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1.  Technical Summary 

1.1 Technical Problem 

The objective of the research of this contract is to find temperature 

compensated materials for use in surface acoustic wave (SAW) signal processing 

devices, i.e. materials with large electromechanical coupling, low ultrasonic 

attenuation and a vanishingly small temperature coefficient of the delay time. 

The electromechanical coupling factor should be substantially larger than for 

a-quartz, which is presently used in temperature compensated SAW devices. 

1.2 Methodological Approach 

The research consists of:  (A) both exploratory and systematic crystal 

growth studies on a variety of materials which are expected to be temperature 

compensated for bulk waves and which have been selected earlier under AFCRL 

Contract F19628-73-C-108 on the basis of certain heuristic criteria (Barsch 

and Newnham, 1975), and (B) measurements of the single crystal elastic and thermo- 

elastic properties of the above grown crystals to determine whether they possess 

temperature compensated crystallographic directions for bulk waves, and 

measurements of their piezoelectric and dielectric constants and their corres- 

ponding temperature coefficients to check the suitability of these materials for 

surface wave device applications. 

1.3 Technical Results 

1.3.1 Crystal Growth 

A. Crystal Growth; The crystal growth effort centered on Li2SiO~, 

Ba2Si2TiOs, and PbjKNb^O . Both Bridgman and Czochralskl crystal growth 

experiments were performed on Ll-SiO-, but the boules obtained were 

polycrystalline. The high temperature behavior of this phase was examined by 

DTA and high temperature x-ray techniques and indicated no major phase changes 

between room temperature and the melting point of LijSiO-,. Various shielding 
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arrangements and temperature stability of the growth system were examined to 

determine their effects on the quality of the boules.  Boules of Ba^i^iOg 

were pulled both from stoichiometric melts and from TiO -rich melts.  However, 

good quality crystals were not obtained in either case. The cracking problem 

in pulled Pb-KHbcO.. crystals persisted, but was reduced by varying the lead 

content of the melt and decreasing the diameter of the boules. Several single 

crystal pieces barely large enough for measurements were obtained. 

1.3.2 Measurement of Elastic, Thermoelastic. Piezoelectric 
and Dielectric Properties 

The theoretical equations required for the experimental determination of 

the complete set of piezoelectric constants from X-ray measurements have been 

derived.  For this purpose the expression for the quantity (9e/eE), where 9 

denotes the Bragg angle and E the magnitude of an applied electric field Is 

calculated as a function of the field direction and the reflecting lattice plane 

normal.  For all 20 crystal classes exhibiting the piezoelectric effect explicit 

expressions are given for the longitudinal and transverse piezoelectric effect, 

corresponding to parallel-field and perpendicular-field reflection, respectively. 

For the 19 piezoelectric classes of the monoclinic, orthorhombic, tetragonal, 

trigonal, hexagonal and cubic systems explicit expressions for (39/eE) in terms 

of the Miller indices of the reflecting planes ari given for the simplest crystal 

cuts with respect to the symmetry elements present. 

The on-diagonal elastic constants c  , c^t  c^y  c^ and c66, and their 

temperature coefficients have been measured ultrasonically for lead potassium 

niobate, PboKNbr0,r. The elastic constant values differ considerably from results 
2  5 15 

given by Yamada. The temperature coefficient of the longitudinal modulus c^ is 

found to be positive, substantiating üarlier indications that lead potassium 

niobate should have temperature compensated cuts and therefore could be a 

superior substitute for ot-quartz in SAW devices. 
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1.4 DoD Implicati ; 

For one of the materials investigated, lead potassium niobate, one may 

expect the existence of temperature compensated cuts for bulk and surface waves, 

with substantially larger electromechanical coupling than for a-quartz. Thus 

by replacing quartz as a substrate material in surface acoustic wave (SAW) devices 

by lead potassium niobate insertion losses can be reduced and the operating 

frequency and/or bandwidth can be increased. in  this manner the efficiency, 

reliability and capability of military communications and Radar systems utilizing 

SAW signal processing devices, such as multichannel communications, secure anti- 

jam communications for satellites, miniature aivonics and electromagnetic counter 

measures, can be improved. 

1.5 Implications and Further Research 

It has been demonstrated that the search for new temperature compensated 

materials with properties superior to those of a-quartz through the approach used 

under the present contract can be successful. One may therefore hope that a 

continued systematic search for ne« temperature compensated materiais under the 

present contract may, even with the low funding level, eventually lead to 

the discovery of additional, perhaps even more suitable, materials. To this end 

continued t_rystal growth efforts are required to obtain suitable single crystals 

for the physical property measurements, which are necessary to assess the use of 

a given material for SAW device applications. 

1.6 Special Comments 

No special comments are offered at this time. 



pp; 

■4- 

2.  Crystal Growth Results 

2.1 Lithium Silicate, LiJäiO- 

Polycrystalllne starting material of this phase was synthesized at 

900oC from Li?CO„ and SiO«. Attempts were made to grow the lithium metasilicate 

from the melt by both Bridgman and Czo-:hralski techniques, with the latter 

appearing most promising. Milky, polycrystalllne boules were all than could be 

obtained from the Bridgman directional solidification experiments, even when 

slow growth rates of 0.8 nm, hr were used. The temperature gradient, at the melt- 

crystal interface was about 25 CVlnch in these experiments. 

Czochralski crystal pulling experiments on Ll.SiO- were performed with 

two different pieces of equipment. The first ones were with an Arthur D. Little 

model MP puller heated by an rf induction generator. Since cracking of the 

boules persisted even after using various shielding and insulation schemes, we 

decided to use an NRC puller equipped with a very stable resistance furnace 

built for this puller. The central furnace tube is wound with Pt-10% Rh, and 

this is surrounded by a larger tube wound with Kanthal. The furnace is equipped 

with a proportional controller and a Data-Trak for programmable heating and 

cooling cycles. A special "cover" for shielding above the crucible was fabri- 

cated from an inverted kyanite crucible fitted with a side arm and window for 

viewing. The temperature gradients for the first three inches above the melt 

varied with shielding designs from 70c/inch to 200o/inch. This cover, the 

stability of the furnace (less than ± 1/2° fluctuations), and slow pulling rates 

of about 2 mm/hr greatly increased the perfection of the boules, but they 

remained polycrystalllne. Nucleating a crystal on the platinum extension to the 

pulling rod and the necking of crystals has been a problem because of (i) viewing 

difficulties, (11) the good shielding and resultant reduced temperature gradients 

above the melt surface, and (ill) the extreme sensitivity of the crystal diameter 
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to the furnace temperature. These problems should be eliminated with the use 

of seeds cut from the polycrystalline boules obtained, and a newly designed 

viewing port. 

The possibility of a phase transition causing the cracking in Li2Si03 

was examined by DTA and high temperature x-ray experiments. The DTA experiments 

showed a small endothermic peak at about 1030° and then the melting point at 

1200oC. High temperature x-ray diffraction patterns taken at 835°, 1060°, and 

ln.560 showed only the expected thermal expansion of the orthorhombic unit cell; 

no new peaks were observed. These high temperature patterns are now being 

examined to determine if anisotropy in thermal expansion could be great enough 

to contribute significantly to the cracking problem. 

2.2 Fresnoite. Ba Si TiO- 

In previous growth experiments on Bm-SijjTIOg, its high melting temperature 

of 1360oC was difficult to maintain in the center of the insulated platinum 

crucible without melting the crucible. This problem was overcome by various 

heat shielding arrangements around the crucible as well as reflectors and shields 

above the crucible, but only poor qualitv, cracked crystal boules were obtained. 

To circumvent the problem in another way, flux-pulling experiments were attempted 

since the temperature requirements are not so severe. Very small crystals of 

fresnoite have been grown by slow cooling of Ti02-rich melts at the National 

Bureau of Standards, and our own DTA experiments indicated that additions of 

TiO to stoichiometric fresnoite lowers the melting temperature significantly. 

Therefore, we carried out growth experiments after adding various amounts of 

TiO ranging from 5 to 30 wt.% to fresnoite.  In all instances Ba^i^iOg could 

be pulled from these molten solutions, but all the crystal boules contained 

numerous cracks and appeared more and more milky with increasing amounts of Ti02 

in the melt. With 30 wt.% excess Ti02 the melting point was lowered about 150° 
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so that a boule could be grown without extraneous heat shields, but the boulep 

were still cracked. A thin slab of crystal observed under the polarizing 

microscope showed appreciable amounts of TiO- flux intergrown with the fresnoUe. 

Even with slow pulling rates of about 2 mm/hr, the Ti02 flux inclusions are still 

a serious problem. 

2.3 Lead Potassium Niobate, Pb2KNb5015 

Several final Czochralski growth experiments were carried out on Pb2KNb5015. 

By varying the content of lead oxide in the melt, small boules of approximately 

10 to 15 mm in diaiu^.ter were grown in which the cracking was reduced. Several 

oriented and parallel-epiped-shaped specimens were prepared for the ultrasonic 

measurements. When viewed under a polarization microscope one specimen appears 

to be homogerieous and free of internal strains and is therefore likely to consist 

of a single domain. 

3. X-Ray Determination of ?''iezoelectric Constants 

3.1 Introduction 

Foi the calculation of the electromechanical coupling factor the complete 

set of piezoelectric constants has to be known.  In the preaant investigation the 

piezoelectric constants are being determined by measuring by means of x-rays the 

elastic strain which is induced in a crystal by an applied electric field. This 

method was first used by Bhalla Bose, White and Cross (1971) to measure the 

piezoelectric constant d  of ct-quartz. These authors found good agreement with 

earlier data obtained with other methods. As pointed out by Bhalia, Bose, White 

and Cross (1971), the x-ray method has several advantages over other methods.  Among 

these are its ready applicability to small crystals (about 1 mm x 1 ram x 0.1 mm) and 

the possibility to distinguish spontaneous and induced strains in ferroelectric 
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crystals and to determine the piezoelectric constants of individual domains. 

In addition, the x-ray method avoids r.ome of the potential difficulties 

associated with ot .er methods, such as the occurrence of mode coupling in 

the widely used resonance-antxresonance method (see, e.g.. Mason, 1950). 

The theoretical equations for the x-ray detc-rlnation of the complete 

set of the piezoelectric constants for crystals of all twenty crystal classes 

which exhibit the piezoelectric effect have been derived.  In the following 

the derivation and the results will be presented, and a numerical example 

will be discussed. 

3.2 Theoretical Derivation 

Bragg*s form of the considition for constructive reflection of an 

incident x-ray beam by a lattice plane with Miller indices hid and inter- 

planar spacing d . . is given by 

sin 0 = ^— (1) 
2dhk)l 

where 

1/2 - ^ - PL*. • KJ1U <2> 

and 

d,,, „        hkÄ      ^ hkÄ,       hkÄ. 
hkJt 

(1, fl  = ha* + kb* + Ic* (3) 
hkx, 

denotes a reciprocal lattice vector, a*, b*, c* are the base vectors of 

the reciprocal lattice defined by a • a* - 1, a • b* » 0, etc., where a, b, 

c are the unit cell vectors of the direct space lattice.  If, as in equation 

(1), the order of the reflection appears explicitly the Miller Indices must 

be assumed to consist of coprime integers (i.e. of integers without a common 

factor except unity). 
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Bv applying an electric field E with components E = Ea (a -re the 

direction cosines, and r = 1,2,3 denotes three cartesian cr irdinate axes) 

to a crystal, an elastic strain e (i,j ■ 1,2,3) is induced through the 

converse piezoelectric effect according to (Nye, 1957) 

eiJ = driJ Er 
(A) 

d ., denotes the third rank tensor of the piezoelectric strain constants, 
rij 

and the summation convention is used here and subsequently (i.e. summation 

over the three values 1,2,3 is implied for every pair of identical indices). 

Of course, the components E of the electric field E and of the strain 

tensor e.., and the set of piezoelectric constants d .. must be referred to 
ij rlJ 

a common cartesian coordinate system with axes, x-, x,, x_. 

In order to obtain the dependence of the reciprocal interplanar distance 

d~ „ on strain e^, consider the matrices A and A* composed of the unit cell 
hkÄ, ij s?   » 

vectors of the direct and reciprocal lattices, respectively, according to 

A* = 

1 bi c! 

a*2 b* c! 

a*3 
b5 c5 

(5) 

The relations a • a* = 1, a • b* = 0 etc. can then be written in matrix 

notation as 
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A A*T = AV - 1 (6) 

where the supersclpt T denotes the transpose matrix, and 1 the unit 

matrix. 

In the approximation of the linear theory of elasticity under the 

influence of a strain e  the base vectors change according to a(E) * (1 + e)a(O), 

etc., where e denotes the strain tensor £.. in matrix notation. Therefore, 
» ij * 

the direct and reciprocal base vector matrices change according to 

A(e) = (1 + e)A(O) (7a) 

A*(e) = (1 + e)"^*^) - (I -  e)A*(0) (7b) 

In the spirit of the linear theory of elasticity, higher than first powers 

of e have been neglected in the last step of equ. (7b). 

According to (7b) a reciprocal lattice vector G..» changes according 

to 

5hu(|>- (i-^W^ w 

Therefore, 

«W^ • <Wf> - w^ * Ku^ - 2^hw^ • i Wi» (s) 

and 

Ghki(G) =GhU(0)(1 " (N '^ (10> 
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where 

(11) 

denotes the normal of the lattice plane (hki). 

In view of equsi. (1), (2), (4) and (10) the diffraction angle 0 depends on the 

magnitude E of the electric field, 0 = 0(G(E)), SO that one obtains by 

differentiaticn (summation convention!) 

r3E 
(Un  sin Ql 
I 3E    J 

^nGhUl r9£ 

9e 
ij 

I l3E / \ r 3E 

or 

cot 0 
90 
3E " ar NiNJ driJ 

(12) 

This relation is the generalized form of equ. (6) of the paper by Bhalla, 

Bose, White and Cross (1971).  For the special case that both the direction 

of the electric field and the reflecting lattice plane normal are in the 

x1 direction, a - 6, , Ni - 6 , N - 5^ (6^ denotes the Kronecker symbol, 

i.e. ö  »1 for m » n = 1,2,3, and 6  - 0 for m ^ n), the above equ. (12) 
mn mn 

becomes equivalent to equ. (6) of these authors. 

Equ. (12) provides the theoretical basis for the experimental determi- 

nation of the complete set of piezoelectric constants of any piezoelectric 

material.  In order to determine the complete set of piezoelectric constants 

the dependence of the reflection angle 0 on the magnitude of the electric 

field must be measured for a set of combinations of directions a,N equal in 

number to, or if redundancy checks are desired, larger than the number of 

independent piezoelectric constants corresponding to the crystal class of 

the material under investigation. 

In order to eliminate electrostriction the measurements should be carried 

out with field reversal which changes the sign of equ. (12), but not of the 

quadratic electrostriction effect. 
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Application of the eleclric field requires a set of thin platelets 

of the piezoelectric materials with plane parallel electroded faces, so that 

the direction of one of the two face normal« of opposite directions coincides 

with the direction of a - (a^o^) of the electric field.  In practice, the 

direction of the reflecting lattice planes is restricted to the two cases 

N || a and N _[_ a.  While the former case, corresponding to the reflecting 

lattice planes parallel to the platelet faces, utilizes the longitudinal 

piezoelectric effect and is more convenient experimentally, it will be shown 

that, with the exception of four crystal classes (6, 6m2, 23, Ä3m) the complete 

set of piezoelectric constants cannot be determined in this manner. On the 

other hand, the second configuration, which utilizes the transverse piezo- 

electric effect and corresponds to the electric field lying in the reflecting 

planes, requires larger experimental effort to eliminate distortion of the 

electric field near the side faces of the sample, but permits to determine the 

complete set of piezoelectric constants for all twenty piezoelectric crystal 

classes. 

In the following section explicit expressions of the right-hand- ide 

of equ. (12) will be given for all twenty piezoelectric crystal classes and 

for both experimental configurations. 

l.T.    Application to Piezoelectric Crystal Classes 

Denoting for convenience the RHS of equ. (12) by L and T for parallel 

field and perpendicular-field reflection, corresponding to the longitudinal 

and transverse piezoelectric effects, respectively, equ. (12) may be rewritten 

as 

      i                 
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- cot 0 
[30]  /L(a||N) 

^■J "XT  (alN) (13) 

where 

L - N^Nj d^   (a-ft) (lAa) 

T - 0.^^ d      (tt'ft - 0) (i4b) 

For the numerical application of tlese equations the form of the 

piezoelectric constant tensor corresponding to a particular crystal class 

must be used, and both the lattice plaae normal N and the direction a of the 

electric field must be expresjsed in terms of the Miller indices.  For the 

components of the unit vector N the corresponding relation is obtained from 

equs. (3) and (11) and is for the general triclinic case given by the 

familiar expression (International Tables for X-Ray Crystallography [1959]) 

(1 - 1.2,3)! 

ha +kbJ-Hlc. 
N m  i  i  i  
i "  2 *2 2 ■*2  2 *2     * *     *    * A     *    * *     *  1/9  (15) 

(ha +k b +i c     +2kJlb c cos a +2hJU c cos 3 +2hka b cos y ] ' 

*  *  * , *  *  * 
Here a , b , c denotes the lattice constants, and a , 3 > Y the angles 

between the unit cell vectors a , b , c of the reciprocal lattice,  a., b,, 
i  i 

£ _^.£   _^   _^£ 
c. (i=l,2,3) denotes the cartesian coordinates of a , b , c , respectively, 

in the same coordinate system to which the piezoelectric constant tensor is 

referred. 

For parallal field reflection the unit vector a is determined by the 

condition a ■ N.  For perpendicular field reflection o is constraineri by the 

■*■ ->. 

condition ocN ■ 0.  Thus for a given lattice plane (hkH) the vector a has one 

degree of freedom, which may be conveniently described by the angle 0 according 

to 
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cJ . cos (|) U + sin 4> V 

where 6 is a unit vector perpendicular to N lying in the plane generated by^the 

unit vector ^ in the x3 direction, and by the lattice plane normal N. and V 

is perpendicular to both U and N. The vectors U and V are then given by 

i5=(-(e3.N)N + e3)
/(N2l + N22)1/2 ^ 

^  -^  ^ (17b) 
V = U x N 

inserting (17a) and (17b) into (16). the components ar of the unit vector S 

may be expressed in terms of .he components Nr of the lattice plane normal 

and of the sugle (j) according to 

.N //«2 , XT2-*1/* (18a) a - - (N1N3 cos (t) + N2 sin 4))/(N1 f N2) ^ 

a2 = - (N2N3 cos (j, - N1 sin ^/(NJ + N^)
1/2 d^) 

2   2,1/2    A (18c) 
a3 ■= (N* + N2)   cos (J) 

As will be discussed below, for most cryBtal classes convenient choices 

of the angle * are possible if at least one of the Miller indices is zero. 

In these cases the vector 3 lies along symmetry directions of the crystal, 

and a considerable simplification of the equations given below results. 

By using the form of the piezoelectric tensor corresponding to the 

individual crystal classes as given, for example, by Nye (1957) the expressions 

L and T defined in (14a) and (14b) may be explicitly written out as given below 

for the twenty piezoelectric crystal classes. In the following, the piezo- 

electric constants will be expressed in Voigt notation, that is. the index 

pair ij and drij (with r.i.j - 1.2.3) is replaced by a single index 

y - 1.2.3'.4,.5;6 corresponding to ij - 11.22.33 ;23 and 32 ;13 and 31; 12 and 

21. respectively, and a factor of two is introduced for p - 4.5.6. such that 

"* v 
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d  ■ d .. for y ■ 1,2,3, und d  - 2d   for y - A,5,6. The following 

abbreviations are introduced in order to describe the coefficients of the 

piezoelectric constants occurring in the expressir-. for T for the tetragonal, 

trigonal, hexagonal and cubic systems: 

2 2 2 2 1/2 
A+ - [-2N1N2N3 cos 4) + (N^-N2)sin (JONyC^+N^) (19a) 

A_ = - N3(NJ+N2)
1/2

 sin (j) (19b) 

2  2  2 1/2 
B+ + _ N^Oq+Np   cos (J) (19c) 

B_ - - [(NJ-N2)N3 cos 0 + 2N1N2 sin (MN^N^+Ni;)
1'2 (19d) 

C+ -   (N2+N2)3/2 cos  i) (19e.) 

C_-   (N2-N2)(N2
+N2)1/2COS* (19f) 

2       ? 2     2 2     2   1/2 
Di  " -   KNf-SNpN.N. cos (j) +  (3Nj-N2)N2 sin (|)]/(N1+N2)-L/i (19g) 

22 22 221/2 
D2 "   [(3N^-N2)N2N3 cos (J. -   (NJ-3N2)N1 sin M/(N^+N^r'^ (19h) 

22 22 221/2 
E =   [(3(N^+i:2)-2)N1N2 cos  (ji +  (NJ-N2)N3 sin (|)]/(N^+N2)i^ (191) 

F = N3(N
2+N2)

1/2 cos (J) (19j) 

G ■= N1N2(NJ+N2)1/2 cos (J) (191c) 

The description of the direction a of the electric field in terms of 

the angle $  as given in equs. (18), and the use of the (|)-depi ndcnt quantities 

-♦■.-♦•       ■*■■♦• 
defined in equs. vl9a) to (19k) are limited to the case N f e„.  For N = e- 

-♦■   -> 
the angle i£ is not defined.  However, the special case N» = e- is of interest 

only tor the triclinic and monoclinic systems, and the quantity T defined in 

equ. (14b) becomes in this case 

.  .       ._. ._.._ __ __   
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T - a1d13 + a2d23 (20) 

On the other hand, for the tetragonal, trigonal, hexagonal and cubic systems 

the quantity T is identically zero for N ■ e-j, so that this case need not 

be considered explicitly. 

1.  Triclinic System 

Class KC^) 

(18 independent constants:     d.^,  d12,  d^,  d^,  d15,  di6,  d21,  d22,  d23,  d24, 

d25'  d26'   d31,  d32'  ^a'  d34•  d35'  d36) 

L - Njd11 + N^Cd^ + d26) + N^^d^ + d35) 

+ N2N2(d21 + d16)  + N^d22 + N2N2
3(d23 + d34) 

+ N2
1N3(d31 + d15)  + N2

2N3(d32 + d2A)  + N^d^ 

+ N1N2N3(d14 + d25 + d36) (21a) 

T = a1N2
1d11 + a^^d^ + a^^d^ 

+ a2N2
ld21 + a2N2d22 + a2N2d23 

+ a3N2d31 + a3N2d32 + a3N2d33 

+ aiN2N3dU + aiNlN3d15 + alNlN2d16 

+ a2N2N3d24 + a2N1N3d25 + a2N1N2d26 

+ a3N2N3d3/+ + a3N1N3d35 + a3N1N2d36 (21b) 

2. Monoclinic System 

Class 2(C2) 

(8 independent constants:  d.,, d^^, d^, d22, d23, d25, d^,  d,^) 

L = N^d22 + N
2

1N2(d21 + d16) + N2N
2

3(d23 + d34) 

+ N1N3N3(d14 + d25 + d36) (22a) 

   .  
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T - ^ld21 + 02N*d22 + *2*2
3dn 

+ a1N2N3d14 + a^^jd^ + 0^^3023 

+ a3N2N3d34 + a3N1N2d36 (22b) 

Class m(C ) 

(10 independent constants:  d.., d 2, d13, d.^, d^*  ^26* ^31* ^32' d33, d35^ 

L - Njd11 + N^^d^ + d26) + N^^Cd^ + d35) 

+ N2
1N3(d31 + d15) + N2

2N3(d32 + d24) + N^ 

T - a1N2d11 + a^^d^ + Ot^^d^ 

+ a3N2d31 + a3N2
2d32 + a3N23d33 

(23a) 

+ a1N1N3d15 + a2N2N3d2A + cx2N1N2d26 + a3N1N3d35 (23b) 

3. Orthorhombic System 

Class 222(D2) 

(3 independent constants:  d.., dor> d_,, 14      25'     3o; 
L = N]N2N3(d14 + d25 + d36) 

T = a1N2N3d14 + a2N1N3d25 + a3N1N2d36 

(24a) 

(24b) 

Class mm2 ̂ 2vl 

(5 independent constants:     d.-i  d»,,  d-^.,  d-j,  d33) 

L = N2N3(d31 + d15) + N2N3(d32 + d24) + N2d33 

T = a3Njd31 + a3N2d32 + 0^33 

(25a) 

+ a1N1N3d15 + a2N2N3d24 (25b) 

. . 
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4. Tetragonal Systcin 

Class 4(0^) 

(4  independent constants:     d,.,  d^.,.,   d_-,  d„_) 

L =   (Nj + N2
2)N3(d31 H- d15)  + ^ 

T = C^^ + Fd33 + A_d14 + B+d15 

(26a) 

(26b) 

Class Ä(SA) 

(4 Independent constantsJ d , d , d , d^^) 

,2      „? 
L =   (N1 - N2)N3(d31 + ci15)  + N1N2N3(2dl4 + d^) 

T = C_d31 + A+d14 + B..d15 + Gd36 

Class 422(I//4) 

(1 Independent constant: d^.,) 

L = 0 

T = A-d14 

Class 4mm(C, ) 

(3 Independent constantu: ^ic» ^21*  ^33^ 

L = (N2 + N2)N3(d31 + d15) + N3d33 

T = C+d31 + Fd33 + B+d15 

Class 4201(0^.) 

(2 independent, constants:  d.,, d ,) 

L = N1N2N3(2du + d36) 

T = Ml4 + Gd36 

(27a) 

(27b) 

(28a) 

(28b) 

(29a) 

(29b) 

(30a) 

(30b) 

_  . .  
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5. TriRonal System 

Class 3(C3) 

(6 independent constants:  d ., d ,, d^,., d22, d«. , d-^) 

L - (Nj - 3N2)N1d11 -  ONJ - N^N^^ + n3^ 

+ (N2l + N22)N3(d31 + dl5> 

T = D1d11 + D2d22 + C+d31 + Fü33 + A_d14 + B^^^ 

(31a) 

(31b) 

Class 32(D) 

(2 independent constants: ^n» ^i/.) 

L - (N^ - 3N2)N1d11 

T - D1dil + A_d1A 

(32a) 

(32b) 

Class 3m ̂3vl 

(4 independent constants: d.,, d5„, d^,, d-~) 

L - - ON* - N^)N2dss + (N* + N2)N3(d31 H- d^) + N^d33 

r = D2d22 + c+d31 + Fd33 + 3+d15 

(33a) 

(33b) 

6. Hexagonal System 

Class 6(C,) 

(4 independent constants:  d..,, d1c., d... , d.-) 

L =   (Nj + N2
2)N3(d31 f d15)  + N^d33 

T - C+d31 + Fd33 + A_d14 + B+d15 

Class 6(C ) 

(2 independent constants: d,,, d ) 

L - (Nj - 3N2)N1d11 - (3NJ - N2)N2d22 

Vll + D2d22 

(34a) 

(34b) 

(35a) 

(35b) 

 __. . ^_   ^ 
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' 

Class  622(D6) 

(1 Independent constant:     d.,) 

(36a) 

T=Ad1/ (36b) 
- 14 

Class  6min(Cr  ) 

(3 independent constant«!     d._,  d«.,  d-^) 

L -  (Nj + 4)*3i*31 + d15)  + K3
3d33 (37a; 

T "  C+
d31 + Fd33 + Ml5 <37b) 

Class 6m2(D3h) 

(1 independent constant:  d,.) 

L = (N^ - SN^N^J^J^ (38a) 

T = D1dn (38b) 

Classes 23(T) and 43m(Td) 

(1 independent constant: d^^^,) 

L = ^iNjNjd^ (39a) 

T = Ed (39b) 
14 

As mentioned above, equations (26b), (27b), etc., to (39b) are valid only 

for N 1  e , and for N = e„ the quantity T in these equations is identically 

zero. 

Equations (21a) to (39a) represent the most general form of the 

expressions for the longitudinal piezoelectric effect for the 20 piezoelectric 

crystal classes. Each lattice plane (hU) is characterized by its effective 

piezoelectric coefficient L = Lhkfc, Which is for triclinic symmetry obtained 

by inserting cqu. (15) into equ. (21a), and for the crystal classes of higher 
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symmetry by inserting the simplified form of equ. (15) appropriate for 

the particular crystal symmetry Into the corresponding equs. (22a) to (39a). 

For each lattice plane (hkl) the electric flold coefficient -cot 0 (DC/9K) 

of the Bragg angle 0 = 0 » gives according to equ. (13) an experimental 

value for the corresponding linear combination L „ of piezoelectric constants. 

While no further simplification is possible for triclinic symmetry, it will 

be shown below that for the crystal classes of higher symmetry the expressions 

for L given by equs. (22a) to (39a) may become much simpler if one or two 

of the Miller indices are zero.  However, in several instances the coefficients 

of the piezoelectric constants in the expressions for L vanish, unless all 

three Miller Indices are nonzero.  Thus for the experimental determination 

of the complete set of piezoelectric constants the most general form of 

the expressions for L as given in equs. (21a) to (39a) has to be used. 

Similarly, equ-tiens (21b) to (39b) represent the most general form 

of the expressions for the transverse piezoelectric effect in terms of the 

components of the reflecting lattice plane normal N, the direction a of the 

electric field, and the coefficients A , A_ etc. defined in equs. (19a) to 

(19k).  According to equs. (18a) to (18c) the components of a, and according 

to equs. (19a) to (19k) the coefficients A , A , etc. depend on the components 

of N and on the free parameter $ defined in equ. (16).  The components of N, 

in turn, depend on the Miller indices according to equ. (15).  Thus all 

coefficients of the piezoelectric constants in the expressions for T depend 

on the Miller Indices in a rather involved manner. While for triclinic 

symmetry the equations have to be used in this form, a considerable simplifi- 

cation occurs if one or two of the Miller indices are zero.  However, for the 

two monoclinic crystal classes 2 and m the coefficients of some piezoelectric 

constants (those of d , nnd d.. for class 2, and of d?, for class m) vanish 
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in these special cases. Therefore the complete set of piezoelectric 

constants cannot be determined only from measurements of the transverse 

piezoelectric effect perpendicular to these special lattice planes.  In 

these cases one has to use the general form of equations (22b) and (23b) 

for the transverse piezoelectric effect or, alternatively, supplement the 

equations for the transverse piezoelectric effect for the special set of 

lattice planes with one Miller index zero by the general equations (22a) and 

(23a) for the longitudinal piezoelectric effect. 

In Tables 1 to 5 the simplified relations obtained from equs. (22a) 

and (22b) to (38a) and (381) are presented that result for the longitudinal 

and transverse piezoelectric coefficients L and T in the monoclinic, ortho- 

rhombic, tetragonal, trigonal and hexagonal classes if at least one of the 

Miller indices is zero. For the monoclinic and orthorhombic classes the 

general expressions for the longitudinal piezoelectric coefficients L have 

also been included because they are needed for the experimental determination 

of the complete set of piezoelectric constants.  For completeness, the 

equation for L for the two isometric classes 23 and 43m is also 

presented as Table 6. The explanation of Tables 1 to 6 is given below. 

The simpler equations presented in Tables 1 to 6 are sufficient for 

the experimental determination of the complete set of piezoelectric constants 

for all crystal classes, except for triclinic symmetry. Therefore the general 

for« of the equations (22a) and (22b) to (39a) and (39b) need not be considered 

in the design of actual experiments. It may happen in certain cases, however. 

that for the lattice planes with at least one Miller index zero that are 

listed in Tables 1 to 6 the structure factor may be inconveniently small, 

or vrnish exactly.  In these cases and for triclinic symmetry one has to resort 

to the general equations (21) to (39). 



-22- 

ible 1.  Crystal plate normal 0 ■ (a.a.a ), Miller indices hkS,,  face normal of reflecting plane N - (N N^), and 
t 

expressions for L and T defined in equations (14a) and (14b) for raonoclinic system. 

The base vectors b and c coincide wi-h the Y and Z axes, respectively, and the base vector a lies in the 

X-Z plane, forming an angle ß > 90° with the c axis. 

'lass 
-> 
a (hki) N 5;ri;c;R L.T 

(010) (OkO) (010) L-d22 

(c2) (hOi) (50O 5=(ha*-ic*C)/R;i;-S.c*S/R 

R=[h2a*2+):2c*2-2hia*c*C)1/2 

T^2d21n
2d23Hcd25 

} constants) (001) (hkÖ) (eno) C'=ha*/R;ri=kb*/R T-^d36 

(n50) (hkO) (Cno) £;-ha*/R;n»kb*/R 

o   ru2 *2J.. 2. .2,1/2 R-[h a* +k b*   ] 

T^3d21Hn2d22-5n2d16 

ano (hkJ,) (5nO 5-(ha*-)lc*C)/R;n=kb*/R;t-i!.c*S/R 

9777?7                              1/2 
R«[h a* +k b*^^ c* -2hia*c*C]   ' 

L-n3d22+C2n(d21+d16)+n<;2(d23+d3^)+i;nc(du+dJ5+d36) 

(100) (h00) (100) L.d11 

i(Cg) (OkO) (010) T-d12 

(001) (hkO) (CnO) C=ha*/R;n=kb*/R t<Sl*"\2 
10 constants) R.[h

2a*2
+k2b*2]1/2 

(n50) (hkO) (?n0) 5=ha*/R;n=kb*/R 

n   rL.2 ^Z^, 2. .2,1/2 R^Ih a* +k b*   ] 

T=-C2ndu-n3d12+C2nd26 

aoo (hOJO (500 C=(ha*-!lc*C) /R; i;=)lc*S/R 

R=(h2a*2+!l2c*2-2hea*c*C]1/2 

T-C2Cd11-;
3d13H3d31Hi;

2d33-^2dliH
2r,d35 

(COO (hOl) (COO C-(ha*-)/.c*C) /R; !;=S,c*S/R 

;-th2a*2+ll2c*2-2hS,a*c*C)1/2 

i^3d11+U2(d13+d35)H2C(d31+d15)+rJ
3d33 

(Cnc) (hkl) (CnO C-(ha*-llc*C)/R;rrkb*/R;C-fcc*S/R 

R=[h2a*2+k2b*2+{.2c*2-2hlla*c*C]1/2 

L^3duHn2(d12+d26)HC2(d13+d35)H2;(d3]+dlf) + 

+n2ad32-td2A)+^3d33 

a*-=l/a sin ß; b*-l/b; c*-i/c sin ß; C-cos ß; S-sln 

L 
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Table 2. Crystal plate normal 01 - (aia2a3), Miller indices hkÄ,  face normal of reflecting plane N - (N^JNJ) 

and expressions for L and T defined in equations (14a) and (Ub) for orthorhombic system. 

Class 

222(D2) 

(3 constants) 

mm2(C2v) 

(5 constants) 

(100) 

(010) 

(001) 

(CnO 

(001) 

Ü0O 

(ocn) 

(CnO 

(hki) 

(oa) 

(hOS,) 

(hkO) 

(hW) 

(hkO) 

(00t) 

(hM) 

(Oki) 

(hU) 

(0nO 

(WC) 

(too) 

(Cnc) 

(CnO) 

(001) 

(50C) 

(on;) 

(CnO 

e;n;C;R 

n-k/bR;;-l!./cR 

R-Ik/b)2+(J,/c)2]1/2 

e-h/aR;;-!,/cR 

R-[(h/a)2+(J,/c.)2]1/2 

R-[(h/a)2+a/c)2]1/2 

e-h/aR;n-k/bR 

R-[(h/a)2+(l/c 

5-h/aR;n-k/bR;r.")l/cR 

R-[(h/a)2+(k/b)2+(t/c)2)1/2 

L.T 

t-h/aR;n-k/bR 

R-[(h/a)2+(k/b)2]1/2 

5-h/aR;i;-)l/cR 

R-[(h/a)2+(l!,/c)7]1/2 

rrk/bR;i;-li./cR 

R-[(k/b)2+(l/c)2]1/2 

5-h/aiv;n-k/bR;;-l/cR 

R-[(h/a)2+(k/b)2+a/c)2l1/2 

T-nCd 14 

T-CCd 25 

T-^nd 36 

L-Cn;(dw+d25+d36) 

T-?;2d31+n2ci32 

L"d33 

31 '33 ss    15 

T-n3d32+nc2d33-nc2d2A 

L-52C(d31+d15)+n2ad32+d24)+;3d3:, 
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Table 3. Crystal plnte normal a - (a a a.), Miller Indices hkil,  face normal of reflecting plane N - (N N.N ) , 

and expressions for L and T defined in equations (14a) and (14b) for tetragonal system. 

Class a (hkt) it tin;C;R L.T 

4«V 

(4 constants) 

(100) 

(001) 

(coo 

(Okfc) 

(0011) 

(hkO) 

(hOJ,) 

(One) 

(001) 

(Cno) 

aoo 

n- k/aR;e-)l/cR 

R-[(k/a)2+(i/c)2]1/2 

C-h/R;n-k/R 

R-(h2
+k2)1/2 

e-h/aR,e>=)l/cR 

R-[(h/a)'KJl/c)2)I/2 

T-ncd1A 

L-d33 

T.ed31+5c2d33-U2d15 

Z(s4) 

(4 constants) 

(100) 

(001) 

(coo 

(0k5.) 

(hkO) 

(hOD 

(one) 

(ino) 

«oo 

n-k/aR;C"J7cR 

R-[(k/a)"+(Jl/c)2)1/2 

C-h/Rjn-k/R 
2     2   1/2 

R-[h +kV 

£-h/aR;e-i/cR 

R-[(h/a)2+(a/c)2]1/2 

T-n;du 

r-(C2-n2)d31+4nd36 

T.5
3d31.^

2d15 

«22(D4) 

(1 constant) 

(100) (Okl) (one) n-k/aR;e-ll/cR 

R-[(k/a)2+a/c)2]1/2 

T-ncd1A 

4am(C4v) 

(3 constants) 

(001) 

(COO 

(001) 

(hkO) 

(h04) 

(001) 

(Cno) 

(£00 

S-h/R^k/R 

R-[h2
+k2]1/2 

5-h/aR;;-S,/cR 

R-[(h/a)2+()l/c)2l1/2 

L-d33 

T-d31 

T-c3d31^c2d33-5rd15 

42m(D2d) 

(2 constants) 

(100) 

(001) 

(OkJl) 

(hkC> 

("no 

(Cno) 

n-k/aR;e-l!./cR 

R-[(k/a)2+a/c)2]1/2 

C-h/R;n"=ii/R 

R»[h2
+k2)1/2 

T-ncdu 

T-Cnd36 
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Table 4, Crystal plate normal o - (a^Oj), MUler-Bravals Indices hkA, for hexagonal Induxlng, face normal 

of reflecting plane N = (N^N-j) , and expressions L and T defined in equations (14a) and (14b) for 

trigonal system. 

Class a (hM) $ t;n;c;R L.T 

(100) (2h.h.0) (100) L-d11 

3(C3) (0H) (one) n-2k//3aR;C-Ä/cR 

R-I(4/3)(k/a)2+a/c)2]1/2 

T-n2du+n5d1/) 

(6 constants) (010) (0k0) (010) L.d22 

(2h,h.J,) (COO 5-2h/aR;C-t/cR 

R-I(2h/a)2+a/c)2]1/2 

x-C2d22-«cd14 

(001) (001) (001) L-d33 

(2h1k-h,0) (Cno) e-/3h/R;n-k/R 

R-[3h2H:2]1/2 

T-d31 

(one) (OkH) (on;) n-2k//3aR;C-J,/cR 

R-I(4/3)(k/a)2+0l/c)2]1/2 

L-n3d22+c3d33+n2ad31+d15) 

(ocn) (OkJ,) (0nO n-2k//3aR;;-il/cR 

R-[(4/3)(k/a)2+tt/c)2]1/2 

T-n2cd22+nc2d33+M3d31-nc2d15 

(100) (2h,h.0) (100) L-du 

32(03) (OW) (0nO n-2k//3aR;i:-Ä/cR T-n2du+nWu 

(2 constants) R-[(4/3)(k/a)2+4/c)2]1/2 

(010) (OkO) (010) L-d22 

3n.(C3v) (001) (004) (001) L-d33 

(2h,k-h,0) (Cno) 5-/3h/R;n-k/R T-d31 
(4 constants) R-[3h2

+k2]1/2 

(one) (0U) (On« n-2k//3aR:C-J./cR 

R-[(4/3)(k/a)2+(«/c)2]1/2 

L-n3d22+c3d33+n2ad31+d15) 

(ocn) (Ok«,) (one) n-2k//JaR;;-)l/cR 

R-[(4/3)(k/a)2+(a/c)2)1/2 

T—n2;d22+n;2d33+n3d31-n;2d15 

. . ■: 
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Table 5.  CrystaJ plate normal a - (a.a-uJ, Mlller-Binvals indices hki,  face normal of reflecting plane 

N • (N.N.N.), and expressions L and T defined In equations (Ha) and (lAb) for hexagonal system. 

Class 
•* 
a (hkJ,) N 4,;n;c;R L.T 

(100) (oa) (One) n-2k//TaR;C-i/cR T-n;du 

6(C6) R-[(4/3)(k/a)2+(l!./c)2]1/2 

(001) (001) (001) ^33 

(4  constants) (2h.k-h.0) (CnO) t-/3h/R;n-k/R 

R.l3h2
+k2]1/2 

T-d31 

(On« (OM) (on;) n-2k//}aR;e-!./cR 

R-[(A/3)(k/a)2+()l/c)2)1/2 

L-i;',d33+n2c(d;J1+d15) 

(ocn) (Oki) (One) n-2k//3aR;e'=8./cR 

R-[(4/3)(k/a)2+(ll/c)2l1/2 

T-nc2d33+n3d31-nc;2d15 

6(C3h) (100) (2h.h,0) (100) L-dii 

(2 constants) (010) (OkO) (010) L-d22 

— .i           ■                                      ■   ■ —. 

622(D6) 

(1  constant) 

(100) (Okt) (one) n-2k//3aR;;-ll/cR T-n;du 

R-[(1/3)(k/a)2+(J,/c)2]1/2 

(001) (00JI) (001) L-d33 

6inra(C6  ) (2h.k-h,0) (CnO) 5-/3h/R;n-k/R 

R.(3h2
+k2]1/2 

T.d31 

(3 constants) (One) (Oki) (ont) n-2k//3aR;;-S,/cR 

R-I(A/3)(k/a)2+(J,/c)2)1/2 

L-c3d33+n2;(d31+di5) 

(ocn) (Oki) (one) n-2k//3aR;;-i/cR 

R-[(A/3)(k/a)2+(i/c)2l1/2 

T-ni:2d33+n3d31-ni;2d15 

6m2(D3h) (100) (2h,h.O) (100) ^n 
(1  constant) 
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Table 6. Crystal plate norroai., Miller indices (hkJl) , face normal of 

reflecting plane N ■ (N.N N ), and expression L defined in 

equation (lAa) for isometric classes 23 and Ä3m. 

->• 
a (hU) N ^;n;;;R L 

(CnO (hU) (5nO C-h/R;n=k/R;r,=il/R 

R=[h2
+k2

+Ä
2]1/2 

35n5d14 

J 
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It is apparent from equations (21a), (22a), etc., to (39a), that 

some of the piezoelectric constants enter the expressions for L only In 

the form of linear combinations, so that the complete set of plezoelectiic 

constants cannot be determined from parallel-field reflection measurements 

-♦■-♦■ _ _ _ 

(a ■ N) alone. Exceptions are the four classes 6, 6m2, 23, and 43m, for 

which the quantity L depends on the individual piezoelectric constants only, 

so that they can be determined from parallel-field ref'.ection alone. For 

ail other classes, perpendicular-field reflection measurements (a» • N = 0) 

are required in addition to, or instead of parallel-field refJection 

measurements. 

Another noteworthy feature of the above equations Is that for the six 

classes 4, A22, 3, 32, 6, 622, the piezoelectric constant d.. , does not enter 

the equations for L and therefore cannot at all be  determined from parallel- 

field reflection measurements. 

According to equations (21b), (22b), etc., to (39b) the quantity T 

depends in all cases on all individual piezoelectric constants.  Exceptions 

are particular directions of N and/or values of (j), for which some of the 

coefficients given in equations (19a) to (19k) may become equal, or vanish. 

In general, however, it is possible to determine the complete set of piezo- 

electric constants from a sufficiently large number of perpendicular-field 

reflection measurements alone.  In practice, however, it is desirable to use 

as many parallel-field reflection measurements as possible, because the 

specimen preparation is simpler and experimental errors may be expected to 

be smaller in this case. 
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3.4 Specimen Orientation 

For the measurement of the longitudinal piezoelectric effect crystal 

platelets with electroded pairs of (hki,) faces with normal N = a are required. 

For the transverse piezoelectric effect platelets with electroded pairs of 

faces with normal a perpendicular to the normal N of the reflecting (hkA) face 

must be prepared. In both cases it is desirable to choose the direction N, 

and in the second case also the direction a, along high symmetry directions 

(parallel to rotation axes, perpendicular to or within mirror planes) so as 

to achieve accurate orientation and reduce the effort required for the orienta- 

tion and preparation of the platelets. However, since either or both piezo- 

electric effects may vanish aloug some symmetry directions the requirement 

of non-vanishing piezoelectric effect eliminates many otherwise äuitable 

lattice planes. It is further desirable, that for a given platelet normal a 

several non-equivalent side faces (hkA) exist, which lead to different linear 

combinations of piezoelectric constants in the expression for the transverse 

piezoelectric coefficient T.  Ideally, it would be desirable to determine the 

complete set of piezoelectric constants from one polygon-shaped crystal plate- 

let with several side-faces, so as to require only one pair of electroded 

surfaces for measuring the longitudinal piezoelectric effect in the direction 

of the plate normal a, and the transverse effect for several non-equivalent 

side face normals N. Unfortunately, this ideal design Js possible only for 

some of the high symmetry crystal classes. In general, more than one type of 

crystal platelet is required for determining the complete set of piezoelectric 

constants.  In this case it is desirable to perform the measurements mostly, 

or if possible, exclusively on the basis of the longitudinal effect, because 

the corresponding platelets require only one pair of parallel faces and are 
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therefore easier to prepare than platelets for the measurement of the 

transverse effect, and because measurements of the longitudinal effect can 

be done more accurately and more easily than those of the transverse effect. 

As mentioned above, this can only be achieved for the four classes 6, 6m2, 

23 and A3m. 

For the trlclinic system no symmetry directions exist, so that (at 

least) 18 platelets corresponding to 18 different face normals a are required, 

Since according to equation (21a) the longitudinal piezoelectric coefficient 

L depends on 10 linear combinations of piezoelectric constants, 10 of the 18 

platelets may be chosen such that their faces correspond to 10 different 

(hkü,) planes. The remaining (minimum of) 8 platelets must be prepared for 

the transverse piezoelectric effect in such a manner that the normals a of 

the pair of large electroded surfaces are perpendicular to 8 different (hkX) 

side faces. The resulting piezoelectric coefficients depend on the orienta- 

tion of the crystallographic axes with respect to the cartesian COOJ dinate 

system chosen.  It is recommended to use the base vectors of the direct and 

reciprocal lattice according to the 1949 IRE convention (Standards on Piezo- 

electric Crystals, 1949): 

a = (a sin &,      0, a cos ß) 

b ■ (-b sin a cos y*. b sin a sin y*. b cos a) 

c = (0, 0, c) 

a* = (a* sin Y*« a* cos Y*i  0) 

b* = (0, b*, 0) 

c* = (-c* sin a* cos ß, c* cos a*, c* sin a* sin ß) 
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Here it Is (International Tables for X-Ray Crystallography, 1959): 

.  be sin a  . 
a* = —y > etc., 

a+ß+Y . -a+ß+Y . a-ß+Y j q+ß-Y 
V - 2abc sin ^-JL sin —~- sm -^—L sin ~—l- 

cos q* ■ (cos ß cos Y " cos a)/sin ß sin Y . «te- 

xt is further q > 90°  ,  ß > 90° 

For the symmetry classes of higher symmetry the 1949 IRE convention 

(Standards on Piezoelectric Crystals, 1949) is easily summarized as follows. 

The twofold axes of class 2(C2), and the mirror plane normal of class m(Cs) 

coincide with the crystallographic b axis, which is ; aced along the positive 

Y direction of a right-handed cartesian coordinate system.  The c-axis is 

placed along the positive Z-direction, and the a-axis (being normal to the 

S-axis and forming an angle ß > 90° with the c-axis)is lying in the XZ-piaae. 

For the orthorhombic, tetragonal and cubic systems the crystallographic axes 

coincide with the X,Y and Z-axes.  For the trigonal and hexagonal systems 

the threefold (or sixfold) axis is parallel to the Z-axis, and the positive 

X-axis coincides with any of the three secondary axes a^ a2, a3 perpendicular 

to the threefold (or sixfold) axes.  The Y-axis is perpendicular to the X- 

and Z-axes, so as to form a right-handed cartesian coordinate system. 

3.5 Discussion of Tables 1 to 6 

For the remaining 19 piezoelectric crystal classes the existence 

of symmetry elements reduces not only the number of independent piezo- 

electric constants, but also leads to the existence of high-symmetry 

directions q with non-vanishing longitudinal and/or transverse piezoelectric 

effect,  in Table 1 to 6 such pairs of high-symmetry directions q, N, the 

associated Miller indiceu hkS, and the quantitites L or T describing the 
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longitudinal and transverse plezoelectrjc effect as defined in equations 

(14a) and (14b) are listed for the crystal classes of the monoclinic, 

orthorhombic, tetragonal, trigonal, hexagonal and cubic systems, respectively. 

In the crystal classes of lower symmetry the number of high symmetry 

directions is too small for determining the complete set of the piezoelectric 

constants.  In these cases the expressions for both a and N and for the 

associated values of L and/or T are also given for a general set of Miller 

indices. 

The results in Table 1 indicate that for the class ZAT)   the 8 

Independent constants may be determined from 5 crystal platelets.  From 

one platelet with orientation a = (010) it is possible to determine the 

four constants d^, d„„, d„_ and d-,.» but for the remaining four constants 

^14' ^l^' ^"U an^ ^'\h  one crystal- plate each is required.  If the platelet 

with orientation a ■ (010) has 3 side faces corresponding to 3 sets of 

non-equivalent Miller indices hOÄ  measurement of the longitudinal effect 

gives d?„, and of the transverse effect perpendicular to each of the 3 

side faces gives 3 linear combinations each of the constants d»,, d?~ and 

d«,.'  Of the remaining four measurements three may be made by using the 

longitudinal effect and give (if the above mentioned constants d»., d»», 

d.» and eL- have been determined independently) the constants d..,, d-,, d , 

+ d„,. In order to determine the constants d,, and d„, individually, one 
36 14     36 

additional measurement based on the transverse effect is required. 

For the determination of the 10 independent constants of class C (m) 

9 platelets wjth different orientations are required. While the platelet 

with a = (100) permits to determine d  through the longitudinal effect, 

and d  through the transverse effect, the remaining 8 constants require 

for their determination one platelet each.  While 5 linear combinations of 
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these constants (d26, d13 + d35, d31 + d15, d32 + d3A, d33) may be 

determined from the longitudinal effect, the remaining thre« independent 

measurements must be based on the transverse effect. 

As shown by the data in Table 2 the. 3 independent piezoelectric 

constants of class 222 have to be determined from the transverse effect by 

using 3 different crystal platelets with faces normal to the 3 coordinate 

axes, respectively. The longitudinal efffict on a platelet with a pair of 

general (hki)  faces permits an independent measurement of the sum d, . + 
14 

d25 + d36- 

The determination of the 5 independent constants for class nun2(C_ ) 

is illustrated below with the aid of a numerical example. 

The discussion of Tables 3 to 6 for the remaining crystal classes 

proceeds along the same lines as above and need not be explicitly presented 

here. 

3.6 Numerical Example 

In order to illustrate and facilitate the use of Tables 1 to 6 the 

expressions for L and T requitfid for the determination of the 5 independent 

constants of Bi3TiNb09 (crystal class mm2) will be given here. The crystal 

structure of BiJTiNbO- has been refined from x-ray and neutron diffraction 

daLa by Wolfe, Newnham, Smith and Kay [1971]. These authors list the 

observed and calculated absolute values of the structure factors of a large 

number of non-equivalent reflections, from which suitable high intensity 

reflections can be selected. 

According to Table 2 the 3 constants d  , d . and d . can be determined 

from one platelet with a pair of electroded (001) faces, if the longitudinal 

effect is measured by Bragg reflection on the (001) face, resulting in d.-, 

and if the transverse effect is measured by Bragg reflection on two different 
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side faces of the type (hkO), which gives tvro different linear combinations 

of d-, and d_„.  Based on the structure factors listed by Wolfe, Newnham, 

Smith and Kay [1971] we select the three reflections 0 0 10, 040, and 400. 

-+ 
The corresponding face normals N are (0,0,1), (0,1,0) and (1,0,0), respectively. 

o o o 
From the lattice constants a = 5,431 A, b = 5.389 A and c ■ 25.050 A given 

by  Wolfe, Newnham, Smith and Kay [1971] the corresponding Bragg angles are 

calculated for CuK radiation and are listed in Table 7, together with the a 

values of hkl,  with the structure factors, and with the values of the platelet 

->■ -► 
normal a and the values N of the three reflecting lattice planes.  In Figure la 

th;' shape and orientation of the platelet with faces corresponding to these three 

normals and the corresponding Bragg angles Q.,   0? and 0- are illustrated schemat- 

ically. Also listed in Table 7 are the corresponding values of L and T obtained 

from the last column of Table 2.  According to equation (13) these quantities are 

equal to the electric field coefficient - cot 0 (D0 /3E) (i = 1,2,3) of the 

associated Brafg angle.  Denoting the experimental values of the electric 

field coefficient by M (i = 1,2,3) the three piezoelectric constants d' ,, 

d„j  and d», are then given by the first three equalities listed in the last 

column of Table 7.  According to Table 2 the remaining two constants d  and 

d„, have to be determined from the transverse piezoelectric effect on two 

different platelets with side faces (hOÜ) and (OkÄ.), with the corresponding 

normals of the side faces (£.00 and (OnO > respectively, and with normals 

(£0£) and (0<;ri) of the electroded main faces.  In the fifth column of Table 2 

the components (t^nOof these two normals are expressed in terras of the hkl  values. 

On the basis of the structure factors listed by Wolfe, Newnham, Smith and 

Kay [1971] we select the reflections 0 2 10 and 2 0 10.  In Table 7 their structure 

factors, the normals N of the side faces and the normals a of the electroded 

main faces as calculated from columns 2, 4 and 5 of Table 2 are listed 
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Gooio11   a 

Electric field 
A 

400 

Figure la 

Orientation of (001) platelet for determining electric field 

coefficient of 0- through longitudinal piezoelectric effect, 

and of Q5 and G through transverse piezoelectric effect 
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together with the associated Bragg angles 9. and Q   .    The orientation of 

these two platelets and the location of the two Bragg angles 9, and 6^ is 45 

Illustrated in Figures lb and 1c. The last column of Table 7 gives the 

corresponding expressions for the quantity T obtained from the last column 

of Table 2.  If experimental values of the electrical field coefficient 

M ■= - cot ei(39 /8E) are available for all five Bragg angles 8  (i = 1,2,.,.5) 

described, the equations given in the last column of Table 7 for M , M9...MS 

represent 5 equations for the 5 unknown piezoelectric constants d„_, d-?, d-., 

d24 and d15. 

According to Table 2 an additional independent measurement of the longi- 

tudinal effect on a general (hkÄ) plane gives a linear combination of all 5 

piezoelectric constants.  Choosing for this purpose the (2 2 iO) reflection 

gives the entries listed on the last line of Table 7. The platelet orienta- 

tion and the Bragg angle 0, are illustrated in Figure Id. The six expressions 

for M., M_... M, listed in Table 7 represent 6 equations for the 5 unknown 

piezoelectric constants. Their best values can be obtained from a standard 

simultaneous le-.^t squares fit. 

For better accuracy additional platelets representing different values 

of (OkÄ), (hOÄ,) or (hkH) may be used ad libitum.  It should be noted that 

for a given (hkÄ.) face higher order and lower order reflections corresponding 

to different Bragg angles may be measured and should give the same value for 

the electric field coefficient.  For example, the longitudinal field coefficient 

of all (00Ä,) reflections should be equal to d-^ for any value of JL Wnile the 

lower order reflections 002, 004, 006, 008 are of lower intensity than the 

0010 reflection, the reflection 0 0 20 is also relatively strong and may be 

used to obtain an additional independent value for d-~. 
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Electric field E, 

Figure lb 

Orientation of platelet for determining electric field 

coefficient of 0. through transverse piezoelectric effect 
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Figure lc 

Orientation of platelet for determinLnß electric field 

coefficient of 0- through transverse piezoelectric effect 
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Figure id 

Orientation of (115) platelet for determining electric field 

coefficient of GL through longitudinal piezoelectric effect 
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In order to reduce the experimental errors arising from the specimen 

orientation it appears more appropriate, however, to use additional crystal 

platelets representing different values of (Okl), (h0£), or (hkX), which 

would lead to different numerical coefficients of the piezoelectric constants 

in the equations for M., M and M6, respectively. 

4.  Elastic and Thermoelastic Properties of Lead Potassium Niobate, FboKNb^O^^ 

Lead potassium niobate, Pb2KNb5015, occurs in the tungsten bronze 

structure and has electromechanical coupling factors up to 73 percent 

(Yamada, 1973). Since Yamada (i973) also reported that the temperature 

coefficients of the fundamental resonance frequencies of crystal plates cut 

along different directions have different signs, one may expect the temperature 

coefficient to vanish for intermediate directions.  Provided that crystals of 

sufficient quality can be prepared, so as to reduce ehe ultrasonic attenuation 

to the intrinsic limit corresponding to anharmonic phonon-phonon interactions, 

and provided this limit is sufficiently low so as to be comparable to 

ultrasonic losses in a-quartz, lead potassium niobate would be a superior 

substitute for a-quartz in SAW devices. As reported above in section 2.3, our 

crystal growth efforts on this material met with considerable difficulties, 

but we did succeed in obtaining several small pieces which appear to be 

predominantly of single domain type.  In the following we report our prelimi- 

nary data on the elastic and thermoelastic properties and compare the results 

with those recently published by Nakano and Yamada (1975) and Yamada (1975). 

Pb KNb 0,  belongs to the orthorhombic crystal class inm2 and is ferro- 

electiic, with the spontaneous polarization along the b axis.  The Curie 

temperature is 450oC (Nakano and Yamada, 1975). 

In Table 8 the three lattice parameters and their associated linear 

thermal expansion coefficients are listed.  Based on the present x-ray results 
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Table 8. Lattice parameters (Ä) and linear thermal expansion coefficients 

(lO'Vc)"1) of Pb2KNb5015 at 20
oC. 

L a b c 

L Present 

Yamada 

17.772 

17.78 

17.972 

18.05 

7.830 

3.917 

1 
Present 3.09 1.06 3.77 

Yamada 1.4 -0.3 1.7 

T. Yamada, Appl. Phys. Lett. 23, 213 (1973) 

+T. Yamada, J. Appl. Phys. 46, 2361 (1975) 

and lattice constant data ior lead niobate, our lattice parameter c is 

twice that of Yamada's (1973) value. While the lattice constants agree 

r?ther well, the thermal expansion coefficients differ substantially; along 

the b axis even the sign is different. Although different experimental 

techniques were used (x-rays in the present work and a dilacometric technique 

by Nakano and Yamada (1975)) the differences cannot be attributed to this 

alone, and are more likely to point to differences in comp" -ion, structure 

or degree of disorder. 

The calculated and measured density values in Table 9 show rather small 

differences between Yamada's and the present results, perhaps too small to 

point toward substantial compositional or structural differences. However, 

in order to explore the effect of ordering phenomena on property differences, 

a considerable amount of further work on possible correlations between 
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Table 9.  Density values (In g/cm ) of Pb2KNb5015 

Calculated (X-Ray) Measured 

Present 6.15 6.23 

Yamada 6.12 6.14 

Yamada, Appl. Phys. Lett. 23, 213 (1973) 

thermal hxstory of the samples, their relative x-ray intensities and their 

elastic and thermoelastic properties is required.  Since the mersured 

densities are larger than the calculated values, the crystals used both by 

Yamada and in the present work may have had a small excess of lead. 

In Table 10 the temperature coefficients uf the transit times T for 

longitudinal waves along the three crystallographic axes are compared with 

Yamada's (1975) values for the temperature coefficients of the corresponding 

principal resonance frequencies f. The relation between these two quantities 

is (Chang and Barsch, 1976) 

fail 1 9f 
f 9T 31 

2k.Z 
2  2   2 

Z -lc (1-lc ) 

Here k denotes the electromechanical coupling factor, and L the solution of 

the equation 

tan Z = Z/k 

For small values of k and/or (9k/9T) the temperature coefficients of f and 

T should be numerically equal, but opposite in sign.  According to Yamada 

(1975) the X- and Y-cut specimens have zero or small values of k for longi- 

uudinal waves, respectively, so that, unless (9k/3T) is excessively large. 
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Table 10. Temperature coefficients of transit time for 

longitudinal waves, (l/x)(9T/8T), and of 

fundamental resonance frequency, (l/f)(3f/3T), 

^both in 10~6(oC)"1)for X, Y and Z cut of 

Pb2KNb50  at 250C. 

(1/T)(9T/3T) 

(Present Work) 

(l/f) Of/ST) 

(Yamada ) 

X-cut 

(_[_ c-axis) 

-3.03 

200 

Y-cut 

(_j_ a-axis) 

84.00 

25 

Z-cut 

(J_ b-axis) 

74.82 

-30 

T. Yamada, J. Appl. Phys. 46, 2894 (1975) 

(1/T)OT/3T) ^-(l/f)Of/3T). The data in Table 10 indicate that this 

relation does not at all hold. Again, this may be attributed to differences 

in composition, structure or degree of order. 

The orientation of the cartesian x, y and z-coordinate axes along the 

crystallographic c, a and b-axes, respectively, follows the convention of 

Yamada (1975). These directions were determined optically by means of the 

quartz wedge method (see, e.g. Hartshorne and Stuart, 1964). In this manner 

a value of An = n - n. - 0.064 for the difference of the refractive indices 

along the a and b axes was determined at iOCTK, as compared with a value of 

An - 0.055 given by Nakano and Yamada (197S). The a and b axes can be dis- 

tinguished on the basis of the sign of An and the fact that according to 

Nakano and Yamada (1976) the a-axis is the slow, and the b-axis the fast 

direction. 
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In Table 11 the on-diagonal elastic constants and their temperature 

coefficients are listed. The assignment of the coordinate axes follows 

Yamada (1975), that is x||c, Y||a, and z||b.  Except for c55 considerable 

differences in the elastic constants of Yamada and the present data occur. 

No other explanation except uhe above mentioned conjecture about differences 

in the nature of the sample can be offered. 

It should be noted here that the as-grown boules obtained by us are of 

considerably higher quality than those of Nak.ano and Yamada (1975).  Whereas 

the specimen on which the above elastic data were obtained do net show a 

significant amount of elastic twinning under a polarizing microscope (i.e. 

90° domains for the spontaneous polarization Pjlb-axia, or presence of domains 

with their a and b axes interchanged) the specimen obtained by Nakano and 

Yamada (1975) were thoroughly twinned and had to be de-twinned by strain 

annealing in an electric field.  It is conceivable that by this procedure 

residual strains are Introduced which could affect the elastic constant data. 

Although the specimen used in the present investigations were virtually 

free of elastic twins, the presence of electrical twins (i.e. 180° domains 

for the spontaneous polarization) cannot be ruled out, since this type of twin 

cannot be detected under a polarizing microscope. In such twins all five 

piezoelectric constants of the class mm2 (that  is, e^,., e^,^,  e^, f^,  e^^) 

show opposit» signs. However, since the piezoelectric stiffening term in the 

Kristoffel tensor depends only on the square of the piezoelectric constants 

the results for the elastic constants are not affected by the presence of 

180° domains. 

According to Table 11 the temperature coefficient of c  is positive, so that 

one may expect temperature compensated cuts to exist for longitudinal waves along 

a direction close to the X-direction (c-axis). Unfortunately, this is not where the 
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D   12       2 
Table 11. Adiabatic on-diagonal elastic constants c (10  dynes/cm ), 

and their isobaric temperature derivatives (9c / T) 

(107 dynes/cm2) for Pb^KNb.O.. at 25 C 

yv 
_... 

11 22 33 44 55* 66 

D Present 1.46 1.03 1.45 .450 .600 

\xv 

Yamada 1.66 1.63 1.91 0.66 0.57 0.63 

r D , 
c 
yv 

^T  j 
P 

Present + .465 -18.39 -29.49 -2.83 -5.50 

t 

This constant could not be measured since with the presently available 

crystal no echoes of the ultrasonic signal could be received. 

T. Yamada, J. Appl. Phys. 46, 2894 (1975) 

electromechanical coupling factor reaches its maximum (Yamada, 1975). However, 

for the exact determination of the orientation of temperature compensated cuts 

for bulk or surface waves accurate values of all elastic, dielectric and 

piezoelectric constants and their temperature derivatives are needed.  It is 

conceivable that the electromechanical coupling factor for these directions 

turns out to be larger than for a -quartz and a-berlinite (Chang and Barsch, 

1976). 

Our crystal growth efforts to obtain still larger single crystals 

required for the measurement of the remaining elastic and thermoelastlc 

constants, and for the independent measurement of the dielectric and 

piezoelectric constants are being continued. 
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