
RIA-76-U381 

WVT-TR-76017 
AD 

5  0712  01010892  5 

PROPAGATION OF A CIRCULAR CRACK IN TORSION 

TECHNICAL 
LIBRARY 

May 1976 

BENET WEAPONS LABORATORY 
WATERVLIET  ARSENAL 

WATERVLIET,   N.Y. 12189 

TECHNICAL REPORT 

mm^m- 
AMCMS No.  611102.11.H4500.30 

Pron No. EJ-6-Y0012-EJ-M7 

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED 



DISPOSITION 

Destroy this report when it is no longer needed. Do not return it 

to the originator. 

DISCLAIMER 

The findings in this report are not to be construed as an official 

Department of the Army position unless so designated by other authorized 

documents. 



UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PAGE (TWirni Data Entered) 

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS 
BEFORE COMPLETING FORM 

1.   REPORT NUMBER 

WVT-TR-76017 
2.  GOVT   ACCESSION  NO 3.    RECIPIENT'S CATALOG NUMBER 

4.    TITLE (and Subtitle) 

PROPAGATION OF A CIRCULAR CRACK IN TORSION 

S  TYPE OF REPORT & PERIOD COVERED 

6. PERFORMING ORG. REPORT NUMBER 

7.    AUTHORfnJ 8.    CONTRACT OR GRANT  NUMBERf.) 

Robert L.   Ryan 

9.    PERFORMING ORGANIZATION  NAME  AND   ADDRESS 

Benet Weapons Laboratory 
Watervliet Arsenal, Watervliet, NoY„  12189 
SARWV-RT 

10.    PROGHAM   LLEMENT. PROJECT,   TASK 
AREA  S   WORK  UNIT   NUMBERS 

AMCMS No. 611102.11.H4500.30 

Pron No. EJ-6-Y0012-EJ-M7 
II.    CONTROLLING OFFICE  NAME  AND  ADDRESS 

U.S. Army Armament Command 
Rock Island, Illinois 61201 

12.    niPORT   DATE 

May  1976 
13.    NUMHFR OF  PAGES 

26 
U.    MONITORING  AGENCY  NAME  ft   ADORESSf// iHlletenl  tram Controlling Of.'rcc) 15.    SECURITY  CLASS,  (at this report) 

UNCLASSIFIED 
15a.    DF. CLASSIFICATION/DOWN GRADING 

SCHEDULE 

16.    DISTRIBUTION  STATEMENT (at this Report) 

Approved for public release; distribution unlimited. 

17.    DISTRIBUTION  STATEMENT (at the abstract  entered In Block 20,   It different  trim Report) 

IB.    SUPPLEMENTARY  NOTES 

19      KCY  WORDS (Continue on reverso side It necessary and Identify by block number) 

Fracture (Mechanics) 
Integral Equations 
Torsion 
Crack Propagation 

20.     ABSTRACT (Continue on reverse side It necessary end Identity by block number) 

The propagation of a circular crack under dynamic torsional loading conditions 
is considered. The crack perimeter speed is taken to be an arbitrary monotonic 
increasing function of time. A general solution is obtained by means of integral 
transforms, together with Kostrov's technique; particular results are extracted 
for an initial value problem and for a suddenly appearing crack problem. The 
dynamic stresses near the periphery of the crack are found to have an inverse 
square root singularity. 

DO FORM 
I  JAN 7) 1473 EDITION OF   I NOV 65 IS OBSOLETE UNCLASSIFIED 

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) 



jgCUMTV CLAMIFICATION OF THIS PAOE(TWli DMm Enfrmd) 

SECURITY CLASSIFICATION OF THIS P AGEfWhwi Dmtm Bnffd) 



WVT-TR-76017 
AD 

PROPAGATION OF A CIRCULAR CRACK IN TORSION 

Robert L. Ryan 

May 1976 

BENET WEAPONS LABORATORY 
WATERVLIET   ARSENAL 

WATERVLIET,   N.Y. 12189 

TECHNICAL REPORT 

AMCMS No.  611102.11.H4500.30 

Pron No. EJ-6-Y0012-EJ-M7 

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED 



TABLE OF CONTENTS 

Page 

DD Feorm 1473 

INTRODUCTION            ' 1 

PROBLEM FORMULATION AND SOLUTION 2 

CASE 1: INITIAL VALUE PROBLEM 15 

CASE 2: SUDDENLY APPEARING CRACK 17 

DISCUSSION ' 20 

REFERENCES 21 

APPENDIX 22 

LIST OF ILLUSTRATIONS 

1. Solution Region: Drawn for the Case t<R, r>r*(t) 6 

2. Solution Region: Drawn for the Case t>R, r>r*(t) 7 

3. Diagram for Crack Plane Stress Solution 8 

4. Diagram for Crack Plane Displacement Solution 14 



INTRODUCTION 

This report deals with the mathematical aspects of a problem of 

importance in the failure of structures, namely, the sudden spreading 

of a crack in a stressed medium. A previous study on the dynamic prob- 

lem of torsion of a circular crack was made by Sih and Embley [1], 

Their work, however, is restricted to the case of a crack which opens 

instantaneously to a fixed radius and thereafter remains stationary. 

Most work on crack propagation under other loading conditions is based 

on the mathematically expedient supposition that propagation occurs at 

constant speed. It is more realistic to consider the speed of propaga- 

tion as a function of time based on some physical hypothesis. Recently, 

Kostrov [2] has proposed an analytical technique for treating a vari- 

able speed crack and has obtained results for the case of anti-plane 

loading conditions. In this report Kostrov's technique is applied to 

the case of to'rsional loading conditions. 

Kostrov's method has the distinct advantage over other methods, 

notably the Weiner-Hopf method and the dual integral equation method, 

in that mixed problems with time dependent boundaries can be treated. 

Moreover, the near-field solution can be deduced rather easily, at 

least for torsion and antirplane strain conditions. An inherent draw- 

back of Kostrov's method is that for a finite length crack the 

1G. C. SIH and G. T. EMBLEY (1972) Journal of Applied Mechanics, 
395-400. Sudden Twisting of a Penny-Shaped Crack. 

2B. V. KOSTROV (1966) Journal of Applied Mathematics and Mechanics, 
30(6), 1241-1248. Unsteady Propagation of Longitudinal Shear 
Cracks. 



analytical results are limited to the time interval for which waves ' 

enamating from opposite points on the crack border have not yet come 

into contact; it appears that numerical integration is required for the 

time in which wave interaction occurs. On the basis of the results of 

the study by Sih and Embley [1], however, the dynamic stress intensity 

factor reaches its maximum value before wave interaction occurs. Thus 

it is reasonable to suppose that the results obtained in this report on 

the dynamic stress intensity factor represent the maximum value that 

can be expected. 

PROBLEM FORMULATION AND SOLUTION 

Consider an infinite elastic solid with shear modulus u and den- 

sity p referred to cylindrical coordinates r,8,z. At time t=o a cir- 

cular crack of radius a occupies the plane z=o ; for time t>o the 

crack radius is r*(t) = a + R(t), where R(t) is a monotonic increasing 

function, with R(o)=o. It is assumed that TF<C, where c=(u/p) ' 

is the torsional wave speed of the solid. Suppose that the solid is 

loaded by tractions of equal magnitude applied to the adjacent edges 

of the crack surface, and that these tractions are independent of 0. 

Then the displacement v(r,z,t) will be anti-symmetric in z, so that it 

is sufficient to consider only the region z>o. For this problem the 

stress components are 

°ez a*,z   • aer= ^V" r
v) • W 

1G. C. SIH and G. T. EMBLEY (1972) Journal of Applied Mechanics, 
395-400. Sudden Twisting of a Penny-Shaped Crack. 



and the displacement satisfies the equation 

\rr + \  V "p " + ».» •  »,« • <2> 

wherein for convenience ct has been replaced by t. The boundary con- 

ditions on z=o may be written as 

aez = f(r,t)   * r<r*M        ' <3) 

v = o  , r>r*(t)   , (4) 

where f(r,t) is a continuous function. Since by superposition any 

initial displacements may be separated, then without loss in generality 

let 

v = o, v . = o  ,  t = o . (5) 
»t 

The problem as formulated by equations  (l)-(5) constitutes a mixed 

boundary value problem.    In order to apply Kostrov's method it is 

first necessary to obtain a relationship between the displacement and 

the stress oQ    on the plane z=o.    To this end let 

v(C.z.p) = £e~ptdt    filter) v(r.z.t)    dr      , (6) 

E(5,z,p) = JjyP^t    JT rJ^Cr) a(r,z,t)    dr      , (7) 

denote Hankel-Laplace transforms; in (7) o denotes a    .    Applying 
OZ 

(6) to equation (2) and using (5) gives 

v,zz - « v = o , z^o , (8) 

where cr= £2 + p . The appropriate solution of (8) is 

v(5.z,p) • v(C.p) e_az , (9) 



provided that Re{a}>o. Likewise, applying (7) to (1) and using 

(9) gives 

S(e.z.p) = 2(5,p)e 
-az 

(10) 

and 

Z(C,p) = - uav(e.p)  . (11) 

Formula (11) gives the relationship between the transformed stress and 

displacement components on z=o. Now substituting (11) into (9) and 

applying the Hankel-Laplace inversion formula gives 

yv (r,z,t) = - JL /"*],(*•) dC/BePt%^e-aZ    dp    , (12) 
2-rri V a 

where B denotes the well-known Bromwich contour. Using the result 

-az 
JL jr.* 5 ' ' dp 
2TT1 B   a 

o<t<z 

J0(5u) , z<t<°° , 
(13) 

where u = (t -z ) '  , together with the convolution theorem gives 

rt-z yv(r.z.t) = - Jw df /0 r'a(r',t') dr' ^(rOJjCr'cJJ (stfdC, 

(H) 
2    2 1/2 

wherein s = L(t-t') -z ]       .    The inner integral may be expressed 

as [3] 

/0°°?J1(rC)J1(r'C)J0(sO d£ 

o    ,    o<r'< s-r    , 

irrr 
- cot<j) ,   |s-r|<r'<s+r    , 

o    ,      r+s<r'    , 
(15) 

'I. S. GRADSHTEYN and I. M. RYZHIK (1965) Tables of Integrals, 
Series, and Products, Academic Press. 



where 

cot* =  (r2+r,2-s2)  {[s2-(r-r')2] [(r+r1)2-s2]}~1/2    . (16) 

Hence (12) becomes 

uv(r.z.t) = - 1 // a(rl,t') cot*   dr'df    . (17) 

Region R is depicted in figures (1) and (2) for the situations in which 

o<t<(r2+z2)''2 and (r2+z2)^2 <t, respectively. In figure (2) region 

R is bounded by the line t'=o and the two hyperbolas s=r+r' and 

s=|r-r'| . The dashed lines represent the limiting boundary of region 

R as z-*o, and in the sequel will be referred to as region R . 

Formula (17) may be used in conjunction with Kostrov's method to 

determine the stress ahead of the crack perimeter. Thus putting z=o 

in (17) and invoking conditions (3) and (4) gives 

/ J a(r',t') cot* dr'df = - / / f(r',t') cot* dr'df, r>r*(t) 

R°2 R°' (18) 

where * = */   , and where, as shown in figure (3) regions R , and 

R 2 denote portions of region R to the left and right, respectively, 

of the crack perimeter r' = r*{t'). It is clear that o(r',f)=o in 

region R , . 

Equation (18) is now.recast in terms of the coordinates 

£' = r'-t'  and n1 = r'+t*. Thus using the notation a(r',f) = 

T(?,,n') , f(r',f) = gU'.n') gives 
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d;'  f fn  , , ,,  H(g',g,ii',ri) 

5 («'-C)'/*(,W>"* V<5')  '"  (n-n')1/2(«'),/2 dn' 
/a 

(19) 

where 

+ FU'.e.n) I = o, 

FU'.e.n) -;n,*U,) g(g'.n')  N(S;*'n''T|)1/, dn' .   (20) 

N(5'.5.n\n) = 2 (c'n'Hn) + (n'-C) (n-5) . (21) 

and n,=n*(5') denotes the crack perimeter. Note that since r'=r*(t') 

then t'=r*_1(r') = t*(r'), so that n*(£') is given implicitly by the 

formula 

= V  + 2 t* [ l(n*+C') ] (22) 

Now equation (19) is satisfied if the expression within braces vanishes. 

Moreover substituting 

xU'.n') = U+n')1/2 *(C,.e.n')  , (23) 

leads to an Abel type integral equation for the stress ahead of the 

crack perimeter of the form 

W(5'^,) (n-n')1/2(2^'V) + ^^ 
(n-V) 

dn' = 

-F(5',C,n) • (24) 

The solution of (24) may be obtained in a straightforward way by use 

of Laplace transforms; the result is written as 

d r,,,. x2,.._J/2 .,,,, ^ _%, _  1  n+5'   d^ 
dri * (nH)1/2 dn

2 

FU'.e.n') dn' . 
(n-V)^2 

Tl   / 
n*(C) 

(25) 



To get the solution at the point (£,n) let E,'=Z and substitute from 

(23).    This gives 

£ [(n+02 T(C.H>] = - 1 (n^)1/2 4 /"      FAM2TTI    *I'- (26) dT1 * dn2 n*(5) (n-n')1'2 

Now since F(s,£>n') • U+n") E(Ctn').   where 

E(C.n') - Jn*(5) g(C.v) ^^5    dv   , (27) 

then (26) may be written as 

£ [(nH)2T(£,n)] - - 1 •* [(nH)3/2 -f j"  x
E(^n'|/9 dn'].(28) 

dn 7T dn       dn V(C)(n-n')
1/2 

Finally, substituting from (27) and performing one integration yields 

the result 

x(e.n) = r^ 77;   /fU) g(e.n') 
Tr(n+U1/2[n-n*(0]1/2     5 

(WHn*-n')1/2   dn«    ,   n>n*(5)   . (29) 
n-n' 

In terms of the original variables (29) becomes 

^r»t> T75 T7? C(T! f(r'.t-r+r') 
7rrl/2[r.r*(T)]l/2  |r_t| 

rJ/V(x)-r-]1/2  dr, ,   r>r*(t) . (3(J) 

r-r' 

In formula (30) the quantity T, (not to be confused with the stress 

T(£»n))» is given implicitly by the relationship t-x = r-r*(x), as may 

be seen from figure (3). The quantity T represents the retarded time 

associated with the moving crack border, that is, a point r experiences 

10, 



at time t the disturbance, in the form of a wave, caused by the moving 

crack border when the border location was at r*(x). 

The result (30) is valid for the time interval r-a<t<r+a. This 

interval corresponds to the time when the disturbance from the moving 

crack perimeter point (r*(t), 6+TT) has not yet reached the crack posi- 

tion (r*(t),e). To determine a(r,t) for larger values of time it 

appears necessary to replace f(r',t') by -a(r',t') on those portions of 

the range of integration on which the stress is unknown. This proce- 

dure corresponds to repeated diffraction of the waves at the crack 

perimeter. It does not appear feasible to carry out this procedure 

analytically since multiple integrals are involved. 

Since it is clear from figure (3) that the condition r>r*(t) is 

equivalent to the condition r>r*(x), it follows that formula (30) de- 

fines the stress ahead of the actual crack tip. Moreover, formula 

(30) gives a singularity of the order 1/2 at the actual crack tip loca- 

tion. That this is so follows from a Lagrange expansion of the quantity 

r-r*(t), which is of the form [4] 

r_r*(T) = r_r*(t) + i   1  ( 3)n"1 f*(t) pn(t) t (31) 

n=l n!  9t 

4
E. T. WHITTAKER and G. N. WATSON (1927) Modern Analysis, Fourth 
Edition, Cambridge University Press. 

11 



where 

r*(t) = $£  . and p(t) = {[r-r*(t)]2 + z2}1/2 . 
at 

On z=o (31) gives 

r-r*(t) 7 r-r*(x) = , .AA  + terms of order pc    . 
l-r*(t) 

Hence as r-*r*(t) the term [r-r*(x)]_1'2 in formula (30) may be re- 

[-1/2 

(32) 

placed by the term 
r-r*(t) 
l-r*(t) 

, so that in the neighborhood of 

the crack perimeter 
k 

o(r,t) £ - ir/r[r-r*(t)] , 

where k is the coefficient of stress intensity 

(33) 

r*(t) /T k = //':/!(
t) /       f(r',t-r*(t)+r') 

/r*(t)  J|r*(t)-t| A*(t)-r' 
dr' (34) 

With the crack plane stress completely determined (at least 

for the time interval previously noted), it is now a relatively simple 

matter to obtain the crack displacement. Thus reverting to the co- 

ordinates £=r-t, n=r+t, letting w(£,n) = v(r,t), and employing the 

previous designation for the stress component in formula (17) gives 

for z=o 

12 



-2ir(5+n) w(e,n) = /^*(n)  4| T72 G(5'.5.n) 
e      U'-01/2(nnT/2 

•J 
dC 

e*(n) U'-01/2(nn')1/2 

where 

F(5',5.n) 

n*     (n-n')1/2(^n')1/2 

(35) 

*     (n-n')1/2(C+n')1/2 

In (35) C*(n) denotes the V co-ordinate of the intersection of the 

line n'=n and the crack locus n'=n*(C')» i.e. £*(n) = n(Z\ . Now 

from (19) the bracketed quantity within the second integral vanishes. 

Hence rewriting (35) in terms of the original variables yields 

uv(r,t) - - 1 / / f(r',f) cot A dr'df , r<r*(t),       (37) 

where region R-, is shown in figure (4). Formula (37) represents the 

displacement for general dynamic loading of a circular crack of initial 

radius a. It is of interest to note that the solution is independent 

of the stress ahead of the crack perimeter. Expressions (30) and 

(37) will now be utilized to study results for two particular cases. 

13 



c 
o 

o 

c 

Ol 
o 
03 

a 
CD 
C 
<T3 

O 
(T5 
(. 

i. o 
4- 

E 
rt3 
S_ 
CT1 

S- 
:3 
en 

14 



Case 1. Initial Value Problem. 

In formula (30) put 

f(r,t) = o  , o<r<a 

(o) 
= - o(r)   ,  a<r<r*(t)   , (38) 

(o) 
where o(r) is some initial state of stress. The resulting expression 

represents the perturbed stress arising from the motion of the crack 

perimeter. As an illustration let 

a°r) =  -=§—. (2r2-a2) H(r-a) . (39) 

Expression (39) is the result given by Sneddon [5] for the stress on 

the crack plane z=o under conditions of uniform stress S at infinity. 

Introducing (39) into (30) yields 

„<r.t) -   _^ f w —r,   ^H: dr., r>r.(t). 
2Tr/r[r-r*(x)] a   /r'(r'^-a^)   r-r1 

(40) 

Since the initial stress on the freshly formed portion of the crack 

surface has been annulled, then, by superposition, (40) combined with 

(39) gives the actual stress ahead of the crack perimeter for the case 

of uniform stress S at infinity. The integral may be expressed in 

terms of known elliptic integrals; these expressions are given in the 

appendix. 

In the limit as r-»r*(t) it is found that the stress intensity 

I. N. SNEDDON and M. LOWENGRUB (1969) Crack Problems in the Classical 
Theory of Elasticity, Wiley and Sons. 

15 



factor for this case is 

k = --S l-r*(t) 
r*(t) 

]/2 r*(t) 2r'2-a2) dr1 

/ 
/r,(r,z-iz)\.r*{t)-r,'\ 

(41) 

Explicit expressions for the integral term may be obtained from those 

given in the appendix by putting r=r*(x) = r*(t). 

The perturbed crack displacement for this case follows by substi- 

tuting (38) into (37). Reference to figure (4) shows that for o<r-t<a 

the result may be expressed as 

yv Mi-irwJi)'*'^; ,cot*df , 
irr 'a x-r*(x)+r' 

(42) 

(o) 
wherein o{rl)  is given by (39) and T is given implicitly by 

t-x = r*(x)-r. With the aid of tables [3] it is found that (42) may 

be written as 

yv 
1 ,r*(x) (°) 

(r,t) • i J    o  (r') dr' I(r'.r.t)  , 
irr a 

(43) 

where 

Kr'.r.t) = &$- F(K,q) - (r+r') E(<,q) 

+ - {[(r+r')2-w2] [w2-(r-r') ]}1/Z , 
w 

in which F(<,q) and E(ic,q) are elliptic integrals of the first and 

second kind, respectively, with 

J-fr'-'-)V-i   .  ..J 
r+r1 < = s nn"

1 r1^' rw
2-(r'-r)2-,1/2n      .. (4rr')V2 

w    4rr' ' 

I. S. GRADSHTEYN and I. M. RYZHIK (1965) Tables of Integrals, 

Series, and Products, Academic Press. 

16 



and w = t-T+r*(x)-r'. For o<t-r<a identical results are found, hence 

(43) is valid for o<|t-r|<a. 

Case 2: Suddenly Appearing Crack 

For this case let f(r,t) = -S. Then formula (30) gives 

S 
°(r,t) = 

rr*(r) /r'[r*(T)-r']  , ,    ., .   .... 
/ —~  dr' r>r* t).  (44) 

r-r 7r/r[r-r*(x)]  |r-t| 

The result (44), superposed with a constant stress S, gives the solu- 

tion for a suddenly appearing crack under uniform stress S at infinity. 

Here it is assumed that the crack opens instantaneously to radius a 

and thereafter is located at r=r*(t). For this case the integral may 

be evaluated explicitly; the result is 

S 
a(r.t) = 

Tr/r[r-r*(T)] 
/|t-r| [r*(T)-|t-r|J 

+•- [2r-r*(x)] sin-1 

2 

/r[r-r*(x)] sin"' 

r*(r) 
/|t-r| [r*(x)-|t-r|] 

2 Alt-r|[r*(T)-lt-rl][r-r*(x) 
r*(x) (r-|t-r|) 

(45) 

As an example, if the crack speed is a linear function of time, say 

r*(t) = a+gt, with $<1, then since t-x = r-r*(x) it follows that 

t-r+a 
x = i  • . Putting this result in (45) gives for r-r*(x)<t<r 

17 



a(r,t) = i /(r-tHt-r+a) + = —=  
TT/r(r-a-gt) c     /1-P 

sin 
2/Hf 

a+g(t-r) 
/(r-t)(t-r+a) 

/r(r-a-Bt) 

sin 
t[a+6(t-r)] 

/r(r-t)(t-r+a)(r-a-Bt) 

(46) 

The crack surface displacement may likewise be obtained explicitly. 

Thus substituting into (37) and referring to figure (4) gives for 

o<r-t<a 

yv (r,t) = 1 /* dt' /r*(THt'-r| cot # dr.  ( r<r*(t) w        (47) 
Trr o     r+t'-t 

Then using tables [3] gives 

yv(r,t) - - /* J(r,s,t) ds   ,   r<r*(t) , 
TIT 0 

(48) 

where 

J(r.s.t) • (r-s)F(<,q) + (r+s)E(K.tj) - \  /[(r+s)*-X*][X2-r-s)2] , 

in which 

, -1 r+s ^-(r-s)2     „ firs 
K  = sin  —   ., _—*-      ,  q =rr 

X   /475. r+s 

and X = r*(x) - |t-S-x|  • 

It is of interest to note that if r-a<t<r+a the results simplify 

I. S. GRADSHTEYN and I. M. RYZHIK (1965) Tables of Integrals, 
Series, and Products, Academic Press. 

18 



even further, since for this time Interval a point on the crack surface 

has not yet experienced the effect of the waves from the crack perim- 

eter. For this case formula (48) is replaced by 

uv(r,t) = — il ds Jr+S cot <f> dr' 
Trr * r-s 

which, upon evaluation of the inner integral, gives 

uv(r,t) = i ll  [(r-s)K(^|) + (r+s)E(^f)] ds, 

where K and E are complete elliptic integrals. Now substituting 

s=rw and applying the transformation formulae 

K(f$ - (Hw)K(w) 

gives 

E^ • TTw E(w) " (1"W)K(W) 

<{r,t)  = — Jt/r E(w) dw ,  r-a<t<r+a 

The final result follows by using 

JL  E<w> dw = 2 F 
1+y [(2n)!]2(t/r)2n 

n=l (2n+l)24n(n!)4 

(49) 

(50) 

(51) 

(52) 

The resulting expression is equivalent to that which would be obtained 

on the surface of a half-space loaded by a step function load of 

magnitude S. 

19 



DISCUSSION 

The analytical results contained herein may be used as a basis 

for studying the physical aspects of the dynamic torsional fracturing 

process. As demonstrated by Kostrov [2] in the case of anti-plane 

strain, the crack propagation speed may be made definite by applying 

the physical hypothesis that the work done in the rupture process 

depends only on the crack speed. This hypothesis, together with 

Barenblatt's cohesion model leads to a differential equation governing 

the crack perimeter locus. 

Another useful extension of the results of this report is to incor- 

porate the effects of a plastic zone near the crack border. This may 

be done by using Dugdale's model as shown by Achenbach [6] for the 

case of anti-plane strain. These considerations, it is felt, are more 

appropriately left as subjects of future investigations. 

2 
B. V. KOSTROV (1966) Journal of Applied Mathematics and Mechanics, 
30(6), 1241-1248. Unsteady Propagation of Longitudinal Shear Cracks. 

6 
J. D. ACHENBACH (1970) International Journal of Engineering Science, 
Vol 8, 947-966. Brittle and Ductile Extension of a Finite Crack by 
a Horizontally Polarized Shear Wave. 
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APPENDIX 

The integral term in equation (40) may be reduced as follows: 

Let 

.  ,b  (2x2-a2)   /b^x . .... 
A = J ~——^—      dx ,  r b , (Al) 

a /x(x^-a^)   r-x 

where b = r*(x). Changing the integration variable to u = r-x leads to 

A = -a2I + 2J        , (A2) 

where 

I = IrBl2 , (A3) 

J = J^eJg , (A4) 

i, = r   (AS) 
1       B  /(r-u)(a-u)(u-0)(c-u) 

i - r     du (A6) 
2       B   u/(r-u)( -u)(u-  )(c-u) 

.a      /r-u    du 

B   /(a-u)(c-u)(u-| 
= r   " ; "" , (A?) 

>a        /r-u
3   du. ,    , 

Jo " / - . (A8) 
2       3   u/(a-u)(c-u)(u-B) 

In (A3) - (A8), B=r-a, a=r-b, c=r+a, so that c>r>a>B . Now from 

tables [3] it is found that 

3 
I. S. GRADSHTEYN and I. M. RYZHIK (1965) Tables of Integrals, 
Series, and Products, Academic Press. 
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2 
•lc-r)(o-3) 

I. = /(c-a)(r-B)  K( )  , (A9) 
1 Ac-aJlr-e) 

where K is the complete elliptic integral of the 1st kind. Hence 

replacing the original variables gives 

2      /r*(x)-a 
!i = , -, K(——— )  . (A10) 

1  /2ar*(x)    y^r^TFT 

l    =   2[a+r*(t)] IL!   nk'2,(r+a)ra-r*(T)1   /r*tT)-a) 
(r+a)[r-r*(x)]/2ar*(T)        2a[r-r*(x)]   2r*(x) 

(All) 

when II is the elliptic integral of the third kind. To evaluate J, 

U-B 
make the further change of integration variable z = —^ , so that 

(A7) becomes 

,    _ /(r-3)3    fl      /IT^rP   dz 
Jl  " 7^~    Jo    >/z(1-z)(l-rz)      ' (A12) 

rY~ R ct— R 
in which 6 = p^s  , and Y = ^zz •    Formula (A12), as given in 

tables [3], may be expressed as 

,    _ /[r*(T)]J ,1      3   1 r*(T)-a rMQ-a^ ,...* 

where Fj  is a hypergeometric function.    Finally,  integral  J2 is 

evaluated by writing 

J2 = r J21  - J22    . (A14) 

3 
I. S. GRADSHTEYN and I. M. RYZHIK (1965) Tables of Integrals, 
Series, and Products, Academic Press. 
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In equation (A14) 

J21 = r ll  " h      » (A15) 

in which I2 and I-j are given by (A10) and (All), and 

fa   /r^u  du 

6 Act-u)(c-u)(u-6) 
J22 - £       /r"U • (A16) 

The integral J^o 1S given directly by tables [3]; the result in terms 

of the original variables is 

j  - **       n^/2, 1^1^ , 33=S) . (A17) 

Substituting (A9)-(A17) into (A2)-(A4) gives the result for (Al). 

3 
I. S. GRADSHTEYN and I. M. RYZHIK (1965) Tables of Integrals, 
Series, and Products, Academic Press. 
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