

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

Thesis and Dissertation Collection

1976-03

Language differentiation based on sound patterns of the spoken word

Cook, Roger Darrell

http://hdl.handle.net/10945/17831

Downloaded from NPS Archive: Calhoun

Calhoun is a project of the Dudley Knox Library at NPS, furthering the precepts and goals of open government and government transparency. All information contained herein has been approved for release by the NPS Public Affairs Officer.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

LANGUAGE DIFFERENTIATION BASED ON SOUND PATTERNS OF THE SPOKEN WORD

Roger Darrell Cook

DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA \$3940

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

LANGUAGE DIFFERENTIATION BASED ON SOUND PATTERNS OF THE SPOKEN WORD

by

Roger Darrell Cook

March 1976

Thesis Advisor:

S. Jauregui

Approved for public release; distribution unlimited.

T173231

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM			
I. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER		
4. TITLE (and Subtitie)	5. TYPE OF REPORT & PERIOD COVERED			
Language Differentiation Bas	Master's Thesis; March 1976			
Sound Patterns of the Spoken	6. PERFORMING ORG. REPORT NUMBER			
		A CONTRACT OF CRANT NUMBER(A)		
Roger Darrell Cook				
		10. PROGRAM ELEMENT PROJECT TASK		
Naval Postgraduate School		AREA & WORK UNIT NUMBERS		
Monterey, California 93940				
News] Destandusto School		March 1976		
Monterev, California 93940		13. NUMBER OF PAGES		
14 MONITORING AGENCY NAME & ADDRESS(1) differen	t from Controlling Office)	15. SECURITY CLASS. (of this report)		
Naval Destaraduate Cabeel	•			
Monterey, California 93940		Unclassified		
		15. DECLASSIFICATION/DOWNGRADING SCHEDULE		
Approved for public release; 17. DISTRIBUTION STATEMENT (of the ebetrect entered	distribution	unlimited.		
	,			
18. SUPPLEMENTARY NOTES				
19. KEY WORDS (Continue on tavatas alda il nacassare en	d identify by block number)			
phonemics language				
phonetics voice speech				
	d I dan // for her black much			
A categorical analysis was made of five languages. The sounds of speech were simulated using written text converted via Inter- national Phonetic Alphabet (IPA). The sounds of speech were identified as members of fracative, nasal, stop, or vowel cate- gories. A statistical analysis was performed on categorical con- tent of one (at various positions in the word), two, and three sound combinations.				

DD 1 JAN 73 1473 EDITION OF 1 NOV 68 IS OBSOLETE (Page 1) S/N 0102-014-6601 |

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered

Several attempts to achieve a differentiation scheme were made before any success was realized. Two methods for developing conditional expectation are compared; Bayes' Conditional Probability Rule, and Cook's Prognostic Progression.

Statistical analysis and "loop" tests indicated that languages do have unique patterns and can be differentiated on the statistics contained in the first three sounds. 100% correct decisions were achieved for as few as five words in the loop test. Limited base data negated result significance beyond three successive sounds. Language Differentiation Based On Sound Patterns Of The Spoken Word

by

Roger Darrell Cook Lieutenant, United States Navy B.S.E.E., University of New Mexico, 1971

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MANAGEMENT

from the NAVAL POSTGRADUATE SCHOOL March 1976

DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA 93940

ABSTRACT

A categorical analysis was made of five languages. The sounds of speech were simulated using written text converted via International Phonetic Alphabet (IPA). The sounds of speech were identified as members of fricative, nasal, stop, or vowel categories. A statistical analysis was performed on categorical content of one (at various positions in the word), two, and three sound combinations.

Several attempts to achieve a differentiation scheme were made before any success was realized. Two methods for developing conditional expectation are compared; Bayes' Conditional Probability Rule, and Cook's Prognostic Progression.

Statistical analysis and "loop" tests indicated that languages do have unique patterns and can be differentiated on the statistics contained in the first three sounds. 100% correct decisions were achieved for as few as five words in the loop test. Limited base data negated result significance beyond three successive sounds.

TABLE OF CONTENTS

I.	INI	RODUCTION	9
	A.	LANGUAGE PROBLEMS, GENERAL	9
	в.	WRITTEN LANGUAGE	10
	с.	SPEECH	11
II.	CUB	RRENT SPEECH RESEARCH (1975)	13
III.	PHC	DNETIC TRANSCRIPTION	14
	A.	HISTORY	14
		1. General Background	14
		2. Development of the IPA	14
	Β.	THE TRANSCRIPTION	16
	с.	SOURCES AND USES	17
IV.	DIF	FERENTIATION DEVELOPMENT	18
	Α.	DATA BASE SELECTION	18
	Β.	COMPUTER LANGUAGE DECISION	20
	с.	FIRST-SOUND ANALYSIS	21
	D.	NORMALIZED CROSS-SECTION	24
	E.	TWO-SOUND PROBABILITY	26
۷.	REC	COMMENDATIONS	41
VI.	CON	ACLUSION	42
APPEN	NDIX	(A	43
APPEN	NDIX	K B	56
APPEN	NDI)	<pre>< C</pre>	58
APPEN	NDI	K D	63
COMPU	JTER	R OUTPUT 1	73
COMP	JTER	R OUTPUT 2	126
COMPU	JTEI	R PROGRAM 1	133
COMPU	JTEI	R PROGRAM 2	150
LIST	OF	REFERENCES	182
INITI	IAL	DISTRIBUTION LIST	185

1.	First Sound Frequencies	23
2.	First Sound Decisions	24
3.	Shannon Theorem Decision Case Curves	24
4.	The Frequency Tree	27
5.	Final Model Block Diagram	40
A-1.	Block Diagram of the Speech System	43
A-2	The Hearing System (schematic)	44
A-3	The Human Vocal System (block diagram)	46
A-4	The Human Vocal System (schematic)	48

LIST OF TABLES

IV-I.	One-Sound Calculation Results (BAYES)	33
IV-II.	Two-Sound Calculation Results (BAYES)	34
IV-III.	Two-Sound Calculation Results (COOKS)	35
IV-IV.	Shift Effect	36
IV-V.	Two-Sound Test Results	37
IV-VI.	Three-Sound Test Results	38
IV-VII.	Model Test Path by Word Length	39
C-I.	Fricative Conversions	58
C-II.	Nasal Conversion	59
C-III.	Stop Conversion	60
C-IV.	Vowel Conversion	61
D-I.	Combined Vector Data	63
D-II.	Fricative "normal" Magnitudes	65
D-III.	Nasal "normal" Magnitudes	67
D-IV.	Stop "normal" Magnitudes	69
D-V.	Vowel "normal" Magnitudes	71

Several people have made numerous contributions toward the fulfillment of this research study. The most significant contribution was made by Lieutenant Michael C. Thomas, U.S.N., without whose diligent efforts and outstanding ability to interpret the basic (often vague) quidelines into a dynamic computer program the experiments would undoubtedly still be in the natal stages. Superb guidance, efforts, and encouragement were received from the Defense Language Institute staff, in particular Dr. Francis Cartier, head of research, Dr. Tom Arkwright, computer consultant, and especially Micheline Ponder a research assistant who dug through many volumes of material in order locate the most applicable literature. Dr. Stephen to Jaurequi and Dr. Alan Washburn both put me back on track many times, and opened key doors which allowed access to the real experts in this field. Several classmates and friends also instrumental in various areas particularly in were forcing the weight, volume, and milestone criteria. Last but not least to my family, who often thought Dad was deployed again during a large portion of the study.

I. INTRODUCTION

A. LANGUAGE PROBLEMS, GENERAL

There has existed for a great many years the desire and requirement to differentiate languages both categorically and specifically. It is relatively easy to accept that a person can mentally detect an unknown foreign language and guess (often accurately) its origin. However, this mental process has not been successfully duplicated using mechanical/electrical devices is spite of research efforts.

Language barriers have historically been major opponents of international well-being. Interpreters bridged many gaps, however, the lack of multi-linguists necessitated the large number of bi-lingual need for a specialists. Therefore, a pool of interpreters is required to conduct the routine business of international relations. Linguist selection is simplified for some physical characteristics, however, it would be guite embarrassing to select a Chinese translator for а Korean dignitary. Modern voice communications eliminate all physical characteristics except those representative of the speaker and his language. The question then, was whether the sound content itself contained sufficient information of a unique quality (language dependent) so as to make it distinguishable from all other possibilities. Certainly it is desirable to establish communications expediently and correctly.

Languages are coded utterances, therefore, it seems possible to differentiate the languages by recognizing the type and quality of code being used. A "guess" as noted above has some merit, but lacks the continual precision available in a machine (computer).

B. WRITTEN LANGUAGES

Written communications have been developed based on either the interpretation of the coded sound or a picture the item one desires to representing convey. Not surprisingly there has been nove in the interest a of pictorial internationalism to convert the forms of some written languages to the Romanized script. Most apparent "PINYIN" to the Chinese of was the recent introduction language [Ref. 1]. One intent of the conversion is the introduction of phonetics to the school systems to establish proper pronunciation. The accepted international languages are English, French, and Spanish. Since these languages are Romanized, the conversion from pictorial to Roman suggests that future generations will be less burdened in mastering a In the conversion the ideograms second language. are phonetically transcribed using the IPA (discussed in section II).

Phonetics, then, is a basis through which sounds are transcripted and establishes a common base between the spoken and written word. It is the purpose of this paper to establish the feasibility of automatically differentiating languages based on the average phonemic content over various input lengths. The source data used was various phonetic transcriptions of the selected test languages. The reference data is based on transcripted word frequency (for usage) lists, some text selections, and conversation samples for each of the selected test languages. The reference data is used to establish matrices of probability which measure the sound types and sequences in languages.

C. SPEECH

Speech, as stated earlier, is any length of coded utterance is herein defined as the forced An utterances. emission of modulated air from an oral or nasal orifice. Coding implies that some means is applied to modify the air from its zero state. The zero state is defined as unmodulated inhaled or exhaled air, i.e., normal breathing patterns. The modification or modulation of the air is achieved by the mechanisms of speech to produce audible sound waves. The mechanics of speech are discussed in some detail in Appendices A and B.

The coding or modulation of air flow is classified into the major categories: vowels (V), stops (S), fricatives (F), and nasals (N). These categories are further subclassified into individual sounds which are unique in their generation and in the characteristics of the modulated pressure wave output. A more detailed description of these categories can be found in section 2 of Appendix A.

The uniqueness of certain sounds has been a detrimental aspect to experimenters in the area of synthetic voice generation. Conversely, certain categories have striking similiarities which allow simulator redundancy. In the vowel category, Dr. Rosenblum [Ref. 2] demonstrated how one vowel sound could be converted directly to another by means of selective formant filtering. Other works with specific sound categories are discussed in section 3 of Appendix A.

The pause is a special case of coded output, and is an essential element in speech analysis. Potter, Kopp, and Kopp [Ref. 3] interpreted long strings of sounds as recorded on a spectrogram after they had first recorded the series "word--pause--word--pause" spectrograms and were sure where the word boundaries occurred. In speech the pauses provide

1-1

a starting and ending point for analysis. The time between pauses is random, as is the actual length of the pause.

The data between the pauses is composed of sounds from the major categories, and for this analysis it was assumed that the sounds could be identified at least categorically, and removed for analysis. The actual conversion of spoken speech into a form for analysis was accomplished indirectly via phonetic transcriptions which is the subject of part III.

II. ANALYSIS TECHNIQUES

In the 90th meeting of the Acoustic Society of America, different papers were presented on various research 150 efforts being done in the voice/speech field [Ref. 4]. The speakers varied from language teachers, phoneticians, etc., to medical doctors. psychologists, physicists, and engineers. They represented various universities, and private organizations from the United States and abroad. There were several papers which looked into differences in microscopic in but were nature. They languages, were concerned with specific functions of the system which the made certain vowel or consonant sounds in one language vary from another, i.e., why a palatilized "i" sound varied from the non-palatilized "i." More specifically is it only the palatilization or are other factors involved. For example some looked at sound clusters of vowel-consonant combinations (VCVVCCV), and focused on the fact that by the certainly a palatalized "i" is forced sound preceeding or succeeding the "i" sound. Other studies were slanted toward speaker recognition schemes. Some were done in languages other than their own, while others looked at recognition criteria in their native languages. These results in general hinted that language dependent latter factors do exist. Note that when transcriptions are used speaker dependence is somewhat removed, i.e., the method of speaking (dialect) is retained, however, the properties speaker (fundamental frequency, muscle unique to the impairment, nose size and shape, etc.) are absent.

III. <u>PHONETIC TRANSCRIPTIONS</u>

A. HISTORY

1. <u>General Background</u>

Using symbols as a means of communications goes back through several civilizations. It is almost academic to determine whether hieroglyphic styles came prior to, concurrently or after vocalized descriptions. The fact is means to convey thought other than by vocalization that a was required, and developed. The various alphabets used throughout the world have certainly proven themselves able vehicles inside of their boundaries, but simultaneously additional hurdle to commonality represent an across language boundaries. There are approximately thirty different alphabets currently being used throughout the world. It was not documented until the ninteenth century that the presently used alphabets were deemed to be deficient. Potter, Kopp, and Kopp [Ref. 3, p. 1] point out that Melvin Bell (father of Alexander Graham Bell) developed a set of symbols which specified the pronunciation of words so accurately, that anyone familiar with the system could repeat the word precisely. Bell's contribution was as an aid for the deaf, although it also primarily aimed made a definite impact on the fields of language, phonetics, and the electronic analysis of speech; e.q., the sound spectrograph was certainly a by-product of the search for a visible means to convey what is heard. A brief description of the sound spectrograph is given in Appendix A.

2. <u>Development of the IPA</u>

Language teachers, in the mid 1800's, recognized certain limitations in their ability to teach proper pronunciation using traditional alphabets. Many teachers circumvented these limitations by developing symbols to describe the type of sound required. As communications and

transportation technology bridged the gaps between teachers they began to discover that others were having problems similiar to their own, thus informal teacher collectives were formed. The International Phonetic Association [Ref. 5] attribute their origin largely to the efforts of Paul Passy who headed a small group of language teachers in France in 1886. Passy and his colleagues found that the 26 characters in the Roman alphabet were largely inadequate when trying to teach proper pronunciation. Many sounds for the same letter or combination of letters were in fact generated in the vocal system with distinctly different mechanics. Armed with this information, they drew up a new alphabet to fulfill their needs. The new alphabet was composed entirely of symbols each of which represented a Their new alphabet was fully defined and used unique sound. throughout the text of the first publication of the periodical "Dhi Fonetik Titcer [Ref. 5]." Others were drawn by this unique idea and subsequent events resulted in the International Phonetic Association. formation of the The work of Samuel Bell was done independently of the European and his symbols actualy resembled hieroglyphic group, techniques, rather than an expanded version of the Roman alphabet, which was the objective of Passy. Therefore, Bell's alphabet faded with time. The association grew as inputs were made from various other countries and numerous field-phoneticians. Eventually a collection of phonetic transcriptions of languages (English et al) were assembled, and the IPA was expanded to include sounds unique to previously unavailable language transcriptions. This work across language boundaries enabled many languages to be taught much more easily both in native and second languages. Heretofore, languages could be described by the basic usual using the unique structures parameters as and additionally by those sound production techniques unique to a specific language.

In the IPA every symbol has a distinct sound associated with it. There are some 89 different symbols encompassing all but the African languages as noted by Dr. Francis Cartier [Ref 6]. Only 43 of these symbols appear in American English, (depending on the reference used; general range is 42-46), which makes its transcription much easier. In "The Phonetic Alphabet," Dr. Cartier describes in detail techniques of transcripting the English language, and the has a small treatment of other languages and non-sense words [Ref. 6]. In order that the technique for this research be expandable to eventually include all languages a computer version was developed for 101 IPA characters.

B. THE TRANSCRIPTION

A transcription consists of writing (in symbols) the makes when speaking. This can be accomplished sounds one quite effectively (after training) in either a native language or a language for which adequate knowledge of proper pronunciation is known first-hand. If the language is foreign to the transcriptor there is considerable room for error, particularly if sessions cannot be spread so as to keep the speaker, interpreter, and transcriptor in a fresh state of mind. If a transcriptor is transcripting unknown language, which appears close to one he is from an vaguely familiar with he will tend to do the transcription symbols and forms associated with the most familiar the in language until he has a key to the language being transcribed, then he will retrace and make whatever corrections are required to maintain the quality (uniqueness) of that language [Ref. 7]. This could lead to an erroneous transcription if a key group of words were not located, and/or the language had not been the subject of a detailed analysis to determine which if anv sounds were definitely unique to that language. Another problem The presented along these same lines is dialect. simple

word "the" can be properly pronounced several ways depending upon the geographical area of the world in which the word is being used. Therefore, it is possible for the transcriptor to write Θ i when he really should have written δ_{Θ} .

C. SOURCES AND USES

The transcriptions used for this paper were obtained from a variety of sources. Most of the test text portions taken from "The Principles of the International were Phonetic Association, 1949." There is a second group of particularly done in a conversational mode type text obtained from Micholin Ponder of the Research Department of Language Institute, Monterey, California. the Defense Additional samples of conversational text was made available by Dr. R. Wohlford, and particularly useful English samples were taken from "Informal Speech" [Ref. 8]. A sample of Spanish was contributed by Dr. Maria Baird, Chairman, Spanish Department, DLI, Monterey, Ca.

There are also several dictionaries which use the IPA symbols for their pronunciation guides. One such source for American English is "A Pronouncing Dictionary of American English," by Kenyon and Kott [Ref. 9]. Several foreign dictionaries were scanned as well as language textbooks, in most cases the IPA was used sparingly, making it extremely difficult to collect a satisfactory representation.

IV. <u>DIFFERENTIATION</u> <u>DEVELOPMENT</u>

The actual classification of specific sounds has historically been achieved first by aural perception, and later by electronics devices such as the oscilloscope, the spectrograph, and the computer. All of these devices intervention. That is. the required manual sounds are processed and recorded so that they can be tangibly observed and interpreted for content, classification, etc. Presently real time conversion exists for no the interpretation/classification domain. Developing a routine algorithm to directly convert spoken speech into some or form of usable data does not appear infeasible. There are currently research projects being conducted in this area. Hess [Ref. 10], although not specifically oriented to language differentiation developed a recognition model whose techniques and results may in fact be very applicable to а real time classification converter. For the purposes of this research it was assumed that such a device could be produced.

Although it is not clearly understood how the mind can differentiate languages, it seemed that a model could be developed to produce this differentiation function, not on a "guess" basis but with some reasonable assurance as to which language was being used. Here, it was felt that the sound content might be the key. The research is based on these assumptions and the belief that the IPA represents an appropriate sound classification capturing vehicle.

A. DATA BASE SELECTION

The first problem was to determine a satisfactory data base from which one could establish the categorical sound statistics. Considerable research has been done on frequency factors for use of words under such conditions as:

ordinary (informal) conversation, formal speaking (addresses etc.), informal writing (letters), and formal writing (textbooks, newspapers, periodicals, etc.), and these lists are available in a number of languages. After obtaining such lists it became necessary to convert first into the Roman alphabet, and then to transcribe from the Romanized script into the IPA symbology. As discussed above in the transcription section, this did not propose an easy task for a non-native novice transcriptor. Therefore, solicitations for assistance particularly from DLI, were abundant [refs. 11, 12]. The question arose concerning the possibility of error introduction when using word lists. The major error would seem to appear when the factor of frequency is not utilized within the list itself, i.e., if the frequency of the word were 1/10 then one would expect every tenth word in the list to be the same. A further example is drawn from the Markov process. One such use of the Markov process is to establish the frequency of occurrence of letters (singularly and in combination) for the given language. Then a string is developed using those frequencies (note that in English one considers 27 characters to include the pause). A typical string would appear as:

EAMI HEIBRAGEL-----etc.

The frequency of use is a must in this case, and is generally determined by: (for the single letter case)

$$\frac{\text{Prequency (desired letter)} = (\frac{\text{desired letter}}{\sum})$$
(1)

Obviously the string of characters does not make sense. However, when one looks at the strings generated by the two letter combinations [of which there are $(27)^2$ or $(n)^2$], they may find some words (simple) begin to appear. Using the three letter combination level $(n)^3$ more words begin to

The process could of course continue ad infinitum appear. and at each step would generate more complex words and perhaps even paragraphs. An analysis very similiar to the Markov Chain type, just described, was used by Rau [Ref. to develop a process by which short samples of written 13], text could be automatically differentiated. Rau looked at achieved results, ranging from 51% to languages, and two 100% accuracy factors which were proportional to the length of the "short samples" he used [Ref, 13, p. 21, ff]. In the case of word lists, it would appear that by not at least using a Markev process something would be lost. However, in the early testing, the single listings of words generated very close to that of various random text data and conversation inputs. Therefore, it was concluded that a significant error was not introduced by using the most common words independent of their frequency factor.

B. COMPUTER LANGUAGE DECISION

It was apparent that data processing should be accomplished by a computer but the choice of a language (compiler) was not immediately obvious. FORTRAN IV was attempted, but rejected because of the conversions required in the input/output (I/O) for the raw data. The language SNOBOL IV (used in conjuction with SPITBOL) is probably the 14], however, arrangements for its best language [Ref. installation could not be achieved in time to be effective for this research. ALGOL W contains qualities of both FORTRAN and COBOL, and was ultimately selected because of its inherent ability to process both text and equations. The initial program was developed by M. C. Thomas[Ref 15], strictly English data, and a special alphabet using conversion code (ROMI) consisting of the 44 IPA sounds associated with the English languages. The program developed the statistics for the first sound, the first two sounds, first three sounds, and the first four sounds of the

data input. The statistics were developed in the program by reading in the data word by word, then converting the data into the sound categories (F,N,S,V), via ROMI, letter by letter. The converted words were processed to extract the appropriate statistics to produce the data shown in computer output 1.

As languages outside of English were drawn into the data base, ROMI had to be increased, and was ultimately expanded to its present state of 101 characters. The number of decided upon was not entirely the result of symbols (101)the different languages introduced or tested, rather the number was selected as being the universal set recognized by the International Phonetic Association [Ref. 5], plus some diphthongs uniquely identified by Cartier and Todaro [Ref. Thus ROMI is capable of converting any 6]. language subjected to the models. The ROMI to IPA conversion is listed by categories in the appendix C tables.

Five languages were selected at random from among those for which frequency tables and translators or previously transcripted materials were available. Theoretically the languages are independent variables to any algorithym and thus were designated A, B, C, D, and E.

C. FIRST SOUND ANALYSIS

Results similiar to the first data run are shown in computer output 1. The sound pattern of the first letter per word (or phrase, in the conversational cases) showed some promise of a pattern, even though they were bunched together at the lower end of the scale (see figure 1). The words were separated from the phrases to prove (or disprove) similarity, and similarity did occur, thus disproving that an error factor was introduced because of using word lists without frequency considerations.

A decision table was drawn up using ranges established by figures 1-a and 1-b. A new set of data for a single language was then analyzed and its results compared with the table. The test data is indicated by the X's in figure 2.

The results of the single test indicated that the sample size was inadequate. Additionally, it appeared that the ranges would increase proportionately with the sample size, unless a convergence could be determined. If the ranges were to increase, there would be an even greater overlapping of regions, and decisions would be made more difficult. Therefore it was concluded that differentiation was not feasible on the basis of a single sound.

D. NORMALIZATION CROSS-SECTION

The second approach dealt with observing a cross-section of the languages collectively on the basis of categorical content. This method of analysis presumed that the sounds would be randomly distributed in a "Gaussian" fashion. The decision factor selected was the Shannon Theorem [Ref. 16, chapter 3]. In the Shannon theorem the data is assumed Gaussian, and three situations occur: (1) the curves are disjoint and the decision is immediately obvious; (2) the curves totally overlap and no decision is possible; or (3) is a slight overlapping and some criterion can be there developed which will give reasonable predictions of the case at hand, providing the error factor (amount of overlap) is not severe. The three situations are:

Figure 3. Shannon Theorem Decision Curves

It was anticipated that either case (1) or (3) would emerge. Therefore, the statistics obtained from the computer printout were "normalized" or "Gaussianized" in accordance with the following: X = the % of occurrence of a category in the first three and last two sound positions of a word. % => frequency.

$$E(x) = \underbrace{\sum_{N}}_{N} (2)$$

$$\sigma(\mathbf{x}) = \left[\frac{\sum \left[\mathbf{X} - \mathbf{E}(\mathbf{x}) \right]^2}{N} \right]^{1/2}$$
(3)

$$f(x) = \frac{1}{\sqrt{2\pi^{\prime}\sigma(x)}} \exp \left\{ -\left[\frac{x - E(x)}{\sqrt{2\tau^{\prime}\sigma(x)}}\right]^{2} \right\}$$
(4)

i = 1, (1,2), (1,2,3), (n-1), (n).

In the case of the fricatives for language "A" the content (from computer output 1) was:

sound location	<pre>X = Random Variable = frequency of occurrence of F</pre>
1	33.48
2	00.98
3	17.46
4	
n-1	15.46
n	01.35

The computed mean is: $E(x) = \frac{33.43 + 0.98 + 17.46 + 15.46 + 1.35}{5}$ = 13.75

Similarly the standard deviation was calculated to be: $\sigma(\mathbf{x}) = 10.22$ Then using table 6.1 [Ref. 17] the Gaussian density (pdf) for fricatives was established for language A. Using identical procedures the fricative densities were created for the remaining four languages and superimposed on the language A. The same procedure was followed to graph for establish graphs in each category. The tables and graphs for this procedure are contained in appendix D. The results were clearly not what was expected. In fact, Shannon's case approached in each graph. Even in the graphs where (2) is case (3) was there, in spirit, the error factor is clearly greater than the Shannon theorem could accept. It was speculated that increasing the reference data would not be sufficient to obtain more dispersion in the graphs. Therefore, this technique was abandoned.

E. TWO-SOUND PROBABILITIES

The computer program which develops the statistics creates them such that the frequency information follows the tree branch technique, as shown in figure 4.

The frequencies registered at each point in the tree is an exact probability. Therefore at every sound level for each language the probability per language is available. These probabilities are grouped by language in computer output 1, and are summarized in table D-I, in appendix D.

Figure 4. The Frequency Tree.

Assuming that all languages equiprobable are [P(A) = P(B) = P(C) = P(D) = P(E) = 1/5], liklihood ratios can be developed using Bayes rule; which computes the probability of a given language based on the categorical sound occurring specified position in the word. For example the at a probability of a test word being from language "X" given that a sound category was identified in position two (second sound) would be computed as follows:

 $P(X|Y_2) = \frac{P(Y_2|X) P(X)}{P(Y_2|A)P(A) + P(Y_2|B)P(B) + P(Y_2|C)P(C) + \dots}$ (5) where: X = language = A, B, C, D, E $Y_2 = \text{sound category} = P, N, S, V$ i = position indicator = 1, 2, 3, 4, n-1, nj = position indicator = 1, 2, 3, 4, n-1, n

These probabilities are tabulated in table IV-I. A decision can be achieved using the maximum likelihood. For example, from table IV-I, for an "S" in the 2nd position one would choose language E because it clearly has the the greatest

probability of being the correct choice. In the case where more than one word from the same language is being analyzed the decision criteria requires an additional iteration; this presumes the words have different sound content arrangements When the position is selected (say at the second (order). sound position) the rows are removed in tact. The removed rows are then isolated and a product is calculated for the column elements. The correct choice is then the columnar product which is largest, i.e., has the greatest likelihood. Multiplication corresponds to the assumption that words are chosen independently at random from the language. For example, given a first word has a "V" in the last position maximum likelihood would elect language B, however, if the the second word had an "S" in the last position and the is taken, language D will have the maximum product likelihood.

Δ	.074	.313	.229	. 126	. 258
S	.220	.000	.137	.491	. 153
product	.016	.000	.031	.052	• 039
sum	.294	.313	.466	.617	.411

Using the product method, clearly eliminates any language which is devoid of a unique sound. The advantage of the summing method is that languages which have high percentage of occurrence are brought out for consideration a categorical void. Arguments can in spite of be established on which is the better method (sum or product), however, it was decided to use the product method in subsequent decisions. The product of one or more column elements is referred to as "validity factors" in computer a product of validity factors are called program 2; "validity products."

In spite of the closing statement in section IV-C, that differentiation was not feasible on the basis of a single sound, testing was performed on some 200 random words/phrases. The results (not included) were ambiguous and supported the earlier claim.

Bayes Rule still offered more potential than previous efforts, therefore, the two-sound combinations [of which there are 16; F, N, S, V => $(4)^2$], were computed in the following manner:

P (X Y ₂ Y ₁)		=	$\frac{P\left(\frac{Y_{2}}{Y_{2}}\frac{Y_{1}}{Y_{1}}\frac{X}{Y_{1}}\right)P\left(X\right)}{\sum_{X=A,E}\left[P\left(\frac{Y_{2}}{Y_{1}}\frac{Y_{1}}{Y_{1}}\frac{X}{Y_{1}}\right)P\left(X\right)_{i}\right]^{-1}}$	(6)
where:	X	=	language = A,B,C,D,E	
	Y	=	sound category = F,N,S,V	
	P(X)	=	P(A) = P(B) = P(C) = P(D) = P(E), by assumption	

These values are given in Table IV-II.

The decision rule is identical to that for one-sound, i.e., maximum likelihood. Given any word(s) greater than one sound, a decision can be reached. Again two or more words dictate the product (or sum) rule to obtain the maximum likelihood.

The results of limited testing (30 words) using this method were below the desirable limit. In the case of one random word, decisions were less than 20% correct; for two words less than 50% correct; and three word decisions ranged from 45-55% correct. Though the correct decisions were proportional to the number of words, the decision procedure appeared to be weak. Presuming this was a result of the earlier assumption that all languages were equiprobable, a procedure similiar to Bayes was constructed and defined as follows:

$$L(X|Y_{2}Y_{1}) = \frac{\left[P(Y_{2}Y_{1}|X)P(X)\right]\left[P(Y_{1}|X)P(X)\right]}{\sum\left[P(Y_{2}Y_{1}|X)P(X)\right]\left[P(Y_{1}|X)P(X)\right]}$$

$$= \frac{P(Y_{2}Y_{1}|X)P(Y_{1}|X)\left[P(X)\right]^{2}}{\sum\left[P(Y_{2}Y_{1}|X)P(Y_{1}|X)P(Y_{1}|X)\left[P(X)\right]^{2}\right]}$$
(7)
where: X = A, B, C, D, E
$$Y = F, N, S, V$$

Again the assumption of equiprobable languages was inserted thus removing the [P(X)]² terms. The remaining equation is hereby defined as "Prognostic Progression." The equation calculates the "Logical Prognosis" of a language given the frequency of occurrence at a position and the probability [or Logical Prognosis (L)] brought forward from the previous position in the tree (fig. 4). Table IV-III was calculated the Bayes using this procedure, and is compared with solutions in Table IV-IV. The results are interesting. They show that the resultants are shifted, from one table to the next, and tend to negate the assumption of language equiprobability. Thus the probability of language arrivals introduced, but indirectly, at any selected level except is the first (single sound). This enables the use of variable i.e., probability for reference languages, unknown reference sample sizes are inherently accounted for. Three comparative tests were run for Tables IV-III versus IV-II using 100 randomly selected words (20 per language). The results showed for the two-sound level that the formulas had relatively the same effect. The overall results achieved (note, 100 word samples increased minimum correct for were: this test to 40% compared to previous 20%)

Procedure	test 1	% CORRECT test 2	test 3
BAYES	39	40	38
COOKS	4 1	39	40

Further test at the three-sound level were conducted; results results very similiar to the two-sound were obtained. The number of correct choices were within 1--4% of each other, however, it was noted that in 4 of 7 tests (avg. words = 35) the magnitude of the correct over the next Cooks competitor was much greater with method. order of magnitude from the most likely Additionally, the (maximum product) to the second most likely, second to third, etc., was much more even, and smaller in Bayes than in Cooks. It was thus assumed that the idea of "Prognostic **Progression"** was at least equivalent to Bayes Rule. This assumption encouraged the writing of computer program number 2.

basic operation of computer program 2 is The а continuation of program 1, except that some extra features were added. The primary extra feature is variable partitioning, wherein words of the same sound length are analyzed collectively by language. The partitioning is variable in that the statistics can be ended at any point, i.e., all words ≥1, create the same data as in computer output 1; words ≥ 2 , creates data for one sounded words, apart from the data for words of two sounds and greater: process is allowed through words ≥6. The decision this portion forces a word to follow a flow path based on the number of sounds the word contains. By doing this, for example, three sounded words are only compared with a11 other three sounded words in the data collection, unless the the partitioning is set at ≥ 2 or ≥3. The standard test (comparisons) in the flow path for a partitioning of ≥6, is provided in table IV-VII, and the program flow diagram is provided in figure 5. Secondary features include selectable graphic representations of either the raw statistics, or the Prognostic Progression values for any or all reference data.

The model was tested using randomly selected words from each language within the data base. This "loop" test was used to determine if the model could correctly segregate and identify what it already held in storage.

The first-two position results related a noticeable similariity between the languages, and required at least a two word sample size to achieve correct decisions in 50% of the tests. The results of this test are tabulated in table IV-V. Tests involving the first-three sounds showed even greater improvement in the results. This indicated that at the three-sound level unique patterns were emerging. The test of three-sounds duplicated the procedure used for the two-sounds and their results are tabulated in table IV-VI.

Testing beyond this point was considered insignificant due to the limited reference data. Beyond three-sounds, the tests were approaching 100% for as few as five word/phrase test samples. The consensus was that even though patterns were uniquely developing, their percentage relative to the whole of a language negated the significance of the patterns.

A final group of tests was run with the program changed to use Bayes' Rule, rather than the Prognostic Progression. The results (not included) were for all practical purposes identical. The Bayes' Rule method also forced 100% correct decisions as early as five words. On the basis of this test it is concluded that Bayes' Rule and Cook's Prognostic Progression perform equally on this type of task.
Table IV-I.

Bayes' Theorem Calculations for one-sound

¥,	P (A (Y _i)	P(B Y _i)	P(C Y _i)	P(D(Y _i)	P(E Y _;)
F ₁	.237	.204	. 142	.179	.235
N ₁	. 179	.181	.223	.260	.157
S ₁	. 28 1	.167	.185	. 140	.227
V ₁	.084	.250	.266	. 252	.148
F ₂	.035	. 16 1	.374	.169	.261
N ₂	.070	.350	.234	.148	.200
S ₂	.111	.029	.185	.269	.405
V ₂	. 270	.173	. 169	.236	.153
P ₃	. 230	. 129	. 224	.254	.162
N3	. 284	• 160	.197	.202	.157
S ₃	.078	.300	.208	.130	.383
V ₃	. 174	.215	. 187	.212	.212
F ₄	.041	.186	.217	. 302	.253
N ₄	. 146	. 263	.213	.096	.283
S4	.499	.083	. 131	.140	.148
₹4	. 130	-231	. 223	. 252	.163
F _{n-1}	.022	.396	. 151	.214	.216
N _{n-1}	- 144	.169	.296	. 154	.237
S _{n-1}	.051	.328	.162	.179	.280
∇ _{n-1}	.358	.098	. 178	.233	.134
F _n	.293	.138	.067	. 297	.205
Nn	. 396	.102	.226	.194	.096
Sn	.220	.000	.137	.491	.153
V _n	.074	. 313	. 229	.126	.258

Table IV-II.

Bayes' Theorem Calculations for two-sounds

¥, ¥ _j	P (A Y _i Y _j)	Р(В Y _i Y _j)	P(C Y _i Y _j)	P(D Y _i Y _j)	P(E Y _i Y _j)
F ₁ F ₂	.000	.000	.000	.000	1.0
$F_1 N_2$.037	.388	- 154	.068	.353
$F_1 S_2$.282	.000	.000	.137	.581
F ₁ V ₂	.303	.199	. 188	.190	.120
N ₁ F ₂	.000	.000	.000	.000	.000
N ₁ N ₂	.000	. 161	- 400	.000	.438
N ₁ S ₂	.000	.000	1.0	.000	.000
$N_1 V_2$. 200	.163	. 179	.328	.130
St Fo	. 192	.000	. 000	. 351	.457
$S_1 N_2$.062	. 324	.243	.151	.221
$S_1 S_2$.000	.000	.000	.000	1.0
S ₁ V ₂	.298	. 192	. 154	.141	.216
V ₁ F ₂	.000	.334	.443	.125	.098
V ₁ N ₂	. 119	.276	. 285	.246	.075
V₁ S₂	.044	.052	.403	.081	.420
V ₁ V ₂	. 188	.109	.097	.570	.037

Table IV-III.

Cook's Prognostic Progression Calculations for two-sounds

Y _i Y _j	L(A Y _i Y _j)	L(B Y _i Y _j)	L(C Y _i Y _j)	L (D Y _i Y _j)	L(E Y _i Y _j)
$F_1 F_2$ $F_1 N_2$ $F_1 S_2$ $F_1 V_2$.000	.000	.000	.000	1.0
	.045	.359	.114	.062	.421
	.293	.000	.000	.108	.599
	.363	.184	.138	.172	.142
$N_{1} F_{2}$ $N_{1} N_{2}$ $N_{1} S_{2}$ $N_{1} \nabla_{2}$.000	.000	.000	.000	.000
	.000	.144	.483	.000	.372
	.000	.000	1.0	.000	.000
	.171	.130	.192	.409	.098
$S_1 F_2$ $S_1 N_2$ $S_1 S_2$ $S_1 V_2$.253	.000	.000	.231	.516
	.085	.334	.219	.103	.260
	.000	.000	.000	.000	1.0
	.373	.181	.126	.088	.232
	.000	.325	.486	.130	.060
	.045	.290	.339	.276	.050
	.018	.059	.521	.099	.302
	.073	.118	.119	.664	.026

.

.

Table IV-IV.

Shifting Effects Denoted by the Difference in (V-III) - (V-II)

	A	В	с	D	Е
PF	.000	.000	- 000	.000	.000
PN	.008	.029(-)	- 040 (-)	.006 (-)	.068
FS	.011	.000	- 000	.029 (-)	.018
FV	.060	.015(-)	- 050 (-)	.018 (-)	.022
n F	.000	.000	- 000	.000	.000
n n	.000	.017(-)	- 083	.000	.066(-)
n S	.000	.000	- 000	.000	.000
n V	.029 (-)	.033(-)	- 013	.081	.032(-)
SF	.061	.000	- 000	.120(-)	.059
SN	.023	.010	- 024 (-)	.048(-)	.039
SS	.000	.000	- 000	.000	.000
SV	.075	.011(-)	- 028 (-)	.053(-)	.016
VF	.000	.009 ()	.043	.005	.038(-)
VN	.074 (→)	.014	.054	.030	.025(-)
VS	.026 (-)	.007	.118	.018	.118(-)
VV	.115 (-)	.009	.022	.094	.011

Table IV-V.

Two-Sound Results using Prognostic Progression

ONE-WORD TEST:

Lng	smpl size	A	В	с	D	Е
A	33	.637	.121	.000	.182	.061
в	25		.400	.08	.120	.016
С	49	.367	. 204	. 16 3	.265	.000
D	42	.286	.143	.000	.571	.000
E	60	.317	.050	.150	.150	.333

TWO-WORD TEST:

Lng	smpl size	A	В	с	D	Е
A	16	.563	.125	.000	.313	.000
B	12	.083	.583	.083	.083	.167
C	24	.167	.292	.208	.330	.000
D	21	.238	.095	.000	.667	.000
E	30	.133	.067	.133	.167	.500

Average correct single word = 83/209 = .397 Average correct two words = 50/90 = .556 Sample sizes of 15 and greater gave results of 100% correct selection in 4 of 5 tests.

Table IV-VI.

Three-Sound Results using Prognostic Progression

ONE-WORD TEST:

Lng	smpl size	A	В	с	D	E
A	33	.667	.033	.100	.233	.067
в	25	.160	. 480	.160	.160	.040
С	49	.306	.041	.327	.265	.061
D	42	.214	.071	.048	.595	.071
E	60	.217	.083	.133	.167	.400

TWO-WORD TEST:

Lng	smpl size	A	В	с	D	E
A	16	.688	.000	.000	.313	.000
B	12	.083	.580	.167	.167	.000
C	24	.167	.042	.500	.292	.000
D	21	.095	.048	.048	.810	.000

Average correct single word = 97/209 = .464 Average correct two words = 64/103 = .621 Sample sizes of 11 and greater gave results of 100% correct selection in all tests.

Table IV-VII.

Model Test Path for A Given Word Length

word		
Length	Test Criterion	
1.	P(x)	
2.	$P(x)$, $L(y_1 y_2 x)$	
3.	$P(x)$, $L(y_1 y_2 x)$, $L(y_1 y_2 y_3 x)$	
4.	$P(x)$, $L(y_1, y_2, x)$, $L(y_1, y_2, y_3, x)$, $L(y_1, y_2, y_3, y_4, x)$	
5.	$P(x)$, $L(y_1 y_2 x)$, $L(y_1 y_2 y_3 x)$, $L(y_1 y_2 y_3 y_4 x)$,	
	$L(y_1 \ y_2 \ y_3 \ y_4 \ y_5 \ \ x)$	
6.	$P(x)$, $L(y_1 y_2 x)$, $L(y_1 y_2 y_3 x)$, $L(y_1 y_2 y_3 y_4 x)$,	
	$L(y_1 y_2 y_3 y_4 y_5 x)$, $L(y_5 y_6 x)$, $L(y_1 y_2 y_5 y_6 x)$,	
	$L(y_1 y_5 x)$, $L(y_1 y_2 y_3 y_4 y_5 y_6 x)$	• • • •
where:	x = language = A, B, C, D, E	
	y = sound category = F,N,S,V	t
	1 = first sound	
	2 = second sound	
	3 = third sound	
	4 = fourth sound	
	5 = last sound = n	
	6 = next to last sound = n-1	

Figure 5. Final Model Flow Diagram

V. RECOMMENDATIONS FOR FUTURE STUDIES

1. The model finally developed has considerable potential which was not exhaustively exploited herein. The reference data should be vastly expanded, or at least altered to reflect the most current language/vocabularies in use. 1000-1500 words and/or phrases per language is suggested, because only 20% of that range was used here, and it appeared that word uniqueness was overshadowing language uniqueness.

2. The Prognostic Progression formula (no. 7) should be tested at greater lengths to identify its uniqueness, or qualify it as an extension of Bayes Theorem.

3. The largest problem encountered was in not having a spoken speech to phoneme converter. Assuming a similiar lack of availability for future researchers, it is recommended that high quality transcriptions be obtained earlyon, and the quantity of transcripted words be used as a criterion for continuance. Further phrase transcriptions will provide better results than word lists.

4. Diacritical marks and emphasis were not considered herein, but may prove beneficial in further language differentiation developments.

VI. CONCLUSION

The following are presented in relation to the findings herein:

1. The IPA does appear to be an able vehicle to support a language differentiation scheme. However, the ROMI conversion alphabet should have been expanded to reflect diacritical marks across the languages used.

2. Single sounds are definitely an inadequate differentiation approach. Two-sound combinations present only borderline results. At the three-sound point definite uniqueness appears, and is improved with each additional sound brought into the combinations. The ending sounds (backdoor approach) begin to present patterns of interest at the two-sound point, and should have been explored at For the languages used herein (all greater length. European) it is generally concluded that patterns emerged which were unique in spite of the limited sample size.

3. The final analysis and decision model (computer program 2) is considered a successful tool for language differentiation. It appears to have considerable potential for expanded analysis.

4. Perhaps the most important, though unexpected, result was obtained via the "loopback" testing of the model. This test pointed out the model was capable of pattern matching decisions of high reliability with small test samples(<5). This certainly presents an improvement to the technique of word matching, in that storage requirements and accessing times are greatly reduced. This potential is limited only by the ability to update the data base relative to current desired operability.

APPENDIX A

THE SPEECH SYSTEM

When discussing the speech system, it is quite possible to delve into many scientific fields of endeavour in order to fully exploit the interaction and functions of the components. In an overview the players in a system diagram analysis (figure 1) are the transmitting section and the receiving section.

Figure A-1. Block Diagram of the Speech System

The receiving section is comprised of the hearing organ, the brain, and the responders. A schematic of the hearing system (figure 2) shows a subdivision into (1) the outer ear, (2) the middle ear, and (3) the inner ear.

FIG. 75.—Semidiagrammatic Section through the Right Ear (Czermak): G, external auditory meatus; T, membrana tympani; P, tympanic cavity; o, fenestra ovalis; r, fenestra rotunda; B, semicircular canal; S, cochlea; Vt, scala vestibuli; Pt, scala tympani; E, Eustachian tube; R, pinna.

Figure A-2. The Hearing System

outer ear functions as an antenna, and both ears used The together comprise a directional antenna system i.e., capable of determining the direction of the sound source relative to The outer ear also contains the the listener. feed system receiver. middle and inner ear comprise the the The to receiver itself. The middle ear senses the presence of and the mechanical energy to the inner ear, sound passes where it is converted to electrical impulses modulated in both amplitude and frequency. These impulses are then sent to the brain which detects the intelligence, and activates decision circuits to provide physical response as necessary. The Eustachiam tube (E in figure 2) insures that there is equal pressure on both-sides of the membrana tympani tubes also provide (eardrum). The Eustachian some side-tonal pressures whenever speech or sound is generated at its input (upper part of the throat behind the nasal This side-tonal effect appears to provide cavity). а negative feedback to "pad" or reduce the effects of the waves emitted when they arrive at the amplitude of sound receiver input of the "transceiver" system. An analogy to the "TR/ATR" action in a radar is certainly suggested by the side-tone effect. The functions of the receiving mechanism those for which a mechanized language differentiation are model is desired. The available technology does not dictate approach to the solution, however, the basics are a direct clear in the "blackbox" approach. The output is a response resulting from a decision based on the input received. The type of decision device, must then be determined from what information can be gleaned from the input. The input is assumed to be an exact duplication of the output from the transmitter section. Therefore, if it can be determined how the transmitter functions based on observable output, it seens feasible that some model could be developed to interpret the information the transmitter would 'send subsequently.

The transmitting section is of much greater interest and value to this research. Basically, as seen in figure 1, the brain sends responder messages to the lungs and vocal shaping components. The lungs provide the mechanical energy which is shaped, amplitude and frequency modulated, and emitted as speech or vocalization. Thus the transmitter is the human vocal system. A block diagram of the system (figure 3) gives the breakdown of the vocal system into four subdivisions. The schematic diagram (figure 4) gives the anatomical layout of the components.

fig. A-3.a. The "Black-box" Approach

fig. A-3.b. The "Black-box" Expansion

Figure A-3. Human Vocal System (block diagram)

Figure A-4. Human Vocal System (schematic diagram) The lungs act as a power supply, collecting air such that it can be expelled with the required volume and velocity whenever dictated by the brain. Both the voluntary and involuntary actions by the lungs are used in the speech process. Voluntary action is very apparent in the "raised" voice or "yelling" process, where there is an obvious increase of pressure on the lungs forcing the volume and velocity out of the lungs to be increased.

The oscillator and resonant cavities consist of the glottis (vocal chords), the pharyngeal passage (upper throat), the oral cavity (the mouth), and the nasal passage. glottis, when excited by an expulsion of air, vibrates The or oscillates at a fundamental frequency (male average is average is 205Hz) [Ref. 18], and generates 130Hz, female many harmonics. The frequency actually emitted may be the fundamental, a harmonic, or some combination. In general, when sounds are emitted there is an amplification of some parts of the spectrum and suppression of others, much like the characteristics of a bandpass filter, i.e., selective The fundamental frequency is a result of a transmission. number of factors, namely the size, shape, and elasticity of glottis, the circumference, length, and shape of the the trachea, and the size shape, and depth of the oral and nasal cavities; specifics for typical dimensions and frequencies relative to these paramenters can be found in appendix B. In the aggregate these factors constitute a tuned waveguide and/or cavities which tend to alter the basic frequency of the glottis vibrations. In support of this, consider what occurs when the velum is opened (by its trapdoor action) to allow air to flow through the nasal cavity; the volume of the system is increased which is consistant with а lower frequency of resonance normally attributed to the nasalized tones.

The pulse shaper provides the ultimate control of power during constant output. The shapers consist of the tongue, teeth, lips, jaw, and palate. The shapers affect both the frequency and amplitude of the transmitted waves and thus act very similiar to a modulator section in a radio transmitter. Frequency variability occurs in the range available from the fully open to the fully closed mouth, and has numerous descrete frequencies in between these extremes.

The antenna or radiating system consists of the actual oral and nasal orifices. The lips and jaw both work independently and together in the shaping, frequency, amplitude, and emission operations. The parameters of importance in the output are again frequency and amplitude. The sound wave emitted will be of higher frequency when the mouth is more in the closed position than open. The affects of the nasal chamber is controlled by the velum, which determines the amount of air (by volume) allowed to pass in the cavity. The nasal-oral combinations regulate the output frequency by combining the orifice controls of the velum and the tongue position. These combination sounds occur more frequently in languages other than English.

RECOGNITION OF SOUNDS

Every emission via the vocal system falls into categories which have been previously developed and quantized in varying degrees. Numerous experiments have been conducted particularly in the speaker recognition area where the uniqueness within these categories are further quantized to search out factors which are undeniably speaker dependent, and thus provide keys to recognition algorithms. Doherty [Ref. 19] used 25 significant factors in his Long Term Spectra (LTS) analysis to achieve 100% recognition (a

rarity in recognition results) for a sample size of 50. Doherty did not provide a specific breakdown of the 25 used, however, he did indicate that various factors he combinations of frequency, times, nazalization, pauses, stops, and fricatives were some of the factors used. Others such as Young [Ref. 20] have used a single category of sound to promote recognition schemes. Young looked specifically at nazalization and achieved results from 50% to 97% with a sample size of 13. The categories are relative then to recognition of many entities in speech. Word/phrase boundaries as well as the individual components and sound patterns can be identified and removed for analysis. Experimenters make every effort to eliminate odds whenever possible, therefore, it is not uncommon to find that when a project is dedicated to a specific area of sound to research that test segments are carefully screened to be representative of the specific area. Sounds can be classified by a number of parameters (time, frequency, form, One such classification technique categorizes sounds etc.) by form, i.e., by the way they are generated.

The categories of concern are: the vowels (v), the stops (s), the nasals (n), the fricatives (f), and the pauses (p).

The vowel sounds are that group which flow smoothly (uninterupted) from the lungs through the oral orifice utilizing the whole of the vocal cavity, with minor adjustments in resonance promoted by the specific location of the tongue. Vowels are further defined according to the tongue position with respect to the oral cavity (mouth) in general. The front vowels are generated whenever the tongue position toward the front of the mouth is the major factor; the sounds specific to this location are: i(HF), I(LHF), e(HMF), $\mathcal{E}(LMF)$, $\infty(LF)$. The back vowels are: u(HB), U(LHB),

O(MB), O(HLB), a(LB). The central vowels are: $\Im(MC)$, $\Im(MC)$, A(LMC). In addition to the distinctive vowels noted above are a group of connected vowels whose separation are said to alter the meaning, therefore they are taken collectively and have the special sub-categorization name "diphthongs." The diphthongs are aI, aU, \Im I, and ju. Diphthongs are also referred to as the vowel-glides since there is an alteration in the resonance which resemble the glide consonants.

The stop category consists of those sounds which are emitted as a 'puff-of-air, i.e., no energy is followed by a large spike cf energy. Stops are also known as plosives due to the energy spike, but stop is more commonly used since the speaker must actually establish a stop in the smooth expulsion of sounds to generate the plosive burst. The stop category has the components: p, b, t, k, and g. A sub-category of the stops is the affricates tJ and dJ which are again combinations which cannot be reduced without changing the meaning, therefore, they are classified as unique and essential.

The third group is known as the fricatives. These sounds require a velocity change which is achieved by creating a narrow slit between the upper teeth and the lower lip, the upper teeth and the tongue, or the upper teeth with the lower teeth. The objective is to create a higher frequency sound at a higher velocity. The components of this category are: f, v, θ , δ , s, z, \int , ζ , and h. At present there are no apparent sub-categories which are considered unique.

The nasal category actually consists of glides, nasals, and laterals. The glide is so called because of articulation organ movement required in its generation. For example, note that when the single sound of "r" is generated

the oral cavity enlarges, specifically note that the tongue drops in position. Enlarging the vocal cavity tends to lower the frequency of resonance, such that the sound is readily identifiable as a smooth transition from a high to a The nasal sounds are those sounds which lower frequency. are emitted via the nasal cavity only, that is the mouth is blocked by a tight closing of the lips for the sound of "m," and by the tongue pressed firmly against the hard palate for generation of "n." The final component of this the sub-category is generated when the mouth is blocked by the center and back of the tongue to form the sound associated The lateral has a single component "1." with y. The lateral utilizes both the nasal and oral cavities for the generation of this glide-like sound.

The final category is that of pauses. A pause is an obvious lack of sound of sufficient duration so as to provide a well-defined boundary for a word or phrase as appropriate. Pauses really represent a special situation that requires a more indepth discussion.

The pause is that period in speaking which is denoted by the total absence of sound. In writing one provides word separations cr boundaries by the absence of script or by leaving an intentional space. Unfortunately this does not follow in speaking. In speech, words are run together such that a combination of words (hereforth defined as a phrase) would appear as a single utterance which is devoid of For example, the phrase "the brown cow" is spoken pauses. as "thebrcwncow." In a transcription from the text the phrase becomes "Ja braun kau," but the spoken appears as "ðəbraunk u." This draws forth the problem of sound pattern significance for the two cases described as (1) with and (2) without pauses.

It appears as though a pause may or may not be present

with equal probability. In the case of English it is observed that three distinct areas enter into the study of pause insertion. Speaking generally for the U.S.A., the Northeast coast population speak very rapidly and pauses are difficult to detect; Southerners speak very slowly, so that distinct and occur more are often: pauses Westerners/mid-westerners fall somewhere in between, median for the extremes. The representing a actual detection of word boundaries via the spectrograph OL similiar process has not been achieved with any degree of accuracy, and is particularly poor with an unknown sample [Ref. 21]. Therefore the problem must be looked at from two points of view. The first looks at the sound patterns based on individual word list inputs. The premise here is that the probability of any word beginning a phrase could be From the words of the phrase "the brown cow" one high. would certainly expect the article "the" to follow a pause with a high degree of certainty. The word "brown" could be given a probability assignment of .5 (equiprobable that it would or would not begin a phrase with some certainty). The word "cow" would have a much lower degree of certainty associated with it, but greater than zero, since words such as "cowboy," etc. exist. A second argument would be that only phrases (devoid of pauses) exist and they therefore, should be the only sound strings used in the analysis.

The solution to these points as far as this thesis was concerned was to look at both words and phrases, individually and collectively. The rationale being that since the analysis only looks at the first four and last two of the scund string, and since there is sufficient probability that any given word may be the first word in a string (phrase), that the characteristics of that given individual word are very germane to the sound string analysi's. The use of phrase analysis, recognizes that pause detection may be very applicable in the conversion of spoken

sounds to a computer-acceptable input.

A series of sound emissions can be observed either in whole or in part wherein individual sounds can be sensed categorically or uniquely, dependent upon the type of analysis which is desired. In the analysis by Young [Ref. 20] he was able to concentrate on the nasal phonetation by first carefully selecting words (including nonsense words) which clearly contained significant nasal sounds, then via a masking or filtering technique he removed those quantities which were not of concern to him. Others have used a variety of masking techniques to eliminate all but the desired elements of the test speech.

The concern herein was not to extract any sounds or rely on the uniqueness of sounds for the purpose of recognition. Rather the intent was to establish whether or not sound patterns are unique to languages, on either an individual or a categorical basis. In order to achieve this end it is necessary that sounds can be uniquely defined categorically.

ELECTRONIC PERCEPTION OF SOUND

Many attempts to fully comprehend the operation of the vocal system have been made through the ages. A large number of models were constructed across time, many were unsuccessful, while others proved major contributions. In the late 1700's three mechanical models were independently produced by Kratzenstein, VonKempelen, and Wheatstone, each of which used bellows, leather resonators, and reeds to create fricative, plosive, and vowel sounds [Ref. 18]. The first real electrical model of any value was the "VODER," (Voice Operation DEmonstratoR), developed by H. Dudley in

the 1930's, (Dudley also developed the first VOCODER: VOice CODER; also in the 1930's). The VODER consisted of oscillators, resonance chambers and a keyboard to control the frequency, amplitude, and duration of each sound in the formulation of words at its speaker output. The VODER had a vocabulary of 2500 words [Ref. 22, pp. 16, 32, 49, 191].

The spectrograph is an analysis tool which came into being in the 1940's as a result of studies by Koenig, Dunn, and Lacy [Refs. 3 and 23]. There are various types now being used, however they have common operations in that all take in speech sounds, filter separate the sound into bands (bandpass filtering) and display the results on a frequency (vertical) versus time (horizontal) basis. The spectrograph uses basically a Fourier analysis processing [Ref. 3]. One motivating factor behind the development of the spectrograph was the desire to have a visible speech mechanism to aid the learning process for deaf persons. Many side uses were subsequently developed for the spectrograph. Peterson and Barney used the spectrograph technique to confirm that most English sounds occur in the standard telephone bandwidth of 300-3300Hz [Ref. 18, p. 154]. Spectrograms have been used means to develop speaker identification through a as "voiceprints." Voiceprints are unfortunately not at a state where 100% accuracy is consistant with experimental results. Therefore, voiceprints promote (presently) a shadow of doubt in their reliability and are not accepted as a legal tool. The voiceprint area is one of considerable interest to the speaker recognition subgroup of the Acoustic Society of America, and was the subject of attention during a special open discussion during the 90th meeting in San Francisco [Ref. 9].

Some Characteristics of Vocal Tract Transmission

<u>FORMANT</u> = manifestation of the normal modes as spectral peaks in the output sound, which are derived from the transmission function relating the mouth and glottal volume currents. The transmission function is:

 $H(jw) = -\frac{1}{a} = -\frac{1}{j \sinh a} = \frac{1}{\cosh(a+j\beta)} = \frac{1}{\cos(\frac{w}{c})}$

where = w/c and w = $(2n + 1)\frac{\pi c}{21}$

Formant Parameters: $L_a = \frac{\rho}{A} = acoustic inertance/unit length$ $C_a = \frac{A}{\rho c^2} = accoustic compliance/unit length$ $= \frac{S}{A^{2}} \sqrt{\frac{\omega \rho \mu}{2}} = \text{acoustic resistance/unit length}$ $= \frac{S \eta_{-1}}{\rho c^{2}} \sqrt{\frac{\lambda \omega}{2C_{p}\rho}} = \text{acoustic conductance/unit length}$ $R_a = -\frac{S}{A^2}$ Ga $A = tube area = 5cm^2 = 0.775 in^2$ r = radius of tube = 1.26cm = 0.497in S = tube circumference = 7.9265cm = 3.12in ρ = air density = 1.14 x 10 3gm/cm², (moist air at body temperature = 37 C) $C = sound velocity = 8.5 \times 10^{\circ} cm/sec$, (moist air at body temperature = 37 C) μ = viscosity coefficient = 1.86 x 10 + dyne-sec/cm², (20 C, 0.76 in.Hq.) λ = coefficient of heat conduction $= 0.055 \times 10^{3} \text{ cal/cm-sec-deg} (0 \text{ C})$ η = adiabatic constant = 1.4 c_p = specific heat of air at constant pressure = 0.24 cal/gm-deg (0 C, 1 atmos.) l = tube length = 17cm = 6.693in (for avg. male)

 $f = \frac{\sigma}{\pi} = \frac{aC}{\pi} = a(11141)$

$$a = \frac{R_a}{2}\sqrt{\frac{C_a}{L_a}} + \frac{G_a}{2}\sqrt{\frac{L_a}{C_a}}$$

The formant frequencies as computed are:

W	= $(2n + 1) (-\frac{\pi}{2}) (-\frac{C}{1})$ = $(2n + 1) (3230/sec)$, n=0,1,2,	$f = (2n + 1) \left(\frac{C}{41}\right)$ = (2n + 1) (514.4), n=0,1,2,
W	= 3230 radians	f = 514.4 Hz
W	= 9690 radians	f = 1543.3 Hz
W	= 16160 radians	f = 2571.9 Hz
W	= 29070 radians	f = 4630 Hz

APPENDIX C

TRANSCRIPTION SYMBOLS

ROMI to IPA Conversion Tables

Table C-I. Fricative Conversion

ROMI	IPA	
P	f	
V	V	
Q	. θ	
T-H	2	
S	S	
Z	Z	
S-S	S	
Z - Z	3	
H	h	
Q-A	${ar \Phi}$	
B-B	β	
C-H	С	
S-H	S	
Z-H	Z	
X	x	
G-F	g	
X – X	x	
R-B	в	
H-H	ħ	
U-R	a la construcción de la construc	
Z-C	7	
J-A	j	
G-B	γ	

ROMI	IPA	
 M	m	
N – N	n	
N-J	3	
L	1	
W	W	
H-W	hw	
J	j	
R-R	r	
R	R	
M-J	m	
J-N	r	
N-Q	B	
N	N	
A – N	4	
K-Z	3	
¥-U	P	
L-L	2	
R-T	t	

ROMI	IPA
 P	P
T	t
В	b
D	đ
К	K
G	g
C-C	с
P-P	ł
T-T	t
D – D	đ
Q-Q	P
G – G	G
N - U	?
AFFRICATIVES	
T-S	ts
D-Z	43
P-F	pf
B – V	bv
T-L	ts
T-M	dz
T-C	te
K – X	K

•

ROMI	IPA
I-I	i
I	i,I
E-E	e
E	З
A-E	26
A	a
С	Э
0	0
σ	U
0-0	u
$\nabla - \nabla$	٨
U-T	3
U – H	3, (8)
E-R	<i>వ</i>
Α-Α	a
A-B	Ø
3-R	3
Y - Y	У
Y	Y
0-0	φ
0 – E	œ
G-A	Х
W-W	w
I-T	i
DIPHTHONGS	
A-I	aI
C-I	I
J – U	ju
A - U	aJ
0 - 0	οU

Table C-IV. Vowel Conversion

Т	ab	10	e C-	IV	. ((CO	nt.)	:
---	----	----	------	----	-----	-----	-----	---	---

ROMI	DIPHTHONGS	IPA	
C-E		C a	
E-Q		EJ	
A-R		त न	
I-R		I	
U-S		U	
E-S		63	
I-0		I	
U-Q		Ω	
C-Q		99	
E-I		eI	

APPENDIX D

The data and graphs contained in this appendix were used in an attempt to achieve a decision model to differentiate languages. In each language the data reading across the sound rows are normalized to 100; the columns were not normalized, however, the columnar data were used to compute the mean E(x), and the standard deviation $\sigma(x)$. The graphs were generated in accordance with formula (4).

Lng	Sounds	F	N	S	V	#wds
A	1	33.48	16.29	39.82	10.41	221
A	1-2	0.98	7.84	5.88	85.29	204
A	1-2-3	17.46	45.24	7.14	30.16	126
A	1-2-3-4					
A	n	15.46	54.63	11.34	18.56	97
A	n-1	1.35	17.57	5.41	75.68	74
A A	E (X) Ø(X)	13.75 10.22	28.31 18.21	13.92 13.12	44.02 30.58	
В	1	28.87	16.49	23.71	30.93	97
в	1-2	4.55	39.39	1.52	54.55	66
В	1-2-3	9.80	25.49	27.45	37.25	51
В	1-2-3-4					
В	n	7.31	14.63	0.00	78.05	41
В	n-1	24.14	20.69	34.48	20.69	29
В	E (x)	14.93	23.34	17.43	44.29	
В	Ø(X)	9.71	8.85	14.05	20.15	

Table D-I. Combined Vector Data

Table D-I (cont.):

С	1	20.61	20.33	26.18	32.87	359
С	1-2	10.53	26.32	9.72	53.44	247
С	1-2-3	17.01	31.44	19.07	32.47	194
С	1-2-3-4					
с	n	3.53	32.35	7.06	57.06	170
C	n-1	9.22	36.17	17.02	37.59	141
С	E (X)	12.18	29.32	15.81	42.67	
С	o(x)	6.01	5.48	6.83	10.48	
D	1	25.31	23.65	19.92	31.12	241
D	1-2	4.76	16.67	14.17	74.40	168
D	1-2-3	19.27	32.11	11.93	36.70	109
D	1-2-3-4					
D	n	15.66	27.71	25.30	31.33	83
D	n-1	13.04	18.84	18.84	49.28	69
D	E (X)	15.61	23.80	18.03	44.57	
D	0(X)	6.81	5.65	4.67	16.31	
E	1	33.22	14.29	32.22	18.27	301
E	1-2	7.36	22.48	21.32	48.24	258
E	1-2-3	12.27	25.00	25.90	36.82	220
E	1-2-3-4					
E	n	10.84	13.79	7.88	64.49	203
E	n-1	13.16	28.95	29.47	28.42	203
E	E (X)	15.37	20.90	23.36	39.85	
E	Ø(X)	9.14	5.97	8.56	16.97	

Using the data from table D-I and the following information from table 6.1 of Lipschutz[Ref. 17], points were calculated for the magnitude coordinates at 0, \pm 1, \pm 2, and \pm 3 standard deviations, for each category:

 $0 = \underbrace{0.4}_{\sigma(\mathbf{x})} \pm 1 = \underbrace{0.242}_{\sigma(\mathbf{x})} \pm 2 = \underbrace{0.054}_{\sigma(\mathbf{x})} \pm 3 = \underbrace{0.0044}_{\sigma(\mathbf{x})}$

	-3 -2	-1	0	1	2	3
Α,Χ Α,Γ(x) Α,σ(x)	-16.91 -6.69 .0004 .005	3.53 .024	13.75 .039 10.22	23.97 .024	34.19 .005	44.41 .0004
B,X B,f(x) B, o'(x)	-14.2 -4.49 .0005 .006	5.22 .025	14.93 .041 9.71	24.64 .025	34.35 .006	44.06 .0005
C,X C,f(x) C,d(x)	-5.85 0.16 .0007 .009	6.17 .040	12.18 .067 6.01	18.19 .040	24.2	30.21 .0007
D,X D,f(x) D,d(x)	-4.82 1.99 .0006 .008	8.8 .036	15.61 .059 6.81	22.42 .036	29.23 .008	36.04 .0006
E,X E,f(x) E,g'(x)	-12.05 -2.91 .0005 .006	6.23 .026	15.37 .044 9.8	24.51 .026	33.65 .006	42. 7 9 .0005

Table D-İI. Fricative Magnitudes

Table D-III. Nasal Magnitudes

	-3	-2	- 1	0	1	2	3
Α,Χ Α,f(x) Α, σ(x)	-26.32	-8.11 .003	10.1 .013	28.31 .022 18.21	46.52 .013	64.73 .003	82.94 .0002
B,X B,f(x) B, d(x)	-3.21	5.64 .006	14.49 .027	23.34 .045 8.85	32.19 .027	41.04 .006	49.89 .0005
C,X C,f(x) C,d(x)	12.88	18.36 .01	23.84 .044	29.32 .072 5.48	34.80 .044	40.28 .01	45.76 .0008
D,X D,f(x) D, d(x)	6.85	12.5	18.15 .043	23.80 .071 5.65	29.45 .043	35.10 .010	40.75
E,X E,f(x) E, $\sigma(x)$	2.99	8.96 .009	14.93 .041	20.90 .067 5.97	26.87 .041	32.84 .009	38.81 .0008

.

.

Tab	le 1	D-IV	• 5	stop	o Ma	gnj	itu	des
-----	------	------	-----	------	------	-----	-----	-----

	-3	-2	<u>–</u> 1	0	1	2	3
A,X A,f(x) A,g(x)	-25.44	- 12.32 .004	0.80 .018	13.92 .031 13.12	27.04 .018	40.16 .004	53.28 .0003
B,X B,f(x) C,σ(x)	-24.72 .0003	- 10.67 .004	3.38 .017	17.43 .028 14.05	31.48 .017	45.53	59.58 .0003
C,X C,f(x) C,Ø(x)	-4.68 .0006	2.15	8.98 .035	15.81 .059 6.83	22.64 .035	29.47 .008	36.30
D,X D,f(x) D, $\sigma(x)$	4.02 .0009	8.69 .012	13.36 .052	18.03 .086 4.67	22.70 .052	27.37 .012	32.04 .0009
E,X E,f(x) E, d(x)	-2.32	6.24 .006	14.8 .028	23.36 .047 8.56	31.92 .028	40.48 .006	49.04 .0005

/

Table D-V. Vowel Magnitudes

	-3	-2	- 1	0	1	2	3
Α,Χ Α,f(x) Α,σ(x)	-47.72	- 17.14 .002	13.44 .008	44.02 .013 30.58	74.60 .008	105.18 .002	135 .7 6 .0001
B,X B,f(x) B, g(x)	- 16. 16 . 0002	3.99 .003	24.14 .012	44.29 .020 20.15	64.44 .012	84.59 .003	104.74 .0002
C,X C,f(x) C, d(x)	11.23 .0004	21.71 .005	32.19 .023	42.67 .038 10.48	53.15 .023	63.63 .005	74.11 .0004
D,X D,f(x) D,g(x)	-4.36	11.95 .003	28.26	44.57 .025 16.31	60.88 .015	77.19 .003	93.5 .0002
E,X E,f(x) E, o(x)	-11.06	5.91 .003	22.88	39.85 .024 16.97	56.82 .014	73.79 .003	90.76 .0003

/

,

****************	★★★★★★★★★★★★★★★★★★★★★★★★★ ∩N USED IN THE \ INPUT INTO THE FIVE CLASSES.	***************	/ A-U V											
****	**** ENTAT HE IP	****	A-R									U-U		
* *	* \$ \$	**	u.	>	>							s>		
****	**************************************	***	A-N	C-0	E-S							1-S U-T		
***	* WO	***	>	>	>	s	>			s.		s>		
***	* * * * * ARACT VERSI	****	A-1	I-0	а 1 Ш	6-6	∩-I			0- N		T-M U-S		
**	* IN * 00	**	>	u.	>	L.	>	>		z>	z	лυ		L
***	# * * * *	* * * *	A-E	C-H	Е-0	G-F		<u>) - (</u>			R - T	L-L L-L		2-2
***	* N * CL	***	>0	n>u	^ >	u:	z>:	ZL		z>	v)Z	ш ш >		>#
****	**** HE PT	***	A-8			6-8		N-N N-N		N0 N0	04	NHU NHU NHU		Н-Z Н-Z
**	* T A	**	>4	LN	n>u	n>1	<∠	പം	zz	z>0	n LL LL	μv>	>>u	-ZL
****	**** 1 • 1 EMENT	****	V-V V-V		оши 1 1			AX II 7¥	 		L < @ L @ &	NHOH HOH	>3> >3>	× × ×
***	L X *	* *	>0	n>u	~>u	LOI	⊥>	zn	ZZ	:2>0	NLZ	LS>	μzu	->u¢
**	****	*	<<	eud	Dmr	LO		רצר	٦Σ	zod	Jax	N⊢⊃	>3>	<>nw

-1

NUM B ER

TUTPUT

COMPUTER

	N SVVSVN FVN N SVVSVN FVN VN VNVN N VNVVN N VNVVN N SVVF NSVVS NSVVS NSVVS NSVVSVN NSVVFVN NSVVSVN NSVVFVN NSVVSVN NSVVSVN NSVVSVN NSVVSVN NSVVSVN NVNVN NSVVSVN NVNVN NSVVSVN NVNVN NVNVN NSVVSVN NVNVNN NVNVN NVNVN NVNVN NVNVN NVNVN NVNVNN NVNVNN NVNVN NVNVNN NVNVN NVNVNN NVNNN NVNVNN NVNNN NVNNNN NVNNNNN NVNNNN NVNVNN NVNVNN NVNNNNNN				S	0.81900 10.40724
	* ^ ^ ^ ^ ^ * * ^ ^ ^ ^ * * ^ ^ ^ ^ * * ^ ^ ^ ^ * * ^ ^ ^ * * ^ ^ ^ * * ^ ^ * * ^ ^ ^ * * ^ ^ ^ * * ^ ^ ^ * * ^ ^ ^ * * ^ ^ * * ^ ^ ^ * * ^ ^ ^ * * ^ ^ ^ * * ^ ^ ^ * * ^ ^ ^ * * ^ ^ ^ * * ^ ^ ^ * * ^ ^ ^ * * ^ ^ * * ^ ^ ^ * * ^ ^ ^ * * ^ ^ * * ^ ^ * * ^ ^ * * ^ ^ * * ^ ^ * * ^ ^ * * ^ ^ * * ^ ^ * * ^ ^ ^ * * ^ ^ * * ^ ^ * * ^ ^ * * ^ ^ * * ^ ^ * * ^ ^ * * ^ ^ * * ^ ^ * * ^ ^ * * ^ ^ * * ^ ^ * * ^ * * ^ ^ * * ^ * * ^ ^ * * ^ * * ^ * * ^ * * ^ ^ * * ^ ^ * * * ^ * * ^ * * ^ * * ^ * * ^ * * ^ * * ^ * * ^ * * * ^ * * ^ * * ^ * * ^ * * ^ * * * ^ * * * ^ * * * ^ * * * ^ * * * ^ *	v		••		39
JAGE = "A"	**************************************	S C F S VN V C F S V F S V F S V N S V F S V N S V F S V F S V F S V V F S V V S V V F S V V F S V V S V V V S V V V S V V V S V V V S V V V S V V V S V V V V S V V V V S V V V V S V V V V V S V	AS NOTED.	I OR GREATER IS	٩	0
L ANGL	<pre>************************************</pre>	A SNU SUN SUN SUN SUN SUN SUN SUN SUN SUN	DS WITH FIRST SOUND	N SAMPLE OF LENGTH 1	z	16.28958
	**************************************	SVVN SVVN SVVN SVVN SVVN SVVN SVVN SVVN	PERCENTAGE OF WOR	NUMBER OF WORDS I	UL.	33.48415

PERCENTAGE OF WORDS LONGER THAN ONE SOUND WITH BEGINING TWO-SOUND COMBINATIONS: NUMBER OF WORCS IN SAMPLE OF LENGTH 3 OR GREATER IS: 204.0000

μV	29.41176	N	16.66666	ΡV	0	SV	35.29411	~~	3.921568	
FS	4.901960	NS	0	PS	0	SS	0	VS	0.9803921	
μ	0	NP	0	ЪР	0	SP	0	VP	0	
N L	0.9803921	NN	0	PN	0	SN	1.960784	NN	4.901960	
4	0	ЧN	0	ΡF	0	SF	0.9803921	٧F	0	

85.29408 5.882352 ANALYSIS OF SECOND SOUND AS THE PERCENTAGE OF OCCURANCE IN THE SECOND POSITION. (VECTORS = COLUMN SUM). 0 7.843136 0.5803921

PERCENTAGE OF WORDS LONGER THAN 2 SOUNDS WITH BEGINING 3-SOUND COMBINATIONS: NUMBER OF WORDS IN SAMPLE OF LENGTH 4 OR GREATER IS: 126.0000

NVN	SVN	NVP	NVN	NVF
0	0	0	0	0
NSV	NSS	NSP	NSN	NSF
0	0	0	0	0
NPV	NPS	NPP	NPN	NPF
0	0	0	0	0
NNN	NNS	NNP	NNN	NNF
0	0	0	0	0
NFV	NFS	NFP	NEN	NFF
4.761904	1.587301	0	20.63492	3.968253
FVV	FVS	FVP	FVN	FVF
5.55554	0	0	2.380952	0
FSV	FSS	FSP	FSN	FSF
0	0	0	0	0
FPV	FPS	FPP	FPN	FPF
1.587301	0	0	0	0
FNV	FNS	FNP	FNN	FNF
0	0	0	0	0
FFV	FFS	FFP	FFN	FFF

0 ^// ^	0 VNS	0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 VNF
VFV	VFS	VFP	VFN	
9.523808	3.174603	0	8.730155	53
SVV	SVS	SVP	SVN	
0	0	0	0	0
SSV	SSS	SSP	SSN	
0	0	0	0	0
SPV	SPS	Spp	SPN	
3.174603	0	0	0	0
SNV	SNS	SNP	SNN	
1.587301	0	C	0	0
SFV	SES	SFP	SFN	
0	0	0	0	0
PVV	PVS	РVР	PVN	
0	0	0	0	0
PSV	PSS	PSP	PSN	
0	0	0	0	0
ΡΡV	PPS	ррр	Ndd	
0	0	0	0	0
PNV	PNS	PNP	PNN	
0	0	0	0	0
PFV	PFS	РFР	PFN	
0	0	0	11.11111	507

0 VVV 0 0 30.15869	0.1936501 VVS 0.7936507 SUM). 7.142856	0 VVP 0 PERCENTAGE OF UMN	0 VVN 2.380952 SOUND AS TO THE HIRD POSITION.	VVF VVF 0 NCE IN THE 1 17.46031
Þ	1000001.0	Ð	246086.2	0
~~~	۸۷S	VVP	NVN	
0.7936507	0.7936507	0	0	0
V S V	VSS	VSP	NSN	
0	0	0	0	0
V P V	VPS	VPP	VPN	
3.174603	0.7936507	0	0	-

45.23807

17.46031

PERCENTAGE OF WORDS LONGER THAN 3-SOUNDS WITH BEGINING 4-SOUND COMBINATIONS: NUMBER OF WORDS IN SAMPLE OF LENGTH 5 OR GREATER IS: 97.00000

2.061855	3.092783	3.092783	2.061855	1.030927	1.030927	1.030927	4.123711	1.030927	14.43298	2.061855	2.061855	6.185567	6.185567	12.37113	1.030927	2.061855	1.030927	2.061855
FNVV	FSNV	FSVF	FSVN	FSVS	FSVV	FVFN	FVFS	FVNN	FUNS	FVNV	FVSV	FVVN	NVFS	NVNS	NVNV	SFVN	SVFN	SVFS

2.06185	5.15463	4.12371	1.030927	3.09278	3.09278	5.15463	2.06185	1.03092	1.03092	1.03092	2.06185	1-03090
SVFV	SNNS	SVNV	SVSS	SVSV	SVVN	SVVS	VNFV	NSN	VSSV	VVNF	VNVV	<b>NNN</b>

NUMBER OF WORDS IN SAMPLE OF LENGTH 1 OR GREATER IS: 221.0000 PERCENTAGE OF WORDS WITH LAST SOUND AS NOTED.

PERCENTAGE OF WORDS LONGER THAN 1-SOUND WITH ENDING 2-SOUND COMBINATIONS: NUMBER OF WORDS IN SAMPLE OF LENGTH 3 OR GREATER IS: 204.0000

۴۷	3.431372	NN	24.01959	ΡV	0	SV	0	~~	0		27.45096
FS	0	NS	0	PS	0	SS	0	VS	1.960784		1.960784
ΕP	0	NP	0	РР	0	SP	0	٨P	0	AS TO THE PERCENTAGE	0
NL	0	NN	0	PN	0	SN	4.411764	NV	1.960784	T POSITION.	6.372548
E F	0	NF	0	ΡF	0	SF	0.4901960	VF	0	LYSIS OF NEXT TO OCCURANCE IN THA	0.4901960

0 6.372548 0.4901960 ANA I OF

***********	VNV VNSV SVSV FVSNV VNV NVNSV		>	30.25209
**********	NV NV NV NV NV NV NV NV NV NV NV NV NV N	I S :	S	26.05042
NGUAGE = "B" **************	>IL > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > ><	ND AS NOTED. H I GR GREATER	٩	0
L A *******************	N N N N N N N N N N N N N N N N N N N	DS WITH FIRST SOU N SAMPLE OF LENGT	Z	15.96638
*****	NVN NVN NVN NVN NVN NVN NVN NVN NVN NVN	PERCENTAGE OF WOR NUMBER OF WORDS I	119.0000 F	27.73108

**********************************

PERCENTAGE OF WORDS LONGER THAN ONE SOUND WITH BEGINING TWO-SOUND COMBINATIONS: NUMBER OF WORDS IN SAMPLE OF LENGTH 3 OR GREATER IS: 88.00000

۴V	19.31818	N	13.63636	ΡV	0	SV	22.72726	~~	2.272726		57.95451
FS	0	NS	0	PS	0	SS	0	VS	1.136363	LUMN SUM).	1-136363
FΡ	0	NP	0	РР	0	SP	0	٨p	0	CENTAGE OF (VECTORS = CO	C
N	10.22727	ZZ	1.136363	PN	0	SN	10.22727	N	11.36363	ECOND AS THE PERC	32.95451
L F	0	NF	0	ΡF	0	SF	0	VF	7.954543	ANALYSIS OF SECOND OCCURANCE IN THE S	7-954543

PERCENTAGE OF WORDS LONGER THAN 2 SOUNDS WITH BEGINING 3-SOUND COMBINATIONS: NUMBER OF WORDS IN SAMPLE OF LENGTH 4 OR GREATER IS: 73.00000

FFV	0	FNV	12.32876	FΡV	0	FSV	0	FVV	1.369863	NFV	0	NNN	1.369863	NPV	0	NSV	0	N VV
FFS	0	FNS	0	FPS	0	FSS	0	FVS	4.109589	NFS	0	NNS	0	SdN	0	NSS	0	NVS
FFP	0	FNP	0	FPP	0	FSP	0	FVP	0	NFP	0	NNP	0	NPP	0	NSP	0	NVP
FFN	0	FNN	0	FPN	0	FSN	0	FVN	6.849313	NFN	0	NNN	0	NPN	0	NSN	0	NVN
FFF	0	FNF	0	FPF	0	FSF	0	FVF	4.109589	NFF	0	NNF	0	NPF	0	NSF	0	NVF

0 PVV SFV 0 SFV 0 SNV 0 SVV 0 SVV 0 2.739725 VNV	0 SFS 0 SFS 0 SNS 0 SPS 0 SPS 0 SPS 0 SSS 0 SVS 13.69863 13.69863 VFS 4.109589	PVP SFP 0 SSP 0 VFP 0 VFP 0 VNP 0	VN VN O PN O 9313 NN 0 9313 NN 0 9313	1 6 8 8 5 5 5 5 P
12•3 S	0 0 0 0 0	0 0 0		SPN 0
S FV S NV	SFS 0 SNS	SFP SNP SNP		SFN 0 SNN
PVV V BV	PVS SEC	0 0 0 0 0 0		PVN SEN O
NS d	0 PSS 0	0 d ŝd		PSN 0
	o o PNS PPS	0 dNd ddd		
0 0 2 4 4	4.109589 PFS	0 PFP		5.479451 PFN

32.87668	32.87669	0	23.28764	10.95890
	SUM).	ERCENTAGE OF VECTOR = COLUMN	SOUND AS TO THE PE HIRD POSITION.	ANALYSIS OF THIRD S OCCURANCE IN THE TH
0	0	0	0	2.739725
~~~	۸۷S	VVP	NVN	VVF
1.369863	0	0	0	0
N S N	VSS	VSP	NSN	VSF
0	0	0	0	0
VPV	VPS	VPP	VPN	VPF
1.369863	6.849313	0	2.739725	1.369863

23.28764

10.95890

PERCENTAGE OF WORDS LONGER THAN 3-SOUNDS WITH BEGINING 4-SOUND COMBINATIONS: NUMBER OF WORCS IN SAMPLE OF LENGTH 5 OR GREATER IS: 63.00000

CIRC.T NO	SV 7. 9365	VV 1.5873(sv 4.76190	/F 1.5873	/N 1.5873	:V 1.5873	VV 3.1746	SN 3.1746	SV 3.1746	/N 1.5873	=V 3.1746
SVSN	SVSV	VFNV	VESV	VFVF	VFVN	VNFV	VNNV	VNSN	VNSVV	VSVN	VLFV

NUMBER OF WORDS IN SAMPLE OF LENGTH 5 OR GREATER IS: 63.00000 PERCENTAGE OF WORDS WITH LAST SOUND AS NOTED.

>	1 69.84126
S	1.58730
Ч	0
z	20.63492
u.	7.936507

PERCENTAGE OF WORDS LONGER THAN 1-SOUND WITH ENDING 2-SOUND COMBINATIONS: NUMBER OF WORDS IN SAMPLE OF LENGTH 6 OR GREATER IS:

0
0
0
0
0
0
ഹ

FV	7.999998	NN	21.99998	ΡV	0	SV	0	~~	666666°E
FS	0	NS	0	ΡS	0	SS	0	VS	27.99998
FР	0	NP	0	РР	0	SP	0	٧P	0
FN	0	NN	0	Nd	0	SN	0	N N	19.99998
ц ц	0	NF	0	ΡF	0	SF	1.999999	٧F	16.00000

27.99998 ANALYSIS OF NEXT TO LAST SOUND AS TO THE PERCENTAGE OF DCCURANCE IN THAT POSITION. 0 19.99998 17.99598

33.99995

91

N SEVEN VN	W F W NW SYEVN SNNWN WN SY FW Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
A SONO SONO ANA ANA ANA ANA ANA ANA ANA ANA ANA	V V V V V V V V V V V V V V V V V V V
* Z>>>>0>>>TTZTZ>>>>TTZTZ>>>Z	\sim

92

PERCENTAGE OF WORDS LONGER THAN DNE SOUND WITH BEGINING TWO-SOUND COMBINATIONS: NUMBER OF WORDS IN SAMPLE OF LENGTH 3 OR GREATER IS: 247.0000

LL LL	FN	ξÞ	FS	Fν
0	4 .0 48582	0	0	18.21861
NF	ZZ	dz	NS	N
0	2.834007	0	0.8097164	14.97976
ΡF	NG	Ър	PS	ΡV
0	0	0	0	0
SF	SN	Sp	SS	SV
0	7.692307	0	0	18.21861
VF	N >	٨p	VS	~~
10.52631	11.74089	0	8.906877	2.024291
I VSTS DE SECON	IN SOUND AS THE PERC	FNTAGE OF		

53.44125 9.716593 (VECTORS = COLUMN SUM). 0 ANALYSIS OF SECOND SUUND AS TION. OCCURANCE IN THE SECOND POSITION. 26.31578 10.52631

PERCENTAGE OF WORDS LONGER THAN 2 SOUNDS WITH BEGINING 3-SOUND COMBINATIONS: NUMBER OF WORDS IN SAMPLE OF LENGTH 4 OR GREATER IS: 194.0000

FFV	0	FNV	5.154638	FPV	0	FSV	0	FVV	0	NFV	0	NNN	1.546391	NPV	0	NSN	1.030927
FFS	0	FNS	0	FPS	0	FSS	0	FVS	3.092783	NFS	0	NNS	0	NPS	0	NSS	C
FFP	0	FNP	0	FPP	0	FSP	0	FVP	0	NFP	0	NNP	0	NPP	0	NSP	0
FFN	0	FNN	0	FPN	0	FSN	0	FVN	11.34020	NFN	0	NNN	0	NPN	0	NSN	0
FFF	0	FNF	0	FPF	0	FSF	0	FVF	3.092783	NFF	0	NNF	0	NPF	0	NSF	0

PFN PFS PFV 0 0 0 PNN PNS PNV 0	0 0 0 0 NNA NNA	NNG PNP PNS NNG		0 0 0	Vqq Zqq qqq Nqq	0 0 0	PSN PSP PSS PSV	0 0 0	PVN PVP PVS PVS	0 0 0	SFN SFP SFS SFV	0 0 0	SNN SNP SNS SNV	0.5154635 0 4.123711	SPN SPP SPS SPV	0 0 0	SSN SSP SSS SSV	0 0 0	SVN SVP SVS SVV	6.701028 0 3.608247 0	VFN VFP VFS VFV	I. 546391 O I. 546391 9.278345
	PFN	0	PNN	0	Ndd	0	PSN	0	PVN	0	SFN	0	SNN	0.5154635	SPN	0	SSN	0	SVN	6.701028	VFN	1.546391
4.123111	PFF	0	PNF	0	PPF	0	PSF	0	PVF	0	SFF	0	SNF	0	SPF	0	SSF	0	SVF	5.701028	VFF	0

32.47418

19.07213

0

31.44324

17.01028

PERCENTAGE OF WORDS LONGER THAN 3-SOUNDS WITH BEGINING 4-SOUND COMBINATIONS:

NUMBER OF WORDS IN SAMPLE OF LENGTH 5 OR GREATER IS: 170.0000

2.941175	2.352941	1.764706	1.764706	0.5882353	1.764706	1.764706	5.882352	1.176470	1.764706	1.176470	0.5882353	1.176470	0.5882353	2.352941	1.764706	1.176470
FNVF	FNVN	FVFN	FVFV	FUNF	FVNN	FVNS	FUNV	FVSN	FVSV	NNV F	NNV V	NSVN	NVFF	NVFN	NVFV	NVNF

0.5882353	1.764706	0.5882353	0.5882353	4.705882	0.5882353	1.764706	1.764706	1.176470	1.176470	1.176470	5.294117	0.5882353	1.176470	1.176470	4.117646	1.764706	1.764706	0 • 5882353	0.5882353	1.176470	2.941175	2.352941	4.705882
NVNN	NVNV	NVSF	NSN	NVSV	SNNV	SNVF	SNVN	SNNS	SVFN	SVES	SVFV	SVNF	S VNN	SNNS	SVNV	SVSN	SVSV	VFNV	VFSF	VFSV	VFVF	VFVN	VFVS

2.941175	0.5882353	4.705882	0.5882353	1.176470	1.176470	1.176470	2.941175	1.764706	1.764706	1.764706	0.5882353	1.176470	0.5882353	0.5882353	0.5882353	1.176470
VNFV	NNNV	VNNV	VNSN	VSVV	VNVF	NVNV	VNVS	VSNV	VSVF	VSVN	VSVS	VSVV	VFV	VVNF	NN VV	VSV

NUMBER OF WORDS IN SAMPLE OF LENGTH 1 OR GREATER IS: 359.0000 PERCENTAGE OF WORDS WITH LAST SOUND AS NOTED.

>	27-01949
S	3.342618
Р	C
z	15.32033
Ľ	1.671309

PERCENTAGE OF WORDS LONGER THAN 1-SOUND WITH ENDING 2-SOUND COMBINATIONS: NUMBER OF WORDS IN SAMPLE OF LENGTH 3 OR GREATER IS: 247.0000

21-45746	9.716597	c	20-64775	5 263157
		TO THE PERCENTAGE	AT POSITION.	ANALYSIS OF NEXT TO
0.4048582	6.882589	0	20.24290	5.263157
~~	VS	٧P	N	٧F
3.238866	C	0	0	0
SV	SS	SP	SN	SF
0	0	0	0	0
ΡV	PS	ЬР	ΡN	PF
15.78947	2.834007	0	0.4048582	0
N	NS	NP	NN	NF
2.024291	0	0	0	0
F۷	FS	FΡ	FN	FF

	******					>	31.12032
	******		NNNN NNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNN			S	19.91701
AGE = "D"	*****	KVVSV VVVSF NVN FVNFVNF VVN FVNFVNF SFVNFVNFV SVFVS FVNVNV VVNVS VVV FVNVNVS VVVVS FVNNV VVNVNS	NS SV SV SV SV SV SV SV SV SV SV SV SV SV	AS NOTED.	OR GREATER IS:	ط	0
LANGU	******	<pre>K N K K K K K K K K K K K K K K K K K K</pre>	V V V V V V V V V V V V V V V V V V V	WITH FIRST SOUND	AMPLE OF LENGTH 1	z	23.65144
	******	NNNN SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	VVN NVT NVC NVC NVC NVC NVC NVC NVC NVC	PERCENTAGE OF WORDS	NUMBER OF WORDS IN S	ш	25.31119

PERCENTAGE OF WORDS LONGER THAN ONE SOUND WITH BEGINING TWO-SOUND COMBINATIONS: NUMBER OF WORDS IN SAMPLE OF LENGTH 3 OR GREATER IS: 168.0000

74.40471	4.166666	0	16.66666	4.761904
	"OLUMN SUM).	CENTAGE OF (VECTORS = C	ECOND POSITION.	ANALYSIS OF SECONI OCCURANCE IN THE S
T1•90410	1. (8) I4	5	10.11904	0619/6*7
16.66666	VS 0	VP 0	4.761904 VN	1.785714 VF
SV	SS	SP	SN	SF
0	0	0	0	0
Λd	PS	ЬР	Nd	ΡF
27.38094	0	0	0	0
22	NS	NP	NN	NF
18.45236	2.380952	0	1.785714	0
FV	FS	FP	FN	FF
PERCENTAGE OF WORDS LONGER THAN 2 SOUNDS WITH BEGINING 3-SOUND COMBINATIONS: NUMBER OF WORDS IN SAMPLE OF LENGTH 4 OR GREATER IS: 109.0000

0	0	0	0	0
NSV	NSS	NSP	NSN	NSF
0	0	0	0	0
NPV	NPS	NPP	NPN	NPF
0	0	0	0	0
NNN	SNN	NNP	NNN	NNF
0	0	0	0	0
NFV	NFS	NFP	NFN	NFF
2.752293	0	0	5.504586	3.669724
FVV	FVS	εVP	FVN	FVF
0.9174309	0	0	2.752293	0
FSV	FSS	FSP	FSN	FS F
0	0	0	0	0
FPV	FPS	с рр	FPN	FPF
2.752293	0	0	0	0
FNV	FNS	FNP	FNN	FNF
0	0	0	0	0
FFV	FFS	FFP	FFN	FFF

NVN	7.339447	PFV	0	PNV	0	РРV	0	PSV	0	PVV	0	SFV	0.9174309	SNV	5.504586	SPV	0	SSV	0	SVV	0.9174309	VFV	1.834862
NVS	3.669724	PFS	0	PNS	0	PPS	0	P SS	0	PVS	0	SES	0	SNS	0	SPS	0	SSS	0	SVS	6.422012	VFS	0
NVP	0	рFР	0	dNd	0	ddd	0	PSP	0	PVP	0	SFP	0	SNP	0	SPP	0	SSP	0	SVP	0	VFP	0
NVN	10.09174	PFN	0	PNN	0	Ndd	0	PSN	0	PVN	0	SFN	0	SNN	0	SPN	0	SSN	0	SVN	2.752293	VFN	0
NVF	4.587155	PFF	0	PNF	0	ΡΡF	0	PSF	0	PVF	0	SFF	0.5174309	SNF	0	SPF	0	SSF	0	SVF	1.834862	VFF	0.9174309

NN N	10.09174	VPV	0	NSN	1.834862	~~~	1.834862		36.69719
VNS	0	VPS	0	VSS	0	VVS	1.834862	4 SUM).	11.92660
VNP	0	VPP	0	VSP	0	4VP	0	PERCENTAGE OF (VECTOR = COLUMN	0
VNN	2.752293	VPN	0	VSN	0.9174309	NVV	7.339447	SOUND AS TO THE F	32.11006
VNF	0.9174309	VPF	0	VSF	0	VVF	6.422012	ANALYSIS OF THIRD OCCURANCE IN THE 1	19.26604

PERCENTAGE DF WORDS LONGER THAN 3-SOUNDS WITH BEGINING 4-SOUND COMBINATIONS: NUMBER OF WORDS IN SAMPLE OF LENGTH 5 OR GREATER IS: 83.00000

1.204819	3.614457	1.204819	1.204819	2.409638	3.614457	1.204819	1.204819	1.204819	2.409638	1.204819	3.614457	1.204819	1.204819	1.204819	3.614457	3.614457	4.819277
FNVS	FSNV	FSVV	FVFF	FVFS	FVNF	FVNV	FVF	NVFV	NNNN	N VN S	NNN	NVSF	NVSV	NVVF	NVVN	NVVS	SNVF

1.204819	1.204819	1.204819	1.204819	2.409638	3.614457	1.204819	2.409638	1.204819	1.204819	2.409538	1.204819	3.614457	1.204819	2.409638	1.204819	6.024096	1.204819	1.204819	8.433729	1.204819	1.204819	7.228910	2.409638
SNVN	SNVV	SVFF	SVFV	SVNF	SVSF	SVSN	SVSV	SVVS	VFFS	VFVV	VNFV	VNNV	VNVF	VNVN	VNVS	VNVV	VSNV	VSVV	VVFV	VVNF	VVNS	VNVV	VVSV

1.204819	1.204819
VVVS	~~~

NUMBER OF WORDS IN SAMPLE OF LENGTH 1 OR GREATER IS: 241.0000 PERCENTAGE OF WORDS WITH LAST SOUND AS NOTED.

>	10.78838
S	8.713692
d	0
Z	9.543568
ц	5.394190

PERCENTAGE DF WORDS LONGER THAN 1-SOUND WITH ENDING 2-SOUND COMBINATIONS: NUMBER OF WORDS IN SAMPLE OF LENGTH 3 OR GREATER IS: 168.0000

20.23808	7.738093	0	7.738094	5.357141
		S TO THE PERCENTAGE	LAST SOUND A POSITION.	INALYSIS OF NEXT TO
3.571428	3.571428	0	2.380952	4.166666
~~	VS	٧P	NV	٧F
7.738090	0	0	1.785714	0.5952380
SV	SS	SP	SN	SF
0	0	0	0	0
ΡV	PS	РР	Nd	ΡF
8.928567	1.190475	0	0	0.5952380
N	NS	NP	NN	NF
0	2.976190	0	3.571428	0
Fν	FS	FΡ	FN	FF

LANGUAGE = "15" 	R SONS SONS SONS SONS SONS SONS SONS SON	IVENV SSVEVV SVNITVON VENV SSVEVV SVSNSV SVSNNV VSVNNV FSVSVN VSFVN NVSEVN SNVNSF SVSFFV SVSSSV SVSNSF	WNNNVV FNVSNVN V FVNSFV FSVNNVNV SSV VF INNNVV SVS NVFSF VSV FVFVFVFVF VSV FSNNVFVNNV FSV SVSNVSVFFVFVFVF VSV FVNNN FNVNNVNSV SVSNVSVFFVFVFVF SVSNVS FVNNVSV FNNVSN SV FSF SVS FNVFNVNNVV SVNNVSV FNNVSN SVVFSF SVS FNVFNVNNVV FNVNN FNVNNNNVV SVSNVS FNVN NV SVN FSF SVS NSVF FNVFN SVSNVVS FNVN NV FVNNNVV VS FFVVV SVSNVVS FNVN NV FVNNNVV VS FFVVV SVSNVVS FVFNVN NV FVNNNVV VS FFVVV SVSNVVF FNVN NV FVNNVFSV NNVNNVVF FNVFNVV V FNVN NV FVNNVFSV
*****	> > <td></td> <td>VINNE VI</td>		VINNE VI
*********	<pre>n>modelinessessessessessessessessessessessessess</pre>		NNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

7	,		S
SNVFSF SVSNVN VSNVFVN FNVFNVNNVV FNVSNVN FVNVFVVV SVN SNNVFNVS FSV FVNSV FNVNNNVV NVFV VSNVFSV FVVNNV VVSVN V FVNFV FSVNVNV SSV VF NVF FVNNVV SVS NVF F VSV FNVVV SSV VNV FV NVNVNV FV SVSVNVFV F SNVFSF	PERCENTAGE OF WORDS WITH FIRST SOUND AS NOTED.	NUMBER OF WORDS IN SAMPLE OF LENGTH 1 OR GREATER IS: 301.0000	a z

v 18.27242

34.21925

0

14.28571

33.22258

PERCENTAGE OF WORDS LONGER THAN DNE SOUND WITH BEGINING TWO-SDUND COMBINATIONS: NUMBER OF WORDS IN SAMPLE OF LENGTH 3 OR GREATER IS: 258.0000

0 3.100775 0 0 0 10.852 PF PN PP PS PV 0 0 0 0 0 10.852 0 0 0 0 0 0 0 0 0 0 0 0 25581 6.976741 0 1.937984 25.581 25561 325581 3.100775 0 9.302323 0.77516

48.83717 21.31781 ANALYSIS OF SECOND SOUND AS THE PERCENTAGE OF OCCURANCE IN THE SECOND POSITION. (VECTORS = COLUMN SUM). 0 22.48061 7.364339

PERCENTAGE OF WORDS LONGER THAN 2 SOUND'S WITH BEGINING 3-SOUND COMBINATIONS: NUMBER OF WORDS IN SAMPLE OF LENGTH 4 OR GREATER IS: 220.0000

0	0	0	0	0
NSN	NSS	NSP	NSN	NSF
0	0	0	0	0
NPV	NPS	ddN	NPN	NPF
2.727272	0	0	0.9090908	0
NNN	NINS	NNP	NNN	NNF
0	C	0	0	0
NFV	NFS	NFP	NFN	NFF
0.9090908	4.545454	0	5.909090	1.363636
FVV	FVS	FVP	FVN	FVF
8.636361	0	0	0.9090908	.4545454
FSV	FSS	FSD	FSN	FSF
0	0	0	0	0
FPV	FPS	ЕРР	FPN	FPF
9.545451	0	0	1.363636	0
FNV	FNS	FNP	FNN	FNF
1.363636	0.4545454	0	0.9090908	0
FFV	FFS	FFP	FFN	4 4 4

PFN PFP PFS PFV 0	0 0 0		PNV PNS PNS PNS	0 0 0	Vqq PPQ PPS PPV	0 0 0	PSN PSP PSS PSV	0 0 0	PVN PVP PVS PVS	0 0 0	SFN SFP SFS SFV	0 0.4545454 1.818181	SNN SNP SNP SNS	3.181818 0 0 4.999999	SPN SPP SPS SPS SPV	0 0 0	SSN SSP SSS SSV	0 0 0 0.4545454	SVN SVP SVS SVV	6.363636 0 13.63636 0	VFN VFP VFS VFV	0 0 1.363636 0.4545454
	PFN	0	PNN	0	Ndd	0	PSN	0	PVN	0	SFN	0	SNN	3.181818	SPN	0	SSN	0	SVN	6.363636	VFN	0
	PFF	0	PNF	0	PPF	0	PSF	0	PVF	0	SFF	0	SNF	0	SPF	0	SSF	0	SVF	3.636363	VFF	. 9090908

VNF	NNN	VNP	NNS	VNV
0	0.4545454	0	0	1.818181
VPF	NPN	VPP	V PS	V P V
0	0	0	0	0
VSF	VSN	VSP	VSS	VSV
1.818181	3.181818	0	1.363636	2.727272
VVF	, NVV	VVP	VVS	~~~
0.4545454	0	0	0.4545454	0

36.81812 25.90907 ANALYSIS OF THIRD SOUND AS TO THE PERCENTAGE OF OCCURANCE IN THE THIRD POSITION. (VECTOR = COLUMN SUM). 0 24.99997 12.27272

PERCENTAGE OF WORDS LONGER THAN 3-SOUNDS WITH BEGINING 4-SOUND COMBINATIONS: NUMBER OF WORDS IN SAMPLE OF LENGTH 5 OR GREATER IS: 203.0000

0.4926108	0.4926108	0.4926108	0.4926108	1.477832	3.448276	3.940886	1.970443	0.4926108	0.9852216	1.970443	2.463054	4.926107	0.4926108	0.9852216	0.4926108	1.477832	0.9852216
FFNN	FFNV	FFSV	FFVN	FNNV	FNVF	FNVN	FNVS	FSFV	FSNN	FSVF	FSVN	FSVS	FVFN	FVFS	FVNF	FVNN	FVNS

3.448276	0.9852216	1.477832	2.463054	0.4926108	0.4926108	0.9852216	0.4926108	0.4926108	1.477832	0.4926108	1.477832	1.477832	0.4926108	0.9852216	0.9852216	1.477832	0.4926108	0.4926108	0.4926108	0.4926108	0.9852216	0.4926108	1.477832
FVNV	FVSF	FVSN	FVSV	FVVF	FVVV	NNN V	N NN	NNVS	NVFN	NVFS	NVFV	NNNN	NNN	NVSF	NVSN	NVSV	NVVF	NVVS	SFSV	SFVF	SF VN	SFVV	SNNN

1.970443	2.955665	0.9852216	0.9852216	0.4926108	1.477832	0.9852216	1.477832	0.4926108	2.463054	1.477832	2.463054	1.477832	6.403934	0.9852216	5.418718	0.4926108	0.4926108	0.4926108	0.4926108	0.4926108	1.477832	0.4926108	0.4926108
SNNV	SNVF	SNVN	SNVS	SSVF	SVFF	SVFN	SVFV	SVNF	SVNN	S VN S	S VN V	SVSF	SVSN	SVSS	SVSV	VFFV	VFSF	VFSN	VFSV	VFVN	NV F	VNVS	VSFS

1.477832	0.4926108	2.955665	1.477832	0.4926108	0.9852216	0.4926108	0.4926108	0.4926108
VSFV	VSNN	VSNV	VSSV	VSVF	VSVN	VSVS	VVFF	VSV

NUMBER OF WORDS IN SAMPLE OF LENGTH 1 OR GREATER IS: 301.0000 PERCENTAGE OF WORDS WITH LAST SOUND AS NOTED.

>	45.51494
S	5.315614
d.	0
z	9.302323
Ľ	7.308966

PERCENTAGE OF WORDS LONGER THAN 1-SOUND WITH ENDING 2-SOUND COMBINATIONS: NUMBER GF WORDS IN SAMPLE OF LENGTH 3 OR GREATER IS: 258.0000

FF NF 0	O NN NN	NP O	FS 3 .10077 5 NS	FV 5 •038759 NV
0.3875968 PF	0 Nd	0 dd	3.488372 PS	5.813952 PV
SF 0	0 SN	0 SP	o SS	0 SV
0 VF	0.7751938 VN	0	0	5.426356 VV
9.302323	20.54263	C	15.11627	4.651162
YSIS OF NEXT T CCURANCE IN TH	FO LAST SOUND AS	TO THE PERCENTAGE		
6.689919	21. 31 783	0	21.70541	20.93022

	>	0.08420306	0.2502315	0.2659377	0.2517889	0.1478388
	S	0.2768083	0.1648332	0.1820213	0.1384563	0.2378808
SOUNDS:	٩	0.200000	0.200000	0.200000	0.200000	0.2000000
MATRIX FOR FIRST	z	0.1788966	0.1811507	0.2233164	0.2597466	0.1568896
PROBABILITY	u.	0.2366426	0.2040045	0.1456769	0.1788818	0.2347940

017.12 SECONDS IN EXECUTION

***************************************	COMPUTER OUTPUT NUMBER 2	***************************************	THIS OUTPUT WAS THE RESULT OF TWO TEST SAMPLES FED INTO COMPUTER PROGRAM NUMBER TWO. THERE WERE TWO SAMPLE SETS, THE FIRST CONSISTING OF EIGHT WORDS FROM LANGUAGE "E," AND THE SECOND SEVEN WORDS FROM LANGUAGE TYPE "A." THE SESULTS CLEARLY INDICATE THE CORRECT RESPONSE IN BOTH CASES. THE WORDS USED IN THE TEST SAMPLES WERE SELECTED ENTIRELY AT RANDOM.
*		*	HZH QH

	0.2016697		0.1850008 0.1084104		0.2706143 0.4376070 0.3943655		. 0 2500.10	0.6018304			0.3078883 1.0000000 1.0000000 1.0000000000000000
	0.2380823		0,09662992 0.03450592		0.1244956		0 1525470	0.1632116			0.3451055 0 0
IS:V	0.3031194	I S : S V	0.2613090 0.2429902	I S : VSV	0.2771791 0.5623930 0.6056350	IS:SVS	0 2076010	0.04892233	IS:NNVS		0.2180875 0 0
I IN CODE FORM	0.2571289	2 IN CODE FORM	0.05285739 0.01032479	3 IN CODE FORM	0.1958732 0	4 IN CODE FORM	0 1333664	0.1030814	5 IN CODE FORM		0000
SAMPLE WOPD NUMBER VALIDITY FACTORS :	0	SAMPLE WORD NUMBER VALIDITY FACTORS :	0.4042035	SAMPLE WORD NUMBER Validity factors :	0.1318377 0 0	SAMPLE WORD NUMBER	VALIDITY FACTORS :	0.1860361	SAMPLE WGRD NUMBER	VALIDITY FACTORS :	0.1289187 0 0

SAMPLE NUMBER 1

		0.2642618 0.3325458 0.2966461 0.4446487 0.9945992		0.2481610 0.3742368 0.4152498	0.13882550 0.1058987 0.01607632 1.0000000 1.0000000 1.0000000		0.2481610 0.3742368 0.4152498	0.4142498 0.6225446 1.000000 1.000000 1.000000
		0.06881560 0.02850135 0.02850135		0.1073822 0.08107507 0.01303771	0.02103019 0.08776635 0.02384420		0.1073822 0.08107507 0.01303771	0.2967113 0.8312389 0
I S : S VNS V		0.2369244 0.1603813 0.03206684 0.01077332 0.005401272	IS:FSVSVN	0.1194290 0	0.08012134 0.1426878	I S : F S VNNS V S	0.1194290 0 0	0.08074415 0.05764659 0
6 IN CODE FORM		0.05285237 0.01330184 00000000000000000000000000000000000	7 IN CODE FORM	0.2155455 0	0.05825441 0.07490450	8 IN CODE FORM	0.2155455 0	00000
SAMPLE WORD NUMBER	VALIDITY FACTORS :	0 2987307 0 4249547 0 6427862 0 5445783 0	SAMPLE WORD NUMBER VALIDITY FACTORS :	0.3094826 0.5446888 0.5717126	0.25411750 0.7346960 0.6785653 0.8962153 0	SAMPLE WORD NUMBER VALIDITY FACTORS :	0.3094826 0.5446888 0.5717126	00 00 00 00 00 00 00 00 00

****NOTE*** THE VALIDITY FACTOR PRODUCTS ARE THE RESULTANT PRODUCT FOR EACH WORD MEASURED ABOVE.

0.2016697 0.020056097 0.04670183 0.04670183182 0.011528943 0.01105081						
0.002380823 0.003334304 0.002799731						
$\begin{array}{c} 0 & 3031194 \\ 0 & 06349552 \\ 0 & 09440851 \\ 0 & 001383539 \\ 7 & 090307 & -08 \\ 0 \\ \end{array}$		l				
PRODUCTS: 0.0005457415	MEAN	0.03277914	0.03220933	0.05780087	0.03052703	0.07864207
ACTOR 440454 118775 00000000000000000000000000000000000	PROD	0	0	0	0	+ - 16
VALIDITY F 0.24 0.016	LANGUAGE	A	B	U	۵	E 1.154554

		0.1632497 0.1193790		0.2500418 0.2670283		0.2227267 0.1211181 0		0.07844955 0.02350023 0.005155075 0
		0.3050730 0.4168988		0.1525679 0.1124352 0.04017778		0.1092217 0.07766962 0.06642997 0.03910022		0.1025879
	IS:FV	0.2032574 U.1850614	IS:SVF	0.2075819 0.1362370 0.1354860	N/N/: S I	0.3155295 0.2430773 0.2252265 0.2872279	I S : SNVF	0.05556843 0 0
	I IN CODE FORM	0 • 2285496 0 • 2339829	2 IN CODE FORM	0.1333556 0.1030814 0	3 IN CODE FORM	0.1893177 0.3500314 0.3891916 0	4 IN CODE FORM	0.5334570 0.8149884 0.9117687 0
SAMPLE NUMBER 2	SAMPLE WORD NUMBER VALIDITY FACTORS :	0.09987044 0.04467834	SAMPLE WORD NUMBER VALIDITY FACTORS :	0.2564532 0.3812183 0.8243367	SAMPLE WORD NUMBER VALIDITY FACTORS :	0.1632049 0.2081042 0.3191531 0.6736734	SAMPLE WORD NUMBER VALIDITY FACTORS :	0.2299383 0.1615117 0.08307642 1.000000

987307 4249547 6427862 5445783	0.05285237 0.01330184 0	0.2369244 0.1603813 0.03206684	0.1472315 0.06881660 0.02850135 0	0.2642618 0.3325458 0.2966461 0.4446487
OCOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	6 IN CODE FORM	I S : FVNSVNVN	Ð	0
/ FACTORS :				
1221408	0.2155455 0.1844413 0.1001511	0.1194290 0.09059823 0.06396449	0.1073822 0.05826135 0.03056593	0.2481610 0.1746301 0.08317858
7346960 6785653	0.05825441	0.0801213403 0.08012134 0.1426878	0.02103019	0.01607632 0.1058987 0.01607632
•0020541 9986470	0.05560115	0.02905477 0.001353574	0.006363511	0.006926770
IORD NUMBER	7 IN CODE FORM	IS:FVN		
FACTORS :				
071953 2200228 1585909	0.2565276 0.3372685 0.4862019	0.1597247 0.1307530 0.1066935	0.2347879 0.2825265 0.2485138	0.1417652 0.02942924 0
				F

SAMPLE WORD NUMBER 5 IN CODE FORM IS:SVNSF

VALIDITY FACTORS :

0.01948858 0 0 0 0	00						
0.0006892094 2.2034481-05	0.01648486						
0.03761509 0.003831588 0.004961699 0	0.002228240						
0.05347669 0 0 0 0	0.04206553	MEAN	0.02792931	0.01364888	0.006948087	0.02062580	0.002784083
0.004462045 0.08059090 0.007302348 0.003085270 0.04443743	0.04839757 0.007229794	NGUAGE PROD	1.2597181-13	0	0	0	0
	0.004462045 0.05347669 0.03761509 0.1271846 0.01948858 0.08059090 0.007302348 0.0006892094 0.01948858 0.007302348 0.0006892094 0.01948858 0.007302348 0.006892094 0.01948858 0.004961699 2.203448'-05 0 0.04443743	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.004462045 0.05347669 0.03761509 0.01271846 0.019488588 0.019488588 0.01	0.004462045 0.05347669 0.03761509 0.01271846 0.01948858 0.0003023480 0.05347669 0.03831588 0.00127302348 0.01948858 0.0013023480 0.004961699 2.203448'-05 0.01948858 0.01948858 0.0013023480 0.004461699 2.203448'-05 0.01948858 0.01948858 0.004443743 0.04443743 0.004206553 0.002228240 0.01648486 0.01948858 0.001229794 0.04206553 0.002228240 0.01648486 0.01948858 0.01648486 0.01948858 NGUAGE PROD MEAN 0.002228240 0.01648486 0.01948486 0.01948858 1.259718'-13 0.02792931 0.002228240 0.01648486 0.01948858 0.01948858	0.004462045 0.05347669 0.03761509 0.001271846 0.01948858 0.008559090 0.003831588 0.003831588 2.203448°-05 0.01948858 0.0073023473 0.004961699 2.203448°-05 0.01948858 0.01948858 0.004443743 0.004961699 0.004961699 2.203448°-05 0.01948858 0.004839757 0.04206553 0.002228240 0.01648486 0.01948858 0.007229794 0.04206553 0.002228240 0.01648486 0.01948486 0.007229791 0.02792931 0.001648486 0.011648486 0.011648486 0.001228240 0.011648488 0.011648486 0.011948486 0.01194888	0.004462045 0.05347669 0.03761509 0.001948858 0.0040659090 0.068992094 0.01948858 0.01948858 0.004461699 0.003831588 0.0049616999 2.203448*-05 0.01948858 0.004463743 0.0440616999 2.203448*-05 0.01948858 0.01948858 0.004463743 0.04206553 0.002228240 0.01648486 0.01948858 0.0072297974 0.04206553 0.002228240 0.01648486 0.001948858 NGUAGE PROD MEAN 0.002228240 0.01648486 0.001948858 0 0.01648486 0.01648486 0.01648486 0.019488486 0 0.02792931 0.0012297931 0.01648486 0.01948486 0 0.013648888 0.0016484886 0.01648486 0.019488486 0 0.012792931 0.0016484886 0.01648486 0.019488486 0 0.013648888 0.0016484886 0.0016484886 0.016484866 0 0.013648888 0.0016484888 0.0016484888 0.001664888866 0.00166488866	0.004462045 0.05347669 0.003831588 0.0014689 0.00148659 0.003852749 0.004961699 0.003831588 0.00148856 0.01948858 0.00443743 0.004961699 0.0034481-05 0.01948858 0.01948858 0.001229794 0.00426553 0.00228240 0.01648486 0.01948858 0.007229794 0.04206553 0.00228240 0.01648486 0.01948858 0.007229794 0.012299794 0.01648486 0.01948858 0.007229791 0.01648486 0.01648486 0.01948858 0.001229791 0.02228240 0.01648486 0.01948858 0.001229791 0.02228240 0.01648486 0.01948886 0.001229791 0.022792931 0.001648486 0.01948886 0 0.013648888 0.001648486 0.01948866 0 0.013648888 0.001648486 0.01648486 0 0.0113648888 0.001648486 0.01948866 0 0.013648888 0.001648486 0.01648486 0 0.013648888 0.001648486 0.01186486 0 0.0006948087 0.000694888<

PROGRAM NUMBER 1 COMPUTER ***** //COOK1 JOB (0405,1404,MA52),'SMC 2737',TIME=(00,40)
// EXEC ALGOLW
//SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=665,SPACE=(CYL,(3,1)) //ALGOL.SYSIN DD * %ALGOL T=035,P=80 BEGIN COMMENT INPUT DATA WRITTEN IN "ROMI" WITH AT LEAST ONE BLANK BETWEEN WORDS. WORD MUST START AND END ON THE SAME CARD.; STRING (2) ARRAY ROMI (1::101,1::2); STRING (80) TEXT; INTEGEP INDEX.POINTER,Z,TP.WP.N; REAL TWOCOUNT,THREECOUNT,FOURCOUNT,Q; STRING (1) ARRAY CLASS(1::5); REAL ARRAY SOUNDONE(1::5); STRING (2) ARRAY SOUNDONU(1::25); REAL ARRAY SOUNDTHOSTAT(1::25); STRING (3) ARRAY SOUNDTHOTAT(1::25); STRING (3) ARRAY SOUNDTHOTATE(1::125); STRING (4) ARRAY SOUNDTHEESTAT(1::125); STRING (4) ARRAY SOUNDTHEE(1::125); STRING (4) ARRAY SOUNDTHEE(1::125); STRING (4) ARRAY SOUNDTHEE(1::125); STRING (4) ARRAY SOUNDFOUR(1::625); REAL ARRAY VECTHREE (1::5); INTEGER EPOINT; INTEGER EPOINT; INTEGER HEADERCOUNT; STRING (80) ARRAY HEADER (1::10); REAL ARRAY ENDTWOSTAT (1::5); REAL ARRAY ENDTHE (1::5); REAL ARRAY ENDHE (1::5); REAL ARRAY ENTHE (1::5); REAL ARRAY ENTHE (1::5

PROCEDURE GENERATETWO; BEGIN INTEGER Y; Y := 1; FOR I := 1 UNTIL 5 DO BEGIN SOUNCONE(I) := 0; SUUNDERE 1 UNTIL 5 FOR J := 1 UNTIL 5 BEGIN SOUNDTWO (Y)(0|1) := CLASS SOUNDTWC (Y)(1|1) := CLASS SOUNDTWCSTAT(Y) := 0; Y := Y + 1 (I);(J)ËND; END GENERATETWC: PROCEDURE GENERATETHREE; BEGIN INTEGER Y; Y := 1; FOR I := 1 UNTIL 25 DO BEGIN FOR J := 1 UNTIL 5 DO FOR J := 1 ONTIL 5 00 BEGIN SOUNDTHREE(Y)(0|2) := SOUNDTWO(I); SOUNDTHREE(Y)(2|1) := CLASS(J); SOUNDTHREESTAT(Y) := 0; Y := Y+1 END; END; END; END; END; END; END GENERATETHREE; PROCEDURE GENERATEFOUR; BEGIN INTEGER Y := 1; Υ; Y := 1; FOR I := 1 UNTIL 125 DO FOR I := 1 UNTIL 125 DD BEGIN FOR J := 1 UNTIL 5 DD BEGIN SDUNDFOUR(Y)(0|3) := SOUNDTHREE(I); SDUNDFOUR(Y)(3|1) := CLASS(J); SOUNDFOUPSTAT(Y) := 0; Ŷ := Y+1END; END; END; GENERATEFOUR:

```
PROCEDURE GETARRAY;
BEGIN
STRING(81) PHONOL;
INTEGER B,A;
B:=1;
INTEGER B,A;
B:=1;
A := 1;
WRITE ( "'ROMI' IS
USED IN THE IMPLEME
WRITE ( " ");
IOCONTROL (2);
WHILE (A <= 27) DO
BEGIN
PHONOL := " ";
READCARD (PHONOL);
WRITE(PHONOL (2);
WHILE(PHONOL);
TP:=0;
WHILE(TP <= 79)DO
BEGIN
WHILE (PHONOL (TP!)
TP:= TP+1;
IF (TP ¬= 80) TH
BEGIN
IF (PHONOL (TP!)
IF (PHONOL (TP!)
IF (PHONOL (TP!)]
BEGIN
ROMI (B,1): = PHON
TP: = TP+2;
END
ELSE
BEGIN
ROMI (B,1)(0(1): =
ROMI (B,1)(1!1): =
TP:=TP+4;
END;
ROMI (B,2): = PHON
B: = B+1;
TP := TP+1
                                      OMI' IS THE PHONET
IMPLEMENTATION OF
                                                                              PHONETIC CHARACTER REPRESENTATION
ION OF THIS PROGRAM");
                   (PHONOL (TP(1) =" ") AND (TP<=79) DD
                                              ) THEN
                                     (TP+1|1)-="-") THEN
                                      = PHONOL
                                                                      (TP|1);
                                                         =
                                                                 PHONOL
                                                                                         (TP|1)
                                                                 PHONOL
                                                                                         (TP+211):
 ROMÍ (B,2): = PHONCL (TP|1);
B: = B+1;
TP := TP+1
 END
ELSE
A ==
                A+1;
  END
 END;
TP := 80
END GETARFAY;
```

COMMENT *** LOGICAL PROC "ROMI" INTO ECHO PRINTS ************** WRITTEN DN A TIME AN I DENTIFIER DATA WRIT AND CHARACTER AT RAILING PARAMETER RS WHICH PRJCEDURES. CARD IN "GETWORD" A SET. IS LOGICAL PROCEDURE GETWORD (STRING(36) RESULT WORD); BEGIN WP_:= 0; WP := 0; IF(TP=80) THEN BEGIN INDEX:=INDEX+1; READCARD (TEXT) WRITE(INDEX," TP:=0 END: ;, TEXT); TP:=0 END; WHILE(TEXT(TP|1)="") BEGIN TP:=TP+1; IF (TP=80) THEN BEGIN REACCARD (TEXT); INDEX:=INDEX+1; WRITE (INDEX,"", T TP:=0 END END; WORD:=""; DO TEXT); END; WCRD:=""; WHILE (TP<80) BEGIN WORD (WP|1):= WP := WP + 1. FND:= TP AND (TEXT(TP(1)-=" ") DO TEXT(TP|1): END ; WP = WP-1; WDRD-="%" GETWORD; := END

PROCEDURE "CONVERT" OPERATES ON THE GLOBAL VARIABLE "WORD" OBTAINED FROM "GETWORD." "WORD" IS SCANNED CHARACTER BY CHARACTER TO OBTAIN EACH "ROMI" SOUND REPRESENTATION. A BINARY SEARCH OF THE ARRAY "ROMI" IS CONDUCTED TO OBTAIN THE SOUND CLASS EQUIVALENT FOR EACH "SOUND" OF "WORD." A NEW STRING, "CODE," IS GENERATED FROM THE FOUR SOUND DESIGNATIONS CORRESPONDING TO THE INTERNATIONAL PHONETIC ALPHABET SPELLING OF "WORD." "CONVERT" IS ALSO CAPABLE OF EDITING INPUT CATA AND PRINTS OUT A WARNING LABEL ALONG WITH THE PARTICULAR "SOUND" REPRESENTATION WHICH DID NOT APPEAR IN "ROMI" AND THE "WORD" IN WHICH THE ERROR CCCURRED. A SAMPLE CUTPUT FROM "CONVERT" WOULD BE "FVNSFVNN." THE COUNTER "Z" IS ALSO A GLOBAL VARIABLE, AND TELLS THE NUMBER OF IPA SCUNDS IN EACH STRING "CODE." VARIABLE "WORD" GLOBAL PROCEDURE CONVERT (STRING(36) RESULT CODE); BEGIN STRING(2) SOUND; INTEGER I.TEST; INTEGER LISTEND, LISTBEGIN, POINTER; CODE := ""; BAD = TRUE; I := 0; Z := 0; WHILE I<=WP BEGIN TEST := 0; FOUND := TRI DO := 0; = TRUE; FOUND := TR SOUND:=" "; IF WORD (I+ BEGIN SCUND I:=I+1; END ELSE BEGIN WORD (I+1|1) -= "-" THEN WORD (111); = SDUND(0|1):= WORD(1|1); SOUND(1|1):= WORD(1+2|1); I := I + 3END; LISTBEGIN:= 1; LISTEND := 101; POINTER := LISTEND; WHILE (FOUND) DO WHILE (FOUND) DO BEGIN TEST := TEST+1; IF SOUND < ROMI(POINTER,1) THEN LISTEND:= POINTER; IF SOUND > ROMI(POINTER,1) THEN LISTERCIN:= POINTEP: ISTBEGIN:= (SOUND = POINTER; ROMI (POINTER,1))THEN L Ē := FALSE FOUND ELSE BEGIN IF (TEST = 12 BEGIN IF (TEST = 12) BEGIN WRITE("ERONEOUS THEN DATA", "WORD = ", WORD, "SOUND = ", SOUND); FOUND := FALSE; I := WP+1; BAD END; := FALSE POINTER := TRUNCATE ((LISTEND + LISTBEGIN) / 2) END; ENDE CODE VIE NDC VIE NDC (Z|1) Z+1 := RCMI (POINTER, 2 (0|1)); := Z+ (BAD = FALSE) THEN 0: **FND** CONVERT;

PROCEDURE TWOSOUND; BEGIN INTEGER LISTBEGIN, LISTEND; IF (Z>= 2) THEN BEGIN TWOCOUNT := TWOCOUNT + 1; LISTBEGIN := POINTER*5-4 ; LISTEND := LISTBEGIN + 4; POINTER := LISTBEGIN + 4; POINTER := LISTEND; WHILE (CODE(0|2) ~= SOUNDTWO(POINTER)) DO BEGIN IF (CODE (0|2) < SOUNDTWO (POINTER)) THEN LISTEND := POINTER; IF (CODE(0|2) > SOUNDTWO (POINTER)) THEN LISTBEGIN := POINTER; POINTER := (LISTBEGIN + LISTEND) DIV 2 END ; SOUNDTWOSTAT (POINTER) := SOUNDTWOSTAT (POINTER) + 1 END; END TWOSOUND;
************************ COMMENT THE OPERATION OF PROCEDURES THREESOUND AND FOUR-SOUND IS IDENTICAL TO PROCEDURE TWOSOUND. REMEMBERING THE VALUE OF THE LISTPOINTER REQUIRES A SEARCH OF ANLY FIVE ELEMENTS FOR EACH SUBSEQUENT SOUND OF A STRING "CODE." THE CORRESPONDING ARRAYS ARE "SOUNDTHREESTAT" AND "SOUNDFOURSTAT." COUNTERS FOR EACH CATEGORY OF LENGTH ARE "THREECOUNT" AND "FOURCOUNT." ***** PROCEDURE THREESOUND; BEGIN INTEGER LISTBEGIN, LISTEND; IF (Z>= 3) THEN BEGIN THREECOUNT := THREECOUNT + 1 ; LISTBEGIN := POINTER*5-4; LISTEND := LISTBEGIN + 4 ; POINTER := LISTEND; WHILE (CODE(0|3) ~= SOUNDTHREE(POINTER)) DO BEGIN IF (CODE(0|3) < SOUNDTHREE(POINTER)) THEN LISTEND := POINTER; IF (CODE(0|3) > SOUNDTHREE(POINTER)) THEN LISTBEGIN := POINTER; POINTER := (LISTBEGIN+LISTEND)DIV 2 END; END; SOUNDTHREESTAT(POINTER) := SOUNDTHREESTAT(POINTER)+1 END; END THREESOUND; PROCEDURE FOURSOUND; BEGIN INTEGER LISTEND, LISTBEGIN; IF (Z >= 4) THEN BEGIN FOURCOUNT := FOURCOUNT + 1; LISTBEGIN := POINTER * 5 - 4; LISTEND := LISTBEGIN + 4; POINTER := LISTEND; WHILE (CGDE (0|4) -= SOUNDFOUR (POINTER)) DO WHILE (CGDE (0|4) ¬= SOUNDFOUR (POINTER)) D BEGIN IF (CODE (0|4) < SOUNDFOUR (POINTER)) THEN LISTEND := POINTER; IF (CODE (0|4) > SOUNDFOUR (POINTER)) THEN LISTBEGIN := POINTER; POINTER := (LISTBEGIN + LISTEND) DIV 2

```
END;
SOUNDFOURSTAT (POINTER) := SOUNDFOURSTAT (POINTER) + 1
END;
END FOURSOUND;
```

```
PROCEDURE ENDSOUNDONE;
BEGIN
INTEGER LISTEND, LISTBEGIN;
IF (Z>=4) AND (BAD=TRUE) THEN
IF (Z>=4) AND (BAD=TRUE) THEN

BEGIN

ECOUNT := ECOUNT + 1;

LISTBEGIN := 1;

LISTEND := EPOINT := 5 ;

WHILE (CODE(Z|1)¬=CLASS(EPOINT))DO

BEGIN

IF (CODE(Z|1)<CLASS(EPOINT))THEN

LISTEND := EPOINT;

IF(CODE(Z |1)>CLASS(EPOINT))THEN

LISTBEGIN := EPOINT;

EPOINT := (LISTEND+LISTBEGIN)DIV 2

ENDO;

ENDONE(EPOINT) := ENDONE(EPOINT)+1

END;
 END;
END ENDSOUNDONE;
PROCEDURE ENDSOUNDTWO ;
BEGIN
INTEGER LISTEND,LISTBEGIN;
STRING(2) SOUND;
IF(Z>=5)THEN
BEGIN
E 1CCUNT := E_1COUNT + 1;
LISTBEGIN := EPOINT*5-4;
LISTEND := EPOINT*5-4;
LISTEND := EPOINT := LISTBEGIN+4;
SOUND(0|1):=CODE(Z|1);SOUND(1|1):=CODE(Z-1|1);
WHILE(SOUND(0|2)~=SOUNDTWO(EPOINT)) DO
BEGIN
IF(SOUND(0|2)<SOUNDTWO(EPOINT)) THEN
LISTEND := EPOINT;
IF(SOUND(0|2)>SOUNDTWO(EPOINT)) THEN
LISTBEGIN := EPOINT;
EPOINT :=(LISTEND+LISTBEGIN)DIV 2
END;
ENDTWOSTAT(EPOINT):=ENDTWOSTAT(EPOINT)+1
 END:
ENDTWOSTAT(EPCINT):=ENDTWOSTAT(EPCINT)+1
 END;
  END
                     ENDSCUNDTWO;
```

```
PROCEDUFE PRINTONE;
BEGIN
IJCONTROL (3);
WRITE ("PERCENTAGE DF WORDS WITH FIRST SCUND AS NOTED.");
WRITE("");
WRITE("");
FOR I := 1 UNTIL HEADERCOUNT DO
WRITE("");
FOR I := 1 UNTIL 5 DO
WRITE("");
FOR I := 1 UNTIL 5 DO
WRITE("");
FOR J := 1 UNTIL 5 DO
BEGIN
IF (SOUNDONE(J) = 0 )THEN
WRITEDN(SCUNDONE(J))
ELSE
BEGIN
SJUNDONE(J) := SJUNDONE(J)/Q*100;
STATMUX1 (N,J) := SJUNDONE(J);
WRITEON(SCUNDONE(J))
END;
END PRINTONE;
```

```
PROCEDURE PRINTTWO;

BEGIN

INTEGER P;

IJCONTROL (3);

WRITE(" PERCENTAGE OF WORDS LONGER THAN ONE SOUND WITH

BEGINING TWO-SOUND COMBINATIONS AS NOTED.");

WRITE("");

WRITE("");

WRITE("NUMBER OF WORDS IN SAMPLE OF STATED LENGTH IS :");

WRITE(TWOCOUNT);

WRITE("");

FOR I := 1 UNTIL HEADERCOUNT DO

WRITE (HEADER(I));

WRITE("");

FOR K := 1 UNTIL 5 DC

BEGIN
WRITE("");
FOR K := 1 UNTIL 5 DC
BEGIN
IOCJNTRCL (2);
FOR L := 4 STEP -1 UNTIL 0 DO
BEGIN
WRITEON(" ",SOUNDTWO(K*5-L)," ");
END;
IOCONTROL (2);
FOR M := 4 STEP -1 UNTIL 0 DO
BEGIN
P := K*5-M;
IF (SOUNDTWOSTAT(P) = 0) THEN
WRITEON(SOUNDTWOSTAT(P)) = 0) THEN
WRITEON(SOUNDTWOSTAT(P))
ELSE
BEGIN
SOUNDTWOSTAT(P) := (SOUNDTWOSTAT(P)/TWCCOUNT)*100;
VECTWO(5-M) := VECTWO(5-M) + SOUNDTWOSTAT(P);
WRITEON(SOUNDTWOSTAT(P))
END;
END;
END;
WRITE("");
WRITE("");
WRITE("");
WRITE("ANALYSIS OF SECOND SOUND AS THE PERCENTAGE OF");
WRITE("COCCURANCE IN THE SECOND POSITION.");
WRITE("");
IOCONTRCL (2);
FOR J := 1 UNTIL 5 DO
   IOCONTROL (2);
FOR J := 1 UNTIL 5
WRITEON(VECTWO(J))
END PRINTTWO;
                                                                                                                                5
                                                                                                                                                    DO
```

```
PROCEDURE PRINTTHREE;
BEGIN
INTEGER P;
IOCJNTROL (3);
WRITE(" PERCENTAGE OF WORDS LONGER THAN TWO SOUNDS WITH
BEGINING THREE-SOUND COMBINATIONS AS NOTED.");
WRITE("");
WRITE("");
WRITE("");
FOR I := 1 UNTIL HEADERCOUNT DO
WRITE(HEADER(I));
WRITE("");
FOR I := 1 UNTIL 25 DO
BEGIN
IOCONTROL (2);
FOR J := 4 STEP -1 UNTIL 0 DO
WRITEGN(" ",SOUNDTHREE(I*5-J)," ");
IOCONTROL (2);
FOR M := 4 STEP -1 UNTIL 0 DO
BEGIN
P := I*5-M;
IF(SOUNDTHREESTAT(P) = 0) THEN
WRITE(COUNDTHREESTAT(P))
FOR M := 4 STEP -1 UNTIL 0 DC
BEGIN
P := I*5-M;
IF(SCUNDTHREESTAT(P) = 0) THEN
WRITEON(SOUNDTHREESTAT(P))
ELSE
BEGIN
SOUNDTHREESTAT(P) := (SCUNDTHREESTAT(P)
/THREECCUNT)*100;
VECTHREE(5-M) := VECTHREE(5-M) + SOUNDTHREE
WRITEON(SOUNDTHREESTAT(P))
END;
END;
IOCONTROL (2);
WRITE(" ");
IOCONTROL (2);
WRITE(" ");
IOCONTROL (2);
WRITE(" ");
IOCONTROL (2);
WRITE(" ");
IOCONTROL (2);
FOR K := 1 UNTIL 5 DO
WRITEON (VECTHREE(K))
END PRINTTHREE;
                                                                                                                                                                                                                                     SOUNDTHREESTAT(P):
                                                                                                                                                                                                                                                                THE PERCENTAGE OF");
```

```
PROCEDUPE PRINTFOUR;
BEGIN
INTEGER P;
IOCONTROL (3);
WRITE("PERCENTAGE OF WORDS LONGER THAN THREE SOUNDS WITH
BEGINING FOUR-SOUND COMBINATIONS AS NOTED.");
WRITE("");
WRITE("");
WRITE("");
WRITE("UNUMBER OF WORDS IN SAMPLE OF STATED LENGTH IS :");
WRITE(FOURCOUNT);
WRITE("");
FOR I := 1 UNTIL HEADERCOUNT DO
WRITE (HEADER(I));
WRITE ("");
FOR I := 1 UNTIL 125 DO
BEGIN IOCONTROL (2);
WRITE(FOURCOUNT);
WRITE(FOURCOUNT);
WRITE("");
FOR I := 1 UNTIL HEADERCOUNT DO
WRITE (HEADER(I));
WRITE ("");
FOR I := 1 UNTIL 125 DO
BEGIN IOCONTROL (2);
FOR M := 4 STEP -1 UNTIL 0 DO
BEGIN
P := I * 5 - M;
IF (SOUNDFOURSTAT (P) = 0 ) THEN
ELSE
BEGIN
SOUNDFOURSTAT (P) := (SOUNDFOURSTAT (
WRITE(SOUNDFOUR(P), SOUNDFOURSTAT(P));
WRITE("")
END;
END;
                                                                                        := (SOUNDFOURSTAT (P) / FOURCOUNT
                                                                                                                                                                                                                                                               ) *
                                                                                                                                                                                                                                                                                   100;
 END;
 END;
  END PRINTFOUR;
PROCEDURE PRINTEND;
BEGIN
IOCONTROL (3);
WRITE (" PERCENTAGE OF WORDS WITH LAST
WRITE(" ");
WRITE(" ");
WRITE(ECOUNT);
WRITE(ECOUNT);
WRITE(" ");
FOR I := 1 UNTIL HEADERCOUNT DO
WRITE(HEADER(I));
WRITE(" ");
FOR I := 1 UNTIL 5 DO
WRITEON(" ",CLASS(I)," ");
IOCONTROL (2);
WRITE(" ");
IOCONTROL (2);
FOR J := 1 UNTIL 5 DO
BEGIN
IF(ENDONE(J)=0) THEN
WRITEON(ENDONE(J))
ELSE
BEGIN
ENDONE(J) := ENDONE(J)/ECCUNT*100 ;
WRITEON(ENDONE(J))
END;
END PRINTEND;
                                                                                                                                                                                                       SOUND AS NOTED. ");
                                                                                                               IN SAMPLE OF STATED LENGTH IS :");
                                                                                                                                                                                   ");
 END;
                 PR INTEND;
  END
```

PROCEDURE PRINTENDIAD; BEGIN INTEGER P; IOCONTROL (3); WRITE(" PERCENTAGE ENDING TWO SOUND COM (3); PERCENTAGE OF WORDS LONGER THAN ONE SOUND WITH WO SOUND COMBINATIONS AS NOTED."); WRITE(" "); WRITE(" "NUMBER_OF WORDS IN SAMPLE OF STATED LENGTH IS :"); WRITE("NUMBER OF WORDS IN SAMPLE WRITE(E_ICOUNT); WRITE("""); FOR I := 1 UNTIL HEADERCOUNT DO WRITE(HEADER(I)); WRITE(""); FOR K := 1 UNTIL 5 DO BEGIN IOCONTROL (2); FOR L := 4 STEP -1 UNTIL 0 DO BEGIN WRITEON("",SOUNDTWO(KE "); ",SOUNDTWO(K*5-L)," END; IOCONTROL (2); WRITE(""); IOCONTROL (2); FOR M := 4 STEP -1 UNTIL 0 DO BEGIN - - - K#5-M. BEGIN P := K*5-M; IF (ENDTWOSTAT (P) = 0) THEN WRITEON(ENDTWOSTAT (P)) ELSE BEGIN ENDTWOSTAT(P) := (ENDTWOSTAT(P)/E_1COUNT)*100; ENDVEC2(5-M):=ENDVEC2(5-M)+ENDTWOSTAT(P); WRITEON(ENDTWOSTAT(P)) END; END; END; END; END; WRITE(""); WRITE("ANALYSIS OF NEXT TO LAST SCUND AS TO THE PERCENTAGE") WRITE("OF OCCURANCE IN THAT POSITION."); WRITE(""); IOCONTROL (2); FOR J := 1 UNTIL 5 DO WRITEON(ENDVEC2(J)) END PRINTENDTWO ;

```
PROCEDURE PRINTMUX1;
BEGIN
FOR S := 1 UNTIL 5 DO
BEGIN
B := 0;
FOR R := 1 UNTIL N DO
BEGIN
B := B + STATMUX1(R,S)
END;
FOR T := 1 UNTIL N DO
BEGIN
PMUX1(S,T) := (STATMUX1(T,S)/B);
END;
WRITE(" ");
IOCONTROL (3);
IOCONTROL (3);
IOCONTROL (2);
WRITE (" "PROBABILITY MATRIX FOR FIRST SOUNDS:
WRITE (" "PROBABILITY MATRIX FOR FIRST SOUNDS:
WRITE (" "PROBABILITY MATRIX FOR FIRST SOUNDS:
WRITE (" ");
IOCONTROL (2);
FOR I := 1 UNTIL 5 DO
BEGIN
WRITE (" ");
IOCONTROL (2);
FOR K := 1 UNTIL 5 DO
BEGIN
IOCONTROL (2);
WRITE (" ");
IOCONTROL (2);
IOCONTROL (2);
WRITE (" ");
IOCONTROL (2);
IOCO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FOR J := 1 UNTIL N D
BEGIN
WRITEON (PMUX1(J,K))
END;
END;
END;
              END PRINTMUX1;
```

```
PROCEDURE CLEARMEM;
BEGIN
INTEGER P, S, T;
P := 0;
FDR I := 1 UNTIL 5 DD
BEGIN
VECTWO(I) := 0;
VECTHREE(I) := 0;
VECFOUR (I) := 0;
ENDONE(I) := 0;
ENDONE(I) := 0;
SOUNCONE (I) := 0;
FDR J := 1 UNTIL 5 DD
BEGIN
P := P + 1;
ENDTWOSTAT (P) := 0;
SOUNDTWOSTAT (P) := 0;
SOUNDTWOSTAT (P) := 0;
FDR K := 1 UNTIL 5 DD
BEGIN
S := S + 1;
SOUNDTHREESTAT (S) := 0;
FOR L := 1 UNTIL 5 DD
BEGIN
T := T + 1;
SOUNDFOURSTAT (T) := 0
END;
END;
END;
END;
END;
END;
END CLEARMEM;
```

"F"; "N"; "P"; "S"; CLASS (1) := "F CLASS (2) := "N CLASS (2) := "N CLASS (3) := "G CLASS (4) := "S CLASS (5) := "N GENERATETWO; GENERATETHREE; GENERATEFOUR; GETARRAY; N := 1; WHILE (N > 0) BEGIN IOCONTROL (3); INITIALIZE; CLEARMEM; WHILE (GETWORD BEGIN CONVERT (CODE); ONESCUND; THREESCUND; THREESCUND; FOURSOUND; ENDSCUNDCNE; ENDSCUNDCNE; PRINTENDTWO; PRINTENDTWO; READ (N) END; N := 5; PRINTMUX1 DO (WORD)) DO (CODE); END.

****	**	* *	*:	**	*	**	*	*	*:	**	*	#:	**	*	*:	**	*	**	* *	*	**	: *	*	* *	*:	* >	**	*:	* *	*:	fe s	**	*:	**	*>	* *	**	**:	* * *
				С		0	M		р	ι	J	Т	E		R			Ρ	Ŗ		Ŋ	G	1	2	Δ	ħ	4	1	٧U	M	81	ĘQ		2					
****	***	**	*:	**	*	**	. ±	*	*:	**	: #	#:	÷ *	*	*:	* ≯	*	**	**	*	**	*	*,	**	*:	# >	**	*;	**	*:	*:	**	*:	**	*	× #	**	***	***
					_	,	~	,	~	-	1		~ <					,		c	40		2.	7 7	-7		-	T 1		- 1	-								
1/ 5	X		;		G	οί	W.	4	RI	р, ĘG	; I	01	1=	3	5	0 K	2	11	1	2	∾¶ t,		2	()	(1	P 1	11	ין וי- וי	= :	2	_							
//SY	SF	PR DL		NT SY	s	DD IN)	S D	Y: D	۲ *	U	T	= Δ	۲	D	C 8) =	Bl	_K	S	ΙZ	F	= (56	5	• -	SP	Δ (ĴĒ	=	((CY	L	, (3	, 1)]	ł	
ZALG	D L	ΞT	T	= 3	Õ	Õ,	Ρ	=	<u>ā</u> (00)																												
PNUL	. 1 .																																						
BEGI	N IFN	IT																																					
****	***	**	*:	* *: * *:	*:	** **	*	* *	*:	* *	*	**	* *	* *	*:	* *	**	**	**	* *	**	* *	**	**	*	* *	**	*; *;	**	**	* >	**	*:	**	**	**	**	***	***
				20	-			-			-					•																1		1					11 .1.
FINA	L	Ρ	κı	1G	ĸ	AM	1	U	U	1	1	1																											
1.	נס	M	F	٧S	T		1	Δ	R																														
2.	PF	20	CI	ED	Ū	RE		I	N	ΙT ΞT	Ţ	AL	_ I INI	Ţ	E																								
4.				- 44					Ğ	ĒN	IÈ	RI	A T	E		10		_																					
6.				- 11					Ğ	EN	IE	R	A T	LITIN		าบ	IR	Ε																					
8.				11					GI GI		Έ Α	R २ :	α τ 2 Δ	Y	S	I X																							
9.		C C C C C C				R F	R R	0		ED)U	R	Ē	G	Ē.	Th	10	R)																				
<u>11</u> .		. 0		11			•	Ŭ	P		B	5	τw =	Ū																									
12.								(I	NČ	Ľ	U!	25	S		PΔ	T	HS	5	F	ЭF	2	1	, 2	,	3.	,4	, !	5,	5	•	S	01	UN	D	W	n P	2D	()
13.				-11					R	JM AW		14	ΝĀ	Ē	Y	S I	S																						
15				11				(P			S	۵	P A NY	T	H	5	F	<u>ה</u> נ	2	1	, 2		3	,4	, '	5,	5	,	S	0I	Πvi	D	W	O F	נתא	S)
16				11 11					Ĕ	LF	A	RI	γË ∩Ū	M	0																								
18									Ď	NE	S	Ő	JN	D	0																								
20.	MZ	A I	N	P	R	OG	;R	A	151 M	KΔ	Ρ	-																											
****	***	**	*:	**	*	**	**	* *	*: *:	**	**	**	* *	* *	*:	* *	**	**	**	* *	**	**	**	**	**	**	**:	**	**	**	* > * >	**	*:	**	**	**	**	(平) (水)	***

;

COMMENT INPUT DATA WRITTEN IN "ROMI" WITH AT LEAST ONE BLANK BETWEEN WORDS. WORD MUST START AND END ON SAME CARD .; INTEGER DIM; INTEGER SAMPLESIZE; PROCEDURE DUMMY; BFGIN ***** GLOBAL DECLARATIONS: ; TWOPDINT, ONEPDINT, SPACE; INDEX, POINTER, Z, TP, WP, HEADCOUNT, COMMENT INTEGER INTEGER INTEGER INTEGER INTEGER INDEX, POI FOURPOINT; EPOINT, NUMBER: THREEPOINT: N; (80) STRING STRING LOGICAL TEXT; STRING (36) WORD, LOGICAL FOUND, BA STRING (2) ARRAY STRING (6) ARRAY O WORD, CODE: BAD; Y ROMI (1::101,1::2);CLASS(0::3); SOUNDTWO(0::15): STRING (6) ARRAY SOUNDTHRFE(0::63); SOUNDFOUR(0::255): SOUNDFIVF(0::1023); SOUNDFIX(0::4095); STRING(6) STRING(6) ARRAY ARPAY STRING (5) ARRAY ARRAY STRING(6) ARRAY SOUNDSIX(0::4095); ARRAY HEADER (1::10); ONE1,ONE2,ONE3,ONE4,ONE5,ONE6,E6 (0::4,0::DIM); ONETWO2,ONETWO3,ONETWO4,ONETWO5(0::16.0::DIM); ONETWO4,FIRSTLAST5,FIRSTLAST6(0::16,0::DIM); E526(0::15,0::DIM); ONETWO33,ONETWO34,ONETWO35, ONETWO36(0::64,0::DIM); ONETWO36(0::64,0::DIM); ONETWO344,ONETWO345,ONETWO346, F12E526(0::256,0::DIM); ONETWO34E6,ONETWO34E5(0::1624,0::DIM); ALLSOUND(0::4096,0::DIM); STRING (80) REAL ARRAY ARRAY REAL ARRAY ARRAY REAL ARRAY REAL ARRAY REAL ARRAY REAL ARRAY

COMMENT **************** PROCEDURE INITIALIZE RESETS THE VALUES OF THE GLOBAL COUNTERS USED THROUGHOUT THE PPOGRAM. INITIALIZE ALSO READS AND PRINTS THE DATA SET TDENTIFIER "HEADER," SETTING "TEXT POINTER," "TP," TO 80 CAUSES THE PROCEDURE GETWORD TO READ THE FIRST DATA CARD. COMMENT **************** HEADERCOUNT IS THE NUMBER OF CARDS PRECEEDING THE DATA WHICH DESCRIBE THE TYPE/QUALITY/ETC. OF THE DATA BUT A NOT TO BE READ AS PART OF THE DATA. ARF ***** PROCEDURE INITIALIZE: BEGIN INDEX:=0; READ (HEADCOUNT): FOP I := 1 UNTIL HEADCOUNT DO BEGIN HEADER(I) := " "; READCARD (HEADER (I)); END: IOCONTROL (2); WRITE(""); IOCONTROL (2); IDCONT ROL := 80 END INITIALIZE; PROCEDURE SETCOUNT; BEGIN := 1 UNTIL DIM DO FDP I := 1 UNTIL DIM D BEGIN DNE1(4,I):=0; DNE2(4,I):=0; DNE3(4,I):=0; DNE5(4,I):=0; DNE5(4,I):=0; DNE5(4,I):=0; DNETWD2(16,I):=0; DNETWD3(16,I):=0; DNETWD3(16,I):=0; DNETWD3(16,I):=0; DNETWD3(16,I):=0; DNETWD3(16,I):=0; DNETWD3(16,I):=0; DNETWD3(16,I):=0; DNETWD3(16,I):=0; DNETWD3(61,I):=0; DNETWD3(64,I):=0; D T **BEGIN** END: END SETCOUNT;

COMMENT ***** PROCEDURE GENERATETWO PROVIDES THE 16 TWO-SOUND CLASS LABEL DESIGNATIONS IN ALPHABETICAL ORDER. THESE LABELS ARE STORED IN THE ONE DIMENSION ARRAY "SOUNDTWO." THE LAPELS CORRESPOND TO THE 15 ROWS OF THE SET OF REAL ARRAYS NAMED "ONETWO.", "FIRSTLAST.", AND "FE26." ******** PROCEDURE GENEPATETWO: BEGIN INTEGER Y; Y := 0; 0; FOP I := 0 UNTIL 3 00 BEGIN FOR J := 0 UNTIL 3 DO BEGIN SOUNDTWO(Y) := " SOUNDTWO (Y)(0|1) SOUNDTWO (Y)(1|1) "; ;= CLASS (I)(0|1); := (J)(0|1);Y := Y ÷ 1 END; END; END GENERATETWO; PROCEDURE GENERATETHREE; BEGIN INTEGER Y; Y = 0; FOR I := 0 UNTIL 15 00 BEGIN FOR J := 0 UNTIL 3 30 BEGIN SOUNDTHREE(Y) := " SOUNDTHREE(Y)(0|2) SOUNDTHREE(Y)(2|1) 11 SOUNDTWO(I)(0|2); CLASS(J)(0|1); := := Y := Y+1 END; END; END GENERATETHREE; PROCEDURE GENERATEFOUR: BEGIN INTEGER Y; Y :=0; FOR I := 0 := 0 UNTIL 63 00 BEGIN FORJ := 0 UNTIL 3 00 BEGIN SOUNDFOUR(Y):="": SOUNDFOUR(Y)(0|3) := SOUNDTHREE(I SOUNDFOUR(Y)(3|1):=CLASS(J)(0|1); := SOUNDTHREE(I)(0|3); Y := Y + 1END; END; END GENERATEFOUR;

```
PROCEDURE GENERATESIX;
BEGIN
INTEGER X,Y;
Y := 0:
X := -1;
FOR I:=0
              UNTIL 255 DO
BEGIN
FOR J
         := O UNTIL 3 DC
BEGIN
X
  :=X+1;
SOUNDFIVE(X):="":
SOUNDFIVE(X)(0|4):=SOUNDFOUR(I)(0|4);
SOUNDFIVE(X)(4|1):=CLASS(J)(0|1);
FOR K := 0 UNTIL 3 DO
BEGIN
SOUNDSIX(Y):="";
SOUNDSIX(Y)(0|5):=SOUNDFIVE(X)(0|5);
SOUNDSIX(Y)(5|1):=CLASS(K)(0|1);
Y := Y + 1
END;
END;
END;
END GENERATESIX;
COMMENT
              PROCEDURE GETARRAY READS
PROGRAM TO REPRESENT THE
EACH SOUND REPRESENTATIO
"ROMI." COLUMN ONE IS
TWO CONTAINS THE CLASS:
                                                         CHARACTERS USED BY THIS
NAL PHONETIC ALPHABET.
IN A TWO COLUMN ARPAY
                                                    101 CH
TIONAL
                                        IN THE
                                        INTERNAT
IS PLAC
                                                                         COLUMN ARPAY
                                    ION I
                                            S
                                               PLACED IN
                          DNE IS THE SOUND REP
CLASS: EITHER NASAL,
BER OF CARDS USED TO
T ALTERING THE PROGRAM
I" IS NOT VARIABLE.
, JUST AS IT IS TYPED
                                              DUND READ IN
R NASAL, FRICE
USED TO READ IN
E PROGRAM. TH
"ROMI"
                                                      REPRESENTATION
                                                                               AND COLUMN
                                                              FRICATIVE,
                                                                                ST OP,
                                                                                         NR
VOWEL. THE
BE VARIED WI
                                                                         "ROMT"
                     NUMBER
                                                                                   CANNOT
                                                                           NIMBER
                                                                                      DE
                   THOUT
                                                                    ŤΗΕ
BE
ELEMENTS IN "ROMI"
A CARD AT A TIME,
                                                                         IS
                                                                             PRINTED
                                                                                          OUT
                 TIME,
                                                                        DATA CARDS.
                                                             IN THE
*****
PROCEDURE GETARRAY;
BEGIN
STPING(81) PHONOL;
INTEGER B,A;
B:=1;
A:=1:
WHILE (A <= 27)
BEGIN
                         DO
PHONCL := " ";
READCARD (PHONOL);
TP:=0;
WHILF(TP <= 79)DO
BEGIN
WHILF
         (PHONOL
                     (TP|1)
                                  =" ") AND (TP<=79) DO
   := TP+1;
TP
IF (
BEGIN
IF (P)
       TP -=
                 80 ) THEN
     ( PHONOL
                 (TP+1 1) -= "-") THEN
IF (P
BEGIN
ROMI (8,1):
TP: = TP+?:
                  = PHONGL (TP|1):
TP:
END
ELSE
BEGIN
ROMI
ROMI (8,1)(0|1):
ROMI (8,1)(1)(1):
                           = PHONOL
                                          (TP|1):
ROMI (8,1)(1|1):
TP:=TP+4;
                           = PHONOL
                                          (TP+211):
END:
ROMI
        (B,2): = PHONOL (TP|1);
B: = B+1:
   :=
TP
         TP+1
END
ELSE
A :=
       A+1;
END
```

END: TP := 80 END GETARPAY:

•

***** COMMENT LOGICAL PROCEDURE GETWORD READS THE INPUT DATA WPITTEN ON "ROMI" INTO A BUFFER CALLED "TEXT," ONE CARD AT A TIME AN ECHO PRINTS EACH CARD WITH A SEQUENTIAL NUMBER IDENTIFIER AND H CARD, " BUFFER, " "WORD" IS IS SCANNED ONE CHARACTER AT LEADING AND TRAILING RD" IS THE GLOBAL PARAMETER TH OF 36 CHARACTERS WHICH AM AND SUBSEQUENT PROCEDURES. II I THE "TEXT," S BUILT NDEX ." TIME UNTIL A ANKS DELIMIT STRING TYPE A TIME BLANKS WORD" LOGICAL PROCEDURE GETWORD (STRING(36) RESULT WORD): WP := 0: IF(TP=80) THEN BEGIN INDEX: = INDEX+1; READCAPD (TEXT); TP:=0 END; WHILE(TEXT(TP|1)=" ") BEGIN TP:=TP+1; DD IF (TP=80) BEGIN THEN READCAPD (TEXT); INDEX:=INDEX+1; TP:=0 END; END; WORD:=""; WHILE (TP<80) BEGIN AND (TEXT(TP[1]) = "")DO WORD (WP|1):= TEXT(TP[1]; WP := WP + := TP + 1; END; := WP-1; WORD-="%" WP END GETWOPD;

****** COMMENT WHICH OCCURATE ERROR OCCURATE THE COURT AND TELLS THE NUMBER "Z" IS USED TO DRIVE TE A MISTAKE IS MADE FOUND THAT SO A GLOBAL VAR IN EACH STRING IS OF THE PROGRA AND TELLS THE NUMBER OF IPA SOUNDS IN EACH STRING "CODE." "Z" IS USED TO DRIVE LATER PORTIONS OF THE PROGRAM. IF A MISTAKE IS MADE ON A DATA CAPD SUCH THAT A CHARACTER STRING IS FOUND THAT IS NOT A MEMBER OF ROMI, THE "WORD" CONTAINING THE UNKNOWN "SOUND" IS PRINTED OUT ALONG WITH AN ERROR MESSAGE. HHEN THIS CONDITION ARISES. "BAD" IS SET TO FALSE AND NO ANALYSIS IS DONE ON THE "CODE" BY THE REMAINDER OF THE PROGRAM. PROCEDURE CONVERT (STRING(36) RESULT CODE): BEGIN STRING(2) SOUND; INTEGER LISTEND, LISTBEGIN, POINTER: CODE := ""; BAD := TRUE; := 0; I 7 Z = 0; WHILE I<=WP DO BEGIN TEST = 0; FOUND := TRUF; SOUND := "; IF WO BEGIN WORD (I+1 1) -= "-" THEN SOUND = WORD (111); : I:=I+1; END ELSE BEGIN SOUND(0|1): = WORD(1|1): SOUND(1|1): = WORD(1+2|1); I := I + 3END; LISTBEGIN:= 1; LISTEND := 101 LISTEND := LIST := 101; := LISTEND; FOUND) DO WHILE BEGIN TEST (ST := TEST+1; SOUND < ROMI(POINTER,1) THEN ISTEND:= POINTER; SOUND > ROMI(POINTER,1) THEN ISTBEGIN:= POINTER; (SOUND = ROMI (POINTEP,1))THEN TE L IF L ē FOUND := FALSE ELSE IF (TEST = 12) THEN BEGIN WRITE(INDEX,TEXT): WRITE("ERONEOUS DATA TF DATA", "WORD = ", WORD, "SOUND = ", SOUND);FOUND := FALSE; I := WO+1; BAD := FALSE END; POINTER := TRUNCATE ((LISTEND + LISTBEGIN) 12)

```
END;
END;
CODE ( Z|1 ) := ROMI ( POINTER, 2 ) (0|1 );
Z := Z+1
IF (BAD = FALSE) THEN
Z := 1
END;
Z := Z-1
END CONVERT;
```

PROCEDURE PROB_TWY (PP'S). THE PP'S, CORRESPONDING BASE CALCULATES THE PROBABILISTIC PROGRESSIONS WHEN CALCULATED, ARE REASSIGNED TO THE DATA FREQUENCIES ARRAYS. THE CALLING ARGUEMENTS ARE: CORRESPONDS TO WHICH THE PP IS 1E. REAL ARPAY BASE: SOUND COMBINATION FOR THE CUMMULATIVE BEING CALCULATED. ONTAINING THE REAL ARRAY PARTPROB: THE ARRAY CONTAINING THE ONDITICNAL" PORTION OF THE PP. PEAL ARRAY DUTPUT: THE ARRAY TO WHICH THE PP'S ARE TO ASSINGED. OUTPUT MUST BE DIMENSIONED IDENTICALLY WITH 2) iic 3) BE BASE LC ONE. THE NUMBER OF ELEMENTS IN PARTPROB LESS THE NUMBER OF ELEMENTS IN BASE ELEMENTS IN PART PROB LESS ONE. 5) 5) FNID: NUMBER DF THE DIVIDED BY ****************** PROCEDURE PROB_TWO(REAL ARRAY BASE(*,*);REAL ARPAY PARTPROB (*,*);REAL ARRAY OUTPUT(*,*);INTEGER VALUE LC, FNID); BEGIN REAL B; INTEGER T,P; :=-1; T FOR H := O UNTIL LC DO BEGIN FOR I I := O UNTIL FNID DO BEGIN B := 0; := T+1 T := T+1 ; FOR J := 1 UNTIL NUMBER DO B := B+BASE(T,J)*PARTPROB(H,J); FOR K := 1 UNTIL NUMBER DO BEGIN IF(B-=0) THEN OUTPUT(T,K) := BASE(T,K)*PARTPROB(H,K)/B FLSE OUTPUT(T,0):=-1 END; END; END; END PROB_TWO;

PROCEDUPE DECIDE READS TEST SAMPLES, ANALYSES THEM AND PRESENTS A SET OF NUMBERS TO THE ANALYSIST FOR A DECISION. "SAMPLE SIZE" IS THE NUMBER OF WORDS IN THE TEST SAMPLE LESS ONF. "Q" COUNTS "Q" COUNTS THE NUMBER OF WORDS IN A TEST SAMPL PRINTING A IDENTIFICATION. "N" COUNTS THE NUMBER OF SAMPLES (WHICH IS LIM TIME AVAILABLE ON THE COMPUTER). THE "CASE" STATEMENT ALLOWS THE SELECTION OF OU SEGMENT FROM A LIST FOR EXECUTION DEPENDING ON ORDINAL VALUE OF THE "CASE" STATEMENT PARAMETE VALUE OF "P" DEPENDS ON "Z" AND IS ASSIGNED BY OF WORDS IN A TEST SAMPLE FOR (WHICH IS LIMITED ONLY BY COMPUTER). ALLOWS THE SELECTION OF ONE PROGRAM ON THE PARAMETER 110.11 THE AN UTEN VALUE OF "D" DEPENDS ON "7" AND IS ASSIGNED BY AN "IF" STATEMENT. **BY VARYING THE RANGE OF "P" WITH CHANGES TO THE "IF" STATEMENT IN "DECIDE" AND "RAW ANALYSIS" THE PROGRAMMER CAN SELECT THE PARTITION OF THE DATA TEST SETS AND SAMPLE TEST SETS ACCORDING TO WORD LENGTH. "T" TELL LATER PAPTS OF "DECIDE" HOW MANY ROWS OF THE ARRAY "DECISION" WERE USED FOR THAT WORD... ********** PROCEDURE DECIDE: BEGIN REAL C,B; REAL ARRAY DECISION(0::9,1::NUMBER): REAL ARRAY SAVEDECISION(0::SAMPLESIZE,1::NUMBER); INTEGER P,T,Q; INTFIELDSIZE:=3; Q :=0; N := N+1; WRITE("SAMPLE NUMBER",N): FOP K:=0 UNTIL SAMPLESIZE nn BEGIN Q := Q+1; FOUND:=GETWORD(WORD); CONVERT(CODE); WRITE(" "); IOCONTROL(2); WRITE("SAMPLE WORD NUMBER", Q, "IN CODE FORM IS:", CODE); IF (BAD=TRUE) THEN BEGIN IF(Z<=5) THEN P:=Z+1 ELSE P:=6; CASE P OF BEGIN COMMENT**** WORD LENGTH = ONE*****; BEGIN T:=0; FINDSOUND(0); CNEPOINT:=POINTEP; FOR I := 1 UNTIL NUMBER DO DECISION(0,I):=ONF1(POINTER,I) END: COMMENT**** WORD LENGTH = TWO*****; BEGIN FINDSOUND(0): Т := ONEPOINT := POINTER; I:=1 UNTIL NUMBER DO FOR DECISION(0,I):=ONE2(POINTER,I); FINDSOUND(1); POINTER:=ONEPOINT*4+POINTER; FOR I:=1 UNTIL NUMBER DO FOR

```
DECISION(1,I):=ONETWO2(POINTER,I);
 END:
COMMENT**** WORD LENGTH = THREE*****;
BEGIN
T := 2;
FINDSOUND(0):
ONEPOINT:=POINTEP:
UNE PUINT:= PUINTER:

FOR I:=1 UNTIL NUMBER DC

DECISION(0,I):=ONE3(PDINTER,I);

FINDSOUND(1);

POINTER:=ONEPOINT#4+POINTER:

TWOPPINT:=PDINTER;

FOR I:=1 UNTIL NUMBER DO

DECISION(1,I):=ONET#C3(POINTER,I);

FINDSOUND(2);
POINTER:=TWOPOINT*4+POINTER:
FOR I:=1 UNTIL NUMBER DO
DECISION(2,I):=ONFTWO33(POINTER.I);
 END:
COMMENT**** WORD LENGTH = FOUR*****
\begin{array}{l} \mathsf{BEGIN} \\ \mathsf{T} := 3; \end{array}
FINDSOUND(0):
CNE POINT:= POINTER;
FOP I:=1 UNTIL NUMBER DO
DECISION(0,I):=ONE4(POINTER,I):
FINDSOUND(1);
POINTER:=ONEPOINT#4+POINTER:
TWOPOINT:=POINTEP:
FOR I:=1 UNTIL NUMBER DO
DECISION(1,I):=ONETWO4(POINTER,I):
FINDSOUND(2):
POINTER:=TWOPDINT#4+POINTER;
CNEPCINT:=POINTER;
FOR I:=1 UNTIL NUMBEP DO
DECISION(2,I):=ONSTW034(POINTER,I);
FINDSOUND(3);
FINDSOUND(3);
POINTER:=CNEPCINT*4+POINTER;
FOR I:=1 UNTIL NUMBER DO
D=CISION(3,I):=ON=TWO344(POINTER,I)
END;
COMMENT**** WORD LENGTH = FIVE*****;
 BEGIN
     := 4;
 Т
FINDSOUND(0);
ONEPOINT:=POINTER:
FOR I := 1 UNTIL NUMBER
FOR I := 1 UNTIL NUMBER
ONEPUINT:=PUINTER

FOR I := 1 UNTIL NUMBER DO

DECISION(0,I):=ONE5(POINTER,I);

FINDSOUND(1);

POINTER:=ONEPOINT*4+POINTER;

TWOPOINT:=POINTER:

FOR I:=1 UNTIL NUMBER DO

DECISION(1,I):=ONET#O5(POINTER,I);

FINDSOUND(2):

POINTER:=TWOPOINT*4+POINTER;
POINTER:=TWOPOINT*4+POINTER;

THREEPOINT:=POINTER;

FOR I:=1 UNTIL NUMBER DO

DECISION(2,I):=ONSTWO35(POINTER,I);

FINDSOUND(3);

POINTER:=THREEPOINT*4+POINTER;

TWOPOINT:=POINTER;

EOD I:=1 UNTIL NUMBER DO
FOR I:=1 UNTIL NUMBER DO
DECISION(3,I):=ONETW0345(POINTER,I);
```

```
FINDSOUND(4);
POINTER:=TWOPOINT*4+POINTER;
FOP I:=1 UNTIL NUMBER DO
DECISION(4,I):=ONETWO3455(POINTER,I)
END;
COMMENT**** WORD LENGTH = SIX & GREATER*****
BEGIN
    := 9;
FINDSDUND(0);
CNEPOINT:=POINTER:
FOR I:=1 UNTIL NUMBER DO
DECISION(0,I):=ONF6(POINTER,I);
FINDSOUND(1):
POINTER:=ONEPDINT*4+POINTER;
TWOPOINT:=POINTER;
      I:=1 UNTIL NUMBER DO
FOR
POR I:=1 UNTIL NUMBER (POINTER,I);

PECISION(1,I):=ONETWO6(POINTER,I);

POINTER:=TWOPOINT#4+POINTER;

THREEPOINT:=POINTER;

FOR I:=1 UNTIL NUMBER DO

POINTER: INTIL NUMBER DO
DECISION(2,I):=ONFTW036(PDINTER,I);
FINDSOUND(3);
POINTER:=THREEPDINT#4+PDINTER;
FOURPOINT:=POINTER;
FOR I:=1 UNTIL NUMBER DO
DECISION(3,I):=ONET#0346(POINTER,I);
FINDSOUND(Z);
EPOINT:=POINTER:
POINTER := ONEPOINT#4+POINTER;
FOR I:=1 UNTIL NUMBER DO
DECISION(4, I) := FIRSTLAST6(POINTER, I);
DECISION(4,1):=FIRSTLASTECPOINTER,1);

POINTER:=FOURPOINT*4+EPOINT;

FOR I:=1 UNTIL NUMBER DO

DECISION(8,I):=ONETWO34E6(POINTER,I):

SPACE:=Z-1;

FINDSOUND(SPACE);

POINTER:=EPOINT*4+POINTER;

EDOINT ==POINTEP:
EPCINT := POINTER :
FOR I:=1 UNTIL NUMBER DO
DECISION(5,I):=EE26(POINTEP,I):
POINTER:=FOUPPOINT*15+EPCINT;
FOR I:=1 UNTIL NUMBER DO
DECISION(6,I):=ALLSOUND(POINTER,I);
POINTER:=TWOPDINT*15+EPOINT:
FOR I:=1 UNTIL NUMBER DO
DECISION(7,1):=F12EE26(POINTER,I)
FND;
END;
COMMENT****************
HERE A COLUMN PRODUCT IS OBTAINED FROM THE ARRAY
"DECISION" AND ASSIGNED TO THE "KTH" ROW OF "SAVEDECISION."
ONE ROW IN "SAVEDECISION" IS GENERATED FOR EACH WORD IN THE
TEST SAMPLE SET.
********
        J:=1 UNTIL NUMBER DO
FOR
BEGIN
DECISION(9,J):=1;
FOR I:=0 UNTIL T DO
DECISION(9,J):=DECISION(9,J)*DECISION(I,J);
END:
WRITE("VALIDITY FACTORS :
WRITE(""); IOCONTROL(2);
FOR J := 0 UNTIL T DO
                                                 : "):
```

```
FOR I := 1
                  UNTIL NUMBER DO
WRITEON(DECISION(J,I));
WRITE(" ")
END;
FOR
FOR J := 1 UNTIL NUMBER DO
SAVEDECISION(K,J):=DFCISION(9,J)
END;
END;
IF (SAMPLESIZE=0) THEN
BEGIN
FOR J:=1 UNTIL NUMBER DO WRITEON(SAVEDECISION(0,J))
END
ELSE BEGIN
WRITE(""); IOCONTROL(2);
WRITE("VALIDITY FACTOR PR
FOR J:=0 UNTIL Q-1 D7
                                       PRODUCTS:");
BEGIN
WRITE(" ");
FOP I:=1 UNTIL NUMBER DO
WRITEON(SAVEDECISION(J,I))
END;
FOR
       J:=1 UNTIL NUMBER DO
BEGIN
B:=1;
C:=0;
FOR I
         := O UNTIL SAMPLESIZE DO
BEGIN
B := B*SAVEDECISIDN(I,J);
C:=C+SAVEDECISION(I,J)
C:=C+SAVEDECISION(1,J)
END;
C:=C/(SAMPLESIZE+1);
WRITE(""); ICCONTROL(2);
WRITE(B);
WRITEON(C);
WRITE("")
END;
END;
END DECIDE;
```

PROCEDURE COMPUTE NORM:

FRUCLOUPL CI	
BEGIN	
COMPUTE ANY	(3, DNE1);
COMPUTE ANY	(3. ONE2):
COMPLITE ANY	(3. ONE3):
COMPLITE TANY	3 ONEGI ·
COMPLITE	12 ONES 1 .
COMPLITE ANY	
COMPUTE ANY	
CUMPUTE_ANY	LID, UNEIWUZI
CUMPUTE_ANY	(15,0NF1W03);
COMPUTE_ANY	(15, ONETWO4);
COMPUTE_ANY	(15, ONETWO5);
COMPUTE ANY	(15, ONETAO6);
COMPUTETANY	(15, FIRSTLAST5);
COMPUTE ANY	(15. FIRSTLASTO):
COMPLITE ANY	(15, FF26):
COMPLITE ANY	(63, NET 1033):
COMPLITE	(63, ONETWO24) .
COMPLIE	(42 ONETJO25) ·
COMPUTE ANY	
COMPUTE_ANY	
CUMPUTE_ANY	(255, UNE 1 WU 144);
CUMPUTE_ANY	(255,UNE[WU345];
COMPUTE_ANY	(255, ONETW0346);
COMPUTE_ANY	(255,F12EE26);
COMPUTEIANY	(1023, ONETW034F5);
COMPUTE ANY	(1023, PNETW034E6);
COMPUTE ANY	(4095 + ALL SOUND)
END COMPUTE	NORM

PROCECURE RAW ANALYSIS USES AN IDENTICAL "CASE" STATEMENT TO THAT USED IN "DECIDE" TO PARTITION THE DATA BASE SETS. PROCEDURE RAW_ANALYSIS; BEGIN INTEGER P; IF (BAD=TRUE) THEN BEGÍÑ POINTER:=0; IF(Z<=5) THEN P:=Z+1 ELSE P:=6; CASE P OF BEGIN COMMENT ****** WORDS WITH ONE SOUND ****** ONE SCUND (ONE1,0,4); COMMENT******WORDS WITH TWO SOUNDS******; BEGIN ONESOUND(ONE2,0,4); ONESOUND(ONETWO2,1,16) END: REGIN ONE SOUND (ONE3,0,4); ONE SOUND (ONET W03,1,16); ONE SOUND (ONET W033,2,64) END; COMMENT******WORDS WITH FOUR SOUNDS****** BEGIN ONFSOUND(ONE4,0,4); ONESOUND(ONETWO4,1,16); ONESOUND(ONETWO34,2,64); ONESOUND(ONETWO344,3,256) END: COMMENT******WORDS WITH FIVE SOUNDS****** BEGIN ONE SOUND (ONE5,0,4): ONE POINT := POINTER; ONE SOUND (ONETWO5,1,16): ONE SOUND (ONETWO35,2,64); ONE SOUND (ONETWO345,3,256); ONE SOUND (ONETWO345,3,256); ONE SOUND (ONETWO3455,4,1024); POINTER:= CNEPOINT; POINTER:=CNEPOINT: ONESOUND(FIRSTLAST5,4,16) END; COMMENT******WORDS WITH SIX & GREATER SOUNDS***** BEGIN ONE SOUND(ONE6,0,4); ONE POINT:=POINTER; ONE SOUND(ONETWO6,1,16); TWOPOINT:=POINTER; ONESOUND(ONETWO36,2,64); ONESOUND(ONETWO36,3,256); EQUEDOINT:=POINTER; FOURPOINT:=POINTEP POINTER := 0:

ONF SOUND(56,Z,4); SPACE: = ONEPOINT* 4+POINTER; FIRSTLAST6(SPACE, NUMBER): = FIRSTLAST6(16, NUMBER)+1; FIRSTLAST6(SPACE, O):=1: SPACE: = FOURPOINT*4+POINTER: ONFT W03456(SPACE, O):=1: ONET W03456(SPACE, O):=1: ONET W03456(SPACE, O):=1: ONET W03456(1024, NUMBER): = ONET W03456(1024, NUMBER)+1; SPACE:=Z-1; ONE SOUND(FE26, SPACE, 16); SPACE:=FOURPOINT*16+POINTER; ALLSOUND(SPACE, NUMBER): = ALLSOUND(SPACE, NUMBER)+1: ALLSOUND(SPACE, O):=1; ALLSOUND(SPACE, O):=1; F12EE26(SPACE, NUMBER): =F12EE26(SPACE, NUMBER)+1; F12EE26(SPACE, O):=1; F12EE26(SPACE, NUMBER): =F12EE26(SPACE, NUMBER)+1; F12EE26(SPACE, O):=1; F

END; END; END RAW_ANALYSIS;

.

AS NO FOUIVALENT TO A FORTRAN DATA INITIALIZED TO THE DESIRED VALUE. AT A TIME. "ZIP" IS THE VALUE GI COLUMN ZERO IN FACH ARRAY IS SET SINCE ALGOL-W HAS NO ARRAYS MUST BE INITIA STATEMENT, ONE COLUMN UE. THI E GIVEN SET TO M THIS EN TO IS D EACH DONE MENT. COLUMN ZERO IN VALUE IS CHANGED TO I INFORMATION IS MADE COLUMN ZERO IN LATER BY ZERO IS ELIMINATED ARRAY ELEMENT. COL ONE. THIS VALUE IS FREQUENCY INFORMATI CHECKING COLUMN ZER DIVISION BY ZERO IS MINUS PLUS DNE IN THAT PARTS OF WHEN ΔN =NTRY JE PARTICULAT ROW. BY THE PROGRAM. . ******* PROCEDURE CLEARMEM(REAL VALUE ZIP); BEGIN INTEGER J.K.L.R.N; J:=K:=L:=R:=N:=O; FOP := 0 UNTIL 2 20 I BEGIN ONE1(I, NUMBER):=ZIP; ONE2(I, NUMBER):=ZIP; ONE3(I, NUMBER):=ZIP; ONE4(I, NUMBER):=ZIP; ONE5(I,NUMBER):=ZIP; ONE5(I,NUMBER):=ZIP; E6(I,NUMBER):=ZIP; E0R P := 0 UNTIL 3 D := 0 00 BEGIN BEGIN ONETWO2(J,NUMBER):=ZIP: ONETWO3(J,NUMBER):=ZIP; ONETWO4(J,NUMBER):=ZIP; ONETWO5(J,NUMBER):=ZIP; ONETWO6(J,NUMBER):=ZIP; FIRSTLAST5(J,NUMBER):=ZIP; EE26(J,NUMBER):=ZIP; I:=I+1: J:=J+1; FOR S : := 0 UNTIL 3 DO BEGIN ONETWO33(K, NUMBER):=ZIP; ONETWO34(K, NUMBER):=ZIP; ONETWO34(K, NUMBER):=ZIP; ONETWO36(K, NUMBER) := ZIP; K := K + 1;FOR T BEGIN := 0 UNTIL 3 20 ONETWO344(L, NUMBER):=ZIP; ONETWO345(L, NUMBER):=ZIP; ONETWO346(L, NUMBER):=ZIP; F12EE26(L, NUMBER):=ZIP; L:=L+1; FOR M := 0 UNTIL 2 20 BEGIN ONETWO34E6(R,NUMBER):=ZIP; ONETWO34E5(R,NUMBER):=ZIP; R:=R+1;FOP O := O UNTIL 3 DO BEGIN ALLSCUND (N, NUMBER) := ZIP; N: = N+1END: END; END CLEARMEM:

NDSOUND IS DINTEP" CORRESPONDING ARRAY "CLASS." BECAUSE ALL IN ARRAY "CLASS." BECAUSE ALL IN ARRAY "CLASS." BECAUSE ALL IN A TWO-SCUND COMBINATION BY REMEMBERING WHAT A TWO-SCUND COMBINATION BY REMEMBERING WHAT WAS, MULTIPLYING THE FIRST SOUND SUBSCRIPT THE SECOND SOUND SUBSCRIPT. THE BASIC IDEA ITHMETIC. NO MATTER WHAT SOUND COMBINATION ITHMETIC. NO MATTER WHAT SOUND COMBINATION OF THE SEARCH, THE PROGRAM ONLY SEARCHES WUS" TELL "FINDSOUND" WHICH SOU PROCEDURE FINDSOUND IS CALLED FROM "DECIDE" AND RETURNS A VALUE OF "POINTER" CORRESPONDING TO THE SUBSCRIPT OF THE IN THE L THE SOUND A SIMPLE MATTER REMEMBERING WHAT SOUND SUBSCRIPT THE BASIC IDEA SOUND OMBINATIONS OMPUTE SAY С TO OMPUTE THE C Ĕ SOUND ĪRST BY 4 THE **NF** AND ADDING MODULO 4 ARITHMETIC. NO MAT THE OBJECTIVE OF THE SEARCH, LIST OF FOUR ELEMENTS. "WS" IN THE WORD TO LOOK AT. IS Δ WHICH SOUND ***** PROCEDURE FINDSOUND(INTEGER VALUE WS); BEGIN POINTER:=0; WHILE(CODE(WS|1) = CLASS(POINTER)) nn POINTER:=POINTER+1; END FINDSOUND: PROCEDURE ONESOUND IS CALLED FROM RAW ANALYSIS. IT OPERATES ON THE SAME PRINCIPLE AS "FINDSOUND" EXCEPT THAT IT ALSO INCREMENTS THE FREQUENCY COUNT IN THE APPROPRIATE ARRAY "OUTPUT" AND INCREMENTS THE TOTAL WORD COUNTER WITHIM "OUTPUT." THE RAW OF "OUTPUT" WHICH CONTAINS THE WORD COUNTER MUST BE SPECIFIED BY THE ARGUENENT "LENGTH." ******** PROCEDURE ONESOUND(REAL ARRAY OUTPUT(*,*):INTEGER VALUE WS,LENGTH); BEGIN INTEGER PIN; PIN := POINTER; POINTER := 0; WHILE(CODE(WS|1) = CLASS(POINTER))DO POINTER:=POINTER+1; POINTER:=PIN#4+POINTER; OUTPUT(POINTER,NUMBER):=OUTPUT(POINTER,NUMBER)+1; OUTPUT (LENGTH, NUMBER): = OUTPUT(LENGTH, NUMBER)+1; OUTPUT(POINTER, 0):=1 END ONESCUND;

PROCEDURE SINGLE PROBS COMPUTES THE ACTUAL PROBABILITY OF A LANGUAGE GIVEN ANY SINGLE SOUND WHICH THE PROGRAM LOOKS AT AS A SEPARATE ENTITY. I.E., THE FIRST SOUND OF EACH WORD AND THE LAST SOUND OF WORDS SIX SOUND AND GREATER IN LENGTH. THE ASSUMPTION IS MADE THAT ALL LANGUAGES ARE EQUALLY PROBABLE PROCEDURE SINGLE_PROBS; BEGIN RFAL B,C,D,E,F,G,H; FOP I := 0 UNTIL 3 DD BEGIN B:=C:=D:=E:=F:=G:=H:=O: FOP J := 1 UNTIL NUMBER DO BEGIN := B+ONE1(I,J); := C+ ONE2(I,J); := D+ ONE3(I,J); 8 CDEF ONE4(I,J): := E+ F := F+ ONE5(I,J):
G := G+ ONE6(I,J);
H:=H+E6(I,J) END; FOR K := 1 UNTIL NUMBER DO BEGIN IF(B-=0) THEN ONF1(I,K):=ONE1(I,K)/B IF(C-=O) THEN ONE2(I,K):=ONE2(I,K)/C • ; IF(D-=0) THEN ONE3(I,K):=ONE3(I,K)/D IF(E-=0) THEN ; ONE4(I,K):=ONE4(I,K)/= IF(E==0) THEN ; ONE5(I,K):=ONE5(I,K)/F IF(G==0) THEN . ONF6(I,K):=ONF6(I,K)/G IF(H-=O) THEN • E6(I,K):=E6(I,K)/H;END; END; END SINGLE_PROBS:

COMMENT***************** PROCEDURE GRAPH PROVIDES A CONVENIENT GRAPHICAL REPRESENTATION OF ANY DATA ARRAY USED AT ANY POINT IN THE PROGRAM. THE CALLING ELEMENTS ARE: 1) DATA: THE ARPAY TO BE GRAPHED. 2) LABEL: THE STRING ARRAY WITH LABELS CORRESPONDING TO DATA. COUNT: THE LAST ROW SUBSCRIPT OF "DATA" WHICH CONTAINS INFORMATION TO BE GRAPHED, I, F., ROW DIMENSION OF DATA LESS ONF. SCALE: NUMBER OF PERCENTAGE POINTS PER PRINT SPACE. 4) EI THER 1 OR 2. 10 IF GRAPH IS TO SHOW RANGE OF ZERO TO ONE TO FIFTY. INT SPACE, 50 OR 100. TO SEE IF THAT ROW CONTAINS IS SET TO ZERO FOR ALL CASES 51 HE ADING: HUNDRED. 5 IF RANGE IS ZER 6) WIDTH: WIDTH OF GRAPH 7) TOGGLE: COLUMN TO CHEC ANY NUMBER OTHER THAN ZERO. IF RANGE IS ZERO TO WIDTH OF GRAPH PRINT COLUMN TO CHECK TO CASES. GRAPH WILL PRINT A LETTER CORRESPONDING TO THE OPDER OF THE BASE DATA SETS. A = LANGUAGE 1, B = LANGUAGE 2, ETC. IF TWO VALUES ARE IDENTICAL ON A LINE OF THE GRAPH "*" IS PRINTED. IF A WIDTH OF 50 AND SCALE OF "1" IS SELECTED, NORMALIZED SETS OF DATA CAN BE REPRESENTED BECAUSE THE VALUE WHICH IS GREATER THAN 50 WILL BE PRINTED IN THE RIGHT MARGIN OF THE GRAPH. *********** PROCEDURE GRAPH (REAL ARRAY DATA(*,*); STRING(6) ARPAY LABEL(*); INTEGER VALUE COUNT,SCALE,HEADING ,WIDTH,TOGGLE); BEGIN STRING(1) OVERFLOW; AMT, BIG, LINES; TOO_BIG; INTEGER LOGICAL TOO_BIG: STRING(17) FLAG; STRING(1) ARRAY MATRIX (0::WIDTH); PROCEDURE HORIZ_LINE; BEGIN INCONTROL(2); WRITE(" FOP I :=0 UNTIL WIDTH DO "); IF(I REM 5 = 0) THEN WRITEON("+") ELSE WRITEON("-") END HORIZ_LINE; END: PROCEDURE HOPIZ_HEAD; BEGIN INTEGER P: WPITE(""); IOCONTROL(2); WRITE(""); IF(WIDTH=50) THEN INTFIELDSIZE:=3 ELSE INTFIELDSIZE:=3; BEGIN P := I*HEADING ; WRITEDN(P) END; END HORIZ_HEAD; FLAG:=" ABCDEFGHIJKLMNPR"; HORIZ_HEAD: HOPIZ_LINE; LINES:=0; I FOR := O UNTIL COUNT DO BEGIN TOC_BIG:=FALSE; OVERFLOW:=" "; IF (DATA(I, TOGGLE) -=-1) BEGIN LINES:=LINES+1; LOR J := 0 UNTIL THEN WIDTH NO MATRIX(J) := " ";

```
FOR K := 1 UNTIL NUMBER DO
 BEGIN
AMT:=ROUND((DATA(I,K)*100)/SCALF):
IF(J=WIDTH)AND(AMT>J) THEN BE
TOO BIG:=TRUE;
OVERFLOW(011):= FLA3(K11);
                                                                        BEGIN
 BIG:=AMT
END;
IF(AMT=J) THEN
BEGIN
IF(MATRIX(J) ==""") THEN
MATRIX(J) := "*"
ELSE MATRIX(J) := FLAG(K|1)
END:
END:
END:
IOCONTROL(2):
WRITE(LABEL(I),"|");
FOR H := O UNTIL WIDTH DO
BEGIN
WRITEON(MATRIX(H))
END:
WRITEON("|");
INTEIELDSIZE:=3:
IF(TOO_BIG=TRUE) THEN
IF(TOO_BIG=TRUE) THEN
                                                    WRITEON(OVERFLOW, BIG) ;
IF(COUNT<16) THEN
BEGIN
WRITE(" '');
FOR T := O UNTIL I
             (" (");
:= O UNTIL WIDTH DO
                                                           WRITEON(" "); WRITEON("")
 ENN:
END:
END;
IF(LINES=50) THEN
BEGIN
LINES:=0;
HORIZ_LINE;
HORIZ_HEAD:
IOCONTROL(3); WR
WRITE("");
HORIZ_HEAD;
HORIZ_LINE
END;
                                  WRITE("CONTINUED"):
 END;
END;
IND;
IOCONTPOL(2);
HORIZ_LINE;
HORIZ_HEAD;
WRITE(""); WRITE("SAMPLE SIZES ARE :");
AMT := COUNT+1;
IOCONTPOL(2);
       ONTROL(2):
I := 1 UN
 INC
                         UNTIL NUMBER DO WRITEON(DATA(AMT,I))
        GRAPH:
 END
```

```
MAIN PROGRAM: GREATER FLEXIBILITY WAS REALIZED BY
ENCLOSING THE ENTIRE PROGRAM IN THE "DUMMY" PROCEDURE.
THIS ALLOWS THE PROGRAMMER TO SPECIFY, WITH THE VALUE OF
"DIM" HOW MANY LANGUAGES ARE TO BE LOADED AS BASE DATA.
**********
CLASS(0):="":
CLASS(0)(0|1):="F";
CLASS(1):="";
CLASS(1)(0|1):="N";
CLASS(2):="";
CLASS(2)(0|1):="S";
CLASS(3):="";
CLASS(3)(0|1):="V";
GENERATETWO;
GENERATETHPEF;
GENERATEFOUR:
GENERATESIX:
GETARPAY;
SETCOUNT;
NUMBER := 0;
CLEARMEM(-1);
N := 1;
WHILE(N>O) AND(NUMBER<DIM) DO
BEGIN
NUMBER
           := NUMBER + 1 ;
INITIALIZE;
CLEARMEM(0);
WHILE(GETWORD(WORD)) DO
BEGIN
CONVERT (CODE)
                        -
RAW ANALYSIS
COMPUTE_NORM;
READ(N)
END;
```

GRAPH(ONE1, CLASS, 3, 2, 10, 50, 0); GRAPH(ONE2, CLASS, 3, 1, 5, 50, 0); GRAPH(ONE3, CLASS, 3, 1, 5, 50, 0); GRAPH(ONE4, CLASS, 3, 1, 5, 50, 0); IOCONTROL(3); GRAPH(ONE5, CLASS, 3, 1, 5, 50, 0); GRAPH(ONE5, CLASS, 3, 1, 5, 50, 0); GRAPH(ONE5, CLASS, 3, 1, GRAPH(E6, CLASS, 3, 1, IOCONTROL(3); GRAPH(ONETWO2 GRAPH(ONETWO2 IOCONTROL 5,50,0); 5,50,0); 5,50,0); 5, 50, , SOUNDTWO, , SOUNDTWO, 15, 15, 0 1,); 1, 50, 0); 50, GRAPH (ONETWO4 GRAPH (ONETWO5 15, 5, 1, , SOUNDIWO, 0 1 • 5; , SOUNDIWO, 15, 50, ŏ 1,); CNTROL(3); IOC 15, 5, 50, GRAPH (ONETWO6 GRAPH(ONETWO6 GRAPH(FIRSTLAST5 IOCONTROL(3); GRAPH(FIPSTLAST6 GRAPH(EE26 IOCONTROL(3); GRAPH(ONETWO33 GRAPH(ONETWO34 IOCONTROL(3); GRAPH(ONETWO35 GRAPH(ONETWO35 GRAPH(ONETWO35); , SOUNDIWO, 1, 0); , SDUNDTWO, 1, 5, 50, 15,); 0 ,SCUNDTWO, 15, ,SOUNDTWO,15,1, 1, 5, 50 5, 50, 5, 50, 5, 50, 0); 50, 0); 50, , SOUNDTHREE , SOUNDTHREE 5, 0); 63, 1, 9 50, 5, 1, 0); . 50, 5, 0); , SOUNDTHREE 63, 1, 9 , SOUNDTHREE 63, 1, 5, 50, 0): 9 IOCONTROL(3); GRAPH (ONFTW0344 ,SOUNDFOUP , 255, 1, 5, 50, 0); IOCONTROL(3): GRAPH (CNETWO345 , SCUNDFOUR , 255, 1. 5, 50, 0); IOCONTROL(3); IDNETW0346 5, 50, GRAPH , SOUNDFOUR , 1, 255, 0); IDCONT GRAPH IDCONTROL(3); GRAPH (F12EE26 ,SOUNDFOUP , 255, IOCONTROL(3); GRAPH (ONETWO3455,SOUNDFIVE ,1023 ,1 5, 1, 50, 0); 5 ,50 ,0); . IOCONTROL(3); GRAPH (ONETWO34E6, SOUNDFIVE, 1023, 1 IOCONTROL(3); GRAPH (ALLSOUND, SOUNDSIX, 4095, 1, 5 ,50,0); . 5 ,50 ,0);

SINGLE PROPS: PROB_TWO(ONETWO2, ONE2, ONETWO2, 3, 3); PROB_TWO(ONETWO3, ONE3, ONETWO3, 3, 3); PROB_TWO(ONETWO3, ONETWO3, ONETWO3, 3, 3); PROB_TWO(ONETWO4, ONETWO4, 3, 3); PROB_TWO(ONETWO34, ONETWO4, ONETWO34, 15, 3); PROB_TWO(ONETWO34, ONETWO34, ONETWO344, 63, 3); PROB_TWO(ONETWO35, ONETWO34, ONETWO35, 15, 3); PROB_TWO(ONETWO35, ONETWO35, ONETWO35, 15, 3); PROB_TWO(ONETWO345, ONETWO35, ONETWO345, 63, 3); PROB_TWO(ONETWO346, ONETWO35, ONETWO346, 63, 3); PROB_TWO(ONETWO36, ONETWO36, ONETWO36, 15, 3); PROB_TWO(ONETWO36, ONETWO36, ONETWO36, 15, 3); PROB_TWO(ONETWO346, ONETWO36, ONETWO346, 63, 3); PROB_TWO(ONETWO346, ONETWO36, ONETWO346, 63, 3); PROB_TWO(ONETWO346, ONETWO36, ONETWO346, 63, 3); PROB_TWO(ONETWO346, ONETWO346, ONETWO346, 63, 3); PROB_TWO(ONETWO346, ONETWO36, ONETWO346, 63, 3); PROB_TWO(ONETWO346, ONETWO36, ONETWO346, 63, 3); PROB_TWO(ONETWO346, ONETWO346, ONETWO3466, 63, 3); PROB_TWO(ONETWO346, ONETWO346, ONETWO346, 0); PROB_TWO(ONETWO346, ONETWO346, ONETWO3466, 63, 3); PROB_TWO(ONETWO346, ONECONETWO346, ONETWO3466, 63, 3); PROB_TWO(ONETWO346, ONECONETWO346, ONETWO3466, 3, 3); PROB_TWO(ONETWO346, ONECONETWO346, ONET
GRAPH(ONE1 ,CLASS,3,1, 5,50,0); GRAPH(ONE2,CLASS,3,1, 5,50,0): GRAPH(ONE3,CLASS,3,1, 5,50,0); GRAPH(ONE4,CLASS,3,1, 5,50,0); IOCONTROL(3); GRAPH(ONE5 ,CLASS,3,1, 5,50,0); GRAPH(ONE6 ,CLASS,3,1, 5,50,0); GRAPH(E6 ,CLASS,3,1, 5,50,0); GRAPH(E6 ,CLASS,3,1, 5,50,0); IOCONTROL(3); GRAPH(CNETWO2 ,SOUNDINO, 15, GRAPH(ONETWO3 ,SOUNDINO, 15, 5, 50, ,SOUNDTWO, ,SOUNDTWO, 1, 0): 15, GRAPH (ONETWO3 5, 50, 1, 0): IOCONTROL(3); GRAPH(ONETWO4 , SOUNDIWO, , SOUNDIWO, 15, 50, 5 +);); 1, RAPH(ONETWOS ī, 5, 50, Ó G IOCONTROL(3); GRAPH (DNETWO6 5, ,SOUNDIWO, 50,);): 15, 1, 0 GRAPH(FIRSTLAST5 IDCONTROL(3); GRAPH(FIRSTLAST6 GRAPH(EE26 , SOUNDIWO, 15, 1, 50, Õ ,SOUNDIWO, 15, ,SOUNDIWO,15,1, 5,50,01; 50, 1 0); GRAPH(EE26 IOCONTROL(3); GRAPH (ONETWO33 GRAPH (ONETWO34 IOCONTROL(3); GRAPH (ONETWO35 , SOUNDTHPEE , SOUNDTHREE 63, 63, 5, 50, 0); 1, 1, 9 • 50, , SOUNDTHREE , SOUNDTHREE 5, 63, 1, 0); 9 GRAPH 5, (ONETWO36 0); 1, 9 IDCONTROL(3); GRAPH (ONETWC344 5, 50, ,SOUNDFOUP , 255. 1, 01; IOCONTROL(3); GRAPH (CNETWO345 ,SOUNDFOUR , 255, 5, 50, 1, 0); IDCONTROL(3); GRAPH (ONETWO346 ,SOUNDFOUR , 255, IOCONTROL(3); GPAPH (F12EE26 ,SOUNDFOUR , 255, IOCONTROL(3); GRAPH (ONETWO34E5,SOUNDFIVE ,1023 ,1 5, 50, 1, 0); 5, 1, 50, 0); , 5 ,50 ,0); IDCONTROL(3): GRAPH (ONETWO34E6,SDUNDFIVE ,1023 ,1 5.50 , 0); . IOCONTROL(3); GRAPH (ALLSOUND ,SOUNDSIX ,4095 ,1 , 5 ,50 ,0); IOCONTROL(3);

COMMENTATES ANALYS BE THE FIRST DATA SET FOLLOWING THE "2DATA" ROMI MUST ALWAYS BE THE FIRST DATA SET FOLLOWING THE "2DATA" CAPD (JCL). THE NUMBER "5" SHOWN BELOW TELL HOW MANY SETS OF REFERENCE DATA WILL BE USED IN THE INITIAL SETUP. NOTE THAT ROMI IS WRITTEN SUCH THAT EACH CHARACTER OF ROMI IS FOLLOWED IMMEDIATELY (SEPAPATED BY ONE SPACE) BY THE CATEGORY TO WHICH IT BELONGS. TWO LETTERS JOINED BY A "-" ARE READ AS A SINGLE LETTER. *******

3UA	5						
AV		A-B V B-V S	Δ-Ε Μ	A-I V	A-N F	A-R V	A-U V
			C-H F	C-T-V	C-Q V		
UE L	E-E V	E-I V	E-Q V	E-R V	E-S V		
G	G-A V	G-B F	G-F F	G-G S			
H J K J K J K J K J K J K J K J K J K J		I-R V J-N N K-Z F	V T-I J-U V	I-U V			
		N-N N	N-0 N 0-0 V	N-U <			
QRN	Q-A F R-B F	Q-Q S R-R N	R-T N				
ST U F N	S-H F T-C S U-H V V-V V W-W V	S-S F T-H F U-Q V	T-L S U-R F	T-M S U-S V	T-S S U-T V	T-T S U-U V	
X F V Y F 3-R	X-X F Y-U N Z-C F V	Y-Y V Z-H F	Z-Z F				

2DA.	TA						
AV		A-B V	A-E V	A-I V	A-N F	A-R V	A-U V
00000000000000000000000000000000000000	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	C-EV D-ZS E-IV	C-H F	C-I V	C-Q V		
			E-Q V	E-R V	E-S V		
		G-B F	G-F F	G-G S			
		I-R V J-N N K-Z F	I-T V J-U V	I-U V			
		N-N N 0-0 V	N-Q N 0-U V	N-U S			
		Q-Q S R-R N	R-T N				
		S-S F T-H F U-Q V	T-L S U-R F	T-M S U-S V	T-S S U-T V	T-T S U-U V	
		Y-Y V Z-H F	Z-Z F				

LIST OF REFERENCES

- 1. UPI article printed in <u>Monterey Pennsula Herald</u>, December 28, 1975.
- Rosenblum, H., "Voice Systems," presentation at the Naval Postgraduate School, Monterey, California, 14 October 1975.
- 3. Potter, R. K., Kopp, G. A., and Kopp, H. G., <u>Visible</u> <u>Speech</u>, Dover Publications, Inc., New York, 1966.
- 4. "program of the 90th Meeting." The Journal of the Acoustical Society of America, vol. 58, supplement no. 1, Fall 1975.
- 5. The Principles of the I. P. A., 1949
- 6. Cartier, Francis A. and Todaro, Martin T., <u>The</u> <u>Phonetic Alphabet</u>, Wm. C. Brown Company Publishers, <u>Dubuque</u>, Iowa, 1971.
- 7. Discussion with Dr. Cartier on 1/10/76.
- 8. Carterette, Edward C. and Jones, Margaret H., Informal Speech, Alphabetic and Phonemic text With Statistical Analyses and Tables, University of California Press, Berkeley, California, 1974.
- 9. Kenyon, John S. and Knott, Thomas A., <u>A Pronouncing</u> <u>Dictionary of American English</u>, G. & C. Merriam Company, Publishers, Springfield, Massachusetts, 1944.
- 10. Hess, Wolfgang J., "A Pitch/Synchronous Digital Feature Extraction System for Phonemic Recognition of Speech," IEEE Transactions on Acoustics, Speech, and Signal Processing, Volume ASSP-24, no. 1, February 1976.
- 11. Personal interview with various language specialists were conducted, as required, at the Defense Language Institute, The Presido, Monterey, California 93940. Commendable assistance was received from the Research Department.
- 12. Personal interwiews were conducted for the purpose of achieving the proper pronunciation of words selected for transcription. Extremely useful interviews were conducted with Dr. Maria Baird of DLI, and LCDR Charles A. Pulfrey of the Naval Postgraduate School abid.
- 13. Rau, Morton David, <u>Language Identification by</u> <u>Statistical Methods</u>, M. S. Thesis, United States Naval Postgraduate School, Monterey, California, September 1974.

- 14. Personal interview with Dr. Thomas Arkwright, computer processing consultant, Defense Language Institute, Presidio, Monterey, California 93940
- 15. Thomas, Michael C., several discussions at length on the facilities available and capable of processing phonemic analysis. Lt. Thomas is a student at the Naval Postgraduate school, Monterey, California.
- 16. Hancock, John C. and Wintz, Paul A., <u>Signal</u> <u>Detection Theory</u>, McGraw Hill Book Company, New York, 1966.
- 17. Lipschutz, Seymour, Schaum's Outline of Theory and Problems of Probability, Table 6.1, McGraw-Hill Book Company, New York, New York, 1965.
- 18. Flanagan, J. L., <u>Speech Analysis, Synthesis, and</u> <u>Perception, 2nd ed.</u> Springer-verlag, Berlin,
- 19. Doherty, Thomas E., <u>Evaluation of Selected Acoustic</u> Parameters for use in Speaker Identification, paper presented at 90th meeting of the Acoustic Society of America (see ref. 14), San Francisco, California, 7 November 1975.
- 20. Young, R. B., <u>Investigation of Speaker</u> <u>Identification Based on Nasal Phonotation</u>, M. S. <u>Thesis, Naval Postgraduate School</u>, Monterey, California, June 1971.
- 21. Wohlford, Robert E., personnal discussion at length, on various subjects including and specifically on the occurances and identification of pauses and word boundries, January 19, 1976.
- 22. Flanagan, James L. and Rabiner, L. R., <u>Speech</u> <u>Synthesis</u>, Dowden, Hutchinson, & Ross, Inc., <u>Stroudsburg</u>, Pennsylvania, 1973.
- 23. Koenig, W., Dunn, H. K., and Lacy, L. W., "The Sound Spectrograph," <u>Journal of the Acoustic Society of</u> <u>America</u>, (JASA), 78, 79-49, 7946.
- Lehiste, Ilse, <u>Readings in Acoustic Phonetics</u>, The M. I. T. Press, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1967.
- 25. Chao, Yuen Ren. Language and Symbolic Systems, Cambridge at the University Press, London, England, 1968.
- 26. Judson, L. S. and Weaver, A. T., <u>Voice Science</u>, F. S. Crofts & Co., New York, 1942.
- United States Air Force Cambridge Research Labratories Report AFCRL-69-0371, Speech Analysis, by Arthur S. House and George W. Hughes, September 1969.

28. ROME Air Development Center Report AD-758-397, Automatic Language Identification, by Gary R. Leonard, et al, August 1974.

.

- 29. Carrell, J. and Tiffany W. R., <u>Phonetics:</u> <u>Theory</u> and <u>Application</u> to <u>Speech Improvement</u>, <u>McGraw Hill</u> Book Company, Inc., New York, 1960.
- Pletcher, H., Speech and Hearing in Communication, D. Van Nostrand Company, Inc., Princeton, New Jersey, 1958.

No. Copies

2

2

1

1

- Defense Documentation Center Cameron Station Alexandria, Virginia 22314
- Library, Code 0212
 Naval Postgraduate School Monterey, California 93940
- 3. Department Chairman Department of Operations Research and Administrative Sciences Naval Postgraduate School Monterey, California 93940
- Professor Stephen Jauregui, Code 33, 1
 Department of Electrical Engineering Naval Postgraduate School Monterey, California 93940
- 5. Asst. Professor Alan R. Washburn, Code 55WA, 1 Department of Operations Research and Administrative Sciences Naval Postgraduate School Monterey, California 93940
- LT Michael C. Thomas, USN
 1304 Fechteler Drive
 Monterey, California 93940
- 7. LT Roger D. Cook, USN 1333 Spruance Road Monterey, California 93940

- 8. Director National Security Agency Attn: R, H. Rosenblum R-5, Dr. C. Wood Ft. Meade, Maryland 20755
- 9. Commander Naval Security Group Command Naval Security Group Command Headquarters Attn: Commander H. Shoemaker 3801 Nebraska Avenue Washington, D. C. 20390

1

1

1

10. Defense Language Institute Presidio Attn: DLIF-1-CS, Dr. F. Cartier Monterey, California 93940

