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l. Technical Summary

1.1 Technical Problem

The objective of the research of this contract is to find temperature
compensated materials for use in surface acoustic wave (SAW) signal processing
devices, 1.e. materials with large electromechanical coupling, low ultrasonic
attenuation and a vanishingly small temperature coeffici-.nt of the delay time.
The electromechanical coupling factor should be substantially larger than for
o~quartz, which 1s presently used in temperature compensated SAW devices.

1.2 Methodological Approach

The research consists of: (A) both exploratory and systematic crystal
growth studies on a variety of materilals which are expected to be temperature
compensated for bulk waves and which have been selected earlier under AFCRL
Contract F19628-73-C-108 on the basis of certain heuristic criteria (Barsch
and Newnham, 1975), and (B) measurements of the single crystal elastic and thermo-
elastic properties of the above grown crystals to determine whether they possess
temperature compensated crystallographic directions for bulk waves, and
measurements of their piezoelectric and dielectric constants and their corres-
ponding temperature cocfficients to check the suitability of these materials for
surface wave device applications.

1.3 Technical Results

1l.3.1 Crystal Growth

A. Crystal Growth: The crystal growth efforr-centered on L125103,

BaZSizTios, and PbZKNbSOIS' Both Bridgman and Czochralskl crystal growth
experiments were performed on L125103, but the boules obtained were
polycrystalline. The high temperature behavior of this phase was examined by

DTA and high temperature x-ray techniques and indicated no major phase changes

between room temperature and the melting point of L128103. Various shielding




arrangements and temperature stability of the growth system were examined to

determine their effects on the quality of the boules. Boules of Ba2512T108

were pulled both from stoichiometric melts and from TlOz-rich melts. However,
good quality crystals were not obtiined in eilther case. The cracking problem

in pulled PbZKNb crystals persisted, but was reduced by varying the lead

5015
content of the melt and decreasing the diameter of the boules. Several single

crystal pieces barely large enough for measurements were obtained.

1.3.2 Measurement of Elastic, Thermoelastic, Piezoelectric
and Dielectric Properties

The theoretical equations required for the experimental determination of
the complete set of piezoelectric constants from X-ray measurements have been
derived. For this purpose the expression for the quantity (56/6E), where O
denotes the Bragg angle and E the magnitude of an applied electric field is
calculated as a function of the field direction and the reflecting lattice plane
normal. For all 20 crystal classes exhibiting the plezoelectric effect explicit
expressions are given for the longitudinal and transverse pilezoelectric effect,
corresponding to parallel-field and perpendicular-field reflection, respectively.
For the 19 piezoelectric classes of the monoclinic, orthorhombic, tetragonal,
trigonal, hexagonal and cubic systems explicit expiessions for (396/6E) in terms
of the Miller indices of the reflecting planes ar: given for the simplest crystal
cuts with respect to the symmetry elements present.

The on-diagonal elastic constants cll’ Chos c33, c44 and Ce6? and their
temperature coefficients have been measured ultrasonically for lead potassium
niobate, PbZKNb5015' The elastic constant values differ considerably from results
given by Yamada. The temperature coefficient of the longitudinal modulus 33 is
found to be positive, substantiating earlier indications that lead potassium

niobate should have temperature compensated cuts and therefore could be a

superior substitute for o-quartz in SAW devices.
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1.4 DoD Implicati -

For one of the materials investigated, lead potassium niobate, one may
expect the existence of temperature compensated cuts for bulk and surface waves,
with substantially larger electromechanicai coupling than for a-quartz. Thus
by replacing quartz as o substrate material in surface acoustic wave (SAW) devices
by lead potassium niobate insertion losses can be reduced and the operating
frequency and/or bandwidth can be increased. in this manner the efficiency,
reliability and capability of military communications and Radar systems utilizing
SAW signal processing devices, such as multichannel communications, secure anti-
jam communications for satellites, miniature aivonics and electromagnetic counter
measures, can be improved.

1.5 Implications and Further Research

It has been demonstrated that the search for new temperature compensated
materials with properties superior to those of a-quartz through the approach used
under the present contract can be successful. One may therefore hope that a
continued systematic search for new temperature compensated materiais under the
present contract may, even with the low funding level, eventually lead to
the discovery of additional, perhaps even more suitable, materials. To this end
continued crystal growth efforts are required to obtain suitable single crystals
for the physical property measurements, which are necessary to assess the use of
a given material for SAW device applications.

1.6 Special Comments

No special comments are offered at this time.



2, Crystal Growth Results

2.1 Lithium Silicate, Li,,SiO3
Polycrystialline starting material of this phase was synthesized at

900°C from Li,CO, and Si0,. Attempts were made to grow the lithium metasilicate

2773 2
from the melt by both Bridgman and Czochralski techniques, with the latter
appearing most promising. Milky, polycrystalline boules were all that could he
obtained from the Bridgman directional solidification experiments, even when
slow growth rates of 0.8 mm/hr were used. The temperature gradient at the melt-
crystal interface was about 25 C°/inch in these experiments.

Czochralski crystal pulling experiments on L125103 were performed with
two different pileces of equipment. The first ones were with an Arthur D. Little
model MP puller heated by an rf induction generator. Since cracking of the
boules persisted even after using various shielding and insulation schemes, we
decided to use an NRC puller equipped with a very stable rzsistance furnace
built for this puller. The central furnace tube is wound with Pt-10% Rh, and
this is surrounded by a larger tube wound with Kanthal. The furnace is equipped
with a proportional controller and a Data-Trak for programmable heating and
cooling cycles. A special "cover" for shielding above the crucible was fabri-
cated from an inverted kyanite crucible fitted with a side arm and window for
viewing. The temperature gradients for the first three inches above the melt
varied with shielding designs from 70°/inch to 200°/inch. This cover, the
stability of the furnace (less than * 1/2° fluctuations), and slow pulling rates
of about 2 mm/hr greatly increased the perfection of the boules, but they
remained polycrystalline. Nucleating a crystal on the platinum extension to the
pulling rod and the necking of crystals has been a problem because of (i) viewing

difficulties, (ii) the good shielding and resultant reduced temperature gradients

above the melt surface, and (iii) the extreme sensitivity of the crystal diameter
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to the furnace temperature. These problems should be eliminated with the use
of seeds cut from the polycrystalline boules obtained, and a newly designed

viewing port.

The possibility of a phase transition causing the cracking in L128103 ‘
was examined by DTA and high temperature x-ray experiments. The DTA experiments !
showed a small endothermic peak at about 1030° and then the melting point at
1200°C. High temperature x-ray diffraction patterns taken at 835°, 1060°, and
1156° showed only the expected thermal expansion of the orthorhombic unit cell;
no new peaks were observed. These high temperature patterns are now being
examined to determine if anisotropy in thermal expansion could be great enough
to contribute significantly to the cracking probleﬁ.

2.2 Fresnoite, Ba281 TiO,

In previous growth experiments on B32812T108, its high melting temperature
of 1360°C was difficult to maintain in the center of the insulated platinum
crucible without melting the crucible. This problem was overcome by various
heat shielding arrangemenis around the crucible as well as reflectors and shields
above the crucible, but only poor qualitv, cracked crystal boules were obtained.
To circumvent the problem in another way, flux-pulling experiments were attempted
since the temperature requirements are not so severe. Very small crystals of
fresnoite have been grown by slow cooling of T102—rich melts at the National
Bureau of Standards, and our own DTA experiments indicated that additions of
TiO2 to stoichiometric fresnoite lowers the melting temperature significantly.
Therefore, we carried out growth experiments after adding various amounts of
TiO2 ranging from 5 to 30 wt.% to fresnoite. In all instances Ba2812T108 could
be pulled from these molten solutions, but all the crystal boules contained

numerous cracks and appeared more and more milky with increasing amounts of TiO2

in the melt. With 30 wt.% excess Ti0, the melting point was lowered about 150°
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so that a boule could be grown without extraneous heat shields, but the boules
were still cracked. A thin slab of crystal observed under the polarizing
microscope showed appreciable amounts of TiO2 flux intergrown with the fresnoite.
Even with slow pulling rates of about 2 mn/hr, the TiO2 flux inclusions are still
a serious problem.

2.3 Lead Potassium Niobate, quKNbSQ
F'4

15
Several final Czochralski growth experiments were carried out on PbZKNbSOIS'

By varying the content of lead oxide in the melt, small boules of approximately
10 to 15 mm in diamnter were grown in which the cracking was reduced. Several
oriented and parallel-cpiped-shaped specimens were prepared for the ultrasonic
measurements. When viewed under a polarization microsccpe one specimen appears
to be homogereous and free of internal strains and is therefore likely to consist

of a single domain.

3, X-Ray Determination of Piezoelectric Constants

3.1 Introduction

Fo: the calculation of the electromechanical coupling factor the complete
set of pilezoelectric constants has to be known. In the present investigation the
piezoelectric constants are being determined by measuring by means of x-rays the
elastic strain which is induced in a crystal by an applied electric field. This
method was first used by Bhalle Bose, White and Cross (1971) to measure the
plezoelectric constant d11 of a-quartz. These authors found good agreement with
earlier data obtained with other methods. As pointed out by Bhallia, Bose, White
and Cross (1971), the x-ray method has several advantages over other methods. Among
these are its ready applicability to small crystals (about 1 mm X 1 mmx 0.1 mm) and

the possibility to distinguish spontaneous and induced strains in ferroelectric
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crystals and to determine the piezoelectric constants of individual domains.
In addition, the x-ray method avoids some of the potential difficulties
associated with ot:er methods, such 2s the occurrence of mode coupling in
the widely used resonance-antiresonance method (see, e.g., Mason, 1950).

The theoretical equations for the x-ray dete.rination of the complete
set of the pilezoelectric constants for crystals of all twenty crystai classes
which exhibit the piezoelectric effect have been derived. In the following
the derivation and the results will be presented, and a numerical example
will be discussed.

3.2 Theoretical Derivation

Bragg's form of the considition for constructive reflection of an
incident x~-ray beam by a lattice plane with Miller indices hk% and inter-

planar spacing dhkl is given by

sdn O = '2‘21%" (1)
hk&

where

. = . 1/2

d = ke (Ehkl 25hk.z) ()

hk&
and

Ehkl = ha* + kb* + fc* 3)

denotes a reciprocal lattice vector. ;*, g*, Z* are the base vectors of

the reciprocal lattice defined by 3. oak = 1, a s bk = 0, etc., where ;, g,
T are the unit cell vectors of the direct space lattice. If, as in equation
(1), the order of the reflection appears explicitly the Miller indices must
be assumed to consist of coprime integers (i.e. of integers without a common

factor except unity).



By applying an electric field E with components Er = Ear (ar are the

direction cosines, and r = 1,2,3 denotes three cartesian cc)rdinate axes)
to & crystal, an elastic strain Eij(ipj = 1,2,3) is induced through the

converse plezoelectric effect accordiag to (Nye, 1957)

€y 943 B (4)

d denotes the third rank tensor of the plezoelectric strain constants,

rij

and the summation convention is used here and subsequently (i.e. summation
over the three values 1,2,3 is implied for every pair of ldentical indices).
Of course, the components Er of the electric field E and of the strain

tensor Eij’ and the set of plezoelectric constants drij must be referred to

2 common carteslan coordinate system with axes, xl, xz, x3.

In order to obtain the dependence of the reciprocal interplanar distance

d. on strain €,,, consider the matrices A and A* composcd of the unit cell
hkf 1] = =

vectors of the direct and reciprocal lattices, respectively, according to

ok * *
a b ¢ ( L S
= * = %* * *
g a, b2 ¢, , é ay b2 c¥ (5)
% *
a3 by c4 ay by cf

-+ > > -+
The relations a * a*x =1, a * b*¥ = 0 etc. can then be written in matrix

notation as



A xT

e

=éT

13 o

*:J; (6)

where the superscipt T denotes the transpose matrix, and 1 the unit

matrix. )

In the approximation of the linear theory of elasticity under the
influence of a strain £ the base vectors change according to Z(E) = (l.+.s);(0),
etc., where g denotes the strain tensor Eij in matrix notation. Therefore,

the direct and reciprocal base vector matrices change according to

A(e) = (1 + €)A(0) (7a)
~ X = joglile R
AX(E) = (L+ 97RO E (1 - £)A%(Q) (70)

N s s

In the spirit of the linear theory of elasticity, higher than first powers
of € have been neglected in the last step of equ. (7h).

According to (7b) a reciprocal lattice vector Ehkl chenges according

to

> >
Therefore,

> > > > > >

Ghldl(i) . Ghldl(;) = (’hkl(g) . thﬂ(g) = Z(thz(g-,) ¢ g thﬂ,(g,)) (9)
and

-

ke
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where

[

N - ok (11)
uk
denotes the normal of the lattice plane (hki).
In view of equs. (1), (2), (4) and (10) the diffraction angle O depends on the
magnitude E of the electric field, O = O(E(E)), so that one obtains by

differventiaticon (summation convention!)

3%n sin O _ [39‘“ thz} [3811] [_?_E_E]
% ) Loy, 3E_ ’

oE

or

90 ,
cot O [‘a’i] - - ar NiNj er1 (12)

This relation is the generalized form of equ. (6) of the paper by Bhalla,
Bose, White and Cross (1971). For the special case that both the direction
of the electric field and the reflecting lattice plane normal are in the
x) direction, o, = Glr’ N1 = 611, Nj
i.e. dmn =) form=n=1,2,3, and Gmn = 0 for m ¥ n), the above equ. (12)

= Glj (Gmn denotes the Kronecker symbol,

becomes equivalent to equ. (6) of these authors.

Equ. (12) provides the theoretical basis for the experimental determi-
nation of the complete set of piezoelectric constants of any piezoelectric
material. In order to determine the complete set of plezoelectric constants
the dependence of the reflection angle © on the magnitude of the electric
field must be measured for a set of combinations of directions E,ﬁ equal in
number to, or if redundancy checks are desired, larger than the number of
independent piezoelectric constants corresponding to the crystal class of
the material under investigation.

In order to eliminate electrostriction the measurements should be carried
out with field reversal which changes the sign of equ. (12), but not of the

quadratic electrostriction effect.
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Application of the electric field requires a set of thin platclets
of the piezoelectric materials with plane parallel electroded faces, so that
the direction of one of the two face normals of opposite directions coincides
with the direction of o = (ala2a3) of the electric field. 1In practice, the
direction of the reflecting lattice planes is restricted to the two cases ¢
ﬁ || & and ﬁ'l E. While the former case, corresponding to the reflecting
lattice planes parallel to the platelet faces, utilizes the longitudinal
piezoelectric effect and is more convenient experimentally, it will be shown
that, with the exception of four crystal classes (6, 6m2, 23, %43m) the complete
set of piezoelectric constants cannot be determined in this manner. On the
other hand, the second configuration, which utilizes the transverse pilezo-
electric effect and corresponds to the electric field lying in the reflecting
planes, requires larger experimental effort to eliminate distortion of the
electric field near the side faces of the sample, but permits to determine the
complete set of piezoelectric constants for all twenty piezoelectric crystal

classes.

In the following section explicit expressions of the right-hand- ide
of equ. (12) will be given for all twenty piezoelectric crystal classes and

for both experimental configurations.

3.3 Application to Piezoelectric Crystal Classes

Denoting for convenience the RHS of equ. (12) by L and T for parallel
field and perpendicular-field reflection, corresponding to the longitudinal
and transverse piezoelectric effects, respectively, equ. (12) may be rewritten

as
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L @]l
30
- cot O [-B-E] -{T (31ﬁ> (13)
where
LeNNN d, . @=F) (148)
TeaNN d (@8 =0 (14b)

For the numerical applicaticn of tiese equations the form of the
plezoelectric constant tensor corresponding to a particular crystal class
must be used, and both the lattice plane normal ﬁ and ihe direction 3 of the
electric field must be expressed in terms of the Miller indices. For the
components of the unit vector N the corresponding relation is obtained from
equs. (3) and (11) and is for the general triclinic case given by the
familiar expression (International Tables for X~Ray Crystallography [1959])
(1 =1,2,3):

*x * %
ha +kbi4-2ci

i
» * * * * % * * * * * X * 15
1 [hza 2+k2b 2+22c 2-+2k2b c cos o +2hfa ¢ cos B +2hka b cos Y ]1/2 ()

x Kk % *x kK
Here a , b , ¢ denotes the lattice constants, and a , B , Y the angles

>k >k % * %
between the unit cell vectors a , b , ¢ of the reciprocal lattice. a bi’

* >k >k ok
¢y (1=1,2,3) denotes the cartesian coordinates of a , b , ¢ , respectively,
in the same coordinate system to which the ezoelectric constant tensor is
referred.
For parallzl field reflection the unit vector 3 is determined by the
condition E = ﬁ. For perpendicular field refleption a is constrained by the
condition E'N = 0. Thus for a given lattice plane (hkf) the vector 3 has one

degree of freedom, which may be conveniently described by the angle ¢ according

to
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o = cos ¢ U+ sin ¢ ¥ (16)

-
where U is a unit vector perpendicular to N lying in the plane generated by the

->
unit vector eq in the Xq direction, and by the lattice plane normal ﬁ, and 6

ot

is perpendicular to both ﬁ and ﬁ. The vectors ﬁ and 6 are then given by

2R

2) (17a)

-+ . e d -+ 2
U (-(e3 NN + e3)/(Nl + N

(17b)

¥

-» -»
V=Ux

Inserting (17a) and (17b) into (16), the components Q. of the unit vector &
may be expressed in terms of the components Nr of the lattice plane normal

and of the angle ¢ according to

a, = - (NN, cos ¢ + N, sin &)/ (N5 + Ng)l/2 (18a)
a, = - (N,N, cos ¢ = N} sin ¢)/(Ni + Ng)l/2 (18b)
0, = (Ni + Ng)l/2 cos ¢ (18¢c)

As will be discussed below, for most crystal classes convenient choices
of the angle ¢ are possible if at least one of the Miller indices 1s zero.
In these cases the vector 4 lies along symmetry directions of the crystal,
and a considerable simplification of the equations given below results.

By using the form of the piezoelectric tensor ~orresponding to the
individual crystal classes as given, for example, by Nye (1957) the expressions
L and T defined in (l4a) and (14b) may tbe explicitly written out as given below
for the twenty piezoelectric crystal classes. In the following, the piezo-
electric constants will be expressed in Voigt notation, that is, the index
pair ij and drij (with r,i,] = 1,2,3) is replaced by a single index
uo=1,2,3343556 corresponding to ij = 11,22,33:23 and 32313 and 31512 and

21, respectively, and a factor of two is introduced for W = 4,5,6, such that
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d =4 for v = 1,2,3, and dru = 2d for u= 4,5,6. The following

gVl rij rij
abbreviations are introduced in order to describe the cvefficients of the
plezoelectric constants occurring in the expressicn for T for the tetragonal,

trigonal, hexagonal and cubic systems:

2,1/2

A, = [~2N NN, cos ¢ + (No-N2)sin 9IN,/(NoHd) (19a)
A = - N3(Ni+N§)1/2 31m B (19b)
"B, + __N§(N§+N§)l/2 cos ¢ (19¢)
B_ = - [(2-N2)N, cos ¢ + 2NN, sin §IN,/ (oD 12 (19d)
¢, = w22 cos (19€)
c = (Ni—Ng)(Ni+N§)l/2 cos ¢ (19£)
D, = - [(Ni—3N§)N1N3 col § # (3Ni-N§)N2 e ¢]/(Ni+N§)l/2 (19g)
D, = [(3Ni-N§)N2N3 cos ¢ - (Ni—3N§)Nl sin ¢]/(Ni+N§)l/2 (19h)
E = [(3(Ni+ﬂ§)—2)NlN2 cos ¢ + (Ni-:qg)n3 sin ¢>]/(Ni+N§)l/2 (19i)
F = N§(Ni+N§ L2905, b (191)
G = NlNz(Ni+N§)l/2 cos ¢ (19K)

The description of the direction 3 of the electric field in terms of

the angle ¢ as given in equs. (18), and the use of the ¢-depcndent quantities

5 »> -+ -+ >
defined in equs. (19a) to (19k) are limited to the case N # e3. For N = e,
the angle ¢ is not defined. However, the special case ﬁ = ; is of interest

3 3

only for the triclinie and monoclinic systems, and the quantity T defined in

equ. (l4b) becomes in this case
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T = ayd)q+ aydyg (20

On the other hand, for the tetragonal, trigonal, hexagonal and cubic systems

-

the quantity T is identically zero for N = 23, so that this case need not

be considered explicitly.

1., Triclinic System

Class lgcll
(18 independent constants: dll' d12’ d13, dlk’ d15’ dl6’ d21, d22, d23, d24,

d

36)

dgyr d3s0

dyss dygr dgps dyps Ay

3

2 2
L= Nld11 + NlNZ(dIZ + d26) + N1N3(d13 + d35)

2 3
+ NlNZ(d21 + dl6) + N.d,, + N2N

2922 T4

2

3{dyy *+ dgp)

# NEN(do. + d.) + NN,(d,, +d,,) + Nd
1N3{dgy + dyg N3ldgy +dy, 3933

+ N1N2N3(d14 + d25 + d36) (21a)

2
T= alNld + a.N

11 1 d + a.N

12 1

d + o,N

di3

+ o de + o,N d
a

27121 2

[\

[ LS I SRR SCIN U L
N
[ ]
[\

W LN W
W

1
2
Nld + o,N

3 d + o

32 N

d

31 3 33733

+ ulN2N3d14 + alN1N3d15 + alNlde16

N Nady, + 0 N Nydyg + )N Npdye

A Nydy, + agyNadas + agN;Nyds6 (D)

2. Monoclinic System

Class ZSCzl

(8 independent constants:

d d d d

dy,r digr dpps dppr dpgs dogs das dyg)

R 2 2
L = Nydy, + NIN,(dyy + d ) + NN3(dyq + d3;)

+ N,N.N (dla +d..+d (22a)

1°373 25 36)
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2 .2 2
T aled21 + azhzd22 + a2N3d23

+ a)NyNad) )+ )Ny Nod,y o+ )N Nady g

+ a3N2N3d34 + a3NlN2d36 (22b)

Class mgcsl
s
(10 independent constants: dll’ d12’ d13’ d15’ d24, d26’ d31, d32, d33, d35)

3 2 2
L= Njd)) +NNp(dy) + dy) + NN3(d) 5 + dyq)
+ NN (.. + d.) + NON(d.. + d.,) + Nd (233)
1N3(dg; +d)g) + NoNj(dy, + dy, 3933
2 2 2
T = alNldll + alde12 + alN3d13
2 2 2
+ agNod L+ aNod,, + aNidy,
+ a.N.N.d + o,N.N.d + a.N.N.d + a.N.N.d (23b)

113715 27273724 212726 313735

3. Orthorhombic System

Class ZZZQDZL

(3 independent constants: dl4’ d25’ d36)
L= N1N2N3(d14 + d25 + d36) (24a)
T =o,NN..d + a,N.N.d + o,N,N,.d (24Db)

1273714 2713725 3172736
Class mm2§C2vl

(5 independent constants: d15’ d24, d31’ d32, d33)
2 2 2
L = N1N3(d31 + dlS) + N2N3(d32 + d24) + N3d33 (25a)
2 2 2
T = agNjdy) + agNydyy + agNqdyy
+ a,N,N.d.. + a,N.N.d (25b)

113715 27273724



4. Tetragonal System

Class 4(C,)

(4 independent constants: dlA’ dlS' d3l' d33)

Bag o ,
Lo= (N] + N)Ng(dy + d) ) + N

T = C+dJ

1

Class 25541

(4 independent conicants: d
14,

+ Fd

33

+ Ad

- 14

+ B, d

+

d

2 2 o
L (Nl - N2)N3(d31 + cls) + N

T =C_d

31

Class 422514l

(1 independent constant: dlA)

L

T=Ad

0

14

Class Amm(CAVl

+ A d

+

14

+Bd

+ Gd

15° d31

~17=

3
3933

15
 dyg)
INoN3(2dy, +d

36

(3 independent constants: d15’ d31, d33)

)
L = (N] + NpN,(dy, +d o) + Nyd

T=2C.d

31

Class AZm(DZdl

+ Fd

33

+ B+d15

3
3733

(2 independen. constants: d14' d36)

L = N,N,N

T

172

A+d14

3(2d14 + d

+ Gd

36

36’

36)

(26a)

(26b)

(27a)

(27v)

(28a)

(28b)

(29a)

(29b)

(30a)

(30b)
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5. Trigonal System

Class §3g3l
(6 independent constants: dll’ dl&’ dlS’ d22, d31’ d33)

2 2 2 2 3
= - - - )
L (Nl 3N2)Nldll (3Nl NZ’NZdZZ + N3d33
+ (8 + NN, (d, + d. L) 3
1t NINgdyy *+ dyg (31a)
T =Dydyy ¥ Dydyy + Cudg) + FDyg+ A d;, + B d), (31b)
Class 32§D3l
(2 independent constants: dll’ dlé)
2 2
= f =
L ‘Nl 3N2)Nldll (32a)
T = Dldll + A-d14 (32b)
Class 3m§C3vl
(4 independent constants: d15’ d22, d31, d33)
_ 2 _ 2 2 2 . 3
L = (3Nl NZ)Nsts + (Nl + NZ)N3(d31 k dlS) + N3d33 (33a)
L= D2d22 + C+d31 + Fd33 + B+d15 (33b)
6. Hexagonal System
Class 6506l
(4 independent constants: dl&’ dlS’ d31’ d33)
L= (N + NON.(d,, +d,.) + Nd (34a)
1 2773731 15 3733
'f = C,dy + Fdya + Ad), +Bd,, (34b)
Class 6gC3nl
(2 independe;t con;cants: dll,zdzz)2
L= - 3N2)N1d11 - Ny - N2)N2d22 (35a)
T=0D,4d,, +D.d (35b)
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Class 622(D,)
o

(1 independent constant: dlb)
L =20 (363)

T = Ad (36b)

14
Class 6mm§C6vl

(3 indep=ndent constants: dlS' gy d33)

2 2 3
= ( ',
L ‘Nl + NZ)N3(d31 + dlS) + N3d33 (37a
“ Cudy + Fdyy + Budy g (37b)
Class 6m2gD3hl
(1 independent constant: dll)
L= - 3)Nd (38a)
1 72771711
T = D,d}, (38b)
Classes 23(T) and ZBmngz
(1 independent constant: dl4)
L= 3N1N2N3d14 (39a)
T = Ed (39b)

14
As mentioned above, equetions (26b), (27b), etc., to (39b) are valid only
for N # 23, and for N = 23 the quantity T in these equations is identically
zero.
Equations (2la) to (39a) represent the most general form of the
expressions for the longitudinal piezoelectric effect for the 20 piezoelectric
crystal classes. Fach lattice plane (hk&) is characterized by its effective

plezoelectric coefficient L = Lhkk’ wnich is for triclinic symmetry obtained

by inserting cqu. (15) into equ. (2la), and for the crystal classes of higher
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symmetry by inserting the simplified form of equ. (15) appropriate for

the particular crystal symmetry into the corresponding equs. (22a) to (39a).

For each lattice plane (hkl) the electric fiecld coefficient -cot O (30Q/3K)

of the Bragg angle O = Ohkl gives according to equ. (13) an experimental

value for the corresponding linear combination Lhk2 of piezoelectric constants.

While no further simplification 1s possible for triclinic symmetry, it will

be shown below that for the crystal classes of higlier symmetry the expressions

for L given by equs. (22a) to (3%9a) may become much simpler if one or two

of the Miller indices are zero. However, in several instances the coefficients

of the piezoelectric constants in the expressions for L vanish, unless all

three Miller indices are nonzero. Thus for the experimental determination

of the complete set of piczoelectric constants the most general form of

the expressions for L as given in equs. (2la) to (39a) has to be used.
Similarly, equ-ticns (21b) to (39b) represent the most general form

of the expressions for the transverse piezoelectric effect in terms of the

components of the reflecting lattice plane normal §, the direction & of the

electric field, and the coefficients A+, A_ etc. defined in equs. (19a) to

(19k). According to equs. (18a) to (18c) the components of E, and according

to equs. (19a) to (19k) the coefficients A+, A_, etc. depend on the components

of N and on the free parameter ¢ defined in equ. (16). The components of ﬁ,

in turn, depend on the Miller indices according to equ. (15). Thus all

coefficients of the piezoelectric constants in the expressions for T depend

on the Miller indices in a rather involved manner. While for triclinic

symmetry the equations have to be used in this form, a cons:derablc simplifi-

cation occurs if one or two of the Miller indices are zero. However, for the

two monoclinic crystal classes 2 and m the cocfficients of some plezoelectric

constants (those of d14 and d34 for class 2, and of d24 for class m) vanish
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in these special cases. Therefore the complete set of plezoelectric
constants cannot be determined only from measurements of the transverse
piezoelectric effect perpendicular to these special lattice planes. In
these cases one has to use the general form of equations (22b) and (23b)
for the transverse piezoelectric effect or, alternatively, supplement the
equations for the transverse piezoelectric effect for the special set of
lattice planes with one Miller index zero by the general equations (22a) and
(23a) for the longitudinal piezoelectric effect.

In Tables 1 to 5 the simplified relations obtained from equs. (22a)
and (22b) to (38a) and (38b) are presented that result for the longitudinal
and transverse piezoelectric coefficients L and T in the monoclinic, ortho-
rhombic, tetragonal, trigonal and hexagonal classes if at least one of the
Miller indices is zero. For the monoclinic and orthorhombic classes the
general expressions for the longitudinal piezoelectric coefficients L have
also been included because they are needed for the experimental determination
of the complete set of piezoelectric constants. For completeness, the
equation for L for the two isometric classes 23 and 43m is also
presented as Table 6. The explanation of ‘[ables 1 to 6 is given below.

The simpler equations presented in Tables 1 to 6 are sufficient for
the experimental determination of the complete set of piezoelectric constants
for all crystal classes, except for triclinic symmetry. Therefore the geaeral
form of the equations (22a) and (22b) to (39a) and (39b) need not be considered
in the design of actual experiments. It may happen in certain cases, however,
that for the lattice planes with at least one Miller index zero that are
listed in Tables 1 to 6 the structure factor may be inconveniently small,
or venish exactly. In these cases and for triclinic symmetry one has to resort

to the general equations (21) to (39).
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ible 1. Crystal plate normal 3 = (ulu2u3), Miller indices hkf, face normal of reflecting plane N = (N1N2N3), and
expressions for L and T defined in equations (l4a) and (l4b) for monoclinic syst’.em..‘~
The base vectors 3 and E coincid: wich the Y and Z axes, respectively, and the base vector ; lies in the
X-Z plane, forming an angle B > $0° with the T axis.
- -+
tlass o (hk&) N £;nigsR L,T
(010) | (Ok0) | (010) L-d22
= kP ok R 52 2
(c,;) (hoR) | (E0Z) | £=(ha*-%c*C)/R;z=Rc*S/R T=£%d, +°d, +ELd,
R={hZax?+i2cx ahgarcrc)
3 constants) | (001) | (hkO) | (£n0) | £=ha*/R;n=kb*/R T=End,,
Re [h2arZri2pal |1/ 2
(NEO) | (W) | (En0) | E=ha*/R;n=kb*/R 1=63a, +En’d,,~En’d,
P e
3 2 2
=(ha*-Lc* sn=kb*/R:r=lc* =
(6ng) | (hkR) | (EnZ) | E=(hat-Re*C)/R;n=kb*/R;C=LeXS/R | Lan’dy,#E n(dy +d) I4NL7(d,3+dy )4ENZ(A ) 4 ) s+d )
R=[h2a*2+k2b*2+ll.20::*2--2h!L.'si*c*C]1/2 “
—
(100) { (h0O) | (100) L=d11
I(Cs) (0k0) | (010) T'=d12
(001) | (hk0) | (En0) | £=ha/R;n=kb*/R 1=t %d, +n’d,,
10 constants) R=[h2.'a"‘2+k2b*2]1/2
(FE0) | (hk0) | (EN0) | E=ha*/R; mekb*/R T=-£2nd ) -n°d 46 7nd
Re[hZax i Zpa?) /2
(Z0E) | (hOL) | (EOC) | E=(ha*-Lc*C)/R;L=Le*S/R Tecg?rd, -g3a. 4634, +£cd, ~Ecld, el
7 ) 11 13 31 33 15 °735
R={h2ax?+2%c*?-2ngarcxc) L/
.r= 3 2 2
(£0z) | (hOR) | (EOL) | E=(ha*~Lc*C) /R;L=2c*S/R Leg7d) 4607 (d) 4y JHE Ty 4 ¢
§=[hza*2+12c*2-2hla*c*C]1/2
3 2 2 2
=(ha* - . n= cr= =
(Eng) | (hk&) | (EnZ) | £=(ha*-Lc*C)/R;n=kb*/R;Z=Rc*S/R L=f d11+€n (d12+d26)+EC (d13+d35)+£ C(d3]+dlf)+
2 ,2..2,..2,,2 .2 1/2 2 3 |
R={ha* +k “b* 4L c*“-2hRa*c*C] +n ;(d324d24)+c cl33
a*=1/a sin B; b*=l/b; c*=L/c sin B; C=cos B; S=sin B
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Table 2. Crystal plate normal 5 - (a1a2a3), Miller indices hk{&, face normal of reflecting plane ﬁ - (N1N2N3)

and expressions for L and T defined in equations (l14a) and (l4b) for orthorhombic system.

Class o (hk2) N £5n38;R LT
(100) (0k%) (ong) n=k/bR; =L /cR T-n(dla
222(p,) R-lk/b)2+(2/c)2]1/2
’ (010) (hOR) (£00) g=h/aR;g=L/cR TeECd,
(3 constants) R-[(h/a)2+(2/c)2]1/2
(001) (hk0) (Eno) E=h/aR;n=k/bR T-End36
Re[ (h/a) 24+(2/c) 2] 112
(Eng) (hk) (Eng) E=h/aR;n=k/bR;”=L/cR LeEng(d, +d,gtdyc)
Re[ (h/a) 24 (/b) 2 (27 21 M2
(001) (hk0) (En0) E=h/aR;n=k/bR T-&2d31+n2d32
mm2(c, ) Re [ (h/a) 2+ (/b 212/ 2
(00%) (001) L=d,,
(5 constants) (Z08) (hOL) (€00 g=h/aR;g=L/cR Tog2d, #6245 -60%4,
Re[ (h/a) 2+ (2/c) 2112
(0zn) (0k2) (ong) n=k/bR;=L/cR T-n3d32+nc2d33-nc2d24
Re [ (k/b) 2 (2/c) 2112
€ne) | (k&) | (@) | Eehranin=k/bRigeL/eR Lo e (dy ) 2L (dypHdy ) 4004y

Re[ (h/a) 2+ (k/b) 24 (2/e) %)

1/2




Table 3. Crystal plate normal 3 = (alaza3), Miller indices

-24=

hkf, face normal of reflecting plane N - (N1N2N3),

and expressions for L and T defined in equations (l4a) and (l4b) for tetragonal system.

Class a (hke) N EinigiR L,T
(100) (0k%) (ong) n= k/aR;ge=2/cR Tenzd,
4(c,) Re[ (k/a) 24 (1) 1) /2
(001) (00%) {001) L-d33
(4 constants) (hk0) (En0) C-h/R;nfk/R T=d31
Re[n2412) 1/2
- 3 2 2
0 (hot) (€05 £=h/aR,=L/cR TeEd, 460 d 607
R=[(h/a) "+2/e) 1) 12
(100) (0k2) (onz) nek/aR;g=/cR Tngd,,
is,) R (k/a) "+ (/) 21/
(001) (hk0) (En0) E=h/R;nk/R ve(g2n)d, +End,
(4 constants) R-[h2+k2]l/2
oo (hog) €00 E=h/aR;g=L/cR rega 60k
Re[(0/a) 2+ (1/e) %)/
422(,) (100) (0K2) (ong) nek/aR; g=L/cR Tengd,,
(1 constant) Re [ (k/a) 2+ (2/c) 211/ 2
(001) (002) (001) Lmd,
4mm(C, ) (hko) (&n0) E=h/R;n=k/R T=dy,
Re[h24+k21/2
(3 constants) (305) (hot) (£07) E=h/aR;i=L/cR Teg 24, 46024, 607
R=[(h/a) % (8/c) 211/
4m(D, ) (100) (0k) (™Mz) n=k/aR;g=1/cR Tengd,,
(2 constants) R'[(k/l)2+(1/C)2]1/2
(001) (hk¢) (£n0) E=h/R;n=k/R T=End,

R- [n2+2] /2




S L T — ———

~25-

Table 4. Crystal plate normal 3 = (alazaj). Miller-Bravais indices hk%, for hexagonal indexing, face normal
of reflecting plane N = (N1N2N3). and expressions L and T defined in equatfons (l4a) and (l4b) for

trigonal system.

Class b1 (hkR) ¥ £;niGiR L,T
) (100) (2h,h,0) (100) L~d,,
3(c,) (0k2) (ong) n=2k//3aR; {=L/cR T--n2d11+ncdl .
Re[ (4/3) (k/a) 2 (2/c) 2 12
(6 constants) (010) (0k0) (010) L-d22
(2,0 | (§0D) | ge2h/aRiges/eR T--6%d,,-604),
R=[(2h/a) %+ (2/c)2)1/2
(001) (00%) (001) Ledy,
(2h,k-h,0) (ENn0) £=/3h/R;n=k/R Ted,,
Aaian el 12
(on) (0kL) (Ong) | nm2k//3aR;gmR/cR Lan’d, #6240 2e(d, 4, )
R=[(4/3) (k/a) 2+ /c) 2} 1/2
(0zn) (0kL) ong) n=2k/v3aR;z=/cR 'r--nzcdz2+m;2¢33+n3c|31-nczdlS
Re[(4/3) (k/8) 4@ /) 212
(100) (2h,h,0) (100) L~d;,
32(p,) (0k2) (ong) n=2k/¥3aR; £=L/cR T--n2d11+nCd ,
(2 constants) R'[(4/3)(k/ﬂ)2+2/c)2]1/2
(010) (0k0) (010) L"d22
In(C, ) (001) (00%) (001) Ledy,
(2h,k-h,0) (Eno0) E=/3h/R;n=k/R Tody,
(4 constants) R-[3h2+k2]1/2
(ong) (0kg) (ong) nm2k/V/3aR; £=2/cR Londy 4%, n7gdy 4 )
Re[(4/3) (k/a) 2+ (1/c) Y 1/2
(0%n) (0kL) (%) | n=2k//3aR;g=g/cR Ta-n’td, #nc2d, ind, -ncla
Re[(4/3) (k/a) 2+ (2/c) 2 1/2




Table 5. Crystal plate normal a= (ula203). Miller-Bravais indices hkl, face normal of reflecting plane

ﬁ = (N1N2N3). and expressions L and T defined in equations (Jl4a) and (1l4b) for hexagonal system.

Class a (hkg) N £insgR L,T
(100) (0kL) ong) n=2k//3aR;z=1/cR T=nzd, ,
6(Cq Re[ (4/3) (k/a) 2+ (/) 21112
(001) (oo%) (001} L=d,,
(4 constants) (2h,k-h,0) (€n0) £=/3h/R; n=k/R Ted,,
re(3n24c2] 172
(ong) (0k8) (onz) n=2k/v/3aR; =L/ cR Lag 'y p4n 0 (dy 4, )
Re[ (4/3) (k/a) 2+ (2/0) 212
. 2 3 2
ozn) (0k&) (onz) n=2k/v/3aR; ;=4/cR Tang"d,g#n"d, -ng7d,
Re[ (473) (k/a) 2+ (1) 2112
8(Cyy) (100) (2h,h,0) (100) L=d),
(2 consatants) (0l10) (Uk0) (010) L-d22
622(D) (100) (0k4) (onz) n=2k/v/3aR;z=L/cR T=n&d,,
(1 constant) R-[(4/3)(k[a)2+(£/c)2]1/2
(001) (00L) (oo1) L=d;,
6mm(C ) (2h,k-h,0) (En0) E=/3h/Rjn=k/R T=d,,
Re(3h2+k2] /2
(3 consteats) (ong) (OK2) (ong) ne2k/v3aR;z=L/cR L-§3d33+n2§(d31+d15)
Re[(4/3) (k/a) 2+ (2/c) 2112
(0zn) (0kR) (on2) n2k//3aRi gL /cR Teng’d 540’4y ne?d g
Re[ (4/3) (k/a) 24 (b/c) 21112
Emz(n3h) (100) (2h,h,0) (100) Led,

(1 constant)
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Table 6. Crystal plate normal, Miller indices (hk), face normal of

reflecting plane N = (N1N2N3), and expression L defined in

equation (1/4a) for isometric classes 23 and 43m.

z4

(hk) UH ) L

Ry

(&ng) (hik) (&ne) £=h/R;n=k/R3 ;=L /R 3Ened,

R=[n2+k2+22)1/2
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It is apparent from equations (2la), (22a), etc., to (39a), that
some of the piezoelectric constants enter the expressions for L only in
the form of linear combinations, so that the complete set of piezoelectric
constants cannot be determined from parallel-field reflection measurements
(3 = ﬁ) alone. Exceptions are the four classes 6, 6m2, 23, and 43m, for
which the quantity L depends on the individual piezoelectric constants only,
s0 that they can be determined from parallel-field ref'ection alone. For
all other classes, perpendicular-field reflection measurements (33 . ﬁ = 0)
are required in addition to, or instead of parallel-field reflection
measurements.

Another noteworthy feature of the above equations is that for the six
classes 4, 422, 3, 32, 6, 622, the piezoelectric constant d14 does not enter
the equations for L and therefore cannot at all be determined from parallel-
field reflection measurements.

According to equations (21b), (22b), etc., tc (39b) the quantity T
depends in all cases on all individual piezoelectric constants, Exceptions
are particular directions of ﬁ and/or values of ¢, for which some of the
coefficients given in equations (19a) to (19k) may become equal, or vanish.
In general, however, it is possible to determine the complete set of piezo-
electric constants from a sufficiently large number of perpendicular-field
reflection measurements alone. In practice, however, it is desirable to use
as many parallel-field reflection measurements as possible, because the
specimen preparation is simpler and experimental errors may be expected to

be smaller in this case.
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3.4 Specimen Orientation

For the measurement of the longitudinal pilezoelectric cffect crystal
platelets with electroded pairs of (hkR) faces with normal N = 3 are required.
For the transverse piezoelectric effect platelets with electroded pairs of
faces with normal 3 perpendicular to the normal N of the reflecting (hkl) face
must be prepared. In both cases it is desirable to choose the direction ﬁ,
and in the second case also the direction 3, along high symmetry directions
(parallel to rotation axes, perpendicular to or within mirror planes) so as
to achieve accurate orientation and reduce the effort required for the orienta-
tion and preparation of the platelets. However, since either or both piezo-
electric effects may vanish aloug some symmetry directions the requirament
of non-vanishing piezoelectric effect eliminates many otherwise suitable
lattice planes. It is further desirable, that for a given platelet normal 3
several non-equivalent side faces (hk®) éxist, which lead to different linear
combinations of piezoelectric constants in the expression for the transverse
plezoelectric coefficient T. Ideaily, it would be desirable to determine the
complete set of piezoelectric constants from one polygon-shaped crystal plate-
let with several side-faces, so as to require only one pair of electroded
surfaces for measuring the longitudinal piezoelgctric effect in the direction
of the plate normal 3, and the transverse effect for several non-equivalent
side face normals N. Unfortunately, this ideal design is possible only for
some of the high symmetry crystal classes. In general, more than one type of
crystal platelet is required for determining the complete set of piezoelectric
constants. In this cgse it is desirable to perform the measurements mostly,
or if possible, exclusively on the basis of the longitudinal effect, because

the corresponding platelets require only one pair of parallel faces and are
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therefore easier to prepare than platelets for the measurement of the
transverse effect, and because measurements of the longitudinal effect can
be done more accurately and more easily than those of the transverse effect.
As mentioned above, this can only be achieved for the four classes 3, Emz,
23 and 43m.

For che triclinic system no symmetry directions exist, so that (at

least) 18 platelets corresponding to 18 different face normals o are required.

Since according to equation (2la) the longitudinal piezoelectric coefficient
L depends on 10 linear combinations of piezoelectric constants, 10 of the 18
platelets may be chosen such that their faces correspond to 10 differént
(hk®) planes. The remaining (minimum of) 8 platelets must be prepared for
the transverse piezoelectric effect in such a manner that the normals & of
the pair of large electroded surfaces are perpendicular to 8 different (hk2)
side faces. The resulting piezoclectric coefficients depend on the orierta-
tion of the crystallographic axes with respect to the cartesian coordinate
system chosen. It is recommended to use the base vectors of the direct and
reciprocal lattice according to the 1949 IRE convention (Standards on Piezo-

electric Crystals, 1949):

a= (a sin B, 0, a cos B)
g = (-b sin o cos Y*, b sin a sin Y*, b cos o)

T =(0, 0, c)

ax (a* sin Y*, a* cos y*, 0)

-
b*

(0, b*, 0

-
ck = (-c* sin a* cos B, c* cos a*, c* sin a* sin B)
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Here it is (International Tables for X-Ray Crystallography, 1959):

_ bec sin a

ak : v y etC.,

a+B+Y'sin -atBty sin

a-f+y atB-y
2 2 7 si

2

V = 2abc sin

cos o* = (cos B cos y - cos a)/sin B sin Yy , etc.

It is further o > 90° , B > 90° .

For the symmetry classes of higher symmetry the 1949 IRE convention
(Standards on Piezoelectric Crystals, 1949) is easily summarized as follows.
The twofold axes of class Z(CZ)’ and the mirror plane normal of class m(CS)
coincide with the crystallographic b axis, which is ; aced along the positive
Y direction of a right-handed cartesian coordinate system. The C-axis is
placed along the positive Z-direction, and the a-axis (being normal to the
b-axis and forming an angle B > 90° with the E-axis)is lying in the XZ-nlane.
For the orthorhombic, tetragonal and cubic systems the crystallographic axes
coincide with the X,Y and Z-axes. For the trigonal and hexagonal systems
the threefold (or sixfold) axis is parallel to the Z-axis, and the positive
X-axis coincides with any of the three secondary axes ;1, 32, ;3 perpendicular
to the threefold (or sixfold) axes. The Y-axis is perpendicular to the X-

and Z-axes, so as to form a right-handed cartesian coordinate system.

3.5 Discussion of Tables 1 to 6

For the remaining 19 piezoelectric crystal classes the existence
of symmetry elements reduces not only the number of independent piezo-
electric constants, but also leads tn the existence of high-symmetry
directions 3 with non-vanishing longitudinal and/or transverse piezoelectric
effect. 1n Table 1 to 6 such pairs of high-symmetry directions 3, ﬁ, the

associated Miller indices hk® and the quantitites L or T describing the
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longitudinal and transverse piezoelectric effect as defined in equations

(l4a) and (l4b) are listed for the crystal classes of the monoclinic,
orthorhombic, tetragonal, trigonal, hexagonal and cubic systems, respectively.
In the crystal classes of lower symmetry the number of high symmetry
directions is too small for determining the complete set of the piezoelectric
constants. In these cases the expresslions for both 3 and ﬁ and for the

associated values of L and/or T are also given for a general set of Miller
indices.

The results in Table 1 indicate that for the class 02(2) the 8
independent constants may be determined from 5 crystal platelets. From
>
one platelet with orientation a = (010) it is possible to determine the

d and d

21 d22, 23 25 but for the remaining four constants

four constants d

dlé’ d16’ d34 and d36 one crystal plate each is required. If the platelet

-
with orientation a = (010) has 3 side faces corresponding to 3 sets of
non-equivalent Miller indices hO% measurement of the longitudinal effect
glves d22, and of the transverse effect perpendicular to each of the 3

side faces gives 3 linear combinations each of the constants d21, d23 and

d Of the remaining four measurements three may be made by using the

25°

longitudinal effect and give (if the above mentioned constants d21, d22,

d23 and d25

+ d36' In order to determine the constants d14 and d36 individually, one

additional measurcment based on the transverse effect is required.

have been determined independently) the constants dl6’ d34, d14

For the determination of the 10 independent constants of class Cs(m)
9 platelets with different orientations are required. While the platelet

with a = (100) permits to determine d 1 through the longitudinal effect,

1

and d12 through the transverse effect, the remaining 8 constants require

for their determination one platelet cach. While 5 linear combinations of



-33~

these constants (d26' d13 + d35, d31 + dlS’ d32 + d34, d33) may be
determined from the longitudinal effect, the remaining three independent
measurements must be based on the transverse effect.

As shown by the data in Table 2 the 3 independent piezoelectric
constants of class 222 have to be determined from the transverse effect by
using 3 different crystal platelets with faces normal to the 3 coordinate
axes, respectively. The longitudinal effect on a platelet with a pair of
general (hkR) faces permits an independent measurement of the sum dié +

d,. +4d.. .

25 36

The determination of the 5 independent constants for class mmZ(CZV)
is illustrated below with the aid of a numerical example.
The discussion of Tables 3 to 6 for the remaining crystal classes

proceeds along the same lines as above and need not be explicitly presented

here.

3.6 Numerical Example

In order to illustrate and facilitate the use of Tables 1 to 6 the
expressions for L and T required for the determination of the 5 independent
constants of Bi3TiNb09 (crystal class mm2) will be given here. The crystal
structure of Bi3TiNb09 has been refined from x-ray and neutron diffraction
duca by Wolfe, Newnham, Smith and Kay [1971]. These authors list the
observed and calculated absolute values of the structure factors of a large
number of non-equivalent reflections, from which suitable high intensity
reflections can be selected.

According to Table 2 the 3 constants d31, d32 and d33 can be determined
from one platelet with a pair of electroded (001) faces, if the longitudinal

effect is measured by Bragg reflection on the (001) face, resulting in d‘3,

and if the transverse effect is mecasured by Bragg reflection on two different

=
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side faces of the type (hk0), which gives two different lincar combinations

of d31 and d32. Based on the structure factors listed by Wolfe, Newnham,

Smith and Kay [1971] we select the three reflections 0 0 10, 040, and 400.

The corresponding face normals ﬁ are (0,0,1), (0,1,0) and (1,0,0), respectively.
From the lattice constants a = 5.431 Z, b = 5.389 X and ¢ = 25.050 Z given

by Wolfe, Newnham, Smith and Kay [1971] the corresponding Bragg angles are
calculated for CuKa radiation and are listed in Table 7, together with the

values of hk&, with the structure factors, and with the values of the platelet
normal & and the values ﬁ of the three reflecting lattice planes. In Figure la
the shape and orientation of the platelet with faces corresponding to these thrce
normals and the corresponding Bragg angles Ol, 02 and 63 are illustrated schemat-
ically. Also listed in Table 7 are the corresponding values of L and T obtained
from the last column of Table 2. According to equation (13) these quantities are
equal to the electric field coefficient - cot Oi(GOi/aE) (1 = 1,2,3) of the
associated Bragg angle. Denoting the experimental values of the electric

field coefficient by Mi(i = 1,2,3) the three piezoelectric constants d33,

d32 and d31 are then given by the first three equalities listed in the last
column of Table 7. According to Table 2 the remaining two constants dlS and

d24 have to be determined from the transverse piezoeclectric effect on two
different platelets with side faces (hO2) and (Ok%), with the corresponding
normals of the side faces (£07) and (OnZ), respectively, and with normals

(ZOE) and (0Cn) of the electroded main faces. In the fifth column of Table 2

the components Enz)of these two normals are expressed in terms of the hk& values.
On the basis of the structure factors listed by Wolfe, Newnham, Smith and

Kay [1971] we sclect the reflections 0 2 10 and 2 0 10. In Table 7 their structure

> -+
factors, the normals N of the side faces and the normals a of the electroded

main faces as calculated from columns 2, 4 and 5 of Table 2 are listed
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Electric field

Figure la
Orlentation of (001l) platelet for determining electric field

coefficient of O, through longitudinal piezoelectric effect,

1

and of 92 and 63 through transverse plezoelectric effect
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together with the associated Bragg angles 64 and 65. The orientation of
these two platelets and the location of the two Bragg angles 64 and 65 is
illustrated in Figures 1lb and lc. The last column of Table 7 gives the

corresponding expressions for the quantity T obtained from the last column

of Table 2. If experimental values of the electrical field coefficient

il 255 6.2 S

M1 = - cot 61(801/8E) are availlable for all five Bragg angles 61 €1
described, the equations given in the last column of Table 7 for Ml’ MZ"'MS
represent 5 equations for the 5 unknown piezoelectric constants d33, d32, d31,

d and d, ..

24 15

According to Table 2 an additional independent measurement of the longi-
tudinal effect on a general (hk%) plane gives a linear combination of all 5
piezoelectric constants. Choosing for this purpose the (2 2 L0) reflection
glves the entries listed un the last line of Table 7. The platelet orienta-
tion and the Bragg angle 06 are illustrated in Figure 1ld. The six expressions

for M., M. ... M6 listed in Table 7 represent 6 equations for the 5 unknowm

1’ 72
plezoelectric constants. Their best values can be obtained from a standard
simultaneous le..t squares fit.

For better accuracy additional platelets representing different values
of (0k&), (hO&) or (hkZ) may be used ad libitum. It should be noted that
for a given (hkf) face higher order and lower order reflections corresponding
to different Bragg angles may be measured and should give the same value for
the electric field coefficient. For example, the longitudinal field coefficient
of all (002) reflections should be equal to d33 for any value of . Wuile the
lower order reflections 002, 004, 006, 008 are of lower intensity than the

0010 reflection, the reflection 0 0 20 is also relatively strong and may be

used to obtain an additional independent value for d33.
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Electric field E

Figure lb

Orientation of platelet for determinlng electric field

coefficlent of 04 through transverse piezoelectric effect
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Figure lc

Orientation of platelet for determinlng electric fleld

coefficient of 05 through transverse plezoelectric effect



-40-

—
Goppo Il @

—
Electric field E

Figure 1d
Orientation of (115) platelet for determining electric field

coefficient of Ob through longitudinal piezoelectrlic effect
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In order to reduce the experimental errors arising from the specimen
orientation it appears more appropriate, however, to use additional crystal
platelets representing different values of (0k&), (hO%), or (hk%), which
would lead to different numerical coefficients of the piezoelectric constants

in the equations for MA’ M5 and M6’ respectively.

4. Elastic and Thermoelastic Properties of Lead Potassium Niobate, quKNb5915

Lead potassium niobate, PbZKNbSOls’ occurs in the tungsten bronze
structure and has electromechanical coupling factors up to 73 percent
(Yamada, 1973). Since Yamada (1973) also reported that the temperature
coefficients of the fundamental resonance frequencies of crystal plates cut
along different directions have different signs, one may expect the temperature
coefficient to vanish for intermediate directions. Provided that crystals of
sufficient quality can be prepared, so as to reduce the ultrasonic attenuation
to the intrinsic limit corresponding to anharmonic phonon-phonon interactions,
and provided this limit is sufficiently low so as to be comparable to
ultrasonic losses in o-quartz, lead potassium niobate would be a superior
substitute for o-quartz in SAW devices. As reported above in section 2.3, our
crystal growth efforts on this material met with considerable difficulties,
but we did succeed in obtaining several small pieces which appear to be
predominantly of single domain type. In the following we report our prelimi-
nary data on the elastic and thermoelastic properties and compare the results
with those recently published by Nakano and Yamada (1975) and Yamada (1975).

szKNbSO15 belongs to the orthorhombic crystal class mm2 and is ferro-
electric, with the spontanecus polarization along the b axis. The Curie
temperature is 450°C (Nakano and Yamada, 1975).

In Table 8 the three lattice parameters and their associated linear

thermal expansion coefficients are listed. Based on the present x-ray results
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Table 8. Lattice parameters (R) and linear thermal expansion coefficients

(10'5(°C)'1) of Pb,KNbO, . at 20°C.

2 5715
L a b c
L Present 17.772 17.972 7.830
Yamada® 17.78 18.05 3.917
L ‘9T
Yamada+ 1.4 -0.3 1.7

*
T. Yamada, Appl. Phys. Lett. 23, 213 (1973)

+T. Yamada, J. Appl. Phys. 46, 2361 (1975)

and lattice constant data for lead niobate, our lattice parameter c is

twice that of Yamada's (1973) value. While the lattice constants agree
rather well, the thermal expansion coefficients differ substantlally; along
the b axis even the sign is different. Although different experimental
techniques were used (x-rays in the present work and a dilatometric technique
by Nakano and Yamada (1975)) the differences cannot be attributed to this

alone, and are more likely to point to differences in comp~* .ion, structure

)
’

or degree of disorder.
The calculated and measured density values in Table 9 show rather small
differences between Yamada's and the present results, perhaps too small to
point toward substantial compositional or structural differences. However,
in order toc explore the effect of ordering phenomena on property differences,

a considerable amount of further work on possible correlations between
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Table 9. Density values (in g/cm3) of szKNbSO15
Calculated (X-Ray) Measured

Present 6.15 6.23

Yamada® 6.12 6.14

*
Yamada, Appl. Phys. Lett. 23, 213 (1973)

thermal history of the samples, their relative x-ray intensities and their
elastic and thermoelastic properties is required. Since the measured
densities are larger than the calculated values, the crystals used both by
Yamada and in the present work may have had a small excess of lead.

In Table 10 the temperature coefficients of the transit times T for
longitudinal waves along the three crystallographic axes are compared with
Yamada's (1975) values for the temperature coefficients of the corresponding
principal resonance frequencies f. The relation between these two quantities

is (Chang and Barsch, 1976)

_1.[32] _ .1 [91] okz 3k)
£ 3T T \oT P

A

Here k denctes the electromechanical coupling factor, and L the solution of

the equation
tan Z = Z/k2

For small values of k and/or (9k/9T) the temperature coefficients of f and
T should be numerically equal, but opposite in sign. According to Yamada
(1975) the X- and Y-cut specimens heve zero or smail values of k for longi-

tudinal waves, respectively, so that, unless (0k/3T) is excessively large,
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Table 10. Temperature coefficients of transit time for
longitudinal waves, (1/7)(9t/9T), and of
fundamental resonance frequency, (1/f)(3f/dT),
(both 1n 10°0(°c) ™D for X, Y and z cut of

o
PbZKNb501 at 25°C.

5
X-cut Y-cut Z-cut
(L c-axis) (| a-axis) (| b-axis)
(1/71) (91/9T)
(Present Work) -3.03 84.00 74.82
(1/£) (3£/aT)
200 25 =30
(Yamada*)
L

*
T. Yamada, J. Appl. Phys. 46, 2894 (1975)

(1/7) (37/9T) =(1/£)(3£/3T). The data in Table 10 indicate that this
relation does not at all hold. Again, this may be attributed to differences
in composition, structure or degree of order.

The orientation of the cartesian x, y and z-coordinate axes along the
crystallographic c, a and b-axes, respectively, follows the convention of
Yamada (1975). These directions were determined optically by means of the
quartz wedge method (see, e.g. Hartshorne and Stuart, 1964). In this manner
a value of An = n,-mn = 0.064 for the differencc of the refractive indices
along the a and b axes was determined at 300°K, as compared with a value of
An = 0.055 given by Nakano and Yamada (1975). The a and b axes can be dis-
tinguished on the basis of the sign of An and the fact that according to
Nakano and Yamada (1976) the a-axis is the slow, and the b-axis the fast

direction.
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In Table 11 the on-diagonal elastic constants and their temperature
coefficlents ara listed. The assignment of the coordinate axes follows
Yamada (1975), that is X||c, Y||a, and z||b. Except for Ceg considerable
differences in the elastic constants of Yamada and the present data occur.

No other explanation except the above mentioned conjecture about differences
in the nature of the sample can be offered.

It should be noted here that the as-grown boules obtained by us are of
considerably higher quality than those of Nakano and Yamada (1975). Whereas
the specimen on which the above elastic data were obtained do nct show a
significant amount of elastic twinning under a polarizing microscope (i.e.
90° domains for the spontaneous polarization PS||b-axis, or presence of domains
with their a and b axes interchanged) the specimen obtained by Nakano and
Yamada (1975) were thoroughly twinned and had to be de-twinned by strain
annealing in an electric field. It is conceivable that by this procedure
residual strains are introduced which could affect the elastic constant data.

Althouvgh the specimen used in the present investigations were virtually
free of elastic twins, the presence of electrical twins (i.e. 180° domains
for the spontaneous polarization) cannot be ruled out, since this type of twin
cannot be detected under a polarizing microscope. In such twins all five
plezoelectric constants of the class mm2 (that 1s, elS’ €4 €31 s 033)
show opposite signs. However, since thé plezoelectric stiffening term in the
Kristoffel tensor depends only on the square of the plezoelectric constants
the results for the elastic constants are not affected by the presence of
180° domains.

According to Table 11 the temperature coefficient of cll is positive, so that

one may expect temperature compensated cuts to exist for longitudinal waves along

a direction close to the X-direction (c-axis). Unfortunately, this is not where the
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D 12 2
Table 11. Adiabatic on-diagonal elastic constants cuv(lo dynes/cm”),
and their isobaric temperature derivatives (acﬁv/ T)p

(10’ dynes/cm?) for Pb.KNb.O.. at 25 C

2"Ps5%15
n 11 22 33 44 55% 66
D Present 1.46 1.03 1.45 .450 . 600
CUV o
Yamada 1.66 1.63 1.91 0.66 0.57 0.63
fr— CD —
n Present | +.465 -18.39 -29.49 -2.83 | -5.50
3T ,

*
This constant could not be measured since with the presently availlable
crystal no echoes of the ultrasonic signal could be received.

+T. Yamada, J. Appl. Phys. 46, 2894 (1975)

electromechanical coupling factor reaches its maximum (Yamada, 1975). However,
for the exact determination of the orientation of temperature compensated cuts
for bulk or surface waves accurate values of all elastic, dielectric and
plezoelectric constants and their temperature derivatives are needed. It is
conceivable that the electromechanical coupling factor for these directions
turns out to be larger than for o -quartz and a-berlinite (Chang and Barsch,
1976).

Our crystal growth efforts to obtain still larger single crystals
required for the measurement of the remaining elastic and thermoelastic
constants, and for the independent measurement of the dielectric and

plezoelectric constants are being continued.
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