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ABSTRACT 

This report describes a class of operating system protection errors known as 
^insufficient validation of critical conditions," or simply "validation 
errors," and outlines a scheme for finding them. This class of errors is 
recognized as a very broad one, lying outside the scope of the basic 
protection mechanisms of existing systems; the extent of the problem is 
illustrated by a set of validation errors taken from current systems. 
Considerations for validity conditions and their attachment to variables and 
to various types of control points in procedures are explored, and categories 
of validation methods noted. The notion of criticaiity itself is analyzed, 
and criteria suggested for determining which variables and control points are 
most critical in the protection sense. Because a search for validation errors 
can involve substantial information processing, the report references existing 
or developing t^ols and techniques applicable to this task.^ 
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ABS1'RIJCT 

This report describes a class of operating system protection errors known as "insufficient 
validation of critical conditions," or simply "validation errors," and outlines a scheme for finding them. 
This class of errors is recognized as a very broad one, lying outside the scope of the basic 
protection mechanisms of existing systems; the elCtent of the problem is illustrated by a set of 
validation errors taken from current systems. Considerations for validity conditions and their 
attachment to variables and to various types of control points in procedures are explored, and 
categories of validation methods noted. The notion of criticality itself is analyzed, and criteria 
suggested for dP.termining which variables and control points are most critical in the protection 
sense. Because a search for validation errors can involve substantial information processing, the 
report references existing or developing tools and techniques applicable to this task. 

This work has been performed under Advanced Research Projects Agency Contract 
DAHC15 72 C 0308. It is part of a larger effort to provide securable operating systems in DOD 
environments. 
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1.   INTRODUCTION 

This document is one in a series of related reports, each of which describes a specific class of 
protection errors found in current computer operating systems and presents techniques for finding 
errors of that type in a variety of systems (different versions, manufacturers, etc.). These reports 
are intended primarily for protection "evaluators," persons responsible for improving the security of 
existing operating system software by finding protection errors (fixing them is regarded as a 
separate maintenance function), and secondarily for designers and students of operating systems. 
These studies, suggested by the pattern-directed methodology proposed in [Carlstedt75], are 
intended to assist individuals havinp, no particular expertise in the field of operating system security 
to effectively carry out the evaluation task, i.e., to find existing errors. However, an evaluator is 
expected to possess a good working knowledge of the target system, 'ncluding an understanding of 
the basic protection mechanisms of the supporting machine. 

As used in these studies, the term "protection evaluation" denotes searches for errors based 
only on static information, primarily program listings but possibly other documentation as well. The 
ultimate purpose of protection evaluation is to reduce security losses due to protection policy 
violations made possible by errors in operating system code. The immediate purpose is to detect 
those errors. The static methods of evaluation discussed in these reports are intended to 
complement dynamic methods, i.e., system testing, auditing, penetration attempts, etc. 

The primary purpose oi this report is to assist evaluator-; to attain the following goals: 

1. To gain a better understanding of validation policies and mechanisms and therefore 
ways validation errors can occur. 

2. To obtain the policy information needed for evaluation of a particular target system. 

3. To carry out the evaluation itself more methodically and hence more effectively. 

The report is organized as follows. In Section 2, the subject of validation is introduced 
informally via sevüral examples of validation errors taken from current operating systems. In 
Sections 3, 5, and 7, validation is described more analytically: in Section 3 in terms of its position in 
the general protection policy-mechanism framework; in Section 5 in terms of the attachment, to 
variables and control points, of validity conditions determined from considerations of the intended 
meanings of variables and the requirernents of procedures; and in Section 7 by identifying categories 
of validation methods. Section 4 presents a static view of an operating system as a set of 
infercommunicating procedures, and suggests that information regarding procedure-variable 
input-output relationships can be usefully extracted from the target system in preparation for a 
general evaluation. In Section 6 criteria are suggested for determining which variables and control 
points are most "critical." Section 8 outlines an evaluation scheme that employs techniques similar to 
those of program verification. 

In those sections of the report where specific tasks are described, an attempt is made to 
distinguish those activities most amenab'e to automation from those best done manually and to point 
out applicable tools and techniques. Some of the tc ">ls needed to comp etely automate a search for 
validation errors are not yet available.    In view of the difficulty of performing some of the required 
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marual activities, an exhaustive search for validation errors in a large operating system would 
currently require a very large effort. Nevertheless, in many situations the expected payoff is 
sufficient to make at least a limited search worthwhile, using a combination of available manual and 
automatic techniques. On the whole, however, this report should be regarded more as an analysis of 
what is involved in a search for validation errors than as a prescription for an actual search. It is 
hoped that this report, in addition to its primary purpose, might also encourage the development of 
evaluation tools and the design of future operating systems having greater reliability and 
evaluability. 
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2.   MOTIVATION FOR TUE STUDY 

The virtual or underlying machine—including both hardware and software "Kernel" levels—on 
which any current operating system is based provides some set of access control mechanisms 
concerned with preventing certain types of operations except under specified conditions. However, 
the protection capabilities of such mechanisms are usually quite limited. First, basic access control 
mechanisms are usually capable only of protecting aggregations such as files, segments, or storage 
areas. Second, the conditions enforced are usually limited to a predefined set, e.g., possession of a 
numeric key, ownership by a given user, or membership in predefined categories. Third, 
enforcement usually occurs only when the operators of a certain predefined set are 
invoked—"accesses" such as "read," "write," and "execute." 

Within an operating system, however, it is frequently necessary to specify conditions that are 
nonstandard, or that must be enforced at points other than standard access points, or that must 
apply to objects at a finer level of aggregation. The activity of checking for or insuring such 
conditions, which must then be specified as part of the operating system software itself rather than 
as part of the underlying machine, is called "validation." In its explicit form, validation is carried out 
by means of code for this purpose embedded in procedures at or prior to (in the control sense) the 
points where such conditions are to hold. 

i 
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Validation has many uses. One of the most common is to enforce conditions on parameters 
passed to system procedures by user programs, often to protect against malfunction of those 
procedures. Less commonly, validation is applied to output to user programs from system 
procedures. Of more interest here, because the implications of errors are generally more subtle, 
are validations performed on variables internal to the operating system, and/or those carried out by 
system procedures other than those at the user interface. An important reason for i "iternal 
validation is to protect the system against the effects of errors in the system itself. Internal 
validation of user-specifiable or -influenceable variables is also sometimes necessary when such 
variables serve as inputs to later operations. Finally, because parts of the operating system may 
have privileges that exempt them from some of the basic protection contraints, they must sometimes 
include compensating validation code. 

The following examples not only illustrate the importance of validation in various situations, 
but also indicate the variety of conditions enforced. Most of these examples are paraphrased or 
adapted from descriptions of protection errors detected in actual operating systems, and 
communicated to the Protection Analysis Project by various individuals or groups. 

1. A system procedure used a user-supplied parameter k as an index to a table of addresses of 
other system procedures, where k was not validated with respect to the subscript range of the 
table: 
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By supplying the appropriate value the invoking procedure could cause the system procedure to 
execute any instruction in its address space. In this case the system procedure executed in a 
privileged state and its address space included all of main memory, so that the user could cause any 
procedure of his choosing (including his own) to be executed in that privileged state. 

2. A system file renaming procedure failed to validate the "owner" property of the file to be 
renamed, allowing the user to replace the name of a system procedure with the name of one of his 

own. 

3. A utility program for copying data from one location to another, intended to be used only by 
system programmers for low-level maintenance operations but indirectly invokable by user 
procedures, failed to check that the source location was within the caller's domain of readability (or 

that the destination was within the caller's domain of writeability). 

4. A system procedure providing a certain type of file access required as a parameter a pointer to 
one of a set of system-private file descriptors representing tiles "opened" by that user. The 
validation to insure that the object pointed to was a bona fide file descriptor belonging to that user 
consisted in part of determining that a particular field contained a pointer to a system-private user 
account record. However, it was sometimes possible for a user to discover the location of his 
account record, and hence to provide a pointer to a fabricated descriptor for any file in the system. 

5. A block of contiguous storage was ur.ed for containing outstanding user requests for a certain 
serially sharable service. The system controlled the frequency of requests from any one process, to 
prevent undue delays in servicing requests from other processes. The program managing that 
service did not check for possible overflow of thi.s table, whose length was defined and made 
"adequate" at system initialization. A user program could cause the table to overflow, and thus 
destroy certain system information, by creating a large number of processes, each repetitively 

requesting the given service. 

6. A device allocation procedure A saved the caller's allocation request until the requested 
device became available. Included in the allocation request was the address of a location x into 
which the availability notice was to be stored. The address was validated at the time of the request 
to insure that the caller was authorized to write into x. Immediately after the rconpst was made, 
the caller could request deallocation of the storage area containing x, and invoke another system 
service B that was known to require allocation of that amount of storage for certain internal data. 
Depending on the activity of other processes, there was some probability that the storage allocated 
to B would be the same as that deallocated from the caller, and containing x. When the 
originally-requested device became available and the availability notice was stored in x, internal 

data of    B   would then be destroyed. 

7. One of the first fields of the descriptor of an executable module contained its length, so that 
storage could be allocated in advance of loading it for execution. Other fields contained the lengths 
of various components together with the base offsets of locations into which they were to be 
loaded. The loader failed to validate that these were consistent with the specified overall length, 
properly assuming that the compiler or linker that produced these modules specified correct 
component   lengths   and  offsets.     However,  since  these  load   modules   were   not  protected  from 
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modification by their owners, a user could change offset specifications, causing portions of the 
module to be placed in unallocated storage, replacing whatever happened to reside there at the time. 

8. An input/output buffering procedure B, requiring as a parameter a pointer f to a file 
descriptor, was callable both by user programs and by other system procedures. When called by a 
user program, it correctly validated f to insure that it designated a file to which access was 
authorized. When called by a system procedure, it did not validate f, under the assumption that 
access was authorized. One of the system procedures that invoked B was a user-callable 
procedure A for reading records selected by name from indexed files. Procedure A also 
required a parameter of the same type as f, which it passed directly to B under the assumption 
that B validated user-supplied parameters. (This is commonly known as the "passthru" error, and 
is one of of types of validation problems mentioned in [McPhee74].) 

As is typically the case with program errors, most of the above appear foolish in retrospect, 
and most of them could have been prevented in any of a number of ways. The error in example (1), 
for example, could have been prevented by simple type-enforcement of the sort defined in many 
programming languages and performed during compilation or provided by compiler-generated code; 
many of the other errors would not have occurred in systems with access control mechanisms based 
on adequate domain restrictions. All of the above errors resulted, however, from some form of 
insufficient validation, due to incorrect design or implementation. 

The above examples do not illustrate all varieties of validation. From them and other 
observations, however, we know that conditions to be validated can involve composite or abstract 
objects; that they can involve properties of variables other than simple data value; that they can 
involve relationships among components of a variable or relationships with other variables; that 
validation can be made more complex by the fact that it is sometimes distributed rather than 
localized; that mismatches can occur among the validations performed by several procedures- that it 
may not be readily apparent whether or to what degree a particular variable is critical in the sense 
that an error in its validation results in possibl. security violations. In summary, it is apparent that 
validation is a pervasive and easily misunderstood phenomenon. 

■i 
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3.   VALIDATION AS A BRANCH OF PROTECTION 

This section presents a brief overview of protection, and shows how validation relates to 

other areas. 

In the context of protection in operating systems, the terms "policy" and "mechanism" have 
been used to distinguish designer- and user- produced specifications from hardware and software 
elements that implement or enforce them [Jones73, Levin75]. The term "policy" will be used in this 
report to refer only to design specifications. In this sense, protection policy is the reference 
information by which errors in protection mechanisms are defined or identified. 

Protection policy exists at various levels of abstractness or detail. At the most abstract level, 
it can be stated and classified in terms of the user interests it is aimed at protecting. Usually, the 
term "protection" is associated with "information," and protection policy is aimed at protecting 
various user interests associatec with information privacy and integrity. Another frequently 
included interest is system reliabiluy, in particula' users' interests in not having their service 
disrupted unexpectedly [Saltzer75]. An interest not usually included in the protection category is 

that of system efficiency. 

Less abstractly, an element of protection policy specifies two things: 

1. A condition that is intended to hold at certain times during the operation of the 
system 

2. The times at which it is to hold. 
o 

The time component must denote some set of intervals or points in time, such as "whenever 
control resides in any file manipulation procedure," "whenever more than j outstanding requests 
exist for service S," "at all points of access of variable x," or "whenever operator W is invoked." 
The condition component may specify any condition whatsoever, such as "process    P    must have a 
privilege level of at least    i,' 
"interrupts must be disabled.' 

"the value of    x    must be less than the sum of those in table    y,   or 

Protection policy is made even more concrete by specifying the condition component in terms 
of variables defined in the system and the time component in terms of actual system operations. 
Variables involved in a protection condition must themselves be valid, so that the condition will be 
accurately represented. Thus they must themselves be the objects of protection conditions. Policy 
that specifies conditions that are to hold over intervals must be enforced as policy that is to hold at 
points, i.e., at the occurrence of certain operr ,ons, since current computers do not normally provide 
the capability for continuous checking or enforcement of conditions. The necessity \o enforce 
interval conditions by enforcing point conditions leads to class of protection errors called 

"consistency errors" [Bisbey75]. 

As described thus far, protection is a general concept that includes validation as well as such 
common notions as "exception handling" and "access control." Validation and access control are 
concerned v/ith preventing or inhibiting certain operations unless certain conditions are met, for 
example by  returning error indications to invoking procedures or aborting current processes, as 

€r 
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opposed to exception handling, where the soe ified operations may be continued or retried 
[Goodenough75]. Validation (in its explicit form) differs from access control in that it is not 
restricted to the under',/ing machine level and therefore addresses itself to a broader class of 
conditions and operators. Access control la oriented toward preventing the invocation of "kernel" 
operators (which need not be primitive) unless certain conditions hold at the time of invocation. 
Validation may be applied to any operator, it may occur at points other than the invocation of 
specified operators, and the class of conditions enforced is limited only by programming feasibility. 

c 
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4.   TARGET SYSTEM NORMALIZATION 

This section presents the view of a target system appropriate to protection evaluation—that 
of a set of data-connected procedures and variables. It discusses a "normalization" of the target 
system, to display these connections for later use, as a possible first phase of the overall evaluation 
process. 

4.1 TARGET SYSTEM DEFINITION AND IDENTIFICATION 

The target system consists of a set of proceOures distinguished by some degree of mutual 
trustworthiness and by a particular set of access privileges. (Thus this discussion applies to any 
subsystem operating within a common protection "domain" [Lampson69].) All other procedures are 
called "user' procedures. 

It is important that all target procedures are identified. This set can contain several hundred 
elements for a large system such as OS/360 or Multics. To overlook one or more system 
procedures is potentially to ignore one or more information paths over which validation may be 
deficient. It is especially important that no outer (user-callable) procedures are missing, since their 
absences cannot be methodically detected. Given all outer procedures, together with those 
procedures that receive control as the result of events of predefined types (including interrupts), a 
list of all system procedures can be generated via a program that recognizes call constructs in the 
implementation language(s). 

4.2 SYSTEM COMMUNICATION GRAPH 

The task of searching for validation errors requires knowledge of data flow relationships 
among procedures and variables The term "variaf le" is used here in the sense of a physical or 
virtual storage cell, possibly structured of other varables, that contains a value or values (possibly 
null). Variables are not to be confused with identifiers (or selectors in general), by which they are 
denoted in procedures; the same variable may be denoted by different identifiers in different 
procedures (or other units of identifier scope), and different variables by the same identifier in 
different procedures. A frequent problem of static evaluation is that of determining the actual 
variable accessed via a given identifier at a given control point in a procedure, a problem discussed 

I briefly below. 

I The variables of primary interest are "nonlocal" or "shared" variables, those accessed by more 
than   one   procedure   and   thus   serving   as   interfaces   between   procedures.     Three   types   of 
access-sharing by a given procedure   A   must be recognized: 

1. Via formal parameters of entry points to   A. 

2. Via actual parameters in calls by   A   to other procedures. 

J •^ 3.      Via non parameters  or "globals." 

These are not mutually exclusive: an actual parameter may also be a formal parameter or a 
global.    To assist in the definition of a data path from one variable to another, it is convenient to 

........ .       .       ...         .... . .       . .       .... ...       .   . ...  ■ 



regard the occurrence of >n identifier as an actual parameter, as distinct from its occurrence as a 
formal parameter or global. It is therefore assumed that every occurrence of a formal parameter or 
global x as an actual parameter is replaced by the identifier x' of a local variable whose value 
is identical to the value of the variable denoted by   x. 

It is also assumed that the variable denoted by any identifier in A can be distinguished as 
either an input variable of A, or an output variable of A, or both. An actual parameter denotes an 
input (output) variable of A if and only if the corresponding formal parameter of the called 
procedure denotes an output (input) variable of that procedure. 

If the value of an output variable    y    of    A    can be influenced by the value of an input 
variable    x    of    A    as a result of processing specified by A, a "local data path" exists from    >■    to 
y. Local data paths from input to output variables of A car be represented by a bipartite 
directed graph called a "local data flow graph" (Figure 1). 

I Procedure 
L.... mm 

Q formal parameter 

r^ actual parameter 

O  global 

Figure t.   Local data flow graph 

The set of local data flow graphs for the procedures of a system, connected in a certain way, 
is called the system "communication graph." Each of the input (output) nodes of the local data flow 
graph of a procedure A is connected, via one or more directed arcs, to one or more output (input) 
nodes of the local data flow graphs of other procedures. Nodes representing formal parameters of 
A are connected to nodes representing corresponding actual parameters in calls to A ; nodes 
representing actual parameters are connected to the corresponding formal parameters of the called 
procedure; and nodes representing globals are connected to nodes representing (global identifiers 
denoting) the same variable. A "data path" from one variable or procedure to another now has the 
usual graph-theoretic definition, as do the notions of "antecedent" and "subsequent." The concept of 
a data path is distinct from that of a "control path," defined as a sequence of directed arcs in the 
control   graph  of   the   system  (consisting  of  flow  charts  of  each  of   its   procedures,  with  calls 
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represented by arcs to entry points of called procedures).    Both concepts are used in subsequent 

sections of this report. 

4.3     PRODUCTION OF THE COMMUNICATION GRAPH 

The task of searching for validation errors is greatly facilitated by having an actual 
representation of the communication graph on hand. Production of such a representation is part of 
a class of protection evaluation tasks known as "normalization,,--extracting from the target system 
the information relevant to the evaluation and representing it in a form convenient for the evaluation 
proper. As noted in [CarlstedtyB], a tradeoff generally exists between the amount of work involved 
in normalization and the amount of work involved in the evaluation. As also noted, normalization can 
generally either be done completely as a distinct preliminary phase, or it can be done piecewise 
during the evaluation on an as-needed ba^». If the search is to be exhaustive, so that most of the 
nodes in the communication graph would likely be involved, it is probably more efficient to produce 
it completely at the outset. Hereafter, the term "communication graph" is used to denote the actual 

representation as well as the concept. 

The first step in producing the communication graph is to recognize the identifiers of variables 
declared and used within each target procedure. This requires a capability to parse programs 
written in the given implementation language--a capability that already exists as part of any 
compiler for that language. The set of input and output access points in a given target procedure 
must also be determined. This requires recognition of entry points and call constructs, as well as 

occurrences of identifiers in global accesses. 

The second step h to determine the influencing relationships between the input and output 
variables of each procedure. This task is called "data dependency analysis." To some extent it can 
be done automatically, with a program that recognizes constructs in which the value of a variable is 
influenced by the values of one or more others. Dependencies among variables denoted by the 
actual parameters of a call statement cannot be determined until the dependency analysis for the 
called procedure has been performed, implying a constraint on the order in wh.ch the communication 
graph can be constructed. An experimental data dependency analysis program is described m 
[Bisbey76]. In that program, "influenced by" relations are produced for each such construct, the 
transitive closure of which yields the "influenced by" relations among the outputs and inputs of the 
procedure as a whole. This indicates a potential influenceability, independent of possible control 
flow in the procedure. A more precise method, based on control flow analysis, is given in [Allen76]. 
Neither of these methods can detect subtle influences of the types discussed in [Lampson73] or 
[Denning75]. Also, there do not (and cannot) exist completely general static data flow analysis 
programs that can deal satisfactorily with such phenomena as addressing functions (e.g., index 
computations), program-manipulable bir dings (e.g., the use of reference variables), dynamically 

structured variables, and variables that overlap in physical storage. 

The final step in the production of the communication graph is to identify the connections 
between the input and output nodes of the data flow graphs for individual procedures. For formal 
and actual parameters the ta^ is relatively straightforward [Bisbey75]. For static bindings to 
simple global variables, construction of the mapping from local identifiers to 
globally-uniquely-identified variables can be automated; this is a task performed by loaders and 
linkage editors. However, the variables to which a procedure has potential read or write access do 
not necessarily correspond to the identifiers declared in it.   Reference variables, for example, may 
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represent whole sets of potentially accessible variables; a declared identifier, on the other hand, may 
denote an array or structure of which only a portion can be potentially accessed. The identification 
of variables actually accessed involves the same set of problems as those encountered in data 
dependency analysis mentioned above. For implementation languages that allow generalized address 
calculations and manipulation of bindings, complete automation of this task is not possible. 



5.   VALIDATION POLICY 

The second phase of the overall search process is that of gathering the reference in-ormatiot, 
necessary to dete-mine where to search for and how to judge potential errors. This section 
describes the basic structure of this information as it is formulated by designers and evaluators and 
as used in the evaluation process, and discusses the major considerations that determine its content. 

5.1 VALIDITY CONDITIONS AND CRITICAL ITEMS 

An element of validaticn policy consists of a "validity .iidition," a logical predicate Cv(Z) 
expressed in terms of variables Z and "attached" to 9 control yjom" v (an arc in the flow chart 
of a procedure). To say "Cv(Z) is attached to v" is simply to say tnat the assertion "Cv(Z) must 
be true whenever control reaches v" has been postulated or deducud by designers or evaluators. 
Assertions of this type do not ordinarily have explicit representations in programming languages or 
operating iystem code. If postulated by designers, such an assertion may be represented in design 
documentation, possibly in the form of a comment in a program listing. However, the evaluator must 
be open to possibilities for inaccuracies in such documentation, and must endeavor to formulate 
Cv(Z) as the "actual" required condition at V, as determined also by his/her knowledge of system 
requirements and/or by inspection and analysis of system itself, particularly that section of 
procedure subsequent to   v   (in the uninterpreted flow chart). 

The output of this phase of the search process is a set of "critical items," each of the form 
[v,Cv(Z)]j v is called a "critical point" and Cv(Z) a "critical condition." The critical item serves 
as the basis of a unit of evaluation activity called a "section evaluation," outlined in Section 8, where 
a section is that portion of the containing procedure consisting of control paths leading to v. 
Every control point is a candidate for a critical point; the cost of evaluation requires that only 
certain control points be selected. Control points vary greatly in their "criticality," i.e., in the 
consequences of insufficient validation and thus in their need for evaluation. Criteria for selecting 
critical points are suggested in Section 6. 

5.2 INPUT AND OUTPUT CONDITIONS 

The critical points on which evaluations are based do not coincide in general with the points of 
most interest to designers. The major points to which validity conditions are attached by designers 
are various points of access by procedures to their input and output variables, since these 
conditions constitute the specifications for the procedure interfaces. The common phrase 
"validity (or validation) of a variable" is meaningful only in the cont ' of input and output. A 
validity condition attached to an input (output) point   w   and speci- ain (range) of validity of 
the variable    x    accessed at that point, is called an "input (outpu " on   x, and is denoted 
by    Cw(x,Z).    The variable    x, an element of    Z, is the "object" ot .-)i the other members of 
Z   are the "relerence-state variables." 

Validity conditions are not attached to all read and write accesses to shared variables. 
Rather, the input and output points chosen typically represent sequencer of read and write accesses 
aosociated with single identifiable purposes. For example, a sequence of read accesses to copy the 
value of a variable to several other variables might be represented by a single input point. 
Similarly, a sequence of read and write accesses whose combined purpose is to effect a single 
overall change in the data value or other properties of a (possibly structured) variable might be 
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represented by a single output point. However, a number of input and/or output points to the same 
variable can exist within the same procedure. With the exception of read accesses intermediate to 
validation sequences, read or write accesses for which different validity conditions apply must be 
distinguished as separate input or output points, respectively. The points most often (but not 
necessarily) regarded as input and output points for formal and actual parameters are entry points 
and call points, respectively. 

An "interface error" is a design error that occurs when input and output conditions on the 
same variable are inconsistent, usually as a result of having been specified independently (i.e., by 
different designers and/or at different times). Interface errors almost always result in validation 
errors (although not necessarily, since design specifications might not be obeyed by 
implementations). When an interface error is encountered, the question arises as to which condition 
is wrong—the input or the output—or whether either can be regarded as the fiducial policy against 
which the other must be judged to be in error. Such questions are more properly the concern of 
system designers and maintainers. The task of the evaluator is to find validation errors, not to 
classify them in terms of causes. 

Because of the possibility of overlooking interface errors, in general output points are not the 
best choices for critical points. If an output point were chosen as a critical point, the corresponding 
evaluation, which includes only control paths antecedent to that point, would not detect a validation 
error resulting from an interface error between an output condition attached to that point and an 
input condition on the same variable. Input points are also in general not the best choices for 
critical points, but for a different reason, discussed in Section 7.2. 

5.3     FUNCTIONAL VALIDITY VERSUS INTEGRITY 

Input and output conditions are determined by two major considerations or factors: 

1. Procedure functionality. 

2. Variable integrity. 

A functional condition on a variable x is determined by the requirements of one or more 
procedures to which x serves as input. More precisely, it is determined by the requirements of 
"using sections" corresponding to input points of x. The using section corresponding to an input 
point u consists of that portion of the containing procedure A made up of control paths starting 
at u and terminating at other input points of x (to which different functional factors apply), or 
at exit points of A. A functional factor consists of the specification of the necessary and sufficient 
conditions on   x   in order for one or more particular using sections to function correctly. 

An integrity condition on a variable x is determined by considerations of the intended 
meeting of x itself, independent of considerations of the functional requirements of particular 
procedures that use it. Integrity conditions are especially applicable to variables defined in advance 
of the procedures that use them, and intended to represent objects, phenomena, or situations of the 
"real-world" (e.g., the time of day) or of the operating system itself (e.g., the state of some process 
or resource) as "data bass" variables. An integrity condition C(x,Z) defines for x a range (or 
domain) of validity by specifying relations that the value or other properties of    x   (such as type, 
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structure, size, and values of protection attributes) must satisfy with the reference-state variables 
of Z. The following are examples: "time_pf_day lies in the range [0:0:0.0, 23:59:59.9]"; 
"request_queue contains no more than m entries"; and "dispatching priority of every class 
C process is higher than any of those of class D." A variable that satisfies (fails to satisfy) its 
integrity condition is "inherently valid (invalid)." (A variable may become invalid in a number of ways, 
e.g., because of the misbehavior of a procedure that modifies it, failure to update it in a timely way, 
or access by an unintended procedure.) The integrity of a variable is vital to the proper functioning 
of the system as a whole, as opposed that of particular procedures. It is of obvious importance, for 
example, for a variable serving as a reference-state variable in an access control specification, 
where an invalidity can lead to a wrong protection decision. 

Normally the meaning of a variable, and hence its integrity condition, does not change over its 
lifetime. A variable whose meaning varies represents "actual" storage being shared by "virtual" 
variables. 

The distinction between integrity and functional validity corresponds to the duality of concern 
inherent in the software system design and programming tasks—concern with choice of data 
representation versus choice of algorithm. Both types of factors may be included by designers in 
an output condition Cw(x,Z), whetner consciously or not: functional factors on the basis of the 
assumed requirements of one or more sections for which x serves as input, and integrity factors 
on the basis of the assumed meaning of x. An input condition Cu(x,Z) normally coincides with the 
functional condition on x determined more locally by the requirements of the using section 
corresponding to u. A possibility for interface errors is inherent in the distinction. Both types of 
factors must be considered by evaluators in determining critical conditions. 

I 
t 
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6.   CRiriC/lLITY CRITERI/i 

This section addresses the problem of selecting, from among the thousands of candidate 
control points in a typical target system, those for which the validity conditions are most "critical" 
and for which the validation is thus most in need of evaluation. Thic is an economic necessity for an 
evaluation project of reasonable magnitude An imprecise and incomplete set of criticality criteria 
are suggested. To some extent, this task is interdependent with that of determining validity 
conditions themselves: criticality is better understood when validity conditions have been 
formulat d, but the formulation of validity conditions assumes knowledge of system structure and 
require;nents, and hence of the real and potential effects of violations of those conditions, which is 
the basis for estimating criticality. 

6.1    THE CHICKEN-AND-EGG VIEW 

1 

The term "critical" applies not only to validity conditions attached to control points, but is also 
(more commonly) used as an attribute of procedures and variables. The criticality of a control point 
follows from the criticality of the procedure in which it is contained. The criticality of a procedure 
is judged at least partly by the criticality of its output variables, whose values might become invalid 
as a result of its misbehavior. The criticality of a variable, in turn, can be judged to some extent by 
the criticality of the procedures accessing it as input. 

To avoid a purely circular definition, some notion ot "fundamental" criticality must be 
introduced, as is done below. Meanwhile, we note that since the criticality of procedures and their 
input/output variables are so closely related, we need not continually include both types of objects 
in the discussion. In the remainder of this section we focus on the criticality of variables, with the 
understanding that the real goal of the evaluator is to identify a set of most critical control points. 

6.2     FUNDAMENTAL CRITICALITY 

The criticality of a variable is ultimately a measure of the seriousness of the effects of an 
invalid value of that variable, defined in terms of potential effects on the users of the system. It is 
a measure of costs of potential violations of high-level protection policy—policy expressed in terms 
of user expectations for information privacy and integrity and for system capacity and reliability. 

(Unfortunately, actual costs defined in terms of these ultimate criteria can rarely be estimated with 
any degree of precision.) 

1   I 

It follows that "fundamentally critical" variables are those closest to the "user interface," i.e., 
for which invalid values have the most immediate effect on user programs or on protection interests 
in general. The interface consists of those variables whose values are directly readable by user 
programs, such as those returned as arguments of user-program calls to system procedures as well 
as those elements of the system data base directly readable by user programs. These can be 
readily enumerated. Certain other variables whose values impinge directly on user interests, such 
as those involved in scheduling or access control decisions, must also be regarded as being included 
in the user interface. 

Fundamental criticality is a measure of the directness as well as the cost of the effects of an 
invalid value. A relevant question is "What would happen if the value of this variable were 
such-and-such?" If the effects on user interests are not apparent, the variable is probably not 

 _.   
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fundamentally critical (although it might be highly critical in one of the indirect senses discussed 
below). Note that just determining whether 'such-and-such" values are valid or not is equivalent to 
formulating a validity condition for the given variable. 

6.3    INFLUENTIAUTY 

The potential cost of an invalidity is not necessarily proportional to the directness of the 
effect. A serious invalidity in a variable at the user interface might be caused by a previous 
invalidity in a variable removed by several levels of procedure. Thus the actual measure of 
criticality is the overall influentiality of a variable on user interests, not the directness of the 
influence. For "internal" or fundamentally noncritical variables this is a two-step 
phenomenon: their influential;ty on values of fundamentally critical variables, and the influentiality 
of the latter on user interests. These must be measured or estimated differently; the term 
"influentiality" is used in two distinct senses. 

Influentiality in the nonfundamental sense can be estimated in a gross fashion by extending the 
data dependency analysis techniques mentioned in Section 4.3 to the interprocedural level. This is 
conceptually similar to data dependency analysis at the intraprocedural level. The program reported 
in [Bisbey76] performs both intraprocedural and interprocedural analyses for variables shared and 
accessed as parameters. "Influenced by" relations among inputs to and outputs from any set of 
procedures are calculated by generating the transitive closure of these relations holding between 
the inputs and outputs of the individual procedures. A more general algorithm for interprocedural 
data dependency analysis is described in [Ailen74]. Most of the work involved is the same as that 
required to generate the communication graph itself, as discussed in Section 4.3. 

Knowing that a data dependency exists between a given internal variable and a given 
fundamentally critical variable is not sufficient; what is required is some measure of how strongly the 
former influences the latter. This suggests a numeric approach, with the criticality of a variable 
calculated as an "averaging" function of the criticalities of the most immediately subsequent 
(influenced) variables, weighted to reflect the "strengths" of the functional relationships represented 
by the procedures connecting them. In Figure 2, for example, the criticality c2 of variable x2 
might be calculated as the sum of wl*cO, w2*c0, and w3*cl. In view of the existence of cycles 
in the system communication graph, such a calculation must proceed iterafively, and the averaging 
function must be chosen to guarantee convergence to a limiting value of criticality for each variable. 
This approach is similar to that of calculating information flow in networks [Ford62], with the w's 
representing arc capacities. 

\J 
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Figur« 2.    Input-ouvpat relationships represented by dependency weights 

Such an approach is only a heuristic device to help identify more critical or eliminate less 
critical variables, since the weights assigned to the arcs cannot capture the algorithmic relationships 
between input and output variables. 

6.4    INFLUENCEABILITY 

The "cost" of an invalidity is not just the cost of the effects of a single occurrence, but rather 
the overall probable costs of whatever invalidities might occur from time to time in the value of a 
given variable. Thus, included in an estimate of its criticality must be an estimate of the frequency 
of such invalidities. 

invalidities are of two categories: 

1. Those resulting from functi-mal errors in the system. 

2. Those due to the successful efforts of malicious users. 

The frequency of invalidities of the first type is commonly referred to as "system unreliability" 
(in the functional sense). Reliability data in terms of occurrences of various types of errors 
(described symptomatically) is maintained as a standard operating practice by many large 
inst Jiations, although not usually with reference to the variables affected. 

The frequency or likelihood of an invalidity resulting from the efforts of malicious users 
depends (in addition to the usually unknown level of such efforts) on the ease with it can be 
achieved.     This   is   the  "influenceability" of  the variable.     Ir.fluenceability  is  the  exact   dual   of 
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influentiality, and can be determined or calculated in a similar manner. Variables whose values 
depend only on user-supplied inputs are more strongly influenceable than those dependent also on 
the values of other variables not under control of a single user, e.g., variables representing resource 
allocation states and total demands. (Some variables are presumably totally noninfluenceable, 
namely those that reflect only user-independent system status, e.g., total resources.) At the same 
time, even though a variable might be strongly influenceable in the above sense, the strength of the 
functional dependence on user-modifiable variables might be masked by several levels of 
indirectness, i.e., il might be derived on!/ from variables that are derived from variables, and so 
forth, that are derived from variables that are directly derived from user-supplied inputs. Similar to 
the distinction between fundamental and nonfundamental influentiality, the apparent influenceabiiity 

of a variable is not the same as its actual influenceabiiity. 

6.5     INCOMPLETENESS OF CRITICAUTY CRITERIA 

No closed set of criteria can serve as a completely satisfactory and dependable basis for 
estimating criticality. Control points or variables more critical by any obvious set of criteria are 
also NKely to have received more attention during system development, so that errors in their 
validation »re loss likely. At the same time, more subtly critical objects might be more attractive for 
purposes of intentional exploitation, since errors in their validation might be considered less likely to 

have Deen detected and their exploitation less likely to be observed. 
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VALIDATION MECHANISMS AND Til Kl K SPECIFICATION 

The final phase of the overall evaluation process consists of carrying out the specific 
evaluations based on given critical items. These can sometimes be performed more efficiently if 
they are guided by knowledge of major validation methods in general, or knowledge of design 
specifications regarding validation methods for the target system in particular. This section 
discusses the major categories of validation methods and their specification, and ihe effect of such 
specifications on an evaluation. 

7.1     ENFORCEMENT SPECIFICATIONS 

At a more concrete level, an element of validation policy consists of an "enforcement 
specification," a logical predicate Ev(Z) attached by designers to a control point v, specifying a 
condition intended to be checked via a routine for that purpose inserted at v. (Also specified is 
the action to be taken if Ev(Z) does not hold, preventing progress past v without some 
intervening corrective action; this is not of concern here.) Such checking is "explicit" validation. If 
Ev(Z) implies the validity condition Cv(Z) attached to v it is "complete;" if Ev(Z) implies only 
One or more of the major conjunctive terms of Cv(Z) it specifies a "partial" validation. If Ev(Z) 
is neither complete nor partial it is irrelevant, and a policy error exists. Comments similar to those 
of Section 5.2 regarding interface errors apply here as well. 

Strictly speaking, the evaluator requires no knowledge of validation enforcement specifications 
for the target system, ncr of validation methods employed h operating systems in general. In 
principle, an evaluation is more honest without such information, since it is less likely to be biased 
by expectations of finding certain validations performed in certain places. (An exception to the 
above is the need for an evaluator to be aware of the protection mechanisms of the underlying 
virtual or physkal machine--mechanisms that insure certain classes of conditions at certain points or 
over certain periods. For the most part, such mechanisms in current systems are con'erned with 
enforcing domain isolation, i.e., preventing cross-domain accesses, l"ut other built-in checking, for 
example that of data types and lengths on "tagged architecture" machines, may also be relevant.) On 
the other hand, knowledge of enforcement specifications and awarene^ of validation methods can 
make an evaluation more effective by suggesting where attention should be most heavily focused. 
If, for example, Ev(Z) is known and is complete with respect to a critical condition Cv(Z), then an 
evaluation with respect to Cv(Z) need include only the v/alidation specified by Ev(Z). Although its 
insufficiency does not prove that a validation error exists, it does indicate a strong probability. 
Further evaluation with respect to Cv(Z) is unwarranted, instead, the implementation of Ev(Z) 
should be corrected. 

Hereafter, when speaking of an actual explicit validation, we shall use Ev(Z) to denote its 
description rather than its specification, i.e., to denote (he actual condition checked. 

7.2    EXPLICIT INPUT AND OUTPUT VALIDATION 

To show that Cv(Z) is insured by a complete validation or by a set of partial validations, it is 
necessary to show that 

1.      The conditions validated logically imply   Cv(Z). 
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2. Tne validations cannot be skirted. 

3. The elements of   Z   are themselves valid. 

O 

Because of the advantages of localization on the evaluation task, three categories of localized 
explicit validation deserve to be noted. The most obvious method of enforcing Cv(Z) is to 
implement a complete validation Ev(Z) at v. This is essentially a software-implemented access 
control routine for the section of procedure subsequent to v. It can be evaluated by comparing 

Ev(Z)   with   Cv(Z)   directly. 

The   next   most   immediate   possibility  is  the  distribution  of   a  set   0    complete   or   partial 
validations    {Ev'(x,Z)}   within the containing procedure at points   v'   on control paths terminating at 

v    and starting at input points of variables   x   whose values influence the values of elements of 
Z    at    v.    This is called "input validation."   (Ev'ix.Z)}   is sufficient to insure   Cv(Z)   if and only if 
Cv(Z)   is implied by the conjunction of the conditions validated along each such path, and item 3 in 

the above list holds. 

Continuing the discussion started in Section 5.2 regarding the distinction between the critical 
points identified by evaluators and the access points of most concern to designers, it is evident that 
in general input points are not the best choices for critical points. Where input validation exists, 
critical points must be chosen as those points (frequently only one) at which the input validation has 
been completed, so that it will be included in the scope of the evaluations based on those critical 

points. 

Input validation must be employed in situations where elements of x cannot be trusted to be 
valid, for example where they are supplied by user-written procedures. It is also frequently the 
most efficient method, in particular for situations where x is modified by a relatively urge number 
of procedures and used by a relatively few, as in the case of a procedure called by many others. 
Where the same validity condition C(x,Z) must be validated via input validations in several 
procedures, these validations are sometimes centralized in the form of a single identical routine (e.g., 
a macro) or a shared procedure. If ^x.Z) applies to all uses of x, validation can be centralized 
even more strongly in the form of a single "use-manager" procedure embodying a validation that is 

complete with .espect to   C(x,Z). 

The third method deserving special note is output validation. Explicit validation with respect 
to an output condition Cw(x,Z) can take the form of a complete validation at w itself. A set of 
partial validations distributed along control paths leading to w cannot be evaluated in the same 
way as those constituting an input validation, since w represents the point at which the 
computation of    x    is completed; implicit validation is involved, as defined below. 

Output validation is efficient when C{x,Z) applies as a common factor in the validity 
conditions attached to a relatively large number of input points and when x is modified by a 
relatively small number of procedures. An important advantage of output validation is that it 
represents prevention of an invalidity, as opposed to input validation, which represents detection. 
Output validation allows sources of invalidities to be more easily identified. As was the case with 
input validation, a distinct validation routine can be associated with each output point of x, or 
common  validation  code  can  be  centralized  in  a  single  routine.    Again, for  a common  validity 
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condition   C(x,Z), output validation can be centralized into a single mandatory "modification-manager 
procedure.   The encapsulation of one or more variables behind a set of manager procedures, with 
an entry or "gate" for each type of access allowed, is a well-known method of insuring information 

privacy and integrity    [Schroeder72], 

Validation with respect to a condition   C(x,Z)   can of course be shared among partial input 
and prior partial output validations   Eu(x,Z)   and   Ew(x,Z)   respectively, where 

[ Eu(x,Z) AND Ew(x,Z) ] => C(x,Z). 

A partial or complete validation of Cv(Z) that occurs at an antecedent control point v' is 
relevant only if no modifications to the variables involved can occur during the time that contro 
passes from v' to v. In other words, the consistency of Z must be m^ntamed during that 
interval. While possible invalidities in the elements of Z due to insufficient validation are included 
in the domain of -'validation errors" relative to Cv(Z), possible invalidities due 0 mod.f.cations by 
concurrent processes are not. As noted in Section 3, such possibilities represent a distinct class of 

protection errors. 

7.3    GENERALIZED VALIDATION 

Up to this point, validation has been assumed to occur in the form of routines that evaluate 
given conditions and prohibit or inhibit processing if their values are false.   A search for validation 
errors  that  limits  itself  to  the  analysis of explicit validations might  result  in the detection  of 

f apparently insufficient validation in cases where validity is actually assured.    Validation of _ Cv(Z) 
* occurs not only in the explicit or "constraintive" form, but also in the implicit or   Passive   form. 

It includes all program elements on paths to v that contribute to insuring that Cv(Z) IS sat,s ,ed' 
computational as well as conditional. If the procedure containing v Is such that Cv(Z) wil be 
satisfied whenever a condition CuvZ) is satisfied at an antecedent control point u, then Cv(Z) is 
"validated with respect to Cu(Z)" on paths from u to v. Ultimately, validation In this general 
sense is merely another way of describing what computer programs do. 

Let an output condition Cw(yIZ) be validated with respect to an input condition Cu(x,Z), 
where w and u are an output and input point in procedure A. Cu(x,2) may be insured by 
validation of x prior to u, i.e., the validity of y as an output of A is determined by validation 
of outputs of procedures antecedent to A. Similar statements might be true of the outputs of 
those procedures, and so on. In the search for validation errors relative to Cw(y,Z), it might be 
necessary to include a number of procedures antecedent to A before any conclusive results can 

be obtained. 

Undue reliance by designers on implicit validation, specifically on the assumed correctness of 
implemented procedures and the validity of their inputs, may result in protection errors. It is easy 
to underestimate the likelihood of contaminated input or of lingering implementation errors. Explicit 
validation, even if considered redundant, is the best way to insure validity. To paraphrase a 
programming maxim, "One should include ajarge amount of explicit validation in a program until it has 

been checked out, and then leave it there." 

c 
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8.   SUFFICIENCY EVALUATION 

This section describes a scheme for the unit of evaluation based on a given critical item, i.e., a 
scheme for finding errors in validation relative to a given validity condition attached to a given 
control point. 

8.1 OVERALL SCHEME 

The input to the evaluation proper is the set of critical items of the form [v,Cv(Z)] discussed 
in Section 5. The activity described below is the evaluation of that part of the validation relative to 
Cv(Z) that occurs within the procedure containing v. This evaluation, is based on the analysis of 
actual procedure code, starting at v and working in a direction opposite that of control flow. It 
differs in this respect from program verification in general, where the object is to show the 
consistency or inconsistency of conditions attached to various points connected by control paths, and 
where the analysis can in general proceed in either direction. 

The evaluation within the procedure containing v may not establish the sufficiency or 
insufficiency of the entire validation of Cv(Z) in the target system. If not, its output, as described 
below, will be a set of additional critical items involving control points in antecedent procedures and 
requiring the same type of local evaluation activity. Thus the overall evaluation process is 
recursive.   Activities triggered by separate critical items may proceed in parallel, 

8.2 SECTION EVALUATION:    DERIVATION OF CONDITIONS 

Rather than examining the entire containing procedure A, the evaluation of the validation 
relative to Cv(Z) need only consider that section S consisting of control paths that lead to v 
in A, and that start at inrAit points of variables that influence Z. When S is small relative to A, 
and especially when manual analysis is required (which is currently the case), S may for 
convenience be isolated in advance and the rest of A "scissored away." This can be done visually, 
by first partitioning A into "basic blocks" and then identifying the basic blocks of S by 
recursively applying the rule that a basic block is in S if there is a conditional branch from it to a 
basic block in S, where S initially consists only of the basic block containing v. Routines for 
this purpose exist in programs for control flow analysis and program optimization [Allen70, Kildall73]. 
Identification of basic blocks in S is also required as part of the condition derivation process 
described below. 

A basic block can be regarded as having the form [F(X),Q(X)], where F specifies a sequence 
of basic operations on the set X of variables accessed by A, and has a single entry point, and 
Q is a control construe! involving a (possibly null) set of predicates ql(X), q2(X), . . . , qn(X) 
corresponding to branches to n distinct basic blocks, possibly including the given block (branch 
k is taKen if and only if qk(X) is true). (See Figure 3.) Basic operations range from simple 
assignment statements to procedure calls. Q is represented in programming languages by some 
form of the generalized "case" statement, of which "if-then-else" statements and "go to" statements 
are instances. 
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Figure 3.    A basic block with associated validity concitions 

The evaluation of S is a process of derivation of validity conditions, starting with Cv(X) at 
v (note the slight change in the interpretation of the argument of Cv) and proceeding along 
control paths leading to v, a basic block at a time, in the reverse direction of control flow, until 
input conditions have been "finally" determined for every input point of section S. When the 
starting validity condition for a basic block B has been derived, it is attached to every branch 
leading to   B   from any basic bloc   in   S. 

If in this manner the condition   Ck(X)   is attached to branch   k   of   B, then the factor 

qk(F(X)) -> Ck(F(X)> (I) 

must be included as a conjunctive term in the expression for C0(X), the starting condition for B. 
Eventually, validity conditions will be attached to exactly those branches leading from B to other 
basic blocks in 3 (conditions for the other branches are irrelevant to Cv(X) ). If, for example, 
these are the first   j   branches from   B, then the starting condition   C0(X)   is expressed by 

A,ND( qi(F(X)) -> Ci(F(X)) ) (2) 
i = i 

Again, some conditions, such as data types and sizes, may be validated at certain points by the 
underlying physical or virtual mashine; these may be explicitly formulated and included in C0(X) 
where necessary. 
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8.3    CONDITION DERIVATION ACROSS LOOPS 

Because of the possible presence of loops in S, conditions may be derived for branches from 
B to which conditions have already been attached. To avoid nonterminating iterations of this 
type, it is necessary to determine an "invariant," a predicate expressing those conditions on the 
variables involved, that remain invariant during execution of the loop. In the example illustrated in 
Figure 4, by starting with the single final condition x < 100 and mechanically deriving expressions 
for   CO    and   C2   in turn, using the formulas 

CO ::» { [i=10  => Cl(x+a(10))] AND [i<10 => C2(x+a(i))] } 

and 

i 

i 
i 

•i 

C2 ::- C0(i+1) 

(instances of formulas (2) and (1) above) it is easily seen that   CO   generalizes to 

10 
x + SUM(a[j]) < 100 , 

from which the derivation back through   30   leads to the initial condition 

10 
SUM(a[j]) <  100 . 
j = i 

i 
( r x*-o 
BO i i -i 

TT: 
■ • 

i 
x<-x + ati] 

10 

•C!:   x<100 • 

7 L.. — ----■ 

i C2 r 
I—J 

o 

.4-i + l 

Figure 4.   Primitive loop example 
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In this example, the invariant condition could also have been readily arrived at by mental 
deduction. If all basic operations and loops were this tractable, derivation of input conditions for a 
procedure could be largely automated. Many of the necessary techniques and programs are already 
available from the area of program verification, such as the generation of conditions across certain 
types of basic operations (e.g., those expressed as. algebraic functions). Basic verification methods 
are introduced in [London75] and [Elspas72], and the state of the art of generating invariances is 
indicated by [Gerrran75] and [Katz76]. Many types of operations occur in operating systems, such 
as allocation and deallocation, composition and decomposition, insertion and deletion, searching, and 
reordering--typically involving complex data structures—for which the derivation of conditions may 
require sophisticated heuristic techniques and considerable intellectual effort. Except for validations 
known to be well localized, the derivation activity is best regarded as one of man-machine 
interaction, with the machine performing the more methodical tasks of logical analysis and expression 
manipulation. 

8.4    TERMINATION AND CONTINUATION CONSIDERATIONS 

Having derived initial conditions C0(X) for a basic block B, several contingencies exist. If 
C0(X) is a tautology (true regardless of the values of X), then no conditions are implied for 

antecedent blocks, and the validation has been shown to be sufficient along control paths to v 
from B. If the opposite is true, and CO is logically inconsistent (identically false), then an 
apparent validation error has been found: Cv(X) cannot be satisfied along the given control paths. 
This is the "functional" type of error referred to in Section 6.4. In either case, the derivation along 
paths leading to B is terminated (in the latter case, under the assumption that control can actually 
reach B). Sometimes an apparent error may be discovered, on closer analysis, to be symptomatic 
of an improper formulation of   Cv(X)   in the first place, requiring modification and reevaluation. 

If C0(X) is meaningful (neither tautological nor inconsistent) and the entry point of B 
represents an input point u of some element x of X, then if x is directly modifiable by 
user-written procedures (as when the entry point of B is a user-callable entry point and x is a 
parameter), a different type of validation error has been found: a user-modifiable variable has 
been identified for which certain values can cause Cv(X) not to be satisfied. This is the 
"exploitable" type of error referred to in Section 6.4. 

If x is not directly user-modifiable, then for each output point w of x, a critical item [w, 
Cw(x,X)] must be joined to the set of critical items awaiting processing, where Cw(x,X) consists of 
the conjunction of those terms of C0(X) involving x. If any of these terms also involves variables 
local to the given procedure, then a functional error has been detected, since such terms can be 
enforced by neither the given procedure nor by procedures modifying   x. 

Because of the possible presence of cycles in the communication graph, there is no guarantee 
that the evaluation with respect to [v,Cv(X)] will terminate "naturally" along every control path 
leading to v, eventually deriving tautological or inconsistent conditions or encountering 
user-modifiable variables. The same output point w can be specified in more than one critical 
item generated during the course of the evaluation, and thus derivation of conditions across the 
section of procedure terminating at w can occur repeatedly. This is analogous to the problem 
associated with loops within procedures, and in principle can be treated the same way. If an 
invariance cannot be readily determined or, more generally, if the search has proceeded for what 
seems to be an unreasonable number of steps up a data path or the evaluation along a data path 

         .   
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otherwise appears inconclusive, it may be truncated. Such an ouicome suggests that implicit 
validation is being depended on to a high degree, indicating the likely existence of subtle validation 
errors, and the appropriateness of including additional explicit validation along the given path. 
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