three functions.

The other principal use for autocorrelation functions is in time-domain

digital filter design, where the inverse of the autocorrelation matrix RN is

needed. As shown earlier in this paper, however, the inverse is
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(a)
Autocorrelation Function • Maximum Entropy Spectrum

(b) (c)

Prediction Error Power
and Prediction Error Filter Coefficients

W/2Z' f i2zrfJt

(a) r(j) = P(f) e Atdf

,t. ~r(0) r(1) .. . . . . . . . . . . .. r(N -1) 1 P N
i , NN

(b) r () r(O) ........................... r(N-Z) a N

* * **:N
r (N-i) r (N-Z) ... ................... r(O) aN 0

PN~t

(c) P(f) N-1 2

N eiZTrfjAt1+ E j+lI

j= 1

FIGURE Ifl-2

RELATIONSHIP BETWEEN AUTOCORRELATION FUNCTION,
PREDICTION ERROR FILTER AND MAXIMUM ENTROPY SPECTRUM
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which can be obtained from the successive prediction error filters and their

error powers.
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SECTION IV

THE K-LINE SPECTRUM

When the crosspower spectrum matrix for an equally-spacsd line array

is available, there is a wavenumber analogue to the frequency-domain maxi-

mum entropy spectrum described previously in this paper. It is known as the

K-line spectrum and was developed by John Parker Burg while at Texas

Instruments.

"If a space-time wavefield can be described as a superposition of plane
"waves, then the inverse Fourier transform

r(j) p(k) e -iZvkjAx dk

of the waveirnmber spectrum P(k) is equal to the crosspower spectrum for

two sensors at a spatial displacement of jAx, where Ax is the distance be-

tween two successive sensors in the line array. This fact requires that all

crosspower spectra corresponding to the same spatial displacement be

identi cal:
tw

S~-i2•f

r(j) (f) =m .m+j(r) e 42f r d-,

0~+ m, m+J

where
T

1 *im I
(T)- g (t) g .(t-r) dt

mm+ j TI'.a*.2 T m j
T-T
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is the crosscorrelation function at a time lag 7 between the output gri(t) of

the m-th sensor and the output g .mj(t) of the (m+j)-th sensor, and where

t denotes the time of the sensor output. As a result, the NXN crosspower

spectrum matrix

4(f) ( f0.....i* (f) r(O) r(l) .............. r(N-l)
i IN

R• ( o ' '() r.....*()(f)Ur..1) . r(N-2)

l(f) *2(f) .... *N(f) r (N-i) r (N-Z) ......... r(O)
N I NZf *NN

for an N-element array with sensor coordinates 0, A x, Z A ? ... , (N-1) Ax

is a Toplitz matrix as well as a Hermitian non-negative definite matrix.
i2r7k/W•

If W = 1/ Ax, z = e , and the vectors V and A are, respectively,

1 1 1

i 2rV Ax
V z e aand A a

"N- i2frk(N-1) 1 x
z e a N

the wavenumber maxrium entropy spectrum is
PN P Ax

P W IiAAHv N-1 21+ aj+AI e -i2irkj4x

j=l

where P and a,, a , aN are solutions of the matrix equation
N 2 9 3'.
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r 0 r i........ r(N-1 Il P
r (1) r()............ r(N-2) a

2

(N-1) r (N-2) ........ r(O) aN 0

The proof is very similar to the proof for the frequency-domain muaximum

entropy spectrum and has been given previously (Barnard, 1969).

In tkc case of the wavenumber maximum entropy spectrum, the forward

prediction error filter with weights (1, a ... , aN) is a spatial filter whose

output is the error in estimating the N-th sensor from the first N-i sensors.

Figure IV-l illustrates this situation. In the figure, X.(f) denotes the FourierJ

transform of the j-th sensor output. The backward prediction error filter

with weights (a, N . , 1) outputs the error in estimating the first sensor

from the second through N-th sensors. Theterm N in the flter design matrix

equation is the spatial prediction error power density spectrum and is equal

to both q q and p1 P1 . where the vinculum denotes the crosspower spectrum

(or autopower spectrum) of the two quantities below it.

In practice, the assumption of space-stationarity is not satisified and

the elements along any diagonal are not equak

*m .(f)+ jM n, n+j (f) (mn* n).

The easiest way to remedy this problem is to average the elements along each

diagonal of the crosspower spectrum matrix. The ensuing spectrum is the

wavenumber analogue of the standard autoregressive spectrum. If this pro-

cedure is performed, however, the resulting T'iplitz matrix may not be non-

negative definite.

Another way to compute the wavenumber maximum entropy spectrum

is to use a modified version of the Burg technique. The procedure begins by

averaging the autopower spectra to estimate the 1-point-long prediction error

power density spectrum:
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x(f) X2 V .................. ... 1 (f) XN(f)

aN(f) a ............................... af(f) al(f) I

N-i

Forward Prediction Error = q= a. l(f) XN(f)

J= 0

(a) Forward Spatial Prediction Error Filter

1 (f) X2(f) .......................... XN-1 (f) XN( )

aI (f)= a (f) ........................... aN (f) aN (J

N-1

Backward Prediction Error = P = aj+ I (f) Xj+ (f)

j=O

(b) Backwi-rd Spatial Prediction Error Filter

FIGURE IV-1

SPA TIAL PREDIC TION ERROR FIL TERING
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i N N

m=1 m=1

Then the algorithm continues recursively with the minimization of the spatial

prediction error power density spectrum

N- M I
SI ~M M+ 1 I

SEM+ 1 Z(,N-M) qM+M + aMl m P 1 qm+
M [= 1

M+ 1
for the (M+ 1 -point-long filter by setting aM+ , equal to

"N-M

Pm)• qm+M MZ
=" M+ 1 M= I -S"a

M M M
-2 Pm) + qmM +aM~l N PM (PM) M+ M(~+

m= I

where S and S are
1 2

N-M a• 2

"SI

m=l m+M-l •
x 

M

L X-+ M 5M
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* IA

a

+ m(f) *m~~+I ooo~ + . -(i) a

[I M m+M m+I+MM +M1

~2~~ m Em M+1+MJ'

M=M

Lm+ Mv L aM

[I aM) ...... (aM'v¶ (' X xM.j L, Mm+Mm+M-foot+1 1

X* 
m

M+ 1 amJ

FM) ('f... (aM)l
C a

c~ a m
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L.

and where

* *

N* ** in

*%

S, •mn(•~~~ ',. +, 4. l * SrMl ~dn... r~*UIj •l=*(

*S %. %

M+ 1

Aside from the way aM+ I is computed, the rest is the same as for the Burg

technique proper. Normally (but not always) the procedure continues until the

prediction error filter length is the same as the number of sensors.

M+ 1
The absolute value of aM+ 1 never exceeds one since

q+ M P- M (P) qm MV mM+.

(The absolute value of a crosspower spectrum never exceeds the average

value of the two corresponding autopower spectra).

Because the prediction error filter outputs are not available, the

crosspower spectrum matrix must be used in applying the Burg technique

to wavenumber spectra. This fact makes the required computations more

cumbersome, especially for arrays with many sensors. If, in certain situa-

tions, some loss in spectral resolution and accuracy can be tolerated, the

wavenumber analogue to the standard autoregressive spectrum pro-ides a

reasonable alternative.
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"APPENDIX A

TEST FOR MINIMUM PHASE SAMPLE POINT FILTERS

(by John Parker Burg)

In this appendix, a simple test is developed to determine whether a

finite length sample point operator is minimum phase. The development of

this test, which is known as Jury's stability test (Jury, 196Z) in the theory of

sampled data control systems, is contained in the book The Geometry of the

Zeros by M. Marden (Marden, 1949). The justification for presenting this

test and two important theorems about the zeroes of a polynominal in condensed

form is their apparent newness to geophysical workers in the field of digital

filter theory.

A sample point operator is defined here to be minimum phase if and

only if both the filter and its inverse sample point filter are

1) physically realizable (i. e., their z-tranforms are Taylor

series in zof theforma + a z .• + a z + ... ), and
0 1 n

2) stable (i. e. , their z-transform series converge for Iz = 1 ).

This definition is equivalent to saying that the z-transform of a mini-

mum phase sample point operator is both analytic and non-zero on and inside

the unit circle. Since a finite length, physically realizable, sample point

operator is analytic for JzlJ<o , the test for minimum phase becomes one of
N

determining whether all the zeroes of a polynominal, a + a1 z + ... + aN z
0 1N

are outside the unit circle.

To develop the test, two important theorems about the zeroes of a poly-

nominal are first proved. These two theorems and the test are valid for poly-

nominals with complex coefficients.

A-1



Principle of Argument Theorem }
Let C be a simple closed Jordan curve in the complex plane and let

F(z) be a polynominal in z, none of whose zeroes lie o.. .. Let A be the

total phase shift in F(z) as the point z traverses C once in a counterclock-

wise direction. Then the number of zeroes of F(z) inside C, counted with

their multiplicities, is given by A/21. N
N FN

Proof: Factoring F(z) a + az + ... + aNz into aN (Z-o)f
i= 1

we see that each root which lies inside C cnntributes Zr to the total phase

shift of F(z), but that each root out~ide of C has zero contribution.

Rouche's Theorem

If P(z) and Q(z) are two polynominals in z for which IP(z)l > k0(z) on

a simple closed Jordan curve C, then the polynomial F(z) = P(z) + Q(z) has

the same number of zeroes inside C as does P(z).

Proof: We should first note that since IP(z)$ > I(z)j on C. P(z) and F(z)

cannot have any zeroes on C. Writing F(z) = P(z) [1 + Q(z),/-1(zj the total

change in the argument of F(z), as C is traversed once in a counterclockwise

direction, is the sum of the total phase shift of P(z) and I + Q(z)/P(z). But

since IQ(z)I c, IP(z4 for z on C, the real part of 1 + Q(z)/P(z) is always posi-

tive for z on C and thus has a total phase shift of zero. Therefore, F(z) and

P(z) have the same total phase shift and thus, from the Principle of Argument

Theorem, they have the same number of zeroes inside C.

Minimum Phase Theorem

A finite length sample point operator is minimum phase if and only if

its z-transform is given by aoQN(z), where NN(z) satisfies the recursive

procedure
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1-

L. Qo(s)=:l
0 z

Ql(z) = Qn(z) + r Zz (A.n1)
n-In n-l .z

withallIjj

Proof: We prove that a filter generated by this recursive procedure

will be minimum phase by noting that

2 n
I) TheQ (z) are of the form l+a z+ a z + ,.. + a z

n 1 n"and thus are analytic on and inside the unit circle, and

2) Starting with Q (z) = 1, which has no zeroes on or inside

the unit circle, we see that =1 (z) * oQ l)

for Jz1 = 1 and thus iQn (ZI >Irnzn [Qn-_I (z-l *)]*I on

the unit circle. Therefore, using Rouche's Theorem

"repeatedly, QN(z) will have no zeroes on or inside the

unit circle and thus ao Q N(z) will be minimum phase.

That any finite lergth minimum phase filter can be obtained from (A. 1)

is proved by seeing that the reverse of the recursive procedure is unique and

that all IrnI will be less than one. Letting FN(z) be the z-transform of an N+1

point minimum phase filter after normalizing the first term to one, we can

write

z2 N-I N
F(z) = I+blz + b z + ... + b z + bNZ

1 2 N-1[- ClZ + C~zZ + ... +c C N -I]

4 - b 2 * N - I N ]
+ bnCN_ Z+CN- z +N...+c Z + , (A.1)

where the c are determined by the equationS
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Ii[ b ][ I[ ] (A.3)

Since F (z) is minimum phase, all of its roots, a., are greater than
one in magnitide. Therefore, since

N

bN = 1 (-a -

i= 1

ibN j< land (A. 3) will always have a unique solution. Furthermore, from

Rouchl's Theorem, the first polynominal on the right ha,'d side of (A. 2) will

also be minimum phase. Thus, the recursive procedure of (A. 1) is uniquely

reversible with all r nl<l for a finite length minimum phase filter.
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I. APPENDIX B

COMPARISONS OF THE CHARACTERISTICS OF MAXIMUM ENTROPY
AND DISCRETE FOURIER TRANSFORM SPECTRAL ESTIMATION

In this appendix, a brief comparison is made between the characteristics

of max~mum, entropy and discrete Fourier transform spectral analysis. This

appendix is taken from a contractor report (King, Swindell. and O'Brien, 1974)

and was written by William H. Swindell. Jr. Several of these comparisons were

obtained from an excellent paper by Lacoss (1971).

1. Estimation of Auto co rrelation Function

ME Uses known lag values unmodified. Unknown lags

are estimated in an optimum manner.

DFT :Weights all lag values with some function introducing

spectral window effects in the spectrum.

2. Spectral Window Effects

ME No spectral window effects as such are introduced

since the autocorrelation function is known or estimated

for all lags. However, similar but greatly reduced

effects occur when the prediction error filter does

not create a perfectly white output.

DFT Window effects are always present. Spectral estimai~es

are exactly equal to the convolution of the maximum

entropy spectrum with the frequency window corre-

sponding to the particular tapering method employed.

These estimates tend to be the convolution of the window

function and the true spectrum.
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3. Estimate of Peak Power Density of a Pure Tone of Power P

ME Proportional to P N where N is the number of

measureCd autocorrelation function lag values.

DFT: Proportional to P but subject to picket fence effect

from spectral %',ndow.

4. Estimate of Bandwidth of a Pure Tone

ME Proportional to 1/(PN ).

DFT Proportional to 1/N.

5. Estimate of Spectral Power in a Pure Tone

ME : Proportional to P.

DFT : Proportional to P/N.

6. Estimate of Line Frequency

ME : Difficult to define but can be estimated very closely.

(See Chen and Stegun, 1974, and Ulrych, 1972).

DFT : + l/(ZNAt).

7. Spectral Reliability

ME : Difficult to define. Asymptotically, for data with

low spectral contrast, the degrees of freedom, K, is

less than or equal to L/N where L is the numnber

of data points in sample .

DFT : K=2L/N for Bartlett window.

8. Linearity of Spectra

ME : Estimation is nonlinear. The spectrum of the sum

of two time series is not equal to the sum of the

spectra of the individual time series.
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I .

F DFT : Estimation is linear. Superposition of spectra is
I.

valid.

9. Resolution of Closely Spaced Spectral Lines

ME Resolving power is data-dependent and difficul to

define but lines can L e separated at a frequency
2

increment approximately proportional to I/N

DFT Lines can be separated at a frequency increment

proportional to 1/N.

10. Spectral Line Detectability

The maximum entropy spectrum is clearly superior to the discrete

Fourier transform spectrum for weak signals in short data samples where

the discrete Fourier transform processing gain is low. For long data samples

where the natural line width is greater than 1/(NAt), this advantage is reduced.

For fixed N, taking longer data gates L increases detectability for the maxi-

mum entropy spectrum because of better autocorrelation lag value estimates.
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APPENDIX C

THE USE OF THE BURG TECHNIQUE IN
FILTERING SHORT RECORDS

This appendix summarizes a method for filtering short data records.

The algorithm, described in a recent paper (Ulrych, Smylie, Jensen, and

Clarke, 1973), applies a prediction filter to the data to extend the original

time series, Fourier transforms the extended time series, multiplies the

Fourier transform by the desired filter frequency response, and obtains the

filtered time series through inverse Fourier transformation.

Suppose that the Burg technique has been used to design an N-point-

long prediction error filter from a short time series x (t= 1, 2, ... , T).
t

If the maximum entropy assumption is valid, the autocorrelation function sat-

isfies the relationships incorporated in the following matrix equation:

r(O) r(l) .............. r(N-1) 1 P N

r (1) r(O).::-........... r(N-Z) "0

r (N1 • NZ .. .Z()•

S..r (N-) r (N-1), ........ r (1) aN,. , *,.

r (N+j) r (N-Z+j) ...... r (1+j)

_j
The optimum (N-))-point-long forward prediction filter with prediction

distance M, an the other hand, is obtained from the filter design equation
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-b

r(O) 1() .........e....r(N-Z) r (*)I
I *1) ()....... r(N-3) FaM1 rM ""

(1) r( = r (M+ 1)I~ ~ ••:".... ...... "(-3 Ci .•-

r (N-2) r (N-3) ....... r (M+N-Z)

N-1

From the first of these two matrix equations, it is clear that

-t -- a
a - -a

2 .3

1°
a -a
N-1 N

so that the one-step forward prediction filter output at time T+ 1 is

N-I

x(T+1) = -j a.' 1 x(T+l-j).

j=1

For Z <_MS.N-l,

r (M) r (M-l) r (M-2) r (M-N+1)

r*(M+ 1) r*(M) r (M-1) r (M-N+ 2)
r Mi = -a 2  r (" a 3  -".- :

_r (M+N-Z) r (M+N-3) r (M+N-4) r (M-I) j

M-2 1aM-I al- a1
aa1 1 i

M-1 M-21
=-a R a -aR a -.- a R al

2 N-i 2 3 N-i 2 M N-i 2

i - aM-Z aI

N-i N-i N-ý
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0 0

aM+ N-i : aM+2 N-i N N-1

* S

0 0

and premultiplication of this equation by the inverse of the (N-I)X(N-I) auto-

correlation matrix RNi yields the M-strp prediction filter

M -a -2 ~ 1

-a -a. .. .a
.5 2

.MM=1 aM-2I
am aI

* 0

N-- N-1 N-1 .... N-1

0 0

* 1 1

"M+ 1 "M. 0 N

"0 0

I.. L0

so that the IM-step forward prediction filter output at time T4M is

M-1 N-1
X(T+M) =- j+l x(T+M-j) - a j+lx(T+M-j).

j=l j=M
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"-I

For MZNi

*M-1 M-2 M+ 1-N
r (M) a1  ai

* M-1 -M-2 M+ 1-N
r (M+I) -aRNaI -. a R -aNR of

: N-I : 3 N-i 2 N N-1 2

* " M* M - ,M+ i - N
r (M+N -Z) aM-. aN-

M-1 N-i 1-Lh

and

M ý M-i1If M-2 M+i1-N
1a 1 a1

M M-1 M-Z M+1-Na =-a 2  a -a -.. -a a
2 2 2 3 2 N 2

A A

SaM-1j M-a TM+ i-N

aN-i N-i N-i

so that the M-step forward prediction filter output at time T+M is

N-i

Ax(T+ M) - a a.+Mj)
j+i

j= 1
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Thus the optimum M-step forward prediction filter outputs O(T+M)

from the final N-i measured points can be formed recursively using the (N-i) -

point-long prediction filter with the weights (-a., -a ... , a ) obtained

from the Burg technique. First, the one-step lorward prediction filter output

is formed from the final N-i measured points:

N-1
Ax(T+I) = - i a x(T+l-j)

j+l1
j=l

Later, in place of the unmeasured points in the formula

N-i
A
X(T+M) - a+l x(T+M-j)

j=l

Athe prediction filter outputs x(T+M-j) are substituted for the points x(T+1M -j)

where no measurements are available. Similarly, the optimum M-step back-

ward prediction filter outputs x(I-M) from the initial N-i measured points can

also be formed recursively starting with

N-i

X(O) = - a 1I x(j)

j=.1

and continuing with the appropriate substitutions in

N-I
A *x(l -M) = - a x(j+l-M) (M Ž2).

j=l

According to the originators of this met. )d, predicting the time series to a

total lenb,.h four or five times the original length produces acceptable filtering

results.
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Once the extended time series has been created, the discrete Fourier

transform of the extended time series is multiplied by the desired filter

response in the frequency domain, and the filtered trace is obtained from the

inverse Fourier transform.

Vor a more detailed exposition of this method and for illustrative

exam- ;, the reader is referred to the original paper (Ulrych, Smylie,

Jensen. 3 ,larke, 1973).
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APPENDIX D

OBTAINING REFINED ESTIMATES
OF SPECTRAL PEAK PARAMETERS

In the maximum entropy spectrum, the power in the band immediately

surrounding a spectral peak is a more reliable indication of line strength

than the maximum power density. This appendix, written by William H.

Swindell, Jr. , and based on John Parker Burg's notes, is taken from a con-

tracter report (King, Swindell, and O'Brien, 1974). It presents, among

other things, an excellent method for integrating the power around a spectral

peak in the maximum eiitropy spectrum.

Pertinent parameters of a spectral peak in a power density spectrum

are:

* Center frequency

0 Peak spectral density

* Total spectral power

0 Bandwidth at -3 dB points.

Because of the extreme sharpness of some spectral peaks in) a maxi-

mum entropy power spectrum, there is considerable difficulty in finding the

value of the peak density, the total power, and the bandwidth of the peak. Unlessi

the frequency response of the prediction error is measured with a sufficiently

fine frequency ir~crement, highly misleading spectral estimates may resiult.

In Figure D-1, an example is shown of a maximum entropy power spectrum

which is evaluated at frequencies separated by an increment Af resulting in

power density estimates designated by the large dots. A dashed line connecting

the dots is the line which would be seen in an ordinary plot. A peak is indicated
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FIGURE D-1

TRUE AND SAMPLED MAXIMUM ENTROPY SPECTRUM
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at P wtthpoedesteofP and P on each side. The true21 3
response of the filter is shown by the continuous line at a true center

frequency of f *It is obvious from the figure that the indicated peak
0

density P 2is almost 10 dB smaller than the true peak and that the center

frequency is actually closer to f than f
3 2

A means of obtaining better estimates of peak density, etc., is outlined

below. The technique is based on the fitting of a curve representing the response

of a resonant circuit to the spectral estimates P , IPZ I and P .The complex
1 2 3

response of a maximum entropy filter near the region of small filter response

(i. e. , a spectral peak) is shown in Figure D-2. If 4f is much less than lIT,

where T is the length of the filter, the complex response in the narrow fre-

quency band near a point of minimum response can be approximated by a straight

line. Then from solid geometry-

2 2 2
P r(f) = d + m (f -f0).

Thus an approximation to the power spectrum near f is proportional to

2

a = l/d = peak value

b = 2d/m =21/m va= bandwidth

then we wish to fit the following curve to the spectrum

P (f) D a 21D-)
1 +4/b (f-f)

0
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FIGURE D-2

COMPLEX FREQUENCY RESPONSE OF THE PREDICTION
ERROR FILTER NEAR A MINIMUM
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where:

P(f) = a for f= f

0

a!Z for f=f ± b/2

and the total power, T , is:
"p

T.W = P(f} df 'nb.D2

Substituting the three values of power density about a peak

(Pl(fl) P (f ), P 3 (f 3 )) into equation (D-l), the parameters a, b, and f

can be solved for:

f = f + QAf (D-3)

o 2

.J~lQ ) (D -4)
a = P2 + 2P1 (_Q)]

b =A Q (D -5)

where
ZPlP

R2=PP 13
1 3 P 2

ZRZ

2R

Af= f -f = f f
3 2 2 1
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Occasionally, when the frequency interval Af is too large, the

quantity (1I exceeds 2? /R in equation (D-5) causing imaginary1A
solutions. A real solution can always be obtained, however, if Af is suffic-

iently small. In that event, the spectrum is interpolated at the midpoints

between P and P and P .This results in five power density estimates
12 3

at Af/2. The new peak density and its adjacent values are then used to obtain

a solution. This interpolation procedure may be repeated as often as necessary.

It is advantageous, however, to use a rather small Af to start with so that the

spectral density plots will give a fairly accurate picture of the true spectrum.
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APPENDIX E

ADAPTIVE IMPLEMENTATION OF THE MAXIMUM ENTROPY SPECTRUM

The basic idea behind this technique is to smooth exponentially the pre-

diction error filter output products used to cestimate P and the ladder coef-
J+l

ficients aj+1 (J = 1, Z, ,.., N-i) in the Burg tecinique (see Section III).

Older prediction error filter output points are weighted slightly less than their

immediate successors:

T

k T-t xt*
t~ UI(T)1 T t VU(T)

t=l

T

-z kT-t (J * qJE ~(t-) qt (T

J+l t=i+l UJ+I(T

TkT- [PtJ (P J)* + qt (q)] V1. 1 (T)

t=J+l

where O<k< 1.

The new prediction error filter outputs needed at time t = TAt are

computed firom the prediction error filter ladder coefficients obtained at

t = (T-1)At. However, previously computed prediction error filter outputs

used in forming the new prediction error filter outputs are not recomputed as

the prediction error filter is updated. In th" vay, the number of arithmetic

operations is made proportional to the filter length in points times the number
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of time series input points. If the ladder coefficients change slowly, i. e., if -,

1-k < < 1, this procedure will have only a minor effect on the prediction error

filter outputs and ladder coefficients.

The numerator and denominator terms U3 (T) and V (T) (J 1, 2,...

N) are recursively updated as each new time series value xT becomes

available, and the one-point prediction error filter output power and the ladder
J+l

coefficients a+1 (V= 1, ,..., N-i) are computed in the following manner:

kU (T-l) + XTXT

PI(T) =
kV 1 (T-1) + 1

kUJ+l (T..1) - (pT.J qT
a (T)

k+ V (T-1) + P (P) + qT (q)

Initially, the numerator and denominator terms Uj(T) and Vj(T) as
J+lwell as the ladder coefficients aj+l(T) are zero at T = 0. During initializa-

tion (T = 1,,... , N), only enough points of the time series x are available

to compute the prediction error filter outputs for the T-point-long prediction

error filter, so that the T-th ladder coefficient cannot be updated until xT

is available.

Figure E-1 is a flow chart of the procedure for recursively updating
J+lPI and the ladder coefficients aj+1 . Before the update at time t = TAt, the

N N N-i N-2
processed time series is of the form '' pT-N-' PT-N' PT-N+1' PT-N+Z

3 2 1
PT-3' PT-2 PT-1 =XT- x . After the update, the processed time

TN N N N-1 4
series is of the form ' T-N-1' PT-N' PT-N+I' PT-N+2' PT-3

3 1
PT-2' PT-1' PT = XT I All of the backward prediction error filter output
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Ii

points needed for the next update overlay the corresponding points of the input

time series. The successive forward prediction filter outputs q (J = 1,2.
Jt6

N-1) at time t = TAt are computed as needed in the ladder coefficient

update. Note that the backward prediction error filter outputs pTJ and the
T .j

forward prediction error filter outputs q in the ladder coefficient update are

both computed from the prediction error filter obtained during the update at

time t= (T-I)At . The recursive procedure described here has been outlined

previously in general terms (Riley and Burg, 1972) but not explicitly stated

and differs from the technique actually implemented by Burg (Burg, 1974).

To compute a maximum entropy spectrum, the Levinson recursion
relations

1 1 0

J+l J(a )*
a2  2

° * J+l1
• ". + aj+I . (J= 1z,2...,N-1)

l 0 a

2

J+l

and
N-I [ +rjl,

P P n I - a +1 (a +l

N 1 __l L+ J +1

provide the N-point-long prediction error power PN and the prediction error
fitr l N, N .. N Nfiler.,a a a) needed in the power density spectrum

N 3 N- NN

formula

PNAt
P(f) =

N-I 2
a N i2wfJAt1 + L~a j+I e

J=l
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The power density spectrum requires considerably more computational effort

than a single update of P and the ladder coefficients. If desired, the power

"density spectrum can be computed only at specified time intervals instead of

after every update in order to reduce the computational load.

-M
If k /1(7-: 1), k' e when m=1/n[(T+l)/T] or approximately

T + 0.5 when T is large, so that the time constant for the adaptive maximum

entropy spectrum is approximately (T+ 0. 5)At . After M updates, the num-

ber of degrees of freedom in estimating the power P is

SM-1 1 kM
k1-k

m 1

As M becomes large, this value approaches 1/(1-k) or T+ 1 if k =1(1+1).

The effective time delay is

M

I - k - 1)kM
M 1 - k 1 - k1

SkM-

m=l

after M updates and approaches -k.Nt/(l-.k) or -- Xt as M becomes

large.

lare To test the adaptive maximum entropy spectral analysis technique de-

* scribed here, a 1000-point-long chirp waveform

It(T-1) -

X = x(TAt) = sin_ ..... (T = 1,Z,...,TMAX)xT
Z2TMAX

was processed. The instantaneous frequency of this waveform is
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f(TAt) = T.
ZTMAXAt

The length of the prediction error filter was fifty points. The time constant

used in the recursive adaptive update was 100.Nt, or twice the prediction error

filter length. Alter every ten points, the maximum entropy spectrum corres-

ponding to the current prediction error filter and the current prediction error

power was computed over the frequency band 0 to 0. 5/At at a frequency in-

crement of 0. 0005/A t. Figure F. -2 displays the resulting adaptive power den-

sity spectra in logarithmic form. As time increases, corresponding spectral

levels are plotted at a higher level in the figure. After a brief warmup period,

the principal spectral peak closely follows the instantaneous frequency of the

input time series. Because of the exponential smoothing applied to the input

data, the trend of the spectrum is a linear increase (on a logarithmic scale) as

the frequency rises to the frequency of the principal spectral peak and then a

sharp dropoif out to the folding frequency. Figure E-3 illustrates the ability

of the adaptive maximumn entropy spectrum to track the instantaneous frequency

of the chirp waveform. In this figure, the frequency of the maximum spectral

intensity is plotted as a function of time. Except for a small number of points,

Cile resulting path is very close to linear. The time lag of the spectral peak

relative to the instantaneous frequency is about ten points, or only one tenth of

the tirrif constant.
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