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ABSTRACT

This study describes two models for the computation of

burst kill probabilities for air defense gun systems firing

non-fragmenting projectiles at non-maneuvering aircraft tar-

gets. Model I was suggested for U. S. Army use by Braddock,

Dunn and McDonald, Inc. and is currently used in the TACOS II

air defense battle simulation. Model II was developed by

the Systems Analysis Directorate, HQ, U. S. Army Weapons Com-

mand for use in gun system engineering development. The models

are contrasted in development to demonstrate the strengths,

weaknesses and relative merits of each. The Weapons Command

model appeared to be based on a less restrictive set of

assumptions than the BDM model, but sample results showed

near equivalence in model BKP values throughout a reasonable

range of engagement conditions.
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I. INTRODUCTION TO THE PROBLEM

Air defense gun systems have maintained an important role

in air defense operations despite the advent of effective

surface-to-air missiles. Reference 1 reports that the U. S.

Air Force lost 550 aircraft to air defense guns in the Korean

Conflict, and more recently, U. S. forces lost more than 3000

fixed and rotary wing aircraft to enemy action in the Vietnam

War with just a small percentage of these losses due to

surface-to-air missiles. Furthermore, these losses do not

reflect the considerable aircraft repair "burden imposed by

air defense guns nor the contributing effects (short of air-

craft destruction) that guns have in deterring piloted air-

craft from the accomplishment of their objectives.

The air defense objectives have remained relatively con-

stant over time, but the problems and technology of the gun/

target engagement have changed. Helicopters are now an inte-

gral part of the battlefield, tactical aircraft are faster and

more maneuverable, contour flying is possible under adverse

conditions and air-to-surface weapon systems can be incredibly

sophisticated. At the same time, digital computers, improved

sensor capabilities and surface-to-air missiles which force

higher targets to low altitude have favored the efficacy of

the air defense gun system.

Considering this continually improving capability of air-

craft to deliver their ordinance effectively, it is imperative

that every effort be made to assure that our forces are

8



equipped with the most effective air defense gun systems

possible.

The ultimate measure of success in the design and per-

formance of an air defense gun system is the tested ability

of the system to shoot down low flying hostile aircraft

within the combat environment. There exists, however, a

more general need to have a measure of system effectiveness

from a theoretical point of view that would allow for system

evaluation and for comparative analysis of competing systems

or sub-systems that could be applied in the development phase

through operational fielding of the system. One such measure

of effectiveness evolves from a system's ability to accurately

deliver its ordnance to the target's point in space. This

ability can be transformed into a kill probability based on

target and gun characteristics which can be expressed as a

single shot or burst kill probability.

It is this type of kill probability development as a

function of gun system and target parameters that motivates

this study. Computing the accuracy of a gun system and then

confounding it with aircraft vulnerability data to generate

a kill probability is a difficult theoretical and practical

problem. There exists in the literature a profusion of for-

mulas, tables and computational methods to assist in the solu-

tion of special cases of this type of engagement, but there

is a genuine need for unifying theory within which all

special cases can be rooted. Also of interest is the increas-

ing use of simulation to model combat and predict its results.



Simulations require validated methods to compute air defense

gun system kill probabilities based on prescribed battle sce-

narios .

The conclusion to be drawn from these comments is that

the computation of system kill probability is a valuable tool

which, as a current problem, merits immediate attention. It

is the intent of this study to present and analyze two exist-

ing models for the computation of gun burst kill probability

(BKP) in order that the general and relative merits of each

might be discerned. The two models were selected for comparison

because they are both in use at the present time by different

agencies within the Department of the Army. One is used as

a sub-model in the air defense battle simulation model,

TACOS II, and the other is used by U. S. Army Weapons Command

agencies for analysis of air defense gun systems in engineer-

ing development. It should be noted that this study represents

the author's interpretation of these models and is not to be

viewed as an official or final position report.

Model I is a model suggested for U. S. Army use by Braddock,

Dunn and McDonald, Inc. /^Ref . 2

J

'. It is a relatively basic

model patterned as a two-dimensional model for salvo (or

burst) firing of non-fragmenting projectiles.

Model II is a model suggested for U. S. Army use by the

Systems Analysis Directorate, HQ, U. S. Army Weapons Command,

Rock Island, Illinois /~Refs. 3 and hj. Its development is

similar to that of Model I in that target vulnerability is

represented in an identical manner in each and projectile

10



impact points are characterized as isolated random variables.

The actual development of Model II seeks to improve on Model I

by being based on a less restrictive set of assumptions. The

separate and aggregate effects of these assumptions are pre-

sented for comparison in this study.

The general development of Model I is traced in Chapter II

of this study with more detailed attention given to the signi-

ficant assumptions required in the process of model formulation.

This chapter identifies the theoretical basis for the general

approach of the model, and comments are added to amplify those

areas believed to be most critical to the model results.

Chapter III continues with the presentation of Model II

and begins the comparative analysis of the two models. Con-

trasts and similarities between models are presented, but

with emphasis placed on the development of key aspects of

Model II. Two separate cases are developed for this model

after the general form of single shot kill probability (SSKP)

has been shown. The two cases, A and B, contrast the effects

of the assumptions regarding the magnitude of SSKP. Case A

assumes that the product of the number of rounds in a burst

(n) and the SSKP is small, while Case B assumes only the

condition that SSKP is small.

Chapter IV concludes the comparative analysis of the two

models by stating possible advantages and disadvantages of

each. The general impression created by the qualitative

analysis suggests that Model IIA is essentially the same as

Model I, whereas Model IIB appears to be based on a less

11



restrictive set of assumptions than is required in either of

the other developments. Quantitative results of one represent-

ative test of the three model forms are presented in this

chapter to illustrate the conditions under which Model I

and Model IIA diverge. Somewhat surprisingly, the quantitative

analysis indicates that although Model I and Model IIB are

developed with two different approaches, the BKP results

remain nearly identical over the broad range of parameter

values exercised in the models.

12



II. BRADDOCK, DUNN AND MCDONAL INC. MODEL
FOR BURST KILL PROBABILITY-MODEL I

A. MODEL I INTRODUCTION

The general approach in Model I is the development of

single shot kill probability for one gun system firing at

one-maneuvering target which is then transformed into a burst

kill probability in order that it apply more directly with

the gun's normal mode of operation. This model was specifically

developed to support preliminary analysis of air defense gun

systems by examining the projectile/target relationships in

the form of equations which describe the intercept environ-

ment. Additionally, it is used as a sub-model in the TACOS II

air defense battle simulation to describe gun BKP as a function

of that intercept environment.

The operation of the model involves the following steps.

The gun system tracks its target, computes target character-

istics, predicts a time-dependent intercept point in space,

positions the gun and launches the projectile( s) . The target

is represented by a vulnerable area(A
v ) in a plane in space

that is perpendicular to the slant range(R) between the gun

and the center of the symmetrically represented vulnerable

area. The center of the A
y

is the center of an (X,Y) coordi-

nate system that represents the reference plane on which

impact points for each projectile are measured and their dis-

tributions described. Figure 1 illustrates the geometry of

the gun/projectile/target relationships.

13
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The remainder of this chapter describes the generation

of the model "by first developing SSKP and then transforming

it into BKP relying on the assumption of independence between

rounds in a burst. The final form of the BKP equation is

then reached through a discussion of the parameters which

constitute the model.

B. SINGLE SHOT KILL PROBABILITY

The model assumes that projectile impact points in the

target plane are normally-distributed about each axis with

zero means and independence between the random variables X p

and Y which describe the projectile position in that plane.

The assumption of normality relies on the Central Limit

Theorem suggesting that error in the delivery of the projectile

is the sum of a large number of independent error sources

none of which contribute very much to the total error by

themselves. Experimental data is required to validate this

assumption.

The fact that the respective distributional means are

assumed to be zero has special implications when considering

a model for measuring single shot effectiveness of a weapon

firing a non-fragmenting projectile. A non-zero value of

expected impact point could result in a case where higher hit

probability results from larger projectile dispersion. Fig-

ure 2 illustrates the point by depicting graphically the

possible relationships among hit probability, mean impact

15
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point and variance for a one-dimensional, normally distributed

random variable.

Cases 1 and 2 obviously result in greatest hit probability

with smallest dispersion, but Case 3 demonstrates the possible

existence of a situation in which hit probability is maximized

by making dispersion some finitely large value for a non-zero

mean. This theory is easily expanded to two-dimensions with

the same results. Reference 5 provides complete development

of these cases as well as adding other insights into the effects

on hit probabilities for a variety of mean, variance and

distributional relationships.

The normality assumption allows the representation of

delivery error as a function of two probability density func-

tions.

(X yx )

2

-P ( -ir> - 1

a
x

1
\| 2 * a

y

exP {
- -—2

> (1)
x

(y - yv )

exp { - £
}

2 4
(2)

where \iy = \iy = ) -o a<,yj*^ 1 <**

The independence of X and Y suggest the following joint

density relationship:

P
XtY (x,y)

= Px (x) • P
Y (y)

= / fx (x) dx • / fY (y) dy

x y

i r l
= / /

— exP C—

2

r p 2 ^ a aR
x R

y
x y
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2 2x y
11 + —

2
—

)

} dxdy (3)

where R
x and R represent the range of target

values for x and y respectively.

This joint normal density representing projectile distri-

bution (delivery error) in the target plane has utility in

its present form, but it is transformed into polar coordinates

since target vulnerability is represented in this model develop-

ment by a circular area. It is also convenient to assume equal

variances with respect to each axis in order that the joint

normal might be represented as a circular normal distribution.

Reference 6, however, suggests that the greatest variability

in projectile error occurs along the azimuth(X)-axis where the

target velocity component is greatest. This implies that the

variances are in fact not equatable.

Continuing the transformation to polar coordinates:

P
R,9 (r ' e) = f { 2^V 6XP { "T72 } ^^ W

The model assumes at this point that the target area seen

from the gun may be approximated by a smaller vulnerable area

(A ) which is represented geometrically as a circle with its

total area equal to the target vulnerable area. This assumption

relieves a great mathematical burden in the development of

BKP, but it creates another burden for the user who must

18



develop a reasonable technique for estimating A for a o.vw^ £ ro^o^

given target type, aspect angle and range. The notion of

vulnerable area is discussed further in Chapter III.B.

Continuing the development:

such that r =J A
V./ TrA =

it r'
V

Equation (4-) now becomes:

R,9 (r,9)
= / /

2 TT 1
A
V™ 1

2 it a

= exp{ - g- } rdrdG (5)

If A is developed such that one round impacting in that

area results in a kill of the target, then: ([ (|

SSKP =

•IT

27r
\I
A
v/tt r

/ / exp
{

- --
oo 2 cr

2> rdrdG (6)

and finally,
A

SSKP = 1 - exp( - ^p
2 7T (J*

(7)

C. BURST KILL PROBABILITY

The extension of this model to account for BKP is facili-

tated by the assumption of total independence among rounds in

a-' burst. It is not an intuitively appealing assumption. Guns

with high rates of fire, as a minimum, suggest some correlation

between rounds with the same aim point and separated in the

firing sequence by only a very small increment of time.

19



Consider the simple case of a burst of two rounds. Let

A and B represent the events that each round hits the target.

The first round fired corresponds to A and the second round

corresponds to B. General probability theory suggests:

P(AUB) = P(A) + P(B) - P(AflB)

where P(A/) B) = P(A)-P(B/A)

Under the assumption of independence between rounds:

and / p(fl„e} y f(/*Ufi)4*v «»

P(AliB) = P(A) + P(B) - P(A)-P(B) '

If the assumption is not valid, then the degree of corre-

lation between A and B must be ascertained in order that its

effects on the model be known. For example, if testing 0/ •>

demonstrated that there was positive correlation between

A and B, then the conditional probability of B given A would

always be greater than the unconditional probability of B.

The result would be a consistently higher estimate for BKP.

The degree of this correlation would dictate the magnitude

of the error in the general model caused by such an assumption.

It remains possible, however, that the net effect of an

erroneous assumption at this point might be negligible, so

once again test data is required to support or refute it.

Possible error notwithstanding, the development continues

with n equal to the number of rounds per burst, each normally

distributed and each having independent SSKP as developed.

7 20



P(all n miss) = (1 - SSKP) n (8)

BKP = 1 - P(all n miss) = 1 - (l-SSKP)
n

from Eq. (7) , ^^_
c

)

~ SL ****
n A

BKP = 1 - exp (
2L_

) (9)
2tt a ^

This model asserts that BKP increases with an increase

in target A^ and with an increase in the number of rounds in

a burst. The variance term suggests BKP decreases if the gun

system is less accurate in its delivery capability. In its

current form, BKP is a function of three parameters none of

which causes counterintuitive impact on the value of BKP. One

difficulty, however, arises when the user tries to incorporate

this model into his scenario. Where does one acquire the

appropriate values for n, A and a ?

Burst size can be fixed at a reasonable level based on

known firing rates or it may be simply varied in the equation

for BKP and in field tests to determine the degree of its

effect on BKP. Vulnerable area and variance are not so easily

deduced. A is not necessarily a function simply of target

total area, but rather it is more probably a function of an

aggregation of many factors relating directly to the target,

and perhaps others attributed to the gun and its projectile

characteristics. This issue is discussed further in the

development of Model II in Chapter III.B.
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The variance in a gun system's delivery capability is

another factor that has considerable impact on model results,

but is difficult to determine quantitatively. Expressions for

variance have been advanced with varying degrees of resolution,

and they all share the commonality of being just estimates.

This model considers only the aggregated dispersion due to

aiming and ballistic errors rather than an in depth analysis

of the many system functions that contribute to the net effect.

The model form allows for easy adjustment as techniques improve

for developing system variation components. Variance as

represented in Eq. (9) is a function of slant range (R) bet-

ween gun and target as well as being related to aiming and

ballistic errors. Model form requires that variance be expressed

in units such as square meters. If the aiming and ballistic

contributions to variance are developed in angular units,

and if it is assumed that angular dispersion is constant over

range, then Eq. (9) is easily modified to include the range

r— \}<r
factor. «f iJ

y£evv^*^
—'^

a
2 (meters

2
) = R 2 (meters

2
) • a

2 (radians 2
)

such that

BKP = 1 - exp ( -

Ay

2 §
)

< 10 >

2 7T R p

Consider the sources of variance in the projectile distri-

bution. This model suggests, as does Helgert in Ref. 7, that

variance may be thought of as an aggregation of independent

variances due to ballistic dispersion and due to aiming errors.
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) I**

2 2Let a
B

and a. represent these variance terms in square

meters. The aiming error variance represents all those fac-

tors which contribute to the condition that the gun is not

actually pointing exactly at the desired aim point at the time

of firing. It constitutes effects due to components that com-

pute target parameters, system servo mechanisms, alignment

problems, gunner effects and others. These factors, as

was discussed in a previous section of this study, are assumed

to result in a normally distributed aiming error with zero

mean and the variance term as just described. In general,

? p p ? 2 2of (meters ) = R (meters ) • o
AR (radians )

Ballistic dispersion is a function of many projectile

characteristics such as muzzle velocity and weight plus effects

due to ambient conditions. Experience has supported the

assumption that ballistic error be represented as a random

variable with a normal distribution of zero mean and variance

as given. In general,

a | (meters
2

) = R
2 (meters

2
) • a BR

(radians )

Considering that the sum of two independent normal random

variables is again a normally distributed random variable with

parameters also additive, it is possible to conclude that:

a
2 (radians

2
) =o |R

+ a |R
(radians )

23



When applied to Eq, (10), the result is the final form

for Model I.

BKP = 1 - exp {
-

2tt R ( a AR +a BR )

" py «**' (11)

2^



III. U. S. ARMY WEAPONS COMMAND MODEL FOR BURST
KILL PROBABILITY-MODEL II

A. MODEL II INTRODUCTION

Model II' s development parallels that of Model I in that

it first develops an expression for single shot kill probability

and then transforms that into an appropriate form for burst

kill probability. It constitutes an expansion of the Analytic

Gun Model developed by the University of Michigan, System

Research Laboratory for the U. S. Army Weapons Commnd. See

Ref. 8 for the original development.

The model asserts that target vulnerability can be repre-

sented in a plane perpendicular to the slant range from the

gun to the target at the point of predicted intercept. There

is existing methodology that would allow the representation

of three-dimensional targets, but its adaptation at this point

in the model would be unnecessarily cumbersome to its develop-

ment. Reference 8 describes the methodology as well as amplifies

the notion of vulnerable area.

The projectile distribution in this target plane has a

probability density function defined as fx>Y
(x ' y) where the

x and y values relate to coordinate axes centered at the target

center of vulnerability. Some analyses refer to this origin

as intended aim point. This density describes the position of

the round at the predicted time of intercept(t)

.

25



Part B of this chapter initiates the theoretical "basis

for this model by describing the development of single shot

kill probability. The distributional form of the random

variables that describe rounds impacting the target plane

is proposed and the notion of vulnerable area is addressed

in detail. Once SSKP is presented, the concept of a burst

center random variable is introduced. This concept is one

method for improving upon the undesirable assumption of

independence between rounds in a burst used in Model I to

transform SSKP to BKP. It is at this stage of the develop-

ment of BKP in Part C of this chapter that Model II is

divided into two cases. The two cases, A and B, are necessary

in order that a key assumption regarding the magnitude of

SSKP might be approached from two different aspects. The

development of each case is related with some final comments

concerning contrasts in the theoretical bases for Model I

and the two cases of Model -IXa___

B. SINGLE SHOT KILL PROBABILITY

The general development of SSKP relies on several key

assumptions. The first of which is that target vulnerable

area remains constant over the time of the engagement, i.e.

A (t) = A . Target/gun geometry does not allow this to be

technically true, but the validity of BKP as a good measure

of system effectiveness is not necessarily negated by its

acceptance. Assume further that the total aircraft silhouetted

area (A ) can be systematically transformed into a representative

26
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vulnerable area, and that one hit in that area produces a

target kill. If the distribution of the projectile in the

target plane has a large dispersion with respect to that

area, then the small target approximation may be invoked

to conclude that:

j^u -to- ^SSKP .f
XfY

(x,y) • Av

where x and y are evaluated at target center (0,0).

The small target approximation is noted here even though

the necessary distributional assumptions for the projectiles

have not been advanced. It is known that this model will

assume a bivariate normal distribution for the projectiles

in the target plane with zero means and no correlation. The

result is a distribution of the form hypothesized in Model I

and represented by Eq. (3)« If the variances are large

relative to the x and y values for target dimensions, then

the quotients in the power of the exponential are approximated

by zero and the double integral reduces to:

- [is *<H-
. X .y

2tt a x a
y

where x«y = target area for a rectangular target which

equates to A . The quotient in this approximation corresponds

to the density function in the SSKP formula when it can be

assumed normal with zero means, no correlation and evaluated

at the aim point, (0,0).

27



Considering this approximation as an analog to an argument

of conditional probability may help to clarify its basis

while at the same time providing some insight to the notion

of vulnerable area. In general,

P(kill) = P(hit) • P(kill/hit)

which when applied to this example suggests:

A
P(kill) = P(hit on A.) • —

—

AA
t

where the quotient here is essentially a lethality function

in which the assumption that A is uniformly distributed over

A. is implicit. The quantification of A is a potential

problem for the user of the model. Ballistic Research Lab-

oratories are said to provide data of this nature, but in

order to effectively exercise the model, one must be aware

of the subtleties involved in defining A
v>

The analogy to

conditional probability suggests that:

P(hit on A
t

) = fx Y
(x,y) -A

t

where it can be seen that the density function is the probabil-

ity of hitting a vulnerable area of unit size. This factor

is based exclusively on gun system characteristics and leads

to a slightly modified perspective of the original equation

for SSKP. Now,
A
v

SSKP ^ fx Y
(x,y) • A

t
• -^—

x

so that in the original form for SSKP, A
v

equates to the

product of A
t

and the ratio of A
y

to A
t<

This term provides
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input for the effects due to target parameters as well as

some consideration for projectile characteristics.

The conclusion to be drawn from this is that SSKP in '*,•/)/!«

its present form may he computed by describing during the --fyf*,))^^-
^-Av /

t

course of an engagement the presented target area, the
ft,

lethality relationship for the given gun and target and

the distribution of projectiles over the target A .

The user is still somewhat burdened at this point by

the need to determine a reasonable lethality relationship.

Model I assumes the simplest case of uniformly distributed

vulnerability over total target area. If the target is

depicted geometrically as a shoebox in space, then the gun

system views a silhouetted area made up of three side-related

components of the box. The target vulnerable area is then

just a scaled down representation of that total area as

illustrated in Figure 3. The mathematics of the develop-

ment is facilitated by the conversion of A^ to a circular

area of equivalent magnitude. Parry, in Ref. 9. suggests

a higher resolution methodology for determining A
y

as a

function of gun/target aspect angle and total presented

area. It assumes pockets with varying degrees of vulner-

ability within the target profile as illustrated in Figure ^.

The effect of a round impacting in the cockpit or engine

compartment might produce more catastrophic consequences

than a round impacting in an avionics section or some other

less critical area. The notion of compartments of vulner-

ability that may be aggregated to a single vulnerability
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factor has its merits in theory and in practice may "be

applied to this model just as simply as less detailed tech-

niques .

Having considered the notion of vulnerable area, it

remains for this chapter to develop an acceptable form for

the density describing the projectile distribution in the

target plane before the final form for SSKP can be presented.

Consider the locations in three-space (R~) of both the

target and the projectile at the predicted time of intercept.

A three-dimensional coordinate system is proposed in R~ with

its origin at the target center of vulnerability with axes

X, Y, and 2.

X = horizontal (azimuth) coordinate in the plane of the

target

7

Y = vertical (elevation) coordinate in the plane of the

target

Z = range coordinate perpendicular to the plane of the

target along the slant range from the target to the

gun.

It is assumed at the time of predicted intercept (t) that:

(i) There exists an error vector (A A, AE,AR)(t)

corresponding to the distance between the target

center of vulnerability and the projectile.

(ii) Each component of the error vector is the sum

of random errors due to independent random

variables, e.g. Aa = I ( AA)i. The Central
i=l
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Limit Theorem is invoked such that the error

vector may be assumed to have a multivariate

normal distribution of dimension three and zero

covariances.

This is a major departure from conditions described in Model

I, in that due to range error, ^ R, the projectile will pro-

bably not be coincident with the target plane at (t). Conse-

quently, the error distribution in R^ at (t) must be projected

into the actual target plane R
?

. The projectile distribution

in R
?
corresponds to the multivariate normal distribution in

R~ at a time when range-to- target and range-to-projectile are

equivalent for the gun. Define a new set of coordinate axes

in R- as (X*,y') which correspond to the X and Y axes in R~,

respectively.

At the time of predicted intercept, the target is described
• • •

by the velocity components (A-R, E.R, R)(t), and the projectile

velocity components are (0, 0, V )(t), where:
ir

A = target velocity in the X-direction in radians/second

E = target velocity in the Y-direction in radians/second

R = target velocity in the Z-direction in meters/second

R = slant range from gun to target in meters

V = projectile velocity in meters/second

The non-maneuvering target is assumed to have a constant

velocity vector over the time of flight, t
f , of the projectiles.

The degree of effect of this assumption can be substantial

if the target is changing velocity during the engagement,
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but there is no effect on the model as long as it is under-

stood that this model is restricted to the non-maneuvering,

constant velocity target case. Theory has been advanced for

the maneuvering target case in Ref . ^, but it will not be

addressed in this study.

The time between conditions of equal range and time of

predicted intercept is represented by the random variable, a t.

It is easily assumed that A t is small such that the projectile

velocity, V , may be considered constant over a t, and the

relative velocity of the projectile with respect to the

target, (R(t) + V (t)), may be approximated by V (t) = V .

Therefore,

*. ~ A R
A^ " - "y

P

Returning to the error vector ( AA , AE,A R)(t), the multi-

variate normal assumption implies that:

A A % N(M
x , a

*)

A E ^ N(M , a b
«y «y

A R % N(M
z

, a \)

These random variables are projected into R„ at t + A t.

This projection results in the creation of two new random

variables Aa' and. A E* which relate azimuth and elevation

errors to the X* and y' axes, respectively. Considering

Eq.(13), the error terms become:
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AA (t + At) = (AA -At • A • R)(t)

= ( A A + -AS . a • R)(t) (1*0
P

A E'(t + At) = ( A E - A t • E • R)(t)

= ( AE + -AS-
• A • R)(t) (15)

P

A A and A E' are the sums of the independent, normal random

variables a A, aE, and a r « Therefore, they have a bivariate

normal distribution with possible correlation and with para-

meters given by:

AE% N(M
y

. . a y ')

The result of combining these two distributions is that at

t+At,

f • . (x,y) = -
. a ' exp {

x ,Y 2tt a .. a , . n/ 1-

p

-2(l-p^)

(x-M ')
2

(x-Mv .)(y-M, .

)

-2 - 2 p - ^
{

a 2, a x
. ffy '

(y-M ,)
2

+ 5* > > (16)
a •

y

This function must be evaluated at some point in the

target plane in order that it represent the engagement at

intercept. It is assumed that the target is 'perfectly'
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located and that the center of vulnerability is in fact the

aim point so that the projectile distribution is projected

into the target plane with the effect measured over target

center. Therefore, the function is evaluated at (x,y) = (0,0).

When combined with the vulnerable area term, this yields the

final form for SSKP:

SSKP = A
v

• f^
Y .(0,0)

A.. M ,
2

exp {
—±

—

5 { (
2<

2tt ox ,o
i

N/ 1 _ p 2 -2(l-p
6

)
a x'

M i M , M ,
2

" 2 P -
|

X
"

Y + (—^-) , , (17)
a

x' a y' a y' } >

C. BURST KILL PROBABILITY

Model I assumed at this point in its development that

rounds in a burst are independent of each other in effects

on the target. As was discussed, this is counterintuitive,

but it has merit in that it conveniently eliminated some

formidable obstacles in the model development. Model II

suggests that the negative aspects of this independence

assumption may be lessened by considering an alternative

solution to the transformation from SSKP to BKP.

The alternative proposes that groupings of rounds that

are either distinctly separated bursts or arbitrarily divided

bursts be considered for collective effect. The centers of

the bursts are defined as (R^,R
2

) and are assumed to be
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independent, normally distributed random variables. The

advantage to be gained from the introduction of this random

variable is that the Central Limit Theorem confirms that the

distribution of the burst centers is in fact normal regardless

of the underlying distribution of the individual projectiles.

By assuming the mean value of the projectile distribution

to be the burst center, BKP may be developed by conditioning

on the known burst center distribution.

The following terms are defined to assist in the develop-

ment of the BKP equation:

SSMP = Single Shot Miss Probability = 1 - SSKP

BMP = Burst Miss Probability = 1 - BKP

n = number of rounds per burst

(R
1
,R

?
) = burst center coordinates in the (X' , Y') plane

(X.. ,X ) = position of the individual projectiles impacting

the (X
1

,Y') planer-

Assume that:

(i) X.. and X
p

are independently distributed in the

(X
,

,Y*) plane. This facilitates bypassing the

problems associated with trying to quantify the

correlation between the two random variables. The

mathematics which follow are also more tractable.

Once again, it is difficult to assess the ultimate

-^This is identical with the (X,Y) notation used earlier.

It is changed here to facilitate the matrix notation that

will follow in the solution.
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OlMAt,

effect on the model results, but it is clear that

increasing the number of assumptions of this type is

narrowing the margin of difference between the develop-

ments of these two models. This particular assumption

implies:

2 i r

X
i

^ N(R if .) i = 1,2. > ] ^

(ii) Burst centers (R, ,R
2 ) are normally distributed with:

R
l
^N(M

3
, a 3 )

|
^

with correlation coefficient, p .

2 2.. .

a-, and a 2
are dispersion factors in the distribution

of individual rounds due to ballistic errors and gun dynamics

2 2
errors. The a o and a h variance terms are a measure of

the dispersion of the burst centers in the target plane.

The subscripts 1 and 2 replace x' and y for convenience.

Consider the development of BKP conditioned on the distribu-

tion of the burst centers.

BMP = E(BMP/(R
1
,R

2
)) (18)

= E( (SSMP)
n/(R

1
»R

2 ) }

= B( (l-SSKP)
n/(R

1
»R

2 ) ) (19)
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If n-SSKP is small, then (l-SSKP)
n may be approximated

by the first two terms of its binomial expansion. This assump-

tion essentially says that the gun system being considered

is functionally incapable of performing its intended mission.

For gun systems with high rates of fire, experience suggests

that SSKP may be assumed small, but not n«SSKP. Development

of the model under both of these conditional assumptions are

traced here to illustrate the impact of each.

First, if n«SSKP is small, Eq. (19) may be expressed as:

BMP = E {(l-n.SSKP)/(R
1
,R

2
)}

n-A. R. R,

= E {1-
2tt a-. Op

' exp {-
2a. 2 a!

(Rr R
2 ) }

Therefore

,

n-A. r:

BKP = E{ exp {
-

2tt a -1 Op 2 a- 2 a V (R
i'

R
2 ) } (20)

1 6 u 2

The solution of this expectation is facilitated by the use

of matrix notation. Let:

V =

R =

P a

. 3 ^

R."

3
a
^

2

and M =
M.

M,

Consider the following solution to a general conditional

expectation as a model for the form of BKP as it is trans-

formed from Eq. (20) to Eq. (21). From Ref. 11,
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E{X}=_£ E{X/Y=y} • f
Y (y) dy

Therefore,

BKP =/ /
n«A.

00" 00
27T a., ov12

exp ( 1- r' R
)

2tt| V
• exp ( 1- (R - M) V 1

(R-M)) dR
1

dR
2

(21)

Banash, in Ref . 3» develops the solution to this double

integral by manipulating its terms until it can he observed

that it is the integral form of the moment generating function

of a multivariate normal distribution such that:

n-A„
BKP =

2* G
l

a
2 Ii+aI*

exp (- -4- v'A ( I-CI+A)"^)^')
2 _

(22)

where I =

A =

M
FV a

l

2

3'

2 2

<V c?

2

and ]
=0, if it is assumed that burst center means are zero.

The result is that:

n-A.
BKP =

^12
I

*

where I+A 2 — 1+
v°; o

2
1+ a;,/a

1/2

On . a.

V°2

2 2

{ ( °3 + a
l ) ' (

al± a
2 ) >

(23)
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and the final form for Model IIA

,

n«A
tM/» ( *.$$tfl /A *»**

BKP = v

2u( ( a 3 + a ^ ) • ( a
ij,

+ a 3) )
(24)

Now consider the second case where only SSKP is considered

small. The development proceeds essentially the same as that

of the first case, by conditioning on the location of burst

centers

.

BMP = E( (l-SSKP)
n/(Rr R

2 ) )

Consider the expansion of (1-SSKP) .

(l-SSKP)
n

= 1-n-SSKP +
n
^7

1 ^ -SSKP
2

_ n(n-l)(n-2)
. SSKp3 + .._.

n
= Z (^(-SSKP)-3

j=0 J

Then,

BMP = E{ i
K

j
} (-SSKP) J / (Rr R

2 )}
n

(?)
J^O

: £ E{ (<?) (-sskp)V(R
1
.R

2)}
j=0 J

.?. (?) (-1) J
{*

3=0 J 2ir a -i Oo

-1;

I+A

•exp {-i ii.'A.d-Cl+A.)"^.) u )
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Banash shows in Ref. ^ that A. = j'A, such that:
j

BKP = 1-BMP

f
1

(?) (-D^ 1
{

l
a
2

I+j'A

-1,
exp(--|.j yA(I-j(I+jA)" x

A) v_ ) (25)

BKP is difficult to quantify in this form, however, it may

he greatly simplified if the burst means once again are

assumed zero and if the correlation "between R, and Rp is

small enough to assume to be zero.

The result of combining these assumptions with the general

BKP formula is:

BKP =
f=1

^(-D j+1
<

c 12
} I+jA (26)

where

I+jA
i

' z —
a
l

a
2

{(°1+ j a 2)(a ^ + jap/

Adding this result to Eq. (26) produces the final form of

Model IIB:

BKP = . \ k) (-l)
j+1

J

{- }

a
l

a
2

2 irc
1
a
2

2, . _ 2U2
{(af+jaf (ffffjag)}

(27)

When just one round is fired, this result for BKP is

exactly the same as the result in Eq. (2*0 when it was

assumed that n«SSKP was small rather than just SSKP. This

hz



adds some degree of confidence to the mathematical manipula-

tions involved in reaching the two final forms of the BKP

equations

.

It is interesting to note at this point that although

the developments of Models I and II have appeared to follow

completely different tacks, it seems that Model I and Model IIA

have produced the same result. It is perhaps more clear if

one considers the following. In general, for small 2,

1 - e~ Z » l-(l-Z) = 2

Therefore, from Model I, considering the original assumption

that dispersion was much larger than vulnerable area, Eq. (11)

may be restated as:

n*A
BKP = S 2 2 (28)

2, (R
2

(
2
r+ a

2
R))

This result may be viewed as nearly identical with Model IIA

as expressed in Eq. (2*0. The only possible difference being

the manner of generating and expressing the variance components

of projectile delivery. Thus, it might be deduced that Model I

is implicitly assuming in its development that n x SSKP is

small, or conversely, Model IIA may have implicit within its

development the assumption of independence between rounds of

a burst. The negative significance of these two basic assump-

tions cast serious doubt on the veracity of each of these

models as they exist in Eq. (11) and Eq. (2^).
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Nonetheless, the extension of Model II resulting in

Eq. (27) provides alternatives to these two undesirable

assumptions. Stating optimism for this modification to the

model is one thing, validating its results remains another.

Some discussion has been presented regarding the notion of

vulnerable area since it is a key input parameter to the

models , but very little information has surfaced in this

model about the origins of the variance terms. The Appendix

is included to demonstrate the degree of resolution possible

in computing variance and the manner of application to the

general BKP form.

Chapters II and III of this study have traced the major

steps in the development of the three model forms. Although

some comparative comments have been made, it remains for

Chapter IV to present the general overview of the models

and to identify the salient features that might order the

relative worth of each. Hypothesized examples are proposed

to allow some objective interpretation of the models that

has been lacking due to the subjective nature of the material

presented to this point.
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IV. COMPARATIVE ANALYSIS AND RESULTS

The development of both models for determining gun system

BKP has demonstrated many of the usual obstacles inherent

with attempts to explain mathematically complex phenomena

such as military combat operations. The use of assumptions

to overcome points of resistance or excessive complexity

serves the function of lubrication in the development, but

it is always a lubricant with a price. The extent of that

cost is difficult effect to measure, especially when many

assumptions are layered within the development. These two

BKP models are fraught with assumptions that facilitate the

mathematics of each, but which are at best difficult to

evaluate with respect to the net effects on the accuracy of

model results. .It is for this reason that this study makes

frequent reference to the need for data from actual system

tests to assist in validating the models and to measure the

effects of specific assumptions. Data from tests of existing

systems may be applied generally to these models without the

models losing their general applicability which earlier was

proposed as one of their basic raisons d'etre. This study

has been conducted without the benefit of test data so that

assumptions have been necessarily discussed from a theoretical

and intuitive point of view with conclusions withheld in many

cases pending validation.
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Both BKP models are initiated with the realization that

BKP is one measure of effectiveness that has a broad base of

application in the field of air defense gun system evaluation

and simulation. They present and describe identical gun/

target environments and engagement procedures whereby one

gun system encounters one non-maneuvering target. The concepts

involved in the process of developing both models are essent-

ially the same as for any general target destruction model.

The process consists of factors which affect the distribution

of projectile impact points and the lethality of the projectile

as a function of impact points and target characteristics.

The factors which affect the impact point distribution may

be considered as potential error producers which may be synth-

esized from sub- components, and the system lethality may be

expressed as a function of target and projectile parameters.

These concepts allow the general approach of analysis to

be one of modeling a random process. The random variables in

the process are target location error, aim point error, and

gun system projectile delivery error. In both models, target

location errors and aim point errors have been combined for

convenience and each error term is assumed to have its distri-

bution described by some probability density function. Specifi-

cally, the circular normal and the bivariate normal distri-

butions have been assumed appropriate for Model's I and II
,

respectively. When firing bursts, the aim point error is

realized only once for each burst whereas the delivery error

is realized for every round. This delivery error suggests

46



some correlation between rounds in a burst and some correlation

between effects of each round when transforming SSKP to BKP.

Conclusions about a preferred model for BKP would be

somewhat dangerous and suspect at this point without test

data to support them, but it is possible to represent trends

in the general application of the three BKP forms. Sample

computations have been generated by permuting hypothesized

values for burst size with varied levels of dispersion for

the projectile and burst center distributions. Bursts range

in size from 1 to 100 rounds while vulnerable area is held

constant at 1.0 square meter. Dispersion, as represented by

the standard deviations of the distributions discussed, are

considered in three categories to reflect near, intermediate

and long range effects. The intermediate range values for

standard deviation are hypothesized and are then halved and

doubled to reflect near and long range conditions, respective-

ly. The selection of actual magnitudes for these values is

completely arbitrary and in no way reflects real data. The

range of values selected is intended only to provide a large

enough spread to be able to identify representative trends in

the model quantitative results. Tables I, II and III are

presented to demonstrate the effects on BKP of these permuta-

tions, and to show trends in the models individually and

comparatively.

Results for each of the three BKP forms are remarkably

similar for burst sizes less than 20 in the intermediate

range. The rapid increase in values for Model IIA as burst
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sizes increase past 20 reflect the point at which the assump-

tion that n x SSKP is small tends to lose its veracity. The

near and long range cases support the conclusion that 1 small'

refers to values of approximately . 2 or less for n x SSKP.

The development of Model IIB demonstrated what appeared

to be some clear improvements theoretically over some of the

more undesirable assumptions of Model I, but the sample

results in each of the three tables show near equivalence in

BKP values throughout. It was suggested earlier that if a

positive correlation existed between rounds in a burst, then

the independence assumption in Model I would result in con-

sistently high estimates for BKP. The result of slightly lower

BKP values for Model IIB may reflect the degree of affect

caused by that different approach.

The point has been emphasized that the models require

validation before their individual merits can be ascertained,

however, they do have considerable intuitive and practical

appeal as they currently exist. The relationship between

model parameters and solution behavior are easily recognized

in each model and they are easily applied in simulation.

They represent a convenient practical and theoretical base

from which to study or perform parametric analysis on exist-

ing systems or on systems still on the drawing board.
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APPENDIX

Variance of the Critical Random Variables

Each component of the error vector at time, t, was assumed

to be the aggregation of errors attributable to independent

sources, each of which was said to be normally distributed.

Consider the development of these random variables.

1. Errors Contributing to aA .

a. Azimuth Sensing - Let Al(t) be the random variable

denoting the angular error resulting from sensor

azimuth errors. It results in error on the X-axis

equal to (Al«R)(t). Where,

E {(Al-R)(t)} = R.MA1 (t)

y {(Al.R)(t)} = R
2

. a^(t)

b. Azimuth Rate Sensing - Let A(t) be the random

variable denoting the angular error resulting

from sensor azimuth rate errors. It results in
t

error on the X-axis equal to (A«t
f
-R)(t) where

tf
is the time of flight of the projectile to

predicted intercept. Mean and variance terms

are given by:

E {(A-t
f
-R)(t)} =

Y((A-t
f
.R)(t)} = t

2
.R

2 -a| (t)
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c. Gun Pointing Error - Let A2(t) be the random

variable denoting azimuth error resulting from

gun pointing errors. It results in error on the

X-axis equal to (A2-R)(t). Mean and variance

are given by:

E { (A2-R)(t) } = R- MA2 (t)

V ( (A2-R)(t) }= R
2

. af2
(t)

2. Errors Contributing to AE.

Errors with respect to the Y-axis which constitute

AE(t) are developed identically as for ^A(t).

3. Errors Contributing to a R«

a. Range Sensing - Let Rl be the random variable

denoting the range error resulting from range

sensor errors. It results in error on the Z-axix

equal to (Rl)(t). Mean and variance are given

by:

E {(Rl)(t)} = M
R1 (t)

V {(Rl)(t)} = aR1 (t)

b. Range Rate Sensing - Let R be the random vari-

able denoting range error resulting from range

rate sensing errors. It results in an error on

the 2-axis equal to (R-t
f
)(t). Mean and variance

terms are

:
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E {(R-t
f
)(t) } = t

f
- M£(t)

V {(R-t
f)(t) } = t|- a|(t)

c. Muzzle Velocity Error - Let A V be the random vari-

able denoting muzzle velocity variations result-

ing in range errors ( AR) . Reference 1, by

employing the 3/2 power law, shows that the range

error contributions may be represented as:

E {AR } due to AV =0
d 2 2

V {AR } due to aV = (-y^-)' a v
P

Considering these error contributions random variables, it

may be synthesized that:

M
x

= (R 'MA1
+ R,MA2)(t)

M = (R*ME1 + R-ME2 )(t)

M
z

= (M
R1

+ M
R ;tf)(t)

And

a x
= (r2 ' a Al

+r2
' a A2

+
*f

,r2
' a A )(t)

2 2

a
2

= (R
2

. o E1 +R 2
• °| 2

+ t
2

-R
2

• crg)(t)

Once again, with target vulnerability represented in a

plane, these results are applicable only when they can be
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projected into that plane. Combined with Eq. (1^) and Eq.

(15) .
the distribution parameters become:

A-RV ={R ' MAl
+ R ' MA2

+ -f^ ( MR1+ MR -t ) }(t)
P

J. A* J.

V = t
R< %1 + »• ME2 + -fS- ( MR1 + Mr -t

f ) }(t)

2
, 2 2 2 2

2V = {R <°A1 +
°A2

+
°A '*f >

V

2 2

P

P P

and the correlation coefficient is given by:

1 Cov (
A A', AE').

P =

a 1 a '

x y

where

COV ( A A! AE') = E { ( A A* - E( a a'))( a e' -E(AE'))}

This is easily expanded to show that:

2
2

C0V(A A',A E') = (A-E)( -*—
)

a
^
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such that

ax ay
v

p
z

These are the input variables which lead to the solution of

Eq. (I?) and the value of SSKP. They demonstrate a technique

for synthesizing SSKP as a function of its many basic inputs.

The task of accurately determining and validating each of

these components remains to be accomplished.

It is encouraging to see such a logical and basic approach

to the calculation of delivery error variance, but that appeal

should not be allowed to cloud the practical aspects of its

inclusion or adaptation to the model. The actual variance

values used in the quantification of BKP are engineering

estimates that may or may not be correct. The question con-

cerning whether it is better to use one estimated variance

value for the overall system or a synthesized value accumulated

from a number of lesser estimates is no less difficult to

answer in this case then for any other modeling problem.

The development traced in this appendix appears to have a

great deal of merit, but it will be of no real consequence

to the computation of BKP unless it is possible to show

confidence in the methodology for fixing the values of the

delivery error variance components.
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