
r
U.S. DEPARTMENT OF COMMERCE

National Technical Information Service

AD-A026 452

RANDOM VARIABLES AS A DATA TYPE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PREPARED FOR

ELECTRONIC SYSTEMS DIVISION

i
, ■

13 MAY 1976

UNCLASSIFIED
SECUMITY CL ASMFICATiON OK THIS I'AGE (Il7.rfi Hum I Mend)

REPORT DOCUMENTATION PAGE
U'KAll INSTRUCTIONS

BEPORE C0MPUETIN0 l-'ORM
1 KCPORT NUMISEK

BSD-TO-76-76

1. COVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMUER

Random Variables as a Dam Typt;

5. TYPE OF REPORT & PERIOD COVERED

Technical Report

6. PERFORMING ORG. REPORT NUMBER

Technical Report SI (>
7. AUTHOR(J>

Alan 0. Neineth

8. CONTRACT OR GRANT NUMBERS;

l'1962H-76-C-0002

V. PERFOKMING ORGANIZATION NAME AND ADDRESS

Lincoln Laboratoryi M.i.'r.
P.O. Box 73
Lcxinjitoii, MA 02173

10. PROGRAM Et EMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Program Element 62708H
Project Code 0110

11, CONTROLLING OFFICL NAME AND ADDRESS

Defcnse Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

U, REPORT DATE

13 May 1976

13, NUMBER OF PAGES
92

U. MONITORING AGENCY NAME & ADDStSS (V/A//ennt /'«m Canlrollinr, Offiell

Klectror.ic Systems Division
Ilanscom Al'B
Bedfoi-rl, MA 01731

15. SECURITY CLASS, (of ibis report)

Unclassified

ISo. OECLASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT lof this Kvpcrl)

Approved for public release} dlstXlbutton unlimited.

17. DISTRIBUTION STATEMEN T W (/^ absilart tntcrrj in lUurk 2U, If Hfftrnt fwm Rrfn,!)

IB. SUPPLEMENTARY NOTES

None

19. KEY WORDS (ContinM on reversf sidt tf nfcrssary itnd identify hy block number)

random variables programming languages Btatisücal compiler

70. kf^SI RACT tt'.ontimtr on trvetir side if n-. tetiOff und identij) by bloek numbert

llih: ivporl dlsctlKses llie use of random variables us a ilata type for programming languages, It demon-
slr.iles thai for complex programs llie results of llie use of random variables are non-Computable, After Im-
poslpg ri'sl rktion;; on llie class ol programs I > obtain a praclicai, allhütlgh limited class >!' programs, we
discuss the major rtfoblcms of canstrucilng a statistical compiler wliluh accepts distribui'mr: for its Input
vari.ibles, and pro luces llie dlst ribution ol its output variables. Both siniplilicailon rules and representa-
tion lei linii|iies lor , licit a compiler are described, A simple example of such a compiler whicli lias been
implemented is desci'bed, and the problems in extending the implementation are explored,

Dlivclions for Inture research work in this area and techniques lor evalu.illnc the utility of tills
approach are discussed.

DD ,ovu 1473
I JAN 73

EDITION OF 1 NOV 65 IS OBSOLETE
IINCI.ASSIMM)

SECURITY CLASSiriCAJION OF THIS CAGE r»'"" CiK" fnli-'ii//

tttüMäM

BEST
AVAILABLE COPY

mmmmmmmmmZMMmmmm»*-»* .>-«.-, Jjit v ■«■i*t*:'<,*«fl*l«I

SD»TR.76.76 194074

w ■<•<•

Tec|inical Report

Random Variables
as a Data Type

Prepared for the Defense Advanced Research Projects Agency
under Electronic Systems Divifion Contract F19628-76-C-0002 by

Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LEXINGTON, MASSACHUSETTS

516

A. G. Nemeth

13 May 1976

Approved (or public release; distribution unlimited.

REPRODUCEU BY <

NATIONAL TECHNICAL
INFORMATION SERVICE I

U. S. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA. 22161

*****~*~*-~ ■ ■■■ ■. nun ..'iMJlMft.-t, in - ■-..'—. ■ ^ ^^JL-'.^.V , ^'^ft

D D C

JUL 6 1976

EtSEO u ml
D

The work reported in this document was performed at Lincoln Laboratory,
a center for research operated by Massachusetts Institute of Technology.
This work was sponsored by the Defense Advanced Research Projects
Agency under Air Force Contract F19628-76-C-0002 (ARPA Order 2929).

This report may be reproduced to satisfy needs of U.S. Government agencies.

The views and cenclusions contained in this document are those of the
contractor and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency of the United States Government.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

Eugfene C. Raabe, Lt. Col., USAF
Chief, ESD Lincoln Laboratory Project Office

Non-Lincoln Recipients

PLEASE 00 NOT RETURN

Permission is given to destroy this document
when it is no longer needed. ,

Sipl W

v;ii!ij Stciisn
MI w*» a

IflUTIM -

,2(RH!iJllOK/AVAIUBIl.lTf C80ES MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

RANDOM VARIABLES AS A DATA TYPE

A. G. NEMETH

Group 24

TECHNICAL REPORT 516

13 MAY 1976

Approved for public release; distribution unlimited.

D D C

W JUL 6 1976

JUESMTTE
D

LEXINGTON MASSACHUSETTS

 ■■,—m..,.

RANDOM VARIABLES AS A DATA TYPE*

ABSTRACT

This report discusses the use of random variables as a data type for programming

languages. It demonstrates that for complex programs the results of the use of

random variables are non-computable. After imposing restrictions on the class of

programs to obtain a practical, although limited class of programs, we discuss the

major problems of constructing ,? statistical compiler which accepts distributions

for its input variables, and produces the distribution of its output variables. Both

simplification rules and representation techniques for such a compiler are de-

scribed. A simple example of such a compiler which has been implemented is de-

scribed, and the problems in extending the impler ation are explored.

Directions for future research work in this area and techniques for evaluating the
utility of this approach are discussed.

*This report is based on a thesis of the same title «ubmitted to the Division of
Engineering and Applied Physics at Harvard Univorfiity on May iVb in partial
fulfillment of the requirements for the degree of Doctor of Philosophy.

■MMH^H^^BBH

BLANK PAGE

CONTENTS

Abstract

I. INTRODUCTION

II. PROBLEM REDUCTION

III. OVERVIEW OF THE TECHNICAL APPROACH

IV. SIMPLIFICATION TECHNIQUES

V. REPRESENTATION TECHNIQUES

VI. DESCRIPTION OF AN IMPLEMENTATION

\ II. PROBLEMS IN PROVIDING A PRACTICAI
STATISTICAL COMPILER

VIII. REMAINING RESEARCH PROBLEMS

APPENDIX - DESCRIPTION OF STAT CODE

ACKNOWLEDGEMENTS

REFERENCES

iii

1

7

12

15

26

47

55

5P

62

85

84

RANDOM VARIABLES AS A DATA TYPE

I. INTRODUCTION

Consider an airplane decelerating on a runway. Given the value of such variables as

deceleration rate (perhaps time-dependent), touchdown speed, and touchdown point, one could

write a program P to calculate the distance the plane had trav -led down the runway before it

reached a safe velocity for turnoff (perhaps 40 knots). Suppose that an airport designer has to

place an exit taxiway at some distance down the runway. If the taxiway is too far down the run-

way, then planes will spend a longer time on the runway than they should, whereas, if it is not

far enough, then many planes will not be at a safe velocity for turning by the time they reach

the exit. The values of the touchdown speed and the location of the touchdown point are not the

same for every plane which lands, but their distribution can be measured. Similarly, although

the measurement problem is harder, one can measure the deceleration of planes on the runway

or one can assume values from the known characteristics of various models of airplanes. The

program P that was originally written describes how to calculate the distance at which to place

the exit for some specific values of the input variables, but the information that the airport

designer really want;- is at what distance will say 95 percent of the planes be able to turn safely.

(Presumably he will provide other exits for those unable to turn at this strategically placed
exit.)

The techniques described in this report will allow the airport designer to come to the com-

puter witli the program which calculates the result lor a particular set of values and information

regarding the distributions of the set of values lor the input variables. The result will be infor-

mation regarding the distribution of the set of values for the output variables.

Thus the programmer can think of the behavior of one individual in the population of interest

and write his programs to describe that behavior. Then, in a separate step, he can describe

the relevant characteristics of his population using the appropriate statistical tools. The ma-

chine can then combine this information to obtain a description of the output population.

Mere specifically, this work aims toward an alternate mode of computation which would

allow a user to request that his program be compiled into code which will accept statistical

descriptions of his input variables and will produce, when executed, statistical descriptions of
the output variables.

Formally then, given a program P (i.e., an ordered set of instructions for calculating a

set of output values from a set of input values), I wish to "compile" that program to obtain

another program I-", whose inputs are statistical descriptions of the sets of values assumed by

the inputs to P and whose output is a statistical description of the sets of values assumed bv

the outputs of P. We refer to the program I" as the statistical analog of I', and the process of

producing this program will be referred to as a statistical compilation of P.

Another ipplication of this work is in cost forecasting. Suppose that I am an entrepeneur

thinking about selling widgets. The process used to produce widgets is not fully reliable, and in

each batch of widgets produced only about 80 percent are acceptable. Moreover, this yield is

variable; on some days, only 10 percent of the widgets will be acceptable, while on others

100 percent will be. Also, I know the current coat of raw materials and labor, but 1 want to be

able to estimate what to charge for widgets a year from now when these costs will have changed.

1 am able to guess at distributions for these costs in a year (in the jargon of the decision

 ____,

analyst. I am willing to assess a prior judgmental distribution for these values). I would like

to estimate what the manufacturing costs per widget produced will be. The mean value of these

costs will allow me to calculate my expected profit, while the weight in the upper tail of the dif--

tribution will tell me my risk. Of course, two of my variables, namely yield and cost of mate-

rials and labor, are only known statistically. It ia simple to write a program, assuming I

know the yield and the costs of materials and labor, to obtain the manufacturing cost per widget.

I would like to automatically combine this program with the distributions for yield and costs to

obtain a distribution for the manufacturing cost per acceptable widget.

Another way to view this report is in terms of data types of variables in a programming

language. Any number of standard data types exist in common programming languages (e.g.,

FORTRAN, PL/l). The extensible languages provide the programmer with mechanisms for

providing additional data types as needed (see (Standish 75] for a survey of work in this area).

What we are proposing in this thesis may be viewed as a new data type, which 1 shall call rondom.

This may be used in conjunction with any of the standard types as in rcal\ramtom or iMt\r(mdom or

rcfll\array\random. A variable of type random must be represented \nternally by some representation

of the distribution for the variable. The internal representation might be in terms of the den-

sity function, the cumulative density function, or perhaps some alternate form such as moments.

Moreover, the representation may be symbolic, i.e., the system implementor might choose to

represent the random variable by a function which calculates the density function.

Regardless of which representation is chosen, the implementor may now proceed to define,

in an extensible language environment, exactly what is meant by our new data types. For ex-

ample, the sum of a rt-al x and a rcal\random y would be defined to be of type rcaiyandom, and its

representation would be the representation of a distribution which is that of y but shifted by the

amount x. Similarly, forming the sum of two rfal\random variables would cause the invocation
of a procedure to calculate the representation for the convolution of their respective density
functions.

However, as the implementor discovers fairly rapidly, the construction of such a system

runs into many difficulties. Consider, for example, the following program (the syntax is that

of ELI |Wegbreit 74), an extensible language in use at Harvard)

DECL X, Y, Z: real\random;

DECLA.B. real\ random;

A <- gaussian(0, 3);

/♦ 'A is assigned a normal distribution of mean 0 and sigma of

3';

B <- gaussian(2. 4);

X <- A + B;

/* 'X is thus a normal distribution of mean 2 and sigma of 5';

Y <- A + B;

Z <-X-Y;

/♦ 'Z is properly a point distribution with probability 1 of having
the value 0';

—' i. MIM - '-

3< •» that unless, at the time that 2 is being computed, the dependence of the distributions

for y. -, . V is included in the computation, the result would be incorrect. Although X and Y

are both gaussifln(2>5), it is not correct to write Z as goussJort(2,5) - 8aussia«(2,5) which would eval-

uate to gaussian(0,5\/2). We assume that successive calls to guussiuti produce distributions which

are statistically independent. However, the variables X and Y are not statistically independent

and this dependency causes the different result.

The thrust of this report is the extension and unification of a series of attacks by different

authors on the problems of computing with data which are only known statistically. Because of

the wide variety of statistical representations of data which are available, previous work has

varied quite broadly in the approach to the problem, depending on the assumed representation.

Thus, we have at one extreme, a description of a data value by the upper and lower bounds of

the interval that contains it as in the interval arithmetic of Moore (Moore 66], while at the

other extreme is Monte Carlo simulation where the entire distribution function of the data is

used. Below we survey some of the more well-known attacks on this type of computation as

well as some of the work which is closer in flavor to this report.

Interval Analysis

The ideas expressed above may be viewed as a generalization of the interval arithmetic of

Moore [Moore 66]. In his work, he limits the descriptions of his input variables to simply an

upper and lower bound and attempts to calculate upper and lower bounds on the output variables

which are as tight as possible. The automatic methods usually provided are a package of sub-

routines which are invoked to perform interval addition when addition is called for in the pro-

gram, and similarly for interval subtraction, multiplication, and division. This results in a

simple implementation of the interval scheme, but ignores information regarding the joint de-

pendencies of variables. As a simple example of this consider the usual identity

(a + b) x = ax + bx

Suppose

a = U 2]

b = [-3 -2]

x = [3 5]

then

(a + b) » (-2 01

(a + b) x ■ [-10 0]

whereas

ax = (3 10]

bx = [-15 -6]

ax + bx = [-12 4]

Note that the reason that the right side provides such poor results is due to failure to take

into account that x must have the same value both times it is evaluated. That is, ax and bx

may not be evaluated independently (i.e., as if it were ax and by where x and y have the same

— . ■ -

interval description) if one is to obtain a tight bound on the result for ax + bx. In general, the

failure to take cognizance of these dependencies broadens the bounds which arc obtained by

interval analysis techniques. One can show indeed that for any intervals 1, ,1, K

I(J + K)C IJ + IK

although if JK > 0 (an interval is greater than zero if its lower bound is greater than zero),

then equality holds. Spending on the extent of these dependencies, the bounds obtained may

or may not be practically useful.

Monte Carlo Simulation

Somewhat at the other extreme of what can be done are the techniques of Monte Carlo simu-

lation [Hammersley 64]. Mere the assumption is that distributionb are provided for each of the

input variables and sample sets of input values are then drawn from the input distributions.

The resulting values are then used in the computation in order to obtain an output value. The

process is repeated many times in order to build up the statistics of the output variable. By

clever sampling, it is often possible to obtain the output distribution much more efficiently

than "crude" sampling techniques would indicate. Still there are a number of limitations of the

technique

(1) It requires a distribution for the input variables, rather than some re-

duced amount of information (i.e., the first four moments).

(2) It requires many executions of the program to build the desired mea-

sures of the output variables to the necessary precision.

(3t It requires generating random samples from what may be complex and

interdependent distributions.

(4) The program is viewed as a black box, and any information regarding

its structure is ignored.

Note however, that there are no problems due to dependencies between variables in the

program. Since each execution of the program reflects the dependencies which exist, the re-

sulting output values also accurately reflect those dependencies.

Fran son's Work

Franson, in a Master's thesis (Kranson 69] at the Naval Postgraduate School in Monterey,

California, formulates some basic rules for manipulating probability distributions to attack

problems similar to the ones discussed here. The compilation techniques are essentially

manual while the computation algorithms invoked are fairly straightforward numerical integra-

tions of the convolution integrals obtained. In addition, the techni .ue does not handle depen-

dencies among t!ie variables.

I.FADICS Simulator

A group at the University of Notre Dame has developed a simulation for the Law Fngineer-

ing Analysis of Delay in Court Systems (LKAOICS) project |Sain 73]. They model each step

through a criminal justice system by a representation of the probability distribution of the delays

through that step. An individual leaving one step of the criminal justice system may directly

„> .„„.., <.»-.-.-

■ i'^WlIM«

proceed to the next step or pass through a multiway branch which has a probability associated

with each path, or through a feedback path. Their simulator combines the distributions at

each step to produce the delay distribution for the entire system. They represent tl e delay

distribution by a rational fraction approximation to the characteristic function and menipulate
it to represent the operations ol addition, branching, and feedback.

Their simulation handles only a very restricted set of operations on the distributions and

it is not obvious how to extend it. Moreover, they have completely ignored effects due to cor-

relation between the distributions in their model; i.e.. if the time from the commission of a

crime to arrest is long, is the trial also likely to be long? In general, these possible correla-

tions affect their results in an unknown fashion and must be included in a more careful analysis.

Rerzins Work

Of all the work I am aware of, a recent Master's thesis by Berzins |Herzins 751 represents

the most sophisticated development in this area. His work was performed in the context of an

effort to build an automatic programming system which will generate programs implementing

business information systems (called Frotosystem I). Part of this system is an optimizer for

choosing data representations and program structures. This requires a "question answerer"

which will supply information about the expected behavior of the information system.

His construction of such a question answerer by techniques which are cleverer than Monte

Carlo analysis runs into many of the problems addressed in this thesis. His system consists

of a number of pieces including an Interval analysis package, a Monte Carlo simulator, and a

package for the analysis of random variables by the manipulation of distributions. His work on

random variables provides an implementation which differs from that described in this thesis

in a number of ways: (1) In my terms, the class of base functions he lias chosen are plus and

a conditional of the form if i > y tktn u else :. However, when he needs the analysis of more

complicated situations such as looping or multiplication, he uses the Monte Carlo simulator in

the environment to obtain an approximate answer and then continues, and (2) his handling of

dependent variables is by maintaining a measure of the degrees of freedom of his input vari-

ables (the "effective number") and using tlila at various points to improve his estimate of the

answer. He (dearly recognizes this as an Inadequate solution to the problem for he states:

|tn an operation. If] the input variables are interdependent, then the

correlations get very complicated and even though they are not necessarily-

small effects, I do not see a practical way of taking them into account. In

these cases, I recommend treating the outputs as though they were independent
even though they are not.

It is probably a good idea to put in a test for the troublesome case, and

to print a warning that an unsafe answer has been produced. . . | HPrzins 75
pp. 199-200].

Overview of Document

I begin by proving (Sec. II, Theorem 1) that the problem stated in its most general form is

non-computable in the classic sense of being equivalent to the halting problem for Turing

machines. One approach to circumventing this result is to reduce the class of programs which

may be considered but provide exact technique« for that reduced class. It is this approach which

MMM *mm

..-— i ! Mli.fc .

is explored in this report. There are however other approaches possible. One such approach

is to handle all functions with a weaker description of the random variables than their distri-

bution as is done in interval analysis. Another approach is to accept some theoretical inaccu-
racies in the result as in Monte Carlo simulation.

Accordingly, we restrict our attention to a class of functions which may be described as

trees (that is, they co tain no loops at all). In Sec. II, I compare this class of functions to the

various hierarchies of computational complexity of functions which hive been explored in the
literature.

In Sec. IV, I discuss the simplification rules for a statistical compiler, while Sec. V ex-

plores the variety of representation techniques which might be employed. These topics are the
key design issues faced by the implementor of a statistical compiler.

In Sec. VI, I switch gears to a more experimental approach and describe an implementation

of a prototype system for statistical computations which I have constructed in ECL at Harvard.

Section III states my approach to the problem of producing statistically analogous computa-

tions for any tree-type computation. Here I indicate why a compilation approach is necessary

and delineate the key issues for constructing such a compiler. Section VII discusses what would

be required to extend this work to provide a practical general-purpose system (i.e., a FORTRAN

with random variables as a data type). Finally. Sec. VIII is some thoughts about future work in
this area.

The main result is a new technique for attacking this type of problem, tn addition.

Theorem 1 in Sec. II appears here for the first time although the result is due to D. Tsitchritzis.

The Rules 4 and 5 in Sec. IV are new here, while Rule 3, although discovered independently, is

a restatement of already known results. The computational techniques in Sec. V which use

moments are new to the computer scirnce field, primarily because of the discussion of numer-

ical errors in the solution of the moment problem, although these results have all appeared in
the mathematical literature.

„MMMMMI ...

II. PROBLEM REDUCTION

Let me begin with a more formal statement of the problem. I wish to construct a program C
which accepts the following items as inp it:

f - a program which is the computational description of some mathematical

function with a r ^al-valucd result, drawn from a class F.

p. - a set of programs which are computational descriptions of the probability

distributions for the jnput variables of f (which 1 will assume independent

for this section). I make the further assumption that the p are discrete

distributions, an assumption I shall relax shortly.

z - a value chosen from the set of possible output values for f.

The value returned by C(f, p^ z) is the probability that the result of f will be less tl or

equal to z given that the probabilities of the input variables are as described by the p 's.

Note that this view of C is not intended to preclude possible partitions of the work performed

by C. C might be implemented, for example, as a "statistical compiler" SC, whose input is

merely f and whose output is an f'lp^ z) which when fed the p 's and z can complete the calcu-

lation. Thus, we might write C(f, p^ z) = [SC(f)] (p(, z). Yet another partition of C provides a

"Distribution Cai; ■ilator" DC, whose input is f and the p.'a and whose result is a computational

description of the probability distribution for z. That is, C(f. p , z) « [DC(f, p)) (z).

As a very simple examp'e of what is intended here, consider f(8, b) = a + b. Recalling that

the probability density functioii of the sum of two independent random variables is the convolu-

tion of the probability density functions of the random variables, we have SC producing a gen-

eral convolver. That is, SC produces f whose inputs are two functions and a specific value z

and evaluates the convolution of those functions at the point z. DC, on the other hand, accepts

as input the function f and in addition descriptions of pa and pb and produces the distribution of
the result (perhaps using FFT techniques).

Assuming the class of functions F is sufficiently broad, we may prove that C cannot exist,

regardless of which implementation form is chosen. Consider Kleene's predicate T(x, y, z) = 0

if Turing machine x starting with y on its input tape ^ops at exactly z steps; 1 otherwise.

Consider a restricted form of Kle -ne's predicate Ay. T(x, x, y) = yy). That is, we look at a

function which for a specific Turing machine x started with x on its input tape returns 0 if

the machine will stop at exactly y steps and 1 otherwise. Then we have the following theorem:

Theorem 1. (D. Tsitchritzis)

If F i.icludes, for every Turing machine x, Ay. T(x, x, y) and p is discrete, then C can-
not produce correct output for all f f F.

Proof.

Choose p so that every positive integer n has some probability of occurrence. For ex-
ample, such a choice might be p (n) = 2_'n+1) for positive integral n.

Now Turing machine x either halts with x on its input tape, or it doesn't. Suppose it

doesn't. Then C[Ay. T(x, x, y), p , 0] will be zero; that is, if the machine x never halts, then
j

the probability of it halting at y steps for any y is zero. On the other hand, if Turing ma-

chine x halts after q steps, then C[Ay. T(x. x. y). p . 0| will evaluate to 2'(C1+1). That is. if
i

«MM

I

machine x halts at q steps, then the probability of \y. T(x, x, y) reporting its halting is p (q),

the probability assigned to the occurrence of he value q for the variable y. Therefore, the test

comparing C[Xy. T(x, x, y), p . 0) to 0 represents the test that Turing machine x ever halts.

Thus, C represents a solution to the halting problem and therefore, cannot exist.

The extension to continuous distributions follows directly.

Corollary.

If F includes, for every Turing machine x, Xy. T(x. x, I y) (where [y is the "floor" of y,

the greatest integer less than or equal to y), then C cannot produce correct output for all fcF.

Proof.

Same as the previous proof except choose p to be a continuous distribution with positive i
weight in every interval fi,» + 1) for every positive integers

As a matter of strategy, we must now consider what useful options are left to explore in
spite of the negative result.

One difficulty was that we allowed a distribution which, although finitely describable, had

positive weight at an infinite number of points. Were there only a finite number of points in p .
the function C could be written as follows:

(A) Build a simulator for Turing machine x

(B) For q increasing by 1 do

(C) Simulate step q

(D) If Turing machine x halts, output p (q)

(Ej Accumulate p (q) into p

(F) If p equals 1, terminate; else, loop.

This must complete in a finite time, since only a finite number of values of q must be
explored.

Similarly, if we are willing to accept a result within 6 > 0 of the true answer, where 6 is

given as an additional input to C, we can solve the problem in similar fashion. Merely change

the test in step (P) above to p greater than 1 - 6. Since at some finite point, the weight of the
tail of the py distribution must be less than ö this process must also terminate.

Finally, another approach we may consider is to restrict the class F so as not to include

Ay. T(x, x, y) for all x. Since the proof depends on the use and properties of Kleene's predicate,

the proof presented would not work in this case, and indeed, the remainder of the report will be

devoted to describing techniques which may be employed for a class F which does not contain
Kleene's predicate.

I choose tliis approach to attacking the problem for the following reasons:

1. Monte Carlo techniques very effectively attack the case where we are

willing to get an answer which is within 6 of the true answer, although

the computation time increases without limit as ö approaches zero.

2. The restriction to a finite distribution allows some trivial techniques

to be used which can b<- very expensive to compute. Any ways around

these expensive computations that I have attempted to devise have not

crucially depended upon the finiteness of the distribution. They are

3.

thus liable to being applied to infinite distributions and are therefore, by
Theorem 1, not applicable to complicated programs.

My restricted class of functions is still large enough to be interesting
uoth theoretically and practically.

Computation Trees

Therefore-, we look for some restriction which /ill eliminate Kleene's predicate from our

class of functions. We note that computing Kleene's predicate involves (1) simulation of a single

step of any arbitrary Turing machine, (2) looping for the number of steps specified in the input,

and (3) testing for a halting configuration of the Turing machine. Due to the simplicity of Turing

machines, (1) and (3) are exceedingly simple to perform and any language which excludes them

is probably uninteresting. In addition, during the preliminary work on this report, the language

constructs which caused the largest amount of difficulty in developing algorithms to handle random

variables were the constructs involved with looping, i.e., FOR, GO TO, »MILE, etc. Thus, we

choose as our restricted language a computation form whose programs may be represented as
trees (no loops or cycles are permitted) and call these computation trees.

Formally, given a base class of functions '», we may talk about the class of computation

trees Q based on functions from :t. The nodes in the tr« will indicate variables and the edges

will indicate the dependence among variablen. Kach node which is not a terminal node jvill also

indicate a function from the class 5 which is to be applied to the values assigned to the ances-

tors of this node to compute the value at the node. In addition, each node will indicate an order-

ing among its ancestor nodes to correspond to the arguments to the function. For simplicity.

I will consider a single root node which is the output variable of the tree. Some typical trees

are shown in Fig. IT-i. We think of arcs in the tree as directed from the terminal nodes toward

\R2+R3/

Fig. II-1.

the root. To each node, we may assign a level number which is the length of the loi, jest path

from any terminal node to that node. Then the computation to evaluate the output frcm a given
set of input values proceeds as follows:

(1) Assign the input values to the corresponding terminal nodes in the tree
and mark those nodes evaluated.

(2) Choose any unevaluated node whose level is less than or equal to the
level of all other unevaluated node».

■■ »mil i

(3) Evaluate the chosen node by evaluating the function assigned to the node

and using as arguments the values assigned '.o the ancestor nodes in the

order indicated. Since the node chosen for evaluation is of lowest pos-

sible s^vel, all nodes at lower levels have already beer, evaluated.

Therefore, since a node's level must always be greater than the level

of any of its ancestors all needed values are already evaluated.

(4) If the node just evaluated is the root node, then we are finished; other-
wise, go back to step (2).

S:nce a tr«e contains only a finite number of nodes, the evaluation process must complete,

assuming the evaluations of all the base functions terminate.

The class il then is the smallest class of functions which

(1) includes the functions of 5

(2) is closed under functional composition and selection.

The development in Sec. IV will be independent of the choice of the class 5 but will assume

that we know how to perform certain basic operations related to the functions in HF. More spe-

cifically, if ft :f, we must know computational techniques for evaluating

p(K) = H p(a, b, c, . . .) da dbde. . . (1)
a, b, c, .. .

3f(a, b, c, . . .) = k

where p(a, b, c, . . .) is either a product of input distributions or is the product of other similar

computations. For example, if f in Kq.(l) is addition, then the operation intended is better

l^nown as convolution, while if f is subtraction then the operation is correlation. As f becomen

more complicated, the computations invoked by Kq. (1) become quite difficult. We will refer to

this type of computation throughout this report as f-convolution because of its similarity to the
usual convolution operations.

In Sec. V. we will discuss how to compute (1) for several "simple" functions which we in-

clude in 3 (the constants, addition, subtraction, multiplication, etc.). As more computational

techniques become available the class of functions which can be computed by the trees in 0 ex-

pands correspondingly. In particular, the inclusion of a conditional function of the form

f(x,y,z) IFx 0 THEN y LI.SE z

would be particularly interesting since it would provide conditional expressions in n. We sug-

gest in Sec. V some computational devices for handling this.

Let us compare the possible classes n to some of the hierarchies of computational complex-

ity which have been studied in the literature. This will help to elucidate the restrictions imposed

on n by its definition and also will indicate which functions might be in >. Meyer and Ritchie in

a 1967 paper [Meyer 67] have studied the loop hierarchy {l^}. The class B cannot be extended

to include all the elementary functions since Kloone's predicate is known to be elementary

[Ritchie 63). Thus, il 2) V 2 since V2 is the class of elementary functions. E., however, may

be characterized as the smallest class containing the constants, addition, proper subtraction,

modulo, integer division, and closed under functional composition and conditional expressions.

10

MMMM •juiuauauwiMi

If we can extend 5 to include the functions mentioned, then n D i',. Moreover, it might well

be possible to include exponentiation in J and this would result in n being greater than £. s*nce
the exponentials are not in i\.

Another well-known hierarchy is the Grzegorczyk hierarchy {|). For n > 2, it has been

shown [Meyer 67) to be equivalent to the loop hierarchy, i.e., & * f ., In particular, then

S3 is the elementary functions and thus n "fa S . S may be characterized (Cobham 64) as the

smallest class containing the successor and multiplication functions, and closed under the op-

erations of explicit transformation, composition, and limited recursion. While n includes all

the base functions and the operation of explicit transformation and composition, it does not in-

clude the operation of limited recuryion. Limited recursion is a mu^.'h more potent combining

rule than any allowed in the construction of Q. Still we are willing to allow more complex func-

tions in our base class of I'uiictions J than are provided in the base set for 6,. Moreover, since

Sj may be produced by adding exponentiation to the class of base functions which generate S,,

then exponentiation cannot be in Sj, Since it might be possible to include exponentiation in 5F,
ß may contain functions not in £..

On the other hand, i-, contains the form of Kloene's predicate Ay. T(x, x, y) which we have

used [Kitchie 63]. Thus, U and g, are not comparable. The basic difference may be summa-

rized by the statement that 9. includes a more extensive set of base operations while g_ includes
a more powerful combining rule.

(

II

■ ■ '-

III. OVERVIEW OF THE TECHNICAL APPKOACU

In Sec. I, I described a very broad class of problems and suggested that an object called a

"statistical compiler" could be used in the solution of these problems. In Sec. II, I demonstrated

that the class was too broad and described a restricted class of computations called computation

trees which can be attacked with a statistical compiler approach. In this section, I want to indi-

cate the major parts of a statistical compiler and describe the similarities and differences with
conventional compilers.

There are a number of steps which must be performed to convert a program written in

some language to code which can be executed by a computing machine. These steps indicated

in Fig. III-l involve the breaking down of the text of the program into basic units (lexical anal-

ysis), the combination of those units into well-formed expressions in the language (syntactic

PROGRAM
TEXT LEXICAL

ANALYSIS
LEXEk'cS ' SYNTACTIC

' "*l ANALYSIS
EXPRESSIONS SEMANTIC

ANALYSIS

lB-?-l?l4J

OPERATIONS

I
GLOBAL ,

' OPTIMIZATION '
I „ I

OPERATIONS

CODE
GENERATION

CODE
1 OPTIMIZATION I
I I

Fig. Ul-l. Major compiler phases.

analysis), extracting the intended operations from the expz-essions (semantic analysis), and pro-

ducing the code to execute the program (code generation). In addition, one or two phases of code

optimization may be employed: one between the semantic analysis and code generation, per-

forming optimizations based on fiow analysü; (i.e., dead variable analysis, code motion) and

another following or part of the code generation performing local machine-dependent optimiza-

tions (i.e., register allocation, elimination of unnecessary loads).

In any particular compiler, these phases may not be distinct in either time or code; however,

all compilers must perform these basic operations to compile a program. An extensive discus-
sion of code optimization techniques may be found in [Schaefer 73|.

In a statistical compiler, the same major phases can be observed. Moreover, some of 'he

phases are hardly modified at all, whether employed in a statistical or conventional compiler.

The lexical analysis, syntactic analysis, and semantic analysis which can produce computation

trees as described in Sec. II are straightforward applications of techniques currently in use
|Aho 72).

On the other hand, the later phas ■ compiler must be significantly different from a

conventional compiler because the mM*ici ssociated with the operations in the computation

trees are very different. Now, ins id of lion as a basic operation, convolution becomes

the basic operation. These changes t ,ui> affect the code generation phase which mjst choose

appropriate representations for the variables and proauce code for the operations on those

12

■M^MMMMM ■■ ■ --■■ •' ■■-■-

represer.tations. The subject of efficient and accurate representation techniques is at the heart

of constructing a statistical compiler and the issues are explored in Sec. V.

The need for optimization of the operations requested by the semantics is also apparent.

Convolution operations are fairly expensive of computer time, thus any reductions that can be

performed at compile time will pay off handsomely at run time.

1 have indicated two distinct phases of optimization: global and local. Local optimizations

which occur toward the tail end of code generation will deal with improving the code produced

for specific cases, but are not prepared to deal with the important overall strategy questions

which affect the amount of storage and execution time required in a first-order way.

As the small ECL example in Sec. I indicated, a key question in producing accurate rermlts

is the joint dependence of the variables entering into each step in the computation. But which

joint distributions must we keep? Joint distribution functions will require large amounts of

storage, and execution time, both probably increasing exponentially with the number of variables.

In the Sec. I example, only the joint distribution of .V and Y is needed to accurately calculate

the distribution for Z. However, without looking ahead to the use of X and V, there is no way to

know that one can afford to discard information about the joint distributions of .\ and A, or .\

and B. Indeed, if we did not know, at the tima of execution of the statement V ^ A + H the in-

tended use for Y, we vould be forced to calculate and maintain a representation of the joint dis-
tribution for the variab.'es X, V, A, and U.

Thus, we are led to the conclusion that any statistical compiler must employ optimization

techniques aimed directly at reducing joint distributions by looking ahead at the use of the vari-

ables. S-ction IV describes a series of transformatiens to apply to the operations, referred to

as the analogous program, which must be performed to "execute" a computation tree. These

i. ansformations start with an analogous program which maintains all possible joint dependencies,

and i.smonstrates that certain reductions based on the analogous program and the computation

tree ran be performed without altering the distribution calculated for the t utput variable.

These simplification rules are then the equivalent, in a general wav, 10 the usual global

optimization techniques such as code motion, dead variable analysis, etc. The question now

arises: when is a transformation a simplification? or, stated differently, which transforma-

tions should be applied to reduce the required effort at run time? T1 .- rules themselves merely

guarantee that thtir application will not affect the accuracy of the romilt, but only the efficiency.

This question cannot be answered solely in terms of the transformations, since estimates

of the cost of the analogous program are necessary. For example, it may well be necessary to

know whether it is better to store a joint distribution of three variables or calculate ten con-

volutions. These questions obviously depend critically on the representation tec hniques which
are employed.

The transformations described in Sec. IV arc intended to be independent of the choice of rep-

resentation, and thus no direct answer to these questions is presented in this report. Rather,

the approach here is to describe the options for transformations in Sec. IV, the representation

options in Sec. V, and indicate some spocifk' ways of employing these in Sees. VI and VII.

The more general approach of attempting to describe the sequence of transformations to be

performed based on cost func-tions for the analogous program has some basic flaws at this

time. The first is that understanding the nature of these cost functions will require more ex-

perience with the representation techniques in Sec. V to reveal the basic properties common to

all such coFt functions. Further, the general statements which might be obtained bv tl is

,

13

approach, given the vague properties which can be ascribed to the cost functions in a repre-

sentation independent fashion, lead me to the conclusion that these statements are likely to be

vacuous. For example, although it is possible to suggest some hill-climbing approach to im-

proving the analogous program, the available steps may well be so gross that no continuity is

apparent.
For these reasons, I have chosen in this report to focus on the issues faced in the imple-

montatijn of a particular statistical compiler, drawing from the general techniques in Sees. IV

and V as necessary.

14

ly^^^
ÜMMMI .. laMuämMmi^ttiemMm fr I

IV. SIMPLIFICATION TECHNIQULS

In this section, we discuss rules which EIIOW U, to alter the analogous progr n lor a

particular tree in ways which preserve the correctness of the computation. Fivt such rules

and their proofs are presented here. The reason for stopping at five is the simple one that
I can think of no others which apply.

Throughout this chapter, we will make the noncritical simplifying assumption that our
base functions are binary.

Notation

We will often have occasion to refer to sets of nodes in a computation tree, and we will

u',e the usual set notation (A. B. C. D). Each node will be named by a letter of the capital

alphabet and perhaps a subscript. Thus, a set of nodes might be denoted as {X , X,, ... X }.

V/e may abbreviate this as {X}. The condition that node A has been evaluated to "a" during

a particular evaluation of the -cmputation tree will be denoted as A = a. Similarly, the con-

dition for a set of nodes will be denoted {A = a, B = b, C ■ c, D = d}. It will often be convenient

to abbreviate this, and we will use square brackets around the set tc indicate it, thus (A, B, C, D]

is the same as {A = a, B = b, C = c. D = d} and similarly [X] = {X = x , X = x , X = x ,. ..
Xn = xn^ The square brackets may be read as "the state of" and thought of in that manner.
The brackets then identify an event in an event spare which is specified by the contents of the

brackets. Note the assumed correspondence between variables with upper-case names and
variables with lower-c;ise names.

4.1 Given a computation tree whose output variable is A, we will use l'{A ■ a} or H(A| to

denote the probability mass function which is the desired result when given the probability mass

functions for the inputs. We will assume throughout that the terminal node distributions are

statistically independent. Now, if the set of all nodes in the tree, excluding the root A is

denoted by {X1, X2,... XjJ and t^ is the function associated with A, and A's left and right

ancestors are X. and X,, respectively, then we may write the following trivial expression for
P{A = a}:

(1) P[A1 Pixvx2,...xk]

x1.x2,...

jlA(xi'xj'

Ak
a

This expression is clearly not satisfactory from a computational viewpoint, although it is

possible to utilize it to compute P{A = a}. The computation implied is to form the k-dimensional

probability mass function by listing all the k-tuples for which the probability is nonzero (by

enunerating all the possible combinations of the values of the input variables and evaluating all

the intermediate results) and evaluating the probability mass function as the product of the
probabilities of values of the independent input variables.

We may then always write trivially a program as in (1) for the computation of the probability

mass function of the output. These programs are enormously expensive to compute as indicated

above. Thus, we present a set of transformation rules which may be applied to such programs

and which are guaranteed to maintain correct results for the computation. Applications of these

rules may be used to transform a program into a broad variety of computational variants, some

15

■i-.^-a^HM^^jrjL- ■

of which should be less costly to compute. In the next section, we will demont:trate the technique

on a simple example program and in Sec. 4.3, we present formal statements of the rules and

prove that their application does not change the value produced by the program.

4.2 Example

Consider the compulation tree shown in Fig. IV-l which represents the computation

Z = fZ(fA(1X(Wl' Wz'' fY(W2- W3))' fB<1V(W2' W3J' ^^ We ***** vvrite quite generally that

(2) P[Z1 = V P[A, B, X, Y. Wj, W2, W3, W41

w., w,, w,, w,,
12 3 4

x,y,a, b
jf7(a, b) = z

We may, by the definition of conditional probability, rewrite this as

(3) P|Z1 = FIA^J.X, W^, W4|W2. W3, VI P[W2,W3, V]

x, y, a,b
jf7(a, b) = z

where we have chosen to condition on those nodes which are ancestors of both A and 1',. In

this conditional distribution, A and H arc now statieticallv independont, since we have fixed

the values of their common ancestors, and ttioir other terminal ancestors are independent.

Thus, we may write.

(4) P(Z]
w),w2,w3,w4,

x, y, a, b
jfz(a, b> ■ z

P{A(XtW| \v2,vv3,v| P(p, \v4
lw2,w3, V| x

P|W2,W3, Y)

Consider the use of the random variable X in this equation. It appears only once and is summed

over. Since

I5) 2 ''[A-x. W^Wz'Ws-Yl = ''(A, W1|W2, W3, Yl

x

u-Mnsc

Fig. IV-l.

16

^M^UHMMM -------

We may simplify (4) to obtain

(6) P[Z] • V p(A, Wj | W2> W3, Y) P[B, W41 W2, W3, Y] x

P[W2,W3(Y] W1'W2,W3'W4'
y. a. b

5fz(a,b) ■ z

We may perform tne same simplification on random variables W. and W . to obtain

P[Z1 = Z P[A|W2,W3,\]X P[B|W2,W3,Y1 P[W2,W3,Y1 (7)

w2,w3.

v.a.b
3fz(a, b) = z

Note tha' in the original computation tree, if we break all the links which descend from Y, that

W, no longer has a path to A. We say that {v) separates {A} from {W,}. Thus in the condi-

tional distribution for A which is conditioned on W,, W,, and Y, we may eliminate W, from Z V ' J 3
the condition because it provides no additional information to aid 'n evaluating the probability

that A = a. Thus, we have

(8) P\Z] - J PrA|W2. Y] x P[B|W, , Wv Y| x P[W2, W , Y]

a, b
5 f7(a, b) = z

Note that {Y} separates {B} from {W2, W } and thus we may write

(9) P[Z]» J P[A|W2, Y) x P[B|Y1 x P(W2. W3, Y)

w2.w3,y,
a, b

3f„(a, b) = z

W, now appears only in the last factor and may thus be removed to obtain:

(10) P[Z1 = J P[A|W2, Y] x PfB|Yl x P[W2, Y|

w2,y, a, b
9fz(a, b) = z

Now by using the definition of conditional probability we may rewrite this as

(11) P(Z] = £ P(A, W2.Y1 x P[B|Y|
w2Iy.a,b

3fz(a, b) = z

Now W, appears only once and may be removed,

(12) P[Z1 = T. P(A, Y] x P[B|Y]

y.a.b
?(a, b) .

Finally, by the definition of conditional probability, we have

5l'z(a, b) = z

I 17

WiM ■'■-'--■^ " '— —

(13) PfZ] V
—i

y.a, b
3fz(a, b) = z

P[A|Y] x P[B|Y] x PfY)

Now the time to perform this calculation is proportional to the product of the number of
nonzero probabiuty valueg which are agsumed by Y) Aj and B< whereas ^ ^^^ ^

(2) required time proportional to the product of the number of nonzero probability vaiues for

V W2' W3' W4- Tlus assumes a simple-minded calculation scheme for the f-eonvolutlon«

toplled. If we assume that the number of nonzero probability values for W W W and

W4 LS the same number n. and further assume that the number of points in Y. A. and 'B are

.near multiples of „. then the second computation involves n3 operations as opposed to n4

Whether these assumptions are met depends upon the spacing of the arguments in relation io

the .uncnons used, if points are spaced linearly and the funct.ons are addHive. then typic. Uy

we will generate fewer than n2 d.stinct points In forming the f-convolution. If all points are

spaced evenly at the same intervals, the number of points m the resultant d.str.bution is 2 > n.

4.3 We now state formally the rules which we have used to s.mplify the .xpre^cs in the
example above.

1) Definition cf Conditional Probability

<<) m. vi= Ptxlii x pfi']

This is merely the usual statement of the definition of conditional probability. Note that If
i 111 = ü then the conditional probability is undefined.

2) Marginality of unique variables

If we have

(2) V

JB((z})

P[K,X|Y] x P[W|i) x .,

Where B is a boolean condition not involving k. and k appears only once as shown then we
may rewrite as

(3) D Pfilll x P[W|1| x ...
fa)

3B({z})

where the (z}'s represent all the small letter varlablea in (X|, [V|, [m [„.... and therc

may be as many more terms a0 desired.

The rule states that when a variable appears only once and I. summed over, then we need

not have the details of its Joint distribution with the other variables in order to perform a
correct calculation.

3) Conditional Indopendonce

Definition: The least common ancestor set of A

(1) are common ancestors, and

(2) has the property that any path from a com

through a node in the set.

and B is the smallest set of nodes which

mon ancester of A or B passes

18

iäM

MM»

If we have

(4) P[A1B.Z.2£|X]

where {Y} incluctes all the least common ancestors of A and B, and {x} contains ancestors of

A only, {Z} contains ancestors of B only, then we may rewrite this as

(5) P[A,X|Y) x P[B.Z|V|

This is true because the input variables are independent and once we are given the values for

(Y.I, then there is no dependence of A and B on any common input variables and so they rte
independent.

Proof o; Conditional Independence

Given a computation tree as shown in Fig. IV-2, divide all the inputs to the tree into four

sets depending on whether they are ancestors of A, ancestors of B, ancestors of A and B,
or ancestors of neither.

In j i»t'|

lig.IV-2.

The set of input variables which contain« a:i.:estors of A only we will refer to as *{X)

since X includes all the ancestors of A only. Similarly *fy} is the set of input variables

which consists o! all the ancestors of A and B, and 4>{Z) includes all the ancestors of B only,

The state of Y, (i.e., the values of all the variables In V) is completely determined In the
state of "flY}. We will write this rather loosely as

('S) [V.|= fv((*{Y}l)

The state of {X} is determined not only by [*{x}l bin also by 111 since {X) may have
ancestors in {\}- Thus

(7) [2J« tx(l*(x}), [YD

and similarly

(8) »I» tz(|Y|, [*{Z}1)

Now we may write that

(9) I'lA.X, B,X Z] = ^

[♦{I} 1.[*(X}
(*{Z11

I'l-Mv}! x IM-MX}! x P[*{z}

tmmmmm

«9

tl^tllllmmmimm IMHIMMHHMI in iiliMMiiiinMit

where the sum is carried over all [*{¥}], [*{z}l and [*{£}] suchthat

fA(xi'V =a

fB(yk. zn) - b

[21" fY([*{Y}])

[X]= fx([*(x}l, [Y])

[Zl= fz([Yl, [*{Z}])

(I)

Note that this statement is straightforward, since the complete states of {x}, {i}, [z]. A,

and B are determined fully by knowledge of the states of *{x}, *{Y}(and *{z). Further, for

any state of *f Y} meeting condition (I), the set of states of *{2J} and *(z} which also meet

condition (I) is the same. This is because [Y] is fixed during the summation and the choice of

valid [*{X}| and [*{Z}l is determined by [Y], [X], [Z] and not by [«{j}]. Thus, since we have
a complete cross product we may rewrite (9) as

(10) P[A,X.B.Y,Z]= £ P[*fY}lx I P[4>{X}1 x P(*{Z}1

[*^}1 (*(X}1, [*{Z}]

where

[Y|= fY([*(Y}])

in the first sum and

fB<yk. Zn) = b

[xi= fx([*(x}], [YD

[Z]= fz([Y], (*{Z}1)

in the second sum.

Now, we may also write that

(II)

(III)

(11> P[YI= £ P[*{Y}1

[*(Y}1

whqre the [*(Y}] satisfy condition (11).

So we may then write that

(12) P[A,X,B,Z|Y|= 2 P[t{a}l x P[*{Z}]

[*(X}1, f*{z}i

where the sum is over all i*{x}l, (*fz}] which satisfy condition (III). If condition (II) is not
met for any state of *{Y} then the value for (12) is undefined.

Similarly, we obtain

(13)

where

P[A.X|Y1= E P[*(X}1
[*{X}]

fA(Wi) = a

[X)= fx([*(x}l, [Y])

:

(IV)

2Ü

mmmmkm MHM^_

ill I

or undefined if there is no [*{ Y}] such that [Y] = £,,([*{!}]). Also,

(14)

where

p[B.z\i]' y p(*fz})

[*{z}l

f!B(yk.zn) = b

[£]' fz([Yi, [*{£}]) (V)

and undefined if there is uo [*{x}l such that [Y] = f ([*(x}l).

Now to complete the proof we need to show that

(15) IMA, X. B,Z|Y1= P(A,X|Y1 x P[B,Z|Y)

When there is no [*{Y}) such that [X] - ty([«{X}]), then both sides are simultaneously undefined.
Otherwise, we wish to show that for any fixed [Y], [X], and [Z]

(16) E fJ(*(x}| x P[*{Z}1 = Z P[*(X}| x y P[*{Z}]
I*(X}1, [*(£}] (*{x}| [«{2}]

where in the first sum, condition (III) must b. met, in the second sum condition (IV) must be
met, and in the third sum condition (V) must be met.

Now, for any [*(x}l which satisfies condition (IV), the set of states for ^(z} which satisfies

condition (III) is independent of the choice of |*{x}l. Again,since we have a complete cross prod-
uct, the factoring of the sum is correct. Thus, (It) Is an identity.

4) Separating Set Rule

If we have

(17) P[X|Y,W1 x PfZ.Y.W)

where {v} separates {x} from (w) (i.e., any path from W. to Xj includes at least one Y ,) and

(X} has no ancestors in common with {w} not already included in {W}, and (z} is disjoint from
(Y) and fw}, then we may rewrite as

(18) P[XJY] x PfZ.Y.W]

This is true since fY| contains all the information in [W) which is used in calculating (X). so

that the additional information embodied in (W| cannot change the probability of [X).

Proof of separating set rule (see Fig. IV-3)

As in the proof of conditional independence, we have sets <|.{x}, *(Y}, and *(w} which are

the set of input variables which feed the sets {x}, (Y}, and {w}, respectively. To be more

precise, *{w} includes all those input variables which are ancestors of elements in {w}. *{Y}

includes all those input variables which are ancestors of elements in { Y} and not Included in

*{Sf}. *(X} similarly includes all these input variables which are ancestors of elements in
[X} and are not included in either *fw} or *{Y}. Then we may write

fwi = fw([*{w}l)
[X] = fY(fWl, f*{Y}])
[&\ - fx((Y], (*fx}l)

21

 — ■

Fig. IV-3.

By assumption, the sets *|x}. *{Y}, and *{W} are disjoint sets of statistically independent
variables and so we may write

(19) I5[X,Y.W|= V P[1.{X}] x P(*{V)] x P(*(W}1

[*{X}1, [*{Y}].
[*(W}]

where tin- sum is over all [*(X}], (*{ v}] and [*{ W} | suchthat

[Ml* fw((*(w}i)
[11 ' fY([W|, [*{!}])

US] * fx(|Yl, (*{X}])

This sum may be written as

(VI)

(2°) P[X.Y,W1= I P[*{X}) x T P[*{i}] X I P[*(W}1

I*{2}] [*(Y}1 [*{W}]

since for any [*{x}] meeting condition (VI), the sets of states of *{Y} and *{w} meeting conditi
(VI) do not change and similarly for *{x} and *{H}- Similarly,

(21) P[Y.W1= V P[*(Y}] x I P[*{W}]

[*{Y}) [*(W}1

where

Thus,

(W] = fw([1>(w}l)
[XI - fY([Wl, [*{¥}])

(22) P[X|Y,^1= Y P[*{X}]

[*{X}1

22

(VII)

 -— ij&aayai^yiMiiViiVn-'r^'-^^^^^ ^ '-f - ..

 —

where for some [*{Y}] and [*{»}], condition (VII) is met and [X] = f.^m, (*{X}]) and undefined
if condition (VII) is not met for some [*(Y}] and [*{W}]. Now

(23) P[X,Y]= I P[*{X}] x 2 P[*{Y}1XP(W|
[*{X}1 I*{Y}), [W]

where

and

(24)

[XI ■ fY((W], [*(Y}|)

(X]= fx([Yl. [*{X}])

p[Yl= 2 P(*(X}1 x P[W1
[*(Y}], m]

(VIII)

where

So

(25)

where

IX] = fY([Wl, [*{Y}I)

P[X|Y)= V P[*{X}|

[*{X}1

[Xl= fx([Y). [*{X}1)

(IX)

(X)

and undefined if there is no [*(x)l such that (IX) is met.

This is identical with (22) except in the case that P[X, W] = 0 and this case is irrelevant
since both sides are multiplied by P[Z, Y, W].

5) Elimination of Complicating Variables

If we have

(26) P[X|Y,^] x P[i', W.Z]

where all the ancestors of {y} are contained in {w}. and {z} is disjoint from (Y) and (w), and

(X). iX) and {W} are disjoint, then we may rewrite as follows:

(27) P[X|W| x P(Y.W,Z]

Proof (see Fig. IV-4)

Let *{W} be the set of all input variables which are ancestors of nodes in {w}, and let

*(X} be the set of inp! t vfirtableg which are ancestors of nodes in {X} and not already included
in <I>{W}. Then we have

[W]= fw([*{w}i)

[XI - {Ym])

[XI = (xm]. [XI. [*{X}1)

2?

immma^m^^äkik». ■ — — -

|ll-M?IH|

CH) CWT)

Fig. IV-4.

So we have trivially that

(28)

where

P[X.Y,W|= 2 P[*{W}] x P[*{X}]
[*{W}], [*{X}]

[W]= fw([*{W}l)

[X] = fx([W], [Y]. [*{X}])

We may also write

(29)

where

PfV,W]= I P[*{iV}]
[*(W}]

[Wl= tw([*{w}])

[XI - fY([W])

So we have that

(30) P[X|Y,W1

X P[*{W}] x P[*{X}]
[*{W}]. [*{2f}l

[*{W}]
P[*{W|

(XI)

(XII)

or undefined if there is no *{w} such that (XII) is met. Now, we may similarly write that

'31) P[X,W)= V P[*{W}] x P[*{X}|

[*(W)1, [*{X|1

where

and

(32)

[W]= fw([*{w}i)

[XI = fx([Wl. tY([Wl), (*(X}|)

P[W]= I Pl*{2l)]
[*{W}1

(XIII)

24

ätmmummt -■ . IIIMI " ■

where

im- fw([*{w}]) (XIV)

Thus, we obtain

(32) P[X|W]
[*{W}1, (*{X}1

rj[*(w}l x P[*{x};

S P[*{W}1
(*{W}]

or undefined if there is no *{w} satisfying condition (XIV). Comparing this to (30), we find

the expressions are identical, except when P[Y, W) is zero. But in that case the values are
irrelevant since both will be multiplied by zero.

4.4 We now indicate that the transformations indicated in the example are all instances of

applications of the rules just presented. Referring back to Sec. IV-2, we find that we move from

(2) to (3) by the application of Rule 1 with X = {A, B,X, W^ W4} and Y = {W2,W , Y}. We move

from (3) to (4) by Rule 3 with X = {X, W^. Z = (W4}, Y = {W.,, W3, Y}. We move from (4) to

(7) by three applications of Rule 2 to the variables X, W^ and W4. This can be pursued simi-
larly throughout the example.

Conclusion

The transformation rules described above must be applied in some sequence in order to

simplify the statistical compilation. The sequence of application is in turn determined by the
cost of various possible statistical compilation.

In the next section, we will discuss the various representation choices which may be em-

ployed by the implementor of a statistical computer. The implt.nentor will have to decide which

of these transformations should be used to improve the running time of the programs based on
the different representations employed.

■

■

2^

atttnHaiia -

V. REPRESENTATION TECHNIQUES

A key issue which will face the implementor of any statistical compiler is how to represent

the random variables in his implementation. This section is a survey of possible answers to

that question and is not intended to be complete; rather, it tries to give an indication of the

range of possible choices and some of the effects of these choices on the efficiency and accuracy
of the computations.

In choosing a representation for random variables, two key design parameters must be

explored. The first of these is representational freedom, i.e., what range of distributions

functions can be described accurately? For example, if a user arrives with an empirically

determined distribution, how accurately can this distribution be described to the system? As

the representational freedom is narrowed, fewer parameters are needed to select a particular

distribution and storage space is economized. Moreover, certain calculations on tli ■ random

variables represented by these distributions also become simpler. For example, if the chosen

representation is by gaussian distributions, then addition of the random variables is simple to

perform, but very few distributions can be accurately portrayed.

Another design parameter is the class of base functions (referred to in Sec. II as 'f) which

determines the class of computation trees n that the user may construct. As we indicated in

Sec. II, in order to include a function f in If, we must know computational techniques for eval-

uating the representation -^f f(X, Y) where X and Y are random variables with representations

from the chosen representation class. Moreover, the techniques must extend to handle the

cases where X and Y are not independent but rather a joint distribution is represented. We

refer to this class of computations throughout this report as f-convolution because of its simi-

larity to the usual convolution operation. Indeed, when the representation of distributions is in

terms of their probability density functions, ' + ' - convolution of independent random variables

is precisely the standard convolution operation while '-' - convolution is better known as

correlation.

The actual arithmetic operations which are performed in the computer to calculate an f-

convolution are strongly affected by the chosen representation and may be either simple or dif-

ficult for a particular f depending on the representation. Moreover, given a particular class

of operations, the class may not be closed under our f-convolution operation. Thus if R., and

RY are the representations of the random variables X and Y, the calculation of the representa-

tion for f(X, Y) involves two steps: (1) calculation of an exact result for f(X *, Y;<), where X* is

the variable exactly represented by R^, and (2) selection of a representative from the represen-

tation class for Rf(X y,- Moth steps represent potential sources of errors which must be in-

cluded in an analysis of the accuracy of the results of choosing a representation, although for

some representations, which are closed under f-convolution, the second step is not an issue.

For example, if we choose addition as a member of the class of base functions, then it is

unreasonable to choose a representation which is limited to uniform distributions. The repre-

sentation of the sum of two independent random variables, each of which is represented by a

uniform distribution, is never a uniform (except if one distribution is the degenerate case of a

point distribution), and a uniform approximation would entail a significant loss of accuracy. See
Fig. V-l for an example of this.

Statisticians have, of course, spent much time and effort in developing techniques to de-

scribe distributions. They have not, as a rule, concerned themselves with representations

Z(,

i^rr — -

111-f IHM]

UNIFORM WITH SAME MEAN -*■ VARIANCE
AS uniform (3,5) + uniform (3,7)

uniform (3,5) + uniform (3,7)

A.

Fig. V-l.

which are convenient for f-convolution operations as necessary here. It is our intent to briefly

indicate some of the statistical approaches to the representation problem and the characteristics
of these representations for statistical compilers.

We will assume, except where explicitly stated otherwise, that the computer representation

of REALs is exact. While this is, of course, not true, it is a much smaller source of error in

an implementation than the other errors discussed in this section. Moreover, extended preci-

sion arithmetic can be used to correct this error in well-known ways, whereas the other error
sources are not as easily controlled.

Random Variables

We begin by reviewing what is meant by a random variable. A typical definition may be

found in Feller [Feller 57|. We must first have a probability spare which is ronstrucled of

elements. These elements are the basis for an algebra of sets (a n-algebra) and a probability
measure P on those sets. Then we have

Definition: A random variable is a function ^i on a probability space

such that for each real t the set of points x where ^(x) % t belong! to

the underlying tr-algebra.

The definition basically insures that any real function which provides a w.'ll-defined distribution

function is a random variable. That is, the function F(t) -■ Plutx) i t) is miaranteed to be well-
defined by the definition of random variable.

Despite the generality of the definition, a number of propertir > of distribution functions can

be directly determined from the properties of the c-algebra For example, the .lordan and

Lebesguo decomposition theorems state that fuiy distribution function V can be expressed as a

mixture of three types of distribution functions.

F . pi'
AC qF t rF,

where p ^ 0, q > 0, r :> 0, and p 4-q + r « 1. F._ is absolutely continuous, F- is continuous

but singular (i.e., concentrated on a set of measure 0», and F. is atomic (i.e., concentrated o

the set of its atoms, where atoms arc single points with a positive probability weight).

27

For our work, we will assume that ■ 0; that is. our distribution functions do not include

components whic;- are continuous on sir0u'iar sots. We regard these as curiosities not likely
to be observed in general practice.

We will look separately at absolutely co.itii.uous distribution functions and atomic distribu-

tion functions and the representations appropriate to each type. We can then explicitly repre-

sent any more general distributions as a .nixture of the two.

Absolutely Continuous Distributions

We will start with the absolutely continuous case. If F is a distribution function which is

absolutely continuous, then chere is an associated probability density function (pdf) f which
exists almost everywhere such that

F(x) ■ \ f(u) du

NOTE: We use upper case letters to denote distribution functions, and lower

case letters to represent density functions.

Thus, the two obvious possibilities are to represent F directly or to represent f. Since

techniques for calculating with probability density functions are better known than techniques

for calculating with distribution functions, we next turn our attention to representations suitable
for density functions.

Probability Density Functions

The problem of representing a pdf is very much the general problem of approximating a

function of a real value. In fact, the problem is complicated by the fact that many pdfs are not

even continuous (e.g., uniform distributions), much less differentiable. Given such an approxi-

mation problem, the analyst must first choose t :e "form and norm" (Rice 64] to be used. The

"form" refers to the CULSS of approximating functions from which the actual approximation will

be chosen; the "norm" refers to the error measure (i.e.. least squares, least maximum error,

etc.) to be used in selecting a particular function of the chosen form to be the approximation.

Once these choices have been made, we can then proceed to comment on the existence and

uniqueness of the solution to the approximating problem.

Our criteria for selection of an appropriate form is strongly coloreö by our usage of these

approximations for the f-convolution operations. Thus, our emphasis is significantly different

from that in texts on function approximation. We will emphasize the form of our representations

and the costs of computing with those forms more than we will discuss norms and the impact of

the norms on the choice of a representative from the class of approximating functions. The

reason for this choice is simply that the impact of the norms is no different for our problems

than for others and has already been extensively considered in the literature. On the other

hand, the efficiency and accuracy issues for calculating f-convolutions depend critically on the

form of the approximating function and have not been previously considered in the literature in
a unified way.

Representation by Sampling Techniques

The most obvious representation is merely to choose evenly spaced points along the pdf and

tabulate their values. Depending upon the techniques used to interpolate values for intermediate

28

-' ' —-— '

points, a range of representations is defined. For example, if the value of a pdf p at a point x

is chosen as the value at the nearest tabulated point, then we are ipproximating p by a mixture

of uniform distributions of a constant width.

This class of approximations is interesting because it provides representations which are

easy to use to compute f-convolutions. In particular, if we are interested in the base operations

of addition and subtraction, then the corresponding f-convolutions are convolution and correla-

tion. The recent work with Fast Fourier Transforms has led to rapid techniques for calculating

these results [Stockham 69]. In the next section, we will describe briefly the basic computa-

tional technique and in the following section indicate the major error sources.

Convolution by FFT Techniques

The Fast Fourier Transform algorithms are actually a set of algorithms which can compute

the Discrete Fourier Transform of a series of N data points in time T = kN log, N. These

algorithms became well-known following the publication of a paper by Cooley and Tukey in 1965

[Cooley 65], although the ideas can be traced back to Runge in the early 1900's (see [Cooley 67]).

Recent hardware efforts have reduced k to values as small as 500 ns using special-purpose

hardware [Allen 75], while values of 60 (is have been reported on machines such as the IBM 7094
[Stockham 661.

As first described by Stockham (Stockham 66], the FFT algorithms can be used to signifi-

cantly speed the calculation of convolutions and correlations. The technique depenis on the fact

that the product of the Discrete Fourier Transform (DFT) of any two sequences of points is equal

to the DFT of the circular convolution of the two sequences. To obtain ordinary convolution, one

must pad the desired points with a sufficient number of zeros so that the circularity is irrele-

vant. The DFT and inverse DFT can both be calculated by FFT techniques resulting in a signi-

ficant time savings compared to standard techniques if the number of points involved is medium

sized or larger. Stockham's data show the crossover point between N = 24 and N = !2.

The DFT is defined as the discrete analog of the Fourier transform, namely

N-l

F(t) = YJ f(k>
kt

t = 0,1,...,N- 1, Jui/N

k=0

If we are given two sequences of points, f and g (we will assume f and g are both sequences

of N points), then their circular convolution is defined as

N-l

hc(l) = V f(n) g((l -n) mod N) .

n=0

It may be shown (Gold 69] that if we calculate the DFTs of f and g, and multiply these and

apply the inverse DFT, the result is precisely hc. While this is a complicated way to perform

a simple calculation, there is a significant speed advantage which justifies the effort. The

direct way of calculating h would require N multiplications and N - 1 additions for each value

of 1. This gives a total time of k N where k, is the time to perform one multiply/add and

associated bookkeeping. Calculation of the DFT, however, requires k.N log? N time as does

calculation of the inverse DFT. This yields a total time of 3kf.N(log2 N + A) which is smaller

for large N. (These calculation? are for N a power of 2; similar savings hold for other Ns.)

29

.^M in i ■■■«lllllll i

For work with probability distributions, we are not interested in circular convolutions, but
rather in "aperiodic" convolutions of the form

N-l

h(l) = YJ f(n)g(l-n) .
n=0

One way to achieve this effect using the DFT, is to use a larger vame of N. That is, if f

and g are given at M points, then assume their value is zero outside of that range. Extend the

sequences with enough zeros (M is always enough), and perform a circular convolution of these

extended sequences, A predictable portion of the resulting circular convolution is then the de-
sired aperiodic convolution (see |Stockham 69] for more details).

Error Analysis

Since we have restricted ourselves to absolutely continuous distribution functions in this

section, their pdfs exist almost everywhere. We will further assume that our pdfs are bounded

on (-*>, «). Then we may conclude that the convolution of our pdfs exisv.s and is also bounded

on (-«. •) (Apostol 57]. Let us examine now more carefully the implications of calculating

convolutions by FFT techniques when we are talking about absolutely continuous distribution
functions.

The first thing we must observe is that the use of FFT techniques in the calculation does

not change the error characteristics significantly. That is, once we have sampled our two in-

put pdfs f and g at some chosen points, whether we calculate the convolution of these sequences

of points by FFT techniques or through direct inner product evaluations, the results will be

numerically identical (remember that we made an assumption that arbitrary precision arithmetic

is available; in fact, the round-off error propagation of the FFT implementations has been

shown by experience to be as good or better than that obtainable by summing products

(Stockham 66). Further, by careful choice of quantization of the probability values, and number

of samples, one can take advantage of FFT-reiated techniques such as the Fermat Number

Transform to yield no round-off errors and further improved speed:! jAgarwal 75]).

The important errors in the technique arise rather from the sanpling process on the input

pdfs. Let us try to bound these errors more carefully. If we wish to calculate the convolution
of two pdfs f and g, then we wish to evaluate

h(.,.r f(y) g(x -y) dy

and this exists if f and g are absolutely integrable (true for all pdfs) and bounded on (-•, «).

The first thing we must do is choose an upper and lower bound for the domain of each of

the functions f and g which repre.ent the limits of the sampled versions of these functions. If

we choose limits for f only, and these limits are [a, b], resulting in ignoring a weight of t. in
the tails of f, then in fact we are evaluating

pb
hf(x) = \ f(y)g(x-y) dy

The error caused by this can be directly calculated

50

 - - ^^— MMMM ^H^a^^..^.^.^^^

h(x) - hf(x) = y f(y) g(x - y) dy + (f(y) g(x - y) dy

Since both integrals are positive (f and g are always positive), we have

j |h(x)-hf(x)| dx = j [j f(y)g(x -y)dy + J f(y) g(x - y) dy] dx .

If f(y) g(x - y)i8 a continuous function of x and y, then we can interchange the order of Integration
to obtain

\ |h(x)-hf(x)| dx = \ f(y) \ g(x-y)dxdy+\ f(y)\ g(x-y)d:c

Since g is a pdf, J^ g(x -y) dx = 1 for any y. So we have

f" . pa p«
\ Ihlxl-hJx)! dy = \ f(y)dy+\ f(y) dy

dy

Thus, the error in the convolution result that we make by assuming one pdf has nr; tails is given

precisely by the weight in those tails when the error measure is an L, norm.*

If we also use a tail-limited version of g (call it g), then the error we make is similar,
that is

|hf(x) --hfg(x)| dx = cg

where (is the weight in the ignored tails of g. Then, by the triangle inequality, the total

error between h(x) and hf (x) is bounded by t + t the sum of the weights of the ignored tails.

Once we have chosen an upper and lower bound, we must next choose a sampling interval

which is the same for f and g if we use FFT techniques. This sampling interval is then used
as the sampling interval for hf . Thus, we have

rb
hf (c + kAt) -- \ f(y) g(c + kAt -y) dy

are the exact values for the sampled and tail-limited convolution we are seeking. Because we

are sampling the input with the same At as the desired output and then calculating the convolution

of two sequences of points, we actually calculate

(b-a)/At-l
h* (c + kAt) f(a + lAt) g(c + kAt - (a f lAU) At

IrO

* The L. family of norms is often used as measures of distance between functions. They are
defined by:

Ln(f'g) = [j |f(x)-g(x)r dx]

31

atamMBM. ;'---"'"-—-■■"—l ^ -"—' -

and tue error between the discrete sum and the integral is given by

hf (c + kAt) - h* (c + kAt) ■ \ f(y) g(c + kAt - y) dy

(b-a)/At-l

- At YJ ''f3 + lAt' g(c + kAt - (a + 1At))
1=0

This difference is precisely the difference between the Riemann sum representation of the inte-

gral and the integral itself. The absolute value of this error is known (Davis 75] to be < (b - a) x

u(At), where

u(At) = max | f^) g(c + kAt - Xj) - f(x2) g(c + kAt - x2) |
|x.-x2|4At

when f(x) g(c + kAt — x) is continuous in x. 1'f T- f(x) g(c + kAt - x) exists for all k and is

bounded, then the error at each point in the resulting convolution reduces proportionally to At.

If instead of choosing f and g values at points a + lAt, we choose the values at (a + lAt + At/2),

and w, (x) » f(x) g(c i kAt - x) has continuous second derivative, then the error at each k is

given by

(b-a)(At)2 d W
"2T dx

where a < $. < b. The total error for the tail-limited n .. olution is then

2(b-a)/At

L
k=l

[hf (c + kAt) -h| {C + kAt) |

2(b-a)/At
y

k=l

(b -a) (At) 2
d V6^
~dx2

/24

If we let

then

\ - max
d2wk(.;k)

k dx

2(b-a)/At

I
k=l

thf (c + kAt) - h|. (c + kAt)| 4, |(b -a) AAt)/l2 .

Thus, the total error in the result is bounded by the sum of the errors caused by removing the

tails, and the errors cauted by sampling in the intervals that remain.

|h{x) - h* (x)| dx ^ cf + 4 t (b - a) XAt
12

In ord« r to derive this bound, we needed one assumption in addition to those constraints on

the pdl's we 'lad at the beginning of the section, namely that

J2

--' MIM .»..■-.■. i . .

Ax
j f(x) g(c (■ kAt - x)

exists and is continuous. This is a fairly strong assumption for probability distribution func-

tions, but r liave not been able to obtain any bounds under weaker assumptions.

Correlation

The preceding development was expressed in terms of convolution. In fact, the computing

techniques and error bounds for correlation are basically identical. Recognizing thal X - Y is

identical to X + (-Y), we need merely look at what is required to represent the negation of a

random variable expressed in sampled form. The negation operation implies negating and re-

versing the upper and lower bounds, and taking the sample points in the reverse order. The

sampling interval remains constant. If we go through the error bounds section consistently

replacing g(c <- kAt - x) with g(c + kAt ¥ N), then the error bounds themselves are not affected

and the derived results all apply to correlation, when computed in this fashion.

* -Convolution

When the desired base operation is multiplication, we can also try to take advantage cf FFT

techniques to perform the calculation. To do this, we note the identity

Y '' Z - expiln y + InZ)

Thus, by performing three unary operations, i.e., operations on one distribution, and a

+ -convolution, we obtain a '-convolution. Note that if \ - In V, then we have (assuming y> 0
to avoid difficulties and also for some k, J0 t fY(t) dt exists and Z meets the same conditions)

fx(x) -- exfv(ex)

[Parzen 60|.

If we calculate the Fourier transform of t" in terms of f , we obtain the following expression:

£♦(») J fx(x) dx

r .X. , X, isx . e f (e) e dx

let t - e , we have

f^(s) =

^ f ex(i8+1) fY(ex)dx

t) dt

Checking in our tables | Uateman 54] we find that, with a change of variables p ; 1 is, we have

J3

uaaKU' ~

. M
fY (P) = fX(1 ~ is)

M
where f^ is the Mellin transform of f . Thus, if we take the Mellin transform of the distribu-

tions of our two random variables, multiply these transformed distributions and calculate the

inverse transform, we find that we have performed a I'i-convolution (see [Ditkin 65] for more on
the properties of the Mellin transform).

This, of course, is only useful if these transforms can be performed efficiently, using

FFT-type techniques. Of course, we have just seen the necessary trick, i.e., calculate the

pdfs corresponding to In Y and In Z and take their Fourier transform. However, the accuracy

begins to degrade because a resampling must occur to keep the sample points evenly spaced

bo'h before and after ü j In operation. I do not know if FFT-type techniques can be directly

employed on the original pdf to calculate its Mellin transform and its inverse directly.

Other f-Convolution Operations

In general, if h-convolution lor an arbitrary base function h is desired, we have the follow-
ing equation;

F(t) y-w xn)dx1. dx

»h(x ..
■V
xnUt

where f is the point distribution function of X.. . . X .
1 n This multiple integral can be directly

attacked by numerical integration techniques, if necessary (see (Stroud 71] for a survey of

techniques). These, however, are likely to be more expensive and less accurate in computation
than schemes tuned to a particular f-convolution.

Other pdf Representations

There are a large number of other ways to represent pdfs in addition to the sampling tech-

niques described above. These divide into two major classes: (1) representation by functions

of a special class, and (2) representation by series expansion. Wc discuss below an example

of each type. These particular choices are well known in the statistical literature, but many

examples of each type can be found, each with its own advantages and disadvantages.

One well-known special class of pdfs which can assume a broad variety of shapes and is

thus useful for approximation is the Pearson family of pdfs [Kendall 63]. These pdfs can all

be characterized by the following differential equation, where f is the pdf

df
dx

a) f

bn + b.x + b^x
U 1 2

It is simple to derive from this equation a number of properties of f.

(1) df/dx vanishes at the point x = a, and only at that point. Thus these

distributions are uni-modal, but in special cases, they may be ,1-
shaped or U-shaped.

(2) There is (except for special cases) smooth contact with the x-axis at

the extremities, so that df/dx vanishes when f = 0.

34

— '

(3) The parameters a, bQ, b., and b2 can all be determined from the
first four moments.

(4) The Normal, Heta, Chi-square, Student's»-, and Gamma pdfs are

all special cases of the Pearson family.

Since a Pearson pdf can be detej mined from its first four moments, tl- ■ relations between

the defining parameters and the first four moments can be used to move irom one to the other.

That is, given the first four moments, one can determine the parameters a, bn, b and b de-

fining the Pearson pdf, and conversely, given a, b0, b^ am. b2, one can calculate the first

four moments. Indeed, given a Pearson pdf, there is a recurrence relation for the moments

which will calculate moments of higher orders easily, but the first four determine all of them.

If two Pearson pdfs f and g are convolved to form a pdf h, h is not, in general Pearson, but

a Pearson representative which matches it in the first four moments can be determined. (This

can be demonstrated by comparing the higher order moments (^ [x., etc.) of the Pearson

representative for h with the values for the true h for some numerical examples.)

Generally, there is no advantage to using the Pearson family in place of representation by

the first four moments (see di cussion of representation by moments, below). The moments

are easier to compute with for f-eonvolutions and easier to obtain in the first place.

Another type of representation for pdfs is in terms of the coefficients in a series of ortho-

gonal polynomials. One of the best-known of these schemes is the Gram-Charlier Type A

series [Kendall 63). This is an expansion in terms of TcliebvchetT-llermite polynomials.

The major properties of the Gram-Charlier series for use in a statistical compiler are:

(1) The coefficients are easily calculated from the moments, and the

moments may be easily calculated from the coefficients,

12) It is easy to convert from a pdf in this form to a cdf in this form,
and conversely,

(3) The sum of a finite number of terms of the series may produce nega-

tive values for the probabilities near the tails,

(4) A series of n terms may be a poorer fit than a series of n-1 terms,
ami

(5) If there is a significant skew in the pdf, then the fit will probably be
poor.

f-ccnivolutions would be performed on the pdfs by manipulating the coefficients in the Gram-

Charlier representation of the pdfs. Closed-form relations between the coefficients can be ob-

tained For cases when the relations between the moments are known: for the case of (-convolution,

these relations are particularly simple. If our representation is in terms of the Gram-Charlier

series about the mean, and the representation for \ is given by
,th

x, x«, x . . . ">, where x is the
mean of the random variable X, and x. is the coefficient of the i"" term in the series expansion,

then for Z - X (V, (X and Y independent) we have the following relations:

z - x + y

Z0 = 1

zi =0

IS

z2 = x2 + y2 + 1/2

Z3=X3+y3

This is obtained from combining the expressions for the Gram-Charlier coefficients (| Kendall 63,
p. 157]) with expressions for the moments of Z in terms of the moments of X and Y.

For '-convolution, the same approach can be applied to obtain:

z =Xy

Zo = l

Zl=o

z2 = 2x2y2 + x2 + y + 1/2

z, = 6x,y 3y3

z4 = Z4x4y4 + 12x4y2 + 12x2y4 4 10x2y2 f 3x4 f ^4 + x2 f y2 + ^M

These expressions are relatively easy to deal with, although *he number of terms begins to get
unwieldy for "-convolution with higher order series.

Given the basic accuracy .imitations on Gram-Charlier series outlined abo\ e, they can only

be recommended where the ease of conversion to cdf representations is important, and "nice"

pdfs are used. Usually, one of the other forms will be more convenient for computation and
avoid the accuracy limitations inherent in Gram-Charlier.

Hepresentation by cdf

In order to obtain error bounds in the discussion of convolution above, we had to make

assumptions which are hard to justify regarding the smoothness and differentiability of our

pdfs. Generally, trying to represent and compute with functions which are not smooth is sub-

ject to many pitfalls and should be avoided where possible. For this reason, an attractive al-

ternate representation is the distribution function, also referred to as the cumulative distribu-
tion function (cdf) to emphasize the distinction from the pdf more strongly.

The choices for representation of the cdf are similar to the choices for representing pdfs,

ranging from sampling to series and continued-fraction expansions. We discuss below what

some operations on random variables imply about operations on the corresponding cdf and

leave the implementor to choose the most convenient representation for the expected cdfs.

The first thing to note is that the calculation of the +-convolution for two random variables
cannot be expressed directly in terms of the cdfs of those random variables.

36

amtmmmmmmmma n i '-'■ ■■■■■'- .■■.:■■:-—ffl-.v L*LJX^.;ii^*.^~..

 ■

F (z) = P|X + Y»; z)

= J J fX, Y(x'y) dy dx

Aasuming X and Y are independent, we have

(■»* pZ-X
FZ(Z) = J fX(x) J fY(y)dydx

I fx(x) FY(z - x) dx

Computing this requires calculating fx and then forming its convolution with F , but I know of

no way to avoid the calculation of the pdf of one of the random variables.

However, there are other operations among random variables which translate quite di-

rectly into operations on their cdfs. For example, consider Z = max (X, Y).

Fz(z) = P [max(X, Y)< z)

= P ((X< z) and (Y< z)] .

Assuming X and Y are independent, we have

Fz(z) > Fx(z) Fy(ss) .

Similarly, for Z = min(X, Y), we obtain

Fz(z) = Fx(z) + FY(z) - Fx(z) FY(z) .

Note that performing max-convolution with pdfs would require calculating both cdfs.

Another operation which is particularly convenient with cdfs is the following (expressed in
ECL);

real\random,

real\random,

real\ ran dorn,

REAL;

CHOICE <-EXPR(X:

Y:

Z:

k:

real\random)

|) X LE k => Y; Z (];

W <-CHOICE(X, V, Z, k);

Then we have assuming independence of our random variables,

Fw(w) = P[((X « k) and (Y < w)) OR ((X > k) and (Z < w)))

= Fx(k) FY(w) + (1 - Fx(k)) Fz(w) .

Generally, when there are many conditional operations to be performed, especially those

involving comparison with REALs, the cdf is the more convenient form to use.

Moments

Statisticians have long used moments to describe succinctly the characteristics of a distri-

bution. Such measures as variance, skewness, and kurtosis are related to the moments about

37

_____^___

1
■■■■

the origin or about the mean in direct and simple ways. Moments have the additional advantage

from our viewpoint of being particularly convenient for certain f-convolution operations. In

many cases, the answer desired by the poser of the original problem is expressed directly in

terms of moment measures, i.e., what is the mean and standard deviation of X? We must be

wary, however, because not all distributions have moncuts of all orders and for certain cases,

no moments at all exist. In the following, we will assume that the input distributions we use
have moments of all the degrees that we use to represent the distributions.

An f-convolution which is particularly simple to perform with a moment representation is
■-convolution. For, if Z = X * Y, we have the following

E lZn] = E |(XY)n|

Assuming X and Y are independent, we have

E izn]=n n "Vv*) fY(y) dx dy

= \ ynfY(y) xV(x) dx dy

fY(y) E |Xn] dy

=■ E lXn] E |Yn] .

Thus, if X and Y have moments to degree m, then so will Z. In words, the moments of a

product of independent random variable.-; are the product of the moments of those random
variables.

Equally sample is the form Z = Xk for k a positive integer. Here we have directly that

E fZ) = E fX]. In this case, Z will have moments to degree m if X has moments to de-
gree km.

Since E Ig^X) + g2(X)] = E (g^X)) + E [g2(X)], we can extend these results to obtain, if

* = 2: E E v*1^14
i j k ■

then we have, assuming independence of X. Y, and W,

E (Zl= E E EaljkE[xiJ EIYj]E|W
i J k

k.

To obtain the higher moments, expand Zn symbolically to obtain

z" = S E E biikxiYJwk .
i j k

38

WMMMHMkoa
 --•■■

Then,

E(ZnI= V V V

i j k

J] b^ElX1) EIY^I K[Wk

Thus, we can evaluate the moments of a multinomial directly from the moments of its input

distributions, assuming independence of those input distributions and existence of moments of

adequately high degree. In the above example, if the multinomial for Z is of degree k in X,

then evaluation of E[Z | requires the existence of moments of degree up to kn for X.

Characteristic Functions

The characteristic function is the continuous Fourier transform of the pdf; it is also the

moment generating function. Whenever the pdf exists, so does the characteristic function,

although an arbitrary function is not in general the characteristic function for some random

variable. The characteristic function has some convenient properties for f-convolution, namely

if \x and \v are the characteristic functions for the random variables X and Y, then \v

\X\Y is the characteristic function for their sum, assuming independence.

Note that the characteristic function representation was used to perform convolution fev

sampled pdfs. 7,hat is, to perform convolution, we first took the DFT of the input pdfs to

obtain an approximation to the characteristic function and then used the property indicated

above to perform the convolution. If a sequence of +-convolutions are to be performed, then it

is more efficient overall to leave the pdfs in the characteristic function form and only convert
back to sampled form after the entire sequence.

Atomic Distributions

We say a distribution F is atomic if F is concentrated on its set of atoms, i.e., if the

atoms of F contain the complete mass of the distribution. It is easy to show that there are at
most denumerably many atom? for any atomic distribution.

Just as in the absolutely continuous case, there exists an associated function, the proba-
bility mass function (pmf) p, such that

F(x) = V p(a.)

where ai ranges over the set of atoms for F which are less than or equal to x.

The pmf then maps the atoms a.^ of F into the probability mass associated with those atoms,
i.e., the amount of increase of F at a..

i
The representation choices for atomic distributions are similar in many ways to the choices

for absolutely continuous distributions. For representations such as cdf or moments, the dis-
cussions already presented apply equally well here.

However, for other representations, such as pmf or characteristic functions, some modi-

cations are necessary. Also there are some important subclasses of the atomic distributions.

59

 -. ._.

where some specific techniques can be employed. These subclasses are the finite atomic dis-

tributions (those with a finite number of atoms), and the integer distributions (all atoms are

integers).

We discuss below some of the effects of these differences.

Representation by pmf

The pmf may be compared with the pdf representations described earlier for absolutely

continuous distributions. The pmf by its nature is in a sampled form, but there is no guarantee

that the spacing is uniform, or that only a finite set of samples can provide a complete

representation.

Moreover, each atom represents only its own point in pmf, whereas in a sampled pdf each

sample point represents an interval. This effect is most striking in Poking at unary opera-

tions: e.g., consider the following theorem | Parzen 60).

If y = g(x) is differentiable for all x, and either g'fx) > 0 for all x or

g'(x) < 0 for all x, and if X is a continuous random variable, then

Y = g(X) is a continuous random variable with probability density func-

tion given by

-1,
fyiy) =fx(g (y» I :■£ g *(y)

_d
dv if yt range of g

= 0 otherwise.

For contrast, the relationship between pmfs is quite different, namely

fy'y' =fx<g ,y)l 'f ye range of g

= 0 otherwise

since we are only interested in the mapping of individual atoms.

If there are too many atoms in the distribution to store them individually, then some group-

ing of atoms must be performed. The effects of this grouping on f-convolution operations wil.

depend on the nature of the distribution and the spacing between the atoms. If the atoms are

"dense enough," then the distribution may be approximated as a continuous distribution, how-

ever, the exact specifications for "dense enough" will depend on the application.

Although the number of atoms in the input distributions may be small, this does not preclude

the possibility of generating large intermediate results. For example, if the distribu'lons for

X and Y contain n atoms each, then the distribution for X + Y will contain anywhere from 2n

to n r.toms depending on the spacing of the atoms in X and Y.

Thus, it may be necessary to dynamically alter the grouping of atoms into sample points in

order to maintain a feasible number of points in intermediate distributions, although again the

error effects are difficult to predict.

Integer Distributions

The case of integer distributions is of particular practical importance. Much of the discus-

sion under probability mass functions also applies to integer distributions, but there is an addi-

tional technique which is of particular interest in this case, namely representation by generating

functions.

40

IMMMHM

The basic concept is to represent '-.he probability values as the coefficients in a polynomial.

The entire polynomial then becomes the re ?'esentation for the distribution, or its generating
function.

That is, let

A(s) = p(0) + p(l) s + p(2) s2 +. ..

then for pmfs, A(s) converges absolutely for | s | * 1

Some of the properties of generating functions make them particularly convenient for

f-convolution operations. For example, if A(s) and B(s) are the generating function represen-

tation for the random variables X and Y, then we have A(s) • U(s) as the generating functioi
representation for X + Y.

However, the most interesting application of generating functions in the statistical compiler

area is for evaluating the following function of random variables, expressed as an ECL program.

SUM - EXPR (X: reaKrandom,
N: reaKrandom;

reaKrandom)

() DECL Z: realNrandom HYVAI, point (0);

/* ' Z is initialized to a distribution whose only atom is 0 ';

FOR i FROM 1 TO N

REPEAT

DEC I. S: real\random 11U X;

/* ' S is a series ol' independent distributions all with

identic J distribution functions which a'e the same as the

distribution function for X ';
Z — Z + S;

END;

Z;

(1;

That is, SUM calculates the distribution of the sum of N values independently chosen from

the distribution X, where N is a random variable. The generating function representation of

this is surprisingly simple (Feller 57, Vol. I, p. 268): if A(s) is the generat.ig function for N,

and R(s) is the generating function for X, then A(B(s)) is the generating function for SLiM{X, N).

Remember, however, the difficulties imposed bv the addition of looping capabilities to our

set of base functions. We are able to avoid the problem only because the restrictions for prac-

tical computations are so severe. If either X or N is represented as an infinite sequence of

coefficients of a generating function, then the computation will never terminate. It concludes

only if the generating functions for both X and N can be expressed in closed form, i.e., if X

is a Poisson distribution with A, then its generating function is e'X*Xs. Thus, although this is

a convenient way to represent fhe work to be performed, it still requires a potentially infinite
amount of computation.

Conversion Between Representations

Since it is probable that the implementor of a statistical compiler will wish to provide a

broad variety of base functions, and since the work required to perform a particular f-convolution

varies dramatically with representation, it is sometimes desirable to change the representation

during the computational process. In some cases, these conversions are simple to perform

41

(A

nurner.cally and ca. be done wUh high accuracy. However, son.e conversiona have theoretical

bounds on their accuracy and these bounds may be large in practical cases. The purpose of this

sect.on U. to indicate the nature of the conversions between the types of representations dis-
cussed above.

From pdf to cdf

S.nce the cdf is the integrai of the pdf. and .ntegration is a smoothing operation, the resuits

< an be ejected to be satisfactory. Depending upon the representations used for .he pdf and cdf

various numerical integration technics apply. See (Oavis 7S, for a survey of tecnniques which

could be used, for certain representaUons. e.g.. the Gram-Charlier series, the conversion

can be s.mply performed in terms of the parameters deserving the series.

From pdf to Moments

If the representation of the pdf t. as a Pearson distribution or a Gram-Charlier series

theoretual expressions for the moments can be obtained d.rectly fror, the parameters of the

representation which are rouvenient top calculation.

When a sampl.ng representation of the pdf is used, the obvious calculation for the moments
is to evaijate

(b-a^At
V

k-1
(a i kAt)m f(a + kAt - At/2)

AUhough this inner product can be directly evaluated with appr, ,riate numerical care

! otTM t Tr: Tmain a nurnber of practlcaI problems- Vor ex™^'if ** —P-i
sec t.on ta the ta.ls of the distribution have enough we.ght. then any moment calculated from the

ampled vers.on will fe unreliable. Indeed, the moments calculated from the sampled distr.-

but.on always exist, whereas the moments of the infinite range distribution from which it is

cieru-ea do ..ot r.ecessarüy exist. Further, even in cases where this is not an issue, we are

st.ll m-Amg the assumpUon that the weight in an interval At is concentrated at the center of the
I' 1 L I. i . ell.«

These problems are the same as those ansing when one attempts to estimate the moments

o a d.str.buUon from a sample selected from the populate described by that ditrlbutlon. and

hat sample has been grouped. U the distribut.on . quit, well behaved ,to be specified shortly,

hen ins calculation can be accurately performed, with Sheppard's corrections used to correct'

for the grouping effect (Kendall 63). The conditions for apphcation of Sheppard's corrections
are. however, fairly stringent.

f 1 lied. (,, If y . x f(x)> then tlle fir,t 2ni _ 3 derhatives o|. f shoul(] approx.iTiately

at he ends ol the sampled interval (i.e.. f must have high-o ,- contact with the axis in its

tails). (2) y must have 2m derivatives, and (3) 4v,2ni) (c) (b a) it2"1"1 't'*)2m (

the interval |a. b) provides a measure of the error in the calculation, and shouhi be .^! '

From pdf to Characteristic Function

The calculation of the characteristic function from the pdf is merely the calculation of the

contmuous Fourier transform of the pdf. Last Fourier transform techniques can be used to

-

convert rapidly between sampled representations of the pdf and the characteristic function, and

conversely. The errors caused by converting a continuous curve to a sampled version, and

then calculating a discrete Fourier transform and using it as an approximation to the continuous

Fourier transform are well known and discussed in several articles and texts (eg., (Cooley 70]).

Generally, this conversion will work satisfactorily if (1) the pdf does not have very "high-

frequency" components, and (2) the characteristic function is desired for relatively small

values of its argument. If we sample the pdf at interval At, then the characteristic function

obtained by FFT techniques can be in error by 100 percent when its argument is l/(2At) (Nyquist

frequency) because of sampling. This "aliasing" error will be acceptably small only if the value

of the charai teristic function is negligible at this point. In addition, chopping off the tails of the

pdf, which is a multiplication in the original domain, represents a convolution operation in the

transformed domain. The function convolved with is of the form (sinx)/x, producing significant

errors in the characteristic function referred to as "leakage" errors. These "leakage" errors

can be compensated for by using a "window" function on the original pdf which is not a rectangular

data window, but rather some "unction with more tapered ends. At this stage, the selection of

an appropriate window is very much an art and is discussed in [Her-gland 69).

From Moments to cdf

The problem of conversion from moments to the cdf and pdf forms of representation is a

classical mathematical problem, and has been attacked by such mathematcians as Tchebycheff,

Markoff, Stieltjes, Hausdorff, and Hamburger. The "Stielt.ies integral" was introduced in 1894

in a paper which also provides a solution to one variant of the problem of moments.

Tnis wealth of mathematical interest derives from the tact that the problem is hard enough

to be interesting, yet fruitful enough to produce many fascinating results. From our viewpoint,

however, these results are ensentiallv negative, and we examine their relation to our problem
below.

The first variant of the moment problem, referred to as the Hamburger moment problem,

assumes wo are given an infinite sequence of numbers anil asked whether these tire the moments

for some distribution function on the infinite interval (-«>, «), and whether we can fin.I that

distribution function. To state that more carefully, we offer the following theorem:

Theorem: (see |Shohat 43, Theorem 1.2|)

In order that a Hamburger moment problem

S„ » \ tndF , n = 0, 1. n J ' '
^ - on

shall have a solution, a distribution function !•', it If necessary th.it

n

{n i
,-o 0, 1, 2,

nfl "2n

43

mmm MMMM

In order that there exist a soldtion which is an atomic distribution whose set of atoms con-
sists of exactly (k + 1) distinct points, it is necessary and sufficient that

A0 > 0, A, > 0, Ak>0, Ak+1 = Ak+2 = 0

The moment problem is determined in this case.

The condition stated here is expressed in terms of an infinite sequence of moments, and further,

even if true, does not guarantee that the function F is unique. Indeed, counter-examples can be
found, e.g., | Kendall 631, since

\ xnexp(-axA) sin(bxA) dx = 0 a > 0, 0 < X < 1/2

the pdfs

f(x) = k exp(-ax) |1 ft sin(bxA)], 0 < x « «, 0. 0 • A < 1/2, f <1

have the same infinite set of moments lor all e in the allowed range.

An additional theorem gives the condition for a substantially unique distribution with a given
set of moments.

Theorem: (Shohat 43, Theorem 1.10)

A sufficioru condition that the Hamburger moment problem be determined (i.e., have a
"substantially unique" solution) is that

00

I Hi/ln ■ - • —' 2n
n = l

Again this it, Q condition on an infinite sequence of moments although we have only a finite se-

quence and the numerical evaluation of such a test is prone to significant errors.

[f we restrict ourselves to a finite interval, say (0, 1), and consider the reduced moment

problem (i.e., only a finite number of moments are given), the situation is only partially im-

proved. If we are given a sequence of moments v ^ ^ then we can determine effec-

tively two values for xml which represent the upper and lower bounds for the next moment.

We can further determine atomic distributu.ns with about n/2 atoms which achieve both the

upper and lower bounds on K^ (call these Fu and Fj). If D|x represents the sot of cdfs having
thpmnmpnt«v v v fu,,., i -__i<i _. the moments x., x ,Xn, then we have several theorems |Karlin 53]

IMMUon: Let l)a|x represent the subset of n|x consisting of atomic distributions only.

Theorem: The sets D|x and D |x are convex.

Theorem: The extreme points of Djx are those functions F with the number of distinct
atoms-C n + 1.

Theorem: Djx is spanned by its extreme points, and in the weak ♦ topology (i.e., using

a particular measure of distance between cdfs), D|x is also spanned by the extreme points
of D Ix. a

Theorem: If F c D|x, then the differences F - F^ and F - Fj. if not identically »ro, each
have exactly n - 1 sign changes in the inerval (0, 1J.

44

 -■ ■-- ■■ -^.- ii irnBig-jH —— ■

————

An example should help clarify the situation. Consider the Beta distribution with param-
eters 12 and 6.

1 dF = x11^ -x)5 dx 0< x < 1 B(12,6)

The moments for this distribution may be easily calculated by integration, using the properties
of the complete Beta integral to obtain the following values;

Hj = 0.6666.667

"2

*4
H^ = 0.2280,702 .

Following [Karlin 53] we can then determine P^ and Pj to ha.e the same first four moments.

The work required to calculate these, given n moments, is approximately the cost of evaluating

n determmants of size n/2, finding all the roots of two polynomials of degree n/2 (roots are

guaranteed to be real, and in (0, 1]), and finally solving two sets of linear equations, each of

size n/2. Performing the calculations we obtain the following: Fj has atoms at 0.0 0.5612 724

and 0.7720,849 with jumps of 0.0013,5098,5, 0.4951.089, and 0.5035,401, respectively. F has '
atoms at 0.5104,210, 0.7276,077, and 1.0, with jumps of 0.30i0.400. 0.6826,570, and 0.0163 031

respectuely. The reader may readily verify that these distributions have the same first four

moments as those given above. The situation is graphed in Fig. 5-2 (values for the Beta distri-

bution were obtained from |Pearson 68]). As can be seen, the functions are not close approxi-

mations to each other, and the pdfs would be even more disparate, -he intertwining behavior

seen in the graphs is typical, and the theorem above states that any other cdf with the same

first four moments must also cross every horizontal and vertical line in the graphs of F and F

Thus, while we can bound the behavior of cdfs from descriptions of their moments, "hese 1

bounds are necessarily gross and often in an inconvenient form for further computing. Several

authors (e.g., (Burr 42]) have suggested techniques for directly fitting cdfs to a given set of

moments, but these techniques have depended on first choosing a family of cdfs and then deter-

mining the parameters of the specific curve in that family. Because of the large errors whic.i

may occur, these techniques cannot be recommended for use in a statistical compiler.

45

aMMk iirii ii ■■ -^—~-J~.

Fig,V-2, Comparison of Fu, Fl and Beta distribution with identical jii, A, n',, and n'

4t.

—Mia* ■ ■ --—"~-"——— 1I1M|, ,

VI. DKSCRIPTION OF AN IMPLEMENTATION

We now alter the approach of the last few dections and describe a practical, although

limited, implementation of a stati.'-tical compiler. We will actually describe the system, called

STAT, twice; once from the viewpoint of a user, and then apain from the viewpoint of the im-

plementor of such a system. STAT is operational on the Harvard PDI'-10, in conjunction witii

the ECL programming system [Harvard 741. The user of STAT is expected to be conversant
with ECL and to be operating interactively.

STAT provides its user with an additional mode ("a new data type"), called reu/Xrundom, nn;l

the facilities to create and use objects of this new mode. These facilities are integrated with

the ECL system, so that the capabilities to loop, call functions, perform I/O, and other such

capabilities of a general system remain available. Ilnvever, the operations which may be per-

formed on objects of mode reaJVandoiH are only a restricted subset of the ECL. operators.

User Description of STAT

In order to use the STAT system, the user begins by invoking the ECL system in the usual

fashion and then "L.OAD"s the STAT files. When this operation is completed, the user has avail

able all the usual ECL capabilities and may use them with no modification. In addition, the op-

erator "'" for exponentiation has been provided which may be applied to INTs and REALs with
the exoccted results.

The STAT environment also provides a new mode cnlled ttaNimdom and several I'unetions

("constructors") to create objects with this ir.ode. hi addition, the op.-ratoi >-: " '", '' ", " ",

"/", and "'" have been extended to deal with objects of mode ttahnmim, although not all possi-
ble combinations are allowed.

The now constructors generate random vanai lea with some standard distributione, as weli

as allowing the user to enter an arbitrary distribution. Although the current version of STAT

provides relatively few constructors, it would be easy to add m i (as no other ports of the ays*

tem are dependent on the set of constructors provided. The furrent ;et of consti ixtors is:

P"i>i((M'Ri B:ARITH; teahtandom)

This function produces a random variable which will assume the value ii
with probability 1.

distribution EXPR((flb;SEQ(VE(rORfJ.R,' \l)), reahrandm)

Returns a random variable whose probabil' ; mass function is gi. ,. in

tub. tab is a sequence of pairs, the fiist snt of which is a probability

and the second is a discrete value assiua.. : by the randi .11 variable.

«nifomi t'M'Rf o.ARJTH, h.ARIFII; rnilXrumlom)

Returns a random variable whose probability density function is a uni-

form distribution with lower limit a and upper limit b.

goussian EXPR(memiASilti, sigmcARITH; realVwidom)

Returns a random variable whose probability density function is a nor-

mal (Gaussian) centered at mean, with standard deviation Sigma,

47

■•-•" ■•' j—

potsson EXPR (lambdfl.ARITH; realXramiom)

Returns a random variable whose probability density function is a

Poisson distribution with mean and standard deviation lambda.

The concept of independence of objects of mode rcalXraridom is critical to the implementation.

The constructors described above produce independent random variables each time they are in-

voked. Variables of mode rcalVandom which are calculated through the use of operations are de-

pendent on their computational ancestors, and through them dependent on any of their descen-

dants. Ar example will help clarify the mesnlng and necessity for maintaining these dependency

relations. Consider the following two pieces of code:

1. a <- uniform^, 4); a + a;

2. a <-iinifcrm(2, 4); b <-uniform|2, 4); a+b;

The STAT system "lews these as representing two quite different situations. The first rep-

resents choosing a value for the random variable a from a uniform distribution, and then add-

ing that value to itself. Tlie resulting distribution is identical to 2*uiiifomi(2,4). The second ex-

ample represents the summing of two independen", choices from the identical uniform distribution,

a and b are independent and identically distributed random variables, and the result of their

sum is a random variable whose distribution is '.ne convolution of u»iifi)mi(2,4) with itself. The

means for the two expressions are the same, but the variance of the first is larger (in fact,

twice as large as that of the second). This may not at first he obvious, but can be explained as

follows: In the first case, a value is chosen from the distribution and doubled. If it is near the

high end, there is no opportunity for it to be countered by a value from the small end. In the

second case, if the value selected for a is high, there is still a chance that the value selected

for b will be small, thus reducing the variance of the result.

Example Session 1

a <- imiformlZ, 4);

-Ca + a$
m^an » 6.0 var = 1.3333335 skevness = 0.0 kurtosis 1.8000408
->a <- uniform(2, 4);

->b <- uniform(2> 4),

->a+b$
mean = 6.0 var = 6.666< >> :8E-1 skewness = -1.4016083E-5 kurtosis - 2.4000297

STAT extends the usual EC L ^orators "+", "-", "■"". and "/" to apply to rfal\ random objects:

"+", "-", and "*" may have their left and right arguments be real\random, INI or MM. in any com-

bination. "/" permits the left argument (numerator) to be :i*;\random, INT, or REAL but allovs

only INT or REALfor the right argument (denominator). Exponentiation is also provided ("-");

its left argument (base) may be either INT, REAL, or rciKrundom, while its right argument (ex-

ponent) may be only IM or REAL. If the base is a rdilViiMdom, then the exponent is restricted to

a positive integer. All these operator., will produce a result of mode rcal\random if either input
argument (or uoth) is of mode tcat\random.

48

The only output mechanism provided is the extension of the ECL PRINT routine to handle

r«al\rfliidoi«objects. Its output is the mean, variance, skewness, and kurtosis [1] of the distri-

bution. This reflects the fact that the internal representation of the random variables is in

terms of their moments, and these are the most convenient values available.

These capabilities can be combined to produce the solution to some of the problems we pre-

sented in Sec. 1 to motivate this work. For example, consider the problem of locating a high-

speed turnoff for a runway. We may write a function of REAL variables, which we call DiS|(o60MPH,

which will calculate the runway location when the plane reaches 60 MPH. This function will ac-

cept three arguments: the touchdown veloc.i'> of the aircraft vt. the touchdown location ll (i.e.,

distance along the runway), and the decel- n rate d (assumed constant). The code for this

function, assuming vt is in knots, ll is in ■ and d is in ft/sec/sec, is the following:

Distto60MPH <-

EXPK(vt:REAL, tl:HEAL, d:REAL; REAL)
BEGIN

DECLkl:REAL BYVAL 6.076E3 / 3.6E3;

DECLvf:REAL BYVAL 6.0E1 ♦ S.28E3 / 3.6E3i
((vt * kl) " 2 -vf - 2) / (2.0 * d) 4 tl;

KM):

The constants fci and if represent the conversion factor for knots to ft/sec, and the value

of t,0 MPH in ft/sec, respectively. The result of the function is in feet. This routine can be
directly applied to calculate values for specific inputs. For example,

->Uistto60MPH(113.0, 1500.0, 5.0)$

4.3629695E3

This then tells us how far down the runway an aircraft would be when it reached 60 MPH,

assuming it had touched down at 1500 ft from threshold, at a velocity of 113 knots, and decel-
erated at a constant rate of 5 ft/sec/sec.

The values used for the variables are, of course, not known precisely in advance for every

aircraft using the runway. However, the distribution of approach speeds for aircraft of specific

types is a measurable quantity, and some estimate of ihe distribution can be obtained from a

priori knowledge of the airplane characteristics. The touchdown location distribution can be

directly measured by the thickness of tire rubber left by aircraft during their initial touchdown.

We will assume that these have been measured or estimated and values chosen from a uniform

distribution can be used to approximate them both. In the case of touchdown velocity, values in

the range [98,128] knots are a reasonable approximation to the characteristics of medium-scale

commercial aircraft (i.e., Boeing 727 class) (Dolat 73], and a plausible range of touchdown lo-
cation values is |1000, 2000 | feet.

With these values, a variant of the program is needed to deal with random variables as in-

puts. This may be generated by modifying the above prog-am to change the mode declarations

.th
1] If W is the i moment about the mean, then we define skewness and kurtosis as follows:

skewness - ^3/uz*
kurtosis = ^/n-?

See [Kendall 63] for more details regarding the meaning of these measures.

49

MMMM ''-"—•""-—-'■-

~

for the input vanables .„ and tl. and to change the mode of the output to include r^romto«. The
modified code is then the following:

Distto60MPH<-

EXPR(vt:ONEOF(real\random, HEAL),

tl:ONEOF(real\random, REAL),
d:REAL;

ONEOF(real\random, REAL))

HEG1N

DECL kLREAL BYVAL 6.076E3 / 3.6E3;

DECL vf:REAI BYVAL 6.0E1 ♦ 5.28E3 / 3.6E3;

((vt * kl) " 2 - vf * 2) / (2.0 « d) + tl;
END;

This code can then be directlv sxseu+ari fr> „ut*:* tu J- . ., y txecuted to obtain the d^tnbution of the 60-MPH point alone
the runway. 6

->Distto60MPH(uniform(98.0, 128.0), uniformdOOO.O 2000 0) 5 0)$

mean = 4.384333.E3 var . 3.9454025E5 Newness = 6.4335654E-2 kurtosis = 2.2038808

hi hIn ^1'^ T™™11 Vel0City and l0Cati0n are ^ Iikely t0 Cha^e desPite introduction of
m b3PfT/Se 7 ? :^/

th**™l*™°* ^ *** ** -^ easily by the pilot over the range
from 3 ft/sec/sec to 14 ft/sec/sec. This effect may be observed today as pilots "shoot" for

specie turnoffs and decelerate just hard enough to make that turnoff

froJr to'14^/ ^r a driVer Pr0gram WhiCh Wil1 ^^ the deCel^ion rate over the range
from 3 to 14 ft/sec/sec and print a table of results, which will operate correctly for either
random variables or real variables for vt and ll .

Driver <-

EXPR(vt:ONEOF(real\random, REAL), tl ONEOF(real\rand0m REAL))
BEGIN ' ' '

PRINT ('

d 60 MPH Location

');

FOR i FROM 3 TO 14

REPEAT

PRINTli);

PRINTC ');

PRlNT(Distto60MPIl(vt, tl, i));

PRINT!'

');
END;

END;

This may then be executed to obtain the following tables:

~>Driverf 113.0, 1500.0);

'I 60 MPH Location

3 6.2716158E3

50

HMMiMM ■■•" ~ " ■ - ■■ riiiliTillifllllfitflii^aiiiATiftiiii-i'H-N-ii inl

-■-'■'• -''■**

4 5.0,C7119E3

5 4.3629695E3

6 3.8858079E3

7 3.5449782E3

8 3.2893559E3

9 3.0905386E3

10 2.9314847E3

11 2.8013498E3

12 2.692904E3

13 2.60H421E3

14 2.5224891 E3

->Driver (uniform(98, 128),

d 60 MPH Location

3 mean « 6.307223 1E3 v;,r

4 mean - 5.1054174E3 var

5 mean = 4.3843339E3 var

6 mean « 3.9036116E3 var

7 mean = 3.5602385E3 var

8 mean ■ 3.3027087E3 var

9 mean ■ 3.1024077E3 var

10 mean » 2.9421669E3 var :

11 moan ■ 2.8110608E3 var ■■
12 mean = 2.701 8058E3 var =
13 mean = 2.6093592E3 var >

14 mean = 2.5301193E3 var =

uniform(1000, 2000));

9.477965E5 skewness

5.69594E5 skewness «

3.9454025E5 skewness

2.9944912E5 skewness

2.421125E5 skewness =

2.0489863E5 skewness

I.7938487E5 skewness

1.6113513E5 skewness

1.4763231 E5 skewness

1.3736231E5 skewness

1.2936988E5 skewness

1.2302806E5 skewness

• 7.9995624E-2 kurtosis - 1.99806

7.2433547E-2 kurtosis « 2.1047709

= 6.4335654E-2 kurtosis 2.2038H08

= 5.6316626E-2 kurtosis - 2.2855201

4.8762627E-2 kurtosis > 2.3447075

= 4,194312E-2 kurtosis = 2.3819054

s 3.597244E 2 kurtosis • 2.3989007

- 3.0791744E-2 kurtosis = 2.4008041

= 2.6383154E-2 kurtosis « 2.3915575

= 2.2648378E-2 kurtosis « 2.3736388

1.9486725E--1 kurtosis = 2.3510717

- 1.6836281E-2 kurtosis « 2.3252265

Implementation of STAT

As indicated in Sec. Ill, the major portions of a statistical compiler system which differ

from a conventional compiler are the representation choices and the simplification rules. In

addition, the basic pieces of lexical and syntactic analysis must be provided. Thus, there were

three major design choices to be made in the development of the STAT system: (1) the repre-

sentation, (2) the approach to simplification, and (3) the mechanisms for lexical and syntactic
analysis.

For the first two questions, we have extensively discussed the options in the previous sec-

tions. In the STAT system, only one representation form is employed: moments. This then

implies that the operations conveniently available for pairs of rmWranAom variables are multipli-

cation and addition. Further, it is easy to provide addition and multiplication by a REAl, and

exponentiation of a rcai\midom to a positive integral power. These are thus the operations that
have been provided to the STAT user.

For simplification, I have chosen to employ primarily the separating set rule. Phrased in

a more intuitive and specific fashion than in Sec. IV, the rule states that if a set of variables can

be found which separates the root of the computation tree from the terminal nodes, then the only

information required to compute the distribution of the variable associated with the root node is

the joint distribution of the variables in the separating set. In order to avoid keeping large

51

dHanaaaa

multidimensional probability distributions, we limit our selection of separating sets to sets with

independent variables. Thus, the only information we must maintain as we compute through a

tree is the moments of the individual variables in the successive separating sets.

A key part of the compiler thus determines a separating set of independent variables for a

given root node. This is employed recursively starting with the desired output node. That is,

first a separating set of independent variables is determined for the output node. To obtain the

moments for each non-terminal node in this set, the same routine is invoked recursively to de-

termine a separating set for that node. This continues until the separating set determined con-

sists entirely of terminal nodes whose moments can be directly evaluated.

One way to view this process is to say that STAT compiles backward through the program

and then executes forward. In order to determine which variables form the necessary separat-

ing sets, STAT must start from the desired output variable. It can then move back to the vari-

ables in the separating set chosen for the output variables, and do the same operations as if

each variable in this set were the output variable. When this process has pushed the attention

of the STAT compiler up the tree to the terminal nodes, it may now begin evaluation of moments

for the variables in the i^parating sets, moving down in the tree until the moments for the out-
put variable have been evaluated.

The ECL system environment is used to aid in the construction of the computation tree for

the simplification and evaluation sections of the STAT compiler. Such tasks as lexical and syn-

tactic analysis of the source program are performed by the ECL interpreter. In addition, all

operations on modes such as REAL, IM , BOOL, etc., available in ECL are directly accessible

to the STAT user. These include conditionals, looping, subroutine invocation, and i/o functions.

So long as rcal\tandom variables are not employed, the STAT routines are not invoked. Also, if

a STAT user tries to perform an operation on a n-ulVmiiiDm which is not supported in STAT, then
he will receive a MODE ERROR from ECL.

When the ECL program does reach supported operations on rcalNraiidom variables, the STAT

mechanisms are invoked. Unless a print operation is requested, the STAT routines merely use

these calls to construct the computation tree. Each rfalVanciom variable is represented by a data

structure which is a node in the computation tree. Calls to a STAT operation are used to link

the nodes into the tree structure with pointers to the left and right fathers of the results, and to

record the function associated with the node in the data structure. Thus, the STAT routines

partially decompile the ECL program to obtain the structure 'computation tree) of operations

on rfuIVurnlum variables after all the operations on RCALs, I.VTs, and BOOLs have been performed.

All loops have been unwound, and all subroutine calls involving reaKriimiom variables have been
expanded into one large computation tree.

When the PRIM routine is invoked for a rfuNrundom variable, that variable is designated as

the output variable, and the STAT simplification and evaluation code is invoked. As descr bed

earlier, a separating set of independent variables is determined for the output variable.

The output variable is then expressed symbolically as a multinomial function of the variables

in the separating set. This is done by backward substitution beginning with the output variable.

The output variable can be expressed as some function, say addition, of two other random vari-

ables. These in turn can be expressed in terms of their fathers. Finally, the expansim will
reach members of the separating set and the substitution will terminate.

S2

mmttm -— mat «HUMMtti*.* -—.,...._

If the moments of the variables in the separating Mt are available, then the moments of

the output variable may be obtained directly by an evaluation process on the multinomial repre-

sentation. Note this is not the normal evaluation of a multinomial; rath' r, as described in

Sec. V, we must evaluate a term xV as E(X1)E(Y;'). To obtain the higher moments of the out-

put variable, we must symbolically raise the multinomial to a power to obtain the multinomial
expansion for the higher moments.

After evaluation of a particular output variable, all the intermediate results are retained

in the computation tree data structure. The motivation for this derives from the fact that the

EC I. user is operating interactively and may ask for further operations invoking the variables

he has used. It would clearly have been possible to choose not to r^iuin these intermediate re-
sults, and to regenerate them as needed.

Note that the moments of the input variables are not needed until after all the symbolic poly-

nomial manipulations are performed. Moreover, once this analysis of the program structure

has been performed, different input distributions could be specified to generate different output

distributions without changing the intermediate analysis. ST AT has not been organized to per-

mit respecifying the input distributions, but again this could clearly have been done. In this
sense, STAT is a compile and execute system rather than a compiler.

TABLE Vl-l

STATIC BREAKDOWN OF STAT CODE

ECL Interface and
Computation Tree Construction

Simpiri-ation Strategy and
Evaluation Control

Polynomial Manipulation Package

Set Manipulation Package

Constr'-ctor Definitions

Lines
of

Code Percent

195

no

18Ü

40

185

27.5

15.5

25.4

5.6

26.1

TOTAL 710

The static bre: kdown of the code in the STAT system, shown in Table VI-l, provides some

indication of whore the programming effort was spent. The polynomial manipulating package

represents the weakest portion of STAT, since the implementation is Jone using a list-structured

representation for the polynomial and recursive calls to perform the required operations. This

led to ease in coding, but requires long execution times.

Si

MM^ta. «■MMIMMIM

This is reflected in the dynamic code breakdown shown in Table VI-2. These data were ob-

tained on the Harvard PDP-iO (a KA-10 processor, earliest of the PUP-10 series), using the
ECL interpreter <o execute STAT when performing the statement

->Distto60MPH(uniform(98.0. 128.0), uniformdOOO.O, 2000.0), 5.0)$

TABLE VI-2

DYNAMIC BREAKDOWN OF STAT CODE

1. Computation Tree Formation

2. Separating Set Selection

3. Polynomial Formation

4. Raising Polynomials to Powers

5. Evaluating Moments

A. Terminal Nodes

B. Intermediate Nodes

6. Miscellaneous

TOTAL

CPU Time'
(sec)

1.71

0.81

2.20

25.83

1.58

3.43

0.49

Percent

36.05

5

2

6

72

4

10

1

100

*PrelimInary data-individual values have variance of 20 per-
cent about their mean.

There are a number of interesting points to note in Table VT-2. Only about 1 5 percent of

the work iitems SA and 5B) depends on the moment values. Thus, if different input distribu-
t.ons are specified, it would be oossible to recalculate the results with only about 15 percent of

the effort required for the first. The STAT system, as noted earlier, does not currently pro-
vide this option.

The otter point of particular interest is that the time to perform the operation of raising

the polynomials to a power and evaluating the moments could be easily estimated based on the

number of terms in the polynomials formed bv substitution. Thus, ,fter about 15 percent of the

effort had been expended (steps 1. 2, and i), the time for the remaining step,-, could be predicted,

and even presented as a table depending upon the number of moments desired in the output.
A listing of the STAT system and a more detailed description of the code may be found in

the Appendix.

54

m^m ~-~~~l**mft***i~*M~^~-.

VII. PROBLEMS IN PROVIDING A PRACTICAL STATISTICAL COMPILER

In the last section, we described a statistical compiler system with a limited capability. In

this section, we emphasize the lliritations of the ST AT system and indicate some approaches to

the construction of a "complete" statistical compiler system.

The major limitation of STAT is the small variety of operations it is prepared to perform

on random variables. As we discussed extensively iu Sec. V, there is a complex interaction be-

tween the choice of representation form and the operations which are provided to the STAT user.

By restricting our prototype to only a few operations, we were able to choose a representation

which is convenient, accurate, and efficient. Extending to other operations however will involve
compromises in some or all of these areas.

For example, assume that we wished to permit a random variable to appear in an arithmetic

comparison with a real. This implies evaluating the cdf for the random variable at the value of

the real. As we indicated in Sec. V, this conversion is expensi/e and error-prone unless the
real value is in the tails of the distribution.

Of course, if the operations we wish to perform on the random variables are exclusively

comparison, and maximum/minimum operations, then we should choose the cdf as the repre-

sentation form. In this way, we could construct an alternative STAT system optimized for dif-
ferent operations and convenient for those.

We can pursue this further and construct a number of different statistical compilers each

using a representation optimized for a particular set of operations. This set of statistical com-

pilers would each handle a subset of all the problems one would like a statistical compiler to
handle.

One can proceed a step further in the direction explored by Low [Low 74). A master statis-

tical compiler could be constructed which would contain all the particular representation forms

we have the knowledge and patience to implement. The performance characteristics of the par-

ticular representations would be parametrically described, and the master compiler would then

choose the representaüon form to minimize the resources required at execution time.

Following Low, th^re are a number of possible ways to proceed in the construction of such

a master compiler. We might insist that conversions between representations are expensive

and will not be permitted. In this case, we "partition" the random variables Recording to the

operations performed on them. For each random variable, if the set of operations to be per-

formed is small, then there may well be an optimum representation employed. In Low's study

for representing sets, this technique of choosing one representation to use for the life of the
variable was satisfactory and such a compiler was constructed.

In the statistical compiler area, because the costs of using the wrong representation are

severe, and because no one representation is satisfactory, we may be forced to converting

from one representation form to another As Low properly indicates, such a compiler would

at this time be a research effort in itself and constitutes an interesting problem.

There are several further possibilities beyond those suggested that might be used in a sta-

tistical compiler. One option of interest in a statistical compiler is the possibility of postpon-

ing computational effort as long as possible because the intermediate results can be so large.

Indeed, it may in some cases be more economical to recalculate the results as needed than to

save the result in storage. Thus, one set of representation options would be to produce sub-

routines which will calculate the values of specific entries in the representation form rather
than to produce the representation form in toto.

ss

mmmmm ■«■■

•

\

Because any specific set of representations, such as those discussed in Sec. V, will not

be convenient for some base functions, it is necessary to provide some alternate mechanism

to handle these operations. The obvious alternative, first suggested in this context by BerzinS

[BerzinS 7 5|, is to employ Monte Carlo simulation for small sections of the program, and con-

vert the various representation forms to and from a sampling representation. A master statis-

tical compiler with this option can guarantee to be able to handle any "FORTRAN"-type program

presented to it using random variables, although there will surely be some for which the errors
or execution time will be unacceptable.

The master compiler can and should offer its user an estimate of the errors and execution

time of his program. In the case of STAT, we could easily have presented the user with a fairly

good prediction (±20 percent) of the running time of his program after only 1 5 percent of the to-

tal effort had been expended; we could have gone further and presented the user with a table of

running times as a function of the rumber of moments desired in the output. Since the execu-

tion time may be large for cases of practical interest, this would permit the user to carefully

consider the value of the information and compare it with the cost of obtaining this information.

The analysis to calculate the running time can be performed rapidly enough, even for large pro-

grams, to be performed interactively, while the large execution time could be deferred for a

batch environment, with the user knowing what resources he will be expending.

A practical statistical compiler must offer its user a variety of output options for their ran-

dom variables. It must be prepared to provide moments about the origin, moments about the

mean, cdf, or pdf. This goes directly back to the Sec. V discussion on representation conver-

sions and the inherent accuracy limitations of some of these conversions. The user must be

warned of the possible inaccuracies of his result in quantitative terms. It is not acceptable in

an operational system to be used by many users in diverse situations to indicate "WARNING:

CONVERSION FROM A MOMENT REPRESENTATION TO A CDF MAY PRODUCE SIGNIFI-

CANT ERRORS IN THE OUTPUT." The system, if it is to be used, must indicate the location

of the potential error and its magnitude. It must indicate what options the user has for avoiding

the error (i.e., request your output as moments, not cdf). The system can and should track er-

rors generated in intermediate operations and indicate the effects of their propagation. Again,
this prescription becomes a significant research problem.

A less attractive alternate is to construct subsets of such a master compiler which can de-

tect errors of significant proportions, and then insist on using higher accuracy in this subsec-

tion of the program (i.e., more samples in a Monte Carlo approach, higher moments in a mo-

ment representation, more points in a cdf, etc.). This approach can provide some assurance

of adequate error control although not 9s reliably as tracking errors. It may require large or

excessive amounts of computing to reduce errors which would not propagate further.

Another problem that the designer of a master statistical compiler must consider is the

handling of user-written subroutines. In STAT, this is handled by, in effect, expanding each

subroutine invocation into the in-line code which it represents, and then processing the whole

program at once. This is unacceptably cumbersome for a compiler intended to handle programf

ot significant size. A practical statistical compiler must be capable of "separately compiling"

subroutines. It should produce, in the run-time envi-anment, a section of code which repre-

sents the subroutine and which is invoked on each call of the subroutine. This representation

accepts distributions for those arguments whose data type is romiom, and produces a result which
may be of type random.

U

The problem here is relatively simple if the input variables are statistically independent.

In that case, the problem is precisely the same as compiling the main program, and is thus just

the problem that the compiler is designed to cope with. However, the possibility that the input

variables may not be independent complicates the construction of the subroutine code. Although

the techniques indicated in Sees. IV and V are relevant to this problem, some of the simplifica-

tions were obtained by the assumptions of Independence of the input variables. Relaxing this

assumption makes simplifying the program structure more difficult. If all input variables are

mutually dependent, then no effective simplification of the program can be performed. As more

mutually independent sets of input variables are identified, more simplification can be performed.

Another problem in the construction of a statistical compiler is the question üf an optimum

computer architecture for the execution of such a compiler. We distinguish this into two phases:

compile time and run time. In compile time activities, the activities of a statistical compiler

are not significantly different from a regular compiler. There are some differences related to

spending more time searching computation trees and performing algorithms on these trees. In

addition, a relatively small percentage of the total time is spent in the compile time activities

of fie statistical compiler. The possible useful hardware modifications are in the areas of im-

proved character handling and stack operations, as well as the possibility of special-purpose

hardware for algorithms on tree structures. The special tree hardware might be capable of the
following operations:

(1) Data Entry

x is father of y

x is son of y

x is brother of y
etc.

where x is being entered into the tree, and y is already a member.

(2) Data Retrieval

the set of sons of x

the set of ancestors of x

the set of common ancestors of x and y

where x and y are elements of the tree.

(3) Predicates

is x an ancestor of y?

are x and y independont?

does the set {z} separate x from y?

where {z} is a set of elements of the tree, and x and y are elements of the tree.

This tree manipulation hardware would he generally useful beyond ,iust the statistical com-
piler. I see two possible implementation approaches to such hardware.

(1) Via a microprocessor operating on a private memory with algorithms

optimized for the tree task using random access memory and pointers
in the structure and,

(21 Via an Rssociative memory using content »ddressing to rapidly retrieve
items with the desired relationships.

S7

tmmm KliiBHMIMl i !■■■■■ ■■— mm,

__

Option (1) has the advantage of being fairly easy to construct today with commercx>?ay available

hardware, while option (2\ should be fas'er but is significantly more expensive.

The architecture for support of the run time system is the more important issue, and is

crucially dependent on the representation forms vised. Each form has some hardware structure

that we could describe to optimize its execution; some of these are commercially available.

For example, operations on pdf's might be performed using hardware convolvers and FFT boxes.

These devices are now available commercially and will become cheaper over time. For exam-

ple, convolvers on a single chip of CCD or MNOS technology are just now appearing in the lab-
oratory [Tiemann 74|.

If moment representations are to be employed, then hardware for symbolic manipulations

of polynomials might be appropriate. 1 have no specific insight into the construction of such

hardware, but if available it could be utilized for a statistical compiler as well as in a symbolic
manipulation system [CACM 71].

In general, the analysis of programs for a statistical compilation reveals sections which

can be pursued in parallel. This property of the analysis can be used to exploit hardware par-

allelism for those programs which are intrinsically parallel. These parallel sections follow

closely disjoint sections of the underlying computation tree which permit easy deter Tiination of

the necessary control structure. Thus, the picture 1 have of a processor designed for a sta-

tistical compiler run time system would have the following major features:

(1) A set of independent processors, not necessarily identical. Some of

these would be optimized for convolution operations, some for symbolic

polynomial manipulation, some for Monte Carlo simulations, etc. This

is probably best handled using microprocessors with writable micro-

code so they can be rapidly optimized to handle the particular represen-
tation form for the assigned section of the tree.

(2) A master controller following a tree description of the control structure

necessary for the execution of the program. The control structure would

be constructed at compile time, and the controller would then see to initi-

ating and responding to the terminations of processors.

This description leaves open the question of memory organization to support such a collec-

tion of processors, although th's is likely to be critical to the success of a hardware implen,no-

tation. If the processors are physically clustered, then a common multiport, highly interleaved
memory preserves the flexibility to alter memory allocation dynamically. Constructing such

a complicated memory bus will however surely occupy a large fraction of the implementation

effort. The alternate approach of providing each processor with private memory is less attrac-

tive in this case because of the large and va- iable demands upon the memory resources in any
particular execution.

This hardware organization would be interesting and useful for a broad variety of tasks,

and thus could be made economically viable. The closest approach to this structure to my

knowledge is the C. MMP effort at Carnegie [Wulf 72 1 which uses multiple PDP-H's rather

than microprocessors. The design, implementation, and software for such a structure re-
mains a fascinating and challenging problem.

.L

SH

mma^m^^^^^. . . .nm^mtm^^mn,

VIII. REMAINING RESEARCH PROBLEMS

In this docuruent, we have presented a new philosophy and approach to computing with

random variables. The work presented is, however, only a beginning in this area and much

fruitful work remains to be performed. In this section, we indicate some of the major research
problems that remain to be solved.

A. OTHER APPROACHES

In Sec. II. we presented a non-computability result indicating some fundamental limitations

on the types of computations which can be performed. As wo indicated immediately following

the theorem, there are a number of possible problem? to he solved within these limitations. In

the remainder of the report we have only explored one subproblem, but the solution of some of

the others would be a useful addition to the state of the art.

TABLE Vlll-t

Algorithm Type

Exact Approximate

^"v Distribution
\ Class

Function\v^
Continuous

Infinite
Atomic

Finite
Atomic

Continuous
Infinite
At-imi'-.

Finite
Atomic

Class \^

Hard X X ? MC MC MC

Easy SC SC SC MC MC MC

SC = Statistical compiler techniques

MC = Monte Carlo techniques

X = Non-computable

? = No known practical techniques

As indicated in Table VHI-1, we can divide the problems into several classes. One catego-

rization describes the class of functions the statistical compiler can handle. For this discussion.

I divide the classes of functions loosely into "easy" classes and "hard" classes, where "easy"

classes do not include Kleene's predicate, while "hard" classes do. The class of computation

trees is considered an "easy" class in this sense. Another division of statistical compilers is

based on whether the input distributions are atomic with a finite number of atoms, atomic with

an infinite number of atoms, or continuous. The simplification rules described in Sec. IV apply

to all these types of distributions, while the representation techniques in Sec. V emphasize the

last two. Finally, a third division is based on whether the techniques used for the statistical

compiler are capable of providing exact results assuming the computing device performs exact

arithmetic. Tiie approach in this work has been exact solutions, as contrasted, for example,

with Monte C.irlo techniques which are inherently approximate.

S9

kammm

The table indicates which approaches have been pursued so far. As can be seen, the table

has a r.ajor gap in practical techniques for the "hard" class of functions and finite atomic dis-

tnbutions. The only approaches currently available are exhaustively evaluating the function for

all atoms of the input distribution (not practical) or sampling the input distribution (i.e.. Monte

Carlo technique). Some intermediate approach which analyzes the structure of the computation

to reduce the amount of work seems fruitful. However, the non-computability results imply

that any such techniques must critically depend on the finite nature of the distributions. The

key question then is whether such algorithms will be combinatoriaKy explosive for most practi-
cal problems or useful for a large class of functions.

The other problem indicated in the table is the extensive dependence on Monte Carlo and

statistical compi'er techniques for many cuferent problems. I believe that more efficient ap-

proaches to the "easy" finite cases can be designed which will permit more accurate results

than Monte Carlo techniques but which are less accurate than the statistical compiler techniques
described here.

B. RKl-rtKSKNTATION TECHNIQUES

The analysis of representation techniques in Sec. V only begins to approach an exc.edinglv

complex topic which is at the heart of statistical compilation techniques. The discussior in

Sec. V suggests a large variety of techniques, but only a few of thes,: have had significant utiliza-

tion. More extensive experience with these techniques is clearly „ecessary to evaluate their
suitabilitv or use.

r
TABIE VIII-2

Base Operations Representation Techniques

MAX, MIN, CHOICE

SUM

Characteristic Functions

Sampled pdf

Moments

Moments

Mel I in Transform

Sampled pdf

Generating Functions

Table. ^ .,1-2 in* ates a number of base functions and some representations which are par-

ticularly convenient for those base functions. The table shows that for the major c orations a

number of representation choices are available. However, the list of base functions here is rela-

tively short, excluding such important operations as division and exponentiation. Further the

representation choices tend to be specific to certain ba.e operations. Thus, there are two ma-

jor areas of further effort: (1) new representations appropriate to other base operations, and

(2) new algorithms for f-convolution for specific representations (i.e.. a convenient algorithm
for -i- - convolution on sampled pdfs).

60

-■ ■

Kurther work in the extension of f-convolution algorithms to joint probability distribi'tions

could siiniificantly improve computational speed and accuracy for complicated programs.

C. APPLICATION AREAS

We began this report with two examples of applications for statistical compile" techniques.

In Sec. VI, we showed the use of the STAT system to solve one of these problems. These ex-

amples indicate some possible uses of a statistical compiler-, but represent a very limited sub-

set of the actual application areas.

In general, application areas for a statistical compiler of the type envisioned in Sec. VII have

a number of distinguishing properties, or conversely, if a problem has these 'ustinguishing

properties, it is a candidate for use of statistical compiler techniques. The major character-

istics of these problems are (a) there is a large populatio:. of interest (large enough for statis-

tical measures to be accurate enough for practical purposes), (b) each element of the population

has certain properties which are expressed numerically, (c) the distribution of the values of the

properties is known for the population, and (d) a deterministic description of the behavior (also

specified numerically) of an element of the population in terms of its properties is available.

Then one may use statistical compiler techniques to calculate the distribution of the values of

the behavior of the population. Moreover, the problem may be presented to the compiler in two

parts: the behavioral description, and the property distributions.

However, these very general guidelines do not indicate the real limitations of the techniques.

As we have indicated elsewhere in this report, the two major practical problems are: (1) the

complexity of the behavior function, and (2) the joint dependencies of the input distributions.

How then is a potential user to decide whether 10 employ these techniques. If a statistical

compiler as envisioned in Sec. VII is available, the user may ask the compiler for estimates of

running time and accuracy. But this is partially begging the questions, for the real issue is:

For how many useful problems would a statistical compiler produce accurate results with a plau-

sible expenditure of resources', or expressed more succinctly, Is it worth the effort to construct

an extensive statistical compiler?

Infortunately, at this point, no quantitative data to support an answer to these Questions

exist. It is clear from the work presented here, that there is a class of problems tor which

these techniques are applicable and efficient. There is also clearly more research work to lie

performed before the construction of a "practical" statistical compiler ca'-. ne sized accurately.

Thus, the major unsolved question remaining in this area is its cltimate practicality. Some

specific subquestions can be phrased to help the resolution of this question: How well can we

characterize the execution time of some of the t'-cotuolution operations0 Are there specific ap-

plication areas which would be satisfied with just the base operations for which convenient rep-

resentations are known? How complicated a process is the rule-guided optimization? How much

storage must be dedicated to store joint distributions for practical problems''

The answers to these questions will significantly aid in determining the future of this line

of inquiry. My belief, at this point, is that these questions will take time to answer, but that

the ultimate utility of statistical compiler techniques will be demonstrated.

M

■ ■^~——

APPENDIX

DESCRIPTION OF STAT CODE

The STAT system is constructed entirely in EC'L, using the BCL mechanisms for mode

extension (Wegbreit 74). These mechanisms have been general enough to allow for all the

extensions described in Sec. VI without any changes to the ECL system, although certain

capabilities to properly control the construction of rfulVumlom objects have only appeared in the

system recently. The files which the user "LOAD"« to invoke STAT consist of several primary

components:

(1) A set of functions required by the EC'L system to specify the behavior

of the new mode rculVamlom. These include functions for generation,

Konversion, assignment, selection, and printing of rcalXmndom objects.

(2) Extensions to thj operators "t", "-", "* ", "/". and "-" to handle

rt'ulvmiilom variables. In the standard cases, the already existing

system routine is invoked, while real\rumlom objects trigger entry to

code written for the STAT system.

(3) Definitions of the constructors poiiii, distribution, uniform, pussion, and
poisson,

(4) Definitions for a new mode called poly, used to represent polynomials

of several variables, which is used in the evaluation of rculVumiom

expressions as described below, and

(5) Routines which control the amount of evaluation effort expended at

each point during the execution of a program involving tcahtmuiom

objects.

The data structure used to representrealVandom objects has a number of fields:

name SYMBOL

A guaranteed unique name which is used internally to refer to this

random variable.

leflfathei

righlfather

PTR(REAL, [NT, reaWrandom)

These fields point to the values that were combined to produce the

random variable. They may point to another random variable, or a

REAL or INT value. Only two such fields are necessary because only

operators on one or two variables have been provided, although the

extension to handling functions of several variables merely requires

additional father fields.

ROUTINE

The operator used to combine the fathers to obtain this random variable.

VEfTORf 16, REAL)

62

mmmmtimim^mM.^^^ litjünmfrntonütltr'1 i ■ i ■

Space to hold the moments about the origin of this random variable.

Initially, none 01' these values are caleulated-, rather the^ are generated

as needed.

turllh IN f

The index of the last entry in the mom table which has been filled.

mom(\cn PROC(PTR(rcahrandom))

A routine which calculates additional moments as necessary. For

random variables which are generated by constructors, specific momgen

functions are provided, e.g., poissonDiomgen, goirssionwemge», etc. For all

intermediate results, a routine called iHlfrminiiflt'n is used.

deslth INT

The index of the last entry in the mom table which should be filled when

the momgc« routine is executed.

cluiu REF

Some of the momgen routines associated with specific constructors re-

quire space to store their internal variables. The ilulu field refers to

a data structure for this purpose. The exact details of this data struc-

ture vary for different constructors.

8»c PTR(rrSET)

A pointer to the set of milXrmulom objects '.vhich contains all the compu-

tational ancestors of this random variable. Not calculated until needed.

When a constructor is invoked, it invokes the generation routine for irulVumlom variables.

The generation routine provides a blank data structure, with only the name field initiali/.ed. The

constructor- assigns appropriate values to the liiilu and momgett fields and returns.

Operators also invoke the generation routine to obtain a blank structure!, and using a routine

calleu rrapply assign values to the fields f», momgen, leftfother, and rightfather. No other calculations

are performed at this time.

These steps cause the system to cor itruct the computation tree for the computation us the

user is assigning values to variables and executing his routines, whether Interactively or from
predefined functions. Until the prim function is invoked on a rfirl\rmi((om, no attempt is made to

evaluate its moments.

The print routine is also quite simple. When invoked on a rnilXwmlom, it checks iiirllli to see

if four moments are available. If they are not, the prinl routine sets licsllli to lour, and invokes

the momgeit routine to calculate the additional moments. When this is complete, four moments

are available and nia,v be printed.

The heart of the system is then the computational routines invoked via the moment generating

[unctions, as Well as the control which decides which moments nerd to be explicitly calculated.

We describe first the algorithms used for some of the constructor momgen routines to indicate

the algorithms for these, and then proceed to describe the more Interesting routines invoked by

intermomgen for non-terminal nodf = of the computation tree.

63

^_

_.!.

Uniform Moment Generator

The moments about the origin of a uniform distribution from a to b may be directly
obtained by integration.

^n - J. (b^T) dx

b(n+l) _a(n+l)
= (n + 1) (b - a)

If a specific ^ is desired, this formula may be evaluated directly, but if all values of

\i.'n from n = 1 to k are desired, then ti ; following recursive scheme is more efficient. Define

f(n, a, b) =
b(n+l) _a(n-H)

b -a

Then we have the following recursive definition of f, as may be readily verified by induction.

f(0, a, b) = 1

f(n + 1, a, b) = a « f(n, a, b) + b(n+1)

(*{, « f(n, a, b)/(n + 1)

Thus, if we maintain the values of f(n, a, b), and bn, we may calculate each higher moment

for the cost of two multipUcations, one division, and two additions as well as the cost of updating

the values for f and bn. In addition, two locations for the storage of f and bn are required.

These are provided in the dala portion of the rcal\rflndom data structure.

Gaussian Moment Generator

The moments about th • mean for the Gaussian are easier to obtain in closed form than the
moments aboi the orlgi.n We have then the following equation:

%" r (x-m)ne-(x-m)2/2<T2

Let y = x - m to obtain

dx

'.■f n -y /Za y e ' ' dy

We may integrate this by parts to obtain

ye' dy = 2- !:: n + 1
■>« , n^2 2 ,_ 2

-" (n + 1) a
dy

Since lim yn+1 e-y2/2ff2 =
y->±oo

0, wo have the following recursive relation:

dy = (n + 1) a2 C yn
2/-, 2

e'y '^ dy

64

 ■"-■"-^-- ■■■ ^ . myMifiiakMiW'iiififir ti^«~-^.-.

or expressed in a more usable form:

^0 =1' ^1 =0

^n+2 = (n + 1)
2

<7 * n
~ r

This implies, as one would expect, that all odd moments about the mean are zero.

In order to obtain moments about the origin, we make use of the following relationship be

tween moments about the mean u and moments about the origin (i1 [Kendall 63|.

V Q^i'^
We may rewrite this to obtain

n-1

th
expressing the nl" moment about the origin in terms of the nth central moment and other moments

about the origin. The polynomial in (-H-V
is best evaluated by Horner's rule, calculating the

combinatorial coefficients in the same loop.

Moment Calculation for Derived Results

As described in Sec. V, we can evaluate the moments of a multinomial function of independent

random variables directly from the moments of those independent random variables. It is this

technique which is used to implement the evaluation of moments for derived values.

In order to evaluate the moments of a rraKranilom variable X which is not a direct result of
a constructor, we then proceed as follows:

(1) Kind a set (referred to as an liu set for reasons described later)

of independent random variables which separates (see separating

set definition in Sec. IV) X from its terminal ancestors in the com-

■ putation tree (i.e., from all the constructor-generated random
variables which are computational ancestors of X).

(2) Kxpress X as a multinomial function of the random variables in
the lid set.

(3) Evaluate (perhaps bv recursive calls) the moments of the random
variables in the liu set.

(4) I se those moments to perform the evaluation of the moments for X.

In order to reduce the computational effort as much ae possible, both m finding a multi-

nomial representation and in evaluating the multinomial, it is desirable that the size of the lia

set be as small as possible. Further, the set must consist of independent ancestors of X.

Because of this we refer to this set as the least independent ancestor (liu) set. There is not

a unique least ancestor set for any arbitrary random -ariable X in anv computation tree.

Moreover, generating a set which is guaranteed to be minimal is not a simple computation.

We choose therefore to calculate a set which is guaranteed to be Independent and a separating

hi

mm*

set, which insures the accuracy of the computation, but we cannot guarantee that it is minimaL

Thus there is a routine in the system called lui which when applied to a random variable calcu-

lates an approximation to a least independent ancestor set, and it is this set we refer to as the
Im set.

Once the lia set is determined, the routine subsi is invoked. This routine oalculates the

multinomial function representation for the random variable X in terms of members of the liu

set. Subst first calculates the multinomial representation of X.leflfather and X.righl/olher in terms

of the lia set of X. It then uses the symbolic polynomial manipulation package which is part of

STAT to combine these two according to the appropriate operation in X.fn. In fact, since the

routines which implement " " + ", "-", "« ", "/", and "- ", also accept arguments of mode poly ,

they are invoked directly to perform the polynomial manipulations.

When the substitution phase is complete, each term in the polynomial is examines to deter-

mine the highest degree for each lia set member in the multinomial. For example, if the derived

multinomial for X is X = 3 « Z2 + 2 * Y3 i 4 « Z2 * V2. then the highest degree for Z in this

multinomial is 2, and the highest degree for V is 3. If the number of moments desired for X

is k (the value in X.desllli), then 2 * k moments for Z are required, and 3 * k moments for V

are needed. If this number of moments for these variables are not available, then their moment

generating functions are invoked, perhaps recursively, to obtain them. Once all the needed

moments are available, the multinomial may be evaluated to obtain the first moment of X. As

described in Sec, V, moments of order k may be obtained by symbolically raising the multi-

nomial function to the power k, and then evaluating the multinomial obtained. The evaluation

rules for multinomials in this context are not the normal rules of substitution since no specific

values exist for the random variables in the lia set. Hather, when a term involving Zk is evalu-
ated, the k moment of Z is substituted for Zk.

By far, the bulk of the computational effort expended occurs during the symbolic evaluation

of the powers of the multinomial representation. Tne amount of effort required could be easily

estimated on the basis of the number of terms in tne multinomial and used to allow the user of

the system to decide on the number of moments he requires when presented with the cost to

compute each moment. No such provision is currently provided, however.

The remainder of the system provides more conventional capabilities such as the polynomial

and set manipulation packages used to implement the moment generating routines. These will
not be further discussed here.

A listing of the code for the STAT system follows.

M.

poly <- poly :: SEQ(STRUCT(oo«ff!REAL, var:PTR("term")));

term <- term :: SE0{STRUCKvar:PTR("rrSTRUCT"), exp:lNi));

INFIXC'K", 150;j

!< <- <;

< <-
EXPR(x:UNEOF(REAL, INT, term), y MJNEOF(REAL, INT, term): BOOL)

BEGIN
CASE(COVERS)[MD(x), HD(y)]
[ARITH, ARITH] r> x !< y;
[term, tern] ;>

BEGIN
DECL lx:II\IT BYVAL LENGTH(x);
DECL ly:INT PYVAL LEHGTH{y);
rOR i FROM 1 TO LENÜTH(v)

REPEAT
; > Ix :> TRUE;
xLil.var f y[i],var ;>

VAL(xli J.var.name.TLB) !i
,'AL(y[i] . var . naxe .TL') ;

x[iJ.oxp I y|i J.exp -> v[i] ,
FALSE;

END;
END;

TRUE => BREAKCliPE ERROR IN <•>;
END)

END;

rrSTRUCT <-
rrSTRUCT : :
STRUCT(nameJSYMBOL,

Ieftfather:PTR(RtAL, INT, "rrSTRUCT"),
rightfather:PTR(REAL, INT, "rrSTRUCT")
momgen:PROC(PTR("rrSTRUCT") SHARED 1 ,
fn:ROUTINE,
curlth:INT,
deslth:INT,
mom:VECTOR(16, REAL),
anc:FTR("rrSET"),
data:REF) ;

exp l< yLi] .exp;

..7

limn um mmM\ n ^

rafn <-

EXPK(s:real\random, t: real\randoin ; realNrandora)
BEGIN

DECL lowers:real\randora.Ufi SHARED LOWER(s);
DECL lowert:real\random.UR SHARED LOWER(t);
lowers.leftfather <- lowert;
lowers.fn <- iden;
lowers .momgen <- intermomgen;
s;

iden <- EXPR(x:poly; poly) x;

rcfn <-
£XPR(s :real\randoiD, tlMODE} ANY)

BEGIN
t = NONE => NOTHING;
COVERSU, PTRlrrSThUC'D) OR COVERS^, REF) => LOWER(s):
BREAK('CONVERSION FROM real\random — TYPE •)•

END;

rsfn <-

EXPR(s:real\random, a:ONEOF(INT, SYMBOL); ANY)
[) BREAKCSELECTTON ON real\random •) (j;

rpfn <-
EXFR(s:real\random, piPORT; real\randoii)

fcEGIN
DECL mom:VECTOR(16, REAL) SHARED LOWER(s) .mom;
eval(s , h) ;
DECL var:Rr!\L BYVAL mom [2] - moBl[1] * 2;
PRINT('mean =', p);
PRINT(mom[1], p);
PRINT(' van =', p);
PRINT(var, p);
var <- ABS var;
var f O.C ->
BEGIN

DECL alpha?:REAL BYVAL
(mom[3] - 3 § mcra[1] • mom[2] + 2 • mom[1]
var * 1.5;

DECL beta2:REAL BYVAL
imomiH] - H * mom[ll * mom[3] +

6 • BOB[l] * 2 • momLS] - 3 » mom[1] * I) /
var " 2;

PRINT(' skewncss »•, p);
PRINT(alpha3, p);
PRINT(' kurtosis i' , p);
PRINT(beta2, p);

END;

END;

3) /

68

MBM UMH

i.. _

uniauenamectr <- 1;

uniquenarne <-
h:XPH(; SYMBOL)

BEGIN
DtXL s:SYMBÜL BYVAL
HASH(SCONCAT('name', BASIC\STR(uniquenamect!
s.TLB <- ALLOCdNT BYVAL uniquenameotr) ;
s;

END;

1)));

rgfn <-
EXPR(m:HODE, s:SYHBOL, 1:ANY; ONEOF(real\randora))

BEGIN
n 1/ realXrandom => BftEAKC ' GENERATION ERROR - peal\random'))
s = "BYVAL" -> point(i);
3 = "LIKE" OR s = "SHARED" =>
BEGIN
CASE(COVERo)[MD(l)J

[real\random] «> 1;
[PTRCrrSTRdCDl s> LIFTU, rcalNrandom) ;
[REF] hD(VAL(l)) = rrSTPUCT «>

BEGIN
DECL Z!PTR(rrSTRUCT);
z <- 1;
LIFT(z, roalVrordot!) ;

END;
TRUE i> dREAK('CONVERSION TO real\random ');

c(<D;
END;
DECL x:realXrandom.UH BYVAL ALLOC(rrSTRUCT);
x.name <- uniquename();
s = "SIZE" => LlFT(x, real\random)|
bREAK('GENERATION ERROR1);

END;

realSrandom <-
<* "real \ ranoorn" ,

UCF(rcfn),
UAE(rafn),
USE(rsfn),
üPF(rpfn),
UGF(rgfn),
SUPUGF(TRUE) »> PTh(rrGTRUCT);

t.u

rrapply <-
EXPR(f:SYMBÜL,

x:ONEOF(real\ranclom, INT, HEAL),
y:uNEüF(rea]\ranclom, INT, HEAL , ''(ONE):
real\random)

BEGIN
I'ECL 7 : feal\random ;
DECL lowerz:real\random.UR SHARE! L.üWERCz)-
lowerz.fn <- VAL(f.TLB);
lowerz.momgen <- intermorapen;
lowerz.leftfather <-
BEGIN

MD(x} : reaUrandora => LOWER(x)<

ALLüC(MD(x) BYVAL *)i
END;
lowerz.riehtfather <-
BEGIN

HLi(y) = realXrandom => LOWER(v)
ALLOC(rtD(y) BlfVAL y);

ENL;
z;

END;

UTIXi ".'-", 225, VKUE);

FLUSH(');

INFIXi""", ?25, TRUE);

!" <- EXPONENTIATION;

EXPR(X:ONECF(INT, REAL, real\random, polv)
y:AHITH;
ONtOFdNT, REAL, real\random, noiv1)

BEGIN
CASE(COVERS)[ML{x), Mn(y)]
[ARITt<, ARITH] t> x !* y;
[poly, INT] »>
BEGIN

DECL piPTfiCfoly) BYVAL ALLOCCpoly SIZE 1)-
p[1J.coeff <- 1.0;
p[l].var <- ALLOC(term SIZE 0);
FOR i FROM 1 TO y

REPEA1 p <- ALLOC(pclv LIKE x • VALip)) END-
VAL(p);

END;
[real\random, INT] => rraoolvC"« x vi-
TRUE -> BREAKC TYFK');"
END;

END;

70

*mmm I HI——

I

INFIXCM/", 200, TRUE);

!/ <- QUOTIENT;

/ <-
EXPR(x:ONEOF(INT, REAL, real\random, poly),

y:ARITH;
ONEOFdNT, REAL, real\random, poly))

BEGIN
CASE(COVERS)[MD(x)]
[real\random], [poly] => x • (1.0 / y);
TRUE => x !/ y;
END;

END;

INFIXC'!»", 200, TRUE);

!• <- PRODI'CT;

EXPR(x:ONEOF(INT, REAL, r-al\randon, poly, term),
y:ONEuFCINT, HEAL, real \ random, poly, term1,;
0NEÜFCINT, REAL, reaUrandom, poly, term))

BEGIN
DECL nxiMODE PYVAL MD(x);
DECL ny:MUDE BYVAL MD{y);
CUVERS(ARITH, mx) AND CÜVERS(ARITH, my) => x I

AND COVERSURJTH, my

C0N3T(poly SIZE

i>

:> o);

y END;

»> y

COVERS(poly, mx
BEGIN
y=0ORy=C.0
BEGIN

DECL z:poly BYVAL x;
FOR 1 FROM 1 TO LENGTHU)

REPEAT z[i].cocff <- z[il.oreff
z;

END;
END;
COVERS(ARITH, mx) AND COVERS(poly, my,
COVERS(real\randon, mx) AND C0VERS(poly, my)
COVERS(poly, mx) AND COVERSlreal\random, my)
CüVERS(term, mx) AND C0VERS{real\random, my)
COVERS(real\PtndOIll, mx) AND COVERSUerm, my)
C0VERS(term, mx) AND COVERSCARITH, my) UR
C0VERS(ARITH, mx) AND COVERSUerm, my) ■>
BREAK('Typ-. ERROR ••);
COVERSUerm, mx) AND CuVERS(poly, my) =>
BEGIN

DECL z:poly BYVAL y;
FOR i FROM 1 TU LENGTH(y)

REPEAT
z[ij.var <- ALLOCUerm SHARED VAL(y[iJ

END;
z;

END;

y;

• x;
OR
OR
OR
OR

. var)

71

COVERS(poly, mx) AND COVERS(term, ray) => y • x-
COVERS(term, mx) AND COVERS(terra, my) =>
BEGIN

DECL lx:INT BYVAL LENCTH(x);
DECL ly:INT BYVAL LENaTH(y);
DECL z:terra SIZE Ix + ly;
DECL ix:INT BYVAL 1;
DECL iy:INT BYVAL 1;
DECL j:INT BYVAL 0;
REPEAT

DECL copy .-ROUTINE BYVAL
EXPR(x:term SHARED, ix:INT SHARED, lx:INT SHARED)

REPEAT
ix > Ix => NIL;
j <+ 1;
zij] <- x[ix];
ix <+ 1 ;

E.'.Li,
ix > Ix => copy(y, iy, ly);
iy > ly => copy(x, ix, Ix);
JEGIN

j <+ 1;
VAL(x[ix].van.name.TLB) = VAL(y[iy].var.name.TLB) =>
BEGIN

z[j] <- x[ix];
z[j].exp + y[iy].exp;
ix <+ 1 ;
iy <+ 1;

END;

VAL(x[ix].var.name.TLB) > VAL(y[iy].var.name.TLB) r>
[) z[J] <- x[ix]; ix <+ 1 (];

z[j] <- y[iy];
iy <+ 1;

END;
END;
BEGIN

DECL oz:FTR(terra) BYVAL ALLUCCterm SIZE 1);
FOR i FROM 1 TO j REPEAT oz[iJ <- z[i] END;
VAL(oz) ;

EMD;
ENiJ;
COVERS(poly, mx) AND COVERS(polv, my) =>
BEGIN

DECL z:PTfi(poly) BYVAL ALL0C(poly SIZE 0);
LENGTH(y) < LENGTH(x) => y • x;
FOR i FROM 1 TO LENGTH(x)

REPEAT
z <-
ALLOC(poly LIKE

VAL(z) + x[i].coeff • (VAL(x[i].var) » f)U
END;

VAL(z);
END;
TRUE => rrapplyC'»", x, y);

END;

72

—■*-—■''*'*-1 — -- -- ~,^*^~*.~-^.. ,:■ .1^
■ '—' —"■ "■-■

INFIXC'!-", 175. TRUE);

PREFIXCM-");

!- <- DIFF;

- <-
EXPR(x:ONEÜF(INT, REAL, realNrandom, poly),

y:0NE0F(INT, REAL, realArandotn, poly, NONE);
0NE0F(REAL, INT, reaUrandom, poly))

BEGIN
CASE(COVERS)[MD(x), MD(y)]
[ARITH, ARITH] => x !- y;
[ARITH, NONE] => !- x;
[poly, NONE] r>
BEGIN

DECL z:poly BYVAL x;
FÜR J FROM 1 TO LENGTH(z)

REPEAT z[J] .coeff <- !-
z;

END;
[real\random, NONE]
TRUE => x + - y;
END;

END;

(zfj].coeff) END;

> rrapply("-" , x);

INFIXCU",

!+ <- SUM}

175, TRUE;;

+ <-
EXPR(x:ON,iOF(REAL, INT,

y:ÜNEOF(REAL, 1^",
real\random,
real\random.

INT r'eal\random, poly)) ONEOF(REAL
BEGIN

CA£i-:(COVERS)[MD(x) , HD(y)]
[ARITH, ARITH] => x !+ y;
[poly, ARITH] =>
BEGIN

LLNGTH(VAL(xf1].var)) = 0 =>
[) DECL z:poly BYVAL x; z[1]

DECL z:poly SIZE LENGTH(x) + 1:
it 1].cceff <- y;
2[1J.var <- ALLOC(term SIZE
FOR i FROM 1 TO LENGTHCx)

REPEAT z[l + 1] <- x[i] END;
z;

END;
[ARITH, poly] => y + x;
[poly, poly] =>
BEGIN

DECL lx:INT BYVAL LfJNGTH(x);
DECL ly:INT BYVAL LENGTH(y);
DLCL z:poly SIZE Ix + iy;

poly),
poly);

coeff <+ y; z (] ;

0)

73

■ - -■

=> NIL;

x[lx];

ly,
ix,

iy);
lx);

EN
[pol

BR
TRUE
END;

END;

DECL ix:INT BYVAL 1;
DECL iy:INT BYVAL 1;
DECL J:INT BYVAL 0;
REPEAT

DECL copy.-ROUTINE BYVAL
EXPR(x:poly SHARED, ix:INT SHARED, lx:INT SHARED)

RE PEAT
ix > lx
j <+ 1;
z[j] <-
ix <+ 1;

END;
ix > lx => copy(y,
iy > ly => copy(x,
BEGIN

J <+ i;
VAL{xtix] .var) = VAL(y iy].var) =>

BEGIN
tin <- x[ix];
z[j].coeff <+ y[iy].coefi;
ix <+ 1 ;
iy <+ 1;
z[JJ.coeff r 0.0 => i <- i . i •

END; J J 'i

VAL(x[iX].var)
D z[J] <- x[ix]; ix <+

z[jJ <- y[iy];
iy <+ 1;

END;
END;
BEGIN

DECL oz:PTR(Doly)
FOR i FROM 1 TO- J
VAL(oz);

END;

y, real\randora], [real\random, poly]
EAK{'type error
=> rrapply("+".

< VAL(y[iy].var)
1 (J;

BYVAL ALLOCCpoly SIZE j);
REPEAT oz[i] <- z[i] END;

[real\random,

x, y);

74

MMM m^m

'

evai <-
EXPR(u:PVfi(rr3TRUCT), k:INT)

[) u.deslth <- k; u.deslth > u.curlth O u.raomgen(u) (];

rrSET <- rrSET :: .STRüCT(metnbers :SEg(BC"' ptP«:PTft("rrMKM"));

next:PTR("rrMEM")); rrMEM <- rrMEM :: STRUCTCelem:PTR(rrS.RU.

INFIXC'element", 150);

insert <-
EXPR{x:PTR(rrSTRUCT), y:rrSET SHARED; rrSET)

BEGIN
x element y => y;
VAL{x name.TLB) > LENGTH(y.members) => BREAK(' INSERTION •)•
y.members[VAL(x.name.TLB) J <- TRUE- iNbhRTION),
y.ptrs <- ALLOC (^r^:EM OF x, v.ptrs);
y!

END;

element <-
EXPR(x;PTRtrrSTnuCT), y:rrSET; BUUL)

BEGIN

VAL(x.name.TLB) > LEt.'GTlU y . members) ■> ^ALSE-
y.members[VAL(x name.TLß)"];

END;

interraomgen <-
EXPR(u:PTfi(rrSTRUCT) SHARED)

BEGIN
DECL y:rrSET LIKE lia(u) ;
DECL 3ym:poly LIKE subst(u, y);
calcdeslth(syni, LOWER (u). deslth);
DECL x:PTR(rrMEM) BYVAL y.ptrs;
REPEAT '
x = NIL r> NIL;
x.elem.deslth > x . elem.curlth -> '.elem.momgen(x.elem);

END;
evalpoly(u, syra);

END;

75

mm ^^^.„._ .

11« <-
SXPR(x:FTR(i-rSTRUCT) ; rrGET)

riEGIN
x.leftfather = .ML AND x. r (Thtfather = NIL =>
[) findterni(x) ; VAL(x.anc) (];
MD(VAi,(x.leftfather)) § rr.afiUCT z>
BEGIN

UECL y:rrSET SIZE VAL(x.r.ghtfather.name.TLB);
insert(x.rightfather, y),

END;
!'ID(VAL(x.rightfather)) # rrSTRUCT =>
BEGIN

DECL y:rrSET SIZE VAL(x.leftfather.name.TLB);
inssrt(x.leftfather, y);

END;
findterrnl x);

disJoint(x.leftfather.anc, x.rightfather.anc) r>
BEGIN

DECL y:rrSET SIZE VALCx.nane.TLB);
insert(x.leftfather, y);
insert(y.rightfather, y);

END;
VAL{x.anc) ;

END;

find term <-
EXPR(x:m(rroTRUC:))

BLGiN
x.anc # NIL => NIL;
x.leftfather = NIL AND x.rightfather = NIL =>
BEGIN

x.anc <- ALLGC(rrSET SIZE VAL(x.name.TLB)) ;
insert(x , VAL(x.anc)) ;

EKD;
MD(VAL(x.rightfather)) f rrSTRUCT i>
[) findterm(x.leftfather); x.anc <- x.leftfather.anc (];
findterm(x.right father);
MD(VAL(x.leftfather)) # rrSTRUCT =>
x.anc <- x.rightfather.ano;
findterm(x.leftfather);
x.anc <- unionCx.leftfathar.tne, x.rightfather .anc):

END; '

76

nttüii lUdbäk^uUiUiu ■vihiiVrm irtriinriii?

union <-
EXPR(s1 :PTR(rrSET) , s? : PTR(rrSET) ; PTR(rr.SET))

BEGIN

LENGTH(s1 .morabers) > LENGTH(s2.members) => union(s^ si)-
DECL SZ:PTR(ITSET) BYVAL ALLOC(rrSET BYVAL VAL(s2));
DECL slp:PTR(rrMEM) BYVAL sl.ptrs;
REPEAT
sip = ML => NIL;
insert(s1p.elera, VAL(sz));
sip <- sip.next;
END;
3 Z '

END; '

disjoint <-
EXPR(sl:PTR(rrSET), s2 : PTR(rrSET); BOOL)

BEGIN
LENGTH(s2.members) > LENGTH(s1.members) =>
dijjoint(s2 , si);
FOR i PROM 1 TO LENGTH(s2.members)
REPEAT

s2.member3[i] AND s1.members[i] => FALSE;
TRUE;

EiJD;
END;

subst <-
EXPh(u:PTR(rrSTRUCT), lia:rr3ET SHARED; poly)

BEGIN
u element 11a »> polvmake(u);
u.fn(BEGIN

HD(VAL(u.leftfather)) = rrSTRUCT =>
substCu.leftfather , lia);

VALCu.leftfather);
END,
BEGIN

MD(VAL(u.rightfpther)) = rrSTRUCT =>
subst(u.rightfather, lia);

VAL(u.riphtfather);
END) ;

END;

77

 --■——

calcde;1th <-
EXPR.prpoly, krINT)

FOR 1 FROM 1 TO LENGTH(p)
REPEAT
DECL t:PTR(terin) BYVAL p[i].var;
FOR j FROM 1 TO LENGTH(t)

REPEAT

k • t[j].exp > t[JJ.var.deslth ->
tLJJ.var.deslth <- k • t[J].exp;

END;
END;

evalpoly <-
EXPR(u:PTR(rrSTRUCT), p:poly)

BEGIN
DECL pow:PTR(poly) BYVAL
ALLOC(poly LIKE p " (u.ourlth + 1));
DECL raom:VECT0R(l6, REAL) SHARED u.raom;
FOR m FROM u.curlth + 1 TO u.deslth
REPEAT

m // u.curlth + 1 ->
pow <- ALL0C(poly LIKE p • VALCpow));

ffloralraj <- evalterra(mom[n], VAL(pow));
END;
u.curlth <- u.deslth;

END;

evalterm <-
EXPRCmrREAL, pow:poly SHARED; REAL)

BEGIN
FOR i FROM 1 TO LENGTH(pow)
REPEAT

DECL t:term SHARED VAL(pow[i].van);
m <+

pow[i].coeff ■
BEGIN

DECL prod:REAL BYVAL 1.0;
FOR j FROM 1 TO LENGTH(t)

REPEAT

prod <- prod » t[j]. var .mom[t[jJ.exp];
END;

prod;
END;

END;
END;

78

. ,.■. ...,.-....i.,. -if*-^-- ■

makedist <-
EXPR(datamd:MODE, mean:REAL, momgenf:ROUTINE; real\randum)

BEGIN
DECL z:realXrandom;
DECL lowerz:real\random. JR SHARED LOWERCs))
lowerz.data <- ALLOC(datamd);
lowerz.momgen <- momgenf;
lowerz.ourith <- 1;
lowerz.mom[1] <- mean;
z;

END;

point <-
EXPR(x:REAL; realNrandom)

polymake <-
EXPR(x:real\ -andom; poly)

BEGIN
DECL p:PTR(poly BYVAL
DECL t:PTn(term BYVAL
p[1] coe T <- 1 o;
p[1] var <- t;
t[1 exp <- i;
t[l] var <- x;
VAL(p);

END;

[) makedist(NONE , x, pointmomgen) (];

ALLOC(poly SIZE
ALLOCUerm SIZE

1)

1)

pointmomgen <-
EXPR(xiPTR(rrSTRUCT) SHARED)

BEGIN
FOR i FROM x.curlth + 1 TO x.deslth
REPEAT x.raomU] <- x.müra[1] • x.mora[i - 1] END;
x.curlth <- x.deslth;

END;

uniform <-
EXPR(a:REAL, b:REAL; realNrandom)

BEGIN
DECL x:real\random SHARED
makedist(STRUCT(a:REAL, b:REAL, bpow:REAL, sum:REAL),

(a + b) / 2,
uniformmomgen);

DECL xdata:REF BYVAL LOWER(x) .data ;
xda ta .a <- a ;
xdata.b <- b;
xdata.bpow <- b;
xdata.sum <- a + b;
x;

END;

79

MMMMMMM
---■

!

unifortnraomgen <-
EXPR(x:PTR(rrSTRUCT) SHARED)
BEGIN

DECL xdata:REF BYVAL x.data;
FOR i FROM x.curlth + 1 TO x.deslth
REPEAT
xdata.bpow <- xdata.b ■ xdata.bpow;
xdata.sum <- xdata.a • xdata.sura + xdata.bpow;
x.mom[i] <- xdata.sura / (i + 1);

END;
x.curlth <- x.deslth;

END;

nextmora <-
EXPR(n:INT, mom:VECTOR(16, REAL) SHARED, ra:REAL; REAL)

BEGIN
DECL u:lNT BYVAL 1;
DECL var:REAL BYVAL - mom[1];
DECL sun:REAL BYVAL var;
FOR i FROM 1 TO n - 1
REPEAT
u<-u*(n+1-i)/i;
sum <- var • (sum + u * nom[l]);

END;
m - sum;

END;

gaussian <-
EXPR(mean:REAL , sigraa:REAL; realNrandom)

BEGIN
DFCL x:real\random SHARED
nakedipt(STRUCT(pow:REAL, var : REAL) ,

mean,
gausFianmoragen);

DECL xdata:REF BYVAL LOWER(x).data;
xdata.pow <- 1.0;
xdata.var <- sigma • sigma;
x;

END;

gaussianmomgen <-
EXPR(x:PTR(rrSTRUCT) SHARED)

BEGIN
DECL xdat; :REF BYVAL x.data;
FOR i FPr,'l x.curlth + 1 TO x.deslth
REPEAT

x.raom[i] <-
BEGIN

nextraom(i ,
x.mom,
BEGIN

i / 2 • 2 = i =>
xdata.pow <-

(i - 1) • xdala.pow • xdata.var;

80

•-■' -■ ■-'—- m—m mmmt

0;
END);

END;
END;
x.curlth <- x.deslth;

END;

poisson <-
EXPR(lambda:REAL; real\random)

BEGIN
DECL x:realNrandom SHARED
makedisU STRUCK pi : VECTOR (17 , INT) ,

lambda,
poissonraorag.;n);

DECL xdatkiREF BYVAL LOWER(x).data;
xdata.p2[1] <- 2;
xdata.p2[2] <- 1;
xdata.pl[1] <- 1;
x;

END;

p2:VECTÜR(17, INT)),

poissonmomgen <-
EXPR(x:PTR(rrSTRUCT) SHARED)

BEGIN
DECL xdata:REF BYVAL x.data;
DECL pi :VECrOR(17, INT) SHARED xdata.nl;
DECL p2:VECTOR(17, INT) SHARED xdata.p2;
FOR i FROM x.curlth + 1 TO x.deslth
REPEAT
x.mom[i] <-

BEGIN
nextraoml

x .mom
BEGIN

DECL 3um:REAL BYVAL 0.0;
Fuh j FROM p2[1] BY - 1 TO 2

REPEAT
sum <- (sum + p2[J]) • x.mom[1];

END;
FOR J FROM pit 1] BY - 1 TO 2

REPEAT pl[j + 1] <- p1[j] ■ i END;
PU2J <- 0;
FOR j FROM p1[1] + 1 BY - 1 TO 2

REPEAT
DECL t:INT BYVAL p1[j];
pUJ] <- P2[J];
p2[J] <- Cj - 1) • P2[J] + t;

END;
BEGIN

DECL t:INT BYVAL p 1 [1];
pl[1] <- p2[1];
p2[1] <- 1 + t;

END;
sura;

END);

mmm

END;
END;
x.curlth <- x.dealth;

END;

distrinution <-
EXPR(tab:SE0(VEOTOR(2, REAL)); real\random)

BEGIN
DECL z:real\random;
DECL lower-:real\random.UR SHARED LOWER(z);
lowerz.data <- ALLOC(MD(tab) BYVAL tab);
lowerz.momRen <- dismomgen;
lowerz.curlth <- 0;
z;

END;

dismomgen <-
EXPh{x:PTS(rrSTRUCT) SHARED)

BEGIN
FuR i FROM x.curlth + 1 To x.deslth
REPEAT
DECL sura:REAL BYVAL 0.0;
FOR j FROM 1 TO LENGTH(x.data)

REPEAT
sum <- sum + x . datafj] [1] » x.datafj][?]

EtiV;
x.mora[iJ <- sum;

END;
x.curlth <» x.deslth;

END;

i ;

buildtab <-
EXPR(x:SEÜ(hEAL); 3Eü(VECTOR (?, REAL)))

BEGIN
DECL z:GEQ(VECTÜR(21 REAL)) SIZE LEN'GTh(x) / 2;
FOR i FROti 1 TO LENGTHfx) / 2
REPEAT z[i][1] <- x[2 • i - 1]; zii][2] <- x[2 »
z;

END;

E;;D;

m

mm^mmm^^
■ --

A C' K N OW L E DG E MENTS

There are a number of people who have provided assistance of various types

during tlüfl work; it is a pleasure to take this opportunity to acknowledge their ef-

forts. Dr. William Sutherland of Xerox Palo Alto Research Center and Professor

William Bossert of Harvard have had faith in this work, even at times when 1 did

not. That reservoir of fnith helped carry me over some of the more traumatic-

periods of development. Professor Pgo Gagliardi of Harvard has patiently com-

mented on a number of drafts, while Professor Thomas ("heatham of Harvard had

the wisdom to suggest the importance of an implementation. I had an extremely

illuminating conversation with Professor Dionysios Tsitchritzis during the early

stages of this work which led to the noncomputability result in Sec. II. My friends.

Professors Paul Rovner of the Pniversity of Rochester and Richard Hasener of

Lehigh Pniversity have provided me with many helpful discussions and comments

on the early drafts of this document. My supervisors at M.I.T. Lincoln Laboratory

over the years have been understanding of the dual responsibilities of student and

employee. To the late Mr. Jack Mitchell, Mr. James 1'orgie, Mr. Jack Raffel,

Or. Bernard Gold, Dr. Melvin Herlin, and Mr. Alan McLaughlin go my sincere ap-

preciation. The Publications Group at Lincoln has done a professional job of pre-

paring this document; they have significantly eased the effort of the final stages.

Manyother colleagues, fellow graduate students, and teachers tiave been kindenough

to discuss various issues from time to time; a collective thank vou to all.

Ml

mm-- ' MBMi llll !■ - -- _ ■H

RKFKHKNCES

[Agarwal 75| R. C. Aprwal and C. S. Murrui. "Num'n'r Theoretic Transforms
to Implement Fast Digital Convulution," in (1KKE 75|.

[Ate Tli A.V. Aho and J. D. Ullman, The Tlieory ol' Parsing, Translation, and
Compiling. Vol.1: 1'arslng (Frentice-Hall, New York, 1972).

(Allen 75| J. Alljn.
[IEEE 75|.

"Sperial Purpose Mr.rdware for Signal 1'rocessing," in

[Apostol 57| T. M. Apostol, Mathematical Analysis. A Modern Approach to
Advanced Calculus (Addison-Weslev. Heading, Mass., 19S7).

[Bateman 54| Bateman Manuscript Project, Tablet, of Integral Transforms,
Vol. 1 (McGraw-Hill, New York, 1954).

(Bergland 69) G. D. Bergland, "A Guided Tour of the Fast Fourier Transform,"
IEEE Spectrum 6 (July 1969). Reprinted in (Rabiner 72).

[Berzins 75] V. BerziijS, "Algorithms for Analyzing Statistical Models of In-
formation Systems," MS and EK thesis, M.l.T,. Cambridge. Massachusetts,
January 1975.

[Burr 42| I.W. Burr, "Cumulative Frequency Functions," Ann. Math. Statis-
tics n (1942).

ICACM 71 | Issue containing papers from the Second Symposium on Symbolic
and Algebraic Manipulation, Communications of the A. C. M., Vol. 14,
No. 8 (August 1971).

[Cobham 64] A. Cobham. "The Intrinsic Computational Difficulty of Func-
tions," Proceedings 1964 International Conference for Loeic. Methodology
and Philosophy, edited by Y'. Bar-Hillel (N^-. ui-llolland, Amsterdam, 1964),
pp. 24-30."

[Cooley 65| J. W. Cooley and J. W. Tukey, "An Algorithm for Machine Calcu-
lation of Complex Fourier Series," Mathematics of Computation 19,
297-301 (April 1965).

(Cooley 67| J. W. Cooley, P. A. W, Lewis, and P.D. Welch, "Historical Notes
on the Fast Fourier Transform," IEEE Trans. Audio Electroacoust. AU-15.
76-79 (1967).

[Cooley 70 | J. W. Cooley, P. A. W. Lewis, and P. D. Welch, "The Fast Fourier
Transform Algorithm: Programming Considerations in the Calculation of
Sine. Cosine and LaPlace Transforms," J. Sound Vib. 12 (July 1970). Re-
printed in [Rabiner 72 |.

(Davis 58| M. Davis, Computability and Unsolvalnlity (McGraw-Hill,
New York, 1958).

[Davis 7 5| P. J. Davis and I'. Rabinowitz, Methods of Numerical Integration
(Academic Press, New York, 1975).

(Ditkin 65| V. A. Ditkin and A. P. Prudnikov, integral Transforms and Op-
erational Calculus, translated from Russian by D. 10. Brown (Pergamon
Press, Oxford, 1965).

[Feller 57) W. Feller, An Introduction to Probability Theory and its Ap-
plications, two volumes. Second Fdition (John Wiley, New York, 1957).

(Franson 6)] A. Franson, "Prediction of Statistical System Performance
from Parameter Distributions," MSEE thesis. Naval Postgraduate School,
Monterey, California, June 1969. Available from Clearinghouse for Federal
Scientific and Technical Information as AD-703258.

(Gold 691 B. Gold and C.
Hill, New York, 1969).

M. Rader. Digital Processing of Signals (McGraw-

(Hammersley 64| J. M. Hammersley and D. C. Handscomb, Monte Carlo
Methods (Mcthuen, London, 1964).

(Harvard 74] FCL Programmer's Manual, Report No. 23-74, Center for Re-
search in Computing Technology, Harvard University, Cambridge, Mass-
achusetts, D ;cember 1974.

84

 . -■ •

I
1

•

[1KKK 75| Proceedings of the IEEE, special issue on Digital Signal Processing,
April 1P7 5.

(Karlin 1i3| S. Karlin and L. S. Shaplev, "Geometry of Moment Spaces," Mem-
oirs of Am. Math. Soc. ü (1953).

[Kendall 6 3| M. G. Kendall and A. otuart, "1 he Advanced Theory of Statistics.
Vol. 1: Distribution Theory. Second Edition (Hafner, New York, 1%3).

[Low ?4] .1. Low, "Automatic Coding: Choice of Data Structures," PhD thesis.
Report CS-452, Stanford I'niversity, Stanford, California, August 1974.

[Meyer 67] A. R. Meyer and D. M. Ritchie, "The Complexity of Loop Pro-
grams," Proceedings uf Z2nd National Computer Conference. Association for
Computing Machinery (Thompson, Washington, 19(i7), p,-. 465-469.

(Moore 66| R, E. Moore, Interval Analysis (Prentice-Hall, New York, 1966).

[Parzen 60] E. Parzen, Modern Probability Theory and Its Applications
(John Wiley, New York, 1960).

[Pearson 68|K. Pearson, Tables of the Incomplete Reta Function, Second
Edition (Cambridge I'niversity Press, Cambridge, England, 1968).

[Rabin^r72| L. R. Rabiner and C. M. Rader, Editors, Digital Signal Processing
(IEEE Press, New York, 1972).

[Rice 64| J. R. Rice, The Approximation of Functions, Vol. 1: Linear Theory
(Addlson-Wesley, Reading, Mass., 1972).

[Ritchie 6 3| R. W. Ritchie, "Classes of Predictably Computable Functions,"
Trans Am. Math. Soc. 106, 139-173(1^63).

[Sain 73] M. K. Sain, L. W. Henry, and ,1. .1. Fhran, "An Algebraic Method for
Simula':ng Legal Systems." Simulation 21, 150-158 (November 197 3).

[Schaofer 7 3| M. Schacfer, A Mathematical Theory of Global Program Opti-
mizatloi, I Prentice-Hall. New Y'ork, 1973).

[Shohat 43 | ,T. A. Shohat and J. I). Tamarkin, "The Problem of Moments," in
Mathematical Surveys, \o. 1 (American MathemaHcal Society, New York,
1943).

[Standish 75|T.A. Standish, "Extensibility in Programming Language Design,"
Proceedings of National Comnuter Conference 1975. Vol. 44 (AFIPS Press,
Montvale, New Jersey, 1975), pp. 278-290.

[S'ot kham 66] T. Stockham, Jr., "High-Speed Convolution and Correlation,"
Proceedings of the Spring Joint Computer Conference 1966, Vol. 28 (Spartan
Books, Washington, 1966) pp. 229-2 33.

jStockham 69] T. Stockham, Jr., "High-Speed Convolution and Correlation with
Applications to Digital Filtering," Chapter 7 in [Gold 69 |.

(Stroud 711 A. H. Stroud, Approximate Calculation of Multiple Integrals
(Prentice-Hall, New York, 1971).
[Tiemann 74| J. 1. Tiemann. N. E. Bngelea, and R. D. Baertach, "A Program-
mable I'ransver, al Filter using Charge Transfer Devices," Proceedings of the
IEEE Internatior U Convention and Exposition, New York, 26-29 March 1^74.

[Wegbreit 74| B. V/egbreit, "The Treatment of Data Types in ELI," Com-
munications of the A. C. M., Vol. 17, No. 5 (May 1974).

[Wilkinson 63| J. It Wilkinson, Rounding Errors in Algebraic Processes
(Prentice-Hal1, N-w York, 1963).

[Wulf 72) W. A. Wulf and CG. Bell, "C.MMP-A Multi-mini-Processor,"
Proceedings of the AFIPS Fall Joint Com puer Conference 1972, A na h e i m,
California, 5-7 December 1972, pp. 765-777.

85

^■■MflHUiMM

