L e o menean -

()

U.S. DEPARTMENT OF COMMERCE
National Technical Information Service

AD-A026 452

RANDOM VARIABLES AS A DATA TYPE

i
£
‘}4

MASSACHUSETTS INSTITUTE oF TECHNOLOGY

PREPARED FOR
ELECTRONIC SYSTEMS DIvISIoN

13 May 1976 |

S -

UNCLASSIELED
SECURITY CLASSIFICATION OF TUIS PAGE (When Dtusa Entered)

. READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE, COMPLETING FORM
1. REPORT NUMBER 2, GOVT ACCESSION NO, [3, RECIPIENT'S CATALOG NUMBER
ESD-TR-76-70
4. T(TLE (and Subtitle) 5. TYPE OF REPORT & FERIOD COVERED
‘Technical Report
Ramlom Varlables as a Data 'Type
6. PLRFORMING ORG. REPORT NUMBER
Technical Report 516
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
R Jor 3 - 1
Alan G, Nemeth IF19628-76-C-0002
9. PERFORMING ORGANIZATION NAME AND ADDRUSS 10. PROGRAM [| EMENT, PROJECT, TASK
- AREA & WORK UNIT NUMBERS
Lincoln Laboratory, M.I.T. : ke
® 0. Box 73 Program Element 627081
Lexington, MA 02173 PhEject-GiRle G610
11, CONTROLLING OFFICL NAME AND ADDRESS 12, REPORT DATE
Defense Advanced Rescarch Projects Agency 13 May 1976
1400 Wilson Boulevard T - .
Arlington, VA 22209 : NUT)[,’,ER OREACES
34, MONITORING AGERCY MAME & ADDRENS (if diffcrens from Controlling Office) 15. SECURITY CLASS, (of this report)
Electrorlc Sysicms Division Dhelgssirad
Hanscoin AI'B
! 15a. DECL ASSIFICATION DUWNGRADING
Bedford, MA 01731 . SCHEDULE

16, DISTRIBUTION STATEMENT (of this Repert)

Approved for public rclease; distribution unlimited,

17, DISTRIBUTION STATEMENT (of the absiroct entered in Rlock 20, if different from Report)

18. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reverse side 1f necessary and identify by block number}

random varinhles programming languages statlstlenl compller

0, AASTRACT (Cunbinue on reverse side if nccessary and adentify by bloch number) .

I'bist yeport dlsensses the use of random variables as o data type lor proyramming langunges, 1t demon-
strates that for complex programs the results of the use ol vandom varviables are non=computable, Alter hn-
posing restrictions on the class of propgrams O obtain o practical, although limbied class of programs, we
discuss the major sroblems of eonstrucrlng a sudatienl compiler which accepts disteibnt’ons far lies Input
variables, and produces the distribiion of 1t owpnn varlables, Both stimplificatton rules and representa-
tHon wechnlkgues for cneh a compller arve deserthed, A shimple example of such a compller which has been
implemented is descrithed, and the problems o extendlng the Tmplementation are exploved,

Directlons for Intare rescarch work In thls avea and technlgnes for evaluatlng the utllity of this
approach arce disenssad,

pD. "™ 1473 enimion oF 1 wov és 1s opsoLLTE

* 1 JAN 73 UNCLASSHEILD

SECURITY CLASSIFICAYION OF TINS PACE (When hata kntered)

i

BEST
AVAILABLE COPY

S,

Technical Report 516

A. G. Nemeth

Random Variables
as a Data Type

13 May 1976

Prepared for the Defense Advanced Research Projects Agency
under Electronic Systems Divirion Contract F19628-76-C-0002 by

Lincoln Laboratory

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LEXINGTON, MASSACHUSETTS

: Approved for public release; distribution uplimited.

REPRODUCED BY §

J ¢
NATIONAL TECHNICA uL 1976
" INFORMATION SERVICE

U.S. DEPARTMENT OF COMMERCE m NE

[SPRINGFIELD, VA. 2216} | D

R i - o L SR e g b R

R

{, Jrmbmem. — 2 o S oo 5 TR el <

\ The work reported in this document was perfurmed at Lincoln Laboratory,
a center for research operated by Massachusetts Institute of Technology.
This work was sponsored by the Defense Advanced Research Projects
Agency under Air Force Contract F19628-76-C-0002 (ARPA Order 2929).

This report may be reproduced to satisfy needs of U.S. Government agencies.

The views and ccnclusions contained in this document are those of the
contractor and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency of the United States Government.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

&L psne O ol
Eusene C. Raabe, Lt. Col., USAF

Chief, ESD Lincoln Laboratory Project Office

Non-Lincoln Recipients
PLEASE DO NOT RETURN

Permission is given to destroy this document
when it is no longer needed. /

Vi

o IR WAL TN I AT RPN L -
oot e _ /
Vhite Section

o secten 0
F anstd]
LT TI0). S .

FPOTIOTRPRe PP TRTRITIELS

SYRRITION AVAILABILITY COES MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Vi i SR
5 iwuﬂ" LINCOLN LABORATORY

RANDOM VARIABLES AS A DATA TYPE

A. G. NEMETH
Group 24

TECHNICAL REPORT 516

13 MAY 1976

DDC
i (I P

JUL 6 Y978
Approved for public release; distribution unlimited. ! . :
LOUELIT
D

LEXINGTON MASSACHUGSETTS

AT PR M -

RANDOM VARIABLES AS A DATA TYPE*

ABSTRACT

This report discusses the use of random variables as a data type for programming
languages. [t demonstrates that for complex programs the results of the use of
random variables are non-computable. After imposing restrictions on the class of
programs to obtain a practical, although limited class of programs, we discuss the
major problems of constructing a statistical compiler which accepts distributions
for its input variables, and produces the distribution of its output variables. Both
simplification rules and representation techniques for such a compiler are de-
scribed. A simple example of such a compiler which has been implemented is de-
scribed, aud the problems in extending the impler ation are explored.

Directions for future research work in this area and techniques for evaluating the
utility of this approach are discussed.

* This report is based on a thesis of the same title submitted to the Division of
Engineering and Applied Physics at Harvacd University on May 1976 in partial
fulfillment of the requirements for the degree of Doctor of Philosophy.

iii

LR L COPKTR T LA

L Ty ma——

BLANK PAGE

e s S —

II.

II1.

Iv.

VIII.

CONTENTS

Abstract

INTRODUCTION

PROBLEM REDUCTION

OVERVIEW OF THE TECHNICAL APPROACH
SIMPLIFICATION TECHNIQUES
REPRESENTATION TECHNIQUES
DESCRIPTION OF AN IMPLEMENTATION

PROBLEMS IN PROVIDING A PRACTICAIL.
STATISTICAL. COMPILER

REMAINING RESEARCH PROBLEMS

APPENDIX - DESCRIPTION OIF STAT CODE

ACKNOWLEDGEMENTS

REFERENCES

iii

12

15

26

47

55

59

62

83

84

e

RANDOM VARIABLES AS A DATA TYPE
I. INTRODUCTION

Consider an airplane decelerating on a runway. Given the value of sucli variables as
deceleration rate (perhaps time-dependent), touchdown speed, and touchdown point, one could
write a program P to calculate the distance the plane had tra\~led down the runway before it
reached a safe velocity for turnoff (perhaps 40 knots)., Suppose that an airport designer has to
place an exit taxiway at some distance down the runway. If the taxiway is too far down the run-
way, then planes will spend a longer time on the runway than they should, whereas, if it is not
far enough, then many planes will not be at a safe velocity for turning by the time they reach
the exit. The values of the touehdown speed and the location of the touchdown point are not the
same for every plane which lands, but their distribution can be measured. Similarly, although
the measurement problem is harder, one can measure the deceleration of planes on the runway
or one can assume values from the known characteristics of various models of airplanes. The
program P that was originally written describes how to calculate the distance at which to place
the exit for some specific values of the input variables, but the information that the airport
designer really wante is at what distance will say 95 percent of the planes be able to turn safely.
(Presumably he will provide other exits for those unable to turn at this strategically placed
exit.)

The techniques deseribed in this report will atlow the airport designer to come to the eom-
puter witli the program which catcutates the result for a partieular set of valucs and information
regarding the distributions of the set of values for the input variables. The result will be infor-
mation regarding the distribution of the set of values for the output variables.

Thus the programmer can think of the behavior of one individnal in the population of interest
and write his programs to describe that behavior. Then, in a separate step, he can deseribe
the relevant characteristics of his population using the appropriate statistieal tools. The ma-
chine car then combine this information to obtain a deseription of the output population.

Mcre specifically, this work aims toward an alternate mode of computation whieh would
allow a user to request that his program be compiled into code whieh will accept statistical
descriptions of his input variables and will produee, when executed, statistical descriptions of
the output variables.

Formally then, given a program P (i.c., an ordered sct of instruetions for calculating a
set of output values from a set of input values), I wish to "compile" that program to obtain
another program P', whose inputs are statistical descriptions of the sets of values assumed by
the inputs to P> and whose output is a statistical description of the sets of values assumed by
the outputs of I’. We refer to the program P' as the statistical analog of P>, and the process of
producing this program will be referred to as a statistical compilation of 1’

Another apptieation of this work is in cost forecasting. Sllpposc that 1 am an entrepeneur
thinking about selling widgets. The process used to produce widgets is not fully reliable, and in
each batch of widgets produced only about 80 percent are acceptable. Moreover, this yield is
variable; on some days, only 10 percent of the widgets will be aeceptable, while on others
100 percent will be. Also, I know the current cost of raw materials and labor, but [want to be

able to estimate what to eharge for widgets a year from now when these costs will have changed.

I am able to guess at distributions for these costs in a year (in thc jargon of the decision

analyst, I am willing to assess a prior judgmental distribution for tliese values). I would like
to estimate what the manufacturing costs per widget produced will be. The mean value of these
costs will allow me to calculate my expected profit, while the weight in the upper tail of the dir -
tribution will tell me my risk. Of course, two of my variables, namely yield and cost of mate-
rials and labor, are only known statistically. It is simple to write a program, assuming ¥

know the yield and the costs of materials and labor, to obtain the manufacturing cost per widget.
I would like to automatically combine this program with the distributions for yield and costs to
obtain a distribution for the manufacturing cost per acceptable widget. 4
Another way to view this report is in terms of data types of variables in a programming %
language. Any number of standard data types exist in common programming languages (e.g., [j
FORTRAN, PL/1). The extensible languages provide the programmer with mechanisms for |
providing additional data types as needed (see [Standish 75] for a survey of work in this area).
What we are proposing in this thesis may be viewed as a new data type, which I shall call random.
This may be used in conjunction with any of the standard types as in real\random or int\random or i
real\array\random. A variable of type random must be represented internally by some representation
of the distribution for the variable. The internal representation might be in terms of the den-
sity function, the cumulative density function, or perhaps some alternate form such as moments.
Moreover, the representation may be symbolic, i.e., the system implementor might choose to
represent the random variable by a function which calculates the density function. 2

Regardless of which representation is chosen, the implementor may now proceed to define,
in an extensible language environment, exactly what is meant by our new data types. For ex-
ample, the sum of a real x and a real\random y would be defined to be of type real\random, and its
representation would be the representation of a distribution which is that of y but shifted by the
amount x. Similarly, forming the sum of two real\random variables would cause the invocation
of a procedure to calculate the representation for the convolution of their respective density
functions.

However, as the implementor discovers fairly rapidly, the construction of such a system
runs into many difficulties. Consider, for example, the following program (the syntax is that
of EL1 [Wegbreit 74], an extensible languagc in use at Harvard)

DECL X,Y,Z: real\random:;
DECL A, B: real\random;
A <— gaussian(0, 3);

/* 'A is assigned a normal distribution of mean 0 and sigma of
3

B <— gaussian(2, 4);
X<-A+B;
/* 'X is thus a normal distribution of mean 2 and sigma of 5': ,
Y <- A+ B;
Z<-X-Y;

/*'Z is properly a point distribution with probability 1 of having
the value 0';

- . s e e

ot 2 that unless, at the time that Z is being computed, the dependence of the distributions
for X i« Y is included in the computation, the result would be incorrect. Although X and Y
are both gaussian(2,5), it is not correct to write Z as gaussian(2,5) — gaussian(2,5) which would eval~
uate to gaussian(0,5/2). We assume that successive calls to gaussian produce distributions which
are statistically independent. However, the variables X and Y are not statistically independent
and this dependency causes the different result.

The thrust of this report is the extension and unification of a series of attacks by different
authors on the problems of computing with data which are only known statistically. Because of
the wide variety of statistical representations of data which are available, previous work has
varied quite broadly in the approach to the problem, depending on the assumed representation.
Thus, we have at one extreme, a description of a data value by the upper and lower bounds of
the interval that contains it as in the interval arithmetic of Moore [Moore 66], while at the
other extreme is Monte Carlo simulation where the entire distribution function of the data is
used. Below we survey some of the more well-known attacks on this type of computation as
well as some of the work which is closer in flavor to this report,

Interval Analysis

The ideas expressed above may be viewed as a generalization of the interval arithmetic of
Moore [Moore 66]. In his work, he limits the descriptions of his input variables to simply an
upper and lower bound and attempts to calculate upper and lower bounds on the output variables
which are as tight as possible. The automatic methods usually provided are a package of sub-
routines which are invoked to perform interval addition when addition is called for in the pro-
gram, and similarly for interval subtraction, multiplication, and division. This results in a
simple implementation of the interval scheme, but ignores information regarding the joint de-
pendencies of variables. As a simple example of this consider the usual identity

(a+b)x =ax + bx

Suppose
a=[1 2]
b=[-3 -2]
x =[3 5]
then
(a+b)=[=2 0]
(a+b)x=[-10 0]
whereas
ax = 3 10]
bx = [-15 -6]

ax + bx = [-12 4]

Note that the reason that the right side provides such poor results is due to failure to take
into account that x must have the same value both times it is evaluated. That is, ax and bx

may not be evaluated independently (i.e., as if it were ax and by where x and y nave the same

interval description) if one is to obtain a tight bound on the result for ax + bx. In general, the
fallure to take cognizance of these dependencies broadens the bounds which are obtained by
interval analysis techniques. One can show indeed that for any intervals I, J, K

(J+ KC LT+ IK

although if JK > 0 (an interval ls greater than zero if its lower bound is greater than zero),
then equality holds. Depending on the extent of these dependencies, the bounds obtained may

T T @ Tmaneen LR Tmee T e .

or may not be practically useful.

Monte Carlo Simulation

Somewhat at the other extreme of what can be done are the techniques of Monte Carlo simu-
lation [[lammersley 64]. lere the assumption is that distributions are provided for each of the
input variables and sample sets of input values are then drawn from the input distributions.

The resulting values are then used in the computation in order to obtain an output value. The
process is repeated many times in order to build up the statistics of the output variable. By

clever sampling, it is often possible to obtain the output distribution much more efficiently

P AL, T T hhpnL——re

than "crude" sampling techniques would indicate. S5till there are a number of limitations of the
technique

(1) It requires a distributinn for the input variables, rather than some re-

duced amount of information (i.e., the first four moments).

(2) It requires many executions of the program to build the desired mea-

sures of the output variables to the necessary precision,

(3} It requires generating random samples from what niay be complex and

interdependent distributions.

(4) The program is viewed as a black box, and any information regarding

its structure is ignored.

Note however, that there are no problems due to dependencies between variables in the
program. Since each execution of the program reflecis the dependencies which exist, the re-

sulting output values also accurately reflect those dependencies.

Franson's Work
IFranson, in a Master's thesis [Franson 69] at the Naval Postgraduate School in Monterey,

California, formulates some basic rules for manipulating probability distributions to attack

probtems similar to the ones discussed here. The eompilation techniques are essentially

manual while the computation atgorithms invoked are fairly straightforward numerical integra-

tions of the convolution integrals obtained. In addition, the techni jue does not handle depen-

dencies among the variables.

LIEADICS Simulator

A group at the University of Notre Dame has developed a simulation for the l.aw — Kngineer-
ing Analysis of Delay in Court Systems (LEADICS) project {Sain 73]. They model each step
through a criminal justice system by a representation of the probability distribution of the delays

through that step. An individual leaving one step of the criminal justice system may directly

S AN L oo o < B b L

proceed to the next step or pass through a multiway branch which has a probability associated
with each path, or through a feedback path. Their simulator combines the distributions at
each step to produce the delay distribution for the entirc system. They represent tlie delay
distribution by a rational fraction approximation to the characteristic function and menipulate
it to represent the operations ot addition, branching, and feedback.

Their simulation handles only a very restricted set of operations on the distributions and
it is not obvious how to extend it. Moreover, they have completely ignored eifects due to cor-
relation between the distributions in their model; i.e., if the time from the commission of a
crime to arrest is long, is the trial also likely to be long ? In general, these possible correla-
tions affect thcir results in an unknown fashion and must be included in a more careful analysis.

Bérzins Work

Of all the work I am aware of, a recent Master's thesis by B&rzins [BErzing 75] represents
the most sophisticated development in this area. liis work was perforined in the context of an
effort to build an automatic programming system which will generate programs implementing
business information systems (called Protosystem I). 1’art of this system is an optimizer for
choosing data represcntations and program structures. This requires a "question answerer"
which will supply information about the expected behavior of the information syatem.

lis construction of such a question answerer by techniques which are clevercr than Monte
Carlo analysis runs into many of the problems addressed in this thesis. llis system consists
of a number of pieces including an interval analysis package, a Monte Carlo simulator, and a
package for the analysis of random variables by the manipulation of distributions. His work on
random variables provides an implementation which differs from that described in this thesis
in a number of ways: (1) In my terms, the class of base functions he has chosen are plus and
a conditional of the form if x~ vthen u ¢else &0 However, when he needs the analysis of more
complicated situations such as looping or multiplication, he uses the Monte Carlo simulator in
the environment to obtain an approximate answer and then continues, and (2) his handling of
dependent variables is by maintaining a measure of the degrees of freedom of his input vari-
ables (the "effective number") and using this at various points to improve his estimate of the

answer. Hc clearly recognizes this as an inadequate sotution to the problem for he states:

{In an operation, if] the inpnt variables are interdepencdent, then the
correlations get very complicated and even though they are not necessarily
small effects, Ido not see a practical way of taking them into account. In
these cases, I recommend treating the outputs as though they were independent

even though they arc not,

It is probably a good idea to put in a test for the troublesome case, and
to print a warning that an unsafe answer has been produced. .. [B&rzing 75,
pp. 199-200].

Overview of Document

I begin by proving (Sec. I1, Theorcm 1) that the problem stated in its most general form 1s
non-computable in the classic sense of being equivalent to the halting problem for Turing

machines. One approach to circumventing this resuli is to reduce the class of programs which

may be considered but provide exact techniques for that reduced class. It is this approach which

is explored in this report. There are however other approaches possible. One such approach
is to harndle all functions with a weaker description of the random variables than their distri-
bution as is done in interval analysis. Another approach is to accept some theoretical inaccu-
racies in the result as in Monte Carlo simulation.

Accordingly, we restrict our attention to a class of functions which may be described as
trees (that is, they ccntain no loops at all). In Sec. II, I compare this class of functions to the
various hierarchies of computational cowplexity of functions which have been explored in the
literature.

In Sec. IV, I discuss the simplification rules for a statistical compiler, while Sec. V ex-
plores the variety of representation techniques which might be employed. These topics are the
key design issues faced by the implementor of a statistical compiler.

In Sec. VI, I switch gears to a more experimental approach and describe an implementation
of a prototype system for statistical computations which I have constructed in ECL at Harvard.

Section III states my approach to the problem of producing statistically analogous computa-
tions for any tree-type computation, Here [indicate why a compilation approach is necessary
and delineate the key issues for constructing such a compiler. Section VII discusses what would
be requircd to extend this work to provide a practical general-purpose system (i.e., a FORTRAN
with random variables as a data type). Finally, Sec. VIII is some thoughts about future work in
this area,

The main result is a new technique for attacking this type of problem. In addition,
Theorem 1 in Sec. Il appears here for the first time although the result is due to D. Tsitchritzis.
The Rules 4 and 5 in Sec. IV are new here, while Rule 3, although discovered independently, is
a restatemcnt of already known results. The computational techniques in Sec. V which use
moments are new to the computer sciencc field, primarily because of the discussion of numer -

ical crrors in the solution of the moment problem, although these results have all appeared in

the mathematical literature.

II. PROBLEM REDUCTION

Let me begin with a more formal statement of the problem. I wish to construct a program C

which accepts the following items as input:

f — a program which is the coraputational description of some mathematical
function with a r:al-valued result, drawn from a class F,

p; — a set of programs which are computational descriptions of the probability
distributions for the iaput variables of f (which I will assume independent
for this section). 1ake the further assumption that the p, are discrete
distributions, an assumption I shall relax shortly.

z —a value chosen from the set of possible output values for f.

The value returned by C(f, p,») is the probability that the result of f will be less tt ;.- or
equal to z given that the probabilities of the input variables are as described by the p,'s.

Note that this view of C is not intended to preclude possible partitions of the work performed
by C. C might be implemented, for example, as a "statistical compiler" SC, whose input is
merely f and whose output is an f'{p,, z) which when fed the p,'s and z can complete the calcu-
lation. Thus, we might write C(f, p,» 2z) = [SC(f)] {p,s z). Yet another partition of C provides a
"Distribution Caicnulator® DC, whose input is f and the p"s and whose result is a computational
description of the probability distribution for z. That is, C(f, p,z) = [DC(f, P,)] (z).

As a very simple examp'e of what is intended here, consider f(2, 1) = a + b. Recalling that

the probability density function of the sum of two independent random varizbles is the convolu-
tion of the probability density functions of the random variables, we have SC producing a gen-
eral convolver. That is, SC produces f' whose inputs are two functions and a specific value 2z
and evaluates the convolution of thase functions at the point z. DC, on the other hand, accepts
as input the function f and in addition descriptions of p, and Py and produces the distribution of
the result (perhaps using FFT techniques).

Assuming the class of functions F is sufficiently broad, we may prove that C cannot exist,
regardless of which implementation form is chosen. Consider Kleene's predicate T(x, y,2) =0
if Turing machine x starting with v on its input tape -*ops at exactly z steps; 1 othe. wise.
Consider a restricted form of Kle :ne's predicate Ay. T(x, x, y) = fx(y). That is, we look at a
function which for a specific Turing machine x started with x on its input tape returns 0 if
the machine will stop at exactly y steps and 1 otherwise. Then we have the following theorem:

Theorem 1, (D. Tsitchritzis)

If ¥ i.cludes, for every Turing machine x, Ay.T(x, x, y) and py is discrete, then C can-

not produce correct output for all f € F.
Proof.

Choose py so that every positive integer n has some probability of occurrence. kor ex-
ample, such a choice might be py(n) S Z_mH) for positive integral n.

Now Turing machine x either halts with x on its input tape, or it doesn't, Suppose it
doesn't. Then C[Ay.T(x,x,y),p.,0] will be zero; that is, if the machine x never halts, then
the probability of it halting at yJ steps for any y is zero. On the other hand, if Turing ma-
chine x halts after q steps, then C[Ay.T(x, x,y), py_. 0] will evaluate to 2'(q+“. That is, if

machine x halts at q steps, then the probability of Ay. T(x, %, y) reporting its halting is p (q).
the probability assigned to the occurrence of 'he value q for the variable y. Therefore, the test
comparing C[Ay.T(x, x, y), py. 0] to 0 represents the test that Turing machine x ever halts.
Thus, C represents a solution to the halting problem and therefore, cannot exist.

The extension to continuous distributions follows directly.

Corollary.

If F includes, for every Turing machine x, Ay.T(x,x, |v) (where Ly is the "floor" of ,
the greatest integer less than or equal to y), then C cannot produce ccrrect output for all fcF,

Proof.

Same as the previous proof except choose py to be a continuous distribution with positive i
weight in every interval [i,i + 1) for every positive integer.i.

As a matter of strategy, we must now consider what useful options are left to explore in
spite of the negative result.

One difficulty was that we allowed a distribution which, although finitely describable, had
positive weight at an infinite number of points. Were there only a finite number of points in py,
the function C could be written as follows:

(A) Build a simulator for Turing machine x
(B) For q increasing by 1 do

(C) Simulate step q

(D) If Turing machine x halts, output p (q)
(E) Accumulate p (q) into p

(F) If p equals 1. terminate; else, loop.

This must complete in a finite time, since only a finite number of values of q must be
explored.

Similarly, if we are willing to accept a result within 6 > 0 of the true answer, where 6 is
given as an additional input to C, we can solve the problem in similar fashion. Merely change
the test in step (F) above to p greater than 1 — . Since at some finite point, the weight of the
tail of the py distribution must be less than 6, this process must also terminate.

Finally, another approach we may consider is to restrict the class F so as not to include
Ay. T(x, %, y) for all x. Since the proof depends on the use and properties of Kleene's predicate,
the proof presented would not work in this case, and indeed, the remainder of the report will be
devoted to describing techniques which may be employed for a class F which does not contain
Kleene's predicate.

I choose this approach to attacking the problem for the following reasons:

1. Monte Carlo techniques very effectively attack the case where we are
willing to get an answer which is within & of the true answer, although
the computation time increases without limit as & approaches zero.

2. The restriction to a finite distribution allows some trivial techniques
to ke used which can br very expensive to compute. Any ways around
these expensive computations that I have attempted to devise have not
crucially depended upon the finiteness of the distribution. They are

PP TR

thus liable to being applied to infinite distributions and are therefore, by
Theorem 1, not applicable to eomplicated programs,

3. My restricted class of funetions is still large enough to be interesting
woth theoretically and practically,

Computation Trees

Therefore, we look for some restriction whieh rill eliminate Klecne's predicate from our
class of functions. We note that computing Kleene's predicate involves (1) simulation of a single
step of any arbitrary Turing machine, (2) looping for the number of steps specified in the input,
and (3) testing for a halting configuration of the Turing machine. Due to the simplieity of Turing
machines, (1) and (3) are cxecedingly simple to perform and any language which cxeludes them
is probably uninteresting. 1n addition, during the prcliminary work on this report, the language
constructs whieh eaused the largest amount of difficulty in developing algorithms to handle random
variables were the eonstructs involved with looping, i.e., FOR, GO TO, WHILE, ete. Thus, we
choose as our restricted language a eomputation form whose programs may be represented as
trees (no loops or cycles are permitted) and call these computation trees.

Formally, given a base class of functions ¥, we may talk about the elass of eomputation
trees Q based on funetions from . The nodes in the tree will indieate variables and the edges
will indieate the dependence among variables. Ilaeh node whieh is not a terminal node will also
indicate a function from the class ¥ which is to be applied to the values assigned to the ances-
tors of this node to compute the value at the node. In addition, each node will indicate an order-
ing among its ancestor nodcs to correspond to the arguments to the function. For simplieity,

1 will consider a single root node whieh is the output variable of the trec. Some typical trees

are shown in Fig. 11-1. We think of arcs in the tree as dirccted from the terminal nodes toward

RE ¥ R3
. .
4 ! !
3
C=A+B 1
]
2o
z O)
= R2+ R3
R+ Rzms)
Fig. 11-1.

the root. To each node, we may assign a level number which is the length of the loi sest path
from any terminal node to that node. Then the eomputation to evaluate tiie output frem a given
get of input values proeeeds as follows:

(1) Assign the input values to the corresponding terminal nodes in the tree
and mark those nodes evaluated.

(2) Choose any unevaluated node whose level is less than or equal to the
tevel of all other unevaluated nodes.

s et

g

(3} Evaluate the chosen node by evaluating the function assigned to the node
and using as arguments the values assigned ‘o the ancestor nodes in the
order indicated. Since the node chosen for evaluation is of lowest pos-
sible it:vel, all nodes at lower levels have already beer evaluated.
Therefore, since a node's level must always be greater than the level
of any of its ancestors all needed values are already evaluated.

(4} If the node just evaiuuted is the root node, then we are finished; other-

wise, go back to step (2).

Since a tree contains only a finite number of nodes, the evaluation process must complete,
assuming the evaluations of all the base functions terminate.
The class @ then is the smallest class of functions which

(1} includes the functions of ¥
(2) is closed under functional composition and selection.

The development in Sec. IV will be independent of the choice of the class ¥ but will assume
that we know how to perform certain basic operations related to the functions in . More spe-

cifically, if fef, we must know computational techniques for evaluating

p(K) = S‘S p(a,b,c,...) dadbde... (1)
a,‘b, C,ee
f(a,b,c,...) =k
where p(a, b, ¢, ...} is either a product of input distributions or is the product of other similar

computations. For example, if f in Eq. (1) is addition, then the operation intended is better
known as convolution, while if f is subtraction then the operation is correlation. As f becomes
more complicated, the computations invoked by Eq. (1)} become quite difficult. We will refer to
this type of computation throughout this report as f-convolution because of its similarity to the
usual convolution operations.

In Sec. V, we will discuss how to compute (1) for several "simple" functions which we in-
clude in ¥ (the constants, addition, subtraction, multiplication, etc.). As more computational
techniques become available the class of functions which can be computed by the trees in Q ex-
pands correspondingly. In particular, the inclusion of a conditional function of the form

f(x,y,2) = IF x ~ 0 TUEN y ELSE z

would be particularly interesting since it would provide conditional expressions in Q. We sug-
gest in Sec. V some computational devices for handling this.

Let us compare the possible classes Q@ to some of the hierarchies of computational complex-
ity which have been studied in the literature., This will help to elucidate the restrictions imposed
on Q by its definition and also will indicate which functions might be in ¥, Meyer and Ritchie in
a 1967 paper [Meyer 67] have studied the loop hierarchy {&‘n}- The class @ cannoi be extended
to include all the elementary functions since Kleene's predicatc is known to be elementary
[Ritchie $3]. Thus, @ 2 &’2 since &’2 is the class of elementary functions. &‘1, however, may
be characterized as the smallest class containing the constants, addition, proper subtraction,

modulo, integer division, and closed under functional composition and conditional expressions.

Bl i

If we can extend ¥ to include the functions mentioned, then © D &". Moreover, it might well
be possible to include exponentiation in f and this would result in @ being greater than S?‘ since
the exponentials are not in ¥,.

Another well-known hierarchy is the Grzegorczyk hierarchy {Gn}. For n > 2, it has been
i] n-1°
63 is the elementary functions and thus Q ﬂ t“-'3. t“-‘z may be characterized [Cobham 64] as the

shown [Meyer 67] to be equivalent to the loop hierarchy, i.e., &n = § In particular, then
smallest class containing the successor and multiplication functions, and closed under the op-
erations of explicit transformation, composition, and limited recursion. While @ includes all
the base functions and the operation of explicit transformation and composition, it does not in-
clude the operatior of limited recursion. Limited recursion is a much more potent combining
rile than any allowed in the construction of Q. Still we are willing to allow more complex func-
tions in our base class of functions f than are provided in the base set for & 2+ Moreover, since
«‘-‘3 may be produced by adding exponentiation to the class of base functions which generate .‘.22.
then exponentiation cannot be in .‘.22. Since it might be possible to include expenentiation in ‘f,
€ may contain functions not in 612.

On the other hand, .‘22 contains the form of Kleene's predicate Ay. T(x, X, y) which we have
used [Ritchie 63]. 'Thus, © and “';2 arc not comparable. The basic differcnce may be summa-

rized by the statement that @ includes a more extensive set of base opcrations while &y includes

a more powerful combining rule.

IIl. OVERVIEW OF THE TECHNICAL APPPROACH

In Sec. I, Idescribed a very broad class of problems and suggested that an object called a
"statistical compiler" could be used in the solution of these problems. In Sec. II, I demonstrated
that the class was too broad and described a restricted class of computations called computation
trees which can be attacked with a statistical compiler approach. In this section, I want to indi-
cate the major parts of a statistical compiler and describe the similarities and differences with
conventional compilers.

There are a number of steps which must be performed to convert a program written in
some language to code which ean be executed by a computing machinc. These steps indicated
in Fig. IlI-1 involve thc breaking down of the text of the program into basic units {Iexieal anal-

ysis), the combination of thosc units into well-formed expressions in the language (syntactic

TEXT LEXICAL Lsxsvgil SYNTACTIC | EXPRESSIONS | SEMANTIC [19-2-120)
| ANALYSIS & [ANALYSIS ANALYSIS
lopsmnons
| GLOBAL |
OPTIMIZATION

L o
Iopsnmons
CODE

r |
CODE CODE LOCAL
GENERATION OPTIMIZATION y

Fig.IlI-1. Major compiler phases.

analysis), cxtracting the intended operations from the cxpressions (semantic analysis), and pro-
ducing the ecode to execute the program (code gencration). In addition, one or two phases of code
optimization may be employed: one between the semantic analysis and eodc generation, per-
forming optimizations based on fiow analysis (i.e., dead variable analysis, code motion) and
another following or part of the code generation performing local machine-dependent optimiza-
tions (i.c., registcr alloeation, elimination of unnccessary loads).

In any particular compiler, these phases may not be distinct in either time or code; however,
all compilers must perform thesc basic operations to compile a program. An cxtensive discus-
sion of code optimization techniques may be found in [Schaefer 73]

In a statistical compiler, the same major phases can be observed. Morcover, some of ‘he
phases are hardly modified at all, whether employed in a statistical or conventional compiler.
The lexical analysis, syntactic analysis, and scmantic analyeis which ean produce computation
trees as described in Sec. II are straightforward applications of techniques currcntly in use
|Aho 72].

On the other hand, the later phas » compiler must be significantly different from a
conventional compiler because the = intic ssociated with the opcrations in the computation
trees are very different. Now, ins 1 ition as a basic opcration, convolution hecomes
the basic operation. These changes « tly affcet the code generation phase which muast choose

appropriate rcpresentations for the variables and procuce code for the operations on thosc

A RTINS GERT

R s S B b

B S T —

R e]

e Wy o e

represertations. The subject of efficient and aceurate rcpresentation techniques is at the heart
of constructing a statistical compiler and the issues are explored in Sec. V.

The need for optimization of the operations requested by the semantics is also apparent.
Convolution operations are fairly expensive of computer time, thus any reductions that can be
performed at compile time will pay off handsomely at run time.

I have indicated two distinct phases of optimization: global and local. Local optimizations
which oceur toward the tail end of code generation will deal with improving the code produced
for specific cases, but are not prepared to deal with the important overall strategy questions
which affect the amount of storage and execution time required in a first-order way.

As the small ECL example in Sec. I indicated, a key question in producing accurate results
is the joint dependence of the variables entering into each step in the computation. But which

joint distributions must we keep? Joint distribution functions will require large amounts of

storage, and execution time, both probably increasing exponentially with the number of variables.

In the Sec. I example, only the joint distribution of ¥ and Y is needed to accurately calculate
the distribution for Z. However, without looking ahead to thc use of X and Y, there is no way to
know that one can afford to discard information about the joint distributions of X and A, or X
and B, Indeed, if we did not know, at the tima of executicn of the statement Y « A + B, the in~
tended use for Y, we vould be forced to calculate and maintain a representation of the joint dis-
tribution for the variables X, Y, A, and B.

Thus, we are led to thc conclusion that any statistical cempiler must employ optimization
techniques aimed directly at reducing joint distributicns by looking ahead at the use of the vari-
ables. Scction IV describes a series of transformaticns to apply to the operations, refcrred to
as the analogous program, which must be performed to "execute" a computation tree. These
'vansformations start with an analogous program which maintains all possible joint dependencies,
and cemonstrates that certain reductions based on the analogous program and the computation
tree can be performed without altering the distribution calculated for the cutput variable.

These simplification rules are then the equivalent, in a general way, 10 the usual global
optimization techniques such as code motion, dead variable analysis, etc. The question now
arises: when is a transformation a simplification? or, stated differently, which transforma-
tions should be applied t2 reduce the required effort at run time? Th: rules themselves merely
guarantee that their application will not affect the accuracy of the result, but only the efficiency.

This question cannot be answered solely in terms of the transformations, since estimates
of the ccst of the analogous program are necessary. For example, it may well be necessary to
know whether it is better to storc a joint distribution of three variables or calculate ten con-
volutions. These questions obviously depend critically on the representation techniques which
are employed.

The transformations described in Sec. [V arc intended 1o be independent of the choice of rep-
resentation, and thus no direct answer to these questions is presented in this report. Rather,
the approach here is to describe the options for transformations in Sec.1V, the representation
options in Scc. V, and indicate some specifi~ ways of employing these in Secs. V1 and VII.

The more general approach of attempting to describe the sequence of transformations to be
performed based on cost functions for the analogous program has some basic flaws at this
time. The first is that understanding the nature of these cost functions will require more ex-
perience with the representation techniques in Sec. V to reveal the basic properties comnon to

all such cort functions. J}urther, the general statements which might be obtained by this

13

oo Eaad ik

e -

Y e W,

L |

approach, given the vague properties which can be ascribed to the cost functions in a repre-

sentation independent fashion, lead me to the conclusion that these statements are likely to be
vacuous. For example, although it is possible to suggest some hill-climbing approach to im-
proving the analogous program, the available steps may well be so gross that no continuity is

apparent.
¥or these reasons, | have chosen in this report to focus on the issues faced in the imple-

mentation of a particular statistical compiler, drawing from the general techniques in Secs. IV

and V as necessary.

P ey T T Emm,

-

IV. SIMPLIFICATION TECHNIQULS

In this section, we discuss rules which zllow u:: to alter the analogous progr' n for a
particular tree in ways which preserve the correctness of the computation. Five such rules
and their proofs are presented here. The reason for stopping at five is the simple one that
I can think of no others which apply.

Throughout this chapter, we will make the noncritical simplifying assumption that our

base functions are binary.

Notation

‘we will often have occasion to refer to sets of nodes in a computation tree, and we will
ur.e the usual set notation {A, B, C, D}. Each node will be named by a letter of the capital
alphabet and perhaps a subscript. Thus, a set of nodes might be denoted as {Xi' XZ' Seke Xn}.
We may abbreviate this as {)_(} The condition that node A has becen evaluated to "a" during
a particular evaluation of the computation tree will be denoted as A = a. Similarly, the con-
dition for a set of nodes will be denoted {A = a, B=b, C=¢, D= d}. It will often be conveniernt
to abbreviate this, and we will use square brackets around the set tc indicate it, thus [A, B, C, D}
is the same as {A=a, B=b, C=c, D=d} and similarly [X] = {X1 =% X, =x,, X, = Xgpoee
Xn = xn}. The square brackets may be read as "the state of" and thought of in that manner.
The brackets then identify an event in an cvent space which is specified by the contents of the
brackets. Note the assumed correspondence between variables with upper-case names and

variables with lower-case names.

4.1 Given a computation tree whose output variable is A, we will use P{A = a} or P[A] to
denote the probability mass function which is the desired result when given the probability mass
functions for the inputs. We will assume throughout that the terminal node distributions are
statistically independent. Now, if the sct of all nodes in the tree, excluding the root A is
denoted by {Xi' XZ‘ 5P G Xk} and fA is the function associated with A, and A's left and right
an{cestor}s are Xi and Xj’ respectively, then we may write the following trivial expression for
PlA = ay:

(1) P[A] = A P[X,.X,,... X

20 Xy
xi.xz,...xk

’fA(xi‘ xj) = a

This expression is clearly not satisfactory from a computational viewpoint, although it is
Fossible to utilize it to compute P{A = a}. The computation implied is to form the k-dimensional
probability mass function by listing all the k-tuples for which the probability is nonzero (by
enun-erating all the possible combinations of the values of the input variables and evaluating all
the intermediate results) and evaluating the probability mass function as the product of the
probabilities of values of the independent input variables.

We may then always write trivially a program as in (1) for the computation of the probability
mass function of the output. These programs are enormously expensive to compute as indicated
above. Thus, we present a set of transformation rules which may be applied to such programs
and which are guaranteed to maintain correct results for the computation. Applications of these
rules may be used to transform a program into a broad variety of computational variants, some

t5

of which should be less costly to compute. In the next section, we will demonstrate the technique
on a simrle example program and in Sec. 4.3, we present formal statements of the rulesg and
prove that their application does not change the value produced by the program.

]

4,2 Example

.

Consider the compuiation tree shown in Fig.IV-1 which represents the computation

Z'= fZ(fA(fX(wi' W,), fy(W,, W3)), fB(fY(WZ, W3), W4)). We may write quite generally that i

(2) P(Z] = a P[A,B,X, Y, W, Wy, Wy, W,
\Vi, WZ, W3, W4-
X, y,a,b
afz(a, b) =2

We may, by the definition of conditional probability, rewrite this as

-) cow r . ’
(3) P[Z] =) PIA, B, X, W, W, [W,, W,, Y] P[W,, W,, Y]
wi, W, w3,w4,
) X,y,a,b ’
af,(a,b) = 2 3

where we have chosen to condition on those nodcs which are ancestors of both A and I’. Ia
this conditional distribution, A and B are now statistically independent, since we have fixed !
the values of their commmon ancestors, and their other terminal ancestors are independent. |
Thus, we may write,

. N . 3 G e fot a0
(4) P{Z] = Pa l)lA'k'“i‘“Z' \\3,\]})“3, \\4 \\Z,“S,\]X |
\\'i, WZ, W}. \\'4| })[“/Z' “3' Y]
x,y,a,b
BfZ(a, h) = 2z

Consider the use of the random variable X in this equation. It appears only once and is summed
over. Since

[}

(5) L OPIA X, W W, Wy Y] = PIA, W, [W,, W, Y]

A

1 “Tw-2-12850

Fig. IV-1.

We may simplify (4) to obtain

(6) P[Z] = o PA, W, [W,, W,, Y] P[B,W,|W,, W,, Y] x
WysWarWa Wy P[W,, W,, Y]
y,ab
> ,(a,b) = 2

We may perform the same simplification on random variables W1 and W4 to obtain

(1) P[Z] = i P[A|W,, W,, Y] X P[B|W,, W,, Y] P[W,, W,, Y]
Wy Wa, |

y,a,b
BfZ(a, b) =12z i

Note that in the original computation tree, if we break all the links whieh deseend from Y, that
W, no longer has a path to A. We say that {Y} separates {A} from {W3}. Thus in the eondi-
tional distiibution for A which is eonditioned on WZ' W3, and Y, we may eliminate W3 from
the conditicn beeause it pruvides no additional information to aid in evaluating the probability

that A = a. Thus, we have
(8) P[Z] - 3 PlA[W,, Y] x P[B|W,, W,, Y] x P[W,, W,, Y]
wzﬂw3l yl
a,b
3fZ(a, b) = z
Note that {Y} sepurates {B} from {WZ, W3} and thus we may write
9) P|Z] = Z P[A|Wz, Y] x P[B|Y] x PIW,, W, Y]
wzlw3l yl
a,b
sz(a, b) = z
W3 now appears only in the last factor and may thus be removed to obtain:

(10) P[2] = B P[A|W,, Y] x P[B|Y] x P[W,, Y]
wz,y,a,b
3fz(a, b) = 2

Now by using the definition of conditional probability we may rewrite this as

(11) P[Z] = Y P[A, W,, Y] X P[B|Y]
wz,y,a,b
3fz(a, b) = 2
Now W2 appears only once and may be removed,
(12) P{z] = Y P[A, Y] x P[B]Y]
y,a,b
atz(a, b) = 2

Finally, by the definition of eonditional probability, we have

17

N I I —

(13) P(Z] = P[A|Y] x P[B|Y] x P[Y]

Now the time to perforin this calculation is proportional to the product of the number of
nonzero probability values which are assumed by Y, A, and B, whereas the original expression f
(2) required time proportional to the product of the number of nonzero probability values for 1
Wi, WZ' W3, W4. This assumes a simple-minded calculation scheme for ilie f-convolbitiong
implied. If we assume that the number of nonzero probability values for Wi, Wz, 3» and
W4 is the same number n, and further assume that the numbe}r of points in Y, A, and B 2:‘9
linear multiples of n, then the second computation involves n operations as opposcd to ™,
Whether these assumptions are met depends upon the spacing of the arguments in relatiou to
the functions used. 1f points are spaced linearly and the functions are additive, then typicelly
we will gencrate fewer than n2 distinct points in forming the f-convolution. If all points are
spaced evenly at the same intervals, the number of points in the resultant distribution is 2> n.

4.3 We now state formally the rules which we have used to simplify the expressions in the
example above,

1) Definition cf Conditional Probability
i PIX, X] = PIX]Y] x Pfy]

This is merely the usual statement of the detimition of conditiunal probability. Note that if
P[Y] = 0 then the conditional probability is undefined.

2) Marginality of unique variables

If we have

(2) L PIKX|X] X P{w|g x ...
{2}, k
»B({z})

Where B is a boolean condition not Involving k, and k apuears only once as shown, then we
may rewrite as

(3) Y PINIY] x Pl x ...
z
3B({z})

where the {g}'s represent all the small letter variables in (XL [Y), (W], (1], ..., and there
may be as many more terms as desircd,

The rule states that when a variable appears only once and is summed over, then we need
not have the details of its joint distribution with the other variables in order to perform a
correct calculation,

3) Conditional Independence

Definition: The least common ancestor set of A and B is the smallest sct of nodes which

(1) are common ancestors, and

(2) has the property that any path from a common ancester of A or B passes
through a node in the set.

18

R P e e e s g

If we have
(4) P[A, B, Z, X|Y)]

wherc {Y} includes all the lcast common ancestors of A and B, and {X} contains ancestors of
A only, {2} contains ancestors of B only, then we may rewrite this as

(5) P{AX

Y] X P[B, Z

Y]
This is truc becausc the input variables are indcpendent and once we are given the valucs for

{Y}, then there is no dependence of A and B on any common input variables and so they are
indepcndent.

Proof of Conditional Independence

Given a computation tree as shown in Fig. IV-2, divide all the inputs to the trec into four

sets depending on whether they are ancestors of A, ancestors of B, ancestors of A and B,
or ancestors of ncither.

Dz ey

Fig.1V-2.

The set of input variables which contains aucestors of A only we will refer to as ¢{X}
since X includes all the ancestors of A only. Srmilarly @{Y} is the set of input variables
which consists of all the ancestors of A and B, and {2} includes all the ancestors of B only,

The state of Y, (i.c., the values of all the variables in Y) is completely determined by the
statc of @{X}. We will write this rather loosely as

(6) (Y= foe{x})

The state of {X} is determined not only by [¢#{X}] but also by [¥] since {X} may have
ancestors in {X} Thus

(7) (X)= f((e{x}], (X))
and similarly

(8) [Z]= f,0¥) [¢{2})]

Now wc may write that

9) P[A.S,B,X,&]: E I’[d){i}] X l"[dr{‘_\:}] N P[d){&}l
[e{x}] (#{x}],
[¢{zi]

19

L A o

BT T TRy T TaTTY

where the sum is carried over all [#{Y}], (#{2}] and [#{X}] such that

fA(xi‘yj) = a

gy 2,) = b

[¥]=f (e{x}) (1)
[X]= f ((e{X}]. Y]

(2] = f,(X], [#{2}]

Note that this statement is straightforward, since the complete states of { X}, {y}, {2}, a,
and B are determined fully by knowledge of the states of #{X}, ¢{Y}, and #{Z}. Further, for
any state of #{Y} meeting condition (I), the set of states of ¢ {X} and #{2} which also meet
condition (I) is the same. This is because [Y] is fixed during the summation and the choice of
valid [#{X}] and [#{Z}] is determined by [Y], [X], [Z] and not by [¢{Y}]. Thus, since we have
a complete cross product we may rewrite (9) as

(10) P[A,X,B,Y,2]=) Ple{y}] x b Ple{X}] x P[2{z}]
[#{Y} [2{X})], [#{Z}]
where

(Y]=fy(e{¥}D (I1)

in the first sum and
fA(xl..‘ yJ) =a
fB(yk’ Zn) =b
(X1 = f (& {X} 1 (XD
(2] = fz([X]- (#{z}n

(III)

in the second sum.
Now, we may also write that

(11 P[Y]=) Pla{Y}]
[#{Y}1
where the [¢{X}] satisfy condition (II).
So we may then write that

(12) P[A X, B, 2|Y]= > Ple{x}] x Pla{z}]
[2{x}1 (e{z}
where the sum is over all '#{X}], [#{Z}] which satisfy conditipn (III}. If condition (I1) is not
met for any state of d){l(} then the value for (12) is undefined.
Similarly, we obtain

(13) PIAX|Y]=) Ple{x}]
[e{x}H
where
_fA(xi‘ y.)=a
[X]= fe(t2{X}), [¥D (1v)

20

ik Lo o i

or undefined if there is no [¢{ Y}] sueh that [Y] = fY([d){X}). Also,

(14) P[B, 2]Y]=) Pe{z}
1e{z}

where

ffsS(‘yk' Zn) =b

[£]= 10X [¢{2}] (v)

and undefined if there is nuo [¢{Y}] sueh that [Y] = rY([qa{x}]).
Now to eompletc the proof we need to show that
(15) PIA X, B, Z|Y]= P[A, X|Y] x P[B, 2] Y]

When there is no [¢#{Y}] such that [Y] = fY([d){X}], then both sides are simultaneously undefined,
Otherwise, we wish to show that for any fixed [Y], [X], and [Z]

(16) T Plo{x}] x Ple{z}) =) Pre{x}Ix Y pre{z}]
[¢{x}), [#{z}] [¢{x}] (#{z}

where in the first sum, condition (III) must be met, in the second sum condition (IV) must be
met, and in the third sum condition (V) must be met.

Now, for any [#{X}] which satisties condition (IV), the set of states for ®{Z} which satisfies
condition (III) is independent of the ehoice of [d»{z}]. Again,since we have a complete cross prod-

uct,the faetoring of the sum is correet, Thus, (1(; is an identity.
4) Scparating Set Rule
If we have
(7 PIX]Y, W] x P[Z,Y, W]

where {l} separates {L(} from {V_V} (i.e., any patb from Wi to X, inecludes at lecast one Yk) and
{X} has no ancestors in common with {W} not already included in {W}, and {Z} is disjoint from
{x} and {W}, then we may rewrite as

(18) P[X

Y] x P[Z,Y, W]

This is true sinee [Y] containg all the information in [W] which is used in calculating [X], so
that the additional information embodied in [W] cannot change the probability of [X].

Proof of separating set rule (see Fig.Iv-3)

As in the proof of conditional independence, we have sets ${X}, #{Y}, and &{W} which are
the set of input variables which feed the sects { X}, {Y}, and {W}, respeetively, To be more
precise, ${W} includes all those input variables which are ancestors of elements in {w}. o{Y)
includes all those input variables whick are ancestors of elements in {Y} and not ineluded in
e{w}. @{x} similarly includes all those input variables which are ancestors of elements in
{X} and are not included in cither &{W} or {Y}. Then we may write

W] = £, (1e{w})
[X] =t (W), [#{X}))
[a] = {5 d[¥], [#{X})])

21

Fig. V-3,

By assumption, the sets {X}, #{Y}, and o{W} are disjoint sets of statistieally independent
variables and so we may write

(19) P[X, Y, W]= Py Plo{X}] x P[e{Y}] x P[a{w}]
[e{X}1, [e{x}],
[e{w}]

where the sum is over all [(b{)_(}], [dr{X}] and [<l>{w}] such that
(W] =t ((e{w}])

[X] = f (W] [#{x}] -
(X] = (Y], [#{X}])
This sum may be written as
(20) PXYL W=) Pe{Xx T pPe{y}ix Y pe{w
[#{X}] [e{x}] [e{W}]

sinee for any [d>{§}] meeting eondition (VI), the sets of states of ¢{X} and (b{w} meeting eondition

(VD) do not ehange and similarly for ¢{Y} and {W}. Similarly,

(21) PIY. W=) Pre{y}jx Y Pa{w}]
[#{Y}] [#{W}]

where

(W] = £ ([e{w}])

[X] = £ (W], (¢{x}] (VD
Thus,
(22) PIX|Y,W]=) Ple{x}]
[#{x}]

22

X
|

St A o R S

SRl b bl S e o b S o g

TS e

where for some [#{Y}] and [#{W}], eondition (VII) is met and [X] = £.([X], [#{X}]) and undefined
if eondition (VII) is not met for some [#{Y}] and [#{W}]. Now

(23) P(X, Y=)} P[#{x}]x X Ple{Y}] x P[W]
[(#{X}) (#{x}) (W]

where

(Y] = fy(W], [#{¥})

[X]= £y (1Y), [#{X}) L
and
(24) P[Y] =) P[e{Y}] x P[w]
[2{x}) (W] ..
where
(X1 = £y (W), [¢{¥}D (IX)
So
(25) PIX|X1=) Pla{X}]
[2{x})
where
[X]= I (Y] [2{X}) (X)

and undefined if there is no [#{Y}] such that (IX) is met.

This is identieal with (22) except in the case that P[Y, W] = 0 and this case is irrelevant
sinee both sides are multiplied by PlZ,X, W]

5 Elimination of Complicating Variables

If we have

(26) PIX|Y, W] x P[Y, W, Z]

where all the ancestors of {Y} are contained in {W}, and {2} is disjoint from {Y} ani {W}, and
{§}, {X} and {_Y} are disjoint, then we may rewrite as follows:

(27) P[X|W] x P[Y, W, Z]

Proof (see Fig. IV-4)

Let #{W} be the set of all input variables which are ancestors of nodes in {W}, and let
d:{z(} be the set of inpi : viriables whieh are ancestors of nodes in {X} and not already included
in (b{_’V} Then we have

(W] = f,((2{W})
(Y] = [y (W)
[X] = f (W], (Y], [#{X}])

23

¥
X) o {x}
X
Fig.1V-4,
So we have trivially that
(28) P[X,Y, W] = 2} Pla{w}] x P[a{X)]
(e{w}], (#{X}]
where
(W] = f((e{w}))
[X] =t (W), (Y], (#{X}] (X1)
We may also write
(29) PIY, W=) Ple{w)]
[e{w}]
where
(W] =t (1#{W}) .
(Y] = £,((W)) ()

So we have that

b3 Ple{w)} Ple{X}
_[«»{w.}],[«»{z}] [T Pre)

(30) P[X|Y,W]-= T P[O{W]]

[#{w}]

or undefined if there is no #{W} such that (XII) is met. Now, we may similarly write that

(31) P[X, W] = 2 Ple{w}] x P[#{X})
[#{w}), [8{x})
where
(W] = fip(e{w}))
(X] = (W) £ (W), [#{xX)) (X1
and
(32) PW]=) Pla{w))

[#{W}]

24

where

(W] = f(e{w}n (XIV)

Thus, we obtain

b Ple{W}) x P[e{X}]
(o{ W}, [¢{X}]
(32) P[X|W] = T Ple(W]]
[e{w})

or undefined if there is no #{W} satisfying condition (XIV). Comparing this to (30), we find
the expressions are identical, excepi when P[Y, W] is zero. But in that case the values are

irrelevant since both will be multiplied by zero.

4.4 We now indicate that the transformations indicated in the example are all instances of
applications of the rules just presented. Referring back to Sec.IV-2, w= find that we move from
(2) to (3) by the application of Rule 1 with X = {4, B, X, W, w4} and Y = {WZ, W, Y}. We move
from (3) to (4) by Rule 3 with X = {X, w,}, z= {w4}, W= {WZ, W, Y}. We move from (4) to
(7) by three applications of Rule 2to the variables X, Wi’ and W4. This can be pursued simi-
larly throughout the example.

Conclusion

The transformation rules described above must be applied in some sequence in order to
simplify the statistical compilation. The sequence of application is in turn determined by the
cost of various possible statistical compilation.

In the next section, we will discuss the various representation choices which may be em-
ployed by the implementor of a statistical computer. The impleientor will have to decide which
of these transformations should be used to improve the running time of the programs based on

the diffcrent representations employed.

2R

V. REPRFSENTATION TECHNIQUES

A key issue which will faee the implementor of any statistical compiler is how to represent
the random variables in his implementation. This section is a survey of possible answers to
that question and is not intended to be complete; rather, it tries to give an indication of the
range of possible choices and some of the effects of these choices on the efficiency and accuracy
of the computations.

In choosing a representation for random variables, two key design parameters must be
explored. The first of these is representational freedom, i.e., what range of distributions

functions can be described accurately? For example, if a user arrives with an empirically
determined distribution, how accurately can this distribution be deseribed to the system? As
the representational freedom is narrowed, fewer parameters are needed to select a particular
distribution and storage space is economized. Moreover, certain calculations on th* random
variables represented by these distributions also become simpler. lor example, if the chosen
representation is by gaussian distributions, then addition of the random variables is simple to
perform, but very few distributions can be accurately portrayed.

Another design parameter is the class of base functions (referred to in Sec. Il as ¥) which
determines the class of computation trees Q that the user may construct. As we indicated in
Sec.II, in order to include a function f in !, we must know computational techniques for eval-
uating the representation ~f f(X, Y)where X and Y are random variables with representations
from the chosen representation class. Moreover, the techniques must extend to handle the
cases where X and Y are not independent but rather a joint distribution is represented. We
refer to this class of computations throughout this report as f-convolution because of its simi-
larity to the usual convolution operation. Indeed, when the representation of distributions is in
terms of their probability density functions, '+' — convolution of independent random variables
is precisely the standard convolution operation while '-' — convolution is better known as
correlation.

The actual arithmetic operations which are performed in the computer to calculate an f-
convolution are strongly affected by the chosen representation and may be either simple or dif-
ficult for a particular f depending on the representation. Moreover, given a particular class
of operations, the class may not be closed under our f-convolution operation. Thus if R}\ and
RY are the representations of the random variables X and Y, the calculation of the representa-
tion for f(X, Y) involves two steps: (1) calculation of an exact result for f(X*, Y*), where X* is
the variable exactly represented by I{X, and (2) selection of a representative from the represen-

tation class for R Both steps represent potential sources of errors which must be in-

cluded in an analyfs(z{s' ;{f) the accuracy of the results of choosing a representation, although for
some representations, which are closed under f-convolution, the second step is not an issue.

TFor example, if we choose addition as a member of the class of base functions, then it is
unreasonable to choose a representation which is limited to uniform distributions. The repre-
sentation of the sum of two independent random variables, each of which is represented by a
uniform distribution, is never a uniform (except if one distribution is the degenerate case of a
point distribution), and a uniform approximation would entail a significant loss of accuracy. See
I'ig. V-1 for an example of this.

Statisticians have, of course, spent much time and effort in developing techniques to de-

scribe distributions, They have not, as a rule, concerned themselves with representations

26

TR T W sy

— T E——

UNIFORM WITH SAME MEAN + VARIANCE
AS uniform (3,5) + uniform (3,7)

uniform (3,5) + uniform (3,7)
AN

Fig. V-1.

which are convenient for f-convolution operations as necessary here. It is our intent to briefly
indicate some of the statistical approaches to the representation problem and the characteristics
of these representations for statistical compilers.

We will assume, except where cxplicitly stated otherwisc, that the computer representation
of REALs is cxact. While thic is, of course, not true, it is a much smaller source of error in
an implementation than thc other errors discussed in this scction. Moreover, extended preci-
sion arithmetic can be used to correct this error in well-known ways, whereas the other crror

sources are not as easily controlled.

Random Variables

We begin by reviewing what is meant by a random variable. A typical definition may be
found in IFeller [I"eller 57]. We must first have a probability space which is constructed of
elements. These clements are the basis for an clgebra of scts (a o-algebra) and a probabitity

mcasure P on those sets. Then we have

Definition: A random variable is a function u on a probability space
such that for each real t thc set of points x where u(x) s t belongs to

the underlying o~algebra.

The definition basically insures that any real function which provides a well-defined distribution
function is a random variable. That is, the function F(t) = P(u(x) & t) is guaranteed to be well-
defined by the dcfinition of random variable.

Despite the generality of the definition, a number of propertir. of distribution functions can
be direetly determincd from the properties of the v-algebra. For example, the Jordan and
liebesgue decompuosition theorems state that any distribution function I° can be expressed as a

mixture of three types of distribution functions.
) D p]'A(, + q[<S + rl‘A

wherep 20, g0, r>0, andp+q+r =1, FA(‘ is absolutcly continuous, l~‘q is continuous
but singular (i.e., concentrated on a set of measure 0), and FA is atomic (i.e., concentrated on

the set of its atoms, whcre atoms arc single points with a positive probability wceight).

27

For our work, we will assume that = 0; that is, our distribution functions do not include
components whici* are continuous on sir uiar sets. We regard these as curiosities not likely
to be observed in general practice.

We will look separately at absolutely coatiluous distribution functions and atomic distribu-
tion functions and the representations appropriate to each type. We can then explicitly :epre-
sent any more general distributions as a mixture of the two.

Absolutely Continuous Distributions

We will start with the absolutely continuous case. If F is a distribution function which is
absolutely continuous, then there is an associated probability density function (pdf) f which

exists almost everywhere such that

X
F(x) = S f(u) du
-0
NOTE: We use upper case letters to denote distribution functions, and lower
case letters to represent density functions.

Thus, the two obvious possibilities are to represent F directly or to represent f. Since
techniques for calculating with probability density functions are better known than techniqnes
for calculating with distribution functions, we next turn our attention io representations suitable

for density functions.

Probability Density Functions

The problem of representing a pdf is very much the general problem of approximating a
function of a real value. In fact, the problem is complicated by the fact that many pdfs are not
even continuous (e.g., uniform distributions), much less differentiable. Given such an approxi-
mation problem, the analyst must first choose {:¢ "form and norm" [Rice 64] to be used. The
"form" refers to the class of approximating functions from which the actual approximation will
be chosen; the "norm" refers to the error measure (i.e., least squares, least maximum error,
etc.) to be used in selecting a particular function of the chosen form to be the approximation.
Once these choices have been made, we can then proceed to comment on the existence and
uniqueness of the solution to the approximating problem.

Qur criteria for selection of an appropriate form is strongly colored by our usage of these

approximations for the f-convolution operations. Thus, our emphasis is significantly different

from that in texts on function approximation. We will emphasize the form of our representations

and the costs of computing with those forms more than we will discuss norms and the impact of
the norms on the choice of a representative from the class of approximating functions. The
reason for this choice is simply that the impact of the norms is no different for our problems
than for others and has already been extensively considered in the literature. On the other
hand, the efficiency and accuracy issues for calculating f-convolutions depend critically on the

form of the approximating function and have not been previously considered in the literature in

a unified way.

Representation by Sampling Techniques

The most obvious representation is merely to choose evenly spaced points along the pdf and
tabulate their values. Depending upon the techniques used to interpolate values for intermediate

28

___ﬁ-guuﬁ—w . B e - o skl

i e B

points, a range of representations is defined. For example, if the value of a pdf p at a point x
is chosen as the value at the nearest tabulated point, then we are approximating p by a mixture
of uniform distributions of a constant width.

This class of approximations is interesting because it provides representations which are
easy to use to compute f-convolutions. In particular, if we are interested in the base operations
of addition and subtraction, then the corresponding f-convolutions are convolution and correla-
tion. The recent work with Fast Fourier Transforms has led to rapid techniques for calculating
these results [Stockham 69). In the next section, we will describe briefly the basic computa-

tlonal technique and in the following section indicate the major error sources.

Convolution by FFT Techniques

The Fast Fourier Transform algorithms are actually a set of algorithms which can compute
the Discrete Fourier Transform of a series of N data points in time T = kN log2 N. These
algorithms became well-known following the publication of a paper by Cooley and Tukey in 1965
[Cooley 65], although tae ideas can be traced back to Runge in the early 1900's (see [Cooley 67]).
Recent hardware efforts have reduced k to values as small as 500 ns using special-purpose
hardware [Allen 75], while values of 60 us have been reported on machines such as the IBM 7094
[Stockham 66},

As first described by Stockham [Stockham 66], the FFT algorithms can bc used to signifi-
cantly speed the calculation of convolutions and correlations. The technique depends on the fact
that the product of the Discrete Fourier Transform (DFT) of any two sequences of points is equal
to the DFT of the circular convolution of the two sequences. To obtain ordinar; convolution, one
must pad the deslred points with a sufficient number of zeros so that the circularity is irrele-
vant. The DFT and inverse DFT can both be calculated by FFT techniques resulting in a signi-
ficant time savings compared to standard techniques if the nurber of points involved is medium
sized or larger. Stockham's data show the crossover point between N = 24 and N = 2.

The DFT is defined as tiie discrete analog of the Fourier transform, namely

N-1
Fity= Y fowk, t=01,....,N-1, w=e /N
k=0

If we are given two sequences of points, f and g (we will assume f and g are both sequences

of N points), then their circular convolution is defincd as

N-1
h ()=), f(n) g((1 - n) mod N)

n=0
It may bc shown [Gold 69] that if we calculatc the DFTs of f and g, and multiply thesc and
apply the inverse DKF'T, the result is preciscly hc' While this is a complicated way to perform
a simple calculation, there is a significant speed advantage which justifics the effort. The
direct way of calculating hC would r(;quire N multiplications and N — 1 additlons for each value
of 1. This gives a total time of ch where kC is the time to perform one multiply/add and
associatcd bookkceping. Calculation of the DFT, however, requircs ka log2 N time as docs
calculation of the inversc DI'T. This yields a total time of :"ka(log2 N + A) which is smaller

for large N. (Thecse calculations arc for N a power of 2; similar savings hold for othcr Ns.)

29

TR

NI =« W

L
.
!
kL
y
i
k
1

e T e T

For work with probability distributions, we are not interested in circular convolutions, but

rather in "aperiodic" convolutions of the form

N-1
h() = Y f(n) g(l—n)
n=0

One way to achieve this effect using the DF'T, is to use a larger vaiwue of N, That is, if f
and g are given at M points, then assume their value is zero outside of that range. Extend the
sequences with enough zeros (M is always enough), and perform a circular convolution of these
extended sequences. A predictable portion of the resulting circular convolution is then the de-
sired aperiodic convolution (see [Stockham 69] for more details).

Error Analysis

Since we have restricted ourselves to absolutely continuous distribution functions in this
section, their pdfs exist almost everywhere. We will further assume that our pdfs are bounded
on (-, =), Then we may conclude that the convolution of our pdfs exisis and is also bounded
on (—=,) [Apostol 57]). Let us examine now more carefully the implications of calculating
convolutions by FFT techniqucs when we are talking about absolutely continuous distribution
functions.

The first thing we must observe is that the use of FFT techniques in the calculation does
not change the error characteristics significantly. That i¢, once we have sampled our two in-
put pdfs fand g at some chosen points, whether we calculate the convolution of these sequences
of points by FFT techniques or through direct inner product evaluations, the results will be
numerically identical (remember that we made an assumption that arbitrary precision arithmetic
is available; in fact, the round-off error propagation of the FFT implementations has becn
shown by expcrience to be as good or bctter than that obtainable by summing products
[Stockham 66]. Further, by careful choice of quantization of the probability values, and number
of samples, one can take advantage of FF T-related techniques such as thc Fermat Number
Transform to yield no round-off errors and further improved speed:: [Agarwal 75]).

The important errors in the technique arise rather from the sarapling process on the input
pdfs. Lctus try to bound these errors more carefully. If we wish to calculate the convolution
of two pdfs f and g, then we wish to evaluate

h(x) = S‘ fly) g(x —y) dy

and this exists if f and g arc absolutely integrable (true for all pdfs) and bounded on (~o, o),
The first thing we must do is choose an upper and lower bound for the domain of each of

the functions f and g which represent the limits of the sampled versions of these functions. If

wc choose limits for f only, and these limits are [a, b], resulting in ignoring a weight of € in

the tails of f, then in fact we are evaluating

R b
he(x) = S‘ fly) g{x —y) dy
a

The error caused by this can be directly calculated

30

4

h{x) ~ ﬁf(x) = r f(y) glx — y)dy + S;) f(y) g(x — y) dy

Sinee both integrals are pcsitive (f and g are always positive), we have

00

- i a o0
S |h(x)—hf(x)| dx = y U f(y) g(x —y) dy + gb fly) g(x —y) dy} dx .

If f(y) g(x — y)is a eontinuous funetion of x and y, then we eaninterehange theorder of i..iegration
to obtain

0 4 a o0 o0 o0
5 ln(x) ~ he(x)| dx = y f(y)g glx —y) dx dy + gb f(y) 5 g(x —y) dx dy

Since g is a pdf, f_mm g(x —y)dx = 1 for any y. So we have

11

5 Ih(x) = hy(x)| dy

a -

5 fly) dy + (‘ f(y) dy
o0 “h

= Ef .

Thus, the error in the eonvolution result that we make by assuming one pdf has nc tails is given
preeisely by the weight in those tails when the error measure is an L1 norm. *

If we also use a tail-limited version of g (call it é), then the error we make is similar,
that is

. - H

S‘_m Ihf(x) —hfg(x)l dx = g

where eg is the weight in the ignored tails of g. Then, by the triangle inequality, the total

error between h(x) and hfg(x) is bounded by € + eg, the sum of the weights of the ignored tails.
Once we have chosen an upper and lower bound, we must next choose a sampling interval

whieh is the same for f and g if we use FI'T techniques. This sampling interval is then usad

as the sampling interval for Bfg' Thus, we have

b
hg (e + kAt) = { fly) glc + kAt —y) dy
g Ja
are the exact values for the sampled and tail-limited convolution we are seeking. Decause we
are sampling the input with the same At as the desired output and then calculating the convolution

of two sequences of points, we actually calculate

(b-u}/At-1
ﬂ’;:g(c + kat) = ¥ f(a + 1At) gle + kAt — (a + 1At))| at

L

1=0

* The Ln family of norms is often used as measures of distanee between funetions. They are
defined by:

L (f,g) = [S_m]f(x) —gx)|" dx]l/n

B R

and tue error between the discrete sum and the integral is given by

b
hglc + kat) ~ Ry (c + kat) = Sa fly) glc + kat —y) dy
(b-a)/At-1
- At Y fa +1at) glc + kAt - (a + 1At))
1=0

This difference is precisely the difference between the Riemann sum representation of the inte-
gral and the integral itself. The absolute value of this error is known [Davis 75) to be € (b —a) X
u(At), where
u(at) = max |f(x,) g(c + kAt —x,) — f(x,) glc + kAt - x,)|
1 1 2 2
[x,-x,|<At
1l 2
when f(x) g(c + kAt — x) is continuous in x. If (%(f(x) g(c + kAt — x) exists for all k and is
bounded, then the error at each point in the resulting convolution reduces proportionally to At.
If instead of choosing f and g values at points a + 1:\t, we choose the values at (a + 1At + At/2),
and wk(x) = f(x) g(c + kAt — x) has continuous second ucrivative, thcn the error at each k is

given by

2
(b — a) (at)® 4 W&y

24 de

where a < 6k < b. The total error for the tail-limitcd «<i.1.. olution is then

2(b-a)/At b-a)/At 4w (6,
. ~ & V‘ k
L lhfg(c +kat)-—h’;.g(c + kat)| = [(b—a) (at)?]/
k=1 k:i
If we let
dw ()
A = max
k dx
then
2(b-a)/At
A - ~ . 2
2 Ihfg(c + kAt) —hftf.g(c + kat)] < [(b —a)* aat)/12
k=1

Thus, the total error in tle result is bounded by the sum of the errors causcd by removing the

tails, and the errors caused by sampling in the intervals that remain.

2
W (b —a)” At

S [hix) ~h‘*t‘ng(x)| dx < € . T3

In ordir to derive this bound, we necded one assumption in addition to those constraints on

the pdlis we had at the heginning of the section, namcly that

32

o TR

PO L e

ST e

-

=

mw - i . R D — " 2

dZ
dxZ

f(x) glc + kat —x)

exists and is continuous. This is a fairly strong assumption for probability distribution func-
tions, but J have not been able to obtain any bounds under weaker assumptions.

Correlation

PO Ty n—

The preceding development was expressed in terms of convolution. 1In fact, the computing
techniques and error bounds for correlation are basically identical. Recognizing that X — Y is
identical to X + (~Y), we nced merely look at what is required to represent the negation of a]
random variable expressed in sampled form. The negation operation implies negating and re-
versing the upper and lower bounds, and taking the samplc points in the reverse order. The
sampling interval remains constant. If we go through the error bounds se -tion consistently
replacing g(c + kAt — x) with g(c + kAt + x), then the error bounds themselves are not affected

and the derived results all apply to correlation, when computed in this fashion.

* =Convolution

When the desired base operation is multiplication, we can also try to take advantage of I'FT

techniques to perform the calculation. To do this, wc note the identity

Y *Z=expilnY +1n2)

Thus, by performing three unary operations, i.e., opcrations on one distribution, and a
+-convolution, we obtain a *-convclution. Note that if X = InY, then we have {assuming Y > 0

to avoid difficulties and also for some Kk, f(;n tka(t) dt exists and Z meets the same conditions)
2% X
fx(x) EN] fY(e)

[Parzen 60].

If we calculate the Fourier transform of f\{ in terms of fY’ we obtain the following expression:

£5.(s) = 5‘ i (%) &% g

V90 N p
S efo(c‘\) e'S¥ dx

" 5‘ eX(is+h) f\,(ex) ik
let t = ex, we have

= 5‘ UBEL) o At) 4
0 Y t

S‘w is
tof)y dt .
0 Y

f(s)

Checking in our tables [Bateman 54} we find that, with a change of variables p = | — is, we have

33

s it

s TR0

£41(p) = £5,(1 — is) i

where f\I{V[is the Mellin transform of f.k,. Thus, if we take the Mellin transform of the distribu-
tions of our two random variables, multiply these transformed distributions and ealeulate the
inverse transform, we find that we have performed a *-convolution (see [Ditkin 65) for more on
the properties of the Mellin transform).

This, of course, is only useful if these transforms ean be performed effieiently, using
FFT-type teehniques. Of course, we have just seen the necessary triek, i.e., ealeulate the
pdfs eorresponding to InY and InZ and take their Fourier transform. However, the aceuracy
begins to degrade because a resampling must oceur to keep the sample points evenly spaeed
bo*h before and after th: In operation. I do not know if FFT-type techniques ean be direetly
employed on the original pdf to caleulate its Mellin transform and its inverse directly.

Other f-Convolution Operations

In general, if h-convolution for an arbitrary base funetion h is desired, we have the follow-
ing equation:

(t) = 55 f(xi...xn) dx1...dxr1
(xi...xn)

Bh(xi. o .xn)st

where f is the point distribution function of Xi' . Xn. This multiple integral can be direetly
attacked by numerical integration techniques, ir neeessary (see [Stroud 71) for a survey of
techniques). These, however, are likely to be more expensive and less aeeurate in computation

than schemes tuned to a particular f-convolution.

Other pdf Representations

There are a large number of other ways to represent pdfs in addition to the sampling tech-
niques deseribed above, These divide into two major elasses: (1) representation by funetions
of a special class, and (2) representation by series expansion. We discuss below an example
of each type. These particular ehoices are well known in the statistical literature, but many
examples of each type ean be found, eaeh with its own advantages and disadvantages.

One well-known speeial class of pdfs which can assume a broad variety of shapes and is
thus useful for approximation is the Pearson family of pdfs [Fendall ¢3]. These pdfs can all
be eharacterized by the following differential equation, where f is the pdf

df (x ~a)f

T
b0+b1x+b2x

It is simple to derive from this equation a number of properties of f. -

(1) df/dx vanishes at the point x = a, and only at that point, Thus these
distributions arc uni-modal, but in speeial cases. they may be J-
shaped or U-shaped.

(2) There is (except for special cases) smooth contact with the x-axis at
the extremities, so that df/dx vanishes when f = 0,

34

bl

3
2
(3) The parameters a, bO' bi’ and b2 can all be determined from the
first four moments.
(4) The Normal, Beta, Chi-square, Student's t—, and Gamma pdfs are F
al) special cases of the Pearson family.
Since a Pearson pdf can be deteimined from its first four moments, tt : relations between
the defiring parameters and the first four moments can be used to move 11rom one to the other.
That is, given the first four moments, one ean determine the parameters a, bo, b1, and b2 de-
fining the Pearson pdf, and eonversely, given a, bo, bi’ and bZ’ one can calculate the first
four moments. Indeed, given a Pearson pdf, there is a recurrence relation for the moments /
which will caleulate moments of higher orders easily, but the first four determine all of them.
If two Pearson pdfs f and g are convolved to form a pdf h, h is not, in general Pearson, but
a Pearson representative which matches it in the first four moments can be determined. {This
can be demonstrated by comparing the higher order moments (ps, B, o etc.) of the 1’earson
representative for h with the values for the true h for some numerical exampies.)
Generally, there is no advantage to using the Pearson family in place of represcentation by i
the first four moments (see di cussion of representation by moments, below). The moments
are easier to compute with for f-convolutions and casier to obtain in the first place.
Another type of representation for pdfs is in tcrms of the coefficients in a scries of ortho-
gonal polynomials. One of the best-known ol these schemes is the Gram-Charlier Type A
series [Kendall 63]. This is an expansion in terms of Tchebychefl-lermite polynomials.
The major properties of the Gram-Charlicr series for use in a statistical compiler are:
(1) ‘The coefficients arc casily calculated from the moments, and the
moments may be easily calculated from the coefficients,
(2) 1t is easy to convert from a pdf in this form to a cdf ir this form,
and conversely,
(3) The sum of a finite number of terms of the scrics may produce nega-
tive values for the probabilitics near the taiis,
(4) A series ol n terms may be a poorer fit than a series of n-1 terms,
and
(5) If there is a significant skew in the pdf, then the fit wili probably be
poor.
f-convolutions would be performed on the pdfs by manipulating the coelficients in the Gram-
Charlier representation of the pdfs. ('losed-form relations between the coefficients can be ob-
tained for cases when the relations between the moments are known: for the case of +=convolution,
these relations arce particularly simple. If our represeutation is in terms of the Gram-Charlier
series about the medn, and the represcntation for N is given by <X, Xq Xyooo >, where X is the .,.J'

" . ; = .th : : :
mean of the random variable X, and X s the coefficient of the i term in the series expansion,

then for Z =X + Y, (X and Y indcpendent) we have the following relations:

Z=X+ty
zo—i L
Zi=0

35

This is obtained from combining the expressions for the Gram-Charlier coefficients ([Kendall 63,
p. 157]) with expressions for the moments of Z in terms of the moments of X and Y.
For *-convolution, the same approach can be applied to obtain:

Z =%y
zo=1
zi=0

N
I}

27 2%y, X, £ y5# 1/2

N
w
n

6x3y5

2y = 24y, HA2xyy, + 12Xy, + 10%yy, + 3%, + 3y, + X, ty, +1/8

These expressions are relatively easy to deal with, although the number of terms begins to get
unwieldy for :-convolution wit. higher order series.

Given the basic accuracy .imitations on Gram-Charlier series outlined abo\ e, they can only
be recommended where the ease of conversion to cdf representations is important, and "nice"
pdfs are used. Usually, one of the other forms will be more convenient for computation and
avoid the accuracy limitations inherent in Gram-Charlier.

Representation by cdf

In order to obtain error bounds in the discussion of convolution above, we had to make
assumptions which are hard to justify regarding the smoothness and differentiability of our
pdfs. Generally, trying to represent and compute with functions which are not smooth is sub-
ject to many pitfalls and should be avoided where possible. For this reason, an attractive ul-
ternate representation is the distribution function, also referred to as the cumulative distribu-
tion function (cdf) to emphasize the distinction from the pdf more strongly.

The choices for representation of the cdf are similar to the choices for representing pdfs,
ranging from sampling to series and continued-fraction expansgions. We discuss below what
some operations on random variables imply about operations on the corresponding cdf and
leave the implementor to choose the most convenient representation for the expected cdfs.

The first thing to note is that the calculation of the +-convolution for two random variables

cannot be expressed directly in terms of the cdfs of those random variables.

36

g, CEtRER e vl

P{X+Y<Kz]

S\“-" S"Z-X
f (x,y) dy dx
w Yoo X' Y g d

Assuming X and Y are independent, we have

© 7 =X
FZ(z) = Sw fx(x) S_w fY(y) dy dx

FZ(Z)

= S_w fx(x) FY(z —~x) dx

Computing this requires calculating fX and then forming its convolution with FY, but I know of
no way to avoid the calculation of the pdf of one of the random variables.
However, there are other operations among random variables which translate quite di-

rectly into operations on their cdfs. For cxample, consider Z = max (X, Y).

P {max (X, Y) < z}

Fylz)

P (X< z)and (Y < z)]

Assuming X and Y are independent, we have

Fz(z) = FX(Z) FY(Z)

Similarly, for Z = min (X, Y), we obtain

FZ(z) = Fx(z) + FY(z) - F‘X(z) FY(z)

Note that performing max-convolution with pdfs would require calculating both cdfs,
Another operation which is particuiarly convenient with cdfs is the following (expressed in
ECL):
CHOICE <- EXPR(X: real\random,
Y: real\random,
Z: real\random,
k: REAL;
real\random)
DXLEk=>Y; Z(];

W <- CHOICE(X, Y, Z, k);
Then we have assuming independence of our random variables,

Fw(w) = P[({(X < k) and (Y € w)) OR ((X > k) and (Z < w))]

h

Fylk) Fy(w) + (1 — Fy (k) Fyw)

Generally, when there are many conditional opcrations to bc performed, especially those

involving comparison with REALSs, the cdf is the more convenient form to use.

Moments

Statisticians have long used moments to describe succinctly the characteristics of a distri-
bution. Such measures as variance, skewness, and kurtosis are related to the moments about

37

B iae o)

the origin or about the mean in direct and simple ways, Moments have the additional advantage
from our viewpoint of being particularly convenient for certain f-convolution operations. In
many cases, the answer desired by the poser of the original problem is expressed directly in
terms of moment measures, i.e., what is the mean and standard deviation of X? We must be
wary, however, because not all distributions have morciuts of all orders and for certain cases,
no moments at all exist., In the following, we will assume that the input distributions we use
have moments of all the degrees that we use to represent the distributions.

An f-convolution which is particularly simple to perform with a moment represcntation is

*=convolution, For, if Z =X * Y, we have the following

E[Zz"] = E (X))

"

i

o0 o0 n
S‘-w S‘-w (xy) FX, Y\:-:,y) dx dy

Assuming X and Y are independent, we have

E(z“;:S' 5 xnynfx(x)fY(y)dxdy

- - 00

o0 0
n n
yf,()S x f,,(x) dx d
S‘w ard » X Y

1}

fm Y ly) B 1X") dy

E (X" E[Y")
Thus, if X and Y have moments to degree m, then so will Z. In words, the moments of a
product of independent random variables are the product of the moments of those random
variables,

Equally simple is the form Z = Xk for k a positive integer. lere we have directly that
E [Zn] = B [an]. In this case, Z will have moments to degree m if X has moments to de-
gree km,

Since E [gi(X) + gZ(X)] = E [g1(X)] + E [gZ(X)], we can extend these results to obtain, if

Yy ik
Z_EZ,Zaijkwi
i j k

then we have, assuming independence of X, Y, and W,

Elzl=)) a, B X BiY)) E (wh)
i j k

To obtain the higher moments, expand z" symbolically to obtain

kg e) biijinWk
ik

38

TR IOR U Te——

Then,
o By o [l I k
E[Z"] = EzzbijkL[X]E[Y]E[W |
i j k
Thus, we can evaluate the moments of a multinomial directly from the moments of its input
distributions, assuming independence of those input distributions and existence of moments of

adequately high degree. In the above example, if the multinomial for Z is of degree k in X,
then evaluation of E[Z") requires the existence of moments of degree up to kn for X.

Characteristic Functions

The characteristic function is the continuous Fourier transform of the pdf; it is also the
moment generating function. Whenever the pdf exists, so does the characteristic function,
although an arbitrary function is not in general the characteristic function for some random
variable. The characteristic function has some convenient properties for f-convolution, namely
if)‘X and KY are the characteristic functions for the random variables X and Y, then)‘X+Y =
KX)‘Y is the characteristic function for their sum, assuming independence.

Note that the characteristic function representation was used to perform convolution fo.:
sampled pdfs. That is, to perform convolution, we first took the DFT of the input pdfs to
obtain an approximation to the characteristic function and then used the property indicated
above to perform the convolution. 1f a sequence of +-convolutions are to be performed, then it
is more efficient overall to leave the pdfs in the characteristic function form and only convert

back to sampled form after the entire sequence.

Atomic Distributions

We say a distribution F is atomic if F is concentrated on its set of atoms, i.e., if the
atoms of F contain the complete mass of the distribution. 1t is easy to show that there are at
most denumerably many atoms for any atomic distribution,

Just as in the absolutely continuous case, there exists an associated function, the proba-
bility mass function (pmf) p, such that

Fix) =) pla)

a.€x
i

where a; ranges over the set of atoms for I' which are less than or equal to x.
he pmf then maps the atoms a; of F into the probability mass associated with those atoms,
i.e., the amount of increase of ' at a,.

The representation choices for atomic distributions are similar in many ways to the choices
for absolutely continuous distributions. For representations such as cdf or moments, the dis-
cussions already presented apply equally well here.

However, for other representations, such as pmf or characteristic functions, some modi-

cations are necessary. Also there are some important subclasses of the atomic distributions,

39

.‘
;
:

AT

where some specific techniques can be employed. These subclasses are the finite atomic dis-
tributions (those with a finite number of atoms), and the integer distributions (all atoms are
integers).

We discuss below some of the effects of these differences.

Representation by pmf

The pmf may be compared with the pdf representations described earlier for absolutely
continuous distributions. The pmf by its nature is in a sampled form, but there is no guarzntee
that the spacing is uniform, or that only a finite set of samples can provide a complete
representation.

Moreover, each atom represents only its own point in pmf, whereas in a sampled pdf each
sample point represents an interval. This effect is most striking in looking at unary opera-

tions: e.g., consider the following theorem [Parzen 60].

If y = g(x) is differentiable for all x, and either g'(x) > 0 for all x or
g'(x) <0 for all x, and if X is a continuous random variable, then
Y = g(X) is a continuous random variable with probability density func-

tion given by

-1 d -1 .
fyly) =fxlg “(y) | I & {y) | if ye range of g

0 otherwise.

i

For contrast, the relationship between pmfs is quite diffcrent, namely
-1 "
fY(y) =fx(g "(y)) if ye range of g

= 0 otherwise

since we are only interested in the mapping of individual atoms.

If there are too many atoms in the distribution to store them individually, then some group-
ing of atoms must be performed. The effects of this groupirg on f-convolution operations wil.
depend on the nature of the distribution and the spacing between the atoms. If the atoms are
"dense enough," then the distribution may be approximatcd as a continuous distribution, how-
ever, the exact specifications for "dense enough" will depend on the application.

Although the number of atoms in the input distributions may be small, this docs not preclude
the possibility of generating large intermediate results. For example, if the distribu‘ions for
X and Y contain n atoms each, then tle distribution for X + Y will contain anywhcre from 2n
to n2 ~toms depending on the spacing of the atoms in X and Y.

Thus, it may bc necessary to dynamically alter the grouping of atoms into sample points in
order to maintain a feasible number of points in intermcdiate distributions, although again the
error effccts are difficult to predict,

Integer Distributions

The case of integer distributions is of particular practical importance. Much of the discus-
sion under probability mass functions also applies to integer distributions, but there is an addi-
tional technique which is of particular interest in this case, namely rcpresentation by generating

functions.

40

PG . e T

The basic concept is to represent the probability values as the coefficients in a polynomial.
The entire polynomial then becomes the re~ esentation for the distribution, or its generating 3
function.

That is, let

A(s) = p(0) + p(1) s + p(2) s ..

then for pmfs, A(s) converges absolutely for |s| <1 . J
Some of the properties of generating functions make them particularly convenient for
f-convolution operations. For example, if A(s) and B(s) are the generating function represen-
tation for the random variables X and Y, then we have A(s) = B(s) as the generating functicn [
representation for X + Y.
However, the most interesting application of generating functions in the statistical compiler
area is for evaluating the following function of random variables, expressed as an ECL program.
SUM < EXPR (X: real\random,

N: real\random;
real\random)

[) DECL Z: realNrandom BYVAL point (0);

/* ' Z is initialized to a distribation whose only atom is 0 ';
FOR i FROM 1 TO N A
REPEAT '

DECL. S: real\random 11D X;
/* 'S is a series of independent distributions all with

identic 1l distribution functions which a~e the same as the
distribution function for X ';
Z—7+S;
END; 4
YA
(1

That is, SUM calculates the distribution of the sum of N values independently chosen from

the distribution X, where N is a random variable. The generating function representation of
this is surprisingly simple [Feller 57, Vol.1, p.268]: if A(s) is the generat.ag function for N,
and B(s) is the generating function for X, then A(B(s)) is the generating function for SUM(X, N).
Remember, however, the difficulties imposed by the addition of looping capabilities to our
set of base functions. We are able to avoid the problem only because the restrictions for prac-
tical computations are so severe. If either X or N is represented as an infinite sequence of
coefficients of a generating function, then the computation will never terminate. 1t concludes
only if the generating functions for both X and N can be expressed in closed form, i.e., if X
is a Poisson distribution with A, then its generating function is e'A”\S. Thus, although this is
a convenient way to represen. the work to be performed, it still requires a potentially infinite A

amount of computation.

Conversion Between Representations

Py B

Since it is probabie that the implementor of a statistical compiler will wish to provide a
broad variety of base functions, and since the work required to perform a particular f-convolution
varies dramatically with representation, it is sometimes desiratle to change the representation

during the computational process. In some cases, these conversions are simple to perform

41

numerically and cai. be done with high accuracy. However, some conversions have theoretical
bounds on their accuracy and these bounds may be large in practical cases. The purpose of this
section is to indicate the nature of the conversions between the types of representations dis-
cussed above,

From pdf to cdf

Since the cdf is the integral of the pdf, and integration is a smoothing operation, the results
can be expected to be satisfactory. Depending upon the representations used for \he pdf and cdf,
various numerical integration techniques apply. See [Davis 75] for a survey of techniques which
could be used. Tor certain representations, e.g., the Gram-Charlier series, the conversion
can be simply performed in terms of the parameters describing the series.

I'rom pdf to Moments

If the representation of the pdf is as a Pearson distribution or a Gram-Charlier series,
theoretical expressions for the moments can be obtained directly fron. the parameters of the
representation which are couvenient for calculation.

When a sampling representation of the pdf is used, the obvious calculation for the moments

is to evaluate

(b-a)/at
by = Y (a+katy™ fa + kat - at/2)
k=1

Although this inner product can be directly evaluated with apprcpriate numerical care
(IWilkinson 63]), there remain a number of practical problems. For example, if the unsampled
sections in the tails of the distribution have enough weight, then any moment calculated from the
sampled version will te unreliable. Indeed, the moments calculated from the sampled distri-
bution always exist, whereas the moments of the infinite range distribution from which it is
derived Js uot recessarily exist. Further, even in cases where this is not an issue, we are
still muking the assumption that the weight in an interval At is concentrated at the center of the
interval.

These problems are the same as those arising when one attempts to estimate the moments
of a distribution from a sample selected from the population described by that distribution, and
that sample has been grouped. If the distribution is quite well behaved (to be specified shortly),
then this calculation can be accurately performed, with Sheppard's corrections used to correct
for the grouping effect [Kendall 63). The conditions for application of Sheppard's corrections
are, however, fairly stringent.

In order to obtain a reliable value for the moment pn’], we must have a number of conditions
fulfilled. (1) 1f y = xmf(x), then the first 2m — 3 derivatives of y should approximately vanich
at the ends of the sampled interval {i.e., f must have high-o0. r contact with the axis in its
a) at?™1 /p)2m

tails), (2) y must have 2m derivatives, and (3) 4y(2m) (€) (b for scime in

the interval [a, b] provides a measure of the error in the calculation, and should be small.

I'rom pdf to Characteristic Function

The calculation of the characteristie function from the pdf is merely the calculation of the

continuous Iourier transform of the pdf. Fast Fourier transform techniques can be used to

4
Tl

coenvert rapidly between sampled representations of the pdf and the characteristic function, and
conversely. The errors caused by converting a continuous curve to a sampled version, and
then calculating a discrete l'ourier transform and using it as an approximation to the continuous
Fourier transform are well known and discussed in several articles and texts (e.g., [Cooley 70]).
Generally, this conversion will work satisfactorily if (1) the pdf does not have very "high-
frequency" components, and (2) the characteristic function is desired for relatively small
values of its argument. 1If we sample the pdf at interval At, then the characteristic function
obtained by FFT techniques can be in error by 100 percent when its argument is 1/(2At) (Nyquist
frequency) because of sampling. This "aliasing" error will be acceptably small only if the value
of the characteristic function is negligiblc at this point. In addition, chopping off the tails of the
pdf, which is a multiplication in the original domain, rcpresents a convolution operation in the
transformed domain. The function convolved with is of the form (sin x)/x, producing significant
errvors in the characteristic function referred to as "leakage" errors. These "leakage" errors
can be compensated for by using a "window" function on the original pdf which is not a rectangular
data window, but rather some function with more tapered ends. At this stage, the selection of

an appropriate window is very much an art and is discussed in [Bergland 69].

From Moments to cdf

The problem of conversion from moments to the cdf and pdf forms of representation is a
classical mathematical probtem, and has been attacked by such mathematicians as Tchebvcheff,
Markoff, Stieltjes, Hausdorff, and llamburger. The "Sticltjcs integral™ was introduced in 1894
in a papcr which also provides a solution to one variant of the problemy of moments,

Tnis wealth of mathematical intercst derives from the fact that the problem is hard enough
to be interesting, yet fruitful enough to produce many fascinating results, From our viewpoint,
however, these results are essentially ncgative, and wec examine their relation to our problem
below.

The first variant of the moment problem, referred to as the Hamburger moment problens,
assumes we arc given an infinite sequence of numbers and asked whether these are the moments
for some distribution function on the infinite interval (- =, =), and whether we can find that

distribution funection. To state that more carefully, we offer the following theorem:

Theorem: (see [Shohat 43, Theorem 1.2])

In order that a llamburger moment problem

oC
x =S‘ t"av , n=0,1,2,...
on

n - o
shall have a solution, a distribution function F, it is necessary that
oo Xy o n
tooX o N
Ap© 20 AEON Ry
*n ot X2n

43

In order that there exist a sclation which is an atomie distribution whose set of atoms con-
sists of exactly (k + 1) distinct points, it is necessary and sufficient that

A0>0, A1>0, e, Ak>0, Ak+1=Ak+Z = .. =0 .

The moment problem is determined in this case.

The condition stated here is expressed in terms of an infinite sequence of moments, and further,
even if true, does not guarantece that the function F is unique. Indeed, counter-examples can be ;

found, e.g., [Kendall 63], since

o«
4
S‘ x"exp(-ax’)sinx)dx =0 a0, o0<Ar<1/2 | 4
o) |
the pdfs ;
f(x):kexp(-—ax)‘)li +esin(bx)‘)], 0sx<=, a>0, o0<a<1/2, |el<1
3
have the same infinite set of moments for all € in the allowed range, |
An additional theorem gives the condition for a substantiaily unique distribution with a given .

set of momeuts,

Theorem: [Shohat 43, Theorem 1.10]

A sufficient condition that the Hamburger moment problem be detcrmined (i.e., have a
"substantially unique" solution) is that

0

v -t/2n _

-~ 2n o E
n=1

Again this is & condition on an infinite sequence of moments although we have only a finitc sc~
quence and the numerical evaluation of such a test is prone to significant errors.

If we restrict ourselves to a finite interval, say [0, 1], and consider the reduced moment
problem (i.e., only a finite number of moments are given), the situation is only partially im-

proved. If we are given a sequcnce of moments X9+ Xy,+-., X, then we can determine effec-

nl
tively two values for X which represent the upper and lower bounds for the next moment,
We can further determine atomic distributions with about n/2 atoms which achieve both the
upper and lower bounds on X1 (call these Fu and 1-‘1). If D|x represents the set of cdfs having

the moments xO,xi, e X, then we have several theorems |Karlin 53].

Definition: I.et I)alx reprcsent the subset of 1)|x consisting of atomic distributions only.

Theorem: The sets D|x and i)alx arc convex.

Theorem: The extreme points of Da[x are those functions F with the number of distinct
atoms < n + 1,

Theorem: I)alx is spanned by its extreme points, and in the weak * topology (i.e., using

a particular measure of distance betwcen cdfs), D|x is also spanned by the extreme points
of D_|x. 4

Theorem: If ¥ D|x, then the differences t — Fu' and F — Fl‘ if not identically zero, each

have exactly n — 1 sign changes in the irierval [0, 1],]

44

i e —

An example should help clarify the situation. Consider the Beta distribution with param-

eters 12 and 6.

1, 11 5
dF—mx (1 ~-x)” dx 0<x<1

The moments for this distribution may be easily calculated by integration, using the properties
of the complete Beta integral to obtain the following values:

1y = 0.6666,667

iy = 0.4561,404
1} = 0.3192,982
iy = 0.2280,702

Following [Karlin 53] we can then determine Fu and F1 to have the same first four moments.
The work required to calculate these, given n moments, is approximately the cost of evuluating
n determinants of size n/2, finding all the roots of two polynomials of degree n/2 (roots are
guaranteed to be real, and in [0, 1]), and finally solving two sets of linear equations, each of
size n/2. Performing the calculations we obtain the following: F1 has atoms at 0.0, 0.5612,724,
and 0.7720,849 with jumps of 0.0013,5098,5, 0.4951,089, and 0. 5035,401, respectively, Fu has
atoms at 0.5104,210, 0.7276,077, and 1.0, with jumps of 0.3010,400, 0.6826,570, and 0.0163,031,
respectively. The reader may readily verify that these distributions have the same first four
moments as those given above. The situation is graphed in Fig.5-2 (values for the Beta distri-
bution were obtained from [Pearson 68]). As can be seen, the functions are not close approxi-
mations to each other, and the pdfs would be even more disparate. The intertwining behavior
seen in the graphs is typical, and the theorem above states that any other cdf with the same
first fcur moments must also cross every horizontal and vertical line in the graphs of Fu and Fl'
Thus, while we can bound the behavior of cdfs from descriptions of their moments, these
bounds are necessarily gross and often in an inconvenient form for further computing. Several
authors (e.g., [Burr 42]) have suggested techniques for directly fitting cdfs to a given set of
moments, but these techniques have depended on first choosing a family of cdfs and then deter-
mining the parameters of the specific curve in that family. Because of the large errors whica

inay occur, these techniques cannot be recornmended for use in a statistical compiler.

45

s =

A

8.7 =

CUMULATIVE PROBANIL T
aQ
-
_—

B I

T, L

i
- | ti 3
I I_I.PE.GUE RN R FA T

g o) - - 9 ~ ~ N . . . n N
Fig.V-2. Comparison of I - 1‘1 and Beta distribution with identical u'i, pé, u;';, and p}l.

46

VI, DESCRIPTION OF AN IMPLEMENTATION

We now alter the approach of the last few sections and describe a practical, although
limited, implementation of a statintical compiler. We will actually describe the system, called
STAT, twice; once from the viewpoint of a user, and then again from the viewpoint of the im-
plementor of such a system. STAT is operational cn the tlarvard PDP-10, in conjunction witn
the ECL programming system [flarvard 74]. The uzer of STAT is expected to be conversant
with ECL and to be operating interactively.

STAT provides its user with an additional mode ("a new data type"), called real\random, and
the facilities to create and use objects of this new mode. These facilities are integrated with
the ECL system, so that the capabilities to loop, call functions, perform 1/0, and other such
capabilitics of a general system remain availuble. Ilowever, the vperations which may he per-

formed on objects of mode real\random are only a restricted subset of the ECL operators.

User Description of STAT

In order to use the STAT system, the user begins by invoking the ECL. system in the usual
fasiiion and then "LOAD"s the STAT files. When this operation is compleced, the uscr has avait-
able all the usual ECL capabilities and may use them with no modification. in addition, the op-
erator """ for exponentiation has been provided which may be applied to INTs and REALs with
the expected rcsults.

The STAT environment also provides a new mode c~iled real\random and several functions
("constructors") to create objects with this mode. In addition, the oprrators "4", von v
"/", and """ have been extended to deal with objects of mode rcalNrandom, although not all possi-
ble combinations are allowed.

The new constrictors generate random varia: les with some standard distributions, as weli
as atlewing the user Lo enter an arbitrary distribution. Althongh the ~usrent version of STAT
provides relatively tew constructors, it would be easy to add ac1c as no other ports of the svs-

tem are dependent on the set of constructors provided. The current set of constroctors is:
pount EXPRC a:ARITH; real\random)

This function produces a random variable which witl assume the value a

with probability 1.

distnebution EXPR(tab:SEQIVECFOR(2 R AL)); realsrandom)
Returns a random variable wiinse probabif- » mass function is . .. in
tab. tab is a sequence of pairs, the fir st 2nt of which is a probability

and the second is a discrete value assurac. by the sandem variable,

uniform EXPR(. ARITH, b:ARITH; real\random)

Returns a random variable whose probability density function is a uni-

form distribution with lower limit a4 and upper limit b.
qaussian EXPR(wmean s ARV, sigma: ARITH; real\random)

Returns a random variable whose probability density function is a nor-

mal (Gaussian) ceatered at meau, with standard deviation siqma.

47

poisson EXPR (lambda:ARITH; real\random)

Returns a random variable whose probability density function is a
Poisson distribution with mean and standard deviation lambda.

The coneept of independence of objects of mode real\random is eritical to the implementation.
The construetors deseribed above produce independent random variables each time they are in-
voked. Variables of mode real\random which are calculated through the use of operations are de-
pendent on their computational ancestors, and through them dependent on any of their descen-
dants. Ar example will help clarify the meaning and necessity for maintaining these dependency
relations. Consider the following two pieces of code:

1. a<- uniform(2, 4}; a + a;
2. a<-uniform(2,4); b <~ uniform(2, 4); a+b;

The STAT system views these as vepresenting two quite different siiuations. The first rep-
resents choosing a value for the random variable a from a uniform distiiibution, and then add-
ing that value to itself. Tl resulting distribution is identical to 2*uniform(2,4). The second ex-

ample represents the summing of two independent choices from the identieal uniform distribution.

@ and b are independent and identically distributed random variables, and the result of their
sum is a random variable whose distribution is *ne ~onvolution of uniform(2,4) with itself. The
means for the two expressions are the same, but the variance of the first is larger (in faet,
twice as large as that of thc second). This may not at first he obvious, but can be explained as
follows: In the first case, a value is ehosen from the distribution and doubled. 1If it is near the
high end, there is no opportunity for it to be countered by a value from the small end. In the
second case, if the value selected for a is high, there is still a chance that the value seleeted
for b will be small, thus reducing the variance of the result.

Example Session 1

~>a <- uniform(2, 4);

-~a + a$
mean = 6.0 var = 1.3333335 skevness = 0.0 kurtosis - 1.8000408

—a <— uniform(2, 4);

—>b <- uniform(2, 4);

—>a+b$

mean = 6.0 var = 6.666t(78F~1 skewness = -1.4016083E-5 kurtosis - 2.4000297

STAT extends the usual EC!. unerators "+", "t " apq "/" to apply to real\randomobiects:
"4", "M, and "*" may have their left and right arguments be real\random, INT or REAL in any >om-
bination. "/" permits the left argument (numerator) to be rcaivrandom, INT, or RFAL but alloys
only INT or REALfor the right argument (denominator). Exponentiation is also provided (""");
its left argument (hase) may he either INT, REAL, or real\random, while its right argument (ex-
ponent) may he only INT or REAL. 1f the base is a rcal\random, then the exponent is restricted to

a positive integer. All these operator. will produce a result of mode real\random if either input
argument (or ooth) is of mode real\random.

48

R T W T W A e——

—— e

The only output mechanism provided is the extension of the ECL PRINT routine to handle
real\randomobjects. Its output is the mean, variance, skewness, and kurtosis [1] of the distri-
bution, This reflects the fact that the internal representation of the random variables is in
terms of their moments, and these are the most convenient values available.

These capabilities can be combined to produce the solution to some of the problems we pre-
sented in Sec. 1 to motivate this work. For example, consider the problem of locating a high-
speed turnoff for a runway. We may write a function of REAL variables, which we call Distto60MPH
which will calculate the runway location when the plane reaches 60 MPI. This function will ac-

2

cept three arguments: the touchdown velocity of the aircraft vt, the touchdown location tl (i.e.,
distance along the runway), and the decel”:. a rate d (assumed constant). The code for this {
function, assuming vt is in knots, tl is in and d is in ft/sec/sec, is the following:

Distto60MPH <—
EXPR(vt:REAL, tI:REAL, d:REAL; REAL) '
BEGIN {
DECL kl:REAL, BYVAL 6,076E3 / 3.6E3;
DECL vi:REAL BYVAL 6.0E1 * 5.28E3 / 3.6E3;
(vt k)~ 2 —vf ~2) /(2,0 = d) + tlI;
END; i
The constants ki and vf represent the conversion factor for knots to ft/sec, and the value
of 60 MP1l in ft/sec, respectively, The result of the function is in feet. This routine can be
directly applied to calculate values for specific inputs. For example,

—>Distto60MP11(113.0, 1500.0, 5.0)$
4.3629695E3

This then tells us how far down the runway an aircraft would be when it reached 60 MP11,
assuming it had touched down at 1500 ft from threshold, at a velocity of 113 knots, and decel-
erated at a constant rate of 5 ft/sec/sec.

The values used for the variables are, of course, not known precisely in advance for every
aircraft using the runway. llowever, the distribution of approach speeds for aircraft of specific
types is a measurable quantity, and some estimate of Lhe distribution can be obtained from a
priori knowledge of the airplane characteristics. The touchdown location distribution can be
directly measured by the thickness of tire rubber left by aircraft during their initial touchdown.
We will assumec that these have been measured or estimated and values chosen from a uniform
distribution can be used to approximate them both, In the case of touchdown velocity, values in
the range (98,128] knots are a reasonable approximation to the characteristics of medium-scale
commercial aircraft (i.e., Boeing 727 class) [Dolat 73], and a plausible range of touchdown lo-
cation values is [1000, 2000] feet.

With these values, a variant of the program is needed to deal with random variables as in-

puts. This may be generated by modifying the above program to change the mode declarations

(1] If pi is the ith moment about the mean, then we define skewness and kurtosis as follows:
skewness = p?/up
oz 2
kurtosis = p4/p2

See [Kendall 63] for more details regarding the meaning of these measures.

TP IR mrmper

49

R bl

for the input variables vt and tl, and to change the mode of the output to include real\random. The
modified code is then the following:

Distto60 MPH <-
EXPR(vt:ONEOF(real\random, REAL),

tl:ONEOF(reaI\random, REAL),

d:REAL;

ONEOF(real\random, REAL))

BEGIN
DECL kl:REAL BYVAL 6.076E3 / 3.6 E3;
DECL vf:REAI BYVAL 6.0E{ * 5.28E3 / 3.6E3;
(vt * kD) =2 —vf~2)/(2.0% d) +tl;

END;

This code can then be directly executed to obtain the distribution of the 60-MPH point along
the runway.

—>Distt060MPH(uniform(98.0, 128.0), uniform(iOO0.0, 2000.0), 5.0)%
mean = 4.3843339E3 var = 3.9454025E5 skewness = 6.4335654E-2 kurtosis = 2.2038808

In fact, the touchdown velocity and location are not likely to change despite introduction of
high-speed turnoffs, while the decelcration rate may be varied easily by the pilot over the range
from 3 ft/sec/sec to 14 ft/sec/sec. This effect may be observed today as pilots "shoot" for
specific turnoffs and decelerate Just hard enough to make that turnoff.

We can then write a driver program which will step the deceleration rate over the range
from 3 to 14 ft/sec/sec and print a table of results, which will operate correctly for either
random variables or real variables for vt and ¢l .

Driver <-
EXPR(vt:ONEOF(real\random, REAL), tI:ONE()F(real\random, REAL))
BEGIN
BRRINT('
d 60 MPH Location
",
FOR i FROM 3 TO 14
REPEAT
PRINT(i);
PRINT(" ");
PRINT(Distto60 MPH(vt, tl, i));
PRINT('
"
END;
END;

This may then be cxecuted to obtain the following tables:

=>Driver(113.0, 1500.0);
d 60 MPH Location
3 6.2716158E3

50

e

5.0737T119E3
4.3629695E3
3.8858079E3
3.5449782E3
3.2893559E3
9 3.0905386E3
10 2.9314847E3
11 2.8013498E3
12 2,692904E3

13 2.6011421E3
14 2,5224891E3

o =3 O

—>Driver (uniform(98, 128), uniform(1000, 2000));

d 60 MPH Location

3 mean = 6,3072231E3 vir = 9,477965E5 skewness = 7.9995624E-2 kurtosis = 1.99806

4 mean = 5.1054174E3 var = 5.69594E5 skewness = 7.2433547E-2 kurtosis = 2.1047709

5 mean = 4.3843339E3 var = 3.9454025E5 skewncss = 6.4335654FE-2 kurtosis = 2,2038808
6 mean = 3.9036116E3 var = 2.9944912E5 skewness = 5.6316626 E-2 kurtosis = 2,2855201
7 mean = 3,5602385E3 var = 2.421125E5 skewness = 4.8762627E-2 kurtosis = 2.3447075
8 mean = 3.3027087E3 var = 2.0489863E5 skewness = 4.194312E-2 kurtosis = 2.3819054
9 mean = 3.1024077E3 var = 1.7938487E5 skewness - 3.597244E-2 kurtosis = 2.3989007

10 mean = 2,9421669E3 var = 1.6113513E5 skewness = 3.0791744E-2 kurtosis = 2,4008041
11 mean = 2.8110608E3 var = 1.4763231E5 skewness = 2.63831 54E-2 kurtosis = 2,3915575
2.7018058E3 var = 1.3736231 E5 skewness = 2.2648378E-2 kurtosis = 2.3736388
2.6093592E3 var = 1.2936988E5 skewness - 1.9486725E-¢ kurtosis = 2.3510717
14 mean = 2,5301193E3 var = 1.2302806 E5 skewness - 1.6836281E-2 kurtosis = 2.3252265

n

12 mean

n

13 mean

Implementation of STAT

As indicated in Sec. IIl, the major portions of a statistical compiler system which differ
from a conventional compiler are the representation choices and the simplification rules. In
addition, the basic pieces of lexical and syntactic analysis must bec provided. Thus, there were
three major design choices to bec made in the development of the STAT system: (1) the repre-
sentation, (2) the approach to simplification, and (3) the mechanisms for lcxical and syntactic
analysis.

For the first two questions, we have extensively discussed the options in the previous sec-
tions. 1n the STAT system, only one representation form is employed: moments. This then
implies that the operations conveniently available for pairs of real\random variables are multipli-
cation and addition. Further, it is casy to provide addition and multiplication by a REAL, and
exponentiation of a real\random to a positive integral power. These are thus the operations that
have been provided to the STAT user.

For simplification, 1 have chosen to employ primarily the separating set rule. Phrased in
a more intuitive and specific fashion than in Sec. IV, the rule states that if a set of variables can
be found which separates the root of the computation tree from the terminal nodes, then the only
information required to compute the distribution of the variable associated with the root node is
the joint distribution of the variables in the separating set. In order to avoid keeping large

51

—
IR ThETT 17 Ty appm—

R T W e

multidimensional probability distributions, we limit our selection of separating sets to sets with
independent variables. Thus, the only information we must maintain as we compute through a
tree is the moments of the individual variables in the successive scparating scts.

A key part of thc compiler thus determincs a separating sct of indcpendent variables for a
given root node. This is employed recursively starting with thc desired output node. That is,
first a separating set of independent variables is determined for the output node. To obtain the
moments for each non-terminal node in this set, thc same routine is invoked recursively to de-
terminc a separating set for that node. This continues until the separating set determined con-
sists entirely of tcrminal nodes whosc moments can be directly cvaluated.

One way to vicw this process is to say that STAT compilcs backward through the program
and then exccutcs forward. In order to determinc which variables form the nccessary separat-
ing sets, STAT must start from the desired output variable. It can then move back to the vari-
ablcs in the scparating sct chosen for the output variablcs, and do the samc operations as if
cach variable in this cet were the output variable. When this process has pushed the attention
of the STAT compiler up the tree to the terminal nodcs, it may now begin cvaluation of moments
for the variables in the ¢eparating sets, moving down in the tree until thc moments for the out-
put variahle have becn evaluated.

The ECL system environment is used to aid in the construction of thc computation tree for
the simplification and cvaluation sections of thc STAT compiler. Such tasks as lexical and syn-
tactic analysis of thc source program arc performed by the ECL interpretcr. In addition, all
operations on modes such as REAL, IN[, BOOL, ctc., available in ECL are directly acccssible
to the STAT user. These include conditionals, looping, subroutine invocation, and I/O functions.
So long as real\random variables are not employed, the STAT routincs are not invoked. Also, if
a STAT user tries to perform an operation on a rcal\random which is not supported in STAT, then
he will rcceive a MODE ERROR from ECL.

When the ECL program does reach supported operations on real\random variables, the STAT
mechanisms arc invoked. Unless a print operation is rcquested, the STAT routines mercly usc
these calls to construct thc computation tree. Each real\random variable is reprcsented by a data
structure which is a node in the computation trec. Calls to a STAT operation are uscd to link
the nodcs into the tree structure with pointers to thc left and right fathers of the rcsults, and to
record thc function associated with the node in the data structure. Thus, the STAT routines
partially decompile thc ECL program to obtain the structurc (computation trec) of opcrations
on real\random variables after all the operations on REALs, INTs, and BOOLs have hecn performed.
All loops have hecn unwound, and all subroutine calls involving real\random variables have becn
cxpanded into onc large computation tree.

When the PRINT routinc is invoked for a rcalNrandom variable, that variablc is designated as
the output variable, and the STAT simplification and cvaluation code is invoked. As descr bed
carlier, a scparating set of indepcndent variables is determined for the output variable.

The output variable is then expressed symbolically as a multinomial function of the variables
in the scparating set. This is donc hy backward substitution beginning with the output variable.
The output variable can be cxpressed as some function, say addition, of two other random vari-
ables. Thcse in turn can be exprcsscd in terms of their fathers. Finally, the cxpansion will

rcach members of the separating set and the substitution will terminate.

If the moments of the variables in the separating set are available, then the moments of
the output variable may be obtained directly by an evaluation process on the multinomial repre-
sentation. Note this is not the normgl evalua'tion of a multinomial; rathcr, as described in
Sec. V, we must evaluate a term X'Y’ as E(X‘)E(YJ). To obtain the higher moments of the out-
put variable, we must symbolically raise the multinomial to a power to obtain the multinomial
cxpansion for the higher moments.

After evaluation of a particular output variable, all the intermediate recsults are retained
in the coraputation tree data structure. The motivation for this derives from the fact that the
ECL user is operating interactively and may ask for further opcrations invoking the variables
he has used. 1t would clearly have been possible to choose not to reiuin these intermecdiate re-
sults, and to regenerate them as needed.

Note that the moments of the input variables arc not needed until after all the syrabolic poly-
nomial manipulations are performed. Morecover, once this analysis of the program structure
has been performed, different input distributions could be specified to generate different output
distributions without changing the intermediate analysis. STAT has not been organized to per-
mit respecifying the input distributions, but again this could clearly have bcen done. In this

sense, STAT is a compile and cxecute system rather than a compiler.

TABLE VI-}
STATIC BREAKDOWN OF STAT CODE
Lines
of
Code Percent
ECL Interfoce and
Computation Tree Construction 195 27.5
Simplification Strategy ond
Evaluation Control 110 15.5
Polynomial Monipulation Pockage 180 25.4
Set Manipulation Packoge 40 5.6
Constri:ctor Definitions 185 26.1
TOTAL 710 |

The static bre: kdown of the code in the STAT system, shown in Table V1-1, provides some
indication of where the programming effort was spent. The polynomial manipulating package
represcnts the weakest portion of STAT, since the implementation is done using a list-structured
represcntation for the polynomial and recursive calls to perform the required operations. This

led to case in coding, but requires long execution times.

53

¥ N R,

L, il

This is reflected in the dynamie code breakdown shown in Table VI-2. These data were ob-
tained on the Harvard PDP-10 (a KA-10 processor, earliest of the PDP-10 series), using the
ECL interpreter to exeeute STAT when parforming the statement

->Distto60 MPH(uniform(98.0, 128.0), uniform(1000.0, 2000.0), 5.0)$

o e s sl it b & _ _ o il o

TABLE VI-2 |
DYNAMIC BREAKDOWN OF STAT CODE
F—CPU Time*
(sec) Percent {
1. Computation Tree Formation 1.71 5
2. Separoting Set Selectian : 0.81 2
3. Polynomiol Farmation | 2.20 6
4. Raising Polynamials to Pawers 25.83 72
5. Evoluating Moments
A. Terminal Nodes 1.58 [4
B. Intermediote Nodes | 343 10
6. Miscelloneous I 0.49 | 1
TOTAL ‘[36.05 T 100
o _ - - S | S
*Preliminary doto-individual values hove voriance of 20 per-
cent about their meon,

There are a number of interesting points to note in Table VI-2. Only about 15 pereent of
the work (items 5A and 5i3) depends on the moment values. Thus, if different input distribu-
tions are specified, it would be possible to rccaleulate the results with only about 15 percent of
the effort required for the first. The STAT system, as noted earlier, does not currently pro-
vide this option.

The othe. point of particular interest is that the time to perform the operation of raising
the polynomials to a power and evaluating the moments could be easily estimated based on the
number of terms in the polynomials formed by substitution. Thus, ~fter about 15 pereent of the
effort had been expended (steps 1, 2, and 3), the time for the remaining steps eould be predicted,
and even presented as a table depending upon the number of moments desired in the output. #

A listing of the STAT systcm and a more detailed description of the eode may be found in fu
the Appendix.

54

VII. PROBLEMS IN PROVIDING A PRACTICAL STATISTICAL COMPILER

In the last section, we described a statistical compiler system with a limited capability. In
this section, we emphasize the limritations of the STAT system and indicate some approaches to
the construction of a "complete" statistical compiler system.

The major limitation of STAT is the small variety of operations it is prepared to perform
on random variables. As we discussed extensively i Sec. V, there is a complex interaction be-
tween the choice of represcntation form and the operations which are provided to the STAT user.
By restricting our prototype to only a few operations, we werc able to choose a representation
which is convenient, accurate, and efficient. Extending to other operations howcver will involve
compromises in some or all of these areas.

For example, assume that we wished to permit a random variable to appear in an arithmetic
comparison with a real. This implies evaluating the cdf for the random variable at the value of
the real. As we indicated in Sec. V, this conversion is expensi/c and error-prone unless the
real value is in the tails of the distribution.

Of course, if the operations we wish to perform on the random variables are exclusively
comparison, and maximum/minimum operations, then we should chnose the cdf as the repre-
sentation form. In this way, we could construct an alternative STAT system optimized for dif-
ferent operations and convenient for those.

We can pursue this further and construct a number of different statistical compilers each
using a representation optimized for a particular set of operations. This set of statistical com-
pilers would each handle a subset of all the problems one would like a statistical compiler to
handle.

One can proceed a step further in the direction explored by Low [Low 74). A master statis-
tical compiler could be constructed which would contain all the particular representation forms
we have the knowledge and patience to implecment. The performance characteristics of the par-
ticular representations would be parametrically described, and the master compiler would then
choose the representaiion form to minimizc the resources required at execution time.

Following Low, there are a number of possible ways to proceed in the construction of such
a master compiler. We might insist that conversions between representations are expensive
and will not be permitted. In this case, we "partition" the random variables ~ccording to the
operations performed on them. For each random variable, if the set of operations to be per-
formed is small, then there may well be an optimum representation employed. 1n Low's study
for representing sets, this technique of choosing onc representation to use for the life of the
variable was satisfactory and such a compiler was constructed.

In the statistical compiler area, hccause the costs of using the wrong representation are
severe, and because no one representation is satisfactory, we may be forced to converting
from one representation form to another. As l.ow properly indicates, such a compiler would
at this time bc a research effort in itself and constitutes an interesting problem.

There are several further possibilitics beyond those suggested that might be used in a sta-
tistical compiler. One option of intercst in a statistical compiler is the possibility of postpon-
ing computational effort as long as possibie becausc the intcrmediate results can be so large.
Indeed, it may in some cases be morc economical to recalculate the results as needed than to
save the result in storage. Thus, one set of reprcsentation options would be to produce sub-
routines which will calculate the values of specific cntrics in the representation form rather
than to produce the representation form in toto.

55

Because any specific set of representations, such as those discussed in Sec. V, will not
be convenient for some base functions, it is necessary to provide some alternate mechanism
to handle these operations. The obvious alternative, first suggested in this context by Bérzins
[Bérzip¥ 75], is to employ Monte Carlo simulation for small sections of the program, and con-
vert the various representation forms to and from a sampling rcprescntation. A master statig-
tical compiler with this option can guarantee to be able to handle any "FORTRAN"-type program
presented to it using random variables, although there will surely bc some for which the errors
or execution time will be unacceptable.

The master compiler can and should offer its user an estimate of the errors and execution
time of his program. In the case of STAT, we could easily have presented thc user with a fairly
good prediction (+20 percent) of the running time of his program after only 15 percent of the to-
tal effort had been expended; we could have gone further and presented the user with a table of
running times as a function of the rumber of moments desired in the output. Since the execu~-
tion time may be large for cases of practical interest, this would permit the user to carefully
consider the value of the information and compare it with the cost of obtaining this information.
The analysis to calculate the running time can be performed rapidly enough, even for large pro-
grams, to be performed interactively, while the large execution time could be deferred for a
batch environmert, with the user knowing what resources he will be expending.

A practical statistical compiler must offer its user a variety of output options for their ran-
dom variables. 1t must be prepared to provide moments about the origin, moments about the
mean, cdf, or pdf. This goes directly back to the Sec. V discussion on representation conver-
sions and the inherent accuracy limitations of some of these conversions. The user must be
warned of the possible inaccuracies of his result in guantitative terms. 1t is not acceptable in
an operational system to be used by many users in diverse situations to indicate "WARNING:
CONVERSION FROM A MOMENT REPRESENTATION TO A CDF MAY PRODUCE SIGNIFl-
CANT ERRORS IN THE OUTPUT." The system, if it is to be used, must indicate the location
of the potential error and its magnitude. 1t must indicate what options the user has for avoiding
the error (i.e., request your output as momcnts, not cdf). The system can and should track er-
rors generated in intermediate operations and indicate the cffccts of their propagation. Again,
this prescription becomes a significant research problem.

A lcss attractive alternate is to construct subsets of such a master compiler which can de-
tect errors of significant proportions, and then insist on using higher accuracy in this subsec-
tion of the program (i.e., morc samples in a Montc Carlo approach, higher moments in a mo-
ment representation, more points in a cdf, etc.). This approach can provide sonie assurance
of adequate error cuntrol although not as reliably as tracking errors. It may requirc large or
excessive amounts of computing to reduce crrors which would not propagatc further.

Another problem that the designer of a master statistical compiler must consider is the
handling of user-written subroutines. 1n STAT, this is handled by, in effect, expanding cach
subroutine invocation into the in-line code which it represents, and then processing the whole
program at once. This is unacceptably cumbersome for a compiler intended to handlc programs.
ot significant size. A practical statistical compiler must bc capable of "separatcly compiling"
subroutines. 1t should produce, in thc run-time cnvironment, a scction of code which repre-
sents the subroutinc and which is invoked on cach call of the subroutinc. This rcpresentation
accepts distributions for those arguments whosc data type is random, and produccs a result which

may be of type random,

56

The problem here is relatively simple if the input variables are statistically independent.

In that ease, the problem is preeisely the same as compiling the main program, and is thus just

the problem that the compiler is designed to cope with. However, the possibility that the input

variables may not be independent eomplieates the construction of the subroutine eode. Although

the techniques indicated in Sees.1V and V are relevant to this problem, some of the simplifiea~

tions were obtained by the assumptions of independence of the input variables. Relaxing this

assumption makes simplifying the program strueture more diffieult. If all input variables are

mutually dependent, then no effeetive simplifieation of the program can be performed. As more

{ mutually independent sets of input variables are identified, more simplifieation can be performed.

Another problem in the eonstruetion of a statistieal compiler is the question of an optimum f

eomputer architeeture for the exeeution of sueh a eompiler. We distinguish this into two phases:
eompile time and run time. In compile time activities, the aetivities of a statistical eompiler
are not signifieantly different from a regular eompiler. There are some differences related to
spending more time searehing computation trees and performing algorithms on these trees. In
addition, a relatively small pereentage of the total time is spent in the eompile time aetivities
of the statistieal eompiler. The possible useful hardware modifieations are in the areas of im-
proved eharaeter handling and staek operations, as well as the possibility of speeial-purpose
hardware for algorithms on tree struetures. The speeial tree hardware might be eapable of the

following operations:

(1) Data Entry
x is father of y
x is sonof y
X is brother of y
ete.

where x is being entered into the tree, and y is already a member.

(2) Data Retrieval
the set of sons of x
the set of aneestors of x
the set of eommon aneestors of x and y

where x and y are elements of the tree.

(3) Predicates
is x an ancestor of y?
are x and y independent?
i does the set {z} separate x from y?

where {z} is a set of elements of the tree, and x and y are elements of the tree.
| This tree manipulation hardware would be generally useful beyond just the statistieal eom-

piler. I see two possible implementation approaehes to such hardware.

H (1) Via a mieroprocessor operating on a private memory with algorithms
I optimized for the tree task using random aecess memory and pointers
F in the strueture and,

{2) Via an assoeiative memory using eontent eddressing to rapidly retrieve
items with the desired relationships.

57

Option (1) has the advantage of being fairly easy to construct today with commercizily available 3
hardware, while option (2) should be fas’er but is significantly more expensive. .
The architecture for support of the run time system is the more important issue, and is
crucially depende:t on the representation forms used. Each form has some hardware structure

that we could describe to optimize its execution; some of these are commercially available.

For example, operations on pdf's might be performed using hardware convolvers and FFT boxes.
Thesc devices are now available commercially and will become cheaper over time. For exam-
ple, convolvers on a single chip of CCD or MNOS technology are just now appearing in the lab-
oratory [Tiemann 74).

If moment representations are to be employed, then hardware for symbolic manipulations
of polynomials might be appropriate. 1 have no specific insight into the construction of such
hardware, but if available it could be utilized for a statistical compiler as well as in a symbolic
manipulation system [CACM 71].

In general, the analysis of programs for a statistical compilation reveals sections which
can be pursued in parallel. This property of the analysis can be used to exploit hardware par-
allelism for those programs which are intrinsically parallel. These parallel sections follow
closely disjoint sections of the underlying computation tree which permit easy deter mination of
the necessary control structure. Thus, the picture I have of a processor designed for a sta-
tistical compiler run time system would have the following major features:

(1) A set of independent processors, not necessarily identical. Some of
these would be optimized for convolution operations, some for symbolic
polynomial manipulation, some for Monte Carlo simulations, etc. This
is probably best handled using microprocessors with writable micro-
code so they can be rapidly optimized to handle the particular represen-
tation form for the assigned section of the tree.

(2) A master controller following a tree description of the control structure
necessary for the execution of the program. The control structure would
be constructed at compile time, and the controller would then see to initi-
ating and rcsponding to the terminations of processors.

This description leaves open the question of memory organization to support such a collec-
tion of processors, although this is likely to be critical to the success of a hardware impleninn-
tation. 1f the processors are physically clustered, thcn a common multiport, highly interleaved
memory preserves the flexibility to alter memory allocation dynamically. Constructing such
a complicated memory bus will however surely occupy a large fraction of the implementation
effort. The alternate approach of providing each processor with private mcmory is less attrac-
tive in this case because of the large and variable demands upon the memory resources in any
particular cxecution.

This hardware organization would be interesting and useful for a broad variety of tasks,
and thus could be made economically viable. The closest approach to this structure to my
knowledge is the C. MMP cffort at Carnegic [Wulf 72] which uses multiple PDP-11's rather
than microprocessors. The design, implcmentation, and software for such a structure re-

mains a fascinating and challenging problem.

58

T e s 5. 7 5o e

— e meer A

VIII. REMAINING RESEARCH PROBLEMS

In this docunient, we have presented a new philosophy and approach to computing with
random variables. The work presented is, however, only a beginning in this area and much
fruitful work remains to be performed. In this section, we indicate somc of the major research

problems that remain to be solved.

A. OTHER APPROACHES

In Sec.II, we presented a non-comiputability result indicating some fundamental limitations
on the types of computations which can be performed. As we indicated immeadiately following
the theorem, there are a number of possible problems to he solved within these limitations. In
the remainder of the report we have only explored one subproblem, but the solution of some of

the others would be a useful addition to the statc of the art.

TABLE VIHI-1
Algorithm Type
Exact Approximate
Distribution ‘
Closs ; Infinite Finite : Infinite Finite
Continuous Atomi Bt Continuous Atorlie Wgarmh
Function tomic omic amie omic
Class
Hard X X ? MC MC MC
Easy SC SC sC MC MC MC
) (S—— E——

5C = Statistical compiler techniques
MC = Monte Carlo techniques
X = Non-computable

? = No known practical techniques

As indicated in Table VIII-1, we can divide the problems into scveral classes. One catego-
rization describes the class of functions the statistical compiler can handle. For this discussion,
I divide the classes of functions Ioosely into "easy" classes and "hard" clagses, where "easy"
classes do not include Kleene's predicate, whilc "hard" classes do. The class of computation
trees is considered an "easy" class in this sense. Another division of statistical compilers is
based on whether the input distributions are atomic with a finite number of atoms, atomic with
an infinite number of atoms, or continuous. The simplification rules described in Sec. IV apply
to all these types of distributions, while the representation techniques in Sec, V emphasize the
last two. Finally, a third division is based on whether the techniques used for the statistical
compiler are capable of providing exact results assuming the computing device performs exact
arithmetic. The approach in this work has been exact solutions, as contrasted, for example,

with Monte Curlo techniques which are inherently approximate.

59

The table indicates which approaches have been pursued so far. As can be seen, the table
has a rajor gap in practical techniques for the "hard" class of functions and finite atomic dig-
tributions. The only approaches currently available are exhaustively evaluating the function for
all atoms of the input distribution (not practical) or sampling the input distribution (i.e., Monte
Carlo technique). Some intermediate approach which analyzes the structure of the computation
to reduce the amount of work seems fruitful, However, the hon-computability results imply
that any such techniques must critically depend on the finite nature of the distributions. The
key auestion then is whether such algorithms will be combinatorially explosive for most practi-
cal problems or useful for a large class of functions.

The other problem indicated in the table is the extensive dependence on Monte Carlo and
statistical compi’er techniques for many aiiferent problems. 1 believe that more efficient ap-
proaches to the "easy" finite cases can be designed which will permit more accurate results
thau Monte Carlo techniques but which are less accurate than the statistical compiler techniques
described here,

B. REFRLESENTATION TECHNIQUES

The analysis of representation techniques in Sec. V only begins to approach an exceedingly
complex topic which is at the heart of statistical compilation techniques, The discussior in
Sec. V suggests a large variety of techniques, but only a few of thesv have had significant utiliza-
tion. More extensive experience with these techniques is clearly necessary to evaluate their

suitability :cr use.

TABLE VIiI-2

Base Operations Representotion Techniques

+, - Chorocteristic Functions
Sampled pdf

Moments

* Moments

Mellin Tronsform

Sampled pdf
MAX, MIN, CHOICE cdf
SUM Generoting Functions

Table Viil-2 indi :ates a number of base functions and some representations which are par-
ticularly convenient for those base functions. The table shows that for the major (perations a
number of representation choices are available, llowever, the list of base functions here is rela-
tively short, excluding such important operations as division and expunentiation. Further, the
representation choices tend to he specific to certain ba=e operations, Thus, there are two ma-
jor areas of further effort: (1) new representations appropriate to other base operations, and
{2) new algorithms for f-convolution for specific representations (i.e., a convenient algorithin
for + — convolution on sampled pdfs). ’

60

Gl o

i

IFurther work in tne extension of f-convolution algorithms to joint probability distributions "
could sismificantly improve computational speed and aceuracy for complicated programs. [
C. APPLICATION AREAS |
We began this report with two examples of applications for statistical compile~ techniques. :

In Sec. VI, we slhowed the use of the STAT system to solve one of these problems. These ex-
amples indicate some possible uses of a statistical compiler, but represent 4 very limited sub-
set of the actual application areas.

In general, application areas for a statistical compiler of the type envisioned in Sec. VII have
a number of distinguishing properties, or conversely, if a problem has these distinguishing
properties, it is a candidate for use of statistical compiler techniques. The major character-
istics of these problems are (a) there is a large populatio: of interest (large enough for statis~
tical measures to be accurate enough for practical purposes), (b) each element of the population
has certain properties which are expressed numerically, (c) the distribution of the values of the
properties is known for the population, and (d) a deterministic description of the belavior (also
specified numerically) of an element of the population in terms of its properties is available.
Then one may use statistical compiler techniques to calculate the distribution of the values of
the behavior of the population. Moreover, the problem may be presented to the compiler in two
parts: the behavioral description, and the property distributions.

However, these very general guidelines do not indicate the real limitations of the techniques.
As we have indicated elsewhere in this report, the twoe major practical problems are: (1) the

complexity of the behavior function, and (2) the joint dependencies of the input distributions.

liow then is a potential user to decide whether io employv these techniques. If a statistical
compiler as envisioned in Sec. V11 is available, the user may ask the compiler tor estimates of

running time and accuracy. But this is partially begging the questions, for the real issue is:

I'or how many useful problems would a statistical compiler produce accurate results with a plau-

sible expenditure of resources?, or expressed more succinetly, [s it worth the effort to construct

an extersive statistical compiler?

Untortunately, at this point, no quantitative data to support an answer to these ouestions :
exist. 1t is clear from the work presented here, that there is a class of problems for which 1
these techniques are applicable and efficient. There is also clearly more resesrch work to be 1
performed hefore the construction of a "practical® statistical compiler can ve sized accurately. 1

Thus, the major rnsolved question remaining in this area is its vitimate practicality. Some

specific subquestions can be phrased to help the resolution of this question: Ilow well can we
characterize the execution time of some of the f-convolution operations? Are there specific ap-
plication areas which would be satisfied with just the base operations for which convenient rep-
resentations are known? llow complicated a process is the rule-guided optimization? llow much
storage must be dedicated to store joint distributions for practical problems?

The answers to these questions will significantly aid in determining the future of this line
of inquiry. My belief, at this point, is that these questions will take time to answer, but that

the ultimate utility of statistical compiler techniques will be demonstrated.

61

APPENDIX '_*1
DESCRIPTION OF STAT CODE 1

The STAT system is construeted entirely in ECL, using the ECL. mechanisms for mode
extension [Wegbreit 74}, These mechanisms have been general enough to allow for all the
extensions described in See. VI without any changes to the ECL system, although certain
capabilities to properly control the construction of real\random objects have only appeared in the
system recentty. The files which the user "LLOAD"s to invoke STAT consist of several primary

components: F

(1) A set of functions required by the ECL system to specify the behavior
of the new mode realNrandom. These include funetions for generation,

conversion, assignment, selection, and printing of realrandom objects.

(2) Extensions to the operators "+", "<!, "aM /M apd 1AM 5 handle
real\random variables. In the standard cases, the already existing
system routine is invoked, while regl\random objects trigger entry to
code written for the STAT system.

(3) Definitions of the eonstructors point, distribution, uniform, gaussian, and
poisson,

(4) Decfinitions for a ncw mode called poly, uscd to represent polynomiats

of several variables, which is used in the evaluation of real\random

cxpressions as described below, and

(5) Routines which control the amount of evaluation effort expended at
each point during the execution of a program involving real\random

objects.

The data structure used to represent realNrandem objects has a number of liclds:

name SYMBOL
A guaranteed unigue name which is used internally to refer to this

random variable.

Leftfather PTR (REAL, INT, realNrandom)

rightfather
These fields point to the values that were combined to produce the
random variable. They may point to another random variable, or a
REAL or INT value. Only two such ficlds are necessary because only
operators on onc or two vartables have been provided, although the
extension to handling functions of several variables merely requires

i

additional father fields. T

fn ROUTINE

The operator used to combine the fathers to obtain this random variavle. il

mom VECTOR(16, REAL)

62 b

el L

Space to hold the moments about the origin of this raud: vy varciable.
Initially, none of these values are calculated. rather they are generated

as needed.
curlth INT

The index ol the last entry in the mom table which has been filled.
momgen PROC(PTR(realNrandom))

A routine which calculates additional moments as necessary. I'or
random variables which ave generated by constructors, specilic momgen
functions are provided, e.g., poissommomgen, gassianmomgen, cte. 1For all

intermediate results, a routine called intemomgen is used.
deslth INT

The index of the last entry in the mom table which should be Tilled when

the momgen routine is executed.
data REF

Some of the momgen routines associated with specific constructors re-
quire space to store their internal variables. The data [ield refers to
a data structure for this purpose. The exact details of this data struc-

ture vary for different constructors.
anc PIR(riSET)

A pointer to the set of real\random objects vhich contains all the compu-

tational ancestors of this random variable. Not calculated until needed.

When a’constructor is invoked, it invokes the generation routine for real\random variables.
The generation routine provides a blank data structure, with only the name ticld initialized. The
constructor assigns appropriate values to the data and momgen ficlds and returns.

Operators also invoke the generation routine to obtain a blank structure, and using a routine
calleu rrapply assign values to the ficlds fir, momgen, leftfather, and rightfather. No other calculations
are performed at this time.

These steps cause the system to corstruct the computation tree for the computation as the
user is assigning values to variables and executing his routines, whether interactively or from
predefined functions. Until the print function is invoked on a real\random, no attempt is made to
evaluate its moments.

The print routine is also quite simple. When invoked on a real\random, it checks carlth to see
if four moments are available. If they ave not, the print routine sets deslth to four, and invokes
the momgen routine to calculate the additional moments. When this is complete, four moments
arc available and may be printed.

The heart ol the system is then the computational routines invoked via the moment generating
functions, as well as the control which decides which moments need to be explicitly calculated.
We describe first the algorithms used for some of the constructor memgen routines to indicate
the algorithims for these, and then proceed to describe the more intercesting routines invoked by

intemomgen for non-terminal nodee of the comprtation tree,

63

e (it b — ol Ll

Uniform Moment Generator

The moments about the origin of a uniform distribution from a to b may be directly
obtained by integration.

b "
ko = S‘a b—a)
_pintt) _nt)
" (n+1)(b-a)

If a speecifie Bn is desired, this formula may be evaluated directly, but if all values of
pp from n =1 to k are desired, then t @ following recursive scheme is more efficient. Define

b(mi) _ a(nH)
b —a

f(n, a, b) =

Then we have the following recursive definition of f, as may be readily verified by induction.

f(0,a,b) =1

fn+1, a, b) = a * f(n,a,b) +b"1
ip = f(n, a, b)/(n + 1)
Thus, if we maintain the values of f(n, a, b), and bn, we may celeulate cach higher moment
for the cost of two multiplications, one division, and two additions as well as the cost of updating

the values for { and b™. In addition, two locations for the storage of f and b" are required.

These are provided in the data portion of the real\random data structure.

Gaussian Moment Generator

The momeats about th: mean for the Gaussian are easier to obtain in closed form than the

moments abot . the origin We have then the following equation:
(] 2 2
L 5 (x — m)" e~(x-m) /20 dx
» 00
Let y = x — m to obtain

w© 2%y 2
n_- 2
P’n=5‘ y e /20 dy

We may intcgrate this by parts to obtain

2 2| o
o0 2,2 ni1 -y“/20] n+2 27
g' ey /20 ag =L e +‘Y y oY /20 d
Voo

Yy
ol -0 (n+1)o

-0

2 2
Sinee lim ynH e /20

= 0, we have the following recursive relation:
y=>%0

200 2 2 © 2 2
S yn+2 e /2a dy=(n+‘l)025‘ y" eV /20 dy
o0

- - 00

——

or expressed in a more usable form:

p0=1' pi:o

. g2
pn+2-(n+1)\0 *pn

This implies, as one would expeet, that all odd moments about the mean are zero.
In order to obtain moments about the origin, we make use of the following relationship be-
tween moments about the mean (L and moments about the origin pl'] [Kendall 63].

., noo |
by = L (]) Mil=n) F

e
il
o

n‘-11 n . . n-j
R (,):ui(—u'i)
j=0

expressing the nth moment about the origin in terms of the nth central moment and other moments
about the origin. The polynomial in (—p'i) is best evaluated by llorner's rule, calculating the
combinatorial coefficients in the same loop.

Moment Calculation for Derived Results

As described in Sec. V, we can evaluate the moments of a multinomial function of independent
random variables directly from the moments of those independent random variables. 1t is this
technique which is used to implement the evaluation of moments for derived values.

In order to evaluate the moments of a real\random variable X whieh is not a direct result of

a constructor, we then proeeed as follows:

(1) Find a set (referred to as anlia sct for reasons described later)
of independent random variables which separates (sec separating
set definition in Sec. IV) X from its terminal ancestors in the eom-
* putation tree (i.e., from all the eonstructor-generated random

variables which are computational ancestors of X).

(2) Express X as a multinomial function of the random variables in

the lia set.

(3) Evaluate (perhaps by recursive calls) the moments of the 1'zlandom

variabies in the lia set.
(4) Use these moments to perform the evaluation of the moments for X.

In order to reduce the computational effort as much ag possible, boih in finding a multi-
nomial representation and in evaluating the multinomial, it is desirable that the size of the lia
set be as small as possible. Further, the set must consist of independent ancestors of X.
Because of this we refer to this set as the least independent ancestor (lia) sct. There is not
a unique least ancestor set for any arbitrary random variable N in any computation trec.

Moreover, gencrating a set which is guaranteed to be minimal is not a simple eomputation.

We choose therefore to ealculate a set which is guaranteed to be independent and a sepirating

set, which insures the accuracy of the computation, but we cannot guarantee that it is minimal.
Thus there is a routine in the system ecalled lia which when applied to a random variable calcu-
lates an approximation to a least indepcndent ancestor set, and it is this set we refer to as the
lia set.

Once the liaset is determined, the routine subst is invoked. This routine caulculates the
multinomial function representation for the random variable X in terms o' members of the lia
set. Subst first calculates the multinomial representation of X.leftfather and X.rightfather in terms
of thelia set of X, It then uses the symbolic polynomial manipulation package which is part of
STAT to combine these two according to the appropriate operation in X, ft. In fact, since the
routines which implement " "+" " tan o /nogpg ven g1g0 accept arguments of mode poly,
they are invoked directly to perform the polynomial manipulations.

When the substitution phase is complete, each term in the polynomial is examineu to deter-
mine the highest degree for each lia set member in the multinomial. For cxample, if the derived
multinomial for X i X =3 2% 42 » Y3 4 4 x 22 & ¥2, then the highest degree for Z in this
multinomial is 2, and the highest degree for Y is 3. If the number of moments desired for X
is k {(the value in X.deslth), then 2 * k moments for Z are required, and 3 * k moments for Y
are needed. If this number of moments for thesc variables are not available, then their moment
generating functions are invoked, perhaps recursively, to obtain them. Once all the needed
momcnts are available, the multinomial may be evaluated to obtain the first moment of X. As
described in Sec. V, moments of order k may be obtained by symbolically raising the multi-
nomial function to the power k, and then evaluating the multinomial obtained. 'The evaluation
rules for multinomials in this context are not thc normal rules of substitution since no specific
values exist for the random variables in the lia set. Rather, when a term involving Zk is evalu-
ated, the kth moment of Z is substituted for Zk.

By far, the bulk of the computational cffort expended occurs during the symbolic evaluation
of the powers of the multinomial representation. Tne amount of effort required could be easily
estimated on the basis of the number of terms in the multinomial and used to allow the user of
the system to decide on the number of moments he requires when presented with the cost to
compute each moment. No such provision is currently provided, however.

The remainder of the system provides more conventional capabilities such as the polynomial
and set manipulation packages used to implement the moment generating routines. These will
not be further discussed here.

A listing of the code for the STAT system follows.

66

poly <- poly :: SEQ(STKUCT(coeff:REAL, var:PTR("term")));
term <~ term :: SEQ(STRUCT(var:PTR("rrSTRUCT"), exp:IN1));
INFIX("i<", 15C);

1< (= <

< <=
EXPR(x:ONEOF (REAL, INT, term), y:ONEOF(REAL, INT, term); BOOL)
BEGIN
CASE(COVERS)[MD(x), MD(y)]
[ARITH, ARITH] => x !1< y;
[term, term] =>
BEGIN
DECL 1x:INT BYVAL LENGTH(x);
DECL ly:INT BYVAL LENGTH(y);
FOR 1 FROM 1 TO LENGTH(y)
REPEAT
. > 1x => TRUE;
x(t).var # v(il.var =>
Val(x[i].var.name.TLb) '¢
!AL(y[i].var.nazce.TL" };
x[iJ.exp # ylil.exp => x[i].exp 1< y[i]. exp;

FALSE;
ENDL;
END;
TRUE => BREAK('TYFE ERROR IN <');
eEND;
END;

rrSTRUCT <~

rrSTRUCT

STRUCT (name : SYMBOL,
leftfather:PTR(KEAL, INT, "rrSTRUCT"),
rightfather:PTR(REAL, INT, "rrSTRU.LT"),
momgen: PROC(PTR("rrSTRUCT") SHARED),
fn:ROUTINE,
curlth:INT,
deslth:INT,
mom: VECTOR(16, REAL),
anc:FTR("rrSET"),
data:REF);

67

rafn <=
EXPR(s:real\random, t:real\random; real\random)

BEGIN
DECL lowers:real\random.UR SHARED LOWER(s);
DECL lowert:real\random.UR SHARED LOWER(t);
lowers.leftfather <- lowert;
lowers.fn <- iden; !
lowers.momgen <- intermomgen;
53

END;

iden <- EXPR(x:poly; poly) x;

refn <-
EXPR(s:real\random, t:MGDE; ANY)
BEGIN
t = NONE => NOTHING;
COVERS(t, PTR(rrSTRUCT)) OR COVERS(t, REF) => LOWER(s);
BREAK('CONVERSICN FROM real\random =-- TYPE r;
END;

rsfn <=
EXPR(s:real\random, a:ONEOF(INT, SYMBOL); ANY)
[) BREAK('SELECTTON ON real\random ') (];

rpfn <-
EXFR(s:real\random, u:PORT; real\random)
EEGIN
DECL mom:VECTOR(16, REAL) SHARED LOWER(s) .mom;
eval(s, 4);
DECL var:R[AL BYVAL mom[2] - mom[1] ~ 2;

PRINT('mean =', p);
PRINT(mom[1], p);

PRINT(' var =', p); 3
PRINT(var, p); [
var <- ABS var;
var # 0.0 <>
BEGIN
DECL alpha3:REAL BYVAL
(mom[3] - 3 ®* mom[1] * mom[2] + 2 * mom[1] " 3) /
var © 1.5;
DECL beta2:REAL BYVAL
(mom[4] « 4 % mom[1] * mom[3] +
6 * mom(i] " 2 * mom[2] - 3 * mom[1] " Yy v

-~

var 24

PRINT(' skewness =z', p);
PRINT (alpha3, p):
PRINT(' kurtosis =’, p);
PRINT(beta2, p);

END;

S5

END;

uniquenamectr <- 1;

uniquename <-
EXPR(; SYMBCL)
BEGIN
DECL s:SYMBOL BYVAL
HASH(SCONCAT('name', BASIC\STR(uniquenamectr <+ 1)));
s,TLB <- ALLOC(INT BYVAL uniquenamectr);

S35
END;

rgtn <=
EXPR(m:MODE, s:SYMBOL, 1:ANY; ONEOF(real\random))
BEGIN
m # real\random => BREAK('GENERATION ERROR - real\randomn';;
s = "BYVAL"™ => point(1l);
s = "LIKE" OR s = "SHARED" =>
BEGIN
CASE(COVERS)[ML(1)]
[real\random] => 1;
[PTR(rrSTRUCT)] => LIFT(1l, reall\random);
[REF] MD(VAL(1l)) = rrSTRUCT =>
BEGIN
DECL z:PTR(rrSTRUCT);
z <= 1;
LIFT(z, real\rondom);
END;
TRUE => BREAK('CONVERSION TO reall\random ');
tiD;
END;
DECL x:real\random.UR BYVAL ALLOC(rrSTRUCT);
Xx.name <- uniquename();
s = "SIZE"™ => LIFT(x, reall\random);
BREAK('GENERATIUN ERROUR');
EWD;

real\random <-
<¥ "peal\ranaom",

UCF(rctn),
UAF(rafn),
UsSKF(rsfn),
UFPF(rpfn),
UGF (regfn),
SUPUGF(TRUE) *> :: PTR(rrSTRUCT);

rrapply <-
EXPR(f:SYMBOL,
x:ONEOF (real\random, INT, REAL),
y:ONEOF (real\random, INT, REAL, 'YONE)
real\random)
BEGIN

DECL z:real\random;

DECL lowerz:real\random.UR SHARED LOWER(z);

lowerz.fn <- VAL(f.TLB);

lowerz.momgen <= intermomgen;

lowerz.leftfather <-

BEGIN
MD(x) = real\random => LOWER(x)
ALLOC(MD(x) BYVAL x);

END;

lowerz.rightfather <-

EEGIN
MU(y) = real\random => LOWER(y)
ALLOC(MD(y) BYVAL y);

END;

'

28
END;

INFIX("E™n, 225, TRUE);

FLUSH(");

INFIX(""", 225, TRUE);

17 <a EXPONENTIATION;
B
EXPR(x:ONEGF(INT, RFAL, real\rardom, poly),
y:ARITH;
JHEOF (INT, [FAL, real\randcm, noly))
EEGIN
CASE(COVERS)[ME(x), MD(y)]
(ARITH, ARITH] => x '~ y;
[poly, INT] =>
BEGIN
UECL p:PFIf(poly) BYVAL ALLOC(poly SIZE 1);
pl1}.coeff <- 1.0;
o[1].var <= ALLOC(term S5IZE 0)
FOR 1 FROM 1 70 y
REPEAT p <= ALLOC(poly LIKF x * VAL(p)) END;
VAL(p);
END;
[real\random, INT] => rrapply(""", x, yv);
TRUE -> BREAK('" T P) e
ENDy
END;

1

INFIX("1/", 200, TRUE);
1/ <~ QUOTIENT;

/ <=
EXPR(x:ONEOF (INT, REAL, real\random, poly),
y:ARITH;
ONEOF (INT, REAL, real\random, poly))
BEGIN

CASE(COVERS)[MD(x)]
(real\random], [poly] => x ¥ (1.0 / y);
TRUE => x !/ y;
END;
END;

INFIX("t#" 200, TRUE);
'* <- PRODVCT;

* (-

EXPR(x:ONEOF(INT, REAL, rzal'irandom, poly, term),
y:ONEOF(INT, REAL, real\random, poly, term';
ONEOF(INT, REAL, real\random, poly, term))

BEGIN
PECL mx:MODE BYVAL MD(x);
DECL my:MODE BYVAL MD(y);
COVERS(ARITH, mx) AND COVERS({RITH, my) => x % y;
COVERS(poly, mx) AND COVERS(ARITH, my) =>
BEGIN
y = 00OR Yy = 0.0 => CONST(poly SIZE 0);
BEGIN
DECL z:poly BYVAL x;
FOR i FROM 1 TU LENGTH(z)
KEPEAT z[i].coeff <- z[il.creff * y END;

Z;
END;
END;
COVERS{ARITH, mx) AND COVERS(poly, my) => y % x;
COVERS(real\random, mx) ANL COVERS(poly, my) OR
COVERS(poly, mx) AND COVERS(real\random, my) OR
COVERS(term, mx) AND COVERS(real\random, my) OR
COVERS(real\random, mx) AND COVERS(term, my) OR
COVERS(term, mx) AND COVERS(ARITH, my) OR
COVERS(ARITH, mx) AND COVERS(term, my) =>
BREAK('TYF« ERROR %*');
COVERS(term, mx) AND COVERS(poly, my) =>
BEGIN
DECL z:poly BYVAL y;
FOR 1 FROM 1 TU LENGTH(y)
REPEAT
z(i].var <- ALLOC(term SHARED VAL(y[il.var) * x);
END;

Z;
END;

71

P T ——

COVERS(poly, mx) AND COVERS(term, my) => y % x;
COVERS(term, mx) AND COVERS(term, my) =>
BEGIN
DECL 1x:INT BYVAL LENCTH(x);
DECL 1y:INT BYVAL LENGTH(y);
DECL z:term SIZE 1x + ly;
DECL ix:INT BYVAL 1;
DECL iy:INT BYVAL 1;
DECL j:INT BYVAL O;
REPEAT
DECL copy:ROUTINE BYVAL
EXPR(x:term SHARED, ix:INT SHARED, 1x:INT SHARED)
REPEAT
ix > 1x => NIL;
J <+ 1
z[J] <- x[ix];
ix <+ 13
E?\b,
ix > 1x => copy(y, iy, ly);
iy > 1y => copy(x, ix, 1x);
3EGIN
J <+ 13
VAL(x[ix].var.name.TLB) = VAL(y[iy].var.name.TLB) =>
BEGIN
z[j] <- x[ix];
z[j).exp <+ y[iy].exp;
ix <+ 13
iy <+ 1
END;
VAL(x[ix].var.name.TLB) > VAL(y[iy].var.name.TLB) =>
() z2[J) <= x[ix]; ix <+ 1 (];
z[j] <- yliy];
iy <+ 1
END;
END;
BEGIN
DECL oz:PTR(term) BYVAL ALLOC(term SIZE LR
FOR 1 FROM 1 TO j REPEAT oz[i) <- z[1i] END;
VAL(oz);
END;
END;]
COVERS(poly, mx) AND COVERS(poly, my) =>
BEGIN
DECL z:PTR(poly) BYVAL ALLOC(poly SIZE 0);
LENGTH(y) < LENGTH(x) => y #* x;
FOR i FROM 1 TO LENGTH(x)
REPEAT
z <=
ALLOC(poly LIKE
VAL(z) + x[i].coeff * (VAL(x[i].var) #* ¥));
END;
VAL(z);
END;
TRUE => rrapply("#*", x, y);
END;

72

W
-

INFIX("1=-", 175, TRUE);
PREFIX("!1-");
!= <~ DIFF;

=3 s
EXPR(x:ONEOF (INT, REAL, real\random, poly),
y:ONEOF (INT, REAL, real\random, poly, NONE);
ONEOF (REAL, INT, real\random, poly))
BEGIN
CASE(COVERS)[MD(x), MD(y)]
{ARITH, ARITH} => x !- y;
{ARITH, NONE] => 1= x;
[poly, NONE] =>
BEGIN
DECL z:poly BYVAL x;
FOR § FKOM 1 TO LENGTH(z)

REPEAT z[j].coeff <= != (z[j].coeff) END;
24
END;
[real\random, NONE] => rrapply("=", x);
TRUE => x + - y;
END;
END;

INFIX("!+", 175, TRUE);
1+ <= SUM;

+ =
EXPR(x:ONSOF (REAL, IKT, real\random, poly),
y:ONEOF (REAL, IM", reallrandom, poly);
ONEOF (REAL, INT, reall\random, poly))
BEGIN
CASE(COVERS)[MD(x), MD(y)]
{ARITH, ARITH] => x !+ y;
[poly, ARITH] =>
BEGIN
LENGTH(VAL(x{1].var)) = 0 =>
[) DECL z:poly BYVAL x; z[1]).coeff <+ y;
DECL z:poly SIZE LENGTH(x) + 1;
z[1].cceff <- y;
z{ 1].var <- ALLOC(term SIZE 0);
FOR i FROM 1 TO LENGTH(x)
REPEAT z[i + 1] <- x{i] END;
Z3
END;
[ARITH, polyl => y + x;
[poly, poly] =>
BEGIN
DECL 1x:INT BYVAL LENGTH(x);
DECL 1ly:INT BYVAL LENGTH(y);
DECL z:poly SIZE Ix + ly;

73

z (1;

A

DECL ix:INT BYVAL T
DECL iy:INT BYVAL e
DECL J:INT BYVAL 0;
REPEAT
DECL copy:ROUTINE BYVAL
EXPR(x:poly SHARED, ix:INT SHARED, 1x:INT SHARED)
REPEAT
ix > 1x => NIL;]
J <+ 1
z[J] <- x[ix];
ix <+ 15
END;
ix > 1x => copy(y, iy, 1ly);
iy > 1y => copy(x, ix, 1x);
BEGIN
S o s
VAL(x[ix].var) = VAL(y iy].var) =>
BEGIN
z[J] <- x[ix];
z[j].coeff <+ y[iyl.coeft;
ix <+ 1
iy <+ 1
z[j).coeff = 0.0 => j <= o= 16
END;
VAL(x[ix].var) < VAL(y[iy].var) =>
[zl) o= okl b < 1 e
z2[j] <- yliyl;
iy <+ 1;
END;
END;
BEGIN N
DECL 0z:PTR(poly) BYVAL ALLOC(poly SIZE 3)s
FOR i FROM 1 TO-j REPEAT oz[i] <- z[i] END;
VAL(o0z);
END;
END;
[poly, real\random], [real\random, poly] =>
BREAK('type error +');
TRUE => rrapply(”+", x, y);
END;
END;

74

= e NP

eval <=
EXPH(U:PTH(PPSTHUCT), k:INT)
[) u.deslth <- k; u.deslth > u.curlth <> u.momgen(u) ();

rrSET <- rrSET :: STRUCT (members :SEQ(BC™" PLrs:PTH("rrMEM"));
rrMEM << rrMEM :: STRUCT(elem:PTH(rrS[HUL‘), next:PTR("rrMEM"));
INFIX("element", 150);

insert <-
EXPH(X:PTH(PPSTHUCT), y:rrSET SHARED; rrSET)
BEGIN
X element y => y;
VAL(x.name.TLB) > LENGTH(y .members) => BREAK('INSERTION ');
y.members[VAL(x.name.TLB)] <- TRUE;
Y.ptrs <- ALLOC(rrMEM OF x, v.ptrs);

Yi
END;

element <-
EXPR(x:PTR(rrSTRUCT), y:rrSET; BOOL)
BEGIN
VAL(x.name.TLB) > LENCTH(y.members) => FALSE;
y.members[VAL(x name,.TLB)];
END;

intermomgen <-
EXPR(u:PTR(rrSTRUCT) SHARED)
BEGIN
DECL y:rrSET LIKE lia(u);
DECL sym:poly LIKE subst(u, v);
calcdeslth(sym, LOWER(u).deslth);
DECL x:PTR(rrMEM) BYVAL y.ptrs;
REPEAT
x = NIL => NIL;
X.elem.deslth > x.elem.curlth -> ¥.elem.momgen(x.elem);
X <= X.next;
END;
evalpoly(u, sym);
END;

75

———

W ke

lia <~
EXPR(x:PTR(rrSTRUCT); rrSET)
BEGIN

x.leftfather = NIL AND x.r .ghtfather = NIL =>

[) findterm(x); VAL(x.anc) (];

MD(VAl,(x.leftfather)) # rr..1RUCT =>

BEGIN
DECL y:rrSET SIZE VAL(x.rightfather.name,TLB);
insert(x.rightfathesr, y);

END;

MD(VAL(x.rightfather)) # rrSTRUCT =>

BEGIN
DECL y:rrSET SIZE YAL(x.leftfather.name,TLB);
insart(x.leftfather, y);

END;

findterm(x);

disjoint(x.leftfather.anc, x.rightfather.anc) =>

BEGIN
DECL y:rrSET SIZE VAL(x.name,TLE):
insert(x.leftfather, y);
insert(x.rightfather, y);

END;

VAL(x.anc);

END;

findterm <-
EXPRE(x:PFTR(rr3TRUCT))
BEGIN
x.anc # NIL => NIL;
x.leftfather = NIL AND x.rightfather = NIL =>
BEGIN
x.anc <- ALLOC(rrSET SIZE VAL(x.name.TLB));
insert(x, VAL(x.anc)):
END;
MD(VAL(x.rightfather)) # rrSTRUCT =>
[) findterm(x.leftfather); x.anc <- x.leftfather.anc (1;
findterm(x.rightfather);
MD(VAL(x.leftfather)) # rrSTRUCT =>
X.anc <- x.rightfather.anc;
findterm(x.leftfather);
x.anc <- union(x.leftfather.anc, x.rightfather.anc);
END;

76

union <-
EXPR(s1:PTR(rrSET), s2:PTR(rrSET); PTR(rrSET))

BEGIN
LENGTH(s1.members) > LENGTH(s2.members) => union(s2, s1);
DECL sz:PTR(rrSET) BYVAL ALLOC(rrSET BYVAL VAL(s2));
DECL s1ip:PTR(rrMEM) BYVAL si.ptrs;
REPEAT
sip = N1L => NIL;
insert(slip.elem, VAL(sz));
slp <~ sip.next;
END;
sz

END;

disjoint <-
EXPR(s1:PTR(rrSET), s2:PTR(rrSET); BOOL)
BEGIN
LENGTH(s2.members) > LENGTH(s1.members) =>
disjoint(s2, s1)
FOR 1 FROM 1 TO LENGTH(s2.members)
REPEAT
sz.members(i] AND s1.members[i] => FALSE;
TRUE;
END;
END;

subst <-
EXPR(u:FTR(rrSTRUCT), lia:rrSET SHARED; poly)
BEGIN
u element lia => polymake(u);
u.fn(BEGIN
MD(VAL(u.leftfather)) = rrSTRUCT =>
subst(u.leftfather, lia);
VAL(u.leftfather);
END,
BEGIN
MD(VAL(u.rightfather)) = rrSTRUCT =>
subst(u.rightfather, lia);
VAL(u.rightfather);
END);
END;

7

calcdes 1th <-
EXPR.p:poly, k:INT)
FGR i FROM 1 TO LENGTH(p)
REPEAT
DECL t:PTR(term) BYVAL p[i].var;
FOR j FROM 1 TO LENGTH(t)
REPEAT
k ® t[jl.exp > t[j]l.var.deslth ->
t[jl.var.deslth <- k * t[j].exp;
END;
END;

evalpoly <=
EXPR(u:PTR(rrSTRUCT), p:poly)
BEGIN
DECL pow:PTR(poly) BYVAL
ALLOC(poly LIKE p ~ (u.curlth + 1))
DECL mom:VECTOR(16, REAL) SHARED u.mom;
FOR m FROM u.curlth +« 1 TO u.deslth
REPEAT
m # u.curlth + 1 >
pow <- ALLOC(poly LIKE p * VAL(pow));
mom[m] <=~ evalterm(mom[m], VAL(pow));
END;
u.curlth <- u,deslth;
END;

evalterm <«
EXPR(m:REAL, pow:poly SHARED; REAL)
BEGIN
FOR { FROM 1 TO LENGTH(pow)
KEPEAT
DECL t:term SHARED VAL(pow[i].var);
m <+
pow[i].coeff %
BEGIN
DECL prod:REAL BYVAL 1.0;
FOR j FROM 1 TO LENGTH(t)
REPEAT
prod <- prod ® tljl.var.mom[t[j].exp];
END;
prod;

78

P R A T e———

N wmew

makedist <-
EXPR(datamd :MODE, mean:REAL, momgenf:ROUTINE; reall\random)
BEGIN
DECL z:real\random;
DECL lowerz:real\random.JR SHARED LOWE%X(z);
lowerz.data <~ ALLOC(datamd);
lowerz.momgen <- momgenf;
lowerz.2urlth <- 1;
lowerz.mom[1] <- mean;

Z3
END;

point <~
EXPR(x:REAL; real\random) [) makedist(NONE, x, pointmomgen) (1;

polymake <-
EXPR(x:real\random; poly)

BEGIN
DECL p:PTR(poly) BYVAL ALLOC(poly SIZE 1);
DECL t:PTh(term) BYVAL ALLOC(term SIZE 1);
pl[1].coeff <= 1.0;
pl1].var <- t;
t[1].exp <= 1;
t[1].var <= x;
VAL(p);

END;

pointmomgen <-
EXPR(x:PTR(rrSTRUCT) SHARED)

BEGIN
FOR i FROM x.curlth + 1 TO x.deslth
REPEAT x.mom[i] <~ x.mom[1] ®* x.mom[i - 1] END;
x.curlth <- x.deslth;

END;

uniform <-
EXPR(a:REAL, b:REAL; reall\random)
BEGIN

DECL x:real\random SHARED

makedist (STRUCT(a:REAL, b:REAL, bpow:REAL, sum:REAL),
(a + b))/ 2,
unifcrmmomgen);

DECL xdata:REF BYVAL LOWER(x).data;

xdata.a <- a;

xdata.b <- b;

xdata.bpow <~ b;

xdata.sum <= a + b;

X;
END;

79

uniformmomgen <-
EXPR(x:PTR{rrSTRUCT) SHARED)
BEGIN
DECL xdata:REF BYVAL x.data;
FOR i FROM x.curlth + 1 TO x.deslth
REPEAT
xdata.bpow <- xdata.b * xdata.bpow;
xdata.sum <- xdata.a * xdata.sum + xdata.bpow;
x.mom[i) <- xdata.sum / (i + 1);
END;
x.curlth <- x.deslth;
END;

nextmom <-
EXPR(n:INT, mom:VECTOR(16, REAL) SHARED, m:REAL; REAL)
BEGIN
DECL u:INT BYVAL 1;
DECL var:REAL BYVAL - mom[1];
DECL sum:REAL BYVAL var;
FOR i FROM 1 TO n = 1
REPEAT
u<-u*(n+1-1) 7/ i;
sum <= var * (sum + u * nmom(i]);
END;
m - sum;
END;

gaussian <-
EXPR(mean:REAL, sigma:REAL; real\random)
BEGIN

DFCL x:real\random SHARED

makedist (STRUCT (pow:REAL, var:REAL),
mean,
gaussianmomgen);

DECL xdata:REF BYVAL LOWER(x).data;

xdata.pow <- 1.0;

xdata.var <- cigma * sigma;

X3
END;

gaussianmomgen <=~
EXPR(x:PTKR(»rSTRUCT) SHARED)
BEGIN
DECL =xdat: :REF BYVAL x.data;
FOR i FP™| x.curlth + 1 TO x.deslth

REPEAT
x.mom[i] <-
BEGIN
nextmom(i,
X.mom,
BEGIN

i/ 2% 2 =1i=
xdata.pow <-
(i - 1) % xdata.pow * xdata.var;

80

0;

END);
END;

END;

x.curlth <- x.deslth;
END;

poissor <-
EXPR(lambda:REAL; reall\random)

BEGIN

DECL x:reall\random SHARED

makedist (STRUCT(p1:VECTOR(17, INT), p2:VECTOR(17, INT)),
lambda,
puissonmomg:n);

DECL xdata:REF BYVAIL LOWER(x).data;

xdata.p2[1] <- 2;

xdata.p2[2] <~ 1;

xdata.p1[1] <~ 1;

X5

END;

poissonmomgen <-
EXPR(x:PTR(rrSTRUCT) SHARED)
BEGIN
DECL xdata:REF BYVAL x.data;
DECL p1:VECTOR(17, INT) SHARED xdata.nl;
DECL p2:VECTOR(17, INT) SHARED xdata.p2;
FOR i FROM x.curlth + 1 TOU x.deslth

REPEAT
x.mom[i] <-
BEGIN
nextmom(i, X
X.mom,
BEGIN

DECL sum:REAL BYVAL 0.0;
FOR j FROM p2[1) BY =~ 1 TO 2
REFLAT
stm <= (sum + p2[j]) * x.mom[1];
END;
FOR j FRCM p1[1] BY - 1 TO 2
REPEAT p1[j + 1] <- p1[j] % i END;
pi[2]) <- 0;
FOR j FROM p1[1] + 1 BY = 1 TO 2
REPEAT
DECL t:INT BYVAL pi1[j];
p1[Jj] <- p2ljl;
p2[j] <= (3 - 1) * p2[j] + ¢;
END;
BEGIN
DECL t:INT BYVAL p1[1];
p1[1] <- p2[1];
p2[1] <= 1 + t;
END;
sum;
END);

81

END;
END;
Xx.curlth <- x.deslth;
END;

distrivution <~
EXPR(tab:SEQ(VECTOR(2, REAL)); real\random)

BEGIN
DECL z:real\random;
DECL lowerz:reall\random,UR SHARED LOWER(z);
lowerz.data <- ALLOC(MD(tab) BYVAL tab);
lowerz.momgen <- dismomgen;
lowerz.curlth <- 0;
z;

END;

dismomgen <=
EXPR(x:PTR(rrSTRUCT) SHARED)
BEGIN
FOR 1 FROM x.curlth + 1 TO x.deslth
REPEAT
DeCL sum:REAL BYVAL 0.0;
f0R j FROM 1 TO LENGTH(x.data)

REPEAT
sum <- sum + x.data[j]J[1] * x.dataljl[2] " i;
END;
f.mom[i] <~ sum;
END;
Xx.curlth <- x.deslth;
END;
buildtab <=
EXPR(x:SEQ(REAL); SEQ(VECTOR(2, REAL)))
BEGIN

DECL z:SEQ(VECTOR(2, REAL)) SIZE LENGTH(x) / 2;
FOR i FRON 1 TO LENGTH(x) / 2)
REPEAT z[i][1] <- x[2 * i - 11; z[i][2]) <- x[2 * i] EiD;
Zy
END;

82

e

ACKNOWLEDGEMIENTS

There are a number of people who have provided assistance of various types
during this work; it is a pleasure to take this opportunity to acknowledge their ef-
forts. Dr. William Sutherland of Xerox PPalo Alto Research Center and Professor
William Bossert of Harvard have had faith in this work, even at times when 1 did
not, That reservoir of faith helped carry me over some of the more traumatic
periods of development. Professor Ugo Gagliardi of llarvard has patiently com-
mented on a number of drafts, while Professor Thomas Cheatham of ltarvard had
the wisdom to suggest the importance of an implementation. 1 had an extremely
illuminating conversation with Professor Dionysios Tsitchritzis during the ecarly
stages of this work which led to the noncomgutability result in Sec. 11. My friends,
Professors Paul Rovner of the University of Rochester and Richard Basener of
Lehigh University have provided me with many helpful discussions and comments
on the early drafts of this document. My supervisors at M.L.T. Lincoln Laboratory
over the years have been understanding of the dual responsibilities of student and
employee. 1c¢ the late 11r. Jack Mitchell, Mr. James Forgie, Mr. Jack Raffel,
Dr. Bernard Gold, Dr. Melvin Herlin, and Mr, Alan Mcl.aughlin go my sincere ap-
preciation. The Publications Group at Lincoln has done a professional job of pre-
paring this document; they have significantly cased the effort of the final stages.
Manyother colleagues, fellow graduate students, and teachers have been kind enough

to discuss various issues from time to time; a collective thank you to all.

83

REFERENCES

(Agarwal 75| R.C. Agarwal and C. S. Burrus, "Number Theoretic Transforms
to Implement Fast Digital Convulution," in [{EEE 75].

[Aho 72| A.V. Aho and J.D. Ullman, The Theory of Parsing, Translation, and
Comp:ling, Vol.1: PParsing (Prentice-Hall, New York, 1972).

[Ailen 75] J. Allen, "Special Purpose Hardware for Signal Processing," in
[{EEE 75].

[Apostol 7] T. M. Apostol, Mathematical Analysis, A Modern Approach to
Advanced Calculus (Addison-Wcsley, Reading, Mass., 1957).

[Bateman 54| Bateman iManuscript Project, Tables of Integral Transforms,
Vol. 1 (McGraw-Hill, New York, 1954).

[Bergland 69] G. D. Bergland, "A Guided Tour of the Fast Fourier Transform,"
1EEE Spectrum 6 (July 1969). Reprinted in [Rabiner 72].

[Bérzing 75| V. Bérzip%, "Algorithms for Analyzing Statistical Models of In-
formation Systems,” MS and EE thesls, M.l.T., Cambridge, Massachusetts,
January 1975,

[Burr 42] . W, Burr, "Cumulative Frcquency Functions,” Ann. Math. Statis-
tics 13 (1942).

[CACM 71] 1ssue containing papers from the Second Symposium on Symbolic
and Algebraic Manipulation, Communications of the A. C. M., Vol. 14,
No. 8 (August 1971).

[Cobham 64] A, Cobham, "The Intrinsic Computational Difficulty of Func-
tions," Proceedings 1964 International Conference for Logic, Methodology
and Philosophy, edited by Y. Bar-Hillcl (N~rih-Holland, Amsterdam, 1964),
pp. 24=30.

[Cooley 65] J. W. Cooley and J. W, Tukcy, "An Algorithm for Machine Calcu-
lation of Complex Fourier Scrics," Mathematics of Computation 19,
297-301 (Aprll 1965).

[Cooley 67] J. W. Cooley, P.A.W. Lewis, and P. D. Welch, "Ilistorical Notes
on the Fast Fourier Transform," 1EEE Trans. Audio Electroacoust. AU-15,
76-79 (1967).

[Cooley 70} J. W. Cooley, P.A.W. Lewis, and P, D, Welch, "The Fast Fouri=r
Transform Algorithm: Programming Considerations in the Calculation of
Sine, Cosine and LaPlace Transforms," J. Sound Vib, 12 (July 1970). Re-
printed in [Rabiner 72].

[Davis 58] M. Davis, Computahility and Unsolvability (McGraw-1ill,
New York, 1958).

{Davis 75] P.J. Davis and P. Rabinowitz, Mettods of Numcrical Intcgration
(Academic Press, New York, 1975).

[Ditkin 65] V. A. Ditkin and A. P. Prudnikov, integral Transforms and Op-
crational Calculus, translated from Russian by D. E. Brown (Pergamon
Press, Oxford, 1965).

[Feller 57| W. Feller, An Introduction to ’robability Theory and its Ap-
plications, two volumes, Sccond Edition (John Wiley, Ncw York, 1957).

[Franson €3] A. Franson, "Prediction of Statistical System Performance
from Parameter Distributions,” MSEE thesis, Naval Postgraduate School,
Monterey, California, June 1969, Available from Clearinghouse for Federal
Scientific and Technical Information as AD-703258,

[Gold €9] B. Gold and C. M. Rader, Digital Processing of Signals (McGraw-
Hill, New York, 1969).

(llammersley 64] J. M. Hammersley and D. C. llandscomb, Monte Carlo
Methods (Methuen, London, 1964).

[Harvard 74! ECL Programmer's Manual, Report No.23-74, Center for Re-
search in Computing Technology, Ilarvard University, Cambridge, Mass-
achusetts, D:cember 1974.

84

[IEEE 75] Proccedings of the IEEE, speeial issue on Digital Signa! Processing,
April 1975,

[Karlin 53] S. Karlin and L. S. Shapley, "Geometry of Moment Spaces," Mem-
oirs of Am. Math. Soe. 12 (1953).

[Kendall 63] M. G, Kendall and A, otuart, The Advanced Theory of Statisties,
Vol. 1: Distribution Theory, Second Ldition (llafner, New York, 1963).

[Low 74] J. Low, "Automatie Coding: Choice of Data Struetures," Phl) thesis,
Report CS-452, Stanferd University, Stanford, California, August 1974.

[Meyer 67] A. R. Meyer and D, M, Ritchie, "The Complexity of Loop 1’ro-
grams," I’roceedings of 22nd National Computer Conference, Assoeiation for
Computing Machinery (Thompson, Washington, 1967), pp.465-469.

[Moore 66] R. E. Moore, Interval Analysis (Prentice-Ilall, New York, 1966).

[PParzen 60] E. Parzen, Modern Probability Thcory and its Applications

(John Wiley, New York, 1960).

[Pearson 68] K. Pearson, Tables of the Incomplete Beta I'unction, Second
Ldition (Cambridge University Press, Cambridge, England, 1968).

[Rabiner 72] L. R. Rabiner and C. M. Rader, [Lditors, Digital Signal 1’rocessing
(IELLE P’ress, New York, 1972).

[Rice 64] J. R. Rice, The Approximation of Functions, Vol.1: Lincar Theory
(Addison-Wesley, Reading, Mass., 1972).

[Ritchie 63] R, W. Ritchie, "Classes of I’redietably Computable IFunetions,"
Trans Am. Math, Soc. 106, 139-173 (1963).

[Sain 73] M. K. Sain, .. W, llenry, and J.J. Uhran, "An Algebraic Method for
Simuiating Legal Systems," Simulation 21, 150-158 (November 1973),

[Schaefer 73] M. Schaefer, A Mathematieal Theory of Global 1'rogram Opti-
mizationr: (I’rentiee-I1all, New York, 1973).

[Shohat 43] J. A. Shohat and J. D. Tamarkin, "The Problem of Moments," in
Mathematical Surveys, No,1 (American Mathematical Society, New York,
1943).

[Standish 75] T. A. Standish, "Extensibillty in Programming I.anguage Design,"
Proceedings of National Comnputer Conference 1975, Vol, 44 (AI'IPS Press,
Montvale, New Jersey, 1975), pp.278-290.

[Stockham 66] T. Stockham, Jr., "Iligh-Speed Convolution and Correlation,"
Proceedings of the Spring Joint Computer Conference 1966, Vol. 28 (Spartan
Books, Washington, 1966) pp.229-233.

[Stockham 69] T. Stockham, Jr., "lligh-Spced Convolution and Correlation with
Appllcations to Digital Filtering," Chapter 7 in [Gold 69].

[Stroud 71] A, 1L, Stroud, Approximate Calculation of Multiple Integrals
(Preatice-tlall, New York, 1971).

[Tiemann 74] J. 1. Tiemann, N, E. kngeles, and R, D, Baertach, "A I’rogram-
mable Transver.al Filter using Charge Transfer Devices," Proceedings of the
IEEE Internatior 1l Convention and Exposition, New York, 26-29 Mareh 1974,

[Wegbreit 74] B. \Wegbreit, "The Treatment of Data Types in EL.1," Com-
munications of the A.C. M., Vol.17, No.5 (May 1974},

|Wilkinson 63] J. 1i. Wilkinson, Rounding Frrors In Algebralc Processes
(Prentice-Tlal', Now York, 1963).

[Wulf 721 W. A, Wulf and C.G. Bell, "C.MMP-A Multi-mini-Proccssor,"
Proceedings of the AFIPS Fall Joint Compu:er Conference 1972, Analeim,
California, 5-7 December 1972, pp.765-777.

85

