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1.  INTRODUCTION 

Several authors [1] - [5] have discussed methods of deriving the 

equation of motion of a generalized elastic foundation, which often is 

treated as a thin elastic layer of thickness h that has one face bonded 

to the surface of a rigid substrate. Such models, which include the 

effects of foundation inertia and shear deformation, provide more 

realistic descriptions of the dynamic response of elastic foundations 

than does the classical Winkler model, which treats the normal stress 

at the surface of the foundation as linearly proportional to its trans- 

verse deflection w, i.e., 

P2 • -kw (1) 

However, upon examining the simplest foundation models proposed in 

references [1], [2], and [4] in the case of slender beams on elastic 

foundations, it becomes evident that these theories do not yield the 

correct lowest frequencies for the depth-shear and depth-stretch modes 

of free vibration. (The depth-shear and depth-stretch modes considered 

!v. Z. Vlasov and U. N. Leont'ev. Beams, Plates and Shells on Elastic 
Foundations. NASA TT F-357 (1966) 

^N. S. V. Kameswara Rao, Y. C. Das, and M. Anandakrishnan. Variational 
approach to beams on elastic foundations. Proc. Amer. Soc. Civ. Engrs., 
J. Engng. Mech. Div., 97, pp. 271-294 (1971). 

%. H. Dowell, Dynamic analysis of an elastic plate on a thin, elastic 
foundation. J. Sound Vib., 35, pp. 343-360 (1974). 

^N. S. V. Kameswara Rao, Y. C. Das, and M. Anandakrishnan. Dynamic 
response of beams on generalized elastic foundations. Int. J. Solids 
Structures, 1_1_, PP« 255-273 (1975). 

^G. L. Anderson. The influence of a Wieghardt type elastic foundation 
on the stability of some beams subjected to distributed tangential 
forces. J. Sunn l "ih. (to be published). 



here are quite analogous to the well-known thickness-shear and thick- 

ness-stretch modes that are known to exist in infinite elastic plates. 

Related or analogous mathematical problems arise in the design of 

ultrasonic devices which contain crystal bars and plates that are 

rigidly clamped on one face due to the mode of mounting. 

The objective of this investigation, therefore, consists of deter- 

mining a system of partial differential equations of motion for thin 

elastic bars (or foundations) that are rigidly clamped on an entire 

lateral surface. Such bars will hereinafter be called "constrained 

bars." These equations may be interpreted as describing the motion of 

(i) the type of elastic foundation described in the opening paragraph 

of this section or (ii) an isotropic crystal bar mounted in an ultra- 

sonic device. A variational principle is used to obtain the field 

equations for the system. The normal and shear strain components of 

the strain energy of the system are adjusted by means of the introduc- 

tion of correction factors of the type that are used in the Timoshenko 

and Mindlin theories for elastic beams and plates, respectively. First 

order and second order theories are derived, and the various correction 

factors are evaluated by requiring the lowest depth-shear and depth- 

stretch frequencies, as derived from the approximate theories, to be 

identical to those obtained from the full theory of generalized plane 

stress (see Section 3). Finally, the frequency equation for a simply 

supported constrained bar of length z  is derived, and plots of the 

variations of the first eight frequencies of the transverse and longi- 

tudinal modes versus the length to depth ratio are presented and dis- 

cussed. 



2.  GENERALIZED PLANE STRESS 

Consider the bar of thickness b in the x3 - direction (b << i , 

where I  denotes a characteristic length of the bar) that is depicted 

in Figure 1. The bar is assumed to be clamped to a rigid surface on 

the face x~ = +h/2. This implies that the longitudinal and transverse 

displacements u, (x1, Xp, t) and Up (x,, Xp, t), respectively, are 

constrained so as to vanish at the surface x? = h/2, i.e., 

ua (xr h/2, t) = 0, a = 1, 2. (2) 

Furthermore, the lower face of the bar is free of applied surface 

traction and its longitudinal and transverse displacements are com- 

pletely unconstrained. Thus, the boundary conditions on this face are 

those of vanishing shear stress and normal stress, namely, 

a12 = a22 = ° on x2 = "n/2, (3) 

The equations of motion, according to the theory of generalized plane- 

stress [6], for the in-plane deformations of a thin, elastic plate are 

aag,g = piV -*-1' 2' (4) 

where p denotes the density of the material, a n n = da  „/9x„, and 
ap,p afi       6 

summation over repeated indices is implied.    The constitutive 

equation is 

a      = 2ye      + ye    6     , (5) 
ag a& aa af$ 

where 

Y = 2Ay/(X + 2y), (6) 

6I.S. Sokolnikoff.    Mathematical Theory of Elasticity. New York: 
McGraw-Hill  Publish inn Co    (1956). 



-*• X, 

Figure 1. Coordinate system for the bar. 
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with u and x  denoting the Lame constants. The strains e   are 

defined by 

'*ryzKe*"t.J- (7» 
It is easy to verify that the above field equations can be 

derived directly from a generalized form of Hamilton's principle due 

to Yu  [7],  (see also [8]),  linearized and specialized here for the 

case of generalized plane stress.    This principle is expressed as 

(8) 6 ^            Ldt = • o, 

where 

L = T-V+W 

is the general ized Lagrangian with 

(9) 

(10) T •   I      1/2 pu0ua dA, dA = dx^dx2, 

"      ia    PaUa    ds+   Jcu   ^\-»«   )ds' ^12) 

Here the e „ are generalized strains that will  be described later, 

U, defined by 

Y.-Y. Yu. Generalized Hamilton's principle and variational equation of 
motion in nonlinear elasticity theory, with application to plate 
theory.    J. Acoust. Soc. Amer., 36..  pp.  111-120 (1964). 

Q 

G. L. Anderson.    The stability and non-linear vibrations of an 
orthotropic hinged-hinged beam.    Watervl iet Arsenal Technical  Report 
WVT-TR-75036 (1975). 



U * 1/2 a      e , (13) ag ag x 

is the strain energy density, which is assumed to exist and is a func- 

tion of e   and p = a  .  n . where n„ are the components of the unit 
ag,      a   ag  g g r 

normal vector to the boundary of the area A. Moreover, t0 and t, are 

two instants of time, u = au /9t, and a barred quantity is a prescribed 

function. C  denotes that portion of the boundary curve C on which 

the tractions p" are prescribed, Cu that portion of C on which the 

displacements IT are prescribed, and s denotes arc length along C. 

Because the variations 6u , 6e ., 6a „ are arbitrary throughout the 
a        ag ag J 3 

area A of the body, Su   arbitrary on C , and 6p. arbitrary on C , their 

coefficients in the varied form of equation (8) must vanish.    There- 

fore,  the present form of Hamilton's principle will generate the stress 

equations of motion, the stress-strain relations, the strain-displace- 

ment relations, the stress boundary conditions, and the displacement 

boundary conditions.    As will  become apparent in subsequent sections, 

this process will  be quite convenient for the derivation of the field 

equations for constrained bars. 

3.  DEPTH MODES IN AN INFINITE PLATE STRIP 

The equation of motion in equation (4) subject to the boundary 

conditions in equations  (2) and  (3) admit some rather elementary solu- 

tions,  herein called depth-shear and depth-stretch modes,  in the case 

of a plate that extends to positive and negative infinity in the x-,- 

direction.    The lowest frequencies of these modes will  be of consider- 

able importance later in Section 5. 



The depth modes shall be characterized by a displacement field 

that is independent of the axial coordinate x, i.e., 

u = u (x9, t). (14) 
a a      d 

Therefore, in view of equations (14), (5), and (7), the stress 

equations of motion in equation (4) become simply 

yu1 22 = pu](        |x2|< h/2 (15) 

and 

clu2 22 =    pu2' lx2'< h^2, (16^ 

where 

C1   =  4y(y+X)/(2M+A), (17) 

for the depth-shear and depth-stretch modes, respectively.    Moreover, 

by virtue of equations  (2) and  (3),  the associated boundary conditions 

are found to be 

u    , = 0 on x, = -h/2, u = 0 on xQ = h/2 (18) 
a,d dad 

Assuming solutions in the form 

ua(x2, t) = v
a(x2) coswt, (19) 

where u designates the natural circular frequency of vibration of the 

infinite, constrained plate strip, one obtains from equations  (15), 

(16), and (18),  the basic boundary value problem 

v    „„ (x0) + 32 v  (x0) = 0 (no sum on a), (20) 
a,dd       d a    a     d 

\  2  ("h/2)  = VJh/2) = °> <21> Ot 9 c ct 

where 



2 2 2 
3    = PW /y, B2

2 =pw /cr (22) 

The solution of equation (20) is 

v   (xj = A     cose   x0 + B    singx0. (23) a    Z a a    Z       a a Z 

Substitution of this expression into the boundary conditions in 

equation (21) yields 

A    cos 3 h/2 + B    sin 3    h/2 = 0, a a a a 
(24) 

A   sin 3 h/2 + B   cos 3 h/2 = 0. 
a a a a 

The system of homogenous equations  (24) will have a non-trivial solution 

if and only if the coefficient matrix vanishes.    This requirement leads 

to 

cos3 h = 0, (25) 

whence 

3an = (2n-l)ir/2h,  n=l,2,3,... (26) 

Therefore, from equations (22) and (26), one finds 

_ (2n-1k -TT 
9h V „ "n    2h 

and 
„ (2n-l)M/cj~ 

Jn   2h   V p 

for the depth-shear and depth-stretch modes, respectively.    Of particu- 

lar importance later will be the lowest depth-shear frequency. 

8 



», = 2FVF (27) 

and the lowest depth-stretch frequency 

UJ 2h V o (28) 

Finally,  it may be noted that 

A   = sin 3 h/2, B    = -cosa h/2 
a a a a 

represents a possible solution of equation (24). Consequently, 

equation (23) becomes, by virtue of equation (26), 

van (x2) • sin [(2n-l) TT (h-2x2)/4h]. (2g) 

Naturally, these are the eigenfunctions of equations (20) and (21). 

4. A THEORY FOR CONSTRAINED BARS 

To develop a theory for constrained bars, one can proceed with 

the variational  principle in equation (8) in much the same way as 

Vlasov and Leont'ev did in their book [1].    Specifically, it is 

assumed here that the displacements u    can be approximated by 

u1(x1,x2,t) = f1(x2) u  (x^t) + f2(x2)ifi  (Xj.t) 

U2(xl,X2,t)   =   f1(x2)   W   (X^t)   +   f2(x2)   (KXpt) 

(30) 

V.  Z.  Vlasov and U.  N.  Leont'ev.  Beams, Plates and Shells on Elastic 
Foundations.    NASA TT F-3S7 M966] 



where the linearly independent coordinate functions f (x„) are re- 
a L 

quired to satisfy the geometric boundary condition 

fo (h/2) =0,     a = 1,2, (31) 

which assures that equation (2) will be satisfied. One possible set of 

coordinate functions, whose elements satisfy equation (31), is 

f1(x2) = -^ (h-2x2),  f2(x2) = =^z  (h-2x2)(h+4x2).      (32) 
2h 

The function f1 (x2) has previously been employed in references [1] to 

[4]. Of course, other sets of functions could be selected and, perhaps, 

would be even more desirable. Further comments on this point appear in 

Section 9. It may be noted that the functions f (x?) given in equation 

(32) are orthogonal over the interval -h/2<x?<h/2, i.e., 

1 h/2 f1(x2)f2(x2)dx2 = 0 (33) 

and are normalized such that f (-h/2)=l. The functions f have been 
a a 

plotted as functions of x = 2x2/h in Figure 2. Clearly, f-,(x2) has a 

single zero, whereas f2(x2) has two zeros. 

V. Z. Vlasov and U. N. Leont'ev. Beams, Plates and Shells on Elastic 
Foundations. NASA TT F-357 (1966]T 

2 
N.S.V. Kameswara Rao, Y.C. Das, and M. Anandakrishnan. Variational 
approach to beams on elastic foundations. Proc. Amer. Soc. Civ. Engrs., 
J. Engng. Mech.  Div^ 97, pp. 271-294 (1971). 

3 
E.  H. Dowell.  Dynamic analysis of an elastic plate on a thin, elastic 
foundation. J. Sound Vib., 35, pp. 343-360 (1974). 

4 
N.S.V. Kameswara Rao, Y.C. Das, and M. Anandakrishnan. Dynamic response 
of beams on generalized elastic foundations. Int. J. Solids Struc- 
tures, 11_, pp. 255-273 (1975). 

10 
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Figure 2. Variation of the coordinate functions with x. 
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Substitution of equation (30) into equation (10) leads to the 

following expression for the kinetic energy: 

1 = \ ph    /  [3 ^2+w2) + \ ^2 +* 2^ dxr (34) 

By equations  (7) and (30), one has 

ell  = V'l+V'l <22 = fl,2 w + f2,2* 

e12 = I (fl,2u + f2,2*    + flw'l + V'l)j 

so that 

/   aaBeaBdA =    /   tu'lNl   + *'1N2 + uQ1   + *Q2 + W'1Q3 + *'1Q4 + 

A 0 

+ wT]  + *T2] dxr (35) 

where the following "generalized stresses" have been defined: 

h/2 ,h/2 

J fl°ndx2'      N2 = ^ f2alldx2' Nl  = 
•h/2 '   "    fc & -h/2 

r h/2 h/2 

Q1   =     j f]j2 o12 dx2,        Q2 =    y f2,2a12dx2' 
-h/2 -h/2 

^ h/2 h/2 

Q3 =    J f1a]2dx2, Q4 -    y f2a12dx2, 
-h/2 -h/2 

, h/2 h/2 

Tl  =  J fl,2 a22dx2' T2 =    J f2,2 a22dxi 
•h/2 -h/2 

12 



Next, suppose that one defines "generalized strains" 

Y-i -i > a,-I,  •••> otpj, such that 

e11  " Vll  + f2 alT e22 ~~   fl,2 Y22 + f2,2a22' 

2e]2 •> f1>2Y12 + f2>2 a12 + f1?12 + f2e12. 

Then, one can easily show that 

f   a  „e  „dA =     /    [v N,   +a J       ag  ag J     LTU  1 nN2 + ^12^1  + "lZ^Z + 512Q3 + 

(36) 

A ° 

+ ?12Q4 + Y22T1  + a22T2] dxT (37) 

Upon writing equation  (5) as 

a      = 2ue      + ye    6 
ag ag aa ag 

and substituting this into equation (13), it follows that 

2U = c}e
2
u + 2c2elie22 + Cle|2+ 4neJ, (38) 

where c,   has been defined in equation  (17) and 

c2 = 2Mx/(A+2y) (39) 

by virtue of equation (6). In order to correct the shear deformation 

and transverse normal strain, correction factors K, and K? are intro- 

duced at this point. Specifically, e,p and e22 shall be replaced in 

equation (38) by K-ie,^ and <2e?2' resPectively: 

13 



2 2        2 2      2 
2U = c^e^  + 2K2c2ene22 +K2 Cle22 + 4,cl  ye12" ^40^ 

Inserting equation (36) into equation (40) and integrating the result 

over the domain -h/2< x2 <h/2, one obtains 

rh/2 

J 2U dx2 •  (h/3)c1-Y11 + (h/5)c1a11-K2c2Y11Y22'3K2C21flla22 + 

1 2        2 
+  2K2C2Y22ai-|-K2C2aiia22+(l/h)K2  C-^22  + 

+ (2/h)K2
2c-1Y22a22 + (19/3h)K2

2c1a22+(l/h)K1
2pY1^+ 

+   (19/3h)K1
2ya1

2+(h/3)K1
2y^2+(h/5)K1

2p51
2 + 

+  (2/h)<1 viY12
ai2"Kl  UY12C12+ 3*1 yY12512 " 

7    2 2 
-  2*:-|   Via-|2C-|2 *Ki   ya12^12" ^^ 

Therefore, in view of equations (35), (37), and (41), equation 

(11) becomes 

V = j [u,1N1+*,1N2+uQ1+^Q2+w,1Q3+<|),1 Q^T^iy 

o 

" T11N1  -allVY12Ql   • a12Q2 "  ^3 " 512Q4 " Y22T1   " 

- a22T2 +  (h/6)c1Yn
2 +  (h/lO)^2 -  2K

2
C2Y11^22 " 

- g <2
C2Ylla22+6K2C2Y22all    "  2K

2
C2alla22+(1/2h)<2 C1Y22 + 

+ (l/h)K2
2c1Y22a22 

+ (19/6h)K2
2clCt2

2 + (l/h)*,2^   + 

14 



+   (19/6h)K1
2Ma12+(h/6)K1

2y?1^+(h/10)K1
2yC12+(2/h)<1

2yYl2a12 

12 2 2 
"2*1  MY12?12 +  ^/6^Kl  yY12^12 "  (7/6)Kl  pa12^12 " 

12 12 
-2-K1  ua12C12 " 2K1  Ma12^12* dxl' ^42^ 

Lastly, because tractions may be applied on the face x? = -h/2 

of the plate and because of equation (2) and the fact that f (-h/2)=l, 

equation (12) becomes simply 

W =/    [p^, t)(u+*) + p2(xrt)  (w+<|>)] dxr (43) 

under the assumption that either vanishing tractions or displacements 

are prescribed on the ends x, = o, & of the plate. 

The Lagrangian function L defined in equation (9) is now com- 

pletely known because the required expressions for T, V, and W are 

given in equations (34), (42), and (43). Therefore, performing the 

variational process indicated in equation (8), one obtains the gen- 

eralized stress equations of motion: 

1 N 1,1 " Ql +h =3phu* 

N2,l   " Q2 + Pl = I phip' (44) 

Q
3,l  " Tl  + p2 = 3~ph "• 

Q4,l   " T2 + P2 = 5 ph*' 

which are subjected to one boundary condition from each of the follow- 

ing sets: 

15 



(i)      either N,  = 0 or u = 0, 

(ii)    either N2 = 0 or ^ = 0, (45) 

(iii) either Q- = 0 or w = 0, 

(iv)    either Q. = 0 or <t> = 0 

at x, = 0 and x, =& . The generalized stress-strain relations are 

N1   =  (11/3)0^^ - 2 K2C2Y22 " 6 K2C2a22' 

N2 =  (h/SjCja^ + g"K2C2Y22." 2K2c2a22, 

2 2 12 12 
Q1  =  (l/h)^  UY12 

+ (2/h)K^  via-|£~ 2 Kl  yC12 + 6 Kl  y?12' 

Q2 =  (19/3h)Kl
2ya12 + {2/h)<}

2vvu - (7/6)K1
2

U?12 - ^^g, 

Q3 =   (h/3)Kl
2y?12-] K^MY^ -  (7/6)Kl

2ya12, (46) 

2 2 2 
Q4 =   (h/5)<1   M5-J2 +  (Kl   /6)uYi2 "   (K-\   /2)ya12> 

11 2 2 
Tl  = ~2K2C2Y11  + 6 K2C2all  +  ^/n^K2 Ci  Y22 +  ^^K2 cia22' 

7 1 2 2 
T2 + " 6 K2C2Y11 " 2 K2C2all  +  (1//n)K2 C1Y22 +  (19/3n)ciK2 a22' 

and the generalized strain-displacement relations are 

Yll  = u'l all  =^'l Y12 = u' a12 = *' 

(47) 

c12 = W'l C12 =*'l Y22 = w' a22 = *' 

l(; 



5.  THE FIRST ORDER THEORY 

To obtain a first order theory, one sets ip= <f> = 0, so that a 

C12 = 0 and equations (44) to (47) reduce to (a) the generalized 

equations of motion 

ae 

0<X,<A, 

Nl.l   "   Ql   +P1   =3ph"» 

Q3,l   " Tl  + p2 = Iph"' 

(b) the boundary conditions 

(i)    either N,  = 0 or u = 0, 

(ii) either Q~ = 0 or w = 0, 

at x,   =0 and x,  =  a,   (c) the generalized stress-strain relations 

(48) 

(49) 

N1  =  (h/3)c^y^  - 2 K2C2Y22' 

Q1  =  (l/h)ic.|  MY12 
_ 2 Ki  W?12, 

Q3 =   (h/3)K1
2pc12-2-Kl

2MY12j 

1 2 
Tl  = " 2 K2C2Y11 +  ^/n^K2 clr22, 

(50) 

and (d) the generalized strain-displacement relations 

yu  = uM Yi o ~ U    ^-|p -- W,-.     Ypp " W. (51) 

Substitution of equation (51) into equation (50) yields expressions 

for the generalized stresses in terms of the generalized displacements: 

N-j = (h/3) c1u,1 - 2-K2C2W, 
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wh 

Q1 = (l/h)<1 yu - 2<, nw,1 , 

2    ]  2 (52) 
Q3 = Ch/3)K^ yw,-j - 2Ki ^u» 

1 2 
T1 = - 2 K2C2U,-| + (l/h)K2 ^w, 

ere now u(x,,t) and w(x,,t) may be interpreted as the longitudinal 

and transverse deflections, respectively, of the face x„ = -h/2 of the 

bar. The displacement form of the equations of motion can next be 

derived simply by inserting equation (52) into equation (48): 

c1u,n -(3/h
2)<1

2pu + (3/2h)(Kl
2y- K^)*^  + (3/h) p] =pli, (53) 

K-,2yw,11-(3/h
2)K2

2c1w + (3/2h)(K2c2-K1
2y)u,1 + (3/h)p2 »pw. (54) 

To evaluate the correction factor K, and <2 in equations (53) and 

(54), one possible approach consists of determining the lowest natural 

frequencies of vibration in the depth modes and comparing the results 

with equations (27) and (28). Hence, if one assumes that 

u = u(t), w=w(t), and p, = p2 = 0, then equations (53) and (54) 

become simply 

2 2 
ii + a) u = 0, w +w w = 0, 

where, respectively, 

w = 3K, y/ph  and to = 3<2 c,/ph . 

Comparison of these expressions with equations (27) and (28) yields 

K,
2
 =<2

2 = ir2/12. (55) 
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6. THE SECOND ORDER THEORY 

The field equations for the second order theory are given in 

equations (44) to (47). If it is assumed that, for an infinitely long 

bar, u = u(t), ... ,<j> =<f>(t), then the deflection forms of the equations 

of motion are 

ii + (3K,2y/ph2) u + (6K,2y/ph2)4/ = 0, 

(lOK^p/ph2) u + $ + OBK^y/Sph2)^ = 0, 

for the depth-shear mode and 

w + (3K2
2c1/Ph

2) w + (SK^/ph2)* = 0, 

(5K2
2c1/ph

2) w + 'i  + ^(c^c^h2) <j> = 0, 

(56) 

(57) 

for the depth-stretch mode. If solutions of equations (56) and (57) 

are sought in the form 

u(t) = A-, COS cot,       i|)(t) = B, cos cot, 

w(t) = Ap cos cot,       <j>(t) = B„ COS cot, 

the following frequency equations are obtained in the usual way: 

3(co/coQ)
4 -  104  (co/co0)2 + 105 = 0, co0

2 =K1
2y/ph2, (58) 

for the depth-shear modes and 

3(co/co )4 - 104(co/co„)2 + 240 = 0,    co 2 = Ko2c,/Ph2, (59) 
0 0 0 c.      I 

for the dd|>th-stretch modes. 
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The two solutions of the bi-quadratic equation (58) are 

2 2 
u,    = 1.0408    -V" ' u)?    = 33.6251    -i-5-, 

1 pIT      * ph^ 

whereas, according to the expressions derived in Section 3, the exact 

results are 

2 _ TT u 2 _ 9TT y 
1        4Pli *        4pfT 

2 Thus, one might require that the values of u-i be identical, so that 

K-,
2
 =T:

2
/4(1.0408) and 

5.684 
w2 

ph 2 V.h2' 

which is not a good approximation to the exact expression 

2 V.h2 Up 

For the depth-stretch modes, equation (59) yields 

K 2r 2r 
?                        2    1 2                        K?    1 

co^    = 2.4859    * 2'   , ^2    = 32.1087 -^rS 
ph ph 

whereas the exact values are 

2      /   _i 2      9TT2    Cl 
wl     ' 4        h2' w2 4        h2 ph ph 

2        2 
Proceeding as before, one finds K2    = IT /4(2.4859) and 

. 3.594 TL~\lh. 
2 2    »      2 
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in contrast to the exact value 

9 V   o J2   2 v .2  ' pn 

Clearly, the approximations for o>2 in both the depth-shear and 

depth-stretch modes are not as accurate as might be desired. Indeed, 

it is evident from equations (56) and (57) that the u, ty  deflections 

are coupled in the depth-shear modes and the w, <)> deflections are 

coupled in the depth-stretch modes. The fact is clearly at variance 

with the corresponding situation as embodied in equations (15) and (16) 

obtained from the "exact" theory of generalized plane stress. The 

source of this difficulty lies in the choice of coordinate functions 

f (x?) made in equation (32) which do not satisfy the orthogonality 

condition 

h/2 

/ 
•h/2 

fl,2(x2)f2,2(x2) dx2 = ° (60) 

which would eliminate all the undesirable coupling terms in equations 

(56) and (57). Additional comments on this point are given in Section 9. 

7. FREE VIBRATIONS OF A CONSTRAINED BAR 

2   2 Suppose that p, = p2 = 0 and that *a = < , where, according to 

2   2 equation (55), K = IT /12. Furthermore, suppose that the changes of 

variables 

2   2 2 x, = JU,  o<x<l,   t = CT,   c = p*- /K y 

are introduced into equations (53) and (54). Consequently, the 

dimensionless form of the equations of free motion of a constrained bar 
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are, according to the first order theory, 

gu" - 3c u + yw'  = u, 
o<x<l, (61) 

W"   -   3a£^W -  YU1    =  W, 

where u1 = 9u/3x, u = 3U/9T, etc. and 

3 = a/<2, a  = Cj/y,   5 = «/h, Y = (3i/2h)(KV-C2)/KP   (62) 

Suppose, in addition, that the ends x, = 0, a of the beam are simply 

supported, i.e., 

u = Q3 = 0 at x, = 0, I. 

In view of equation (52), these boundary conditions become effectively 

u = w' = 0 at x = 0, 1. (63) 

It is easily verified that the expressions 

U(X,T) = A sin nirx cos HIT, w(x,x) = B cos mrx cos m, (64) 

where n = 1,2,3,..., A and B are arbitrary constants, and u is the 

dimensionless circular frequency parameter, satisfy both the boundary 

conditions in equation (63). Insertion of equation (64) into equation 

(61) yields the system of homogeneous algebraic equations 

[oi2 - 3(nTr)2 - 3c2] A - nTrvB = 0, 

-nTTYA + [u - (n7i)2 - 3a? ] B = 0, 

which has non-trivial solutions if and only if 
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o 7 7 
u>   -e(mr)'1 - 3C 

•riTTY 

•mry 

to    -   (nir)     -  3a£ 

= 0. 

Expansion of this determinant yields the (dimensionless )frequency 

equation 

w4  "   [(1+3)   (mr)2 +    3(1  +  a)  S2]  to2 +  g(mr)4 + 

+  [3(l+ag)52  - Y2]   (nir)2 +  9a?4  =  0, 

which has the solutions 

(a)j,n)2 = 2 U]+^^2 + 3(l+a)52] + \ (-l)J{[O-0)(nw)2 - 

-3(l-a)c2]2 + (2mrY)2   }     1/2,      j = 1,2, (65) 

where w,  and u>0 „ denote the (dimensionless) natural frequencies of 1 ,n    Z,n n 

the transverse and longitudinal modes of vibration, respectively. By 

virtue of equations (17), (39), and (55), the quantities defined in 

equation (62) can be expressed as 

a = 1/8 (1-v), 3 • 3/2TT
2
(1-V), Y = (3S/2) [l-W37ir(l-v)], 

where v denotes Poisson's ratio. 

For large values of the length-to-depth ratio £, one can show that 

2 
the a).   behave asymptotically as 

,2 
2 _ ^ c2  (mi) 

i),   s 3a£, + -Vs—*— < 
l,n        1-a 

1  3 
1-a- 4 1- 2v 

^TKT +0(?"2) (66) 
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for the transverse modes and 

w2fn • 3£
2 + M' B + 4(1-a) 

2v 
^  0(C~2)   (67) 

for the longitudinal modes.    As §-*», equations  (66) and (67) become 

1 ,n 
a. 5 AT and     oi9     ^5 /3 , (68) 

which can be shown to be the dimensionless forms of the fundamental 

frequencies of the depth-stretch and depth-shear modes, respectively, 

in an infinite, constrained plate strip (see Section 3). 

In Figures 3 and 4, the variations of m-  have been plotted 
j, n 

against 5 for v = 0.3 and n = 1(1)8. These curves show, for sufficiently 

large values of £, the linear rate of growth in frequency as indicated 

by equation (68). For j = 1 and 2, the frequency of the lowest mode, 

n = 1, is virtually a straight line in the 5w-plane. As n increases, 

in the case of j=l, the frequency curves rise steeply with increasing 

5 and then abruptly change slope, growing thereafter at a slower rate-. 

In the second mode (j=2), the higher frequencies increase with £ very 

slowly until an abrupt increase in slope is observed. The point of this 

transition in slope occurs for larger and larger values of £ as the mode 

number n is increased. 

8. BEAMS ON AN ELASTIC FOUNDATION 

The classical equations of extensional and flexural motion of 

slender elastic beams of length *-,  and rectangular cross section with 

depth H and thickness b are, respectively, 
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Figure 3. Variation of the transverse natural frequency w versus £, 
for' the first eight modes. 
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U?     20- 

Figure 4. Variation of the longitudinal natural frequency w_ versus % 
for the first eight modes 
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EAu,n + b 012
(+) - °12

(_)] = Pb A u (69) 

and 

EIW,„„  • PbAw = b[a22< + )-o22(-)] + |A[o]2t/ + ) • .1ft1
(-,]f (70) 

(±) 3 
where oKJ  = a - |  ,„.„, A = bH,  I = bH /12, E denotes 

ac a2 'Xp-+H/d 

Young's modulus, p. the mass density of the beam, u  (x,,t) the 

longitudinal deflection and w (x,,t) the transverse deflection of the 

center line of the beam. These deflections are related to the dis- 

placements u, (x,,x2,t) and u2(x,,x2,t) according to 

iT| (x1,x2,t) = u"(x,,t) - x2w,1 (x^t), (71) 

u2 (x1,x2,t) = w (x1 ,t), 

for o<x1<Jl1, -H/2<x2<H/2. 

Under the hypothesis that the beam is perfectly bonded to the 

elastic foundation at the interface, the longitudinal and transverse 

deflections must be equal there, i.e., 

U (x,, H/2, t) = u (x,, -h/2, t), 
a   I a   I 

which, in view of equations (30), (32), and (71), yield 

u (xrt) - (H/2) wfl (xrt) = u(xrt) 

w (x1 ,t) = w (x^t) 

for the first order foundation theory. In addition, at the interface 

one also has cr  = -p , where, by virtue of equations (53) and (54), 
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^2 - (ph/3)u+(Clh/3)u,n - (K2v/h)u+(K/2)(Kv-c2)vi,} (73) 

(+)        ..  2 2 
a22  = - (ph/3)w+U yh/3)w,11-(K^c2/h)w+(K/2)(c2-Ky)u,r      (74) 

Some special cases are of interest. As a first example, suppose 

that the beam is loaded such that extensional deformations predominate 

over flexural deformations. It might then be assumed that w = w z 0, 

so that the pertinent equations of motion for the beam and the founda- 

tion are equation (69) and 

a12
(+) = - (ph/3)u + {c}\)/3)u,u  - (A/h) u. (75) 

Substitution of equation (75) into equation (69) and use of u(x,,t) z 

u(xist) yield 

(EA+bhc^K^ - (<2by/h)u = (pbA +Pbh/3)ii + bo^^'K (76) 

As a second example, suppose that the beam is loaded in such a 

manner that transverse deformations predominate over extensional 

deformations. This suggests that, as a first approximation, u = u" = 0 

and w = w. In particular, equation (74) may be approximated by 

( + ) 2 2 
a22  = -(Ph/3)w + (K yh/3) w,^ - (/c2/h)w. (77) 

Insertion of equation (77) into equation (70), under the hypothesis that 
(±) 

a,2     =0, leads to 

EIw,nil - (bhK2y/3)w511 + (bK
2c2/h)w + 

+ (pbA + pbh/3)w = - ba22^'K (78) 
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Equation (78) possesses a form that is quite similar to the one 

investigated in references [3], [5], and [9] to [11]. As cited in 

equation (1), the term -(K c2/h)w in equation (77) is analogous to the 

2 2 Winkler hypothesis, whereas the set of terms (< yh/3)w,,, - (< c?/h)w 

is sometimes identified as either the Wieghardt or Pasternak model for 

an elastic foundation. If the inertia term - (ph/3)w is included with 

these latter terms, one may speak of a Wieghardt- or Pasternak-type 

inertial foundation. Essentially, the new feature in equation (78) 

2   2 consists of the introduction of the correction factor <    = TT /12, which 

resulted upon the insistence that the foundation model should produce 

the fundamental depth-stretch frequency for an infinitely long bar. 

In the general coupled case, one finds, upon inserting equation 

(72) into equations (73) and (74), 

a (+)= -(Ph/3)u + (0^/3)11",,, -(K
2
M/h)u + (phH/6)w,, - 

12 IN i 

- (c hH/6)w,in + (K/2h) [<y(H+h) -hc2]w,r      (79) 

3 
E.H. Dowell. Dynamic analysis of an elastic plate on a thin, elastic 
foundation. J. Sound Vib., 35, pp. 343-360 (1974). 

5 
G.L. Anderson. The influence of Wieghardt type elastic foundation on 
the stability of some beams subjected to distributed tangential forces. 
J. Sound Vib. (to be published), 

g 
A. Ylinen and M. Mikkola. A beam on a Wieghardt-type elastic founda- 
tion. Int. J. Solids Structures, 3, pp. 617-633 (1967). 

T.E. Smith. Buckling of a beam on a Wieghardt-type elastic foundation. 
Zeit. angew. Math. Mech., 43, pp. 641-645 (1969). 

M. Rades. Dynamic analysis of a Pasternak-type inertial foundation. 
Rev. Roum. Sci. Tech. Se>. Mec. Appl., 1_6, pp. 1107-1134 (1971). 
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CT22
(+)= - (ph/3)w + (K/12)[Ky(4h+3H)-3HC2]W)11  - 

-  (K
2c2/h)w+ (K/2)(C2 -Ky)u,r (80) 

Consequently,  substitution of equations  (79) and  (80) into equations 

(69) and  (70) yields 

(EH+C]h/3) uM1  - (K2y/h)u - (c1hH/6)w,111 + 

+ (K/2h)[<y(H+h)-hc2] wfl  = (pbH +ph/3) u    - 

-  (phH/6) Wf]  + a12 
(-)  , (81) 

and 

- (c1bhH/6)u,111 +(<b/2h) [>u(H+h) - hc2] u^ + 

+ (El +c1bhH2/12) w,,in  -  (<b/12h)[Ky(H+2h)2-4Hhc2] w,^ + 

+ (K2c2b/h) w = - (pbhH/6) u,,  - (pbbH+pbh/3) w + 

+ (PhbH2/12) w,n  - b a22
(_) + |bH »12 /"*• (82) 

Neglecting the rotatory inertia terms w,.. and w,,-,  as well  as u,, in 

equations (81) and  (82), one obtains 

(EH + C]h/3)un]  -  U
2y/h) u -  (c^H/Sjw,        + 

+ (K/2h)[Kp(H+h)-hc2]w,1  = (pbH+phl3)u'+ a12
(_), (83) 

and 

- (^bhH/eJu,^ + (Kb/2h)|>y(H+h) - hc2]u,1 + 
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+ (EI+c1bhH2/12)w,1111  - (Kb/12h)[Ky(H+2h)2 - 4Hhc2] w,,, + 

+ (<2c2b/h)w = -  (pbbH+pbh/3) w -bo    ^ + \ bHo]Z A"K        (84) 

9. CONCLUSIONS 

In Section 6, it was observed that the second order theory does 

not provide accurate approximations for the second depth-shear and 

depth-stretch frequencies in an infinite plate strip. This difficulty 

was traced to the fact that the selected coordinate functions f (x„) a  2 

stated in equation (32) do not satisfy the orthogonality condition 

presented in equation (60). 

The undesirable coupled terms in the equations of motion can be 

eliminated upon selecting the coordinate functions f (x0) to be ad 

f}(xz) =  (h -2x2)/2h, 

f2(x2) = (h-2x2) (h+2x2) (h+10x2)/h
3, 

where these functions satisfy the orthogonality conditions (33) and 

(60). If a second order theory is required, the theory can be reformu- 

lated following the procedure outlined in Section 4, provided that one 

now use the coordinate functions given in equation (85). 

On the other hand, instead of using these polynomial coordinate 

functions, it seems still more desirable to employ the eigenfunctions 

given in equation (29) as the coordinate functions. Specifically, 

higher order theories for constrained bars could be based upon expan- 

sions of the form 
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00 (r\) 

u (Xj.Xg.t) =  ^ in11' (x^t) <j>   (x2), 

n=l 

where, in view of equation (29), one might select 

<f>(n)(x2) = H)
n sin [(2n-l) ir(h-2x2)/4h], -h/2<x2<h/2, 

as coordinate functions. These functions satisfy the orthogonality 

conditions 

I 
h/2 

<j.(nVk) dx0 = 0    if n t k 
-h/2 2 

and 

h/2 

-h/2 *l,2)    *[¥    dx2 = ° if n * k' 
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