U.S. DEPARTMENT OF COMMERCE National Technical Information Service

AD-A026 467

ECOLOGICAL ASSESSMENT OF VANDENBURG AIR. FORCE BASE,CALIFORNIAVOLUME II, BIOLOGICAL INVENTORY 1974/75

San Diego State University

PREPARED FOR
Air Force Office of Scientific Research

May 1976

ECOLOGICAL ASSESSMENT OF
 VANDENBURG AIR FORCE BASE, CALIFORNIA

VOLUME II
 BIOLOGICAL INVENTORY 1974/75

CENTER FOR REGIONAL ENVIRONMENTAL STUDIES
SAN DIEGO STATE UNIVERSITY
SAN DIEGO, CALIFORNIA 92182

MAY 1976

FINAL REPORT: MAY 1974 - AUGUST 1975

Approved for public release; distribution unlimited.

Prepared for
HEADQUARTERS SPACE AND MISSILE SYSTEMS ORGANIZATION
Air FOrce Systems Comand
Los Angeles Air Force Station, California 90009

Prepared for
HEADQUARTERS SPACE AND MISSILE SYSTEMS ORGANIZATION
Air Force Systems Command
Los Angeles Air Force Station, California 90009

AIR FORCE CIVIL EMAMMEEANG CENTER
 (IAR face ssitims command) THMOALI ANA FILE BASE Flonima 32401

Unclassified

sECUNITY CLABSIFICATION OF THIS PAOE(Whm DEAE Entored)
20. AESTRACT (Concluded)

Narrative and tabular data are provided on climate, soils, aquatic resources, vegetation, and game and non-game vertebrates.

This final report was prepared by the Center for Regional Environmental Studies, San Diego State University, San Diego, California, under AFOSR Contract F44620-75-C0008, and was funded by Headquarters Space and Missile Organization (SAMSO). This work was accomplished under JON 21033E20. Major Rutherford C. Wooten, Jr., (AFCEC/EVP), was the Center Project Officer in Charge. This project was transferred from the Air Force Weapons Laboratory (AFWL), Kirtland AFB, New Mexico.

This report consists of three volumes: Volume I - Evaluation and Recommendations, Volume II - Biological Inventory 1974/1975, Volume III Environmental Planning System. Volume III is to be published at a later date.

This technical report has been reviewed and is approved for publication.

Rutherel © worker RUTHERFORD C. WOOTEN, JR. Major, USAF, BSC Chief, Environmental Planning Division

Lt Colonel, USAF, BSC Directer of Environics

ROBERT M. ITEM
Colonel, USAF Commander

The following staff members of the Center for Regional Environmental Studies at San Diego State University participated in the field studies and in the preparation of this report:

Project Director--C.F. Cooper, Ph.D.
Project Manager--H.N. Coulombe, Ph.D.
Remote Sensing Coordinator--C.F. Cooper
Aerial Photo Interpreter--T.A. Oberbauer, B.S.
Vegetation Analysis Coordinator--P.H. Zedler, Ph.D.
Botanist--R.M. Beauchamp, M.S.
Ecological Analyst--T.A. Oberbauer
Field Assistants--P. Bunch, R.M. Reilly, R. Wilson
Aquatic Analysis Coordinator--S.H. Hurlbert
Aquatic Biologist--J.R. Verfaillie, B.S.
Aquatic Assistants--T. Goff, B.S.; E. Balthrush; A. Van Arsdale
Wildlife Analysis Coordinator--H.N. Coulombe
Senior Biologist--C.R. Mahrdt, B.S.
Herpetologist--C.R. Mahrdt
Ornithologist--J. Rieger, M.S.
Mammalogist--C.R. Mahrdt
General Biologists-it.J. Harrington, B.S.; L. Ragster, B.A.
Field Assistants--T.M. Phelan; T. MacDonald; S. Sandberg; D. Lawhead

Data Management/Computer Graphics Coordinator--F.P. Stutz, Ph.D. Data Manager--R.M. Reilly, M.Ed.

Interpreting Computer Graphics--E.A.S., Inc. (K. Knust, B.S.)

Typist and Editorial Assistant--D. Titus

CONTENTS

1. Introduction 3
2. Fresh Water Aquatic Studies 5
2.1. Methods and Procedures 5
2.1.1. Preliminary Survey 5
2.1.2. Sampling Regimes 9
2.1.3. Field and Laboratory Procedures 9
2.2. Results 12
2.2.1. Chemical and Physical Parameters 12
2.2.2. Aquatic Plant Life 17
2.2.3. Invertebrate Structure 17
2.2.4. Vertebrate Structure and Productivity 40
3. Vegetation Analyses 58
3.1. Methods 58
3.1.1. Introduction 58
3.1.2. Key to Vejetation Types 58
3.1.3. Determination and Plant Species on the Base 64
3.1.4. Quanticative Sampling of the Vegetation 64
3.1.4.1. Presence and Estimated Cover Plots 61
3.1.4.2. Presence and Measured Cover Samples 67
3.1.5. Location and Identification of Significant Plant Taxa. 75
3.1.6. Vegetation Mapping 75
3.1.7. Ground Truth Verification of Vegetation Map 77
3.1.8. Aging of Trees and Shrubs 79
3.2. Additional Vegetation Data Summaries 80
3.2.1. Presence and Estimated Cover Plots 80
3.2.2. Presence and Measured Cover Plots 80
4. Wildife Analyses 106
4.1. Methods 106
4.1.1. Terrestrial Vertebrates 106
4.1.2. Avifauna 109
4.1.3. Computational Methods 111
4.2. Herpetofauna 111
4.3. Avifauna 116
4.4. Mammalian Fauna 116
4.4.1. General Aspects 116
4.4.2. Large Terrestrial Mammals. 125
4.4.3. Bats 130
4.4.4. Marine Mammals 131
4.5. Structure and Dynamics of Vertebrate Communities 135
5. References 163
6. Appendix: Permanent Quadrat Location Sheets 165

1. - INTRODUCTION

The biota of northern Santa Barbara County is of unusual interest to biogeographers. Many species appear to be limited in distribution in the vicinity of Vandenberg AFB: the broad flood plain valley of the Santa Maria, Sisquoc, and Cuyama Riyers seems to provide a geographical barrier to some species, as does the westward extension of the Santa Inez mountain range in south Vandenberg AFB. Thus the following assessment of the biota contains a rich variety of plant and animal species, potentially more diverse than any other area of coastal southern California. Combined with the occurrence of rare or unique plant communities (such as coastal salt marsh, bishop pine, and coastal dunes), the biological significance of the 94,702 acres of Vandenberg $A F B$ is unquestionably of regional and national importance. As with many DOD land holdings, most requirements of the mission of the installation have been compatible with the conservation of ecological resources for the public. Specific knowledge of the requirements for perpetuation of these resources should therefore be the concern of land managers and land use planners of the Air Force.

This volume of the report is presented as a companion to Volume 1 (Evaluation and Recommendations). Thorough documentation of methods used in various biological sampling and analyses are given here. The descriptive prose is brief, with cross-references to the appropriate sections of Volume 1 . Primarily, organized tabulation of biological information is given here, which is self-explanatory. In summary, this volume contains the documentation (quantitative and qualitative) of the present biological conditions at Vandenberg AFB, based on our studies commencing in August 1974 and terminated in June 1975.

A limited number of sets of vegetational map overlays, keyed to the Base Master Plan Map Series C-1 (January 1971 Revision) was prepared. Each set consists of a series of 66 map sheets, on transparent acetate, delineating the vegetation types of the base as determined from aerial photo interpretation. These overlays may be examined at the following locations:

AFCEC/EVP
Tyndall AFB FL 32401
HQ SAMSO/DE
Los Angeles AFS CA 90009
4392 AEROSG/DEV
Vandenberg AFB CA 93437
2.1. Methods and Procedures
2.1.1. Preliminary Survey. A preliminary survey of the base was made in July and fugust of 1974 . This survey examined the three major streams, San Antonio Creek, Cañada Honda Creek and the Santa Ynez River, and located a number of smaller streams. Of these, two, "Cañada del Norte" and Canada del Jolloru, were picked to represent the watersheds of the extreme northern and extreme southern (Sudden Ranch area) portions of the base respectively. These five streams constituted the major focus for our analysis of stream ecosystems.

The survey also identified five major bodies of fresh water: Punchbowl Lake, Mod III Lake, Upper Canyon Lake, Middle Canyon Lake, and Lower Canyon Lake (Table 2.l.1). These lakes were the principal focus for our analysis of standing water ecosystems. The largast body of standing water, the Santa Ynez Lagoon was not included in our major sampling base as it is normally brackish, but the lagoon was sampled periodically and certain aspects of its structure and dynamics were determined.

Many other bodies of standing water were located, of these only two were of significant size: Shuman Canyon Creek and "Joe's Lake". Table 2.1.2 presents a list of all permanent streams located on the base (permanent indicates that the $s t r e a m s$ contained running water in September 1974). and a number of temporary streams. The list also contains all bodies of standing water located during this period. The names given in the list are often those given to the stream or pond by ourselves, as many of these water systems were not named. For ease in location, coordinate numbers have been
table 2.1.1. Lakes and Ponds

1. Coord. from Base Master Plan Map series C-1 (I Janaury 1971 Revision) 66 sheets, scale $1^{\prime \prime}=60^{\prime}$.
2. Highly variable in area and depth depending on season and/or tide
3. Name given to site ty investigator
4. Name given to a series of small temporary or semipermanant ponds; measurements given are for largest in series
5. Temporary

* estimates

TABLE 2.1.2. Streams

	(km)	$\left(k m^{2}\right)$	(km)	(km^{2})
1,3	Length on	Area of	Total	Total
Coord. ${ }^{\text {ch }}$	Base	Watershed	Length	Watershed

NORTHERN AREA

Cañada del Norte ${ }^{2}$	$M A-140.9$	3.5	2.8	3.5	2.8
Shuman Canyon Creek	$A B-123.9$	7.0	--	--	--
TOIALS		10.5	--		

NORTH-CENTRAL AREA

San Antonio Creek	EC-98.4	EB-98.5	18.0	71	45.2
PA-106.4	400				
Santa Ynez River	PB- $-4.9 \mathrm{HB}-63.8$	8.8	--	112.7	2390
TOTALS		26.8	--		

SOUTH CENTRAL AREA

Santa Ynez River	PB-64.9 HB-63.8	8.8	--	112.7	2390
La Salle Canyon	MB-45.7	1.8	7.5	--	--
Bear Creek ${ }^{4}$	SA-53.5	4.0	--	4.0	--
Honda Creek	$\begin{aligned} & G B-35.6 \quad N A-37.4 \\ & 1 A-38.5 \end{aligned}$	13.5	30.5	--	--
TOTALS		28.1	--		

SOUTHERN AREA

Agua Viña	WA-21.8	3.3	2.7	3.3	2.7
Cañada de Morida	GB-15.4	3.5	2.8	3.5	2.8
Water Canyon	DB-17.1	4.0	2.6	4.0	2.6
Cañada de Hyla	WA-21.7	2.5	2.2	2.5	3.8
Cañada del Jolloru	QB-20.1 PB-16.9	4.5	8.8		
TOTALS		17.8	19.1		

[^0]given to all ponds and streams. In the case of the streams, coordinate numbers indicate sampling locations. The base has been divided into four areas on the basis of the characteristics of their respective freshwater resources; and this is the basis for the grouping in Table 2.1.2.
2.1.2. Sampling Regimes. A maximum of three sampling stations, each 50 m long, were set up on each of the streams in the base set. These 5 tations were picked as far as practicable to represent: 1) the stream headwaters or where it enters the base, 2) the mid-point of the stream on the base, and 3) the outfall to the ocean. Three stations were set up on Cañada Honda Creek and San Antunio Creek, and one or two on the other streams (see Table 2.1.2 for location coordinates). As far as possible these stations were sampled in September, January and March. Variables measured included pH, conductivity, temperature, nitrate, phosphorous, discharge rate, suspended sediments, alkalinity, benthic invertebrates, depth an! width. A verbal description was prepared for each stream sampling station; this described major plant species, plant cover, bottom type, vertebrates present and other items.

The five major lakes were also sampled in September, January arid March. Variables measured included pH , conductivity, temperature, nitrate, phosphorous, dissolved oxygen (minimum dissolved oxygen was measured in September only), alkalinity, chlorophyll, transparency, depth, planktonic invertebrates and benthic invertebrates. Fish populations were sampled in March. A verbal description was made for each lake whish noted major plant types, nature of basin, and other pertinent items.
2.1.3. Field and Laboratory Procedures. Conductivity was measured in the field with a Lab Line Lectro Mho-Meter and values corrected to $25^{\circ} \mathrm{C}$. The pH was measured with a Beckman Model $\mathrm{pH}-180$ meter buffered at pH 6.86 or
9.0. Transparency was measured with a Seechi disk. The alkalinity was measured in the field by titration of $25-100 \mathrm{ml}$ samples with standard HCl to a bromcresol green end point; values were expressed as mg HCCl3/I. Nitrate and phosphorous samples were taken in 100 ml plastic vials, preserved with four drops of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ and analyzed later in the laboratory. Nitrate samples after neutralization to between pH 7 and 9 were analyzed by the method of Wood et al. (ref. I). Measurement of total phosphorous was accomplished as described in Amer. Pub. Hlth. Assoc. (ref. 2), and consisted of a wet digestion with $\mathrm{H}_{2} \mathrm{SO}_{4}$ and HNO_{3}, with final determination by colorimetric measurement of the molybdenum blue-phosphorous complex. Dissolved oxygen was measured by the unmodified Winkler technique; minimum dissolved oxygen enalyses were performed on samples taken at dawn. Chlorophyll samples consisted of 1 liter of water collected and analyzed within 48 hours. The sample was filtered through Whatman GF/C filter paper. The paper was ground in a tissue grinder with 5 ml of 90% acetone saturated with MgCO_{3}. The volume was made up to 10 ml with 90% acetone, centrifuged and absorbance measured with a spectrophotometer at $630,645,663$, and 750 nm . The sample was then acidified and the absorbance measured at 663 and 750 nm . Spectrophotometer cells with a one centimeter light path were used. Concentrations of chlorophyll a, b and c, and chlorophyll a corrected for phaeopigments were determined using the equations of Strickland and Parsons (ref. 3).

Suspended sediments were measured by taking a liter sample of water, preferably in an area of high current. The water was filtered through prewashed and weighed Whatman GF/C filter paper; these were dried at $100^{\circ} \mathrm{C}$ for 1 hour and reweighed. Suspended solids were calculated as the difference in weights of filter paper and included both organic and inorganic matter.

Discharge rates were estimated by timing a float over at least 1 meter of stream, thus estimating current rate $\mathrm{in} \mathrm{m} / \mathrm{sec}$. The average depth and width in meters was estimated over the timed interval. Discharge rate was calculated from the equation average width \times average length \times current rate $=$ volume in $\mathrm{m}^{3} / \mathrm{sec}$. Stream organisms were sampled with a rectangular net (l men mesh, $46 \times 20 \mathrm{~cm}$ net ncening) at five locations within the sample station. Samples were taken by dragging the net over the bottom on sluggish muddy bottom streams, or, in swifter streams, by turning rock and washing gravel over a measured area and allowing organisms to be washed into the net. The samples for each station were combined and, if possible, sorted alive that evening. Samples were identified and counted in the laboratory.

Plankton samples and water samples for chemical analysis were taken with a 2-meter long, 10 cm diameter sampling tube which had a bottom opening that could be closed from the surface. After water samples were taken, the remainder of the water was passed through a plankton net, and any organisms were collected and preserved.

Benthic invertebrates of the lakes were sampled with an Ekman dredge, up to five dredge hauls being taken per lake at various locations. Samples were combined and washed in the 1 mm mesh dip net used for collection of stream organisms, and treated and analyzed in the same manner as were the samples of stream benthos.

The fish of the five lakes were sampled during the period March 23-27, 1975 using a 65 foot, $1 / 2$ inch mesh pocket seine. Two to four seine hauls were taken per lake, according to the lake's size and other conditions. All fish caught were identified, weighed, measured and scales removed for growth rate and age analysis. Selected fish were sacrificed for stomach analysis.

2.2. - Results

2.2.1. Chemical and Physical Parameters. The chemical and physical data are presented in Table 2.2.1. The pH of most waters is between 7.0 and 8.5. In September three measurements exceeded 8.5, Upper Canyon Lake, Punchbowl Lake, and Santa Ynez Lagoon. All three of these bodies of water were at that time subject to high levels of primary production which tends to raise pH levels. By January, when most primary production was at a low level, the pH of these waters was also between 7.0 and 8.5. Two small ponds, El Rancho Deste and Lompoc-Casmalia were slightly acid with pH values of 6.7 and 6.3, respectively, in January 1975.

Conductivities were generally between 1000 and 6000 umhos. A few bodies of water exceeded this range. The Santa Ynez Lagoon is brackish and had conductivities exceeding 12,000 umhos in September and January. A small, sh.illow pond near Punchbowl Lake also had conductivities exceeding $\mathbf{1 2 , 0 0 0}$ umhos. Shuman Canyon Creek and Cañada del Jolloru Station 1 exceeded 6000 umhos. The reason for the high conductivities of these latter sites was not determined. Mod 111 Lake and Punchbowl Lake had the highest conductivities of any of the lakes: 5200 and 4150 umhos, respectively, in September, 1974. These are both at least superficially closed basins and thus subject to evaporative concentration of salts. It is not known whether there is any water loss from their basins by seepage.

Alkalinities ranged mostly from $200-600 \mathrm{mg} \mathrm{HCO} 3 / 1$. However, Punchbowl Lake had an alkalinity of $932 \mathrm{mg} \mathrm{HCO} / \mathrm{h} / \mathrm{in}$ September 1974; this lake tends tc trap salts and would be expected to have a high alkalinity. Two temporary ponds, El Rancho Oeste and Tangair Pond,had relatively low alkalinities, 63
Lia： 22.1 Selected Physical and Chemica：Characteristics of Lakes and Strams on vardenberg AFB 1．Streams

Name	coord． No．	9874	$\frac{\mathrm{pH}}{1 / 75}$	3175	$\begin{gathered} \text { Conductivity } \\ u_{4} \text { mhos at } 25^{\circ} \mathrm{c} \end{gathered}$			alkalinity $\mathrm{mg} \mathrm{RCO}{ }_{3}^{-1} /$			$\begin{gathered} \text { Total } \\ \text { inosptorous } \\ \text { mg/1 } \\ \hline 977^{4} \\ \hline \end{gathered}$	Nitraie Nitrogen $\mathrm{mg} / 1$		Discharge$\mathrm{m}^{3} / \mathrm{sec} \times 10^{3}$			$\begin{aligned} & \text { Suspenged } \\ & \text { seaimet } \\ & \mathrm{mg} / \mathrm{AD} \end{aligned}$		Water－emp					
＂Conada cel Morte＂	MA－140．9	8.2	8.0	8.3	3930	3900	3640	378	406	500	0.37	0.81	0.23	37	6	11	155	${ }^{38}$	20.4	12.0	0	2c．a	15	9.6
Ssurin Caryon	AB－123．9	7.9	8.0	7.8	4630	6650	4180	527	527	295	1.3	0.64	4.27	36	27	81	420		15.5	11.0	9.0	24.5	15.	1． 1.5
San Antunio Creek Sta．${ }^{\text {d }}$	EC－ 98.4	7.6	7.2	7.4	1600 3650	2210	2080	425 644	411 512	446	0.89	3.45	1.37	（2）	退	${ }^{369}$	420	39	23.0	10.0	10.0	21.0	12：	2
San Antonlo Creek Sta． 2	EB－98．5	${ }_{7}^{8.0}$	7.8	7.7	3650 1175	2720	1900	644 217	512	492	1.4	8.21 2.14	10.9	29		B	2	9	17.5	10．0	12.0	19.1	13，	13.5
Santa Ynez River Sta．${ }^{1}$	PB－ 64.9	7.3	7.5	8.2	2090	1960	1030	499	350	294	1.6	0.37	6.2	38	－－	－－	<20	36	18.5	14.5	12.5	18.5	16．：	16.5
Santa rnez River Sts． 2	H8－63．8	7.8	7.8	7.9	3420	2000	1070		370	296	0.16	37.9	16.1	（2）	－－	－－		9	－－	0	12.0	－－	17.	14.0
Sear Creek	5A－53．5	－－		7.6			1430		－－	197	\cdots		－－	－－							12.0	18.0		
La Salle Canyon	M3－45．7	7.7	7.5	\cdots	1660	169\％		477	545		0.03	0.06	\cdots	\cdots	5.4	－－	<20	9	15.0	6.0	9.5	20.0	12.0	12.0
Eanada honda creek Sta 1	G3－ 35.6	7.3	7.8	7.8	1810	2200	1375	454	485	319 368	0.12	0.14	0.06	51	15 17	303		7	15.0	9.0	11.0	14.5	14.5	is．
cansda Honda Creek Sta 2	$\mathrm{Na}-37.4$ $10-38.5$	8.2 8.2	7.8	7.7 8.0	17690	1810 1860	1460	397 414	4	368 337	0.06 0.13	0.03 0.10	0.08 0.03	${ }_{4}^{51}$	26	275			16.5	11.0	13.0	16.8	15.5	15.0
ague Vina	wa－ 21.8	7.8	8.1	8.3	1930	－ 1750	1100	466	306	211	0.57	0.12	0.14	－－	1.		i：	12	23.0	15.0	17.0	！ 6.5	！5．2	14．5
canaca de rarida	ca－ 15.4	－－	8.0	8.6		1850	1410		362	446		－－	－－	－－	1.4	6		40	－－	＋5．0	16.5	．	17.0	15.0
dater iaryon	28－17．1	－－	7.9	8.4		3250	1970	－－	222	405	－－	－－	－	－	0.9	3		12	－－	15.5	17.0		15.	－．
－caraca de Mula＂		7.1	8.3 7	\cdots	8：03	2425 7150		470	314 $4: 5$		－－	0.03	0.20	26	0.5 0.6	－－	－－	：5	15.5	：2．c		1．c	1E：	
Carada del jolloru sta． 2	PB－16．9	8.0	7.4	8.0	2620	292\％	3280	457	422	506	0.06	0.11	c． 25	26	，	11		18	16.0	：2．c	11	17.2	1 1．	13．5

Nate	Coord． No．	$9 / 74$	$\frac{\mathrm{pH}}{1 / 75}$	Conductivits Thos at 25° c．				$\begin{aligned} & \text { Alkalinity } \\ & . \mathrm{nH} \mathrm{CO}_{3}^{-1} / 1 \end{aligned}$			Phosphorous $\frac{\mathrm{mg} / 1}{9 / 74}$	$\begin{aligned} & \text { Nitroste } \\ & \text { Nitrogen } \end{aligned}$		Secchi disk （M）			Dissolved O_{2} （mo／1）			Surface Temp．			dir Te－n．		
＂T－jait Penci＂	$\mathrm{SH}-93.5$	－－	－－	8.6	－－	．－	1930	．－	－－	86	．－	－－	－－	－－		3.5	－－	－－	－	－－	－－				
2－re ？${ }^{\text {e }}$	Th－i22．3	－－	7.3	－－	－－	1579		－－	351	－－	－－	－－	－－	－－	－－	－－	－－	．－	－－	－－	15	－－	－－	\％－	\cdots
E：iansh，Desse Pond＂	Fe－139．4	－－	6.7	．－	－－	$\div 20$	－－	－	6 ？	－－	－－	－－	c． 37	－－	－－	－－	－－	－－	－－	－－	15.0			\therefore	
	m6－101．2	－－	3.1	－－		1566																－－			
Ei Fidinc：un	t6－100．9	－－	7.2	－．	－－	4800	－－	－－	－－	－－	－－	－－	0.99	8.1	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	
＂ん－دこc－「as－alia Pond＂	18－96．6	－－	6.3	－－	－－	1000	－－	\cdots	－－	－－	－－	－－	－．	－－	－－	－－	－－	－－	－－	－	－－	－			
＂3，ins I Pond	Ec－ 98.9		7.6	\cdots	－	2－26						－－	－－	－－					－						
	0A－10t． 2	8.2	－－	7.9	1510	－－	2650		\because										－－						
	YR－103．5	8.1	7.7	\cdots	5239	4500	4050	491	479		0.94	0.15	0.80	2.3	8.4	1.2	a．u4	9.4	7.50	22.0 23.0	8.5	16.0	17．5	¢	
．．．．e iarsea－axe	U＇5－$€ 1.7$	9.1	7.1	－．	2ここう	1290	1120	331	171	－－	0.51	0.07	0.36	－－	0.2	－－	6.83	6.69	7.02	－－	9.	－		！$: 5$	；
	¥B－ 79.3	8.2	7.2	－－	1750	1615	1210	284	260	－－	1.24	0.05	0.33	3.0	0.8	0.5	7.68	10.72	8.89		9.2	： 3		－	
－Omy carre？lane		7.6	7.8	－．	2 200	2170	1630 2000	432	$3{ }^{3} 5$		1.48	0.34 0.05		0.8	1.0	0.5	6.69 7	10.58		25.6 16.8	9.5			：2．5	
San：，yhez lajoon	WA－ 63.3	8.9	9.4	\cdots	1390	30000		378	280	－－	0.75	0.14	－－	0.03	0.3	－－	\cdots	16.58	－	17.0	－－	－－	：6．c	－	
bear Cicek Pons＂	S．i－ 54.9			2．？		－	2040		．－	404	－－	．．	－．	－．	－．	7.5	－－	－－	－－	－－	－－		－－	－－	
	：A－ 34.7	－－	－－	8.2	－－	－－	970	－－	－．	291	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	：5．6	－－	－－	

[^1]and $86 \mathrm{mg} \mathrm{H} \mathrm{HCO}_{3} / 1$, respectively, probably because these ponds are generally filled with rain water. Most of the water on the base can be considered as hard water.

Water temperatures varied from $6.0^{\circ} \mathrm{C}$. at Cañada Honda Creek in January 1975 to 26° C for Lower Canyon Lake in September 1974. Generaliy, the low point in water temperature was in January or February $\because i$ th the temperature of the lakes less than $10^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{F}.\right)$, while the streams were between 10 and $15^{\circ} \mathrm{C}$ September probably was the month of maximum water temperatures. The streams and lakes varied from $15^{\circ} \mathrm{C}$ to $26^{\circ} \mathrm{C}$; streams were generally less than $20^{\circ} \mathrm{C}$, while the lakes were generally warmer.

The discharge rates are approximate but can be used to demonstrate seasonal and between-stream differences. January was the month of lowest discharge rates while March had the highest discharge rates. Cañada Honda Creek and San Antonio Creek had the highest March discharge rates of all the streams measured. With the exception of the Santa Ynez River, which was not measured, in March, these two streams have larger watersheds than any others on the base. The measured discharge rates were not affected by recent storm runoff.

Nitrate levels were generally high in all waters sampled except Cañada Honda Creek and La Sa!le Canyon. These latter streams are not subject to extensive agriculture pollution, whereas San Antonio Creek, the Santa Ynez River and Shuman Canyon do receive extensive runoff from agriculture land, most of which occurs off of the base, and have correspondingly high nitrate concentrations (1.4 to $37.9 \mathrm{mg} \mathrm{N}-\mathrm{NO}_{3} / \mathrm{I}$).

The phosphorous levels of the water of the base are also generally quite high, high enough that phosphorous, which is the limiting nutrient for the
growth of plants in most natural aquatic systems, is not at all limiting in the principal aquatic systems of the base. Phosphorous is also an agriculture pollutant but is generally not as concentrated in agricultural runoff as is nitrate. This is reflected in the comparison of total phosphorous and nitrate levels for San Antonio Creek (‘єe Table 2.2.1). The P concentratir :s in the lakes ($0.5-2.34 \mathrm{mg} / \mathrm{l}$) represent a very high level for non-polluted waters. The source of these high levels is unknown.

Chlorophyll a levels of the lakes were generally low in September and January and slightly higher in March, especially in Punchbowl Lake. These results agreed well with field observations of water color. Measurements indicated that chlorophyll c, at least in January and March, had higher concentrations than chlorophyll a. This may indicate that the dominani algae at these times were diatoms; though the high level of phaeophytin and other degradation products may have caused an unusually high value for chlorophyll c (see Table 2.2.2). Santa Ynez Lagoon had a very high chlorophyll a level in September, 1974 ($894 \mathrm{mg} / \mathrm{l})$, when the lagoon was in the middle of an extensive bloom of the blue-green algae Nodularia sp.

Secch; disk readings never exceeded three meters and were often less than one meter. The lowest readings were taken in March when the lakes had high levels of silt. The reason for the poor transparency in other sampling periods was not determinej. Phytoplankton levels were low and measurement of absorption spectras for visible wavelengths of plankton-free water failed to show any significant absorbtion.

Oxygen levels were somewhat variable ranging from $2.36 \mathrm{mg} / \mathrm{l}$ (minimum dissolved O_{2} in San Antonio Creek) to $10.58 \mathrm{mg} / 1 \mathrm{in}$ Lower Canyon Lake. Percent saturation varied from 25\% (San Antonio Creek) to 98% in Punchbowl Lake (see Tables 2.2.3 and 2.2.4).

TABLE 2.2.2. Conceritrations of Various Chlorophylls

	Chla $\mathrm{mg} / 1$			Chl b mg/l			Chl c mg/l		
Source	Sept	Jan	Mar	Stept	Jan	Mar	Sept	Jan	Mar
Upper Canyor Lake	1.1	2.7	--	--	5.0	4.5	--	20.2	16.4
Middle Canyon Lake	2.8	4.3	4.8	--	3.0	4.4	--	8.9	13.1
Lower Canyon Lake	--	3.3	4.8	-	3.8	2.6	--	12.8	7.5
Punchtowl Lake	4.9	1.0	23.5	--	2.1	8.6	--	9.4	32.6
Mod III Lake	4.2	0.5	8.2	--	5.7	1.9	--	15.9	8.9

TABLE 2.2.3. O_{2} Concentrations and Percent Saturation

	Sept		Jan		March	
Lake	$\underline{0}_{2} \mathrm{mg} /$	$\underline{\text { Satd }}$	$\underline{0}_{2} \mathrm{mg} / \mathrm{l}$	3 Satd.	$\mathrm{O}_{2} \mathrm{mg} / \mathrm{l}$	8 Satd.
Uppor Canyon Lake	6.83	83\%	6.69	58\%	7.02	69\%
Middle Canyon Lake	7.68	94\%*	10.42	90\%	8.88	83%
Lower Canyon Lake	6.69	82\%	10.58	92\%	--	--
Punchbowl Lake	8.57	98\%	8.92	78\%	7.50	72\%
Mod 111 Lake	8.44	96\%	9.4	80\%	--	--

* Temperature of water assumed to be $26^{\circ} \mathrm{C}$.

TABLE 2.2.4 Minimum Dissolved 0_{2}, September, 1974

	$\frac{\mathrm{mg} / \mathrm{l}}{}$	
San Satd. Antonio Creck Station 2	2.36	25%
Upper Canyon Lake	5.53	59%
Middle Canyon Lake	5.77	66%
Punchbowl Lake	6.58	73%

2.2.2. Aquatic Plant Life. Tables 2.2 .5 and 2.2 .6 are, respectively, lists of riparian and aquatic plants noted and identified during field analysis of the various aquatic sites. Tables 2.2.7 and 2.2.8 are lists of plants by sampling sites for riparian and aquatic plants, respectively. No attempts were made to identify all species at each site and the list generally includes only the dominant plants present. Plant identifications were according to Murry and Keck's terminology (ref. 4). This does not necessarily mean that they were abundant at a site; if a site had lit:le plant cover, even the dominants would have low abundance. Batrachospermus, an encrusting red alga of streams, is an example of this. As the lists are very incomplete, they are presented more as guides for future plant analyses of the aquatic systems of Vandenberg AFB than as a true structure of the aquatic plant communities.

Willow (Salix spp.) was by far the dominant riparian species occurring at nearly every site. Of the aquatic vascular plants, reeds, especially Scirpus sp. and Typa sp. were the most common, while watercress (Nasturtium officinale) and Duckweed (Lerma minor) were presenc at many locations, often in dense stands.
2.2.3. Invertebrates. The invertebrate fauna found in the streams, lakes and ponds of Vandenberg AFB in September 1974 are enumerated below. Tables 2.2.9 and 2.2.10 present the results of quantitative samples taken at our stream sampling stations; Table 2.2.9 lists the insects and Table 2.2.10 lists the other invertebrates. Table 2.2.11 presents the results of the quantitative samples of the benthic invertebrates taken from the lakes. Table 2.2.12 presents the results of the quantitative samples of the planktonic invertebrate of the Canyon Lakes. Table 2.2.13 is a compilation of all aquatic invertebrates found on the base and the locations where they were found.

ABLE 22.5. Riparian Plants, Division Anthophyta

	Common Name	Location*
Apiastrum angustifolium	Wild celery	1,2,4
Baccharis sp.	-----	4,6,15,16,17
B. Douglasii	-----	3,15,16,17
Brassica sp.	Mustard	2,4,5,15,16,17
Caulanthus californicus	-----	8
Chenopodium sp.	Goosefoot or Pigweed	4,5,8,16
Conium maculatum	Pcison hemluck	4,8,15,17,27
Eriophyllum staechadifolium	-----	3
Eucalyptus sp.	Eucalyptus	2,23,27
Gnaphalium luteo-album	Cudweed or Everlasting	8
Helenium Bol.anderi	Sneezeweed	2,4
Helitropium curassavicum var. oculatum	Helitrope	4
Jaumex cimosa	-----	3
Lepidium campestre	Cow Cress	8
Melilotus alba	Sweet clover	1,2,8
M. indicus	Sweet clover	1,2,3,8
Perezia microcephala	-----	3
Polypcgon monspeliensis	Beard grass	2,7,8,9,10
Quercus sp.	Oak	12,14,27
Ribes sp.	Current or Gooseberry	1
Rubus ursinus	California blackberry	1,2,3,27
Rumex sp.	Dock or Sorrel	5,8,12,16,17
R. feuginus	Golden dock	7
Salvia sp.	Sage	10
Salix sp.	Willow	most locations
Sombucus sp.	Elderberry	4,10
Satureja Doujlasii	Yerba buena	1
Solonum sp.	Nightshade	16
Toxicodendron diversiloba	Poison oak	2,16,20,23
Urtisa holosericea	Nettle	1,4,5,6,8,12,16,27,30
Veronica americana	Brooklime	8
Various short grasses	-----	9,11,30

[^2]| | Common Name | Location |
| :---: | :---: | :---: |
| ALGAE | | |
| Division Bacillariophyta | Diatoms | |
| Bacillaria sp. | | 20 |
| Campylodisels sp. | | 13,15,20 |
| Coscinodiscus sp. | | 14 |
| C'yclotella sp. | | 17 |
| Ciyrosigma sp. | | 17 |
| Suriella sp. | | 13,14,15,16,20 |
| Division Charaphyta | | |
| Division Chlorophyta | Green algae | |
| Chlorococun sp | | Streams |
| Microspora sp. | | 15 |
| Oedogonium sp. | | 19 |
| Rhizoclonium sp. | . | 10 |
| Enteromorpha sp. | | 3,6,9,10,21 |
| Spironyra sp. | | Lakes |
| Stigecclonium sp. | | 26 |
| Ulothrix sp. | | Sewage treatment plant |
| Division Chrysophyta | | |
| Vaucheria sp. | | 18 |
| Division Cyanophyta | Blue green algae | |
| Nodularici sp. | | 22 |
| Lyngbya sp. | | Sewage treatmeni plant |
| Division Euglenophyta Colacium sp. | Eulglenoids | Lakes |
| Division Rhodophyta Batrachospermum sp. | Red algae | 1 |
| VASCULAR PLANTS | | |
| Division Calamophyta Equisetum Telmatia var. Braunii | Horsetails
 Giant horsetail | 1,2 |
| Division Pterophyta | Ferns | |
| Azolla filiculoides | | 6,7,8 |
| Marsilea sp. | | 20,23 |
| Division Anthophyta | Flowering plants | |
| Cotula coronopifolia | Brass buttons | 5,16 |
| Cyperus Eragrostis | Umbrella sedge | 7,8 |
| Helenium Bolanderi | Sneezeweed | 6 |
| Juncus sp. | Rush or Wire grass | 3,12,16 |
| .J. Lesueurii | | 6 |
| J. oxymeris | | 2 |

TABLE 2.2.6. cont.

	Common Name	Location ${ }^{\text {* }}$
Division Anthophyta cont.		
Lenna minor	Duckweed	4,5,7,8,13,18,23,25
Nasturtium officinale	Watercress	1,3,4,5,6,7,8,23,30
Potmogeton sp.	Pondweed	3,6,7,12,13,15,16,20
Sagittaria sp.	Arrowhead	16
Scirpu: sp.	Bulrush or Tule	9,10,11,18,19,20,23,24,25,26
S. acutus	Common tule	3,4,5
5. smericanus	Three square	3,4,12
5. californicus	California bulrush	6,12,13,14,15,16,17,20
S. microcarpus		7,8
S. robustus		3,5,7,8,14,15,16,20
Spargunium eurycarpum	Bur reed	1,4,5,6,20
Trjpha sf.	Cattail	6,14,18,23,24,25,26
T. dumingensis		7
'r. latifo'ta	Soft flag	4,5,7,12,13,29

[^3]TABLE 2.2.7. List of Riparian Plants by Site

```
San Antonio Creek Station 1
    Apiastmum angustifolium
    Baccharis sp.
    Brassica sp.
    Chenopodium sp.
    Conium maculatum
    Helenium Bolanderi
    Heliotropium curassavicum var. osulatum
    Salix st.
    Sambucus.sp.
    I/rtica hoZosericea
San Antonio Creek Station 2
    Brassica sp.
    C'henopodium sp.
    Conium raculatum
    Rumex sp.
    Sxlix sp.
    Urtica holosericea
San Antonio Creek Station 3
    Baccharis sp.
    Salix sp.
    Urtica holosericea
Santa Ynez River Station I
    Polypogon monspeliensis
    Rumex fueginus
    Salix sp.
Santa Ynez River Station 2
    Chenopodium sp.
    Conium macuixtum
    Caulanthus califomicus
    Gnaphalium Zuteo-album
    Lepidium campestre
    Melilotus alba
    M. indicus
    Polypogon monspeliensis
    Rumex sp.
    Salix sp.
    Urtica holosericea
    Veronica americana
Canada Honda Creek Station I
    Apiastrwm angustifolium
    Melilotus alba
    M. indicus
    Ribes sp.
    Fiubus ursinus
    Salix sp.
    Satureja DougZasii
    Urtica holosericea
```


TABLE 2.2.7. cont.

```
Cañada Honda Creek Station 2
    Apiastrum angustifolium
    Brassica sp.
    Eucalyptus sp.
    Helenium Bolanderi
    Melilotus alba
    M. indicus
    Polypogon monspeliensis
    Rubus ursinus
    Salix sp.
    Toxicodendron diversilova
Cañada Honda Creek Station 3
    Baccharis Douglasii
    E'riophyllum staechadifolium
    Juumea carnosa
    Melilotus indicus
    Perezia microcephala
    Fiubus ursinus
    Salix \(8 p\).
Cañada del Jollorou Station 1
    Polypogon monspeliensis
    Salix sp.
    unidentified grasses
```

Cañada del Jollorou Station 2
polypogon monspeliensis
Salvia of.
Sulix sp.
Sambucus $s p$.
Canada del Norte
Salick sp.
unidentified grasses
Upper Canyon Lake
Salix sp.
Middle Canyon Lake
guercus sp.
Salix op.
Lower Canyon Lake
Quercus sp.
Fiumex s_{I}.
Sulix su.
Urtica hol serricea

TABLi 2.2.7. cont.
Mud 111 Lake
Buocinuris sp.
Baceharis louglasii
Brassica sp.
Ch'bopodium sp.
Eucalyptus
Rumex $s p$
Salix sp.
Solanum sp.
Toxicodendron diversiloba
Urticea holoserica
Punchbowl Lake
Bacsharis sp.
Eas hamis Douglasii
Con:um maculatum
salix sp.
"Joe's'" Lake
Baccharie : p.
B. Douglasii

Conium maculatum
Rumer sp.
salix sp.
Agua Viña
Urtica hoZosericea
various grasses
El Rancho Pond
Toxicodendron diversiloba
Lompoc Casmalia Pond
Sa? ix sp.
Triangle Pond
Salix sp.
Umbra Pond
Fasuisptu: $s p$.
Salix sp.
Turicodendron diversiluba
El Rancho Oeste Pond
Salix sp.
Barka 1 Pond
Saitre sp.
Dune Pond
Salix sp.
La Salle Canyon
Conium maculatum
Eucalyptus sp.
Quercus cp .
Pubus arsinus
salix sp.
//rtiti-a holocericeu
Shuman Canyon
Salis: :

TABLE 2.2.8. List of Aquatic Plants by Site

```
San Antonio Creek Station 1
    Lerma minor
    Nasturtium officinale
    Scirpus acutus
    S. americanus
    Sparganiun eurycarpum
    Typha latifoiia
San Antonio Creek Station 2
    Cotula coronopifolia
    Lerma minor
    Nasturtiwn officinale
    Scirpus acutus
    S. robu:tus
    Sparganium eurycarpum
    Typha litifolia
    unidentified filamentous algae
San Antonio Creek Station 3
    Arolla sp.
    Enteromorpha sp.
    Helenium Bolanderi
    e\mp@code{uncus Lesueurii}
    Nasturtium officinale
    Putomogeton sp.
    Scirpue califormicus
    Sprarganium eurycarpum
    Typha sp.
Santa Ynez River Station I
    Azolla sp.
    Cyerus Eragrostis
    Lemna minor
    Nasturtium officinale
    Scirpus microcarpus
    S. robustus
    Typha domingensis
    T. latifolia
    unidentified filamentous algae
Sanita Ynez River Station 2
    Azo\lla sp.
    C'yperus Eragrostis
    Lemria minor
    Nasturtium officinale
    Scirpus microcarpus
    S. robustus
Canada Honda Creek Station I
    Batrachospermum ap.
    Equigetum Telmatia var. Braumii
    Nasturtium of:icinale
    :`arcanium surycurpum
```

table 2.2.8. cont.
Cañada Honda Creek Station 2
Equisetum Telmatia var. Braunii duncus oxymeris
Cañada Honda Creek Station 3
Chara sp.
Enteromoriha sp.
Juncus sp.
Nasturtiun officinale
Potomogiter sp.
Scirpus acutus
S. americanus
S. robustus

Cañada del Jollorou Station 1
Enteromorpha sp. Scirpus sp.
Cañada del Jollorou Station 2
Enteromorpha sp.
Rhizoclonium sp.
Scirpus $8 p$.
Cañada del Norte Scirpus sp.
Upper Canyon Lake
Lerna minor
Potomugeton sp.
Scirpus califormicus
Typha latifolia
unidentified filamentous algae
Middle Canyon Lake
Scirpus califormicus
S. robustus

Typha sp.
unidentified filamentous algae
Lower Canyon Lake
Juncus sp .
Potomogeton sp.
Scirpus americanus
S. californicus

Typha latifolia
unidentified filamentous algae
Mod 111 Lake
Cotula coronopifolia
Potomogeton sp.
Juncus $s p$.
Sagittaria sp.
Scirpus califormicus
S. robustus

TABLE 2.2.8. cont.

```
Punchbowl Lake
    Potomogeton sp.
    Scirpus californicus
    S. robustus
    unidentified flamentous algae
"Joe's" Lake
    Scirpus californicus
Agua Vina
    Nasturtium officinale
El Rancho Pond
    Marsilea \(8 p\).
    Potomogeton sp.
    Sparganium euryycarpum
    Scirpus californious
    S. indicus
    S. robustus
Lompoc Casmalia Pond
    Lemna minor
    Scirpus sp.
    Typha sp.
    unidentified filamentous algae
Triangle Pond
    Scirpus op.
Umbra Pond
    Lemna minor
    Marsilea sp.
    Nasturtium officinale
    Scirpus sp.
    Typha sp.
El Rancho Oeste Pond
    Scirpus ap.
    Typha latifolia
Barka 1 Pond
    Scirpus sp.
    Typha \(s p\).
Dune Pond
    Lerma minor
    Soirpus sp.
    Typha \(8 p\).
Tangalr Pond
    Scippus sp.
    Typha sp.
    unidentified filamentous algae
```

TABLE 2.2.9. Counts of Insects from Major Streams of Vandenberg Air Force Base, California, September, 1975 ($/ 1 \mathrm{~m}^{2}$)

											$\begin{aligned} & \overline{\mathbf{y}} \\ & \text { 苟 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	¢
Coleoptera	--	1.4	-	2.9	11	15	31	35	163	29	4.3	9
Dysticidae	--	--	--	--	--	11	31	26	76	26	--	5
Agabus sp.	--	--	--	--	--	4.3	--	4.3	--	--	--	2
Bidessus sp.	--	--	--	--	--	-	\cdots	1.4	--	--	--	1
Derocanthes sp.	--	--	--	--	--	--	31	--	--	--	--	1
Hydroporus sp.	--	--	--	--	--	--	--	--	11	--	--	1
Ilytius sp.	--	--	--	--	--	--	--	--	5.7	--	--	1
Laceophilus sp.	--	--	--	--	--	--	--	--	8.6	--	--	1
Oreodytes sp.	--	--	--	--	--	-	--	4.3	--	-	--	1
Others	--	--	--	--	--	7.1	--	16	51	26	--	3
Haliplidae	--	--	--	--	--	4.3	--	2.9	--	--	--	2
Peltodytes sp.	--	--	--	--	--	4.3	--	2.9	--	--	--	2
Hydrophilidae	--	1.4	--	--	--	--	--	5.7	84	1.4	4.3	5
Berosus sp.	--	--	--	--	--	--	--	1.4	30	--	--	2
Tropisternus sp.	--	--	--	--	--	--	--	4.3	54	\cdots	\cdots	2
Other	--	1.4	--	--	--	--	--	--	--	1.4	4.3	3
Psephenidae	--	--	--	--	--	--	--	--	--	1.4	--	1
Unidentified Coleoptera	--	--	--	2.9	11	--	--	--	2.9	--	--	3
Diptera	22	372	2.9	67	24	1.4	37	200	200+	47	77	11
Chironomidae	11	358	--	67	24	--	--	171	200+	37	76	2
Chirmomus sp.	--	334	--	21	23	--	--	--	--	--	66	4
Pentatura or.	1.4	--	--	--	--	--	--	10	--	--	--	?
Metriocnemos sp.	2.9	20	--	17	1.4	--	*-	161	--	34	--	6
Other	7.1	4.3	--	29	-	--	--	--	--	2.9	10	5
Culicidae	1.4	10	--	--	--	--	--	--	--	4.3	1.4	4
Dixidae	--	--	--	--	--	--	1.4	--	--	--	--	1
Parajixa sp.	--	--	--	--	--	--	1.4	--	--	--	--	1
Dolichopodidae	--	--	--	--	--	--	2.9	--	--	--	--	1
Empididae Roederiodes ap.	--	--	--	--	--	--	1.4	--	--	--	--	1
Heleidae	1.4	--	--	--	--	--	--	--	--	--	--	1
Muscidae	--	--	--	--	--	--	--	13	--	--	--	1
Limmophora sp.	--	--	--	--	--	--	--	13	--	--	--	1
Simuliidae	--	--	--	--	--	--	31	--	--	--	--	1
Stratiomyidae	--	--	--	--	--	--	--	--	2.9	--	--	1
Stratiomye sp.	--	--	--	-	-	--	--	--	2.9	--	--	1
Tipulidae	--	--	--	--	--	--	--	5.7	--	5.7	--	2
Hesatoma ep.	--	--	--	--	--	--	--	1.4	--	-	--	1
Dicranota sp.	--	--	--	--	--	--	--	4.3	--	5.7	--	2
Other Diptera	--	4.3	2.9	--	--	1.4	--	--	--	--	--	3
Ephemeroptera	1.4	16	--	2.9	1.4	1.4	30	$57.6+$	8.6	11	--	9
Baetidae	1.4	16	--	2.9	1.4	1.4	30	49	8.6	11	--	9
Tricorythodes fallax	--	\cdots	--	\cdots	--	--	30	49		--	--	1
Other	1.4	16	--	2.9	1.4	1.4	30	--	8.6	11	--	8
Slphlonuridae	--	--	--	--	--	--	--	yes	--	--	--	1
Other Ephemeroptera	--	--	--	--	--	--	--	8.6	--	--	--	1
Hemiptera	295	223	1.4	1.4	53	2.8	14.6	2.9	7.1	5.7	1.4	11
Belostomatidae	--	--	--	--	--	1.4	--	2.9	--	4.3	1.4	4
Corixidae	295	223	--	1.4	53	1.4	5.7	--	1.4	--	--	
Corisella decolor	13	110	--	1.4	17	--	--	--	-	--	--	4
Sigara sp.	256	113	--	--	36	1.4	--	--	1.4	--	--	5
Other	26	--	--	--	--	--	5.7	--	--	--	--	2

TABLE 2.2.9. cont.

I Includes family or genera depending on extent of identification, "others" given the rating of one taxon even though in some cases more than one taxon was represented under-this catagory.

TABLE 2.2.10. Counts of Invertebrates Other Than Insects Found in the Major Streams of Vandenberq Air Force Dase, California, September, 1975 (no. $/ \mathrm{m}^{2}$).

1. Numbers are per 5 Ekman dredge samples
2. Hyaella azteca
3. mostly Chironomidae
$N A=$ not available
TABLE 2.2.12. Zooplankton of the Canyon Lakes, September 1974.
Number per Liter

 Slelol| $\left\lvert\, \begin{array}{lll}0 & N & 0 \\ \dot{\infty} & \dot{\Phi} & \dot{8}\end{array}\right.$ | elnбuespenb |
| ---: |
| e!uydepo!」2j | N

-

m Copepoda

Upper Canyon Lake
Middle Canyon Lake
Lower Canyon Lake

TABLE 2.2.13. List of Aquatic Invertebrates Observed or Collected at Various Sites of Vandenberg Alr Force Base, September, 1974 to March, 1975.

Location

INSECTA

[^4]TABLE 2.2.13. cont.
Location
Order Hemiptera
Family Belostomatidae
Family Corixidae Corisella decolor sigara sp.
Family Gerridae Gerris $s p$. I'repobates becki
Family Notonectidae Notonecta $8 p$.
Family Valiidae
Order Odonata
Family Coenagrionidae llyponeura sp. Isnura sp.
Family Cordulegastidae
Cordulegaster dorsalis
Family Lbellulidae Pceudozeon sp.
Order Plecoptera
Family Nemouridae
Nemoura $s p$.
Order Tricoptera
Family Hydropsychidae Hydropsyche sp.
Family Leptoceridae
Family Psychomiidae Tinodes sp.
Family Rhyacophilidae Rhyacophila sp.

CRUSTA EANS

Order Amphipoda

Family Talitridae Hyalella azteca
Order Isopoda
Family Sphaeromidae 6
Exosphaeroma sp. 6
$\begin{array}{ll}\text { Order Decopoda } & 13\end{array}$
Order Mysidacea 6
Neomysis awatchensis 6
Order Ostracoda 8,13

TABLE 2.2.13. cont.

	Location
Order Cladocera	
Family Daphnidae	12,13,14,17
Daphnia magna	17
L. pulex	12,13,14
C. schodleri	12,13,14
Ceriodapinia quadrangular	13
čimocephitus vetulus	temporary ponds
Order Copepoda	
Family Calanoida	12,13,14
Family Cyclopoida	12,13
ROTIFERA	
ẋcratella sp.	13,20
irxchionus plicatilis	
MOLLUSCA	
:hysa sp.	1,2,3,4,5,7,8,16,17,20,27
Family Planoribidae	4,5,16
'.ralus sp.	4,5
OTHER INVERTEBRATES	
Order Acari Family Poionidae	
tiphys sp.	2,3
$\begin{array}{ll}\text { Order Oligochaeta } & 3,7,8,10,11,30 \\ \text { Family Tubificidae }\end{array}$	
Order Turbellaria	1,3,6,8,14
Order Nemata	8
Order Hirudinae Family Glossiphoniidae	$7,13,17$ 6,8
Family Glossiphoniidae	

TABLE 2.2.14. Location of collection sites given in Table 2.2.13.

1. Cañada Honda Creek Station 1
2. Cañada Honda Creek Station 2
3. Cañada Honda Creek Station 3
4. San Antonio Creek Station 1
5. San Antonio Creek Station 2
6. San Antonio Creek Station 3
7. Santa Ynez River Station 1
8. Santa Ynez River Station 2
9. Cañada del Julloru Station 1
10. Cañada del Jolloru Station 2
11. "Cañada del Norte"
12. Lower Canyon Lake
13. Upper Canyon Lake
14. Middle Canyon Lake
15. Punchbowl Lake
16. Mod III Lake
17. "Joe's" Lake
18. "Lompoc Casmalia" Pond
19. "Triangle" Pond
20. EI Rancho Pond
21. San Antonio Lagoon
22. Santa Ynez Lagoon
23. 'Umbra" Pond
24. "Tangair" Ponds
25. "Dune" Pond
26. "Barka l" Pond
27. La Salle Canyon
28. Shuman Canyon
29. "El Rancho Oeste" Pond
30. Aqua Viña

The results of the quantitative stream samples indicated the greatest diversity of insect species are to be found in streams of higher current, Cañada Honda Creek and Cañada del Jolloru (see Numbers of Taxa, Table 2.2.9). This higher diversity is derived mostly from three Orders, Coleoptera (beetles), Plecoptera (stone flies) and Tricoptera (caddis flies). Beetles were found in rather high diversity at Cañada Honda Creek Station 3 and Cañada del Jolloru Station 1 . The diversity of beetles, and other insfets, at Cañada Honda Creek Station 3 is attributed to the unique character of the station, an area of running water combined with high primary productivity in the form of the green alga Enterumurpha ssp. The diversity and numbers of beetles found at Cañada Jollou Station 1 is believed to be artificial in that it was caused by the drying of upper reaches of the stream thus concentrating many of the aquatic insects at this station, which in September was the headwaters of the stream.

The highest densities of aquatic insects occurred at Cañada Honda Creek Station 3 and at San Antenio Creek Station 2. The relatively high densities at Cañada Honda Station 3 can be explained on the basis of the relatively high primary productivity at this station. San Antonio Creek Station 2 has a sluggish current and also a high level of primary productivity in the form of filamentous algae, Potomogeton, Nasturtium and other plants. Thus the relatively high densities at this site may also be related to primary productivity.

San Antonio Creek Station 3 had a very low population of aquatic insects in September, 1974. One notonectid (backswimmer) and two diptera larvae were the only insects taken in the samples. The reason for the low density of insects at this location is unknown. Aquatic plants were abundant,
especially Nasturtium officinale, so primary production was probably not a factor. Gross water quality appeared to be acceptable (see Table 2.2.1). The only gross differences of this site over others was the presence of marine organisms (Neomysis awatchensis, Excosphaeroma ssp. and a marine amphipod) and the substrate which was mainly sculptured sandstone rather than mud or . gravel. These differences do not seem great enough to preclude an abundant aquatic insect fauna. The lack of insects at this station could be the basis for further study.

Some insects were widely distributed while others were rather limited in their distribution. Diptera larvae and Hemiptera were the most widely distributed occurring at all 11 sites sampled. Of the Diptera, Metriocnemos was the most widely distributed genus occurring at six sites, often in high numbers such as at Cañada Honda Creek Station 3. This genus appeared to be present at all stations which had a significant amount of macrophytes, except San Antonio Creek Station 3. Of the Hemiptera, two genera of Corixidae (water boatmen), Corisella and Sigara occurred at seven sites. In sluggish water such as San Antonio Creek and the Santa Ynez River, these insects occurred in high densities. They were also present in high densities at Joe's Lake and EI Rancho Pond.

Ephemeroptera was also widely distributed occurring at nine sites, missing only from San Antonio Creek Station 3 and "Cañada de Norte". While both Diptera and Hemiptera were often dominant orders, Ephemeroptera was never encountered at high densities, at its highest density at Cañada Honda Creek Station 3 it only made up 7.7% of the total insect fauna. Diptera and Hemiptera on the other hand together or alone compromised up to 95% of the total insect numbers found at a station.

Plecoptera and Trichoptera were restricted to running water and were found only in Cañada Honda Creek and Cañada del Jolloru. Where they were found, they were often the dominant insects, comprising up to 60% or more of the total insect numbers.

Most of the other insects encountered were rather rare, usually found in only one or two locations and were normally in low densities. Most sampling stations contained one or two dominant species which constituted from 50 to 80% of the total insect fauna. Sigara sp. represented 80.5% of the insect fauna at San Antonio Creek Station 1. Chironomus sp. represented 54.5\% of the insect fauna at San Antonio Creek Station 2. Chironomus sp. and . \mathcal{H} timionemas sp . represented 51.5% of the insect fauna at Santa Ynez River Station l. The major exception to this rule was Cañada del Jolloru Station 1 where, though two orders, Diptera and Coleptera accounted for more than 90\% of all insects found, the Coleptera, at least, was represented by at least seven genera and none of them were dominant.

The other invertebrates sampled represented fewer taxonomic groups than the insects but accounted for a high proportion of the number of invertebrates found. Fourteen taxonomic groups of other invertebrates were found versus 50 taxonomic groups of insects. Invertebrates other than insects generally accounted for more than 50% of the total number of invertebrates. Two groups were exceedingly common. Amphipoda, mainly Hyalella azteca and Gastropoda, represented by Physa sp. Other groups which were common at a particular site included a marine amphipod and a marine isopod at San Antonio Creek Station 3 and Oligocheates of the family Tubificidae found at Santa Ynez River Station 1.

The benthic invertebrates of the lakes were comprised of only amphipods (Hyalella azteca) and diptera larva (see Table 2.2.11). The numbers found in Middle and Lower Canyon Lakes were less than found in Punchbowl Lake and Mod III Lake. This difference in numbers may reflect the role of fish as predators of these organisms or may be related to habitat differences between the lakes.

The planktonic invertebrates of the Canyon Lakes are presented in Table 2.2.12. Calanoid copepods were the dominant planktonic organism in Middle and Lower Canyon Lakes. The dominant cladoceran was Daphnia scholderi though D. pulex was present and Cericdaphnia quadrangula (generally an inhabitant of littoral zones) was commion in Upper Canyon Lake.

Table 2.2.13 is a list of all invertebrates found and identified during our study of the aquatic systems of the base. The numbers indicate the locations where they were found. The list is incomolete as the invertebrates of some sites were not examined, and for other sites only the common, very abundant, or unusual organisms were examined.

True aquatic vertebrates mainly fall into two catagories, fish and amphibians. These organisms require an aquatic habitat to survive and/or to reproduce. Other vertebrates, while not physiologically required to inhabit aquatic systems, are behaviorally adapted such that they require aquatic habitats to exist in a natural state. These vertebrates include reptiles, such as turtles; mammals, such as beaver, muskrat, and otters; and various birds, such as kingfishers, ducks, and terns. Most of these catagories are well represented among the aquatic vertebrates of Vandenberg AFB.

2.2.4. Vertebrate Structure and Productivity

Table 2.2.15 presents a list of all aquatic vertebrates located on the base. The enumeration and identification of the vertebrates other than the fish is covered in other sections of this report so that only limited data on these other vertebrates will be presented in this section.

The freshwater fish fauna of Vandenberg AFB, as for most of California, consists mainly of introduced species. Gasterosterus aculeatus, the threespine stickleback, is the only excepi.ion. This species is represented on the base by two subspecies, (․ a. microcephulus, the partially armoured threespine stickleback and \bar{G}. . . williamsoni, the unarmoured threespine stickleback.
G. a. microcephulus occurs over much of California and Baja California and has been collected previously in the Santa Ynez River (ref. 5) where they were found during our study. G. a. willicmsoni, which was found in San Antonio Creek and El Rancho Pond, has a much smaller range and is generally limited to the Los Angeles Basin. A population of this subspecies was present in tributaries of the Santa Maria River as late as 1940 , but has subsequently been mixed with introduced stocks of G. a. microcephulus (ref. 5). The presence of G. a. williamsoni in San Antonio Creek has not been previously recorded. The main distinction between stocks of G. a. microcephulus and G. c. villiumsoni is the number of lateral plates. G. a. microcephulus generally average 3-7 lateral plates while the average number of plates for $G . a$. si' li.msoni is less than one with most individuals having zero plates. Integrades between these two types exist and have average plate counts of between 1 and 3 (ref. 5).

The (. a. microcephulus found in the Santa Ynez River had lateral plate counts ranging from 3-6, with an average of 4.1. The C. a. willicomsoni found

The benthic invertebrates of the lakes were comprised of only amphipods (Hyalella azteca) and diptera larva (see Table 2.2.11). The numbers found in Middle and Lower Canyon Lakes were less than found in Punchbowl Lake and Mod ill Lake. This difference in numbers may reflect the role of fish as predators of these organisms or may be related to habitat differences between the lakes.

The planktonic invertebrates of the Canyon Lakes are presented in Table 2.2.12. Calanoid copepods were the dominant planktonic organism in Middle and Lower Canyon Lakes. The dominant cladoceran was Daphnia scholderi though D. pulex was present and Cericdaphnia quadrangula (generally an inhabitant of littoral zones) was common in Upper Canyon Lake.

Table 2.2.13 is a list of all invertebrates fcund and identified during our study of the aquatic systems of the base. The numbers indicate the locations where they were found. The list is incompletp as the invertebrates of some sites were not examined, and for other sites only the common, very abundant, or unusual organisms were examined.

True aquatic vertebrates mainly fall into two catagories, fish and amphibians. These organisms require an aquatic habitat to survive and/or to reproduce. Other vertebrates, while not physiologically required to inhabit aquatic systems, are behaviorally adapted such that they require aquatic habitats to exist in a natural state. These vertebrates include reptiles, such as turtles; mammals, such as beaver, muskrat, and otters; and various birds, such as kingfishers, ducks, and terns. Most of these catagories are well represented among the aquatic vertebrates of Vandenberg AFB.

2.2.4. Vertebrate Structure and Productivity

Table 2.2 .15 presents a list of all aquatic vertebrates located on the base. The enumeration and identification of the vertebrates other than the fish is covered in other sections of this report so that only limited data on these other vertebrates will be presented in this section.

The frestwater fish fauna of Vandenberg AFB, as for most of California, consists mainly of introduced species. Gasterosterus aculeatus, the threespine stickleback, is the only exception. This species is represented on the base by two subspecies, (7. a. microcephulus, the partially armoured threespine stickleback and G. u. williamsoni, the unarmoured threespine stickleback.
c. a. microcephulus occurs over much of California and Baja California and has been collected previously in the Santa Ynez River (ref. 5) where they were found during our study. G. a. willicmsoni, which was found in San Antonio Creek and El Rancho Pond, has a much smaller range and is generally limited to the Los Angeles Basin. A population of this subspecies was present in tributaries of the Santa Maria River as late as 1940 , but has subsequently been mixed with introduced stocks of G. a. microcephulus (ref. 5). The presence of G. . williomsoni in San Antonio Creek has not been previously recorded. The main distinction between stocks of G. a. microcephulus and G. ci. silliamsoni is the number of lateral plates. G. a. microcephulus generally average 3-7 lateral plates while the average number of plates for G. a. si'? i, mmons is less than one with most individuals having zero plates. Integrades between these two types exist and have average plate counts of between 1 and 3 (ref. 5).

The (i. a. microcephulus found in the Santa Ynez River had latera! plate counts ranging from 3-6, with an average of 4.1. The C. a. willimasoni found

TABLE 2.2.15. Aquatic Vertebrates of Vandenberg Air Force Bise.

	Scientific Name	Common Name	Location*:
FISH			
	Archoplitcs interruptus*	Sacrament.o Perch	LCL
	Cypminus carpio	Carp	SA
(M)	Fucye:' gohius nowberryi	Tidewater Goby	SYR, SYL
(F)	Combucia ajjiris	Mosquito Fish	SYR,SA,ER,LC,CL,MOC 111, E
	Gastemoteus uxisleatict microcevhatus	Partially Armoured Three-splned Stickleback	SYR
(F)	Castersteus a wiezius williumsoni	Unarmoured Three-spined Stickleback	SA, ER
(F)	loislur.ss catue*	White Catfish	SA
(F)	ictu'arns furs? : : its	Channel Catfish	CL,MOD 111,PB
(F)		Qluegill Sunfish	MOD $111.5 Y$
(F)	Lipomis mi crut mhis	Red-ear Sunfish	PB
(M)	Inptoostics ir"atue	Stag Hurn Sculpin	SYL.
(F)		Largemouth Bass	CL,MOD 111,PB,LC
(F)	timphtilcs pro"e'su	Fathead Minrow	SYR
	llatichthrs s: ! Iatur*.	Starry Flounder	SYL
	i. यmorie mijuoma ulatus**	Black Crappie	LCL
(F)	\therefore clmi gai"theri	Rainbow Trout	MOD 111
AMPHIBIANS			
	- Myia rizalla	Pacific Treefrog	most louations
	Ruma aur.erd	Red-legged Frog	ER, SYR
	Lana cutesbeiant	Bullfrog	SYR
REPTILES			
	"lamnig: marm rita "hrinuphis cou phi	Western Pond Turtle Western Aquatic Garter Snake	$\begin{aligned} & \text { SA,Cl } \\ & \text { mnst Incotions } \end{aligned}$
MAMMALS			
	Castor saradensis	Beaver	SA, SYR
B12.95			
	Sterma albifrins	Least Tern	SA
	Negacerule alcyon	Belted Kingfisher	SA
	butorisis virescons	Green Heron	SA
	Nyeticorax nyctionmax	Black Crowned Night Heron	SYL
	Anas platyrhynchos	Mallard	SA
	Fulica americana	American Cout	SA,CL, PR, MOD 1/1
	Podicep easpicus	Eared Grebe	J
	Oxjura jomaicencis	Ruddy Duck	JL
	Ardea herodias	Great Blue Meron	SA
	Anas cyanopter:	Cinnamon Teal	PB
	Rallus limicola	Virginia Rail	SA
	Leucophoyx thula	Snowy Egret	SYL
* Reported as present at one time but not found during the study period			
** $\mathrm{CL}=$ Canyon Lakes			
LCL = Lower Canyon Lake			
SA = San Antonio Creek			
SYR - Santa Ynez River			
SYL = Santa Ynez Lagoon			
ER = El Rancho Pond$P B=$ Punchbowl Lake			
MOD $111=$ Mod 111 Lake			
LC - Lompoc Casmalia Pond			
J. = Joe's Lake			
$(F)=$ freshwater species			
$(M)=$ marine specics			
	+ semi-aquatic		

in San Antonio Creek and El Rancho Pond had lateral plate counts ranging from 0-4 with an average of 0.39 . (See Table 2.2.16.)

Only a few individuals of G.a. willicmsoni were found in El Rancho Pond. These were adults and were found in the fall; in the spring a number of attempts at collection failed to produce further specimens. The sticklebacks and mosquito fish found there were probably planted from San Antonio Creek as a mosquito control measure.

As the unarmoured threespine stickleback is considered rare and endangered, care should be taken to protect its present habitat in San Antonio Creek. A very important consideration is that individuals of the population of $G . a$. mi rocephulus of the Santa Ynez River not be introduced into the population of 3. 2. willicomsoni of San Antonio Creek. Two other considerations warrant mention. Personnel of the Flight Surgeon's Office have been osing the population of is. a. williamsoni as test organisms to monitor sewage toxicity. This use probably does not, at present, pose a threat to the existing population, but precautions should be taken to ensure that in the future the population is not seriously reduced by collection, and that populations of G. a. microcephu?us and G. a. williomsoni are not mixed. A third potential problem is the undocumented introduction of G. a. williamsoni into other waters such as El Rancho Pr.nd.

In this connection precautions also should be instituted to prevent base personnel from disturbing this rare and endangered fish. Fishermen were observed collecting Gambusia affinis from the Canyon Lakes to be used as bait for a fishing trip to off-base waters. Similar use of the fish population of San Antonio Creek could cause unintentional and undocumented

TABLE 2.2.16. Counts of Lateral Plates in Selected Populations of Threespine Sticklebacks.

	Number of Plates/Side									
Location	0	1	2	3	4	5	6	7	8	9
l Santa Ynez River Station 1 (G.a. microcephulus, this study)	=-	--	--	1	8	8	1	--	--	-
Santa Ynez River near Juncal Dam (ज.a. microcepiulus, ref. 5)	--	--	--	2	1	5	14	9	1	--
Hatchery Nearo Fillmore (1942) (Intergrade between G.a. microcephulins and G.a. williansoni, ref. 5)	24	8	16	6	9	- -	--	- -	-	\cdots
ISan Antonio Creek Station 1 (G.a. williamsoni, this study)	12	2	4	1	1	--	--	--	--	--
ISan Antonio Creek Station 2 (G.a. williamsoiif, this study)	45	5	--	2	--	- -	--	--	--	--
Los Angeles River (G.a. williamsoni, ref. 5)	58	8	9	1	--	--	--	--	--	--

1 Each side counted separately, number of fish examined equals $1 / 2 \mathrm{~N}$.
introduction of G. a. williamsoni to other systems. This would tend to confuse the distribution pattern of this indigenous fish.

Some thought should also be given to the documented introduction of G. a. williamsoni to other streams and ponds. Most of the streams on base would probably not support a population of this fish, as weedy areas are required for breeding, but attempts could be made, especially in Cañada del Norte and Cañada del Jolloru where small amounts of suitable habitat appear to be present. Cañada Honda Creek and Shuman Canyon Creek have little in the way of weedy areas. They will probably not support a breeding population, though stocking might still be attempted. The evidence from El Rancho Pond indicates that these fish may not reproduce in a stagnant water situation. Stocking of ponds with G. a. williamsoni would be on an experimental basis. If stocking of G. a. williamsoni is to be considered, some thought should be given to stocking only individuals having a zero plate count thus perhaps producing a strain having even fewer lateral plates, similar to those which were found in the Mohave River in 1950 (ref. 5). The recovery team designated by the California Dept. of Fish and Game should be consulted prior to any management activities.

The remainder of the fresh water fish srecies have been introduced to Vandenberg AFB. The Sacramento perch (Apchoplites intermuptus) was introduced to Lower Canyon Lake after 1965 when the lake was formed. There is evidence that this species, a native of California, did reproduce in Lower Canyon Lake (ref. 6), though it apparently has not done well enough to contribute significantly to the presert fish population of this lake. No specimens were taken in net hauls made in thi; lake during this study.

Black Crappie (Pomoxies nigromulatus) was also introduced into Lower Canyon Lake but our study failed to turn up any specimens. Bluegill sunfish (Lepomis macrociirus) was a third species introduced to the Canyon Lakes and to Mod III Lake. No evidence of a population of these fish was found in the Canyon Lakes, but Mod III Lake has at least a small population. One dead adult was found in Mod III and a number of young were captured in a dip net sample in September 1974. No bluegill were captured in any seine haul of the Caryon Lakes or of Mod III. One adult specimen was captured in a seine haul of the Santa Ynez Lagoon in March of 1975. This may have been a transient. During the summer months the lagoon is brackish and would not be expected to support a population of these fresn water fish. Another possibility is that this individual represents a viable population of bluegill which have adapted to the fluctuating salinity of the lagoon. Further sampling would be needed to determine the status of this fish in the Santa Ynez Lagoon. Red-eared sunfish (Lepomis microlophus) were introduced into Punchbowl Lake in 1973 or 1974, after the lake was treated with rotenone to remove a carp population. Four seine hauls of the lake in March 1975 produced 10 individuals. The largest individual was 93 mm long and weighed about 18 grams. Scale analysis revealed one annulus indicating that this fish was two years old. Most of the other individuals were $30-70 \mathrm{~mm}$ long and no annuli were found indicating that these fish were at the end of their first year. These fish often spawn twice a year, in the spring and in the fall, so that the size classes represented in our sample may be various fall and spring hatchings. In general, this red-ear population appears to be in good condition.

Largemouth bass (Micropterus alaamoides) have been introduced into the five lakes of Vandenberg AFB and viable populations are still present in
all of them. As this was the major warm water species and made up a major portion of the recreational fishery, it was the most heavily studied. Specimens were obtained from all Canyon Lakes and from Punchbowl Lake. No specimens were collected from Mod III Lake, though catch records indicated their presence. The specimens captured were few (28) and only represent a few age classes so that the conclusions reached below are very tentative. But some trends are indicated which may warrent further study. Table 2.2.17 is a list of all specimens of largemouth bass captured, where they were capturej, their length, their weight and their condition factor. The condition factcr was calculated as $W / L^{3} \times 10^{5}$, where $W=$ weight in grams and $L=$ fork length in mm . The value 10^{5} forces the value to be near one (ref. 7). When the length-weight relationship is given by $W=a L^{3}$ then a condition factor of 1.5 indicates that an individual fish has the expected weight for its length. If the condition factor is less than 1.5 , then the fish is lighter than would be expected, while if it is greater than 1.5 then the fish is heavier.

Regression analysis of $\log W$ on $\log L$ for all the largemouth bass in our sample yields $W=a L^{2.96}$ which is sufficiently close to $W=a L^{3}$ to justify the use of the above formula for condition factor. The average value of condition factors for the four lakes from which largemouth bass were captured (Table 2.2.17) fall into two catagories, high condition factors for Midde Canyon Lake and for Upper Canyon Lake and low condition factors for Lower Canyon Lake and Punchbowl Lake. Since only two specimens were taken from Punchbowl Lake, the validity of the condition factor is doubtful. The condition factor for the fish of Lower Canyon Lake indicates that these fish are

TABLE 2.2.17. List of Largemouth Bass Captured March, 1975, VAfB

Lake	Length (mm)	Weight (gm)	Condition Factor
Lower Canyon Lake	82	5	0.907
	84	7	1.181
	92	14	1.798
	100	10	1.000
	103	12	1.098
	108	17	1.350
	157	55	1.421
	188	100	1.505
	190	107	1.560
	200	121	1.512
	200	120	1.500
	208	133	1.478
	210	122	1.317
Middle Canyon Lake	72	10	2.679
	89	20	2.837
	165	60	1.336
	212	190	1.679
Upper Canyon Lake	66	6	1.995
	67	6	1.995
	185	111	1.753
	187	120	1.835
	220	190	1.784
	224	176	1.566
Punchbowl Lake	103	12	1.098
	230	188	1.766

Average Condition Factors for Largemouth Bass
Mean Condition Factor (N)

Lower Canyon Lake
MIdle Canyon Lake
Upper Canyon Lake Puncht iwl Lake
1.356

13
$2.140 \quad 4$
$1.821 \quad 6$
1.4322
not as heavy for a given length as are the fish of Upper Canyon Lake or Middle Canyon Lake. It can be seen that much of this lack in weight gain is due to the small fish (Table 2.2.17). Table 2.2.18 presents growth data obtained from analysis of the scales of the largemouth bass captured. Also Table 2.2.18 gives growth data based on scale analysis taken from four other bodies of water in California and elsewhere (ref. 8). These data show that with respect to growth in length of bass, the lakes may be ranked from best to poorest as follows: Punchbowl Lake, Upper Canyon Lake, Middle Canyon Lake and Lower Canyon Lake. The growth rate of largemouth bass in Lower Canyon Lake seems definitely retarded. Comparison of the growth rate of the largemouth bass from these four lakes to other lakes of California indicates that, overall, those of the base have lower growth rate. The growth rate in Lower Canyon Lake approaches that of cold water ponds of Montaria and Ohio (see Table 2.2.18).

Quantitative population studies of the largemouth bass were not done but results of the seining indicate that Lower Canyon Lake and Upper Canyon Lake have a larger population of fish than Middle Canyon Lake. The return for approximately equal effort from Lower and Middle Canyon Lakes was 13 and 4 individuals, respectively. On a fish per net haul basis, Lower Canyon Lake produced 3.25, Middle Canyon 1.0 and Upper Canyon 3.0.

What are the reasons for the low growth rates of these lakes, especially Lower Canyon Lake? Punchbowl Lake has only recently been stocked with fish, so that this lake will not be considered in the following discussion; good growth there may only reflect the sprout of growth perinitted by previously unexploited food supply. Observation of the Canyon Lakes indicates that Upper

TABLE 2.2.18. Calculated Lengths in mm for Largemouth Bass at Each Annulus. Data for Lakes Other than Those Located on Vandenberg AFB taken from Calhoun (ref. 8). | $\begin{array}{c}\text { Type of } \\ \text { Measurement }\end{array}$ |
| :--- |
| $F L^{2}$ |
| $F L$ |
| FL |
| $F L$ |
| $F L$ |
| $F L$ |
| $F L$ |
| $T L^{3}$ |
| $T L$ |

——_ Annulus
$\frac{\text { IV }}{205(1)}$
 $\begin{array}{ccc}\frac{11}{132(4)} & & 111 \\ 159(2) & & 199(1) \\ 198(1) & \\ 220(1) & \\ 290 & 363 \\ 265 & 326 \\ 199 & 286 \\ 97 & 145 \\ 132 & 203\end{array}$

1 Number in parentheses indicates number of individuals examined.
2 Forklength
3 Total length

Canyon Lake is very different from the other two. This lake is small, and normally has a heavy weed cover in the form of reeds (Typha and Scirpus spp.), pond weed (Potomegeton spp.) and filamentous algae. In general it can be considered marshy. The other two lakes are similar to each other, both have shallows in their northern portions which contain many dead trees and some aquatic macrophytes. Their central and eastern portions (near the dams) are essentially plant free. Our seining operations, with the exception of one channel catfish, captured only largemouth bass from the Canyon Lakes. This indicates a general lack of forage fish for the bass populations. Visible obervations and qualitative dip netting along the shore also indicated a lack
 but these fish inhabit very shallow waters along the shore and are generally inaccessible to the bass, at least to the larger individuals.

Stomach analysis of two fish from each of the Canyon Lakes indicates that the diet of the fish of Upper Canyon Lake is quite different than those of Middle and Lower Canyon Lakes (Table 2.2.19). The fish of Upper Canyon Lake were feeding almost exclusively on dragonfly nymphs, which comprised 97% of total bulk of stomach contents. The fish of Middle and Lower Canyon Lakes were feeding on much smaller organisms such as small crustaceans and diptera pupae. Normally largemouth bass switch from a small crustacean or insect diet to a fish diet at a size range of $50-75 \mathrm{~mm}$ in length and individuals of 150 mm or more generally have a diet consisting mainly of fish (ref. 8). All of the above information indicates that the largemouth bass of the Canyon Lakes have a poor food supply. Upper Canyon Lake because of its weedy nature has an abundant source of insects to act as an alternate food source. Crayfish were found in this lake, though the population is probably very low, and these can

TABLE 2.2.19. Stomach Analysis of Largemouth Bass

	$\begin{aligned} & \text { Lower Canyon Lake } \\ & \text { (2 Fish } 185 \text { \& } 210 \mathrm{~mm} \text {) } \end{aligned}$	Middle Canyon Lake (2 Fish 165 \& 212 mm)		Upper Canyon Lake (2 Fish 1858220 mm)	
	\% of No. \% of Bulk	\% of No.	\% of Bulk	\% of No.	\% of Bulk
Cladocera	88.277 .8	81.9	67.0	0.0	0.0
Diptera pupae	$11.3 \quad 20.1$	12.3	18.5	0.0	0.0
Diptera larvae	$0.4 \quad 1.6$	1.8	2.4	0.0	0.0
Amphipod	$0.1 \quad 0.1$	3.4	9.7	22.0	0.3
Ephemeroptera	$0.0 \quad 0.0$	0.0	0.0	5.5	0.07
Odonata	$0.0 \quad 0.0$	0.8	2.3	61.0	97.0
Leech	$0.0 \quad 0.0$	0.0	0.0	11.1	2.6
Relative Volume of Prey Items					
Cladocera $=1$					
Diptera pupae $=2$					
Diptera larvae $=0.5,3$ or 4 depending on size					
Ephemeroptera $=4$					
Odonata $=4$ or 500 depending on size					
Leech $=75$					

contribute to a largemouth bass diet. The presence of this invertebrate food source, and food organisms which are carried into the lake by its input stream has apparently enabled the bass population of this lake to maintain a respectable growth rate despite the lack of forage fish. Aquatic invertebrates, especially large ones such as odonata nymphs, leeches, crayfish, are apparently in very low numbers in Middle and Lower Canyon Lakes. Thus the bass must rely on a diet of small insects and crustaceans as indicated in Table 2.2.19. Since larger bass, greater than 150 mm , feed extensively on this food source, they will compete with the smaller bass, less than 50 mm , which normally rely on these organisms for their main food source (ref. 8). Thus competition for food in Middle and Lower Canyon Lakes may be the limiting factor in the growth rate of the fish. The use of herbicides in Middle and Lower Canyon Lakes may be the main reason for the poor food supply in these lakes. Complete removal of aquatic plants produces two effects, reduction in primary productivity with a corresponding reduction in secondary productivity, in this case invertebrates and fish. It also reduces or eliminates refuges of smaller fish and invertebrates making them subject to more intense predation. In an extreme case this could lead to virtual extinction of some of the prey species. This may be the case for Middle and Lower Canyon Lakes, particularly crayfish and forage fish.

A possible solution to the poor growth rate of bass in these lakes lies in the introduction of forage fish. A number of possibilities exist:

1) restocking with bluegill or other sunfish, 2) stocking with threadfin shad, a fish commonly used as a forage fish for largemouth bass, 3) stocking with fathead minnows from the Santa Ynez River, and 4) any combination of the above.

Other possibilities exist and which one would provide the best answer can only be answered after a more thorough examination of the systems involved and ultimately in a field trial. In any case, stocking with a forage fish must be done after a better policy of weed control is adopted. It is obvious from nutrient analysis of the lakes and of the extensive weed growth in Upper Canyon Lake and Punchbowl Lake that some sort of weed control program is necessary. The exact form of this program depends on a number of factors such as available technology, equipment, personnel and finances. But the main emphasis should be on a program which leaves some weed beds.

Channel catfish (Ictalurus punctatus) have also been introduced to all of the lakes of Vandenberg AFB. Two individuals were captured in our seine hauls of the lakes. One in Punchbowl Lake and a second from Lower Canyon Lake. These fish had lengths of 340 mm and 273 mm , respectively. Channel catfish are periodically stocked into the lakes. These fish, unlike the largemouth bass, probably do not have a self-sustaining population. Reproductive success of channel catfish in stocked lakes is often poor (ref. 8). Thus a successful channel catfish fishery often requires periodic stocking. Channel catfish fingerlings are apparently very susceptible to predation, especially by largemouth bass, thus successful stocking requires larger fish, about 250 mm (ref. 8). Because of the apparent food shortage in the Canyon Lakes, channel catfish, because of competition with largemouth bass for the existing food sources, may have lower growth rates than in Punchbowl or Mod III Lakes.

Rainbow trout (Salmo gairdnerii) are stocked each winter into Mod III Lake. These fish apparently produce the most popular freshwater fishery on
the base. A sort of creel census is taken of this fishery. This consists of a log book at the entrance to the lake in which the fishermen voluntarily note the number of hours fished and the number of fish caught. These data are used to determine the success of the fishery. Table $\mathbf{2 . 2 . 2 0}$ presents some of these data.

This stocking program probably has some effect on the other fish of the lake. Two possible effects are: l) increased crowding and competition for food especially among the trout, bluegill and first year largemouth bass, and 2) acting as a food source for the larger bass. The trout are normally added to the lake in five portions a number of weeks apart thus crowding and food competition are probably kept to a minimum. Thus the main effect to the other fishery is probably in providing food for the large bass. It is reported by personnel of the base that Mod III Lake produces the largest bass, up to 8 pounds, of any of the lakes.

Though at present the stocking of rainbow trout is restricted to Mod III Lake, there is no reason to believe that stocking of this fish in the other lakes would be less successful, especially in Middle and Lower Canyon Lakes. Cañada Honda Creek has the potential of supporting a breeding population of rainbow trout but because of its small size and poor accessibility it could not be expected to support a sizable fishery.

In the past the Santa Ynez River supported a substantial steelhead trout run. The use of the river by these ocean-going fish apparently ceased with the construction of Cachuma Dam in the mid-1950's. There is some hope that with some modificatiors and proper management that these fish could once again use the Santa Ynez River for spawning.

| TABLE 2.2.20. | Stocking and Catch Data of Rainbow
 Trout in Mod III Lake. | | |
| :--- | :---: | :---: | :---: | :---: |
| Year | $\frac{1971-72}{7,075}$ | $\frac{1972-73}{7,435}$ | $\frac{1973-74}{8,880}$ |
| Number planted | 2,150 | 1,750 | 1,670 |
| Pounds planted | 3.3 | $3.8-5.1$ | $5.0-6.0$ |
| Number/pound | 5,799 | 6,598 | -- |
| Number caught | 82 | 88 | -- |
| Percent return | 6,162 | 5,208 | -- |
| Angler hours | 0.94 | 1.24 | -- |

The marine fishes captured and identified during our study all occurred in the Santa Ynez River and/or the Santa Ynez Lagoon. The list of these fishes as presented in Table 2.2 .15 is probably very incomplete as only a limited sample was taken from the lagoon. Eucyclogobius newberryi, the tidewater goby, was taken with dip nets at Station 2 in the Santa Ynez River (located under the 13th Street bridge) and also in seine hauls of the lagoon. Two seine hauls of the lagoon taken in March 1975 at low tide produced numerous individuals of starry flounder (Platyichtyys stellatus) and staghorn sculpins (ieptocottus armatus). As many as 30 of each species were taken in a single haul. The lagoon apparently acts as a nursery ground for the starry flounder. This fish has its sou:nern distributional limit near Santa Barbara. Since the Santa Ynez Lagoon is the first major lagoon north of Santa Barbara, this lagoon may be the most southern of the nursery grounds of this fish.

Other fishes are often associated with Platichthys stellatus and Leptocottus apmith:s (ref. 9). Those which are known to occur in the Vandenberg area include therinope affinis (top smelt), (ymatogaster aggregata (shiner perch) and Surignathus grise, lineatus (bay pipe fish) (ref. 10).

The major mammal associated with the aquatic systems of Vandenberg AFB is the beaver (Castor amadinsis). This animal has been introduced by the California Department of Fish and Game. It has become well establis.led in the San Antonio Creek drainage and is also present in the Santa Ynez River. An attempt to establish beaver in Cañada Honda Creek has apparently failed. No sign of beaver were observed in this stream.

Beaver are common in the San Antonio Creek drainage. Three active dairs were located on the stream between 13 th Street and just north of highway S-20.

Others may be present in the area of Barker Slough and the riparian areas west of Mod Ill Lake. Three beaver dams were found on small tributaries to the San Antonio Creek. Two of these create what we have called "Triangle Pond". This pond is located in a northern drainage to San Antonio Creek. "Lompoc-Casmalia Pond", a southern drainage of San Antonio Creek, was formed by the third dam. Both of these ponds have more than an acre of surface area (see Table 2.1.1).

Beaver ponds often create suitable habitat for other aquatic vertebrates and invertebrates. "Lompoc-Casmalia Pond" appears to be the oldest of these two and has an extensive aquatic animal population. These animals include fish (mosquito fish and largemouth bass), numerous frogs, western pond turtles and many aquatic insects and other invertebrates.

Although no quantitative data were gathered during our study as to the size of the beaver population, some estimates can be made based on the natural history of these animals. Shelton (ref. ll) states that colony size of the beaver of Isle Royale varied between about 6-10 individuals. He also noted that a beaver colony would often use two ponds and that different colonies were generally well separated. On this basis, the two ponds at Triangle Pond can be assumed to be used by a single colony. Two of the dams found on the San Antonio Creek were in close proximity to each other, so that they probably represent only a single colony. Thus at least five colonies are known to be present on the base, two on San Antonio Creek, one each in Triangle Pond, "Lompoc-Casmalia Pond" and the Santa Ynez River. Assuming an average of eight individuals/colony, this would yield 8×5 or 40 individuals. This is probably an underestimate as more than 5 colonies are believed to be present on the base. A rough estimate then, based on present data would indicate a beaver population of from about 40 to 100 individuals occurs on Vandenberg AFB.

3. - VEGETATION ANALYSES

3.1. Methods

3.1.1. Introduction. Vegetation is best characterized by two fundamental 'features: 1) species composition, and 2) physiognomy. The first is important because species are the fundamental and relatively unchanging units of ecology. If the species present in an area are known, an ecologist familiar with the region is able to surmise a great deal about the ecological relationships existing within the area. Physiognomy, which we take here very broadly to include information on the size, number, and distribution of species is significant because it reflects the favorableness of the environment, the relative importance of life-forms, and many other features important to a complete understanding of the plant and animal ecology.

Both of these fundamental aspects have received attention in the design of uur vegetational analysis.

3.1.2. Key to Vegetation Types. The first step in the vegetational

 analysis was the preparation of a vegetational key to plant communities found on the base. This key went through two major revisions. The final version is presented in Table 3.1.1. The categories in the key are the significant vegetational types which exist on the base. All of the vegetation and vertebrate community analysis is summarized in accordance with these vegetation types. These units were selected and named to agree as much as possible with existing California vegetation classification systems. However, since no single scheme seemed to provide the degree of specificity required for this study, the agreement is only approximate. A table showing the equivalentsTABLE 3.1.1. Key to Vegetation Types

The following definitions will be used:
Tree - a woody perennial commonly exceeding 4 m in height or 10 cm dbh or both when mature on the site being evaluated. In young stands this definition may involve some guesswork.
Shrub - a woody perennial less than 4 m tall, and less than 10 cm dbh .
Grass - plants belonging to the family Gramineae, and therefore excluding sedges and rushes.
Percent cover - the percent of the surface of the ground covered by the vertical projections of the plant crowns.

Evergreen sclerophyllous - refers to plants with thick leathery evergreen leaves.
A. Communities dominated by species which have not been planted by man. The species may or may not be native to the region.
B. Tree cover greater than 50%
C. Tree cover less than 50% evergreen
D. Trees conifers

1. Bishop Pine Forest

DD. Trees broadleaf
E. Tree cover more than 50\% Tanbark Oak (Lithocarpus)
3. Tanbark Oak Forest

EE. Tree cover less than 50% Tanbark Oak, remainder oaks (Querizus spp.)
4. Foothill Woodland-Dense Phase
CC. Tree cover less than 50% evergreen (i.e. greater than 50% deciduous), located adjacent to streams, willows and cottonwoods, present and usually dominant
7. Riparian Woodland

BB. Tree cover less than 50\%
C. Trees present (i.e. cover of trees greater than 5%)
D. Tree cover greater than 50% Bishop Pine, understory large or small shrubs
2. Bishop Pine Forest-Sparse Phase

DD. Tree cover greater than 50\% broadleaf
E. Tree cover greater than 50% evergreen
5. Foothill Woodland

EE. Tree cover greater than 50% deciduous, usually along streams, some in wet places in dunes
7. Riparian Woodland-Sparse Phase

TABLE 3.1.1. cont.
CC. Trees absent or tree cover less than 5%
D. At least 50% of plant cover woody perennial shrubs with less than 10% of the cover of Mesembryanthemum (Ice Plant), Ambrosia chamissonis, Abronia spp, Convolvulus; soil not subject to tidal innundation at any time
E. Plant cover greater than 75%
F. At least 50% of the plant cover evergreen sclerophyllous shrubs (e.g. Adenostoma, Rhus, Arctostaphylos, Ceanothus, etc.)
G. Vaccinium ovutum, aultheria less than 25% of plant cover
8. Chaparral

GG. Vacoinium ovatum, Gaultisria greater than 25\% of plant cover
15. Huck leberry Scrub

FF. Less than 50% of the plant cover evergreen sclerophyllous shrubs (that is, cover predominantly of species such as Haplopappus ericoides, Salvia leucophylla, Encelia califomica, Artemisia califormica, Eriogonum parvifoliu, Baccharis pilularis)
G. In well-drained soils of uplands, slopes, and sand dunes. Soil near the surface rarely or never saturated or flooded. Water table well below the surface for most of the year. Mostly low vegeiation less than 1.5 meters high.
H. Growing on sand dunes
13. Coastal Sage Scrub-Dune Phase

HH. Growing on other substrates

1. Plant cover more than 50% Sulvia leuvounyzia
2. Coastal Sage Scrub-Salvia leucophylza Phase
3. Plant cover less than 50% Salvia lewerl hithin
4. Coastal Sage Scrub

GG. In poorly drained soils mostly along streams or springs, occasionally small pockets on hillsides at points where fresh ground water is near the surface, small willows (iditix spp.) present
14. Wet Soil Scrub

TABLE 3.1.1. cont.
EE. Plant cover less than 75%
F. Substrate beach or dune sand, or partially consolidated sandstones along the coast
G. Plants very low, less than 0.5 m high, mostly really sub-shrubs or some vines. Sand subject to wind movement, cover of plants less than 50\%, many species succulent
17. Coastal Strand

GG. Plants taller, greater than 0.5 m high, plant cover usually greater than 50% few vine-like plants, few species with truly succulent leaves, sand relatively stable. Along the coast, largely on partially consolidated material.
13. Coastal Sage Scrub-Stabilized Dune Phase
FF. Other substrates
$f_{\text {s. }}$ Cliffs and bluffs in the imnediate vicinit" of the coast. Subject to salt-spray, plant, mostly less than 0.5 m high, some succulentleaved.
16. Coastal Bluff Vegetation

GG. Areas not on sea-facing bluffs above the coast, or not on bluffs and cliffs undergoing rapid erosion, salt-spray less intense or minimal, many plants (when mature) greater than 0.5 m high
H. Shrub cover greater than 50% evergreen sclerophyllous
9. Chaparral-Sparse Phase

HH. Shrub cover less than 50% evergreen sclerophyllous

1. Salvia leucophylla greater than 50% of shrub cover
2. Coastal Sage Scrub-Saluia leucophylla Phase
3. Salvia leucophylla less than 50\% of shrub cover
4. Coastal Sage Scrub-Normal Phase

TABLE 3.1.i cont.

DD. Less than 50% of the plant cover woody perennial shrubs, or if more than 50% shrubs, then salt-marsh subject to tidal innundation
E. Areas frequently flooded by tides, substrate poorly drained and saline, dominated by cilicomia spp., Jaumia, Fronke:iia, etc.
18. Coastal Salt Marsh

EE. Areas rarely ur never flooded by tides, substrate not markedly saline, Salicomia spp. absent
F. Poorly drained areas with standing water present for at least a few days a year, vegetation generally actively growing during the summer months, soil saturated within the rooting depth of plants for most of the year
G. Plant cover greater than 75% perennial grass
20. Grassland-Perennial

GG. Plant cover less than 75% perennial grass
19. Freshwater Marsh

FF. Well-drained areas, not in any sense marshy areas
G. Substrate beach sand subject to movement by wind. Immediate vicinity of the ocean. Low vegetation mostly less than 0.5 m high.
17. Coastal Strand

GC. Substrate not beach sand subject to movement by wind. Few or no succulent plants present except for some cacti.
H. Cover of woody shrubs greater than 10%, remaining cover predominantly annual grasses and herbs.
11. Coastal Sage Scrub-Sparse Phase

HH. Cover uf woody shrut's less than 10\%

1. Plant cover more than 50% grasses
J. urass cover more than 50% annuals
2. Grassland-Annual

JJ. Grass cover less than 50% annuals
20. Grassland-Perennial

TABLE 3.1.1. cont.

> II. Plant cover less than 50% graises
> J. Non-grass cover greater than 50% native species
22. Miscellaneous Native Herb Communities

JJ. Non-grass cover less than 50% native species
23. Ruderal Vegetation

AA. Communities dominated by species planted by man. The planted species usually, but not necessarily, non-native.
B. Tree cover greater than 50%
24. $\frac{\text { Planted Trees (indicate }}{\text { major species) }}$ major species)
BB. Tree cover less than 50%
C. Occurring on land currently under cultivation
25. Agriculture Plantings
CC. Land not cursently cultivated, though possibly maintained in other ways, such as by mowing or spraying
26. Non-agricultural Plantings.
of our vegetational units with those of two of the better known classifications is provided in Table 3.1.2 to facilitate locating literature relevant to particular types and aid in communication about them.

The key has at least two functions. First, it provides a summary of the criteria used to designate community types, and second, it allows field personnel to classify the vegetation on particular sites.

The emphasis in the key is on physiognomic differences, especially cover and height. This allows types to be largely, though not entirely, specified without knowing the species present. This is an advantage to untrained otservers and in the interpretation of aerial photographs, since species usually are difficult to identify on air photos while cover and height can be determined relatively easily.
3.1.3. Determination of Plant Species on the Base. The first phase of field work involved determination of the species present on the base. This wis done by collecting specimens of as many plants as possible and determining tieir scientific names through the use of published manuals, herbaria, and tre ajuice of botanists experienced in the region. The goal of this portion of the analysis was to produce as complete a list of species present on the b.se as possible. This list is iricomplete, but probably includes at least 60. of all vuscular piant species found in natural areas on the base, and rertap, 95" 6 : the comm furms.

3.'. ${ }^{\text {Guanitative Sampling of the Vegetation. Quantitative samples }}$

 were takri: for three ouposes: 1) , a deteimine the abundance, importance, and at the perrafont eamoling statio si (and vegetation-animal relations could

TABLE 3.1.2. Communities Recognized with their Nearest Equivalent in Schemes of Munz and Keck (ref. 12) and Cheathem (ref. 13).

This Key

1. Forest, Woodland, Savanna

1	Bishop Pine Forest	Closed Cone Pine Forest	Coastal Pine/ Cypress Woodlani
2.	Bishop Pine ForestSparse Pinase	Closed Cone Pine Forest	Coastal Pine/ Cypress Woodland
3.	Tanbark-Oak Forest	Mixed Evergreen Forest?	Mixed Evergreen Forest
4.	Foothill Woodland-Dense Phase	Foothill Woodland	Coast Live Oak Forest?
5.	Foothill Woodland	Foothill Woodland	Southern Oak Wood land
6	Riaprian Woodland-Sparse Phase	None--considered a component of other units	Lowland Riparion Forest?
7.	Riparian Woodland	None--considered a component of other units	Lowland Riparian Forest?
11.	Scrub and Chaparral		
8.	Chaparral	Chaparral possibly also some Coastal Sage Scrub	Mixed ihaparral
9.	Chaparral-Sparse Phase	Chaparral possibly also some Coastal Sage Scrub	Mixed Chaparral
10.	Coastal Sage Scrub	Coastal Sage Scrub or Northern Coastal Scrub	Northern Californis Coastal Scrub
11.	Coastal Sage Scrub-Sparse Phase	Coastal Sage Scrub or Northern Coastal Scrub	Northern Califurnia Coastal Scrub
12.	Coastal Sage Scrub-ralvia leucophylla phase	Coastal Sage Scrub	Coastal Sage
13.	Coastal Sage Scrub-Dune Phase	Coastal Sage Scrub	Coastal Sage
14.	Wet Soil Scrub	None	None
15.	Huckleberry Scrub	None	None

III. Coastal Types

16. Coastal Bluff Vegetation
17. Coastal Strand
18. Coastal Salt Marsh
IV. Grasslands, Marshes, Ruderal

19. Freshwater Marsh	Freshwater Marsh	Freshivater Marsh
20. Grassland-Perennial	Valley Grassland, if wet, 21. Greshwater Marsh	Valley Grassland--
	Valley Grassland	Rative Grasses

TABLE 3.1.2. cont.
IV. Grasslands, Marshes, Ruderal cont.

22.	Miscellaneous Native Herb Conmunities	None	None
23.	Ruderal Vegetation	None	None

V. Cultivated Vegetation
24. Planted Trees Neither of the schemes
25. Agricultural Plantirgs
i6. Non-agricultural Plantings
considers non-spontaneous
vegetation.
be explored, and 3) to "ground-truth" the vegetation map and aerial photo analysis. Two different types of quantitative samples were taken, "presence and estimated cover plots", and "presence and measured cover samples". The former were done throughout the base, the latter only at the permanent sampling stations.

3.1.4.1. Presence and estimated cover plots. The firs. 48

 presence-cover plots of this type were placed haphazardly in the initial field work in conjunction with plant and animal collecting activities, installation of pitfall traps and other preliminary aspects of the field work. The second group of 55 plots were placed randomly by selecting random air photos and a random point on the air photo and walking to that point. These were collected to provide a random sample of plots for ground truth determinations. Both sets were ultimately used for both ground truth and community characteristics.The methods used are detailed in Table 3.1 .3 , which reproduces the field instructions given to field crews. The results of this sampling are summarized by vegetation type in Section 3.1.
3.1.4.2. Presence and measured cover samples. This sampling combined the presence plots described in the previous section with line transect sampling. The purpose was to characterize the vegetation at the permanent sampling stations, and therefore this method of sampling was done only on the 34 permanent sampling stations. (For locations see Appendix A.) The methods used are explained in Table 3.1.4, which reproduces the instructions issued to the field crews.

TABLE 3.1.3. Instructions for Presence and Estimated Cover Plots

1. Plot sizes - Plot design is two concentric circular plots. The larger for trees and shrubs, is 3.99 m radius, the smaller for herbs, 1.26 m . An herb is a plant without perennial woody tissue.
2. Locating plots - This will be done in various ways, but in all cases, the final sampling point should be chosen by a random unbiased method (e.g. random paces forward and to right and left).
3. Data to be collected
a) Record on every data sheet:

Your name (s)
The date
Location - a descriptive name to aid location
Data sheet number - a sequential number
Coordinates - according to Vandenberg AFB system
Elevation - in feet
b) If possible also record:

Slope - express in deqrees. This should be the slope on the steepest line through the center of the plot, determined between the edge of the large plot and the center.

Exposure - expross in degrees from north. This is the downslope azimuth of the iine along which slope is measured. Thus, you record the exposure of slope tarme due north ds $0^{\prime \prime}$, due east 90°, due south 180 , elc.
c) Species data - Dati (i) \quad w whats and herbs ic recorded seperately, on the aph: priate places : the.. , lect. Except that the woody data is

TABLE 3.1.3. cont.

Ic) cont.
taken from the larger plot and herb data from the smaller, procedures
are the same. Record:

1) Species present - a species is present if any living portion of that species lies within the imaginary cylinder formed by the verticai projection of the circular plot. To record presence write out the latin name of the species. If the plant is unknown to you, assign a code (e.g. Unkniswn $\underset{\mu}{\mu}$) and collect enough of the plant to identify.
2) Species cover - this is done by visual estimate, placing the specien in the cover classes indicated on the data sheet. The estimate is for the vertical projection of the collective crown of the species being evaluated and ignores overlap. Thus a single species may not have more than 100% cover. However, two or more species may have overlap, and this is considered, so that greater than 100% cover i possible when the cover of the separate species sum to more than 100%.
3) Record the above data separately for trees and shrubs.
4) Estimated total plant cover - record here the percent of the plot covered by the vertical projection of plant crowns--ignoring overlap--i.e. 100\% will be the maximum possible.
5) Estimated total tree cover - as above, but trees only. A tree is a woody plant more than 4 m high or more than 10 cm in diameter at breast height.
6) Estimated total shrub cover - as above, but for shrubs only.

TABLE 3.1.3. ront.
VFGERMTION SUCVIY- VIMNDENZERCA AFB
 commirror-

TABLE 3.1.4. Instructions for Presence and Measured Cover Sampling for Permanent Quadrats.

1. Overall objective - to obtain a quantitative description of the vegetation at the trap sites. Data will consist of:
a) 9 presence-absence estimated cover plots for trees, shrubs, and herbs each of 50 square meter area (i.e., 3.99 m radius).
b) 2 twenty meter line transects for plant cover along lines selected as explained below.
2. Presence-absence plots - see "Instructions for Presence-Cover Sampling". Place one such plot at each trap centered on the trap. Follow the general instructions but omit measures of slope and exposure. Be absolutely sure to mark the trap number clearly and conspicuously on the data sheet
3. Line transect sampling methods:
a) Location of transects - two transects will be selected to be taken along two different lines from among the 12 possible inside lines connecting the 9 traps. Starting the numbering from the non-diagonal line pointing most nearly true north, these may be represented as follows.

Two lines are randomly selected using a random numbers table. The same line is not sampled twice, and two lines in the same quadrent which intersect may not be both sampled, (i.e. not both 2 and 3,5 and 6 , etc.).
table 3.1.4. cont.

Non-intersecting lines which meet with an angle less than or equal to ninety degrees may not both be sampled, (e.g. not both 1 and 2 , or 1 and 4, or 1 and 3 , or 1 and 12 , or 1 and 10 , etc.). Reject any line which falls along an obviously badly disturbed path--that is, avoid falling along trampled areas.

The transect lines fall along imaginary straight lines connecting the centers of the two traps. The transects will begin exactly two meters from the center of the trap and run out 20 meters. For the eight lines radiating from the center trap, the transect should begin 2 m from the center trap and run out 20 m . For the four other lines, begin two meters from the trap with the lowest number, as shown on C. Mahrdt's map of the plot (Appendix A). In all cases, but certainly for exceptions, also state on the data sheet where the transect begins. This is to facilitate relocation. Adjust this scheme as necessary for other trap configurations.
b) Data and data recording - refer to the following data sheet. Fill in all relerant information. When in doubt, write it down. Nata are to be recorded in five meter blocks. For all species, write down a species name and then the lengths of line, in centimeters to the nearest centimeter, which lie above or below a vertical projection of the foliage of the plant. Tti: length of lize iay include some empty space so long as inis is representative and normal of a typical crown of the species. For a sircle succies, the length of a given intercept may include any number of contiquous or overlapping individuals. Lengths of line which lie above bate grouriu are recorded separately so that total plant - over may be culculated.

TABLE 3.1.4. cont.

If two species overlap or lie in different strata (e.g. shrubs under trees) they are recorded separately. This means where there are two or more species there may be more than 100% cover. If there is only one species recorded, cover cannot exceed 100% no matter how many individuals are present.

The smallest recordable intercept is one centimeter. All shrubs and trees must be identified to species (not necessarily in the field). Herts, should be treated the same as woody plants if this can be done without undue effort. In cases where there is a wide variety of non-flowering herbaceous material, adopt the next most reasonable breakdown--e.g. grasses and forbs.

In the lab, verify the identifiration and spelling of all species. If there are insoluble problems clearly explain at "Comments", or on the back of the data form.
c) Recording the transect location - on a copy of the plot map to be provided, record the location of the transects by labelled lines. Include appropriate comments. These maps will be filed with the data sheets.

TABLE 3.1.4. cont.
VAFB Vegetation Survey Data sheet__ of___ Location:

Plot No.: \qquad Data Collected by: \qquad Date: \qquad
Description of Transect Location: \qquad

Comments:
Total Lengh of Transect: \qquad

Species	$0-5 \mathrm{~m}$	$5-10 \mathrm{~m}$	$10-15 \mathrm{~m}$	$15-20 \mathrm{~m}$	Totals		

3.1.5. Lucation and Identification of Significant Plant Taxa. The intent of this portion of the analysis was to locate and identify significant plant xa. Of particular interest were those taxa recognized by the California Native Plant Society as "rare, endangered or both" (ref. 14). These are taxa which because of their limited range or exacting habitat requirements are vulnerable to extinction and therefore worthy of special protection. Since a list of these species is available from the Native flant Society, the procedure was simply one of determining whether or not these particular species were present on the base. This was done by systematically searching the areas most likely to contain the expected species. The lucations of the significant taxa discovered on the base were noted, and specimens were collected for verification. The results of this portion of the study are discussed in detail in Volume 1, Section 5.3.

3.1.6. Vegetation Mapping. Vegetation mapping using remote sensing

 techniques has been accomplished in two ways. Overlays of the December 1956 " C " serié Base Master Plan were produced, and these maps have been coded in a manner consistant with the data storage and retrieval system, effectively the basis for computer base maps.Prior to beginning vegetation mapping, the remote sensing analyst spent more than a month observing and becoming familiar with the vegetation. Several return trips were made to check problem areas.

The overlays were made by placing a semi-transparent sheet of velum over the base map to ascertain the landmarks, roads, and man-made structures marked on the base maps. Using the aerial photographs as a guide, the outlines of the vegetation types were then drawn in.

Considerable effort was made in each case to produce lines representing the same shapes and areas of vegetation observed in the photographs, at the scale of the base maps. Vegetation types, man-made structures and disturbed areas which would be smaller than $1 / 10$ inch in diameter or width when reduced to the map scale, have in most cases been ignored due to the difficulty of drawing such small figures. In general, these areas are without significance when compared to the overall vegetational area. Examples of vegetation types which often appear in this manner are coastal bluff, wet soil scrut. and huckleinnry scrub.

Several of the $v . c_{\text {. }}$: ion types are also capable of gradually intergrading with other adjacent types. In these cases, a determination of the median of the transition is attempted and drawn as the dividing line. This r roblem is especially acute in areas where grazing is taking place and there is a gradual replacement of shrubs by grassland. One of the criteria for t:e vegetation categorle mapped was the ability to delimit reasonably the bu'undaries cif the different categories, so in no mapped unit is the problem unimanageable.

With the completion of each sheet, while still referring to the photographs, the vegetation units were coded onto data forms and later transferred (") data cards for use in the retrieval system. The coding process was accomplisheu by placing a grid over the overlays and determining the dominant argetation t, pe or each oquare and using that code for the type of the a, ire squar.

In!tally all vegetation units were coded to a resolation of 2.55 acres (333 toot jrid cells) with ithe : ajor vegetation units eventually to be
reduced to a resolution of 22.3 acres (1000 foot grid cells) for ease of handling. Using these data, various cumputer maps have been produced. Reproductions of either the computer maps or the overlay types will be available on request.
3.1.7. Ground Truth Verification of Vegetation Map. The accuracy of the vegetation man produced from the air phntographs was checked by comparing field samples at known locations to the corresponding location on the vegetation map. The field samples taken were of two kinds: the first was the 50 square meter presence plot (see Section 3.1.4. for a description of the data taken), and th.: second the permanent quadrats. Together this gave 130 sample points which could be classified to vegetation type using the key. (See Section 3.1.2 for the key to vegetation types.) Table 3.1.5 reports the results of the coniparison. The rows represent the vegetation type of the presence plot or quadrat as determined from the actual field data. The columns represent the vegetation type indicated at that location b; the map. A misclassification uccurs when the map shows a vegetation type different from the field determination, and this is indicated by numbers in the off-diagonal elements. A correct classification results it the map and the field data agree, and the number of times this occurred is indicated by the numbers along the diagonal.

Study of this error matrix reveals that only eight of the 130 field plots or quadrats were not correctly identified on the map. The greatest difficulty was e::perienced with coastal sage scrub-normal phase, where four out of 30 plots or quadrats in this vegetation type were mapped as other vegetation types. However, three of the mismatches are in the same type of

TABLE 3.1.5. Matrix for Mapping Accuracy

Vegetation Type as Deter-	Vegetation Type as Mapped													
mined in the Field	IBPI	2TOF	3FW	4 TW	5 C	6CSSN	7CSS5	8CSSD	9WS5	12CS	13CSM	14FM	16 GA	Total
1. Cishop Pine Furest	11													11
2. Tanbark Sak Forest		6												6
3 Fuothill Woodiand			10			1								11
4. Riparian Woodlanj				6					1					7
s rticupartal					14									14
6. Cosstal Sage Scrub-					1	26	1	1					1	30
7. Coustal Sage Scrub-							8						1	9
$=$ contal some rt.								13						13
tusbilized 心: rase, 3. Wer scil sciut						1			2					3
12. Coastal serard										5				5
13 Coostal solt Marsn											4			4
14 Frestwaser Marsh												1		1
16. iraciland innual	1	1							,			1	16	16
T0131	11	6	10	6	15	28	9	14	3	5	4	1	18.	130

lotal flots: 130
Total Vlots Mapped as a type Differat from the field Deternithation: 8
f.reent Miswatches. 8/130-6.1Z

巳rí Confidence Interv.' for Pronurtion Mismatihed: 3.5\%-1!.4
vegetation (chaparral, and two other types of coastal sage scrub), and therefore the error is not particularly serious from the practical point of view. Similarly, the error in the riparian woodland row indicates that one plot that was actually this vegetation type was mapped as wet soil scrub. The difference between these types in this case was only in the height of the vegetation, and therefore the error is not serious since the species composition is very similar.

The overall percentage of mismatches is about 6%, and as we have seen most of these errors are not serious, so that the accuracy for any practical purpose is in fact substantially better than this. The 95% confidence interval about the error estimate is 3.5% to 11.4%. This means that with a very high probability (0.95) the true value lies within these limits. Putting this more simply, it is highly unlikely from a statistical point of view that the error rate is qreater than 11.5%.

It should be pointed out that the ground truth test was also very exacting in the case of the plots. What was done was to detromine the vegetation in a 50 square meter plot. On the map, it was not possible to represent areas that small, and thus at least some of the mismatches arise decause of the differing scale of the mapping and the ground truth plots. This fact, combined with the points made above about the nature of the errors, suggests that the 6% figure for mismatches is probably a maximum as far as the management use of the map is concerned.
3.1.8. Aging of Trees and Shrubs. To assist in interpreting the past history of Vandenberg $A F B$ and to provide infornation on the growth rate and age of the woody plants, stem sections of , mall shrubs and increment core,
of large shrubs and trees were taken. These were prepared by sanding, and the annual rings counted, providing an estimate of the age of the stem, and therefore in many cases at least a minimal estimate of the period that the vegetation was free of major disturbance.

3.2. Additional Vegetation Data Summaries

3.2.1. Presence and Estimated Cover Plots. The summaries that follow (Tables 3.2.1 through 3.2.14) give the percent occurrence, average estimated cover, and the range in cover for the 15 most common species encountered in the sampling. Percent occurrence is the number of plots in which a species was observed divided by the total plots taken times 100 . Average cover is calculated from the estimates of cover taken as explained in Section 3.1.4.1. The range in cover indicates the highest and lowest value observed, excluding zero.
3.2.2. Presence and Measured Cover Samples. The summaries that follow (Tables 3.2 .15 through 3.2.24) give the percent occurrence, average percent cover, and standard deviation of cover by vegetation type for the 15 must frequent species observed in each type. Presence was determined by dividing the total number of times a species occurred in the circular pluts by the total number of presence plots taken. The presence plots were identified with those used in the sampling summarized in 3.2 .1 except that they were centered on the pitfall traps. (See Section 3.1.4.2 for a fuller de.cription.) The total numbe: of such plots taken in a vegetation type (usually nine at each quadrat) is given at the top of the page.

The cover data were obtained as explained in Section 3.1.4.2. The l.indard doviation and ave:age of cov.r are determined between quadrats.
table 3.2.1. vegetation summăry - presence plot data
Vegetation type Bishop pine forest and bishop pine forest - sparse phase
Sumarizes 5 Presence Plots ___
Total Vascular Plant Species $\quad 9$
Species Diversity (based on occurrence data) 0.4
Occurrence and estimated Cover

Species

Trees and shrubs
Pinus muricata 100
Arctostaphylos viriciussima
quercus wislezenii
Vaccinium ovatum
Adenostoma fasciculatum
Baccharis pilularis
Salvia mellifera
Ceanothus impressus
Herbs
Dryopteris arguta

Total Plant Cover
100
100
Vegetation type Tanbark - oak forest
Sumnarizes_ Presence Plots__

Total Vascular Plant Species $\quad 9$
Species Diversity (based on occurrence data) 7.0 Occurrence and estimated Cover

Species	\% Occ
Pe:and shrubs	
Iitcoarpus densiflora	100
Vacinium ovatum	100
Rubu ursinus	35
Toxicodendrar. divereilobum	35
Symoricarpus mollis	35
Diplacue Zompocensis	35

Herts
polystichwm munition 100
Dryopteris arguta
35
Heuchera micrantha
35

Cover

Ave. Range

85 75-100
55 25-90
$<1-25$
<1- 5
<1- 1
<1- 1
$15<1-50$
$<1<1-1$
$<1<1-1$
table 3.2.3. VEGETATION SUMMARY - PRESENCE PLOT DATA
Vegetation type foothill woodland and foothill woodland - denise phase
Summarizes $\quad 8 \quad$ Presence Plots

Total Vascular Plant Species $\quad 27$
Species Diversity (based on occurrence data) 14.0
Occurrence and estimated Cover

Species
Trees and shrubs
Quercus agrifolia 100
Toxicodendron diversilobum
Artemisia califormica
Rubus ursinus
Lotus scoparius
Lithocarpus densiflora
Salvia mellifera
Symphori carpus mollis
Cercocarpus betuloides
Rhamnus crocea
Rhamue califomica
Herbs
$\begin{array}{ll}\text { Dryopterus arguta } & 35 \\ \text { Pteridium aquilinum } & 25 \\ \text { Bromus rigidus } & 25 \\ \text { Polystichum munitum } & 10\end{array}$
\% Occ. 75 25 25 25 10 10 10 10 10 10 10

$$
\begin{aligned}
& 35 \\
& 25 \\
& 25 \\
& 10
\end{aligned}
$$

Cover
Ave. Range

85	$25-100$
25	$<1-90$
5	$<1-25$
2	$<1-25$
<1	$<1-5$
10	$<1-75$
10	$<1-65$
2	$<1-25$
2	$<1-25$
1	$<1-5$
1	<1

table 3.2.4. VEGETATION SUMMARY - PRESENLE PLOT DATA

Vegetation type riparian woodland and riparian woodland - sparse phase

Summarizes $\frac{7}{} \begin{aligned} & \text { Total Vascular Plant Species } \quad 16\end{aligned}$			
Species Diversity (based on occurren	data) 10.5		
Occurrence and estimated Cover Cover			
Species Trees and shrubs	\% Occ.	Ave.	Range
Aaiix spp. (Zasiandra + laseolepis)	70	40	35-100
Toxicodendron diversilobum	60	10	<1-50
Bac haris pilularis	15	10	<1-75
Rhamnus californica	28	10	$<1-50$
Acer negundo	15	10	<1-75
Rubus ursinus	15	<1	<1
Lonicera hispidula	15	<1	1-1
Fibes glutinosum	15	<1	<1
rierbs			
Pteridium aquilinum	15	15	<1-100
Conium macuiatum	15	15	<1-100
Urtica holosericea	15	<1	<1-5
Sorophularia atrata	15	<1	<1
Stachys bullata	15	<1	<1
Equisetum telmateia	15	<1	1- 5
Sanicula crassicaulis	15	<1	<1-1.
Total Plant Cover		90	85-100

table 3.2.5. VEGETATION SUMMARY - PRESENCE PLOT DATA
Vegetation type chaparmal

Summarizes \qquad Presence Plots

Total Vascular Plant Specics 20

Species Diversity (based on occurrence data) 11.0
Occurrence and estimated Cover

Species
Trees and shrubs
Adenostoma fasciculatwn 100
Salvia mellifera 65
Ceanotnus ramilosus
Arctostaphyios viritissima 55
Quercus wislezenii 35
Cecothus impressus 35
Artemisia califormica . 20
Arctostaphilos mudis 20
Haplopappus ericoides 10
Dendromecon rigida 10
Herbs
Horkelia cuneata 20
Gnaphalium ramosissima 20
Solidago californica 10
Carpobrotus aequilaterus 10

Total Plant Cover

Total Plat Cover

Cover
Ave. Range
$30 \quad 1-75$

10 1-25

- 1-25
$35<1-90$
$5<1-25$
$<1<1-5$
$2<1-15$
$<1 \quad 1-5$
$<1<1-5$
-1 - -5

<1	$-1-$
-1	<1
<1	$<1-$
<1	$<1-$

$85 \cdot 75-30$
table 3.2.6. VEgetation summary - presence plot data

[^5]85 $70-100$

> TAFLE 3.2.7. VEGETATION SUMMARY - PRESENCE PLCT DATA

Vegetalion type comital atese scrub - Saluia lousopulla fhat

Total Vascular Plant Species $\quad 10$
Species Diversity (based on occurrence data) \qquad
Occurrence and estimated Cover

Species \because ner and shrubs	\% Occ.	Ave.	Ranye
Sulvia leucophylla	100	\%	510-40
Artemisia californica	100	19	
Encelia califormica	00	1.)	-40
Raccharis pilularis	45	-1	-1-5
Toxicc iendron diversilobum	30	\cdots	-1-5
Lotus seoparius	15	<1	$\cdot!$

Herbs
Elymus comidersatus
45
Brassica rapa
Galium ruttallii
Marah fxbacius
1
15

Vegetation type coastal sage scrub - stabilized dune phase
Sumnarizes 12

Presence Plots
Total Vascular Plant Species 33
Species Diversity (based on occurrence data) 20.0
Occurrence and estimated Cover

> Species
> and shrubs

Eap Topappus ericoides 90
Artemisia californica 65
Lupinue chamissonis
Jenecio blochmaniae
Eriogonum parvifoliwn
Coreopsis gigantea
Bucciaris pilularis
Herts
Croton califormicus 35
Erysimum suffratescens
35
inaphalium califomicum . 35
Corethogyne filaginifolia

- dieya farinosa

Phace lia romosiscima 25
hace tia runosisolna scrornuzaria atrata
ti ion blochmanae
$\% 0$
90
65
50
50
35
25 15

Cover

Ave.
 Range

25	$<1-75$
15	$<1-65$
5	$<1-15$
3	$<1-15$
2	$<1-15$
3	$<1-15$
3	$<1-40$

<1- 5 <1-5
<1

$$
<1-60
$$

$$
<1-15
$$

$$
<1-5
$$

$$
\begin{array}{r}
1-40
\end{array}
$$

$$
<1-40
$$

Vegetation type wat soil sermb

Vegetation type coastal bluff
Sumbarizes 2 Presence Plots

Total Vascular Plant Species 10
Species Diversity (based on occurrence data) 10.2
Occurrence and estimated Cover

Species

Trees and shrubs
Eriogonu: parvifolium 50
tupinus chamissonis 50
Hap lopappus venetus 50
Heris
Eriophyliwn staechadifolium 50
mbrosia chamissonis. 50
"rankenia grandifolia
carpobrotus eduiis
Suaeda calijornica
cireiwn mothophilum
Gaso ii erystaliinum
\% Occ.

0

10
10
10
1
<1
<1
<1

Cover

Ave.
 Range

<1-40
<1-15
<1-15
$<1-15$
<1-15
<1-15
<1-3
<1
<1
<1

TABLE 3.2.11. VEGETATION SUMMARY - PRESENCE P . DATA
Vegetation type coastal strind
Sunmarizes 4
Total Vascular Plant Specics 10

Specics Diversity (based on occurrence data) 8.2
Occurronce and estimated Cover

Species
\% Occ.
'irrees and shrubs
Haplopappus venetus
Herbs

Carpobrotus edulis	75	10	$<1-15$
Ambrosia chamissonis	75	4	$<1-15$
Abronia maritima	50	<0	$<1-60$
Cakile maritime	50	1	<-5
Calystegia soldanella	25	<1	$<1-5$
Chorizanthe spl.	25	<1	$<1-\infty$
Corethrogyne filaginifolia	25	<1	$<1-2$
Astragalus nutal!ii	25	<1	<1
Dudleya farinosa	25	<1	$<$

75
75
50
50
Cakile maritime
25
Chorizanthe spr.
25
Corethrogyne filaginifolia
25
budleya farinosa

Cover
Ave. Range
table 3.2.12. vegetation summary - presence plot data
Vegetation type coastal salt marsh

table 3.2.13. VEGETATION Summary - presence plot data

Vegetation type freshwater marsh
Summarizes $\quad 1 \quad$ Presence Plots \qquad
Total Vascular Plant Species 5
Species Diversity (based on occurrence data) 5.1)
Occurrence and estimated Cover

Species
Irees and shrubs
Salix lasiandra
Herbs
$\begin{array}{ll}\text { Scirpu; olneyi } & 100 \\ \text { Typha latifolia } & 100 \\ \text { Stachys bullata } & 100 \\ \text { Urtica holosericea } & 100\end{array}$

Cover	
Ave.	Range
]!)	15

$11)$	50
3	3
3	3
1	1

Total Plant Cover

100
100

table 3.2.14. VEGETATION SUMMARY - PRESENCE PLOT DATA

Vegetation type annual prassland

Summarizes_12_P_ Presence Plots

Total Vascular Plant Species 29
Species Diversity (based on occurrence data) 18.0
Occurrence and estimated Cover

Occurrence and estim	\% Occ.	Cover	
Species		Ave.	Range
'rees and shruos			
Hapiopappus venetus	15	<1	<1-5
Faccharis pilularis	15	<1	<1-5

ilertes

Erodium cicutarıum	6)	20	<1-90
Avera fat:a	10	25	<1-90
3romas rigidus	35	10	<]-50
Brorus mibens	25	10	<1-65
Medicago polymorpha	25	<	<1-5
Silytum marianum	15	3	<1-40
Amsinckia intermedia	$1{ }^{1}$	<1	<1-5
SiGalcea malvae flora	15	<1	<1-5
Foeniculum vulare	10	15	$<1-25$
.Juncus Spp.	10	5	<1-90
Eremocarpus setigerus	10	3	-1-40
Rumex acetase illa	10	1	-1-25
Bromus mot? ic	10	1	< $1-25$,

Total Plant Cover

table 3.2.15. vegetation summary - quadrat sampling stations
Vegetation type Bishop pine forest
Sunmarizes 4 Permanent Quadrats 17, 19, 24 and 25
Cover based on 8 transects totalling 160 m.
. occurrence based on 36 circular plots.
Total Vascular Plant Species 2.4
Species Diversity (based on occurrence data) 10.5
Cover and Occurrence Data
Species
Theer and shmutn:
Pinue muricata 86.)
Wuercus wisitezeni $\quad 69.0$
Adenostoma fasciculatum 01.0
Arctostaphyl viridissima 53.0
Arctostaphyics viridissima \times madis $\quad 33.0$
Vacciniam ovatiom 23.0
Ceanothus ramiosus 19.0
ArctostaphyZos rudis
Baccharis pilularis
Haplopappus rricoides
Diplacus lompusensis
Lotus scoparine
\% Occ.
Ave. \% Cover
Mean
Std. Dev.
23.0
$19.0 \quad 2.6$
19.0
$14.0 \quad 0.3 \quad 0.5$
11.00 .30 .5
$9.11 \quad$ 0.3 0.5
8.0
Salvia mellifera 8.0

Herbs
Pteridium aquilinum 1'..
Miscellaneous herts;
37.0

Total Bare Ground
Total Plant Cover ($100 \%-\%$ bare ground)
(13.4) (12.".)
Total Plant Cover ($100 \%-\%$ bare ground)
(81.)) ()

table 3.2.16. VEGETATION SUMMARY - QUADRAT SAMPLING STATIONS

table 3.2.17. VEGETATION SUMMARY - QUADRAT SAMPLING STATIONS
Vegetation type_ Coothill woodland

*Cover for these species lumped torether under mixed grasses and forbes.
**Because this category represents a combination of species, it has no \% occurrence.
table 3.2.18. VEGETATION SUMMARY - QUADRAT SAMPLING STATIONS
Vegetation type riparian woodland

Tot a: Bare Ground
Total Plant Cover ($100 \%-\%$ bare ground)

TABLE 3.2.19. VEGETATION SUMMARY - QUADRAT SAMPLING STATIONS
Vegetation type chaparril

Summarizes Per_ Permanent Quadrats 5, 12, 18 and 23				
Cover based on 8\qquad transects totalling 160\qquad m. \% occurrence based on \qquad 36 circular plots.				
Total Vascular plant Species \qquad				
Species Diversity (based on occurrence data)		14.0		
Cover and Occurrence Data Species	20 cc .		Ave. \% Mean	Cover Std. Dev.
Trees and shrub:				
Puercus wislozenii	75.0		28.5	26.5
Adenostoru fasciculatum	64.0		9.5	13.9
Arctostaphyios viridiosim:	58.17		19.	23.7
Arctostarhy? ${ }^{\text {a }}$ mudi; .	33.0		1%."	31.5
Ceanothice ramilusiu	36.0		3.	3.5
Haploppapus emicoidus	33.0		0.8	1.5
Baccharis pilitl rie	33.0		0.5	0.5
Ceanotius imr ressui:	30.1		2. 8	5.5
Liplachs Zimmocrsi..;	29.0		1.0	2.0
Cemothus papillosu: var. roweonis	22.1		0.3	1.5
Herbs				
Fteridium a cilinion	22.0		2.1	5.0
Caliwn nutalii.	14.0		0.3	3.5
Horkelia cuntat	11.0		*	*

Total Bare Ground
Total Plant Cover (100\%-\% bare ground)

Total Plant Cover (100\%-\% bare ground)
(87.)) ()
*This specie: apreared in the presonce plots but not in the tramects.
table 3.2.20. vegetation summary - quadrat sampling stations

Total Bare Ground
Total Plant Cover $(100 \%-\%$ bare ground $)$

Total Plant Cover (100%-\% bare ground)

table 3.2.21. VEGETATION SUMMARY - QUADRAT SAMPLING STATIONS

*These specis appeared in the presence plote but not in the transects.

TABLE 3.2.22. VERETATION SUMMARY - QUADRAT SAMPLING STATIONS

Total Bare Grounc

Total Plant Cover (100%-\% bare ground)
*These species appeared il, the presener rlots but not in the trinsects.

TABLE 3.2.23. VEGETATION SUMMARY - QUADRAT SAMPLING STATIONS
Vegetation type coastal salt maresh

*This species appeared in the presence plot.; but not in the transects.
table 3.2.24. VEgETATION SUMMARY - QUADRAT SAMPLING STATIONS
Vegetation type annual grassland

Total Bare Ground	(22.5)	(11.2)
Total Plant Cover ($100 \%-\%$ bare ground)	(83.5)	()

*Cover for thear: radey lumed torether urder mixed prasses and forte.
 sorurrence.

That is, the standard deviation was calculated with degrees of freedom being one less than the number of quadrats, while the mean was calculated by dividing cover of each species totalled for all quadrats by the number of quadrats.

Because inclusion of a particular species was decided on the basis of its occurrence, there are a number of species in various summaries for which there are no cover data. This is not the result of blunder but arises because of the variation from point to point and because the plots tended to pick up more species than did the transect samples. These cases, and certain other similar ones are indicated by footnote.

The figure for total bare ground represents the length of transect which traversed ground surface without plant cover of any kind. This figure, subtracted from 100 percent gives the surface area covered by plants. See Section 3.1.4.2. for details.

4. - WILOLIFE ANALYSES

4.1. Methods

4.1.1. Terrestrial Vertebrates. A total of 34 quadrats were established on Vandenberg AFB. Each quadrat was selected on the basis of homogeneity of major vegetation types, avoiding transitional stages or ecotones, e.g., components of both chaparral and coastal sage scrub. Nearly di; of the 34 quadrats were delimited by 80×80 foot or 160×160 foot plots depending on the complexity and density of vegetation in the sampling area. Nine 5gallon metal cans were buried more or less equidistantly and level with the ground to serve as pitfall trips. Pitfall trap numbers one through nine were labelled on $1 / 2 \times 14 \times 14$ inch plywood covers. Four, $2 \times 2 \times 2$ inch wooden blocks were fastened on each corner of the cover, allowing a two inch opening from ground to trap cover for the entry of small vertebrates. The plywood covers also provide protection from direct sunlight and an escape shelter from large predators. The bottom of each pitfall trap was covered with two inches of soil in an attempt to simulate natural conditions. Traps were baited with wild bird seed and checked every $4-5$ days. Animals were identified to species, sexed, aged (hatchling, juvenile, adult), noted as dead or alive, marked (mammals only), and released. The pitfall trap has been an effective reptile and small mamal sampling device for over 30 years (ref. 15,16). Voucher specimens were deposited at the San riego Natural History Museum. Sherman traps were employed at each quadrat for small mammal captures as well as species, e.g. Wuodrats, Kangaroo Rats, which readily escape from pitfall traps. One Sherman trap was associated with each corner pitfall trap and the center pitfisll, i.e. traps $1,3,5,7,9$. Traps were usually set in
the afternoon, baited with wild bird seed, and checked the following morning. Sherman traps were employed for a total of two trap nights/quadrat/sampling period, thus insuring greater mark and recapture of individuals within each population. This also provided a more realistic estimate of population size, movements, and diversity for small mammals.

For purposes of locating quadrat sampling stations, monuments were emplaced near a corner pitfall trap, (i.e. $1,3,7,9$ visible from an access road, trail, or foot path. Each monument consisted of a 2×24 inch galvanized pipe buried in approximately 12 inches of concrete. The remaining 12 inches of unburied pipe was painted bright red and is readily noticeable in the field. Inside the monument is a plastic laminated 2×3 inch card listing the following information: I) San Diego State University Ecology Survey, VAFB, 2) emplacement data of monument, 3) quadrat number, 4) grid cell location, 5) approximate elevation, 6) slope exposure, and 7) vegetation type. A heavy galvanized cap was tightly fastened to each pipe. The monument number (= quadrat number) and the letters "SDSU" were stamped on each cap for reference. Specific locations of these permanent stations are given in Appendix A (section 6).

A problem exists in comparison of capture frequencies, and subseqeuntly relative abundance estimates, when combining pitfall captures of small mammals with Sherman live trap estimates. This exists because the probability of capture is different for a given species between these two sampling techniques. Table 4.1 .1 analyzes the capture frequencies by both techniques for 12 species of small mammals captured during a portion of the study. Five species (two shrews, broad-footed mole, pocket gopher, and Heerman's kangaroo rat) were captured only in pitfall traps (100%). Less than 2% of the dusky-footed woodrats were captured in pitfall traps, and the other six species (all rodents)
TABLE 4.I.I. Capture Frequencies of Small Mammals by Trapping Method (1st and 2nd quarters only), All Quadrats Combined.
Trap-days (TN). TABLE

[^6]were captured in varying percentages between 5 and 94% in pitfalls (Table 4.1.1). Thus, pitfall traps are a more complete sampling procedure for small mammals in terms of detecting species presence.

The differences between capture frequencies cited for the sper es listed in Table 4.l.1 raise the question of possible seasonal variation in catchability between the two sampling methods. To address this question, data on capture frequencies for the deer mouse (Foromys ous maniculatus), as the most abundant small mammal encountered, were stratified by season and habitat (Table 4.1.2). No significant differences between seasons (all habitats combined) was found; however, some variation between certain habitat types (yearly average) were noted (Table 4.1.2). This variability in capture frequency between pitfall and Sherman methods was not significant when these habitats were grouped physiognomically (Table 4.1.2). Thus it appears likely that the capture frequency between the two sampling methods used is independent of season and general habitat type for the deer mouse. This assumption was extended to all species of small mammals.
4.1.2. Avifauna. Standard observational techniques were used by the entire field crew in resolution of the number of species of birds found in Vandenberg AFB (section 4.3). Quantitative estimates of bird utilization, as relative abundance by season, were made at each of the permanent sampling stations described in section 4.1.1. Birds were counted at each quadrat by walking two transects (200 feet each) which intersected at right angles in the center of the quadrat (Station 5). All individuals seen or dentified by song were counted. Ten minutes per transect were allowed; relative abundances for each species were calculated on the basis of numbers/mar-hour of effort.
TABLE 4.1.2. Capture Proportions of the Deer mouse (Peromyscus maniculatus) by Habitat Types, Pitfall Versus Sherman Traps.

Quadrats within the same vegetational unit were grouped together prior to calculation.
4.1.3. Computational Methods. Indexes of relative abundance for terrestrial vertebrates were calculated on the basis of numbers taken per 1000 trap days. Trap days were determined by the number of days each method (pitfall or Sherman) was in operation times the number of traps, expressed in units of 1000 trap days. Sherman trap and pitfall captures were treated separately.

An index of species diversity was computed for certain descriptive and comparative advantages. The index chosen was Simpson's diversity index, D_{s} (ref. 17), given as:

$$
D_{S}=\frac{N(N-1)}{\sum_{i=1}^{k} n_{i}\left(n_{i}-1\right)}
$$

where $N=$ total number of individuals of all species; $n_{i}=$ number of individuals of the ith species. Estimates of relative abundance were used for values of n_{i} (section 4.5). The interpretation of this index is generally universally related to the probability that two individuals drawn randomly from the same community are of the same species. Thus, large, values of D_{s} are considered indicative of higher ecological diversity.

4.2. Herpetofauna

Vandenberg AFB comprises an area of approximately 100,000 acres with a 30-mile coastline extending from Point Sal south to Jalama Beach. Such a diverse area with its Bishop Pine and Tanbark Oak forests, oak and riparian woodland, chaparral, sagebrush scrub, and unique coastal sage scrub stabilized dunes supports several species of amphibians and reptiles. Mckeown (ref. 18)
lists 15 amphibian and 33 reptile species for Santa Barbara County, excluding three species of sea turtles which may potentially occur in waters north of Point Conception. Vandenberg AFB may support 13 amphibian and 27 reptile species, including sea turtles (Tables 4.2.1 and 4.2.2), of which 7 and 16 species, respectively, have been obseryed. Section 4.5 is a summary of relative abundance and diversity of amphibians and reptiles sampled in each vegetation type.

Amphibians and reptiles are generally secretive organisms requiring considerable effort to document their presence. Being efficient ectotherms, their surface activity depends on both biotic and abiotic environmental parameters. The most important of these are climatological factors such as precipitation and air temperature.

Most amphibians may be observed during the winter months (NovemberMarch) when sufficient rainfall is conducive to surface activity. Coincident with surface activity is the reduction of water lost through the skin during periods of rainfall. In summer months amphibians are found in close proximity to water or confined to a moist place, i.e. under logs, rocks, etc. Furthermore, breeding occurs during winter and spring months. At this time, male frogs and toads produce specific vocalizations to attract females to a breeding site. Search for amphibians at Vandenberg AFB occurred during winter and early sp-ing when surface and breeding activity was greatest.

Generally, reptiles are less dependent on dermal absorption of water than amphibians. They typically have horny, dry, nonglandular skin that resists desiccation (ref. 19). They differ from amphibians in being more tolerant to high temperatures due to thermal selectivity, i.e. narrower range of temperatures

TABLE 4.2.1. Checklist of Observed and Expected Amphibians at Vandenberg AFB.

```
Class Amphibia
    Order Caudata
        Family Ambystomidae
            Ambystoma tigrinum (Tiger Salamander)O
            Family Salamandridae
                Taricha tomsa (California Newt)O
            Family Plethodontidae
                Ensatina eschscholtzii (Ensatina)+
                Batrachoseps attenatus (California Slender S.lamander)+
                Aneides lugubris (Arboreal Salamander)+
    Order Anuar
        Family Pelobatidae
            Scaphiopus hammondi (Western Spadefoot)
        Family Bufonidae
            Bufo boreas (Western Toad)+
            Bufo microscaphus (Southwestern Toad)*
        Family Hylidae
            Hyla regilla (Pacific Treefrog)+
            Hyla Califormiae (California Treefrog)o
            Family Ranidae
            Rana aurora (Red-legged Frog)+*
            Rana boylei (Foothill Yellow-legged Frog)}\mp@subsup{}{}{\circ
            Rana catesbeiana (Bullfrog)+o
* Species protected by California Fish and Game Code, }197
o Species regulated by California Fish and Game Code, 1975
+ Species observed furing the survey.
```

TABLE 4.2.2. Checklist of Observed and Expected Reptiles at Vandenberg AFB.

```
Class Reptilia
    Order Chelonia
        Family Testudinidae
        Clenmys marmorata (Western Pond Turtle)+o
        Family Chelonidae
            CheZonia mydas (Green Turtle)
            Caretta caretta (Loggerhead)
        Family Dermochelyidae
                Dermochelys coricea (Leatherback)
    Order Squamata: Suborder Sauria
        Family Iguanidae
            Sceloporus occidentalis (Western Fence Lizard)+
            Uta stansburiona (Side-blotched Lizard)+
            Phrynosoma coronatum (Coast Horned Lizard)+o
        Family Scincidae
            Eumeces skiZtonianus (Western Skink)+
        Family Teidae
                Cnemidophorus tigris (Western Whiptail)
            Family Anguidae
                Gerrhonotus multicaminatus (Southern Alligator Lizard)+
            Family Anneillidae
                Anniella pulchra (California Legless Lizard)+o
    Order Squamata: Suborder Serpentes
        Family Colubridae
        Diadophis punctatus (Ringneck Snake)+
        Contia tenuis (Sharp-tailed Snake)
        Masticophis lateralis (Striped Racer)+
        Masticophis flagellum (Coachwhip)
        Coluber constrictor (Racer)+
        Salvadora hexalopis (Western Patch-nosed Snake)
        Fituophis melanoleucus (Gopher Snake)+
        Lampropeltis zonata (California Mountain Kingsnake)o
        Lampropeltis getulus (Common Kingsnake)+o
        Rhinocheilus lecontei (Long-nosed Snake)
        Tharmophis sirtalis (Common Garter Snake)+
        Thammorhis elegans (Western Terrestrial Garter Snake)+
        Tharmophis couchi (Western Aquatic Garter Snake)+o
        Tantilla planiceps (Western Black-headed Snake)
        Hypsiglena torquata (Night Snake)
        Family Crotalidae
                Crotalus viridis (Western Rattlesnake)+
```

- Species listed as endangered by U.S fish and Wildiffe Service, 1974.
o Species regulated by California Fish and Game Code, 1975.
+ Species observed during the survey.
for "normal" activity. Because of their tolerance to high temperatures, most reptiles are active during late spring and summer. Likewise, offspring of the year appear in spring through mid-summer.

The status of sea turtles occurring off the coast of Vandenberg AFB still remains uncertain. Sea turtles are predominantly widespread in warm seas. All species come to shore to lay eggs in tropical and subtropical beaches throughout the world. Their occurrence off the coast of Vandenberg AFB are probably uncommon. Records from Point Conception north are incidental and, in some cases, dubious (ref. 19). Species which may occur off Vandenberg AFB as seasonal visitors or waifs are as follows;

1. Green Turtle (CheZonia mydas): On the Pacific coast this species is common as far north as San Quintin Bay, Baja California and occasionally reaches bays along southern California. According to Stebbins (ref. 19), "...it was formerly common in San Diego Bay, and there are old dubious records from San Francisco'. This species has been the subject of a conservation program for prevention of their cecline.
2. Loggerhead lurtle ('aretta caretta): This species ranges north on the Facific coast to southern California and upper Gulf of California. It has been observed in open ocean along the California coast as well as in bays, lagoons, estuaries, salt marshes, and river mouths. Its occurrence at Vandenberg AFB is expected on an irregular basis.
3. Leatherback (Dermochelys coricea): This species, weighing up to 1,500 pounds, is occasional as far north as Vancouver Island, British Columbia (ref. 20). Several records exist for California waters and may occasionally occur off Vandenberg AFB. The Leatherback is recognized as endangered by the U.S. Department of Interior, Fish and Wildife Service (ref. 21).

4.3. Avifauna

The taxonomic check-list of avian species expected to occur in the region of Vandenberg AFB is given in Table 4.3.1, including accepted common names as species numbers from the A.O.U. check-list of North American Birds (ref. 22, 23). Section 4.5 is a summary of relative abundance and diversity of bird species censused in eact. vegetation type. The content of Table 4.3.1 was derived from Grinnell and Miller (ref. 24).

Due to the fact that birds are very mobile, several species may be seen in more than one plant community. This is also a result of the behavioral preferences shown by birds toward habitat selection. Several species may only require trees, shrubs, or grasslands. For this reason wherever trees are present one may find a particular species even though it is a riparian woodland, foothill woodland, or pine forest.

4.4. Mammalian Fauna

4.4.1. General aspects. The taxonomic check-list of terrestrial mammals expected to occur in the Vandenberg AFB area is given in Table 4.4.1; this table is based on information given by Hall and Kelson (ref. 25). Systematic observations of tracks, scats, sightings and life-trap results are recorded to

TABLE 4.3.1. Checklist of Birds in the Region of Vandenberg AFB.

1. WÄTER AND SHORE BIRDS

Order Gaviformes (Loons)
Family Gavidae (Loons)
7 Gavia immer (Common Loon)
10 - Gavia arctica pacifica (Arctic Loon)
11+ Gavia stellata (Red-throated Loon)
Order Podicipediformes (Grebes)
Family Podicipedidae (Grebes)
3 Podiceps auritus (Horned Grebe)
2 Podiceps grisegena (Red-necked Grebe)
4+ Podiceps caspicus califormicus (Eared Grebe)
It Aechmorphorus occidentalis (Western Grebe)
6+ Podilymbus podiceps (Pied-billed Grebe)
Order Procellariiformes (Tube-nosed Swimmers)
Family Procellaridae (Shearwaters, Fulmars)
95+ Puffinus griseus (Sooty Shearwater)
Family Pelecanidae (Pelicans)
127+ Pelecanus occidentalis (Brown Pelican)
Family Phalacrocoracidae (Cormorants)
170ct Phalacrocorax auritus (Double-crested Cormorant)
122+ Phalacrocorax penicillatus (Brandt's Cormorant)
Order Ciconiformes (Herons, Bitterns, and Ibeses)
Family Ardeidae (Herons and Bitterns)
194dt Ardea herodias (Great Blue Heron)
201ct Butorides virescens (Green Heron)
196+ Casmerodius albus (Common Egret)
202+ Nycticorax nycticorax (Black-crowned Night Heron)
190+ Botarus Zentiginosus (American Bittern)
Order Anseriformes (Ducks, Geese and Swans)
Family Anatidae (Ducks, Geese and Swans)
173+ Branta bernicla (Brandt)
172+ Branta canadensis (Canada Goose)
132+ Anas platyrhynchos (Mallard)
143+ Anas acuta (Pintail)
139+ Anas crecca (Green-winged Teal)
$141+$ Anas cyanoptera (Cinnamon Teal)
137+ Anas americana (American Wigeon)
149+ Aytha affinis (Lesser Scaup)
142+ Anas clypeata (Northern Shoveler)
147+ Aythya valisineria (Canvas Back)
153+ Bucephala albeola (Buffle-head)
165 Melanitta degiandi (b.nite-winged Scooter)
166+ Melanitta perspicillata (Surf Scooter)
163 MeZanitta nigra (Black Scooter)
167+ Oxyura jamaicensis (Ruddy Duck)

TABLE 4.3.1. cont.

```
Order Falconiformes (Vultures, Hawks and Eagles)
    Family Cathartidae (American Vultures)
        325a*+ Cathartes aura (Turkey Vulture)
        324R Gymmogyps Californianus (California Condor)
    Family Accipitridae (Hawks and Eagles)
        328*+ Elanus leucumus (White-tailed Kite)
        331*+ Circus cyoneus (Marsh Hawk)
        332*+ Accipiter striatus (Sharp-shinned Hawk)
        333*+ Accipter cooperii (Cooper's Hawk)
        339b*+ Buteo lineatus (Red-shouldered Hawk)
        337b*+ Buteo jomaicensis (Red-tailed Hawk)
        349*+ Aquila chrysaetos (Golden Eagle)
        352a* Haliaeetus leucocephalus (Bald Eagle)
    Family Pandionidae
        364* Pandion halinctus (Osprey)
    Family Falconidae (Falcons)
        356aR Falco peregrinus (Peregrine Falcon)
        360+ Falco sparverius (American Kestrel)
Order Gruiformes
    Family Rallidae (Rails, Gallenules and Coots)
        210R Rallus longirostris (Clapper Rail)
        212+ Rallus limicolu (Virginia Rail)
        214+ Porzana carolina (Sora)
        216.1R Laterallus jomaicensis (Black Rail)
        221% Fulica americma (American Coot)
        219Gallinula chlomp/us (Common Gallinule)
Order Charadriformes (Shore Birds, Gulls and Terns)
    Family Haematopodidae (Oyster Catchers)
    287+ Haematopus bachmani (Black Oyster-catcher)
    Family Charadriidae (Plovers and Turnstones)
    270+ Pluvialis squataroia (Black-bellied Plover)
    272 Pluvialis dominica (American Golden Plover)
    274+ Charadrius semipaimıtus (Semi-palmated Plover)
    278+ Charadrius alexandrinus (Snowy Plover)
    273+ -naradrius vociferits (Killdeer)
    281 Charadrius montana (Mountain Plover)
    282 Aphriza virguta (Surf Bird)
    283+ Arenaria interpres (Ruddy Turnstone)
    284+ Arenaria melanocephala (Black Turnstone)
    Family Scolopacidae (Snipes, Sandpipers and Curlews)
    264+ Numenius americmus (Long-billed Curlew)
    267+ Numenius phueopus (Whimbrel)
    249+ Limosa fedua (Marbled Godwit)
    255+ Tringa flawipes (Lesser Yellow Legs)
    254+ Tringa meZan,lellu: (Greater Yellow Legs)
    256a+ Tringa molitaria (Solitary Sandpiper)
    263+ Actitis maculamia (Spotted Sandpiper)
```

TABLE 4.3.1. cont.

258+	Catoptrophoms semifalmatu: (Willett)
249+	Heteroscelus incanion (Wandering Tattler
$2316+$	Lirmodromus griselt: (Short-billed Dowitcher)
232	Limnodromus ssolapaceus (Long-billed Dowitcher)
234	calidris canutus (Knot)
$248+$	Califris alka (Sanderling)
247+	Calidris mauri (Western Sandpiper)
242+	Calidris minutilla (Least Tern)
241	Calidris bairdii (Baird's Sandpiper)
233	Culidris melanotos (Pectoral Sandpiper)
243 a	Calidris alpina (Dunlin)
$230+$	Capella gallinago (Snipe)
Family Recurvirostridae (Avocets and Stilts)	
$226+$	Himantopus mexicanu.; (Black-necked Stilt)
225	Recurvirostra americana (American Avocet)
Family Phalaropodidae (Phalaropes)	
222	Phalaropus fulicarius (Red Phalarope)
$224+$	Steganopus tricolor (Wilson's Phalarope)
223	Lobipes Lobatus (Northern Phalarope)
Family Stercorariidae (Skuas and Jaegers)	
37	Stercorarius parisiticus (Parasitic Jaeger)
Family Laridae	(Gulls and Terns)
57+	Lamus heermanni (Heermann's Gull)
$54+$	Larus delawarensis (Ring-billed Gull)
55	Larus canus (Mew Gull)
$516+$	Larus argentatus (Herring Gull)
53+	Lames califormicue (California Gull)
42.1	Larus hyt erboreus (Glaucous Gull)
$60+$	Larus philadelphia (Bonaparte's Gull)
$49 \mathrm{~b}+$	Larus occidentalis (Western Gull)
40a	Rissa tridactyla (Black-legged Kittiwake)
62a	Xema sabini (Sabine's Gull)
77	Chlidonias nirra (Black Tern)
$64+$	Hydroprome caspia (Caspian Tern)
$69+$	Sterma forsteri (Forster's Tern)
74aR+	Sterma albifrons (Least Tern)
$65+$	Thalasseus maximus (Royal Tern)
30a+	Uria aulge (Common Murre)
29+	Cepphus colwmba (Pigeon Guillemot)
AND BIRDS	
Galliformes (Gallanaceous Birds) Family Phasianidae (Quail Partridges and Pheasants) 294a+ Lophortyx califormicus (California Quail)	
Columbiformes (Pigeons and Doves) Family Columbidae (Pigeons and Doves)	
312b	Columba fasciata (Band-tailed Pigeon)
$313.1+$	Colomba livia (Rock Dove)
316a+	Zenaida macroura (Mourning Dove)

```
TABLE 4.3.1. cont.
Order Cucliformes (Cuckoo-like Birds)
    Family Cuculidae (Cuckoos, and Roadrunners)
        387aR Coccyzus americanus (Yellow-billed Cuckoo)
        385+ Geococcyx califormianus (Roadrunner)
Order Strigiformes (Owls)
    Family Tytonidae (Barn Owls)
        365+ Tyto alba (Barn Owl)
    Family Strigidae (Typical Owl)
        373 Otus asia (Screech OwI)
        375+ Bulbo lirginianus (Great Horned Owl)
        379 Glaucidium gnoma (Pigmy Owl)
        367 Asio flammeus (Short-eared Owl)
        378R+ Speotyto cunicicularia (Burrowing Owl)
Order Captrimulgiformes (Goat Sucker-like Birds)
    Family Captrimulgidae
        418+ Phalaenoptilus nuttallii (Poor-Will)
Order Apodiformes (Swifts and Hummingbirds)
    Family (Apodidae (Swifts)
        425+ Aeronautes saxatilis (White-throated swift)
    Family Trochilidae (Hummingbirds)
        429+ Archilochus alexandri (Black-chinned Hummingbird)
        431+ Calypte anna (Anna's Hummingbird)
        434+ Selasphorus sasin (Allen's Hummingbird)
Order Coraciiformes (Roller-like Birds)
    Family Alcedinidae (Kingfishers)
        390+ Megaceryle alcyon (Belted Kingfisher)
    Family Picidae (Woodpeckers)
        413+ ('olaptes auratus (Common Fiicker)
        407+ Melanerpes formicivorus (Acorn Woodpecker)
        408 Aoyndesmys lewis (Lewis Woodpecker)
        393 Linndrocopes villosus (Hairy Woodpecker)
        394+ iendrocopos pubescens (Downy Woodpecker)
        397+ iondrocopos nuttallii (Nuttall Woodpecker)
Order Passeriformes (Perching Birds
    Family Tyrannidae (Flycatchers)
            448+ Tyrannus vociferans (Cassin Kingbird)
            466+ Empidonax traillii (Willow Flycatcher)
            469 Empidonax wrightii (Gray Flycatcher)
            464+ Empidonax difficilis (Western Flycatcher)
            462+ Contopus sordidulus (Western Wood Pewee)
            4 5 9 ~ N u t t a l l o r n i s ~ b o r e a l i s ~ ( O l i v e - s i d e d ~ F l y c a t c h e r ) ~
    Family Alaudidae (Larks)
            474+ Eremophila apestris (Horned Lark)
```

TABLE 4.3.1. cont.
Family Hirundinidae (Swallows)
$615+$ Tachycineta thalassina (Violet-green Swallow)
614 Iridoprocne bicolor (Tree Swallow)
616 Riparie riparia (Bank Swallow)
$612+\quad$ E?trochelidon pyrrhonota (Cliff Swallow)
611+ Progne subis (Purple Martin)
Family Corvidae (Jays, Magpies and Crows)
478 Cyanocitta stelleri (Steller's Jay)
481+ ApheZocoma coerulescens (California Scrub Jay)
$476+\quad$ Pica nuttallii (Yellow-billed Magpie)
486 Corvus corax (Common Raven)
488+ Com'us brachyrhynchos (Common Crow)
Family Paridae (Tits)
733+ Parus inornatus (Plain Titmouse)
$743+\quad$ Psaltriparus minimus (Common Bush-tit)
Family Sittidae (Nuthatches)
727+ Sitta carolinensis (White-breasted Nuthatch)
Family Chamaeidae (Wren-tits)
742+ Chamaea fasciata (Wren-tit)
Family Cinclidae (Dippers)
701 Cinclus mexicanus (Dipper)
Family Troglodytidae (Wrens)
722 TrogZodytes troglodytes (Winter Wren)
719+ Thryomanes bewickii (Bewick's Wren)
$725+T e$ Imatodytes palustris (Long-billed Marsh Wren)
715 Salpinctes obsoletus (Rock Wren)
Family Mimidae (Mockingbirds and Thrashers)
703+ Mimus polyglottos (Mockingbird)
$710+$ Toxostoma redivivum (California Thrasher)
Family Turdidae (Thrushes)
761 Turdus migratorius (American Robin)
763 Ixoreus riaevius (Varied Thrush)
759 Catharus guttatus (Hermit Thrush).
758+ Catharus ustulatus (Swainson's Thrush)
767+ Sialia mexicana (Western BluebirJ)
Family Sylviidae (Gnatcatchers and Kinglets)
748 Fegulus satrapa (Golden-crowned Kinglet)
749+ Regulus calendula (Ruby-crowned Kinglet)
Family Bombycillidae (Waxwings)
619 Bombycilla cedromum (Cedar Waxwing)
Family Laniidae (Shrikes)
$622+\quad$ Lanius ludovicianus (Loggerhead Shrike)
Family Vireonidae (Vireos)
$632+$ Vireo huttoni (Hutton's Vireo)
627 Vireo gilvus (Warbling Vireo)

TABLE 4.3.1. cont.
Family Parulidae (Wood Warblers)
636 Mniotilta varia (Black and White Warbler)
646+ Vermivora celata (Orange-crowned Warbler)
652+ Dendroica petechia (Yellow Warbler)
$656+$ Dendroica coronata (Yellow Rumped Warbler)
669 Dendroica occidentalis (Hermit Warbler)
$681+G e o t h y 2 p i s ~ t r i c a s ~(Y e l l o w-t h r o a t) ~$
$685+$ Wilsonia pusilla (Wilson's Warbler)
Family Icteridae (Orioles, Blackbirds and Meadowlarks)
501+ Sturnella neglecta (Western Meadowlark)
493 Sturnus vulgaris (Starling)
497 Xanthocephalus xanthocephalus (Yellow-headed Blackbird)
498+ Agglaius phoeniceus (Red-winged Blackbird)
505+ Icterus cucullatus (Hooded Oriole)
504 Icterus parisomm (Scott Oriole)
508+ Ieterus galbula (Northern Oriole)
510+ Euphagus cyanocephalus (Brewer's Blackbird)
495+ Molothrus ater (Brown-headed Cowbird)
Family Thraupidae (Tanagers)
607+ Piranga Zuduviciana (Western Tanager)
Family Fringillidae
596+ Pheucticus melanocephalus (Black-headed Grosbeak)
$+\quad$ Cuiraca caerulea (Blue Grosbeak)
599+ Passerina amoena (Lazuli Bunting)
518 Carpodacus cassinii (Cassin Finch)
519+ Carpodacus mexicanus (House Finch)
529+ Spinus tristis (American Goldfinch)
$530+\quad$ Spinus psaltria (Lesser Goldfinch)
587+ Pipilo erythrophthalamus (Rufous Sided Towhee)
$591+$ Pipilo fuscus (Brown Towhee)
$542+\quad$ Passerculus sandwichenis (Savannah Sparrow)
546 Anmodramus savamnamum (Grasshopper Sparrow)
552 Chondestes gramacus (Lark Sparrow)
580 Aimophila ruficeps (Rufus-crowned Sparrow)
574 Amphispiza belli (Sage Sparrow)
567+ Junco hyemalis (Dark-eyed Junco)
560 Spizella passemina (Chipping Sparrow)
562 Spizella breweri (Brewer's Sparrow)
554+ Zonotrichia leurophrys (White-crowned Sparrow)
$585+$ Passerella iliac.i (Fox Sparrow)
$581+\quad$ Melospiza melodia (Song Sparrow)
Family Ploceidae (Weaver Finches)
$+\quad$ Passer domesticus (House Sparrow)

[^7]tABl.E 4.4.1. Checklist of Mamals in the Region of Vandenberg AFB.

```
Order Marsupialia
```

Family Didelphidae
$+\quad$ Didelphis marsupialis (Common Opossum)
Order Insectivora
Family Soricidae Notiosorex srawfordi (Gray Shrew)
$+\quad$ Sorex ornatus (Ornate Shrew)
$+\quad$ Sorex trowl ridgii (Trowbridge's Shrew)
Family Talpidae
$+\quad$ Scapanus Latimanus (Broad-footed Mole)
Order Chiroptera
Family Vespertilionidae Myotis yumonensis (Yuma Myotis) Myotis thysunodes (Fringed Myotis)
Myotis evotis (Long-eared Myotis)
Myotis volan:s (Long-legged Myotis)
Myotis califormicus (California Myotis)
Myotis subulatans (Small-footed Myotis)
Pipistrellus hespemis (Western Pipistrelle)
Eptesteus fuscu: (Big Brown Bat)
Plecotus townsendi (Lump-nosed Bat)
Lasiurus borealis (Red Bat)
Laciurus cinereus (Hoary Bat)
Corynorhinus townsendii (Townsend's Big-eared Bat)
Antrozous pallidus (Pallid Bat)
Family Molossidae
Tadarida brasilensis (Brazilian Free-tailed Bat)
Eumops perotis (Greater Mastiff Bat)
Order Lagomorpha
Family Leporidae
+: Lepus califormicus (Black-tailed Jack Rabbit) +* Sylvilagus audubonii (Desert Cottontail) +: Sylvilagus bachmani (Brush Rabbit)

Order Rodentia

Family Sciuridae
Eutomias merriami (Merriam's Chipmunk)
$+\quad$ Spermorphilus (Citellus) beecheyi (California Ground Squirrel) +* Sciurus griseus (Western Gray Squirrel)
Family Geomyidae
$+\quad$ Thomomys umbrinus (Southern Pocket Gopher)
Family Heteromyidae
$+\quad$ Perognathus californicus (California Pocket Mouse)
+1) Dipodomys heermanni (Heermann's Kangaroo Rat)

1) Dipodomys venustus (Graceful Kangaroo Rat)

+ 1) Dipodomys agilis (Agile Kangaroo Rat)

```
Table 4.4.1. cont.
    Family Cricetidae
        - Onychomys torridus (Southern Grasshopper Mouse)
    + Reithrodontomys magalotis (Western Harvest Mouse)
    \(+\quad\) Peromyscus califormicus (California Mouse)
    \(+\quad\) Peromyscus maniculatus (Deer Mouse)
    \(+\quad\) Peromyscus boylii (Brush Mouse)
    \(+\quad\) Peromyscus truei (Piñon Mouse)
    \(+\quad\) Neotoma lepida (Desert Wood Rat)
    \(+\quad\) Neotoma fuscipes (Dusky-footed Wood Rat)
    \(+\quad\) Microtus californicus (California Vole; Ca. Meadow Mouse)
    Family Cast:oridae
    \(+\quad\) Castor canadensis (Beaver)
    Family Muridae
        Rattus rattus (Black Rat)
        Rattus norvegicus (Norway Rat)
        Mus musculus (House Mouse)
Order Carnivora
    Family Canidae
        \(+\quad\) Canis latrans (Coyote)
        +* Urocyon cinereoargenteus (Gray Fox)
    Family Procyonidae
        ** Bassamiscus astutus (Ringtailed Cat)
        +* Procyon lotor (Raccoon)
    ramily Mustelidae
        \(+\quad\) Mustela frenata (Long-tailed Weasel)
        \(+\quad\) Taxidea taxus (Badger)
        Spiligale gracilis (Western Spotted Skunk)
        \(+\quad\) Mephitis mephitis (Striped Skunk)
    Family Felidae
            ** Felix concolor (Mountain Lion)
            +* Lynx rufus (Bobcat)
Order Artiodactyla
    Family Cervidae
            +* Daria (Odocoileus) hemiorus (Mule Deer)
    Family Suidae
        +* Sus acrofa (Feral Pig)
* Species regulated by California Department of Fish and Game and California
    Fish and Game Commission.
** Fully protected species under current California law.
1) Thought by some mammalogists to be conspecifics (ref. 26).
+ Species observed during the survey.
```

date by vegetational association, along with expected vegetational affinities, in Table 6.1 .5 of Volume 1. Section 4.5 includes a summary of relative abundance and diversity of mammals sampled in each major vegetation type.

A taxonomic problem seems to be evident in the genus Dipodomys (Kangaroo rats) in the vicinity of Vandenberg AFB. Three species are described from the vicinity: D. agilis, D. venustus, and D. heermanni. All three may be conspecific (ref. 25), and further investigation of series collected during the course of this project may aid in resolution of the systematic status of this group. Field identifications to date on live specimens indicate both D. hermanni and D. agilis; however, reliable identification can only be made from skulls and bacculi (or penis).
4.4.2. Large terrestrial mammals. Both Sherman and pitfall trapoing techniques, designed for capture of amphibians, reptiles, and small mammals, are not applicable for large mammals such as bobcat, coyote, mule deer and feral pig. The occurrence of these species is based on sightings in the field by project personnel as well as competent Vandenberg AFB personnel.

This section of the report will be directed to large mammals observed on base during daily, routine field work commencing on July 30,1974 , and terminating on June 6, 1975. In most cases, numbers of observations, area observed, and specific vegetation types will be given in the following annotated list. In addition, evidence by scat, tracks, dens, or carcasses were employed to confirm the presence of large mammal species.

Black-tailed Jackrabbit: This species was observed in nearly every vegetation type. It was most abundant in stabilized dune and annual grassland vegetation on Burton Mesa. Although the Black-tailed Jackrabbit reproduces
year-round, their numbers are regulated by such predators as eagles, hawks, owls and snakes (including rattlesnake) (ref. 26).

Desert Cottontail: Also called the Audubon Cottontail, this species is perhaps (with the possible exception of the California Ground Squirrel) the most frequently seen large terrestrial mammal on base. It is found in nearly every vegetation type, with the exception of Tanbark Oak forest. Preferring somewhat low brush cover such as chaparral and coastal sage scrub, this species is only occasionally seen in the Sudden Ranch area. Coyote, fox, bobcat, hawks, and owls are known predators of the Desert Cottontail.

Brush Rabbit: Unlike the Desert Cottontail, the Brush Rabbit prefers extremely dense wooded and brush areas where it feeds in close proximity to its hiding place (ref. 26). This species was occasionally seen on Vandenberg AFB. Like most species of hares and rabbits of the southwest, the Brush Rabbit will breed year-round with three to six in a litter. Predators are the same as thuse for the Desert Cottontail.

Merriam Chipmunk: According to Ingles (ref. 26), this species frequents large stands of chaparral and foothill woodland and may extend up to 7,000 feet into open coniferous forests in the southern half of California. Merriam Chipmunk was not seen during the survey, although it is expected uncommonly ir Bishop Pine forest, Oak Woodland, Tanbark Cak forest, and tall stands of dense chaparral.

California Ground Squirrel: This species is common throughout the year in disturbed areas on Vandenberg AFB. Sudden Ranch area has the largest on-base population of this squirrel, perhaps as a result of overgrazing and reduction of native chaparral and coastal sage scrub communities.

Western Gray Squirrel: Restricted to Bishop Pine forest, this species was occasionally seen off Santa Ynez Ridge Road and Lucio Road during spring and summer months. Currently, there are two individuals nesting in the burned pine forest at quadrat HB-457 (Appendix A).

Beaver: Introduced. Chiefly nocturnal in habits, the beaver was net observed at Vandenberg AFB. Three dams were seen on the San Antonio Creek in the vicinity of El Rancho Road bridge; five dams were present on the Santa Ynez River just west of the Federal Correctional Institution. According to Mr. Jim Johnston, California Department of Fish and Game was unsuccessful at introducing beaver in Honda Creek.

Coyote: This species has been seen abroad in every existing vegetation type during both day and night It was frequently seen in the cantonment area around buildings and foraging among eucalyptus trees. Few coyotes exist in the highly disturbed Sudden Ranch area due to the non-availability of food through habitat destruction.

Gray Fox: According to several airmen on base, the gray fox has occupied buildings ind subsequently established dens in the cantonment area. Scats were seen in chaparral on south Vandenberg AFB, and one adult was observed crossing Santa Ynez Ridge Road and into low chaparral.

Ringtailed Cat: This secretive, nocturnal animal frequents caves, crevices, and hollow trees in thick brush and forested areas. Although not seen on the survey, this species is expected in Honda and Bear Creek Canyons. This is a fully protected species under California law.

Raccoon: Tracks were present in close proximity to permanent bodies of water, i.e. Honda Canyon, Bear Creek Canyon, Santa Ynez River, San Antonio Creek, and Mod III Lake. Several individuals were observed around the vOQ
during evening hours, and one was found dead on Point Sal Road north of Lions Head in August.

Long-tailed Weasel: This species was frequently seen on roads surrounded with annual grassland fields during April-September, particularly in the vicinity of the Santa Ynez River and also Burton Mesa along 13th Street. Few individuals were seen in fields within the cantonment area.

Badger: This species was not seen during the survey. It probably occurs uncommonly in open grassland, coastal sage scrub, and sparse chaparral vegetation.

Western Spotted Skunk: This small, nocturnal skunk favors chaparral and sparsely wooded areas and streamside conditions. It probably occurs uncommonly at Vandenberg AFB.

Striped Skunk: This species has been seen on numerous occasions throughout Vandenberg AFB. As many as six individuals per mile were counted on the LompocCasimalia Highway with the roadside predominated by chaparral vegetation. One individual was seen on Espada Bluff, about $1 / 4 \mathrm{mile}$ south of Sudden Ranch. This species has great importance in rodent and insect control.

Opossum: Introduced. One individual was found on the Santa Ynez River bridge. This species is usually active at night. Probably abundant in the Sudden Ranch area but also found in Oak Woodlands and riparian streamsides where they feed on insects, carrion and vegetable material.

Feral Cat: Introduced. These are domestic cats which have reverted to 1 wild state and have adapted to a diet of native reptiles, birds, and mammals. Several were seen in the cantonment area around buildings and open ruderal fields. One individual was observed fleeing from Oak Mountain Road down a storm drain and into dense chaparral on January 12, 1975.

Bobcat: Observations of bobcat on Vandenberg AFB include the following areas:
a) 19 August 1974, Bear Creek Canyon on Old Surf Road, Coastal Sage Scrub/Riparian Woodland; one individual, adult.
b) 22 August 1974, Honda Ridge Road, $1 / 4$ mile east of Coast Road, Coastal Sage Scrub; one individual adult.
c) 17 October 1974, Bear Creek Canyon near quadrat WA-446, Riparian Woodland; six individuals (2 adults and 4 juveniles).
d) 12 October 1974, La Salle Canyon Road, Coastal Sage/Riparian Woodland; one individual, aduli.
e) 12 October 1974, Honda Canyon Road, Riparian Woodland; one individual, adult.
f) 16 October 1974, near junction Honda Canyon and Coast Roads, Coastal Sage Scrub stabilized dune; one individual, adult.
g) 16 January 1975, Bear Creek Canyon, ca. $1 / 4$ mile east of Old Surf Road, Riparian Woodland; one individual, adult.
h) 4 June 1975 , 1.5 mile west of Tranquillon Peak on Honda Ridge Road, Chaparral/Coastal Sage Scrub; one individual, juvenile.

All observations of bobcat at Vandenberg AFB indicate a rather large population, particularly in canyons of riparian woodland.

Mountain Lion: This is the largest species of cat in California and is suffering rapid decline in numbers throughout its range. It seldom attacks livestock if deer are plentiful and there are only a few authentic cases of attacks on human beings (ref. 26). There have been sightings or evidence of mountain lion reported by military personnel in Bishop Pine forest and Purissima

Point, although these are questionable. No individuals, tracks or scat were discovered at Vandenberg AFB by field personnel.

Mule Deer. This species was seen on numerous occasions in every vegetation type at Vandenberg AFB. Population estimates of $2,500-3,000$ were suggested for deer occurring on base (ref. 27), although this figure seems high based on availability of primary feeding areas. Accurate estimates are given in section 7.3, Volume 1. Chaparral vegetation provides browse for mule deer as well as grassland bordering the Santa Ynez. Ceanothus sp. in drainages, canyons, and mesas is excellant. browse for this species. Few deer were seen in the vicinity of Sudden Ranch. This could be the effects of l) excessive off-base poaching, 2) competition with grazing livestock, and 3) destruction of primary feeding resources. Compton (ref. 27) discussed deer-aircraft collision hazards at Vandenberg $A F B$ and suggests that an "...effective control of the problem is possible with a specially constructed fence and limited habitat alteration". Large herds (i.e., 20+) have been seen in chaparral land circling the airfield as well as on lawns within the cantonment area.

Feral Pig: Introduced. On Vandenberg AFB, it is most abundant in San Antonic Creek and associated Barka Slough. It has been observed in areas of dense Riparian woodland or wet land scrub such as Bear Creek Canyon, Honda Creek, and the Santa Ynez River valley. Freshly broken turf, up-rooted plants and numerous tracks were evidence of feral pig activity along wetland areas throughout the base.
4.4.3. Bats. Bats are the only mammals of true flight. A total of 24 species occur in California, nearly all being insectivorus. Of this total, 14 species of bats are expected at Vandenberg $A F B$; none were seen during the entire survey. The absence of bats an Vandenberg AFB may be associated with
long periods of heavy fog and a reduction of flying insects. Furthermore, fog may impair their echolocation system, although this hypothesis needs to be substantiated. Several attempts were made to document the occurrence of bats on base. Bridges in the vicinity of Honda Canyon, old barns at Sudden Ranch, and the boat house were carefuily searched during spring and winter months without success.
4.4.4. Marine mammals. Due to the close proximity of the 100 fathom contour curve to the Vandenberg shoreline, any normally occurring species of marine mammal may be found in this area. In addition, any north Pacific temperate, subtemperate or tropical species may move into this area with summer waters, and many more northerly forms may be found here in the winter months, (Table 4.4.4.1).

Order Cetacea
Suborder Odontoceti
Phocoena phocoena (Harbor Porpoise). The Harbol Porpoise ranges from Point Barrow, Alaska, south to central California in San Luis Obispo County. It occasionally occurs in waters off southern California with only one record in Los Angeles Harbor. One skull was discovered near the mouth of the San Antonio River in December, 1974. This species probably occurs uncommonly along the coast of Vandenberg AFB.

Suborder Mysticeti
Eschrichtius glaucus (California Gray Whale). During the period from December through May the gray whale is the most commonly observed marine mammal in the Vandenberg area. During the summer months gray whales feed in the western Bering Sea and adjacent Arctic Ocean. In the winter months

```
TABLE 4.4.4.1. List of Marine Mammal Species Occurring off Vandenberg AFB
                in Order of Probable Abundance.
Order Cetacea
    Suborder Odontoceti
        Family Delphinidae
            Lagtenomynchus obliquidens (Pacific White-sided Dolphin)
            Phoonenoides dalli (Dall's Porpoise)
            Lisuodelphis borealis (Northern Right Whale Dolphin)
            *Pho:dena phocoena (Harbor Porpoise)
                Oroinus crea (Killer Whale)
    Suborder Mysticeti
            *Eschrichtius glaucus (Gray Whale)
                Balaenoptera acutorostrata (Minke Whale)
                Megaptera noveangliae (Humpback Whale)
                Balaenoptera physalus (Fin Whale)
                Balaenoptera borealis (Sei Whale)
Order Carnivora
    Suborder Fissipedia
        Enhydra lutris nereis (Southern Sea Otter)
    Suborder Pinnipedia
            *Eumetrpias jabata (Steller Sea Lion)
            *Zalophus califormianus (California Sea Lion)
            *Phoca vitulina (Harbor Seal)
```

[^8]between December and February, they follow the coastline to the breeding lagoons of Baja California in groups of two to five. The reverse or northward migration becomes heavy in early March and tapers off rapidly in early May (ref. 28). The contour of the coast has much to do with the proximity of the whales to shore and any promontory that lies across a bight or bay is used as a landmark point (ref. 28). They may approach from one mile to within a few hundred yards of shore and have been reported to surf ride breakers (ref. 29). In the Vandenberg area, Point Arguello seems to serve as just such a landmark point. Consequently, this brings the entire eastern Pacific grey whale population within the three-mile restricted zone in this area. At present the population has stabilized at about $10,000-12,000$ individuals (ref. 28). This species of Cetacean is on the federal list of rare and endangered species. Numerous sightings close to shore at south Vandenberg were made.

Order Carnivora
Suborder Fissipedia
Enhydra Zutris nereis (Southern Sea Otter). Although presently not documented in the Vandenberg area, the former range of the California sea ot ter extended from the Aleutian Islands to Baja California (ref. 30). Revently, the population in the area of Monterey, California, has been expanding rapidly, and its southern range has extended to include Point Buchon and Avila (ref. 30). Due to the presence of kelp and the relatively undisturbed rocky intertidal zone, the Vandenberg area presents an ideal sea otter habitat. Therefore, considering the restricted access of this stretch of shoreline, it is quite possible that the sea otter may have already established a colony in the northern area of the base. However, since sea otters can feed only in
rocky zones, this would imply a migration across a 20 -mile stretch of sandy beach from Pismo Beach to Mussel Rock and Point Sal. This would hardly prove a serious barrier since sea otters have been known to migrate 30 miles or more (ref. 31). The 13 miles of coastline between Point Buchon and Pismo Beach should also not be a deterrent due to the presence of much ideal sea otter habitat. The total area which must be traveled is estimated at only 33 miles. It is logical to assume that this fully protected species, if not now present, will shortly be found in the Vandenberg area--barring the intervention of man.

Suborder Pinnipedia
Eumetopias jabata (Steller's Sea Lion). The range of the Steller sea lion includes the Channel Islands of the southern California coast northward to the Bering Sea (ref. 32). Rookeries are most often found in areas of remote rocky coasts well away from civilization. The breeding season begins early in May when the adult bulls establish their territories. Females arrive and give birth two to three weeks later and the bulls retain their territories until August. At this time the individual males are thought to migrate northward since fewer males are seen on the California coast during the winter (ref. 32). One dead adult male was found in December 1974 near San Antonio Lagoon.

Zalophus californianus (California Sea Lion). Much of the range of the California sea lion overlaps that of the Steller sea lion. They exist in almost equal numbers along the coast and also frequent remote, rocky shores. The breeding season extends from the month of May through June. Individuals have been observed from Point Arguello north to Lion's Head.

Thoca vituZina (Harbor Seal). The harbor seal is distributed along the Pacific coasts of North America south of the Aleutians to the coasts of California and Mexico (ref. 32). The southernmost limit of this species is most likely Cedros Island off Baja California. This species normally pups on land or on a sandbank with the first births occurring in April. Observations by the Naval Undersea Center, San Diego have confirmed breeding activity in the Vandenberg area (Leatherwood, per. comm.). Numerous adults utilize rocky shore areas from the boat house (south of Point Arguello) to Purissima Point for hauling grounds. As many as 69 in a group have been recorded.

4.5. Structure and Dynamics of Vertebrate Communities

In the following tables, the quantitative aspects of the vertebrate sampling programs described in Section 4.1 are summarized. Table 4.5.1 lists the abbreviations used in recording the occurrence of each vertebrate species in subsequent Tables 4.5 .2 to 4.5 .5 . Table 4.5 .2 describes the total capture frequencies of vertebrates taken in Smpling Feriod 1 (27 September to 19 October 1974), by vegetational association. Table 4.5 .2 contains these data for Sampling Period II (5 Janaury to 29 January 1975). Tables 4.5.4 and 4.5.5 present these data for Sampling Periuds 111 (21 March to 11 April 1975) and IV (12 May to 6 June 1975), respectively. These tables provide a summary of all the raw field data used in deriving the next set of tables, terrestrial vertebrate relative abundance (and diversity) summaries.

Table 4.5 .6 contains the above described summaries of relative abundance and diversity for amphibians, reptiles and small mammals taken at permanent
stations, by time of year. Each vegetational unit is treated separately, and the sub-sections of Table 4.5 .6 are as follows: 1 - Bishop pine forest, 2 - Tanoak forest, 3 - Oak Woodland, 4 - Riparian Woodland, 5 - Chaparral, 6 - Coastal Sagebrush (normal phase), 7 - Coastal Sagebrush (stabilized dune phase), 8 - Coastal Sagebrush (purple sage phase), 9 - Annual Grassland, 10 - Coastal Salt Marsh.

Estimates of avian relative abundance and diversity are compiled in Table 4.5.7, from permanent sampling quadrat transects and other areas. These data are presented by census season, by vegetational community or habitat type. The sub-units of Table 4.5 .7 are as follows: 1 - Bishop Pine forest, 2 Tanoak forest, 3 - Oak Woodland, 4 - Riparian Woodland, 5 - Chaparral, 6 - Coastal Sagebrush (all phases), 7 - Annual Grassland, 8 - Coastal Salt Marsh, 9 - Fresh Water Marshes and Lakes, 10 - Coastal Lagoons, and 11 Coastal Strand.

Table 4.5.1.
Codes for Vertebrate Species Listed in
Tables 4.5.2 to 4.5.5.

Abbreviation	Species	Common Name
Ecs	Ensatina eschscholtzi	Ensatina
Bat	Batrachoc ps attenuatus	Slender Salamander
Alu	Aniedes lugubris	Arboreal Salamander
Hre	Hyla regilla	Pacific Tree Frog
Soc	Sceloporus occidentalis	Western Fence Lizard
Pco	Phrynosoma coronatum	Coast Horned Lizard
Esk	Eumeces skiltonianus	Western Skink
Gmu	Gerrhonotus multicarinatus	Southern Alligator Lizard
Dpu	Diadophis punctatus	Ringneck Snake
Pme	Pituophis melanoleucus	Gopher Snake
Tel	Thamnophis elegans	Western Terrestrial Garter Snake
Tsi	Thamophis sirtalis	Western Aquatic Garter Snake
Cvi	Crotalus viridis	Pacific Rattlesnake
Sor	Sorex ornatus	Ornate Shrew
Str	Sorex trowbridgii	Trowbridge Shrew
Dhe	Dipodomys heermanni	Heerman's Kangaroo Rat
Dag	Dipodomys agilis	Agile Kangaroo Rat
Tum	Thommomys umbrinus	California Pocket Gopher
Pca	Perognathus californicus	California Pocket Mouse
Rme	Reithrodontomys megalotis	Western Harvest Mouse
Pcl	Peromyscus californicus	California Mouse
Pma	Peromyscus maniculatus	Deer Mouse
Ptr	Peromyscus truei	Pinyon Mouse
Pbo	Peromyscus boylei	Brush Mouse
Nfu	Neotoma fuscipes	Dusky-footed Woodrat
Nle	Neotoma lepida	Desert Woodrat
Mca	Microtus californicus	California Vole

Taíle 4.5.2 QUADRAT SAMPLING RESULTS BY VEGETATIONAL ASSOCIATION
marked and recaptured individuals.
Vegetation Associations
*

*Based on two sampling quadrats
all others, four sampling quadrats
Table 4.5.3. QUADRAT SAMPLING RESULTS BY VEGETATIONAL ASSOCIATION
Tanba

Riparian	Annual
Woodland	Grassland

[^9]Table 4.5.4. QUADRAT SAMPLING RESULTS BY VEGETATIONAL ASSOCIATION
Includes all amphibians, reptiles, and small mamals removed from pitfall and Sherman traps; also includes marked and recaptured individuals.
Vegetation Associations

		*Coastal Salt Marsh	Stabilized Dunes			Oak Woodl and	Bishop Pine Forest	Tanbark Oak Forest	Riparian Woodland	Annual Grassland
Species	\#	Salt Marsh			Chaparral					

+Based on six sampling quadrats *Based on two sampling quadrats
all others, four sampling quadrats.
Table 4.5.5. QUADRAT SAMPLING RESULTS BY VEGETATIONAL ASSOCIATION
Includes all amphibians, reptiles, and small mammals removed from pitfall and Sherman traps; also includes marked ars recaptured individuals.
Vegetation Associations *

TABLE 4.5.6-1. Terrestrial Vertebrate Relative Abundance Summary, Bishop Pine Forest. Abundance expressed in catch per unit effor (\#/1000 TN); sources - P = pitfall, S = Sherman, $T=$ pitfall and Sherman; Simpson's diversity index (D_{5}) based on T. See text for calculation details for all entries.

Species Abundances	Ist Quarter			2nd Quarter			3 rd Quarter			4th Quarter			$\begin{aligned} & \text { Year Ave. }{ }^{(T)} \\ & (\bar{X}+S . D .) \end{aligned}$	
	P	S	T	P	S	T	P	S	I	P	S	I		
Amphibians														
Ensatina	--	- -	--	9	--	9	9	--	8	1	--	1	$4.5 \pm$	4.7
Arboreal Salamander	--	--	--	1	--	1	1	--	1	--	--	--	0.5	
Pacific Tree Frog	--	--	--	--	--	- -	i	--	1	--	--	--	0.3	
Reptiles														
Western Fence Lizard	38	--	38	--	--	--	16	-	16	30	--	30	$21 \pm$	16.7
Gopher Snake	--	--	--	--	--	--	--	--	--	1	--	1	0.3	
Terrestrial Garter Snake	--	--	--	--	--	--	--	--	--	2	--	2	0.5	
Mammals														
Trowbridge Shrew	1	--	1	2	--	2	4	--	4	30	--	30	$9.3 \pm$	13.9
Agile Kangaroo Rat	--	50	50	--	50	50	--	25	25	--	--	--	$31.3 \pm$	23.9
Western Harvest Mouse	2	--	2	--	--	--	--	--	--	--	--	--	0.5	
California Mouse	2	475	477	--	350	350	7	500	507	1	600	601	$483.8 \pm$	103.6
Deer Mouse	1	--	1	2	100	102	2	200	202	1	125	126	$107.8 \pm$	83.0
Bucky-footed Woodrat	--	50	50	--	--	--	--	-	--	-	--	-	$12.5 \pm$	25.0
California Vole	5	--	5	4	--	4	1	--	1	--	--	--	$2.5 \pm$	2.4
Pinyon Mouse	--	--	--	--	--	--	1	25	26	--	50	50	$19.0 \pm$	24.0
California Pocket Mouse	--	--	--	--	-	- -	--	--	--	--	25	25	$6.3 \pm$	12.5

Total Abundances	49	575	624	18	500	518	41	750	791	66	800	866	699.8 ± 157.8

$\begin{array}{lllllll}\text { Species Diversity Index } & D_{s}=1.63 & D_{S}=1.98 & D_{S}=2.0, & D_{S}=1.97 & 1.92 \pm & 0.20\end{array}$
TABLE 4.5.6-2. Terrestrial Vertebrate Relative Abundance Summary, Tanoak Forest. (See Table 4.5.6-1 for explanation.)

Species Abundances	Ist Quarter			2nd Quarter			3rd Quarter			4th Quarter			$\begin{aligned} & \text { Year Ave. (T) } \\ & \bar{X}+\text { S.D. } \\ & \hline \end{aligned}$	
	P	S	I	P	\underline{S}	I	P	\underline{S}	I	\underline{P}	\underline{S}	I		
Amphibians														
Ensatina	14	--	14	--	--	--	12	--	12	13	--	13	$9.8 \pm$	± 6.6
Calif. Slender Salamander	2	--	2	--	--	--	--	--	--	--	--	--	0.5	
Reptiles														
Western Fence Lizard	2	--	2	--	--	--	--	--	--	4	--	4	1.5	$\pm \quad 1.9$
Western Skink	2	--	2	--	--	--	--	--	--	--	--	--	0.5	
Ring-necked Snake	--	--	--	--	--	--	--	--	--	2	--	2	0.5	
Gopher Snake	--	--	--	--	--	--	--	--	--	2	--	2	0.5	
Mammals														
Ornate Shrew	2	--	2	--	--	--	--	--	--	--	--	--	0.5	
Trowbridge Shrew	4	--	4	2	--	2	20	--	20	79	--	79	26.3	± 36.1
California Pocketmouse	--	100	100	--	--	--	--	--	--	--	--	--	$25.0 \pm$	± 50.0
California Mouse	4	50	54	--	50	50	2	550	552	2	400	402	264.5	± 252.9
Deer Mouse	--	500	500	8	500	508	--	400	400	--	200	200	$402.0 \pm$	± 143.4
Dusky-footed Woodrat	--	50	50	--	--	--	--	--	--	--	--	--	$12.5 \pm$	± 25.0
Southern Pocket Gopher	--	--	--	--	--	--	--	--	--	2	--	2	0.5	
California Vole	--	--	--	--	--	--	--	--	--	4	--	4	1.0	
Brush Mouse	--	--	--	--	--	--	--	--	--	--	100	100	25.0	± 50.0

[^10]| Species Abundances | 1st Quarter | | | 2nd Quarter | | | 3rd Quarter | | | 4th Quarter | | | $\begin{aligned} & \text { Year Ave. (T) } \\ & X+S . D . \\ & \hline \end{aligned}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | P | S | T | P | S | T | P | S | I | P | \underline{S} | I | | |
| Amphibians | | | | | | | | | | | | | | |
| Ensatina | 1 | -- | 1 | 1 | -- | 1 | -- | -- | -- | -- | -- | -- | 0.5 | |
| Arboreal Salamander | 1 | -- | 1 | -- | -- | -- | -- | -- | -- | -- | -- | -- | 0.3 | |
| Reptiles | | | | | | | | | | | | | | |
| Coast Horned Lizard | -- | -- | -- | -- | -- | -- | -- | -- | -- | 1 | -- | 1 | 0.3 | |
| Western Fence Lizard | 6 | -- | 6 | -- | -- | -- | 5 | -- | 5 | 5 | -- | 5 | $4.0 \pm$ | 2.7 |
| Ringneck Snake | 1 | -- | 1 | -- | -- | -- | -- | -- | -- | -- | -- | -- | 0.3 | |
| Southern Aligator Lizard | -- | -- | -- | -- | -- | -- | -- | -- | -- | 1 | -- | 1 | 0.3 | |
| Terrestrial Garter Snake | -- | -- | -- | -- | -- | -- | -- | -- | -- | 1 | -- | 1 | 0.3 | |
| Mammals | | | | | | | | | | | | | | |
| California Pocket Mouse | -- | -- | -- | -- | -- | -- | 3 | -- | 3 | -- | -- | -- | 0.8 | |
| Ornate Shrew | 1 | -- | 1 | 3 | -- | 3 | 9 | -- | 9 | 3 | -- | 3 | $4.0 \pm$ | 3.5 |
| Trowbridge Shrew | 1 | -- | 1 | -- | -- | -- | 2 | -- | 2 | 17 | -- | 17 | $5.0 \pm$ | 8.4 |
| Agile Kangaroo Rat | 1 | 75 | 76 | -- | -- | -- | -- | -- | -- | -- | -- | -- | $19.0 \pm$ | 38.0 |
| Snuthern Pocket Gopher | 3 | -- | 3 | -- | -- | -- | 1 | -- | 1 | 4 | -- | 4 | $2.0 \pm$ | 1.8 |
| Western Harvest Mouse | 1 | -- | 1 | -- | -- | -- | -- | -- | -- | -- | -- | -- | 0.3 | |
| California Mouse | -- | -- | -- | -- | 225 | 225 | 3 | 150 | 153 | 6 | 50 | 56 | $108.5 \pm$ | 100.1 |
| Deer Mouse | 1 | 275 | 276 | 6 | 250 | 256 | 11 | 425 | 436 | 6 | 25 | 31 | $249.8 \pm$ | 166.6 |
| Dusky-footed Woodrat | -- | 50 | 50 | -- | 25 | 25 | 1 | 25 | 26 | -- | 175 | 175 | 69.0 士 | 71.6 |
| California Vole | 10 | 25 | 35 | 1 | -- | 1 | -- | -- | -- | 9 | 25 | 34 | $17.5 \pm$ | 19.6 |
| Pinyon Mouse | -- | -- | -- | -- | -- | -- | -- | 100 | 100 | 1 | 25 | 26 | $31.5 \pm$ | 47.3 |
| Total Abundances | 29 | 425 | 454 | 11 | 500 | 511 | 36 | 700 | 736 | 54 | 300 | 354 | $513.8 \pm$ | 161.8 |
| Species Diversity Index | | $=2$ | | | s $=$ | . 22 | | $=$ | . 42 | | $=$ | . 42 | $2.62 \pm$ | 0.54 |

TABLE 4.5.6-4. Terrestrial Vertebrate Relative Abundance Summary, Riparian Woodland. (See Table 4.5.6-1 for explanation.)

Species Abundance	Ist Quarter			2nd Quarter			3rd Quarter			4th Quarter			$\begin{aligned} & \text { Year Ave. (T) } \\ & \bar{X}+S . D . \end{aligned}$	
	P	S	I	P	\underline{S}	I	P	S	I	P	\underline{S}	I		
Amphibians														
Ensatina	3	--	3	3	--	3	2	--	2	--	--	--	$2.0 \pm$	1.4
Pacific Tree Frog	--	--	--	1	--	1	--	--	--	--	--	--	0.3	
Reptiles														
Western Fence Lizard	14	--	14	3	--	3	16	--	16	22	--	22	$13.8+$	7.9
Western Skink	2	--	2	--	--	--	1	--	1	--	--	--	0.8	
Southern Aligator Lizard	1	--	1	--	--	--	--	--	--	--	--	--	0.3	
Terrestrial Garter Snake	--	--	--	1	--	1	3	--	3	8	--	8	$3.0 \pm$	3.6
Mammals														
Ornate Shrew	1	--	1	--	--	--	3	--	3	7	--	7	$2.8 \pm$	3.1
Trowbridge Shrew	--	--	--	8	--	8	44	--	44	64	--	64	29.0 I	30.2
Agile Kangaroo Rat	--	--	--	--	25	25	--	--	--	--	--	--	$6.3 \pm$	12.5
California Pocket Mouse	1	--	1	--	--	--	--	--	--	--	--	--	0.3	
Western Harvest Mouse	2	--	2	1	--	1	--	--	--	--	--	--	0.8	
California Mouse	--	25	25	--	75	75	8	125	133	2	100	102	83.8 +	45.8
Deer Mouse	13	175	188	5	300	305	24	600	624	18	300	318	$358.8 \pm$	186.3
Dusky-footed Woodrat	--	225	225	--	100	100	-	150	150	--	300	300	$193.8 \pm$	87.5
California Vole	1	--	1	4	--	4	4	--	4	4	--	4	$3.3 \pm$	1.5
Total Abundances	38	425	463	26	500	526	105	875	980	125	700	825	$698.5 \pm$	245.3
Species Diversity Index		$=2$			$=$. 51		$=$. 23		$=$	31	$2.63 \pm$	0.47

TABLE 4.5.6-5. Terrestrial Vertebrate Relative Abundance Summary, Chaparral. (See Table 4.5.6-1

Species Abundance	Ist Quarter			2nd Quarter			3 rd Quarter			4th Quarter			$\begin{aligned} & \text { Year Ave. (T) } \\ & \bar{X}+\text { S.D. } \end{aligned}$	
	\underline{P}	S	T	P	S	T	P	S	T	P	S	\underline{I}		
Amphibians														
Ensatina	4	--	4	9	--	9	9	--	9	--	--	--	$5.5 \pm$	4.4
Pacific Tree Frog	1	--	1	1	--	1	--	--	--	1	--	1	0.8	
Arboreal Salamander	--	--	--	--	--	--	2	--	2	1	--	1	0.8	
Reptiles														
Western Fence Lizard	40	--	40	--	--	--	16	--	16	32	--	32	$22.0 \pm$	17.7
Gopher Snake	i	--	1	--	--	--	--	--	--	2	--	2	0.8	
Terrestrial Garter Snake	1	-	1	--	--	--	1	--	1	1	--	1	0.8	
Mammals														
Ornate Shrew	4	--	4	2	--	2	--	--	--	6	--	6	$3.0 \pm$	2.6
Trowbridge Shrew	- -	--	--	1	--	1	--	--	--	25	--	25	$6.5 \pm$	12.3
Agile Kangaroo Rat	--	75	75	--	50	50	--	75	75	--	125	125	$81.3 \pm$	31.5
Calitornia Pocket Mouse	3	75	73	--	--	--	--	50	50	1	225	226	$88.5 \pm$	37.2
Calicornia "olise	--	300	300	--	125	125	1	250	$25 i$	2	350	352	$257.0 \pm$	97.2
Veer Mouse	4	200	204	2	350	352	9	500	509	--	100	100	$291.3 \pm$	178.2
Uusky-footed Woodrat	-	100	100	--	75	75	--	25	25	--	25	25	$56.3 \pm$	37.5
California Vole	$!$	25	26	1	-	1	5	25	30	--	--	--	$14.3 \pm$	16.0
Western Harvest Mouse	--	--	--	--	--	--	1	--	i	--	--	--	0.3	
Total Abundance	59	775	834	16	600	616	44	925	969	$7!$	825	896	$828.8 \pm$	152.2
Species Diversity Index		$=$			$=$			$=$	83		$=$		$3.54+$	0.83

TABLE 4.5.6-6. Terrestrial Vertebrate Relative Abundance Summary, Coastal Sagebrush - Normal Phase. (See Table 4.5.6-1 for explanation.)

Species Abundance	Ist Quarter			2nd Quarter			3rd Quarter			4th Quarter			$\begin{aligned} & \text { Year Ave. (T) } \\ & \bar{x}+\text { S.D. } \\ & \hline \end{aligned}$	
	P	S	I	\underline{P}	S	I	P	\underline{S}	I	P	S	T		
Amphibians														
Arboreal Salamander	--	--	--	--	--	--	2	--	2	--	--	--	0.5	
Reptiles														
Western Fence Lizard	11	--	11	1	--	1	9	--	9	9	--	9	$7.5+$	4.4
Southern Aligator Lizard	--	--	--	--	--	--	1	--	1	--	--	--	0.3	
Gopher Snake	4	--	4	--	--	--	--	--	--	1	--	1	$1.3 \pm$	1.9
Mammals														
Ornate Shrew	9	--	9	--	--	--	11	--	11	11	--	11	$7.8+$	5.3
Trowbridge Shrew	1	--	1	--	--	--	--	--	--	16	--	16	4.3	7.9
Heermann's Kangaroo Rat	1	--	1	--	--	--	--	--	--	1	--	1	0.5	
Agile Kangaroo Rat	--	--	--	--	67	67	1	--	1	3	133	136	$51.0 \pm$	64.8
California Pocket Mouse	2	33	35	1	--	1	1	33	34	1	--	1	$17.8 \pm$	19.4
Southern Pocket Gopher	1	--	1	1	--	1	--	--	--	3	--	3	13. \pm	1.3
California Mouse	--	--	--	--	300	300	--	--	--	1	67	68	$92.0 \pm$	142.3
Deer Mouse	15	800	815	19	233	252	17	661	678	7	233	240	$496.3 \pm$	294.4
California Vole	--	33	33	--	--	--	6	33	39	1	--	1	$18.3 \pm$	20.7
Western Harvest Mouse	1	--	1	--	--	--	--	--		1	--	1	0.5	
Total Abundance	45	866	911	22	600	622	48	727	775	55	433	488	$699.0 \pm$	183.6
Species Diversity Index		$=1$. 25		$=2$			$=$. 30		$\mathrm{s}^{\prime}=2$. 94	1.99+	0.84

TABLE 4.5.6-7. Terrestrial Vertebrate Relative Abundance Summary, Coastal Sagebrush - Stabilized (See Table 4.5.6-1 for explanation.)

TABLE 4.5.6-8. Terrestrial Vertebrate Relative Abundance Summary, Coastal Sagebrush - Purple Sage

Species Abundance	Ist Quarter			2nd Quarter			3rd Quarter			4th Quarter			$\begin{aligned} & \text { Year Ave. (T) } \\ & \bar{X}+\text { S.D. } \end{aligned}$	
		S	I	\underline{P}	$\underline{5}$	I	P	$\underline{5}$	I	P	$\underline{5}$	I		
Amphibians														
Pacific Tree Frog	--	--	--	--	--	--	1	--	1	--	--	--	0.3	
Ensatina	--	--	--	--	--	--	--	--	--	1	--	1	0.3	
Reptiles														
Western Fence lizard	42	--	42	5	--	5	20	--	20	36	--	36	25.8	+ 16.7
Western Skink	4	--	4	1	--	1	3	--	3	13	--	13	5.3	$\pm \quad 5.3$
Gopher Snake	1	--	1	--	--	--	--	--	--	3	--	3	1.0	
Common Garter Snake	--	--	--	--	--	--	1	--	1	--	--	--	0.3	
Pacific Rattlesnake	--	--	--	--	--	--	--	--	--	1	--	1	0.3	
Mammals														
Trowbridge Shrew	--	--	--	--	--	--	1	--	1	4	--	4	1.3	± 2.0
Ornate Shrew	5	--	5	1	--	1	4	--	4	11	--	11	5.3	± 4.2
Broad-footed Mole	1	--	1	--	--	--	--	--	--	--	--	--	0.3	
Southern Pocket Gopher	5	--	5	1	-	1	--	--	--	17	--	17	5.8	± 7.8
California Pocket Mouse	1	100	101	6	133	139	2	233	235	1	67	68	135.8	± 72.3
Western Harvest Mouse	5	--	5	--	--	--	--	--	--	--		--	1.3	± 2.5
California Mouse	-	133	133	--	100	100	2	133	135	--	67	67	108.8	± 32.1
Deer Mouse	6	633	639	11	599	610	6	400	406	11	433	444	524.8	Ғ 116.8
Dusky-footed Woodrat	--	33	33	--	--	--	--	33	33	--	--	--	16.5	± 19.1
California Vole	--	--	--	4	--	4	1	--	1	9	--	9	3.5	± 4.0
Agile Kangaroo Rat	--	--	--	--	--		--	--		3	33	36	9.0	± 18.0
Total Abundance	70	899	969	29	832	861	41	799	841		600	709	845.0	± 106.7
Species Diversity Index		$\mathrm{s}_{5}=2$			$D_{s}=1$. 85		s $=2$. 95		$\mathrm{s}_{5}=2$		2.34	$\pm \pm 0.47$

TAELE 4.5.6-9.
Terrestrial Vertebrate Relative Abundance Summary, Annual Grassland (including ruderal areas). (See Table 4.5.6-1 for explanation.)

Soecies Abundance	1 st Quarter			2nd Quarter			3 rd Quarter			4th Quarter			$\begin{aligned} & \text { Year Ave. (T) } \\ & \bar{X}+S .0 \\ & \hline \end{aligned}$	
	P	S	I	P	S	T	P	S	I	P	$\underline{5}$	I		
Amphibians														
Ensatina	1	--	1	--	--	--	--	--	--	--	--	--	0.3	
Reptiles														
Southern Aligator Lizard	--	--	--	--	--	--	--	--	--	4	--	4	1.0	
Western Fence Lizard	67	--	67	2	--	2	21	--	21	29	--	29	$29.8 \pm$	27.3
Gopher Snake	2	--	2	--	--	--	1	--	1	1	--	1	$1.0 \pm$	0.8
Western Skink	--	--	--	--	--	--	2	--	2	6	--	6	$2.0 \pm$	2.8
Common Garter Snake	--	--	--	--	--	--	1	--	1	--	--	--	0.3	
Western Garter Snake	--	--	--	--	--	--	--	--	--	2	--	2	0.5	
Mammals														
Ornate Shrew	2	--	2	1	--	1	1	--	1	--	--	--	$1.0 \pm$	0.8
Agile Kangaroo Rat	2	50	52	--	25	25	--	50	50	--	--		$31.8 \pm$	24.5
Ca ifornia Pocket Mouse	6	125	131	--	--	--	6	50	56	--	--	--	$46.8 \pm$	62.1
Southern Pocket Gopher	1	--	1	--	--	--	--	--	--	7	--	7	$2.0 \pm$	3.4
Western Harvest Mouse	10	00	10	12	25	37	1	--	1	--	--	--	$12.0 \pm$	17.3
Deer Mouse	28	425	453	12	400	412	6	325	331	6	200	206	$350.5 \pm$	108.9
California Vole	6	--	6	1	--	1	1	--	1	4	--	4	$3.0 \pm$	2.5
Trowbridge Shrew	--	--	--	--	--	--	--	--	--	1	--	1	0.3	
Total Abundance	125	600	725	28	450	478	40	425	465	60	200	260	$482.0 \pm$	190.3
Species Diversity Index		s $=2$. 29		s $=1$. 33		s $=1$. 87		S $=$. 56	$1.76+$	0.42

See Table

Species Abundance	1st Quarter			2nd Quarter			3rd Quarter			4th Quarter			$\begin{gathered} \text { Year Ave. (T) } \\ \bar{x}+\text { S.D. } \end{gathered}$	
			I	P	S	I		S	I	P	\underline{s}	I		
Amphibians				*						+				
Reptiles				*										
Mammals														
Western Harvest Mouse		--		*	18	18	8	26	34	4	25	29	$23.5 \pm$	9.7
Deer Mouse	6		181		322	322	--	289	289	9	225	234	256.5	62.1
California Vole	8		58		--	--	--	26	26	4	50	54	34.5	27.1
Trowbridge Shrew	--	--	--		--	--	--	--	--	38	--	38	9.5	19.0
Total Abundance	27	225	252	*	340	340	8	341	349	55	300	355	$324.0 \pm$	48.4
Species Diversity Index	$\mathrm{D}_{\mathrm{s}}=1.76$			$D_{s}=1.11$			$\mathrm{D}_{\mathrm{s}}=1.43$			$D_{s}=2.11$			1.60	0.43

TABLE 4.5.7-1. Avian Relative Abundance Summary, Bishop Pine Forest. $n=$ total number observed; \#/man-hr = total number : number of transects $\times .25 \mathrm{hr} / \mathrm{transect}$; species diversity index $=$ Simpson's D_{s}. See text for details.

Species	Autumn		Winter		Spring		Year Ave.$\bar{x} \pm S D(\# / m-h r)$
	n	\#/m-hr	n	\#/m-hr	n	\#/m-hr	
California Valley Quail	32	43	--	--	--	--	14.3
Lazuli Bunting	1	1	--	--	--	--	0.3
Wrentit	25	33	37	37	11	11	$27.0+14.0$
Rufous-sided Towhee	21	28	1	1	4	4	11.0 ∓ 14.8
Common flicker	3	4	--	-	2	2	2.0
White-corwned Sparrow	19	25	4	4	--	--	9.7
Red-tailed Hawk	3	4	--	--	--	--	1.3
Mourning Dove	1	1	--	--	--	--	0.3
Scrub Jay	12	16	--	--	4	4	6.7
Dark-eyed Junco	20	27	--	--	3	3	10.0
Turkey Vulture	1	1	--	--	--	-	0.3
California Thrasher	3	4	--	--	2	2	2.0
Hermit Thrush	1	1	--	--	--	--	0.3
Black-tailed Gnat Catcher	1	1	--	--	--	--	0.3
House Finch	6	8	--	--	--	--	2.7
Western Flycatcher	1	1	--	--	--	--	0.3
Wilson's Warbler	2	3	--	--	--	--	1.0
American Goldfinch	1	1	--	--	--	--	0.3
Lesser Goldfinch	12	16	--	--	--	--	5.3
Red-breasted Nuthatch	i	1	--	--	--	--	0.3
Swainson's Thrush	1	1	--	--	--	--	0.3
Hutton's Vireo	1	1	--	--	--	--	0.3
Bewick's Wren	--	--	11	11	1	1	4.0
Ruby-crowned Kinglet	--	--	3	3	--	--	1.0
Yellow-rumped Warbler	--	--	2	2	--	--	0.7
Fox Sparrow	--	--	,	2	--	--	0.7
Bush-tit	--	--	--	--	2	2	0.7
Anna's Humingbird	--	--	--	--	4	4	1.3
Total Relative Abundance	168	221	60	60	33	33	104.7 ± 102
Species Diversity Index	$\mathrm{D}_{5}=$	8.84	$\mathrm{D}_{\mathrm{s}}=$	2.42	$\mathrm{D}_{\mathrm{S}}=$	6.68	5.98 ± 3.27

Ave $/ \mathrm{spp}=3.73 \pm 6.0$

TABLE 4.5.7-2. Avian Relative Abundance Summary, Tanoak Forest. (See Table 4.5.7-1 for explanation.)

Species	Autumn		Winter		Spring		Year Ave.$\bar{X} \pm S D(\# / m-h r)$	
	n	\#/m-hr		\#/m-hr		\#/m-hr		
Western Fly Catcher	15	30	--	--	--	--	10.0	
Red-breasted Nuthatch	1	2	--	--	--	--	0.7	
Dark-eyed Junco	45	90	--	--	1	2	30.7	
Wrentit	2	4	--	--	--	--	1.3	
White-crowned Sparrow	8	16	--	--	--	--	5.3	
Tree Swallow	30	60	--	--	--	--	20.0	
Common Flicker	14	28	--	--	--	--	9.3	
Rufous-sided Towhee	2	4	--	--	--	--	1.3	
Scrub Jay	7	14	1	2	--	--	5.3	
Plain Titmouse	2	4	--	--	--	--	1.3	
Western Bluebird	5	10	--	--	--	--	3.3	
Black-throated Grey Warbler	2	4	--	--	--	--	1.3	
Mourning Dove	12	24	--	--	--	--	8.0	
Bewick's Wren	5	10	--	--	1	2	4.0	
Acorn Woodpecker	2	4	--	--	--	--	1.3	
Brown Towhee	3	6	--	--	--	--	2.0	
House Wren	1	2	--	--	--	--	0.7	
Bushtit	--	--	--	--	5	10	3.3	
Anna's Hummingbird	--	--	--	--	2	4	1.3	
Total Relative Abundance	156	312	1	2	9	18	$110.7 \pm$	175
Species Diversity Index		$D_{s}=6.77$		S $=0.0$		$=2.89$	3.22	3.40
Ave/spp $=5.81 \pm 7.68$								

TABLE 4.5.7-3. Avian Relative Abundance Summary, Oak Woodland. (See Table 4.5.7-1 for explanation.)

Species	Autumn		Winter		Spring		Year Ave.$\bar{X} \pm S D(\# / m-h r)$	
	n	\#/m-hr	n	\#/m-hr		\#/m-hr		
Brown Towhee	2	4	1	2	5	10	$5.3 \pm$	4.2
Rufous-sided Towhee	4	8	3	6	5	10	$8.0 \mp$	2.0
Bushtit	18	36	--	--	7	14	16.7	
Wilson's Warbler	6	12	--	--	1	2	4.7	
Dark-eyed Junco	5	10	--	--	5	10	6.7	
House Finch	16	32	--	--	--	--	10.7	
Red-tailed Hawk	5	10	--	--	--	--	3.3	
House Wren	1	2	--	--	--	--	0.7	
Lazuli Bunting	1	2	--	--	--	--	0.7	
Scrub Jay	8	16	3	6	1	2	3.0 +	7.2
Common Flicker	3	6	1	2	--	--	27	
Yellow Warbler	2	4	--	--	--	--	1.3	
Lesser Goldfinch	23	46	--	--	--	--	15.3	
Wrentit	11	22	4	8	--	--	10.0	
California Valley Quail	10	20	2	4	--	--	8.0	
Downy Woodpecker	1	2	--	--	1	2	1.3	
Traill's Flycatcher	3	6	--	--	--	--	2.0	
Great Horned Owl	2	4	--	--	--	--	1.3	
Swainson's Thrush	1	2	--	--	--	--	1.3	
California Thrasher	1	2	--	--	1	2	1.3	
Song Sparrow	4	8	--	--	--	--	2.7	
Chestnut-backed Chickadee	4	8	--	--	--	--	2.7	
Plain Titmouse	5	10	5	10	11	22	$14.0+$	6.93
Bewick's Wren	6	12	6	12	4	8	$10.7 \pm$	2.31
Hermit Thrush	--	--	1	2	-	--	1.3	
Ruby-crowned Kinglet	--	--	5	10	5	10	6.7	
Hutton's Vireo	--	--	1	2	--	--	1.3	
Golden-crowned Sparrow	--	--	1	2	--	--	1.3	
Anna's Hummingbird	--	--	--	--	7	14	4.7	
Western Glycatcher	--	--	--	--	7		4.7	
Western Bluebird	--	--	--	--	2		1.3	
White-crowned Sparrow	--	--	--	--	3	6	2.0	
Total Relative Abundance	142	284	33	66	65	130	$160.0 \pm$	
Species Diversity Index		$=12.93$		$=9.53$		${ }_{5}=11$.	$11.28 \pm$	1.70

[^11]TABLE 4.5.7-4. Avian Relative Abundance Summary, Riparian Woodland. (See Table 4.5.7-1 for explanation.)

Species	Autumn		Winter		Spring		Year Ave.$\overline{\bar{x}} \pm S D(\# / n-h r)$	
	n	\#/m-hr	n	\#/m-hr		\#/m-hr		
Bushtit	70	70	--	--	--	--	23.3	
Red-tailed Hawk	7	7	--	--	--	--	2.3	
Wren-tit	47	47	2	2	--	--	16.3	
Brown Towhee	15	15	3	3	--	--	6.0	
Bewick's Wren	2	2	8	8	25	25	117. +	11.9
Rufous-sided Towhee	13	13	1	1	3	3	$5.7 \pm$	6.4
Common Flicker	1	1	--	--	--	--	0.3	
House Wren	2	2	--	--	--	--	1.3	
Song Sparrow	54	54	--	--	14	14	22.7	
Lewwer Goldfinch	19	19	--	--	--	--	6.3	
Western Flycatcher	5	5	--	--	1	1	2.0	
Yellowthroat	16	16	--	--	1	1	5.7	
Nuttall's Woodpecker	2	2	--	--	--	--	1.3	
Blue-grey Gnatchatcher	2	2	--	--	--	--	1.3	
Allen's Hummingbird	4	4	--	--	1	1	1.7	
Black Phoebe	5	5	--	--	--	--	1.7	
Killdeer	8	8	--	--	--	--	2.7	
Hous: Finch	124	124	--	--	--	--	41.3	
Cliff Swallow	50	50	--	--	--	--	16.7	
Belted Kingfisher	1	1	--	--	--	--	0.3	
Mourning Dove	30	30	--	--	--	--	10.0	
Marsh Hawk	2	2	--	--	--	--	1.3	
Crow	9	9	--	--	--	--	3.0	
Roughwinged Swallow	9	9	--	--	--	--	3.0	
Great Horned Owl	4	4	--	--	--	--	1.3	
Wilson's Warbler	13	13	--	--	5	5	6.0	
California Thrasher	1	1	--	--	--	--	0.3	
Tree Swallow	8	8	--	--	--	--	2.7	
Yellow Warbler	2	2	--	--	--	--	1.3	
Loggerhead Shrike	1	1	--	--	--	--	0.3	
Downy Woodpecker	2	2	1	1	2	2	$1.7 \pm$	5.8
White-tailed Kite	10	10	--	--	--	--	3.3	
Turkey Vulture	3	3	--	--	1	1	1.3	
Cooper's Hawk	1	1	--	--	--	--	0.3	
Black-headed Grosbeak	8	8	--	--	--	--	2.7	
California Valley Quail	65	65	--	--	--	--	21.7	
Hutton's Vireo	1	1	--	--	--	--	0.3	
Anna's Hummingbird	1	1	--	--	3	3	1.3	
Mockingbird	--	--	1	1	--	--	0.3	
Hermit Thrush	--	--	3	3	--	--	1.0	
Ruby-crowned Kinglet	--	--	17	17	--	--	5.7	
Yellow-Rumped Warbler	--	--	48	48	7	7	18.3	
Dark-eyed Junco	--	--	2	2	--	--	1.3	
Golden-crowned Sparrow	--	--	1	1	--	--	0.3	
Orange-crowned Warbler	--	--	--	--	1	1	0.3	
Western Wood Pewee	--	--	--	--	2	2	0.7	
Total Relative Abundance	617	617	87	87	66		$256.7 \pm$	312
Species Diversity Index		$=11.11$		$=2.88$		5 $=4.99$	6.33	4.27

TABLE 4.5.7-5. Avian Relative Abundance Summary, Chaparral. (See Table 4.5.7-1 for explanation.)

TABLE 4.5.7-6. Avian Relative Abundance Summary, Coastal Sage (all phases combined). (See Table 4.5.7-1 for explanation.)

Species	Aut umn		Winter		Spring		$\begin{gathered} \text { Year Ave. } \\ \bar{X} \pm S D(\# / m-h r) \end{gathered}$	
	n	$\# / m-h r$		\#/m-hr		\#/m-hr		
California Thrasher	7	6	4	2	8	4	$4.0+$	2.0
Brown Thrasher	48	38	6	3	8	4	15.0 †	19.9
Brewer's Blackbird	2	2	--	--	--	--	0.7	
Cliff Swallow	60	48	--	--	--	--	2.7	
Wrentit	19	15	15	6	26	14	$11.7 \pm$	4.93
Marsh Hawk	6	5	--	--	--	--	1.7	
Loggerhead Shrike	7	6	1	1	2	2	$3.0 \pm$	2.65
California Valley Quail	84	67	4	2	18	9	$26.0 \pm$	35.7
Purple Finch	11	9	--	--	--	--	3.0	
Black Phoebe	1	1	--	--	--	--	0.3	
American Kestrel	17	14	--	--	--	--	4.7	
Bushtit	58	46	40	16	11	6	22.7 +	20.8
Red-tailed Hawk	24	19	1	1	1	,	7.0 +	10.4
Scrub Jay	7	6	--	--	1	1	2.0	
Common Flicker	1	1	--	--	--	--	0.3	
Roadrunner	2	2	--	--	1	1	0.7	
Rufous-sided Towhee	5	4	2	1	19	9		
White-crowned Sparrow	18	14	12	5	34	19	$12.7 \pm$	7.1
Bewick's Wren	2	2	--	--	12	7	3.0	
Turkey Vulture	7	6	--	--	--	--	3.0	
Sharp-shinned Hawk	1	1	--	--	--	--	0.3	
Crow	10	8	--	--	--	--	2.7	
Western Flycatcher	15	12	--	--	--	--	4.0	
Black-headed Grosbeak	3	2	--	--	--	--	0.7	
Black-chinned Hummingbird	2	2	--	--	--	--	0.7	
Allen's Hummingbird	2	2	--	--	--	--	0.7	
Belted Kingfisher	1	1	--	--	--	--	0.3	
Western Bluebird	1	1	--	--	--	--	0.3	
Rube-crowned Kinglet	1	1	3	2	--	--	1.0	
Great Horned Owl	1	1	--	--	--	--	0.3	
Golden-crowned Sparrow	--	--	12	5	47	23	9.3	
Black-ta: led Gnatcatcher	--	--	1	1	--	--	0.3	
House Finch	--	--	--	--	8	4	1.3	
Western Meadowlark	--	--	--	--	1	1	0.3	
Cooper's Hawk	--	--	--	--	1	1	0.3	
Anna's Hummingbird	--	--	--	--	1	1	0.3	
Total Relative Abundance	423	342	101	45	199	107	$164.7 \pm$	
Speries Diversity Index	D_{5}	$=10.15$	D_{5}	$=6.78$		$=8.83$	$8.59 \pm$	1.70

Ave/spp $=4.05 \pm 5.86$

TABLE 4.5.7-7. Avian Relative Abundance Summary, Annual Grassland. (See Table 4.5.7-1 for explanation.)

TABLE 4.5.7-8. Avian Relative Abundance Summary, Coastal Salt Marsh. (See Table 4.5.7-1 for explanation.)

Species	Autumn		Winter		Spring		Year Ave.$\bar{x} \pm S D(\# / m-h r)$	
	n	\#/m-hr		\#/m-hr		\#/m-hr		
Marsh Hawk	9	12	--	--	--	--	4.0	
White-tailed Kite	25	33	--	-	--	--	11.0	
Long-billed Marsh Wren	25	33	2.	4	--	--	12.3	
Cliff Swallow	1	1	--	--	--	--	0.3	
Red-tailed Hawk	1	1	--	--	--	--	0.3	
Turkey Vulture	3	4	--	--	--	--	1.3	
Savannah Sparrow	11	15		22	6	12	16.3	± 5.1
Song Sparrow	22	29	--	--	--	--	9.7	
Black Phoebe	1	1	--	--	--	--	0.3	
House Finch	75	100	--	--	--	--	33.3	
White-crowned Sparrow	--	--	5	10	--	--	3.3	
Total Relative Abundance	173	229		36	6	12	92.3	± 119
Species Diversity Index		$=3.96$		$=2.23$		$=0.0$	2.06	+ 1.99

TABLE 4.5.7-9. Avian Relative Abundance Summary, Fresh Water Marshes and Lakes. (See Table 4.5.7-1 for explanation.)

Species	Autumn		Winter		Spring		Year Ave.$\bar{X} \pm S D(\# / m-h r)$
	n	\#/m-hr	n	\#/m-hr	n	\#/m-hr	
American Coot	108	108	183	244	17	34	128.7 ± 107
Sora	--	--	2	3	--	--	1.0
Eared Grebe	1	1	2	3	--	--	1.3
Ruddy Duck	9	9	59	79	5	10	32.7 ± 40.1
Canvasback	-	--	1	1	--	--	0.3
Song Sparrow	93	93	--	--	12	24	39.0
Black Phoebe	4	4	--	--	1	?	2.0
Red-shouldered Hawk	1	1	--	--	--	--	0.3
Cliff Swallow	118	118	--	--	--	--	39.3
Evening Grosbeak	1	1	--	--	--	--	0.3
Allen's Hummingbird	4	4	--	--	--	--	1.3
Marsh Hawk	2	2	--	--	2	4	2.0
Common Yellowthroat	36	36	--	--	4	8	14.7
Lesser Goldfinch	26	26	--	--	--	--	8.7
Wilson's Warbler	2	2	--	--	--	--	0.7
Pied-billed Grebe	3	3	--	--	1	2	1.7
Mallard	23	23	--	--	--	--	7.7
Red-winged Blackbird	24	24	--	--	--	--	8.0
Least Sandpiper	24	24	--	--	--	--	8.0
Western Sandpiper	35	35	--	--	--	--	11.7
Wilson's Phalarope	5	5	--	--	--	--	1.7
White-tailed Kite	1	1	--	--	--	--	0.3
Killdeer	1	1	--	--	--	--	0.3
Black-necked Stilt	1	1	--	--	--	--	0.3
Northern Phalarope	38	38	--	--	--	-	12.7
Long-billed Marsh Wren	18	18	--	--	2	4	7.3
Black-throated Gray Warbler	1	1	--	--	--	--	0.3
Solitary Sandpiper	1	1	--	--	--	--	0.3
Green-winged Teal	1	1	--	--	--	--	0.3
Belted Kingfisher	2	2	--	--	--	--	0.7
Lesser Goldfinch	--	--	--	--	1	2	0.7
¿innamon Teal	--	--	--	--	1	2	0.7
Total Relative Abundance	583	583	247	330	46	92	335.0 ± 245.5
Species Diversity Index	0	$=8.38$		S $=1.66$		S $=4.52$	4.85 ± 3.37

Ave/spp $=10.50 \pm 23.72$

TABLE 4.5.7-10. Avian Relative Abundance Summary, Coastal Lagoons. (See Table 4.5.7-1 for explanation.)

Species	Autumn		Winter		Spring		Year Ave.$\bar{X} \pm S D(\# / m-h r)$	
	$\underline{\square}$	\#/m-hr	n	W/m-hr	n	\#/m-hr		
Least Tiern	11	11	--	--	--	--	3.7	
Long-billed Curlew	18	18	--	--	--	--	6.0	
Snowy Plover	94	94	80	80	--	--	58	
Willet	77	77	16	16	--	--	31	
Western Sandpiper	42	42	--	--	4	4	15.3	
Whimbrel	5	5	--	--	--	--	1.7	
Western Gull	17	17	740	740	82	82	280	± 400
Heermann's Gull	22	22	--	--	--	--	7.3	
Sanderling	58	, 8	--	--	--	--	19.3	
Black-bellied Plover	3	3	6	6	--	--	3.0	
Forster's Tern	4	4	--	--	--	--	1.3	
Semi-palmated Plover	4	4	--	--	--	--	1.3	
Black Turnstone	1	1	10	10	--	--	3.7	
Brown Pelican	7	7	--	--	--	--	2.3	
Least Sandpiper	78	78	--	--	1	1	26.3	
Great Blue Heron	6	6	2	2	-	--	2.7	
Snowy Egret	4	4	--	--	3	3	2.3	
Eared Grebe	2	2	3	3	--	--	1.7	
American Coot	3	3	--	--	29	29	10.7	
Mallard	162	162	--	--	--	--	54	
Green Heron	1	1	--	--	--	--	0.3	
Caspian Tern	2	2	--	--	--	--	0.7	
Ring-billed Gull	2	2	3240	3240	843	843	1362	± 1680
Ruddy Duck	13	13	7	7	,	,	7.0	± 6.0
Northern Phalarope	32	32	-	--	--	--	10.7	
Dowitcher	26	26	8	8	--	--	11.3	
Marbled Godwit	10	10	12	12	--	--	7.3	
Virginia Rail	1	1	1	1	--	--	0.7	
Greater Yellowlegs	7	7	--	--	--	--	2.3	
Fied-billed Grebe	5	5	3	3	--	--	2.7	
Surf Scoter	4	4	--	--	--	--	1.3	
Green-winged Teal	31	31	--	--	--	--	10.3	
American Avocet	3	3	--	--	--	--	1.0	
Song Sparrow	--	--	12	12	--	--	4.0	
American Bittern	--	--	2	2	--	--	0.7	
Western Grebe	--	--	2	2	--	--	0.7	
Great Egret	--	--	1	,	--	--	0.3	
Spotted Sandpiper	--	--	1	1	--	--	0.3	
Sora	--	--	1	1	--	--	0.3	
Belted Kingfisher	--	--	1	1	--	--	0.3	
Long-billed Marsh Wren	--	--	8	8	6	6	4.7	
Cinnamon Teal	--	--	--	--	5	6	2.0	
Royal Tern	--	--	--	--	4	4	1.3	
Total Relative Abundance	755	755	4156	4156	979	979	1963	± 1902
Spucies Diversity Index		$=10.18$	$8 \mathrm{D}_{5}$	= 1.56		$D_{s}=1.33$	4.36	+ 5.04

TABLE 4.5.7-11. Avian Relative Abundance Summary, Coastal Strand. (See Table 4.5.7-1 for explanation.)

Species	$\begin{aligned} & \text { Autumn } \\ & \frac{\pi / m-h r}{} \end{aligned}$	$\frac{\text { Winter }}{\# / m-h r}$	$\frac{\text { Spring }}{\frac{B / m-h r}{}}$	Year Ave. $\bar{x} \pm S D(\# / m-h r)$
Water Pipit	--	2	--	0.7
Black Turnstone	14	43	--	19
Western Gull	475	250	466	$397+127$
Heermann's Gull	289	75	115	160 ¢ 114
Whimbrel	83	1	--	28
Willet	171	66	139	125 ± 53.8
Red-breasted Merganser	1	--	--	0.3
Surf Scoter	144	--	11	51.7
Brown Pelican	98	--	3	33.7
Wandering Tattler	13	--	--	4.3
Pigeon Guillemot	17	--	--	5.7
Brandt's Cormorant	519 6*	--	--	173
Sooty Shearwater*	$1.2 \times 10^{6 *}$	--	--	*
Killdeer	5	--	--	1.7
Bonaparte's Gull	2	--	--	0.7
Black Oystercatcher	3	--	--	1.0
Marbled Godwit	9	--	19	9.3
Black-bellied Plover	117	--	11	42.7
Long-billed Curlew	37	--	--	12.3
Least Sandpiper	72	--	--	24.0
Snowy Plover	70	--	--	23.3
Dowitcher	6	--	--	2.0
Pied-billed Grebe	1	--	--	0.3
Sanderling	230	1	181	137 ± 121
Caspian Tern	4	--	--	1.3
Common Murre	4	--	--	1.3
Spotted Sandpiper	--	5	--	2.0
Total Relative Abundance	2384	443	946	1258 ± 1007
Species Diversity Index	$D_{S}=7.87$	$D_{5}=2.65$	$D_{\text {S }}=3.17$	4.56 ± 2.88
Ave/spp $=48.36 \pm 88.3$				

5. - REFERENCES

1. Wood, E.D., F.A.J. Armstrong, and F.A. Richards, Determination of Nitrate in Sea Water by Cadmium-Copper Reduction to Nitrite, J. Mar. Biol. Assn. U.K., 47, pp. 23-31, 1967.
2. American Public Health Association, Standard Methods for the Examination of Water and Waste Water, 13th Ed. Amer. Pub. Health Assn. Pub. Office, Wash., D.C., 1971.
3. Strickland, J.D.H., and T.R. Parsons, A Practical Handbook of Seawater Analysis, Fisheries Research Bd. of Canada, Ottawa, 1968.
4. Munz, P.A., A flora of Southern California, Univ. of Calif. Press, Berkeley, 1974.
5. Miller, R.R., and C.L. Hubbs, Systematics of Gasterostemas aculeatus, with Particular Reference to Intergradation and Introgression along the Pacific Coast of North America: A Commentary on a Recent Contribution. Copeia, 1969(1), pp. 2-69, 1969.
6. Sasaki, K., Personal communication, Assistant Fisheries Biologist, California Department of Fish and Game, Long Beach, 1975.
7. Carlander, K.D., Handbook of Freshwater Fishery Biology, Wm. C. Brown Co., Dubuque, lowa, 1950.
8. Calhoun, A., Inland Fisheries Management, State of California Dept. of Fish and Game, 1966.
9. Jones, A.C., The Biology of the Euryhaline Fish Leptocottus armatus armatus Girard, Univ. Calif. Pub. Zool., 67, pp. 321-367, 1962.
10. Rodrigue, R.F., G.J. Bakus, E.K. Noda, Interim Report: Coastal Environmental Survey of the Vandenberg AFB Region, California, Tetra Tech. Report No. TC-439, Part 1, 1974.
11. Shelton, P., Ecological Studies of Beaver Wolves and Moose in Isle Royale National Park, Mich., Ph.D. Thesis Purdue University, 1966.
12. Munz, P.A., and D. Keck, A California Flora, Unif. of Calif. Press, Berkeley, 1959.
13. Cheatham, N.H., A Checklist of California Habitat Types, Univ. of Calif. Natural Land and Water Reserve System, Unpublished Ms., 1973.
14. Powell, R.W., An Inventory of the Rare and Endangered Plants of California, Calif. Native Plant Soc. Special Pub. No. 2, 1974.
15. Vogt, W., A Practical Lizard Trap, Copeia 2, p. 115, 1941.
16. Banta, B.H., A Simple Live-trap for Collecting Desert Reptiles, Herpetologica, 13(3), pp. 174-176, 1957.
17. Simpson, E.H., Measurement of Divsersity, Nature, 163, p. 688, 1949.
18. McKeown, M.S., Checklist of Amphibians and Reptiles of Santa Barbara County, Calif., Santa Barbara Mus. Nat. Hist. Occ. Paper 9, 1974.
19. Stebbins, R.C., Amphibians and Reptiles of Western North America, McGraw-Hill Book Company, Inc., New York, 1954.
20. Schmidt, K.P., A Check-list of North American Amphibians and Reptiles, Univ. of Chicago Press, Chicago, 1953.
21. Office of Endangered Species, Threatened Wildlife of the U.S., Bureau of Sport Fisheries and Wildlife, U.S. Dept. of the Interior, Resource Pub. 114, 1974.
22. Wetmore, A. et al., Check-llst of North American Birds, Am. Ornithologists' Union, Port-City Press, Baltimore, 1957.
23. Eisemann, E., et al., Thirty-second Supplement to the American Ornithologists' Union Check-list of North American Birds, Auk, 90, pp. 411-419, 1973.
24. Grinnell, J., and A.H. Mlller, The Distribution of the Birds of California, Pacific Coast Avifauna, 27, pp. 1-608, 1944.
25. Hall, E.R., and K.R. Kelson, The Mammals of North America, The Ronald Press Co., New York, 2 vols., 1959.
26. Ingles, L.G., Mammals of the Pacific States, Stanford Univ. Press, Palo Alto, 1965.
27. Compton, D.E., Evaluation of the Deer-aircraft Collision Hazard at Vandenberg AFB, CA, Air Force Weapons Lab., Kirkland AFB, New Mexico, AFWL-DE-TN-73-022, 1973.
28. Gilmore, R.M., The Gray Whale, Oceans, I(1), pp. 9-20, 1969.
29. Caldwell, K., and M.D. Caldivell, Surf Riding in the California Gray Whale, Bull. So. Calif. Acad. Sci., 62, p. 99, 1973.
30. Wild, P.W., Sea Otters: Research and Management Implications in California, Calif. Dept. Fish and Game, Unipublished Ms., 1973.
31. Barabash-Nikiforov, The Sea Otter, Israel Program for Scientific Translations, Jerusalem, 1962.
32. Scheffer, V.B., Seals, Sea Lions, and Walruses, Stanford Univ, Press, Stanford, Calif., 1558.

6. - APPENDIX
 Permanent Quadrat Location Sheets

Base Map No. 21 Grid Cell Location 1 C-103.6

Vegetation Type OAK MODLAND
Remarks SPARSE UNDERSTORY: SQME INDICATION OF GRAZING
\qquad

Reference Directions 2.1 NI NE OF SAN ANTONIO RD. EASI. FOURTH TURN-OFF
ON RIGHT. NOTE SIGN "WILDL IFE CONTROL AREA"

QUADRAT CHARAC"IERISTICS
Base Map No. \qquad Grid Cell Location $E B=100.7$

Vegetation Type ANNUAL GRASSLAND
Remarks \qquad
\qquad
Slope Exposure UNDEFINABLE Mean Elevation of Quadrat_70'

Reference Directions 0.3 MI E OF EL RANCHO RD, CA. 400'E OF PEA-SOUP
LAKE; EAST-WEST BORDER OF EUCALYPTUS; GATE ALWAYS LOCKED

*SDSU	LEGEND Monument 3
airfie	Lo Pavements
\square	Eristine to at merame
\square	Eristive ro of abamoum
	bmoulder stabliz ATIom
3 zrs	ovtanum
stauc	Tunes
	crispme octma
	extrome trum
$\underline{\square}$	cxieme to mabaloonto

OTHEAS

Contour Interval=5 feet

Base Map No. \qquad Grid Cell Location FB-99.5

Vegetation Type RIPARIAN WOODLAND
Remarks DENSE PHASE WITH SPARSE UNDERSTORY
Slope Exposure UNDEFINABLE Mean Elevation of Quadrat 55^{\prime} \qquad

(9) (4) (3)
(B) (5) (2)
$\overbrace{\text { feat }}^{00}$
(7) (6) (1)

Refereace Directione 0.6 MI W OF LOMPOC-CASMALIA HWY AND O. 4 MI E OF
EL RANCHO RD.; GATE ALWAYS LOCXED; QUADRAT CA. 500' E OF GATE

Base Map No. \qquad Grid Cell Location JC-90. 2

Vegetation Type OAK WOODLAND
 Remarks SPARSE PHASE

\qquad

Reference Directions \qquad

SECOND TURN-OFF ON RIGHT, NOT SIGN "WILDLIFE CONTROL ABEA"

Base Map No. 28 Grid Cell Location HB-87.6

Vegetation Type CHAPARRAL
Remarks DENSE PHASF
Slope Exposure UNDEFINABLE . Meas: Elevation of Quadrat 395'

(9)
(4) (3)
(8)
(5) (2)

Reference Directions QUADRAT LOCATED 0.3 MI W OF AIRFIELD RD. AND 0.8
MI E OF 13th STREET BETWEEN TWO DISTANT EUCALYPIUS STANDS.

LEGEND

* SDSU Monument 5 aIRFIELD PAVE\#EMTS
[... ...] inistime vo ex metamer] enspime to ec asemeento
 CT: J oidium

ROADS LAO PMAKIMO $\because=-=$ Enisvine mere

Base Map No. \qquad 41 \qquad Grid Cell Location \qquad YA-69.3

Vegetation Type COASTAL SAL T MARCH \qquad
Remarks PREDOMINANTLY SALICORNIA
Slope Exposure UNDEFINABLE Maan Elevation of Quadrat \qquad

TO BEACN BLUD

NOTE: ALWAYS TURN LEFT;
FOLLOW SIGN "VISITING CIVILIAN FISHING BEACH"
TO SMNTA YNEZ RWER
Reference Directions TERRA RD, TO BEACH BLYD (CANINE SOD ON CORNER):
2.0 MI W OF BEACH BLYD _ I st TURN-OFF ON LEET: 0.3 MI FROM BEACH BI VD TO OUADRAT.

Contour Interval=5 feet

OTHERS

monos and marking

QUADRAT CHARACTERISTICS
Base Map No. _ 41 Grid Cell Location VA-67. 3
Vegetation Type COASTAL SALT MARSH
Remarks PREDOMINANTLY SALICORNIA
Slope Exposure_ UNDEFIMABLE _. Mean Elevation of Quadrat \qquad

Nosth

HOTR: is ". TRAL CLOSED

Reference Directions 0.5 MI W OF JUNC. HWY 246 AND OCEAN PARK RD; PARK BY
"OCEAN BEACH PARK" SIGN, CROSS RR TRACKS AND PROCEED NORTH AS ABOVE

Base Nap No. 41 Grid Cell location FB-66. 8

Vegetation Type RIPARIAN WOODLAND
Remarks SPARSE UNDERSTORY
Slope Exposure LHDEFIMABLE_Mean lilevation of Quadrat \qquad

Reference Directions 0.2 MI H OF TERRA RD: PASS CATILE GATE AND STAY TO THE LEFT (SOUIH) ON DIRT RD; QUADRAT IN 2nd WILLON STAND ON LEFT.

	LEGEND
* SDSU	Monument 8 lo paneman
-	crisime to ex mitama
C-3	ma yo M asaluome ${ }^{\text {d }}$
\%	

stauctunes

moads and manking

OTMERS

QUADRAT CHARACTERISTICS

Base Map No. 44 Grid Cell Location SA-62.9

Vegetation Type COASTAL SAGE SCRUB
Remarks SPARSE PHASE STABILIZED DUNE, PREDOMINANTLY HAPLOPAPPUS
SLope Exposure UNDEFIMABLE Mean Elevation of Quadrat \qquad

(

Vegetation Type COASTAL SAGE SCRUB DINE, STABILIZED
Remarks DENSE PHASE
Slope Exposure_NE_Me__ Mean Elevation of Quedrat_165

(9)

(5)
(B)
(6)
(7)

Reference Directions $\approx 0.1 \mathrm{MI}$ SOUTH OF BEAR CREEK RD; YELLOW GATE MARKS CENTER LINE OF QUADRAT.

Contour Interval=5 feet

LEGEND
*SDSU Monument 10

sthuctunes

ROMDS ANO MANKIMO $\overline{\text { :Z:Z:-:-: cxevin maco }}$

OTMERS

QUADRAT CHARACTEPISTICS

Base Map No. 47
Grid cell Location_VA-53.8.
Vegetation Type ANNUAL GRASSLAND
Remarks \qquad
SLope Exposure UNDEFINABLE Mean Elevatiun of Quadrat \qquad

Reference Directions 1.3 MI E OF COAST RD AND 1.4 MI W OF ARGUELLO_RD._ JUST WEST OF LARGE STORAGE TANK.

QUADRAT CHARAI.IJRISTICS
Base Map No. 48
Grid Cell Location_CB-50.5
Vegetation Type CHAFARRAL

Remarks \qquad
Slope Expoaure UNDEFIMBLE Mean Elevation of Quadrat_145.

Reference Directions NE CORNER OF ARGUELLO RD AND_LOYPOC YALEEY RD JUST BEYOND MUNITIONS GATE.

LEGENO

stauctumes

ROADS AND GNRLIME

othens

QUADRAT CHARACTERISTICS
Base Map No. \qquad Grid Cell Location_NA-48.2

Vegetation Type COASTAL SAGE SCRUB DUNE, STABIIIZED
Remarks \qquad
Slope Expoaure UNDEFINABLE Mean Elevation of Quadrat 295°

Reference Directions 0.1 MI W OF OLD SURF RD AND 0.1 MI E OF COAST RD.
LCH RD=KELP RD

Base Map No. 49 Crid Cell location \qquad KA-42. 6

Vegetation rype COASTAL SAGE SCRUB
Remarks DENSE PHASE STABILIZED DUNE, PREDOMINANTIY HAPLOPAPPUS
Slope Exposure UNDEFINABLE Mean Elevation of Quadrat_240'

Reference Directions 0.4 MI N OF DELPHY RD, OR O. 3 MI N OF CABLE RD NEAR BLDG. 596 AND 1.5 MI S OF LAUNCH COMPLEX 44 RD.

QUADRAT CHARACTERISTIC̈S
Base Map No. 50 Grid Cell Location_WA- 44.6

Vegetation Type RIPARIAN WOODLAND
Remarks \qquad
Slope Expoaure_UNDEFIMBLE Mean Elevation of Quadrat_ 4.5^{\prime}

Reference Directiona_2._ML SE OF OLD SURE RD AMD_1. ML EROM ARGUELIO
RD: NEAR_PIDG_70l. HESI AROUI 300 FT.

Base Map No. \qquad Grid Cell Location \qquad $N B-45.9$

Vegetation Type OAK WOODLAND \qquad
Remarks SPARSE UNDERSTORY; AREA GRAZED
Slopa Expoaure N Mean Elevation of Quadrat 350'..............

Reference Directions $1.1 \mathrm{MI} N$ OF ARGUELLO RD TO BARB WIRE GATE: WALK TRAIL FQR 250', TURN RIGHT AND PRQCEED UP IRAUL FOR CA. 200°

LEGENO

* SDSU Monument 15 airfielo pavememte

	cxiefine to m merameo
	Exispine te ar atameome
9 x	
-m	ovenmum

monds and mankime =

OTHEDS

QUADRAT CHARACTERISTICS
Base Map No. 51 Grid Cell Locetion_MB-44.4

Vegetation Iype OAK HOODLAND

Remarka
SPARSE UNDERSTORY

Reference Directions I.O MI N OF ARGUELLO RD: PASS GATE AT JUNC. AND PROCEED DOWN LASALLE CANNON RD, FOLLOH FOOT PATH FOR CA. 150°

QUADRA'T CHARACTERISTICS
Base Map No. $\quad 51$ _._Grid Cell Location HB-45.7

Vegetation Type_BISHOP PINE FOREST
Remarks BURNED SITE (BURNED 9 OCT. 1974)

Slope Exposure SE Elevation of Quadrat 825^{\prime}

Reference Directions \qquad 2.9 ill S OF ARGUELLO RD (TO SOMTHZ 11 IE

1 $0: 0$
LI MI N OF ARGUELLE RD. . CA. O. 1 MI S OF RADIO RECEIVER_RD \qquad

LEGEND

*SOSU Monument 17 aIRFIELD PAVEMENTS

stauctunes

OTMEAS
-... . - Enistime moptivivinelmptil -. 1-- Cherime moneary (metcease) -- - Enerime mopintr lime n--- t mitime eenre. wine otmbe

- - - Existme FE. C. cmam Lim
———.- aponoach : ine amo are

- Conctine cowroun lime
cxacios limpime tace covin
$\ddot{0}$ cmamact oitcn Depatssiom moct lume

QUADRAT CHARACTERISTICS
Ware Map No. 51 \qquad Grid Cell Location \qquad IB -44. 4

Vegetation Type_CHAPARRAL
Remarks DENSE PHASE; EVIDENCE OF PREVIOUS FIRE \qquad
Slope Exposure \qquad E Mean Elevation of Quadrat \qquad 2501

(9)

ARGUErS) RD.

Reference Directions 3.0 MI S OF ARGUELLO RD (TO SOUTH GATE) AND
1.0 MI N OR ARGUELLO RD.; FEW SCATTERED PINES IN QUADRAT.

*SOU MOEGUMENTI 18

OTHERS

Contour Interval =5 feet

QUADRAT CHARACTERISTICS

Base Map No. \qquad 51 Grid Cell Location \qquad HB-43. 4

Vegetation Type BISHOP PINE FORESI
Remarks \qquad SPARSE PHASE

Slope Exposure \qquad Mean Elavation of Quadrat \qquad 925

(9)
(8)
(7)

 (1) ${ }^{*}$

TO SAUTA Ynez RIDGE ROM Reference Directions JEEP TRAIL 0.6 MI N OF ARGUELLO RD AMN 3.4 MI S OF ARGUELLO RD (TO SOUTH GATE). QUADRAT 0.1 MI N SANTA YNEZ RIDGE RD.

LEGENO
*SDSU MONUMENT aIRFIELO PANEMENTS
 cecre ovinnun

stauctunes

moads and markine

OTHERS

Reference Directions O.2 MI ME OF COAST RD, AND O. 2 MI SW OF DELPHY
RD. TRAVEL SIDE ROAD FOR CA. 100 TO QUADRAT

LEGEND
*SDSU Monument 21 airfielo pavements

STRuCTURES

moads amd manking \ldots exierime mico

OTHERS

Base Map No. 53 \qquad Crid Cell Location KA-37.3

Vegetation Type RIPARIAN WOODLAND
Remarks SPARSE PHASE WITH COASTAL SAGE SCRUB INFLUENCE
Slope Exposure UNDEFINABLE Mean Elevation of Quadrat \qquad

Reference Directions:_0.3 MI E OF COAST RD. QUADRAT BORDERED BY HILL ON
EAST AND WEST; AREA WITH FEW WILLOWS; WET SOIL SCRUB PRESENT.

stauctures

ITITA	thistime Existime	PRTMAment sew. PCAmant my
	cuitrme	remponamy
$\underline{\square}$		to ee acakego

ROADS ANO PMKINO

Contour Interval $=5$ feet

Base Map No. 53 \qquad Grid Cell Location \qquad
$\mathrm{KA}-36.7$
Vegetation Type COASTAL SAGE SCRUB
Remarks NORMAL PHASE, PREDOMINANTLY ARTEMISIA CALIFORNICA
Slope Exposure NW Mean Elevation of Quadrat 375°

(b) (2) (5)
(3)
(B)
(4)

TO TUNAGUILLON PEAK

Reference Directions 0.6 MI E OF COAST RD, AND 5.0 MI W OF TRANOUILLON PEAK; WATCH FOR CATTLE CROSSING AND GATE.

OTHERS

Balse Mar No. 54 \qquad firid Cell Location BB-39.4
Vegetation Type CHAPARRAL
Remarks DENSE PHASE
Slope Exposure W _.... Mean Elevation of Quadrat_975

Reference Directions 0.1 AND 0.2 MI SOUTH OF SPRING CANYON RD AND
ARGUELLO RD, RESPECTIVELY, ON WEST SIDE OF TRAIL

LEGEND
*SDSU Monument 23 ainfielo paveinents

otmens

Cor rir Interval = 5 feet

Base Map No. 55 Grid Cell Location FB-40. 8

Vegetation Type BISHOP PINE FOREST
Remarks NORMAL PHASE
Slope Exposure UNDEFINABLE... Mean Elevation of Quadrat 1105^{\prime}

Reference Directions QUADRAT CA. $300^{\prime} \mathrm{N}$ OF ARGUELLO RD

LEGEND
*SDSU Monument 24

stmactunes

OTHERS

Contour Interval $=5$ feet

Base Map No: 55 Grid Cell Location GB-40.8

Vegetation Type BISHOP PINE FOREST
Remarks SPARSE PHASE
Slope Exposure UNDFFINABLE Mean Elevation of Quadrat__1100'_

Reference DIrections O. MI E_LUCIO BLVD AND O. 2 MI H OF SAMTA YNE I RIOGF
RD.

Base Map No. \qquad 59 Grid Cell Location EB-29. 8

Vegetation Type TANOAK FOREST
Remarks DENSE PHASE; DENSE UNDERSTORY
Slope Exposure NNE
Mean Eievation of Quadrat
. 1985.'

COAST RD.; FIRST TURN-OFF ON LEFT FROM PEAK.

LEGEND
*SOSU Monument 28 airfielo pavements

	Emerime TO Me metame
	Enielims to me atmmonto
xatererex	smoulotio stamlization
Prex	ovenmun

stauctunes

OTHERS

QUADRAT CHAKACTIRI:TICS

Base Map No. \qquad Grid Cell Location \qquad SA-21. 4

Vegetation Type COASTAL SAGE SCRUB
Remarks XERIC PHASE, PREDOMINANTLY SALVIA LEUCOFHYLLA
Slope Exposure_ W__.... Mean Flevation of Quadrat__225'

Reference Directions 0.5 MI E OF ROAD TO BOAT HOUSE OR 5.1 MI E OF
SLC 6 AND 5.0 MI W OF SUDDEN RANCH; STEEP WEST SLOPE

Base Map No. \qquad 62 Grid Cell Location \qquad NB-19. 7

Vegetation Type ANNUAL GRASSLAND
Remarks ROCK OUTCROPPINGS PRESENT
 (=COAST KD); CA. 200^{\prime} UP TRAIL FROM MIGUELITO RANCH.

LEGEND

*SDSU Monument 31
 Crece ovenmum

STRUCTLAES
cxispint remane
[xistime sem-manamemy cxrerme Tcmeanany circinv ro et acameanto
moADS ANO PARNINO

otmers

Base Map No. \qquad Grid Cell Location OB-21.7

Vegetation Type COASTAL SAGE SCRUB
Remarks XERIC PHASE
Slope Exposure E E Mean Elevation of Quadrat

Reference Directions 2.4 MI N OF COAST RD. AND 1.5 MI S OF MIGUELITO
GATE; 0.3 MI FROM MIGUELITO RD TO QUADRAT VIA JEEP TRAIL

Contour Interval=5 fee:

OHADPAT CHAKACTERTSTICS
Base Map No. 62 Grid Cell Location NB-22. 1
Vegetation Type_COASTAL SAGE SCRUB
Remarks XERIC PHASE
Stope Exposure ESE Elevation of Quadrat 1250'

Reference Directions 2.7 MI N OF COAST RD, AND 1.2 MI S OF MIGUELITO
GATE.

LEGENO
*SDSU Monument 33 airfielo pavements

stauctunes

others

Base Map No. 62 Grid Cell Location PB-24.5

Vegetation Type COASTAL SAGE SCRUB
Remarks NORMAL PHASE
Slope Exposure UNDEFINABLE . Mean Elevation of Quadrat_1350'

(6) (5) (4)

Reference Directions 3.4 MI NORTH OF COAST RD AND 0.5 SE OF MIGUELITO GATE. STEEP SLOPE ON NORTH SIDE FACING CANADA DEL JOLLORU

mOADS AND MARKIME

Base Map No. \qquad Cirid Col] Iocation \qquad MB-15. 8

Vegetation Type ANNUAL GRASSLAND
Remarks ROCK OUTCROPPINGS PRESENT
Slope Exposure UNDEFINABLE Mcan Elevation of Quadrat
615^{\prime}

Reference Directions 1.0 MI N OF COAST RD AND 2.9 MI S OF MIGUELITO
RANCH; QUADRAT CA. 0.1 MI NORTH OF CATTLE CROSSING; GRAZED AREA.

Contour Interval=5 feet

[^0]: 1. Coord. from Base Master Plan Map series C-1 (1 January 1971 Revision) 66 sheets, scale $1^{\prime \prime}=80^{\prime}$.
 2. Name given to site by investigator
 3. Coordinate numbers for streams indicate sites where samples were taken.
 4. Temporary
[^1]:
 （3）＇stal dissolved soilds in ppm is approximate＇）esal ：0 $0.7 \times$ conductivity in a mhes．

[^2]: *See Table 2.2.7. for explanation of numbers.

[^3]: \#See Table 2.2.8. for location number identification.

[^4]: 1. Locations listed for orders indicate locations where this order was observed but not identified further. See Table 2.2.14 for location descriptions.
[^5]: Total Plant Cover

[^6]: *includes 3 rd quarter captures
 D - calculated as A : C; proportion of $n / 1000$ TN at risk to pirfall traps

[^7]: * Fully protected species (State and/or Federal laws)

 R Rare or endangered species (State and/or Federal laws)
 a
 b

 + Species observed during the study.

[^8]: * Sightings reported during the present study.

[^9]: *Based on two sampling quadrats - all others, four sampling quadrats xIncludes supplemental Sherman trap data in absence of pitfalls

[^10]: | Total Abundances | 30 | 700 | 730 | 10 | 550 | 560 | 34 | 950 | 984 | 108 | 700 | 808 | 770.5 | ± 176.0 |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 Species Diversity Index $\quad D_{S}=2.01 \quad D_{s}=1.20 \quad D_{s}=2.08 \quad D_{s}=3.00 \quad 2.07 \pm \quad 0.74$

[^11]: Ave/spp $=5.08 \pm 4.56$

