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ABSTRACT

The stability of plane Poiseuille flow was studied

using theory developed by Harrison. A similarity trans-

formation was introduced which reduces computation time

and provides better insight into the basic relations.

The stability of the flow was examined from a Lagrangian

viewpoint. Instability was found to be progressive in

nature and three distinct levels were identified, namely

incipient, critical, and fully developed instability.

Results show that the critical Reynolds number can be

lowered indefinitely if certain types of perturbations

occur. Specifically these involve relatively abrupt

changes in amplitude. This provides a possible expla-

nation for the disagreement between earlier theory and

experiment.
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LIST OF SYMBOLS

All quantities are expressed in dimensionless form by

the use of a natural system of consistent units in which

channel semi-height is the unit of length, the volumetric

mean velocity of the fluid is the unit of velocity, and

the density of the fluid is the unit of density. Then

all other consistent derived units are fixed accordingly.

A* wave number amplitude defined in Eq. 2.4

e 2. 71828. . .base of the natural logarithms.

G stability parameter defined in Eq. 1-30.

G,H complex stream functions.

G*,H* transformed stream functions.

I (y) complex auxiliary function defined in Eq. 2-14

1/2
i (-1) the imaginary unit.

r, J", E" unit vectors along x, y, and z axes,
respectively.

J(y) complex auxiliary function defined in Eq. 2-15

J*(y) transformed auxiliary function defined in
Eq. 2-27.

Re Reynolds number based on volumetric mean
velocity and channel semi-height.

Re* transformed Reynolds number defined in
Eq. 2-18.

T(y) complex auxiliary function defined in
Eq. 2-13.

t time.

U flow velocity.



W complex vector potential of perturbation
flow defined in Eq. 3-2.

x,y,z coordinates in direction of mean flow,
normal to walls and transverse to the mean
flow, respectively.

x',y,z coordinates in moving reference frame.

a complex wave number of the perturbation in
x direction.

a* transformed wave number defined in Eq. 2-3.

3 complex wave number of the perturbation in
the z direction.

Y complex frequency of the perturbation in
a fixed reference frame.

Y' complex frequency of the perturbation in the
moving reference frame.

Y* transformed complex frequency defined in
Eq. 2-21.

9 phase angle parameter defined in Eq. 2-12.

k amplitude parameter defined in Eq. 2-19,

A angle of plane of perturbation with
respect to xy plane.

AR angle of resultant growth wave number vectorL

R
X_ with respect to x axis.

A, angle of oscillation wave number vector Xy
with respect to x axis.

XR growth wave number vector.

Xy oscillation wave number vector.

wave number phase angle defined in Eq. 2-9.

0* wave number phase angle defined in Eq. 2-7.

ty wave number phase angle defined in Eq. 2-2.



I. THEORETICAL BACKGROUND AND APPROACH

A. BACKGROUND

This research deals with the instability of plane

Poiseuille flow, that is, plane flow between infinite

parallel plates. The mean velocity of this flow is given

by the expression

u = jd-y
2

) . (l-D

The stability of such a flow field is determined by

superimposing upon it an appropriate perturbation and

determining whether this perturbation tends to grow or

decay over time. In the present case the perturbations

are expressed by a complex vector potential which is taken

to be of the form

W = [j*G(y) + kH(y)] exp (ax + 6z + yt) . (1-2)

The complex constants a and $ fix the spatial charac-

teristics of the perturbation and may be arbitrarily pre-

scribed whereas the complex constant y fixes the response in

time and must be found by solving the vorticity transport

equation. Moreover, since a, 6 and y are all complex, they

can be resolved into real and imaginary components in the

form
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a = a
R

+ ia
T

(1-3)

3 = 3 R
+ iSj (1-4)

Y = YR
+ iYj . (1-5)

Thus the spatial characteristics of the perturbation

are seen to be completely defined by the four constants

aR , a,, 3 R , 3t . In addition, the mean flow is charac-

terized by its Reynolds number Re.

Harrison's original analysis [Ref. 1] showed that the

perturbation growth rate in time as seen by a fixed observer,

and as expressed by the parameter y R , is a definite function

of the five parameters aR , a,., 3 R , 3
T

and Re, which charac-

terize the perturbations and the flow. Thus

Y R Y R
[a
R , dj, 3 R , 3j, Re] . (1-6)

B. PROGRESSIVE INSTABILITY

In a further development of Harrison's original approach,

Section II of this thesis shows that three significant levels

of instability can be defined which are termed incipient,

critical and fully developed instability. The definition of

these terms depends, in part, on the algebraic sign of a R .

However, Harrison showed that negative values of a
R

have a

definitely destabilizing effect. Consequently the present

11



analysis is restricted to the critical case of negative a R .

For this case the three levels of instability correspond to

the following levels of yR , namely

Incipient Instability Y R ) t
= (1-7)

Critical Instability Y R ) f
= -otR (1-8)

Fully Developed .3 m en
Instability Y R J D I a

R * u " yj

Numerical solution of the vorticity transport equations

enables us to find the three corresponding Reynolds numbers

at which the above stability levels are reached. Thus

Incipient Instability Re)j = REj[ctR , oij, 3R , Bj] (1-10)

Critical Instability Re)
c

= Re
c
[a
R , oij, 3 R , 3j] (1-H)

Fully Developed R . = R r R R 1 ri-121
Instability KeJ

D
Re

D^
a
R'

a
I>

B R> B
I J U-1ZJ

C. TRANSFORMATION OF PARAMETERS

In Section II of this thesis, a transformation is

developed which relates the original parameters a
R , a

T , 3 R ,

3t, Re and Yd to an alternative set of parameters which are

R'

* * * *
symbolized as A , , 9 , Re and y«. This transformation

12



can be expressed in several alternative but equivalent forms

In the present context it is convenient to write

a
R

= A*cos(0*+9) (1-13)

a T
= A*sin(0*+9) (1-14)

*2

BR
= ^j- {[(l-K

2
)

2
+4K

2
sin

2
6]

1/2 +cos20*-K 2 cos2(0*+e)} (1-15)

6
2

= ^- {[(l-K
2

)

2
+ 4K

2
sin

2
9]

1/2 -cos20*+K
2
cos2(0* + 6)} (1-16)

Re = Re*/< (1-17)

and

YR
= kYr . (1-18)

The important fact about this new set of parameters,

which are somewhat loosely termed the starred parameters, is

that their use permits the fundamental vorticity transport

equation to be simplified. Specifically, the relation

analogous to Eq. 1-1 reduces to

YR
= YR

[A , , 0, Re
] (1-19)

The relations analogous to Eqs . 1-7, 1-8, and 1-9 reduce

to

13



Incipient Instability Yd) t
= ° (1-20)

Critical Instability yR ) c
=

" a
R

= "
f

A cos C0 + 9) (1-21)

SJLSrd
VD - ! ^ - I A*cos(Ae) (1-22)

Finally, the relations analogous to Eqs . 1-5, 1-6, and 1-7

simplify to

it it A it

Incipient Instability Re, = REy [A ,0,9] (1-23)

it it it it

Critical Instability Re
c

= Re
c
[A ,0,6] (1-24)

sgbas ^ < - **>*> ?. ^ ^
The remarkable feature of Eqs. 1-19 through 1-25 is

that none of these relations involve the parameter k.

Thus the number of independent parameters has been reduced

from four in Eqs. 1-10, 1-11, and 1-12 to three in Eqs. 1-23,

1-24, and 1-25. This represents a very significant simpli-

fication of the problem, especially in view of the tremendous

computational burden which these equations involve.

14



D. PHYSICAL SIGNIFICANCE OF STABILITY BOUNDARIES

The stability boundaries Re ) T
, Re ) f , and Re ) D

symbolized by Eqs. 1-23, 1-24, and 1-25 have physical

significance which can be interpreted in a straightforward

manner. Eq. 1-17 shows that Re can be regarded as the value

of Re which corresponds to the reference case k = 1. Thus

Re ) T
, for example, is the Reynolds number of incipient

instability for a perturbation which is characterized by

is ~k

the given values of parameters A , , and 9 and by the

reference value k = 1. Since the transformed quantities

A , , and 9 may, at first, seem to be somewhat abstract

in character, it is helpful to go back to Eqs. 1-13, 1-14,

1-15, and 1-16 and ascertain the corresponding values of

the original untransformed parameters aR , a-r, $ R , $t.

However, there is far more to this solution than just

the above reference case, k = 1. In this connection,

Eq. 1-17, when taken in conjunction with Eqs. 1-23, 1-24,

and 1-25, reveals a most important result. It shows that

for given values of parameters A
, , and 9, and hence

for the corresponding values of Re ) T
, Re ) r , or Re )~,

the corresponding actual Reynolds numbers Re)j, Re)~, or

Re)
n

can be lowered indefinitely, simply by increasing

parameter k to any desired extent. Notice that such a

shift of the stability boundaries, while it involves no

change in parameters A , , and 9, does involve changes

15



in a
R , a

T
, 3 R , and 3-r. It is therefore important to

summarize the nature of these changes in the clearest

possible way.

For this purpose, it is useful to regroup the four

quantities aR , ou, 3 R , and 3y into two vectors X
R and Xj

defined as follows:

X
R

= Ta
R

+ ¥3R (1-26)

I, = Tc^ + Fe.
x

(1-2 7)

(T and k are unit vectors in the x and z directions,

respectively.

)

Clearly A
R

represents the spatial growth rate in vector

form, that is, in terms of magnitude and direction, while

X-r represents the spatial oscillation rate in like terms.

Each of these vectors is characterized by a magnitude and

a direction. In this case the magnitudes A
R

and A,, turn

out to be governed by the relations

*?
7 A ? ? ? ? 1 /? 7 7 *

A
R

= ~- {([(1-k )

z
+ 4k sin

z
e]

1/z
-(l-K ))+2cos z

} (1-28)

2A ????1/? 7 7 *
Aj = *p {([(1-k

z
)

z
+ 4k sin

Z
9]

i/z
-(l-K

Z
))+2sin

Z
} . (1-29)

Likewise the two corresponding angles A
R

and A
T
which the

above vectors make with respect to the x axis turn out to

16



be governed by the relations

tan
2
A = [(l-K

2
)

2
+4K

2
sin

2
9]

1/2+cos20*-K
2
cos2(0*+ )

(1 . 30)
R

k
Z
[1 + cos2(0*+0)]

* 2. _ [(l-K
2

)

2
+ 4K

2
sin

2
0]

1/2 -cos20* + K
2
cos2(0* + 6) ri ,,.

ta.n A j n 55
\x~ox)

1
K [1 - cos2(0 +0)]

Thus the spatial form of the perturbations is now fully

characterized by the four transformed parameters XR , A,, A
R ,

and A
T
which are in some respects more convenient than the

four original parameters aR , a,, 8 R , and 3t.

E. EFFECT OF VARYING PARAMETERS

The connection between the above perturbation charac-

teristics and the Reynolds number is still expressed by the

relation

Re = — . (1-32)

It is very instructive to study the trends revealed by

Eqs . 1-28 through 1-32 when parameters A , , and are

held constant while < is allowed to increase. Eq. 1-32

reveals that Re)
T

, Re)
r , and Re)

n
can be decreased indefi-

nitely in this manner. On the other hand, Eq. 1-28 reveals

that any such decrease in Reynolds number always entails a

corresponding increase in the quantity X
R

. Recall that A
R

17



represents exponential growth rate in space. This says

then that stability boundaries are not absolute in character

but depend significantly on the "abruptness" of the pertur-

bation in space as measured by parameter X
R

. The greater

this abruptness parameter, the lower the Reynolds number

at which instability can occur.

Conversely, if the permissible magnitude of X
R

be

limited in some definite manner, the reduction that can be

achieved in Re),., Re) and Re)„ will be correspondingly

limited as well. In that case, a systematic exploration

over appropriate ranges of the parameters A
, , and 9

should ultimately reveal corresponding ultimate stability

limits and, in particular, some critical Reynolds number

below which no instabilities occur. Notice, however, that

such a critical Reynolds number is never absolute, but is

always contingent upon the restriction that has been placed

upon parameter XR .

1. Restrictions on X R

The most obvious and direct restriction that can

be placed on X
R

is simply to limit it to some fixed value

or, for study and comparison purposes, to some series of

successive fixed values. In general, the boundaries which

correspond to incipient, critical and fully developed

instability will then depend on the designated value of

XR . The higher this value, the lower the values of Re

at which the above boundaries will occur.

18



Any such restriction of the magnitude of X
R

implies a

corresponding restriction on k. To show this, invert

Eq. 1-28, solving for k as a function of XR . The result

is

XR\^ 2 *
- cos

XR\* . 2.*
-5r)

+ sin

&
2 * 2 *

cos + sin

(1-33)

This relation may be used in connection with Eq. 1-32

to express the final Reynolds number at which the designated

stability boundary is reached. For incipient instability,

for example, this boundary may be expressed in the form

Re)
* * *_ Re j (A ,0 ,9) (1-34)

4) + sin
2 0*

A

Analogous expressions apply to the boundaries for critical

and fully developed instability.

Equation 1-34 shows quite clearly that the stability

condition in question depends on the three characteristic

parameters A , , 9 of the perturbation as well as on the

limiting value assigned to parameter X
R

. This procedure

19



of calculating stability boundaries for various assumed

combinations of A
, , and AR

has been carried out for

several typical cases and the detailed results are sum-

marized in Section IV of this paper. Of course, these

examples, while representative, merely scratch the surface

of the stability problem. The complication remains that

the true and ultimate stability boundary represents the

lowest possible Reynolds number at which an instability

can just occur. This implies that all possible combinations

of parameters A
, and 9 must be examined to determine

the particular combination which, for a given limit on X
R ,

yields a stability boundary at the lowest possible value

of Re. In other words, the true stability boundary amounts

to the envelope of all the individual stability boundaries.

Each individual boundary is characterized by some

specified combination of A , and 9 and, of course, also

of A
R

. Since there is an unlimited number of such combi-

nations, the amount of calculation involved in establishing

the desired stability envelope is prodigious. Needless to

say, no such attempt was made in the present thesis to

accomplish anything so ambitious.

F. SCOPE OF PRESENT RESEARCH

The present research was restricted to the more modest

and realistic aim of calculating stability boundaries for

ft ft

a few specific and typical combinations of A
, , 9 and

X
R . This goal has been successfully attained.

20



G. PARAMETER G

1. Definition of Parameter

A detailed study of the relations summarized by

Eqs. 1-28 through 1-32 reveals the possibility of express-

ing a restriction on the permissible magnitude of A
R

in a

rather subtle and indirect way, through a change of variable.

The particular algebraic form which the above relations

assume suggests the utility of defining a new parameter,

called G, as follows:

G
2

= 1/2 {[(1-k
2

)

2
+ 4K

2
sin

2
9]

1/2
- (1-k

2
)} (1-35)

This relation can be readily inverted to give

K
2 - GW + 1)

(1 . 36 ,

G + sin 9

2. Utilization of Parameter G

Equations 1-35 and 1-36 may be used to eliminate

parameter k from Eqs. 1-28 through 1-32, replacing it by

the new parameter G. In this way the following results are

obtained.

The vector amplitudes X
R and A

T
turn out to be

related to the new parameter G in a fairly simple fashion.

21



Thus

*
rfr 2 2 * ,1/2

X
R

= A [(G + cos"0 )]' (1-37)

* 2 7*1/7
Xj = A [(G

z
+ sin^0 )]

1/z
(1-38)

On the other hand, the angles A
R

and A
T

are not

simplified by the use of parameter G. Fortunately these

quantities are less significant than the preceding ones.

The governing equations become

tan
2
A = (G 2+sin

2
6)(G

2
-sin

2 ,fe

)^G
2
(G

2 n)sin 2 (0%e)
(1 _ 39)

R
G
Z
(G

2
+l)cos

Z (0*+9)

and

tan
2 = ( G

Z
+sin

Z 9)(G -cos
Z

) + G
Z
(G

Z
+l)cos

Z
(0 + 9)

(1 . 40)
1

G (G +l)sin (0 +6)

The important Reynolds number relation below is once

again simple. For definiteness it is written specifically

for the case of incipient instability, by analogy with

Eq. 1-34. Similar expressions apply also to the boundaries

of critical and fully developed instability. Thus

22



Re) =
/% V 9

Re
T CA ,0 ,9) (1-41)

J G
Z
(G

Z
+ 1)

X

Equation 1-41 shows that the stability depends on

the particular parameters A , , 9 and on the limiting

value assigned to G. Hence G plays a similar role in

relation to Eq. 1-41 that X
R

plays in relation to Eq. 1-34.

The results summarized elsewhere in this thesis

are presented primarily from the perspective expressed by

Eq. 1-34. The alternative version shown by Eq. 1-41 is

included in this discussion because of its theoretical

interest, but this version is not used in the presentation

of calculated results.

Notice that in either version, assuming some assigned

limit for X
R

or G, an exploration is still required over the

domain of parameters A
, and 9 to find the particular

combination that yields the minimum Reynolds number. Of

course, such extensive exploration could not be undertaken

in the present thesis owing to time limitations.

H. REDUCTION TO CLASSICAL THEORY

It is pertinent to note that the classical theory of

the stability of plane Poiseuille flow amounts to a special

case of the more general theory discussed above. It

23



amounts, in fact, to the special case for which

A
R

= 0. (1-42)

Study of Eq. 1-28 reveals that Eq. 1-42 can be satisfied

if and only if we set

9=0. (1-43)

and

0* = \ . (1-44)

From Eqs . 1-28, 1-32, and 1-42 we may infer also that

k = 1 . (1-45)

It then follows from Eq. 1-35 that

G = 0.

Moreover, we also find under these conditions that

a
R

= , 3 R
= , and 6

X
= 0. (1-46)

It is evident that the general theory discussed in this

thesis is immensely more comprehensive than the classical

theory as limited by Eqs. 1-42 through 1-46.

24



II. SIMILARITY TRANSFORMATION

The perturbation characteristics are fully defined, as

in Ref. 1, by the four real parameters a
R , a,, 3 R , and 3j.

ctR
and cu are the components of the complex wave number of

the perturbation in the x direction and 3 R
and 3, are the

components of the complex wave number of the perturbation

in the z direction.

The above parameters satisfy the following relations:

* 10
a = kA e = a

R
+ ia

T
(2-1)

3 = oA*e
llp

= 3 R
+ iSj (2-2)

A very useful alternative set of parameters is ct
R , a,, 9

and k.

*2
a is defined by

*2
7

a » oT + 3 . (2-3)

* * * *
A , , a

R
and a

T
are defined by

*

a = A e v = a
R

+ ia-j- . (2-4)

25



a
R and a

T
are the components of a , the transformed complex

wave number parameter and k is the transformed perturbation

amplitude parameter.

k and 9 are defined by

* ii
a = a Ke (2-5)

A and < are positive by definition.

Given the original parameters a
R , a,, $ R

and 3
T

, the

transformed parameters aR , a-., and k may be deduced from

equations 2-1 through 2-5 as follows:

A* = [(a
2

- a
2

+ 3
2

- 6
2

) + 4(a
R
a

I
+ 3 R3j)

2
] (2-6)

= 1/2 arctan
2 ^aR

a
I

+ W
a
R * a

I
+ 3 R " 3

I

(2-7)

kA* = [a
2

+ a
2

]

1/2
(2-8)

/a
= arctan/ —

\
a
R

(2-9)

* * *
aR

= A cos (2-10)
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X A A
a, - A sin (2-11)

= (0 - 0*) (2-12)

The governing equations of Ref. 1, using the five

independent parameters, Re, a
R , ou , 3 R , 3-r are as follows:

Using the auxiliary expressions below,

2 2

T(7) =
a

R
* B

- a| (1-y
2

) (2-13)

2 +

"Ee~
Uy) =

a
n!

3 + T(y) (2-14)

J(y) = (a
2

+ $
2
)T(y) - 3a (2-15)

the fundamental vorticity equation becomes

[Jg.
H
lv

+ I(y)H" J(y)H] - Y [H" + (a 2
+ 3

2
)H] = 0. (2-16)

The associated vorticity equation is

[Re
G " + (T(y)-Y)G = -^r-T[L HM ' + (T(y)-Y)H'-3ayH] . (2-17)

a +3

The number of independent parameters in equations 2-13

through 2-17 can be reduced to four by utilizing the
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following functional transformations

Re = K
-1

Re* (2-18)

2 2*^
a + B = a (2-19)

* i8
a = a Ke (2-20)

Y = <Y* (2-21)

H(y) = K~V l9
H*(y) (2-22)

G(y) = ic"
1
e"

ie
0G*Cy] (2-23)

Substitution of Eqs. 2-18 through 2-23 into the general

solution, Eqs. 2-13 through 2-17 yields the three auxiliary

functions

*2
* a, * i8 ^ 2

T (y) = %- - a e
1 " i(l-y^) (2-24)

Re
L

*2

I"(y) = ^-r + T"(y) (2-25)
Re

* a *

*2
J (y) = a T (y) - 3a e . (2-26)
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The principal vorticity transport equation becomes

[i_^H +1 (y)H +J Cy)H ]
- Y [H +a H ]

= (2-27)
Re

The associated vorticity transport equation becomes

1 *M * * 1 1 *!tt * * *t
[i-TfC +(T (y)-Y)G = -^t-Ai« + (T (y)-Y )H
Re * L

Re
a

* ie *
-3a e yH ] . (2-28

Equations 2-24 through 2-28 now involve only four
•k * *

parameters Re , a
R , a-r and 0. k, the fifth parameter, has

cancelled out. k becomes part of the solution again during

the reverse transformation of results from starred parameters

to the original parameters.
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III. STABILITY CRITERION

A. BACKGROUND

Studies of the stability of Poiseuille flow have used

various criteria for determining the stability of the flow

from the solutions obtained. The growth rate in time, yR »

is usually used when there is no real-exponential spatial

variation [Salven and Grosch, 1972]. When exponential

growth in space has been included [Garg and Rouleau, 1971]

the real part of the spatial wave number has been used to

give the instability but this procedure, while seemingly

plausible at first inspection, cannot be really justified

with any rigor. The Lagrangian approach described below

is believed to be a superior method for dealing with this

case. In other cases, stability has arbitrarily been

evaluated with respect to a frame of reference moving down-

stream at the phase velocity of the perturbation but again,

this procedure has no strict rational justification, and

especially so in connection with the fully three-dimensional

perturbations considered in this thesis.

B. LAGRANGIAN REFERENCE

For perturbations that are both oscillatory and have

exponential rates of growth or decay in the streamwise and

transverse directions a Lagrangian frame of reference

proves useful. The fluid particles have velocities varying
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from to 1.5 depending on their distance, y, from the

walls. The velocity distribution is given by

U = f(l-y
2

) . (3-1)

Consider a coordinate system moving in the x direction

with the mean velocity of a given fluid particle. Let y

be the mean vertical coordinate of the moving particle.

Then the velocity of the moving reference frame is the same

as the velocity of the streamline along which the above

particle moves and is given by Eq. 3-1. Let x', y, z, t

be the coordinates and a, 3, y' the complex wave numbers with

respect to the moxing axes. The form of the perturbation

vector potential for a given eigenvalue obtained as a

solution is

W = TG(y) + k~H(y) exp (ax + $z + yt) . (3-2)

The complex frequency y' seen from this moving reference

is different than from a fixed frame. To relate y ' to y the

perturbation vector potential is written in the moving

frame and transformed into the form for the fixed frame.
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W = (jG + kH)exp(ax' + Sz + y't)

= (jG + kH)exp(a(x-Ut) + gz + y't)

= (jG + kH)exp(ax + 6z + (y ' - aU)t)

= (j~G + kH)exp(ax + 6z + yt) (3-3)

Therefore

y
f - aU = y (3-4)

Solving for y' and splitting into real and imaginary

parts yields

YR
= Y R

+ a
R
U (3 " 5)

YJ-
= Yj + ctjU (3-6)

If yX is positive, zero, or negative, the perturbation is

said to be unstable, neutral, or stable, respectively, with

respect to the moving reference frame. Thus, the value of

y' is taken to be a measure of the stability of each eigen-

value obtained.
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C. TRANSFORMED STABILITY CRITERION

Consider now the transformation to the starred parameters

The condition of stability is determined by the value of y'

which Eq. 3-5 gives as

YR
= YR

+ a
R
U

' (3 ' 5)

Now

t

Y R
= KYR

*

Y R
= <Y R (3-7)

a
R

= <a
R

Substitution of Eqs. 3-7 into Eq. 3-5 yields

YR
= YR

+ a
RU (3-8)

aR
is defined by Eq. 2-10 as

•*• * a
a
R

= A cos(0 +9) (2-10)

Therefore

* * * *

YR
= Y R

+ A cos(0 +9) (3-9)
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The three stability boundaries, incipient, critical,

and fully developed are determined by the condition that

exists when y R
= 0. Setting Eq. 3-9 equal to zero and

*
solving for y D yields

R

YR
= UA*cos(0*+9) . (3-10)

Now incipient instability corresponds to zero growth rate

with respect to a coordinate system which moves with the

flow velocity at the wall, which is zero.

y*
R )

1
= (3-11)

Critical instability corresponds to zero growth rate with

respect to a coordinate system which moves with the mean

velocity of the flow, which is unity.

Y R )
C

= -A cos(0 +9) (3-12)

Fully developed instability corresponds to zero growth

rate with respect to a coordinate system which moves with

the velocity of the flow on the centerline.

Yr) d
= - jA*cos(0*+0) (3-13)
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IV. RESULTS

A. TRANSFORMED PARAMETERS

Equations 2-24 through 2-28 were solved on the IBM-360

R

*
computer and the most unstable growth rate, y R , for a given

, 9 , Re , A was obtained. The boundaries for incipient

and critical instability were determined by the criteria

explained in Section II. Fully developed instability did

not occur for the case studies. Two values of were

studied at various values of 8, Re , and A .

1. 0* = 90°

Values of 9 explored were 0, 1, 2, 3, 4, 5, and 6°.

Because one-degree increments of 9 yield graphical results

that are extremely cluttered, this study will present the

results only for 9 = 0, 3, and 6°. Figure 4-1 shows the

stability boundaries for = 90°. The effect of changing

9, while holding constant, can be seen. An increase in

9 causes a degrease in Re for both incipient and critical

instability. Also, for a given 9, the boundary for critical

instability occurs at a higher Re than does the boundary

for incipient instability.

There is only one curve for 9=0°. In this case

the criteria for incipient, critical, and fully developed

instability turn out to be identical. Equation 3-10 shows

Yp = -UA*cos(0* + 9) (3-10)
R
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and cos (90° + 0°) = 0; thus the criterion for stability on

the three boundaries is y R
= 0.

Note that the boundary of incipient instability for

0=3° shows an abrupt distoncinuity represented by segment

ab. This discontinuity is similar to that obtained by

Harrison. It is expected that extension of the incipient

boundary for other values of 9 would reveal the same

characteristic.

Figures 4-2 and 4-3 are plots of the growth rate,

YR > versus Re for 9=3° and 6 , respectively. Both plots

show the locus of points that represent the boundaries of

incipient and critical instability. It can be seen that

fully developed instability is not reached even at

Re* = 100,000.

2. = 95
o

Due to a lack of time only two values of 9 were

explored, 9=0 and 3°. A comparison of Fig. 4-4 with 4-1

shows that the stability contours follow much the same

pattern for both cases. However, increasing to 95°

causes a corresponding decrease in Re .

Figures 4-5 and 4-6 show the growth rate as a

function of Re for 0=0 and 3°, respectively. The locus

of points that represent the boundaries of incipient and

critical instability can again be seen. Fully developed

instability is not reached at Re = 100,000.
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B. RESULTS TRANSFORMED TO UNSTARRED PARAMETERS

In order to present the results in a manner consistent

with Ref. 1, it is necessary to transform the results from

starred to unstarred parameters. This transformation puts

the results in a more easily understandable form.

From Fig. 4-7 the following relations can be deduced.

-jr] = 1/2(k 2
+ [(1-k

2
)

2
4K

2
sin

2
9]

1/2
+ cos20*) (4-1)

>

x v2

i) = 1/2(k
2

+ [(1-k
2

)

2
+ 4<

2
sin

2
6]

1/2
- cos20*) (4-2)

tan
2
A = [U-<V + 4K

2
sin 2

9]
1/2

+cos20*-K 2cos2(0* + 9)
(4 _ 3)R

k
2
[1 + cos20

X
+0)

]

72 2 21/7 *? *

tan
2
A = [(!-<) + 4< sin 9]

1/ ^-cos20 +< cos2(0 +9)
1

<
Z
[1 - cos2(0

X

+9)]
(4-4)

Aj. and A
R

are the magnitude and direction, respectively,

of the perturbation and growth vector. X-r and A
T

are the

magnitude and direction, respectively, of the perturbation

oscillation vector.

1. Perturbation Rate Vectors , Magnitude

Figure 4-8 shows G as a function of Re/Re with 9

as an independent parameter; the curves are valid for all

43



Im

cos20

I ? 7 *
^i K COS (0 +9)

7^

sin20-i_^»

rw

2 *
k sin2(0 +6).

R

Figure 4.7. Vector Diagram for Parameter Trans formati on
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values of . For any fixed value of 0, G decreases as

the Reynolds number ratio increases. In the case of 9 = 0°

G decreases with increasing Reynolds number ratio until

Re/Re =1. G then maintains a constant value of zero for

further increases in the Reynolds number ratio. Although

values of 9 above 6° were not explored, values of 9 up to

60° are shown here to demonstrate the trend as 9 increases.

2. Perturbation Growth Rate Vectors, Direction

2 2
The quantities of tan A

R
and tan A

T
are fixed by

2
Eqs . 4-2 and 4-3, respectively. However, if tan AR be

specified, this does not fix A
R
uniquely as there are

four angles, one in each quadrant, which have the specified

value of tan A
R . Similar considerations apply also to the

other angle A,. Hence, to determine A
R

and A. uniquely

it is necessary to consult auxiliary relations which fix

the quadrant in which these angles really fall.

The components of A
R
which fix angle A

R
are

a
R

= X
R
COsA

R
= kA cos (0 +e ) (4-5)

and

The

3 R
= X

R
sinA

R
= aA cosijj . (4-6)

components of A, which fix angle A, are

a j = AjCOsA, = kA sin(0 +9) (4-7)
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and

*

3j = AjSinAj = aA sinij; . (4-8)

Moreover, in this study, the angle (0 +9) has been

restricted to lie in the second quadrant so that

a
R

< (4-9)

a j > (4-10)

Recall that negative values of a
R
were shown by

Harrison to be destabilizing. That is why the present

study is restricted to negative values of a
R .

In order to determine the algebraic signs of

components 8 R and Br, it is necessary to bracket the range

of the angle ty . A study of Fig. 4-7 reveals that for

positive values of 9, the following limits apply.

lim = 0* (4-11)
-

*
IT

lim = (0 +9) - y (4-12)
k -*

z

It is also evident that the x-y plane is a plane of

symmetry and that therefore a reversal of the perturbation
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characteristics with respect to the z axis is permissible

and leaves the essential features of the solution other-

wise unchanged. This amounts to saying that the angle ty

can always be changed by ±180°, with no significant effect

upon the solution except for a reversal of the perturbations

with respect to the plane of symmetry. For definiteness

in this discussion, however, we limit the angle ty as inci-

cated by Eqs . 4-9 and 4-10. It is then evident that the

above auxiliary relations, along with the basic relations

of Eqs. 4-3 and 4-4 , now suffice to fix A
R

and A
T
uniquely

*

for any assigned values of the parameters , 8 and k.

Figure 4-9 shows A
R

as a function of Re/Re for

= 90° with 9 as an independent parameter. This plot

shows a constant value of A
R

90°, for 6=0° and Re < Re .

When Re > Re , the vector magnitude, A
R

is zero. For all

other values of 9 the perturbation growth rate vector, A
R ,

rotates from near the transverse to near the upstream direc-

tion as Re/Re increases.

Figure 4-10 shows the rotation of the perturbation

growth rate vector as Re/Re increases, for = 95°. Note

that when = 90°, A
R

varies between 90° and 180° whereas

when = 90°, A
R

varies between 90° and 270°.

3. Perturbation Oscillation Rate Vectors, Direction

Figures 4-11 and 4-12 are similar plots showing

the rotation of the oscillation rate vector with changing

Re/Re for = 90° and 95°, respectively. Comparing
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Fig. 4-11 with 4-9, for = 90° and 0=0° both A
R

and Aj

have constant values when Re/Re < unity.

4. Stability Boundaries in Unstarred Parameters

Figures 4-13 and 4-14 show the stability boundaries

for unstarred parameters. A is 0.05 for both plots. A

comparison with Figs. 4-1 and 4-4 shows that the character

of the boundaries remains unchanged. However, Reynolds

number is greater than starred Reynolds number.

Although it is not shown here, it was found that

increasing A
R

causes the boundaries to move to the left

and up. In other words, an increase in A
R

causes an

increase in A, and a decrease in Reynolds number.
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V. CONCLUSIONS AND RECOMMENDATIONS

The research reported here is based largely on the

theory developed by Harrison in Ref. 1. However, this

theory is further extended in the present work by the

introduction of a useful similarity transformation. The

transformation reduces the number of independent parameters

required in the computer solution from five to four and

thereby significantly reduces computation time.

In Ref. 1, Harrison showed that negative values of aR

are destabilizing. The results presented here show that,

for negative values of a
R , the critical Reynolds number for

plane Poiseuille flow can be lowered indefinitely by

proper selection of perturbation characteristics, provided

that the corresponding increase in A
R

is acceptable. Thus

the stability boundaries are not absolute in character but

depend significantly on the "abruptness" of the perturbation

in space as measured by parameter A
R . The lowering of the

critical Reynolds number in this way provides one possible

explanation for the disagreement between earlier theory

and experiment.

The stability of the flow along a particular streamline

has been shown to depend on its velocity. Negative values

of a R yield the greater instabilities and streamlines with

the lowest velocities, those nearest the walls, will be

the most unstable. This seems to agree with experiment.
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According to Schlichting, transition from laminar to

turbulent flow is "characterized by an amplification of

the initial disturbances and by the appearance of self-

sustaining flashes which emanate from fluid layers near

the wall along the tube."

Instability was found to be progressive in nature and

two of the three defined stability boundaries were located,

incipient and critical. Further research needs to be done

for a wider range of parameters A
, , and 9 to find the

combinations that correspond to minimum Reynolds numbers at

the above stability levels.
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APPENDIX A

USE OF THE COMPUTER PROGRAM

It was found extremely useful to precompile the program

on a disk thereby avoiding the inconveniences of reading in

the complete card deck for each run. An additional advantage

is a reduction in turn-around time of considerable magnitude.

The following will give procedures and hints that can be

found in the W. R. Church Computer Center but require time-

consuming search.

1. Pre-compiling Program

To compile the program, the following was read

into the system

// Green Job Card, Time =(0,59)

// EXEC FORTCL

// FORT.SYSIN DD *

/*

Program Card Deck goes here. (no data)

//LINK.SYSLMOD DD DSNAME-S2593 . LIB (POIS) ,DISP= (NEW, KEEP)

// UNIT=2 321,VOLUME=SER=CEL006,LABEL=RETPD=2 20,

// SPACE=(CYL, (6,1,1) ,RLSE)

/*

2. Program Execution

Once the program is compiled, running the program

consists of punching data cards in the namelist format and

reading them in with the following deck of cards.
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// Green Job Card,Time= (0 , 59)

// GO EXEC PGM=POIS,REGION=178K

//STEPLIB DD DSNAME=S2593.LIB,DISP=SHR,

// VOLUME=SER=CEL006,UNIT=2321

//FT06F001 DD sysout=A,DCB= (RECFM=FBA,LRECL=133,blksize=3325)

//FTOSF001 DD *

SLIST N=30,REY=3000,TH=.0 5 2360,ASTAR=1.8,PHIS=95,$END

/*

Note: Column 1 is blank on the list card.

Three decks of these cards were used with each having a

different job name, i.e., NEWBY 64A, NEWBY 64B, and NEWBY 64C

This proved useful as three jobs could be loaded at one time

and one could keep track of what was already printed and

what remained to be processed. It was also found to be

useful to have three sets of job cards with each set having

a different time. For Time=(0,59), 59 sec, one list card

(data) was inserted. This was used for quick turn-around

time and only a few points were being explored. For

Time=(2,00), 2 minutes, three list cards could be read in

and for Time=(4,00) six list cards could be used. Occasion-

ally the four-minute time parameter would terminate execu-

tion after five list cards had been processed.

3. Program Alteration after Compilation

If changes were to be made in the program the file

was scratched and a new file established with the changes
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incorporated. To scratch the program on file the following

deck was used.

// Green Job Card

// EXEC PGM=IEHPROGM

//SYSPRINT DD SYSOUT=A

//DD1 DD UNIT=2321,VOL=SER=CEL006,DISP=SHR

//SYSIN DD *

SCRATCH VOL = 2 321 = CEL006,DSNAiME = S2 59 3.LIB,PURGE

/*

Note: The scratch card begins in column 5.

In all three decks the name of the program (POIS)

appears. The choice of a program name is an individual

choice but once chosen it must appear the same in all

card decks. The only other item that appears with unique-

ness is the individual user number. In the context of this

paper that number was 2593 and must agree with the user

number on the job card.

There are two possible selections on input parameters

for obtaining data. Both are used in this study. It is

possible to select values of , 0, Re , and vary A to

find a point. This method was used first and worked well

when obtaining a solution from the computer. The problem

arises when interpreting and transforming the results. It

proves useful to have values for fixed A and this method

does not provide this easily.
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An alternative technique is to select , 6, A , and

then vary Re . To construct Figures 3-1 through 3-6 the

fixed A technique provides data in an easily usable form
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APPENDIX B

CHANGES TO COMPUTER PROGRAM IN REFERENCE 1

The following changes were made to the computer program

in Ref. 1 to convert to starred parameters.

1. Program #1

Statement number 0002 (COMPLEX *16 A,B) was deleted

and two type declaration statements (REAL*8 TH) and

(C0MPLEX*16 A) were inserted. The namelist statement,

number 0008, was revised to read: NAMELIST / LIST /N,REY,

TH,ASTAR,PHIS,VEL. Statement number 0018, B = DCMPLX(BR,BI)

was deleted and the following statements added: PHI =

PHIS/57.2958, AR = ASTAR * (DCOS(PHI)), AI = ASTAR *(DSIN

(PHI)), THD = (TH*180.0)/3. 141592654. Other changes to

program #1 were those required to write out the revised

inputs

.

2. Subroutine DEIGEO

One small change was made to this subroutine due to

the fact that values required by external functions CHM1E1

and CHM2E1 were passed by DEIGEO. Statement 0010 of DEIGEO,

B = BETA, was deleted and TH = THETA was inserted. The

common statement and type declaration statements were

revised to incorporate the change to starred parameters.

3. Functions CHM1E1 and CHM2E1

External functions CHM1E1 and CHM2E1 required

extensive modification as follows:
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The type declaration statement (REAL*8 TH,DUR) was added,

CH4M1(Y) = A/REY was changed to CH4M1 (Y) = A*EI/REY.

CH2Ml(y) was changed to equal

-1.5DO*A**2*EI2*(lDO-y**2)+2DO*AEI*(A**2)/REY .

CHOMl(Y) was changed to equal

-AEI*((A**2)*(1.5D0*AEI*(1D0-Y**2)-(A**2)/REY)

+3D0*AEI)

CH2M2(Y) = A changed to CH2M2(Y) = AEI.

The following statements were added after CH2M2(Y) and

ENTRY CHM2El(k,Y)

:

DUR =0.0

DU = DCMPLX(DUR,TH)

EI = CDEXP(DU)

AEI = A*EI

E12 = CDEXP(2*DU)

.
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PROGRAM ¥1

PROGRAM TO PRINT EIGENVALUES
FOR THE 3-0 POISEULLE FLCW PROBLEM

THIS PROGRAM SOLVES THE LINEARIZEC NAVIER STOKES
ECUATIQN FOR POISEULLE FLOW. THE EIGENVALUES
RESULTING FROM THE FINITE DIFFERENCE APPROXIMATION
AFE PRINTED.

INPUT

THE FOLLOWING MAY BE INPUT TO THE PROGRAM *S DATA
USING NAMELIST, 'LIST'. NOTE, THE DEFAULT VALUES
ARE ONLY SET INITIALLY AND VALUES SET BY THE
USER WILL NOT BE CHANGED BETWEEN RUNS

N - HALF OF THE NUMBER OF FINITE DIFFERENCE GRID
POINTS ACROSS THE CHANNEL NOT INCLUDING THE END
POINTS. N MUST BE .LE. MDIM t WHICH IS THE
DIMENSION OF THE MATRICES IN THIS PROGRAM.
DEFAULTED TO THE VALUE OF NDIM, THAT IS T HE
DIMENSION OF THE MATRICES. SEE PROGRAM BELOW
THE DEFAULT VALUE.

FOR

REY - THE * REYNOLDS NUMBER
VALUE = 60C0.0

(<?EAl*8) DEFAULT

AR, AI - THE REAL
THE STARRED WAVE
DEFAULTED TO 0.0

AND IMAGINARY PARTS
NUMBERS <3EAL*8)
AND 1.0 RESPECTIVELY

OF

VEL - THE VELOCITY OF THE MOVING COORDINATE
REFERENCE SYSTEM FOR WHICH THE STABILITY IS
DETERMINED. (REAL*8) DEFAULTED TO 3.0

OUTPUT

THE OUTPUT OF
EIGENVALUES.

THIS PROGRAM IS A TABULATION OF THE
TWO LISTS ARE PRINTED, ONE FOR THE

EIGENVALUES CORRESPONDING TO EVEN E I GEN FUNCT I GNS
AND ONE FOR THOSE CORRESPONDING TO DDD EIGEN-
FUNCTIONS. THE STABILITY OF EACH EIGENVALUE IS
PRINTED AND THE LEAST STABLE EIGENVALUE IS MARKED
WITH ASTERISKS. A PLOT OF THE EIGENVALUES IS ALS^
PRINTED.

SUEROUTINES

THIS PROGRAM CALLS THE SUBROUTINE •DEIGEO' TO
SOLVE FOR THE EIGENVALUES. SUBROUTINE 'PLCTP'
IS USED TO PLOT THE EIGENVALUES <2H THE PRINTER.

IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 TH
CCMPLEX*16 A
REAL*4 GR4(60) ,GI4(60I
REAL*3 GRE<60) ,GIE(60) ,GR0(60) , GIC(oO)
C0MPLEX*16 XMAT<60,30,3)

CO MP LEX* 16 YM AT (60, 30) ,WVEC(60) ,BMAT( 5,60)
EQUIVALENCE ( Y MAT (1, 1),XMAT(1,1,3)),

* ( SMAT(l,l),XMAT(i, 1,3) )

,

* (WVEC(l) ,XMAT( 1,6,3)

)

NAMELIST / LIST / ,N , REY ,TH, AST A R , PHI S , VE L
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C INITIALIZE VARIABLES (SET DEFAULT VALUES)
C

MOIM = 60
N = 60
REY = 6000D0
Th = 000
VEL = 0C0

C
C READ NAMELIST AND SET ALPHA AND ASTAR
C

1 REA0(5,LIST,ENO=100)
PHI = PHIS/57.2958
AR = ASTAR *(DCOS(PHI ))
AI = ASTAR * CDSINCPH1 )

)

A = DCMPLX(AR,AI )

TFD = (TH*180.0)/3. 141592654
C
C PRINT INPUT VALUES AS PAGE HEADI.MG FOR EIGENVALUE LIST
C

WRITE<6,9004)
9004 FCPMAT< »i< )

WPITE(6,250) PHIS
250 FGPMAT('0',' PHI STAR =',2X,F10.7)

WPITE(6,9005 ) N , RE Y, A • THO

,

VEL
9005 FCPMATC N =',14,/,' REY = ' , F 10 . 2 , 6X, • AL PHA = ',

* 2F12.7,3X, '7HETA =
• , F12 .

7

T / t
' VEL =',F7.2)

WRITE(6,9055)ASTAR
9055 FGPMAT( '0' ,' A-STAR =',F12.7)

C
C CALL SUBROUTINE TO SOLVE FOR EIGENVALUES.
C

CALL DE I GEO { A , TH , R E Y , N , M 01 M , GR E , G I E , GRO , G 1 , XMAT

,

YMm T,
* 8MAT,WVEC)

C
C DETERMINE WHICH EIGENVALUE IS THE lEAST STABLE.
C

TEMP = -1D10
MARK = 1

C
CC 20 I=1,N
IF(GRO(I )+AR*VEL.LT.TEMP) GO TO 20
TEMP = GROU )+AR*VEL
ITEMP = I

20 CCNTINUE
C

DO 40 I=ltN
IFCGREC

I

)+AR*VEL.LT.TEMP) GO TO 40
TEMP = GRE(

I

)+AR*VEL
ITEMP = I

MARK = 2
40 CCNTINUE

C
C LIST EIGENVALUES FOR ODD E I G6NFUNCT I CNS
C

WRITE<6,9002)
9002 FORMAT*///, 6X, 'GAMMA REAL ', 5X, ' GAMMA IM AG ' , 12X, • STAB '

)

WRITE(6,9006)
9006 FORMAT* «0E IGEN VALUES FOR ODD EIGENVECTORS',/)

C
DC 50 1=1,

N

TEMP = GROU )+AR*VEL
WRITE* 6, 9000 ) GRO ( I )

,

GIO ( I

)

,TEMP
I FCI.EQ. ITEMP.AND.MARK.SQ.il WRITE*6,90 01)

5C CCNTINUE
90 30 FORMAT ( 'O' , 1P2D1 5. 4, 1PD20. 4

)

9001 FORMAT( ' + • ,52X, •***» )

C
C LIST EIGENVALUES FOR EVEN EIGENVECTORS.
C

WRITE (6, 9007)
9007 FORMAT( • OEI GENVALUES FOR EVEN EIGENVECTORS',/)

DO 55 1=1,

N
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c
c
c
c

TEMP = GREU )+AR*VEL
*RITE(6*9000) GRE( I)»GIE(I) tTEMP
IMI..EQ.ITEMP.AND.MARK.EQ.2J WRI TE (6,900 1

}

55 CCNTINUE

PUT EIGENVALUES
StePOUTINE TO DC?

INTO SINGLE PRECISION VECTORS
PLOTTING FOR GDC FUNCTIONS.

TC PASS TO

C
c
c

CG 60 I=1,N
GR4U ) = SNGL(GRO< I ) )

6C GI4U ) = SNGL(GIO(I ) )

WRITE<6,9004)
CALL PLCTP(GR4 f GI4fN t 0)
WRITE<6,9005) Nt RE Y,

A

,THD, VEL
WRITE(6,9055 ) ASTAR

SIMILARLY PLOT EIGENVALUES FOR EVEN EI GENFUNCT I CNS

DC 65 I=1,N
GP4dJ = SNGL(GREd))

65 GI4d ) = SNGL(GIE( I) )

WRITE(6 T 9004)
CALL PL0TP(GR4,GI4,N,0)
*RITE(o,9005 ) N, REY, A f THD,VEL
WRITE(6,9055) ASTAR

GC TO 1

130 WRITE(6,9004)
STCP
ENC
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SUBROUTINE DEIGEO

PURPOSE

DEIGEG SOLVES THE LINEARIZED N A V IER-S TOKE S EQUATION
FOR PCISEULLE FLOW. THE INPUTS TO DEIGEO ARE THE
STARRED WAVE NO.* ALPHA t THETA *, AND STARRED
REYNULDS NUMBER.
CEISEO OUTPUTS THE EIGENVALUES FOR GAMMA.

USAGE

CALL CEIGEO(ALPHA,THETA,REYNQ,N,MOIM, rfREVENfWI EVEN,
WROOD,WIOOO,CDM,DM,3M,WV)

DESCRIPTION CF PARAMETERS

THE FOLLOWING MUST BE SET BY THE CALLING PROGRAM...
ALPHA, THET At REYNO T N, MDIM

ALPHA - THE PERTURBATION WAVE NUMBER IN THE FLOW
DIRECTION (X). (COMPLEXES)

REYNO - THE REYNOLDS NUMBER <REAL*8)

N - THE SIZE OF THE MATRICES WHICH IS EQUAL T3
(ND-D/2 WHERE NO IS THE NUMBER OF DIVISIONS
ACROSS THE CHANNEL. (NOTE... DEIGEG SOLVES THE
PR3BLEM ACROSS THE HALF CHANNEL TWICE - ONCE FCR
ThE EIGENVALUES CORRESPONDING TO THE EVEN
EIGENFUNCTIONS AND ONCE FOR THOSE CORRESPONDING
TO THE ODD EIGENFUNCTIONS.

MDIM - THE COLUMN DIMENSION OF THE MATRICES WHICH
DEI GEO USES. MDIM MUST BE .GE. N

THE FOLLOWING ARE OUTPUT BY DEIGEO
MREVENtWI EVEN tWROOOfW IOOO

WREVEN,WIEVEN - THE REAL AND IMAGINARY PARTS IF "HE
EIGENVALUES CORRESPONDING TO THE EVEN
EIGENFUNCTIONS. DIMENSIONED TO AT LEAST N.
(REAL*8)

WR0DD,WI0DD - THE REAL AND IMAGINARY PARTS OF THE
EIGENVALUES CORRESPONDING TO THE ODD
EIGENFUNCTIONS.
<REAL*8)

DIMENSIONED TO AT LEAST N.

THE FOLLOWING MATRICES MUST BE INPUT TO DEIGEO AS
WORKSPACE.

CCM(MOIM,MDI M) (C0MPLEX*16)
CM(MDIM,MDIM) <REAL*8)
BM<5,MDIM) (C0MPLEX*16)
WV(MDIM) (CGMPLEX*lto)

NCTES...

THE MATRICES CAN BE OVERLAPPED TO CONSERVE SPACE,
FOR EXAMPLE, FOR N = 60...

CCMPLEX*16 CDM(60,30,2)
COMPLEX* 16 DM (60, 30), *V(6C) ,3M( 5,60)
EQUIVALENCE ( DM( 1 , 1 )

,

COM ( 1 , 1 , 3 ) ),
<BM<1, 1) ,C3M( 1,1,3) )

,

WVEC(1),CDM(1,6,3> )

NOTE THAT IT IS ONLY THE ACTUAL SIZE OF Tl-ESE
WORKSPACES THAT IS IMPORTANT, NOT THEIR TYPE.
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C OTHER ROUTINES NEEDED
C
C THE FOLLOWING ARE CALLED BY CEIGED
C
C CHM1E1,CHM2E2,MSET,CDMTIN, BMSET, MULDBM

,

CSPLIT,
C EFESSCELRH1C
c
c
c

SUE ROUTINE DE IGE ( AL PHA, THETA, REYNO, N, MD I M

,

* WREVEN,WIEVEN, WRODD,WlGCD, CDM,DM,3M, WV

)

IMPLICIT C0MPLEX*16(A-H,0-Z)
DIMENSION IVECQOOJ
REAL* 8 WREVEN( 1),WIEVEN{1) T WRODD(1),WIOOD(1)
REAL*8 CCM(1),DM( 1),8M<1) ,WV<1 i

RE£L*3 REY,DELY, REYNO
REAL*8 TH, THETA
CCMMON / COEFNT / A , TH , G , RE Y

,

DEL Y
EXTERNAL CHM1 El

,

CHM2E 1

C
C THIS SUBROUTINE SOLVES THE EQUATION YV = GXV WHE^E
C X AND Y ARE MATRICES, V IS THE EIGENVECTOR AND G IS THE
C EIGENVALUE. THE EIGENVALUES ARE DE T E~MI,\ED ANC PASSED
C BACK TO THE CALLING PROGRAM IN WRGDD, wTDDD, WREVEN AND
C WIEVEN.
C

A = ALPHA
TH = THETA
REY = REYNO

C
C SET UP MATRIX X FOR ODO EIGENVECTORS.
C

CALL MSET(CDM,N,MDIM, 1,CHM2E1)
C
C INVERT MATRIX X.
C

CALL CDMTIN(N,CDM,MDI M,OETERM)
C
C SET UP MATRIX Y IN BAND STORAGE MODE FOR ODD EIGENVECTORS.
C

CALL 3MSET(BM,N, MDIM, 1,CHM1E1)
C
C MULTIFLY MATRIX Y BY THE INVERSE OF MATRIX X TO CONVERT
C TO THE STANDARD EIGENVALUE PROBLEM WHICH HAS THE FORM
C (Z-G)V = WHERE Z = ( Y ) ( INVE RSE ( X ) ) .

C
CALL MULDBMCCDM, 3M ,N , 5 , MDI M, WV

)

C
C SPLIT MATRIX INTO REAL AND IMAGINARY PARTS ANC CALL
C THE SLEROUTINES TO FIND THE EIGENVALUES.
C

CALL DSPLIT(N,MDIM,COM,CDM,DM)
CALL EHESSCCCDM, OM f lfNfNtMOIM, IVES)
CALL ELRH1C( CDM, DM,1 ,N ,N

,

MDI M, WR C CO, W IODC, I NE RR , I ER

)

IF(INEPR.NE.O) WRITE(6,9C00) INERR T IER
9O0C FCRMAT( 'OERROR NUMBER',17,' ON EIGENVALUE •, I 7, ///

)

C
C REPEAT THE SOLUTION FOR EIGENVALUES FCR THE EVEN
C EIGENVECTORS
C

CALL MSET(CDM,N,MDIM, 2,CHM2E1)
CALL CDMTIN(N,CDM,MDI M,DETERM)
CALL 3MSET(8M,N, MDIM, 2,CHM1E1)
C^LL MULDBM(COM. BM,N, 5, MDIM, WV)
CALL DSPLIT(N,MDI M,CDM,CDM,DM )

CAL-L -EHESSC( COM, DM,1 ,N,N,MDIM, IVEC J

CALL ELRH1C(CDM, DM , 1 , \, N

,

MDIM, WR EVEN , WI

E

VEN , I NERR

,

IER)
IFUNERR.NE.O) WRI TE (6 ,9000 ) INERR,IER
RETURN
ENC
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C... SUBROUTINE MULDBM
C
C
C PURPOSE
C
C NULDBM PERFORMS THE MATRIX MULTIPLICATION BETWEEN A

C SQUARE MATRIX X AND A BANDED MATRIX XB WHICH HAS
C BEEN SET UP BY SUBROUTINE BMSET. THE RESULT IS
C PLACEC BACK IN X. THAT IS...
C X = (X) (XB)
c
C USAGE
C
C CALL MULDBM(X,XB,N,N3,MDIM,TEMPV)
C
C DESCRIPTION OF PARAMETERS
C
C THE FOLLOWING MUST BE SET BY THE CALLING PROGRAM.
C NfMDIMtNBtXf XB f TEMPV
C
C N - THE SIZE OF THE MATRICES.
C
C MDIM - THE DIMENSIONS OF THE MATRICES IN THE CALLING
C PROGRAM.
C
C NB - THE NUMBER OF BANDS IN THE BANDED MATRIX, X3.
C
C X - THE SQUARE N BY N MATRIX. CIMENSIGNED
C (MDIM, MDIM) IN THE CALLING PROGRAM (COMPLEX* 16

)

C
C XB - THE N BY N MATRIX WHICH IS STORED IN BANDEC
C FORM. DIMENSIONED (N3,MDIM) IN CALLING PROGRAM.
C (C0VPLEX*16)
C
C TEMP\/ - A VECTOR WORKSPACE WHICH MUST BE PROVIDEC BY
C THE CALLING PROGRAM, DIMENSIONED AT LEAST (N).
C (C0MP1_EX*16)
C
C THE FCLLCWING IS OUTPUT BY MULCBM.
C
C X - SET TO THE PRODUCT OF X AND XB (MDIM,VDIM)
C <CGMPLEX*16)
C
C REQUIRED ROUTINES
C
C NONE
C
c
C.3
c

S L BROUT I N E MU LD3 M ( X , X 8 , N, W 3 , MD I M , T EM P V

)

COMPLEX* 16 X(MDIM,MDI M) ,X3(NB, MDIM) t TEMP V(MCIM), TEMP
NehM = (NB-D/2
NEHP = (NB+1J/2

C
C LCCP CVER INDEX I

C
CO 100 1=1,

N

c
C STCRE COLUMN I OF MATRIX X TEMPORARILY
C

CC 10 J=1,N
10 TEMPV( J) = X(I,J)

C
C FIND PRODUCTS FOR FIRST NBHM SPECIAL CASES, THAT IS WHERE
C WHERE THE BANDED MATRIX DOES NOT HAVE ITS FULL WIDTH
C

CO 22 J =1, NEHM
TEMP = (ODOtODO)
JJ = MBHM + J
CC 21 K=1,JJ
JJJ = JJ-K+1
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c
c
c
c
c

c
c
c

21 TEMP = TEMP+TEMPV(K) *XB( JJJ,K)
22 X(I,J) = TEMP

COMPUTE PRODUCTS FOR "REGULAR" COMBINATIONS CF RO'rtS ANO
CGLUMNSt ThAT IS, THOSE THAT ARE NOT TRUNCATED
AT THE BEGINNING OR END BY THE BOUNDARIES

JF = N-NBHM
CO 22 J=NBHPjJF
TEMP = (OCCODO)
CO 31 K=1,NB
JJJ = NB-K+1

21 TEMP = TEMP+TEMPV( J-NBHP+K ) *X3 ( J J J , J-NBHP+K

)

32 X( I, J) = TEMP

FIND PRODUCTS FOR LAST NBHM SPECIAL CASES.

DC 42 J=1,NBHM
TEMP = (ODO.ODO)
JJ = NB-J
DO 41 K = 1,JJ

41 TEMP = TEMP+TEMPV(N-JJ+K)*XB(N3-K+1,N-JJ+KJ
42 XUfN-NBHM+J) = TEMP

100 CONTINUE

RETURN
ENC
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C. , SUBROUTINE MSET
C
c
C PLPPOSE
c
C MSET SETS UP A MATRIX FOR THE FINITE DIFFERENCE
C PROBLEM OF POISEULLE FLOW WITH THE PROPER BOUNDARY
C CONDITIONS FOR THE VELOCITY VECTOR POTENTIAL FOR
C VISCOUS FLOW.
C
C USAGE
C
C CALL MSET(X,N, MDIM, MODE, CFMAT )

C
C DESCRIPTION OF PARAMETERS
C
C THE FOLLOWING MUST BE SET BY THE CALLING PROGRAM
C N, MDIM, MODE. CFMAT
C
C N - THE SIZE OF THE MATRIX. IF M3DE=0, N IS EGUAL
C TO THE NUNBER OF POINTS OF THE FINITE DIFFERENCE
C MESH ACROSS THE CHANNEL NOT INCLUDING Tt-E TWO
C BOUNDARIES. IP MGDE=1 OR MODE=2, N IS EQUAL TO
C CNE-HALF OF THE NUMBER OF INNER POINTS ACROSS THE
C FULL CHANNEL. IN THIS CASE, THE CHANNEL MUST BE
C DIVIDED INTO AN EVEN NUMBER CF POINTS SC THAT N
C WILL BE AN INTEGER.
C
C MDIM - THE COLUMN DIMENSION QP THE MATRIX X. MDIM
C MUST BE .GE. N.
C
C MODE - IF MODE=0, THE MATRIX IS SET U D FOR THE FULL
C CHANNEL. IF MODE=l OR MODE=2, THE MATRIX IS SET
C UP FOR THE HALF CHANNEL AND THE BOUNDARY
C CONDITIONS ARE SET SUCH THAT THE ODD OP EVEN
C EIGENFUNCTIONS , RESPECTIVELY, ARE SOLVEC FOR.
C
C CFMAT - THE NAME OF A FUNCTION SUBPROGRAM WITH TWO
C PARAMETERS, K AND Y, INDICATING WHICH TERM JF THE
C FINITE DIFFERENCING IS DESIRED, AND THE POSITION
C RELATIVE TO THE CENTER OF the CHANNEL. MUST BE
C DECLARED EXTERNAL IN THE CALLING PROGRAM.
C (C0MPLEX*16)
C
C THE FCLLOWING IS OUTPUT BY MSET
C
C X - THE N BY N MATRIX INTO WHICH THE COEFFICIENTS
C OF THE FINITE DIFFERENCING ARE PUT. MUST BE
C DIMENSIONED (MDIM, MDIM) IN THE CABLING PROGRAM.
C <C0MPLEX*i6)
C
C NCTES...
C
C THE EIGENVALUES AND VECTORS OBTAINED 3Y USING MSET
C TWICE, WITH MCDE=1 AND MCDE=2, ARE THE
C SAME AS USING MSET ONCE WITH MCOE=0, BUT WITH
C N TWICE AS LARGE.
C
C OTHER ROUTINES NEEDED
C
C NONE - EXCEPT THE FUNCTION SUBPROGRAM NAME PASSED IN
C THE PARAMETER 'CFMAT'.
C
c
c

SLEROUTINE MSET ( X, \,MD I M, MODE, CFMAT )

REAL*8 REY,Y,OELY,DFLOAT
CCNPLEX*lo A,G
REALMS TH
CCMMON / COEFNT / A,TH,G,REY ,DEL

Y

CCNPLEX*16 CFMAT
COMPLEX*16 X(MDIM,MDIM)
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c
C CCMPUTE GRIC SIZE FOR FINITE DIFFERENCE MESH ACROSS
C HALF CHANNEL OR FULL CHANNEL
C

CELY = 2D0/DFL3AT(N+1 )

IF(MC0E.EQ.1.0R.M0DE.EQ.2) OELY = 200/D FLC AT ( 2*N + L

)

C
C CHECK IF MATRIX DIMENSIONED LARGE ENOUGH
C

IF(N.LE.MDIM) GO TO 1

WPITE(6»9000)
9000 FCPMATt'O* * * ERROR - ARRAYS NOT DIMENSIONED LARGE',

* • ENOUGH * * *'

)

STOP
C
C ZERO ENTIRE MATRIX
C

1 CC 10 1=1, N
DC 10 J=1,N

10 X(ItJ) = (ODO,ODO)
C
C DC SPECIAL CASE AT DISTANCE DELY FROM CHANNEL WALL
C INCLUDING 6CUNDARY CONDITIONS
C

Y = 1D0-DELY
X(l,l) = CFMAT(3,Y)+CFMATll ,Y)
X(l,2) = CFMAT(4, Y)
X(l,3) = CFMAT(5,Y)

C
C DO SPECIAL CASE AT DISTANCE 2*DELY FROM CHANNEL WALL
C INCLUCING 30UNCARY CONDITIONS
C

Y = 1D0-2D0*DELY
X(2,l) = CFMAT(2,Y)
X(2 t 2) = CFMAT(3,Y)
X(2,3) = CFMAT<4, Y)
X<2,4) = CFMAT(5,Y)

C
C DO ALL REGULAR POINTS IN BETWEEN, THAT IS, THOSE VALUES
C OF Y FCR WHICH ALL 5 FINITE DIFFERENCE GRID POINTS ARE
C INTERIOR TO THE CHANNEL
C

IL = N-2
DO 20 1=3, IL
K = 1-3
Y = 1Q0-DELY*DFL3AT(T )

DC 20 J=l,5
20 X(I,K+J) = CFMAT

(

J,Y)
C
C FINALLY DO THE TWO SPECIAL CASES WHICH OCCUR EITHER AT
C THE CENTER OF THE CHANNEL DR. AT THE OTHER WALL, DEPENDING
C ON THE VALUE OF MODE. BOUNDARY CONDITIONS ARE SET UP
C DEFENDING CN MODE
C

Y = 1D0-DELY*DFL0AT(N-1)
X(N-l,N-3) = CFMAT(1,Y)
X(N-i,N-2) = CFMAT(2,Y)
X(N-l f N-l) = CFMAT(3,Y)
X(N-1,N) = CFMAT(4,Y)
IF(MODE.EQ.l) X(N-1,N) = CFMAT ( 4 , Y ) -CFM AT ( 5 , Y

)

IF(MQDE.EQ.2) X(N-ltN) = CFMAT ( 4 , Y ) +CFM AT ( 5 , Y

)

C
Y = 100-DELY*DFL0AT<N)
X(N,N-2) = CFMAT( 1,Y)
X(N,N-1 ) = CFMAT(2,Y)
IF(MrOE.EQ.l) X(N,N-1) = CFMAT ( 2 , Y ) -CFM AT ( 5 , Y

)

IF(M0DE.EQ.2) X(N,N-1) = CFMAT ( 2 , Y ) +CFMAT ( 5 , Y

)

X(N,N) = CFMAT(3,Y)+CFMAT(5,Y)
IF(MODE.EQ.l) X(N,N) = CFMAT ( 3 , Y ) -CFM AT < 4 , Y

)

IF(M00E.EQ.2) X(N,N) = CFMAT ( 3 , Y ) +CFMAT ( 4, Y

)

C
RETURN
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ENC
C SUBROUTINE BMSET ,

C
C
C PLPPOSE
C
C THE PURPOSE OF BMSET IS EXACTLY THAT OF MSET EXCEPT
C THAT BMSET TAKES ADVANTAGE OF THE BANDED NATURE OF
C THE FINITE DIFFERENCE MATRICES TO CONSERVE SPACE.
C
C USAGE
C
C CALL BMSETU, N,MDIM, MODE, CFMAT )

C
C DESCRIPTION OF PARAMETERS
C
C THE PARAMETERS FOR BMSET ARE THE SAME AS THOSE FOR
C MSET WITH THE EXCEPTIuN THAT THE MATRIX X MUST BE
C DIMENSIONED (5,MDIM) IN THE CALLING PROGRAM.
C
C NCTE: THE PROCEDURE IS IDENTICAL TO THAT OF MSET.
C COMMENTS HAVE THEREFORE NOT BEEN INCLUDED IN 3MSET.
C
c
c...
c

SUBROUTINE BMSET ( X , N, MDIM, MODE , CFMAT )

REAL*8 REY,Y,DELY,DFLCAT
CCMPLEX*16 CFMAT
CCVPLEX*16 A V G
CCMPLEX*16 X(5,MDIM)
REAL'S TH
CCMMGN / COEFNT / A ,TH , G, REY , DELY
DELY = 2D0/DFL0A7(N+1)
IF(MODE.EQ.1.0R.MODE.EQ.2) DELY = 2D0/DFLCAT ( 2*N+ 1

)

IF(N.LE.MDIM) GO TO 1
WRITE(6,900C)

9000 FCRMATCO* * * ERROR - ARRAYS NOT DIMENSIONED LARGE',
* « ENOUGH * * *•

)

STCP
1 DC 10 1=1,5

DC 10 J=1,MDIM
10 X(ItJ) = (ODO,ODO)

Y = 1D0-DELY
X(2,l) = CFMAT(3,Y)+CFMATQ ,Y)
X<4,1) = CFMAT(4, Y)
X<5,1) = CFMAT(5, Y)
Y = 1D0-2D0*DELY
X(2,2) = CFMAT(2,Y)
X (3,2) = CFMAT(3, Y)
X(4,2) = CFMAT(4,Y)
X(5,2) = CFMAT(5,Y)
IL = N-2
CO 20 1=3, IL
Y = 1D0-DELY*DFL0AT(I )

DC 20 J =1,5
20 X(J,I ) = CFMAT( J, Y)

Y = 1D0-DELY*DFL0AT(N-1)
X( 1,N-1 ) = CFMAT(l t Y)
X(2,N-1) = CFMAT(2, Y)
X(3,N-1J = CFMAT(3,Y)
X (4,N-1) = CFMAT(4,Y)
IF(M0DE.EQ.1 ) X(4,N-1) = CFMAT ( 4 , Y ) -CFM AT ( 5 , Y)
IF(M0D£.EQ.2) X(4,N-1) = CPMAT (4 , Y ) +CFM AT ( 5 , Y )

Y = 1D0-DELY*DFL3AT(N)
X(1,N) = CFMAT( 1,Y)
X(2,N) = CFMAT(2,Y)
IF(MODE.EQ.l) X(2,N) = CFMAT< 2 , Y ) -CFMAT ( 5 , Y

)

IF(M0DE.EG.2) X(2,N) = CFMAT( 2 , Y ) +CFM AT < 5, Y )

X(3,N) = CFMAT13, Y ) +C FMmT ( 5 , Y

)

IF(MODE.EQ.l) X(3,N> = CFMAT ( 3, Y ) -CFMAT ( 4, Y )

IF(M0DE.EQ.2) X(3,N) = CFMAT ( 3 , Y ) +CFMAT ( 4 , Y )
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RETURN
ENC

C • SUBROUTINE DSP LIT
C
C
C PURPOSE
c
C DSPLIT TAKES A MATRIX OF CCMPLEX*16 NUMBERS AND
C SPLITS IT INTO TWO MATRICES, ONE CONTAINING THE REAL
C PART CF THE ORIGINAL MATRIX, ANC ONE CONTAINING THE
C IMAGINARY PART.
C
C USAGE
C
C CALL CSPLIT(N,MDIM,A,AREAL, AIMAG)
C
C DESCRIPTION OF PARAMETERS
C
C N - THE SIZE OF THE MATRIX A, AN N BY N SCUARE
C MATRIX.
C
C MDIM - THE COLUMN DIMENSION OF MATRIX A
C
C A - THE INPUT MATRIX. MUST BE DIMENSIONED MDIM BY
C AT LEAST N IN THE CALLING PRCGRAM <CGMFLEX*16)
C
C AREAl,AIMAG - THE OUTPUT MATRICES CONTAINING THE
C REAL AND IMAGINARY PARTS, RESPECTIVELY, OF
C MATRIX A. MUST 3E DIMENSIONED (MDIM, MDIM) IN THE
C CALLING PROGRAM.
C
C NCTES...
C
C MATRIX A AND MATRIX AREAL MAY OVERLAP IF THEY ARE
C DIMENSIONED IN THE CALLING PROGRAM AS FCLLGWS...
C
C C0MPLEX*16 A(MDIM,MDIM)
C REAL*8 AREAL (MCIM, MDIM) ,AIMAG( MDIM, MCIM)
C EQUIVALENCE( A(l,l) ,AREAL(1, 1)

)

C
C OTHER ROUTINES NEEDED
C
C NONE
C
C
C...
r

SUBROUTINE CSPLI T ( N

,

MDIM , A , AR , AI )

REAL* 8 A<2»MDIM, MDIM), ARC MDIM T MOI*)fAI (MDIM, MDIM)
C

CO 1 J=1,N
DC 1 1=1,

N

AR(I,J) = A(l, I, J )

1 Aid, J) = A(2, I, J)
C

RETURN
ENC
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c,
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c,
c

c
c
c

c
c
c

SLBROUTINE CDMTIN (CATEGORY F-l

J

PLRPOSE

INVERT A C0MPLEX*16 MATRIX

LSAGE

CALL CDMTIN<N»A f NDIM,DETERMl

DESCRIPTION OF PARAMETERS

N - ORDER OF C0MPLEX*16 MATRIX TO 3E INVERTED
(INTEGER) MAXIMUM »N' IS 100

A - C0MPLEX*16 INPUT MATRIX (DESTROYED). THE
INVERSE OF «A' IS RETURNED IN ITS PLACE

NDIM - THE SIZE TO WHICH «A' IS DIMENSIONED
(ROW DIMENSION OF 'A* ACTUALLY APPEARING
IN THE DIMENSION STATMENT OF USER'S
CALLING PROGRAM)

DETERM - C0MPLEX*16 VALUE OF DETERMINANT OF 'A'
RETURNED BY CDMTIN.

REMARKS

MATRIX 'A 1 MUST 8E A CGMPLEX*8 GENERAL MATRIX
IF MATRIX 'A* IS SINGULAR THAT MESSAGE IS PRINTEO
•N« MUST BE .LE. NDIM

SLBRCUTINES ANO FUNCTIONS REQUIREC

ONLY BUILT-IN FORTRAN FUNCTIONS

METHOD

GAUSSIAN ELIMINATION WITH COLUMN PIVOTING IS USED.
THE DETERMINANT IS ALSO CALCULATED. A DETERMINANT

OF ZERO INDICATES THAT MATRIX 'A« IS
SINGULAR.

SLeROUTINE CDMTIN ( N, A ,NDI M

,

DETERM )

IMPLICIT REAL*8 (A-H.O-Z)
COMPLEX* 16 A (NDIM, NO I M ) , P I VOT ( 100 ) , AMAX , T , S *A P

,

* DETERM.

U

INTEGER *4 I PI VOT ( 100) ,INDEX( 100 r 2 )

REAL*3 TEMP,ALPHA(100)

INITIALIZATION

CETERM = (lDOtODO)
DC 20 J = 1,N
ALPHA(J) = ODO
CC 10 1=1.

N

10 ALFHA( J)=ALPHA( J)+A(J ,I)*DCCNJG( A(J, I)

)

20
ALPHA ( J)=DSQRT( ALPHA ( J)

)

IFIVOT( J)=C
CO 600 1=1,

N

SEARCH FOR PIVOT ELEMENT

AMAX = (OCO,ODO)
DO 105 J=1,N
IF (IPIVOT(J)-l) 60,105,60

60 CO 100 K=1,N
IF ( IPIVOT(K)-l) 80,100,740
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80 T=yP=AMAX*DCQNJG(AMAX )-A( J , K ) *DCGNJG( A( J , K) )

IF(TEMP) 85, 85, 100
8 5 IB0W»J

ICCLUM=K
AMAX=A( J,K)

100 CCNTINUE
105 CONTINUE

IPIV0T(IC0LUM)=IPIV0T(IC0LUM)+1
C
C INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL
C

IF(IROW-ICCLUM) 140, 260, 140
140 DETERM=DETERM

CO 200 L=1,N
SWAP=A( IROWtU
A(IROW,L)=A< ICOLUM,L)

200 A( ICOLUM,L)=SWAP
SWAP=ALPHA(IRQW)
ALPHA(IROW)=ALPHA(ICOLUM)
ALPHA(iCOLUM)«SWAP

260 INCEX( I,1) = IR0W
INCEX(I,2)=IC0LUM
PIVOT(Il*A(ICOLUM,ICOLUMI
L=PIVOT(I )

TEMP=PI VOT(I )*0C3NJG(PIV0T( I )

)

IF(TEMP) 330, 720, 330
C
C CIVIDE PIVOT ROW BY PIVOT ELEMENT
C

330 A(ICGLUM,ICOLUM) = (1C0,0D0)
DC 350 L=1,N
L=PIVOT(I )

350 A(ICOLUM,L)=MICOLUM,L)/U
C
C REDUCE NDN-PIV3T ROWS
C

38C CO 550 L1=1,N
IF(Ll-ICOLUM) 400, 550, 400

400 T=A(L1, ICOLUM)
A(L1,ICCLUM) = (OCO,ODO)
CO 450 L=1,N
U=A(ICOLUM,L)

450 A(L1,L)=A(L1,L)-J*T
550 CCNTINUE
600 CONTINUE

C
C INTERCHANGE COLUMNS
C

620 DC 710 1=1,

N

L=N+1-I
IF(INDEX(L,1)-INDEX(L,2) ) 630, 71C, 630

630 JR0W=INDEX(L,1)
JC0LUM=INDEX(L,2 )

CO 705 K=1,N
SWAP=A(K, JRCW)
A(K, JROW)=A(K, JCOLUM)
A(K,JCOLUM)=SWAP

705 CONTINUE
710 CCNTINUE

RETURN
720 WRITE(6,730)
730 F0RMAT(20H MATRIX IS SINGULAR)
74C RETURN

END
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C.EHESSC. ,

c
C FUNCTION REDUCTION OF A COMPLEX MATRIX TO
C UPPER HESSENBERG FORM,
C USAGE - CALL EHESSC ( AR , AI . K , L , N . I A, I D

)

C PARAMETERS AR - INPUT/OUTPUT MATRIX OF CIMENSION
C N BY N.
C ON INPUT CONTAINS THE REAL
C COMPONENTS OF THE REDUCED HESSEN
C BERG FORM IN UPPER TRIANGULAR
C PORTION ANC THE DETAILS OF THE
C REDUCTION IN LOWER TRIANGULAR
C PORTION.
C AI INPUT/OUTPUT N BY N MATRIX
C CONTAINING THE IMAGINARY COUNTER
C PARTS TO AR, ABOVE.
C K - INPUT SCALAR CONTAINING THE ROW
C AND COLUMN INDEX OF THE STARTING
C ELEMENT TO BE REDUCED BY ROW
C SCALING. FOR UNBALANCED
C MATRICES SET L = N.
C L INPUT SCALAR CONTAINING THE ROW
C AND COLUMN INDEX OF THE LAST
C ELEMENT TO BE REDUCED BY ROW
C SCALING. FOR UNBALANCED
C MATRICES SET K = 1.
C N INPUT SCALAR CONTAINING THE ORDER
C OF THE MATRIX TO BE REDUCED.
C IA INPUT SCALAR CONTAINING ROW
C DIMENSION CF AR AND AI IN THE
C CALLING PROGRAM.
C ID OUTPUT VECTOR OF LENGTH L CONTAIN
C ING DETAILS OF THE
C TRANSFORMATION.
C PRECISION - SINGLE/DOUBLE
C CODE RESPONSIBILITY - T.J. AIRD/E.W. CHOJ
C LANGUAGE - FORTRAN
C
C LATEST REVISION - FEBRUARY 7, 1S73
C

SUBROUTINE EHESSC ( AR , AI , K, L , N , I A , ID

)

C
DIMENSION AP(IA,l)tAI(IA,l)»ID(l),71(2),T2(2)
DOUBLE PRECISION AR , AI , XR , XI , YR , YI , T 1 , T 2 , ZERO
CCMPLFX :St l6 X Y
ECU I VALENCE (X,T1<1),XR),(T1(2)»XI),(Y,T2(1),YR),

1 (T2(2),YI)
CATA ZERO/O. OCO/
LA=L-1
KP1=K+1
IF (LA .LT. KP1) GO TO 45
DO 40 M=KPl t LA

I = M
XR=ZERO
XI=ZERO
DO 5 J=M r L
IF(DA83UR( J,M-1 ))+DABS(AI< J T M- 1 ) ) .LE.

* DA6S(XR)+DABS(XI )

1 GO TO 5
XR=AR(

J

f M-l

)

XI=AI( J,M-1

)

I=J
CONTINUE
ID(M)=I
IF ( I .EQ. M) GO TO 20

INTERCHANGE ROWS ANC COLUMNS
ARRAYS AR ANC AI

MM1=M-1
DO 10 J=MM1,N

YR=AR( I T J 1

ARdtJ )=AR(M,J )

AR(M,J)=YR
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YI=AI(I, J)
AI (I ,J)=AI (M, J)
AKM, J) = YI

10 CONTINUE
DO 15 J = 1,L

YP=AR( J, I

)

AR( J, I )=AR( J»M)
AR( J,W)=YR
YI=AI( J, I)
AI( J, I ) = AI

(

J,M)
AI( J,M)=YI

15 CONTINUE
END INTERCHANGE

20 IF (XR .EQ. ZERO .AND. XI .EQ. ZERO) GO TO 40
MP1=M+1
DO 35 I=MP1,L

YR=AR(I,M-1 )

YI=AI(I,M-1)
IF (YR .EQ. ZERO .AND. YI .EQ. ZERO) GO TO 35
Y = Y/X
AR(I ,M-1)=YR
AI(I,M-1)=YI
CC 25 J=M,N

AR{ I, J)=AR(I , J)-YR*AR (M,

J

)+YI* A I ( M , J

)

AH It J)=AI( I, J)-YR*AI(M,J)-YI*AR(M,J)
25 CONTINUE

DC 30 J=1,L
AR{ J,M)=AR(J f M)+YR*AR(J, I

) -YI * A I < J , I )

AI(J,M)=AI(J,M)+YR*AI(J T I)+YI*AR(J T I)
20 CONTINUE
25 CONTINUE
40 CONTINUE
45 RETURN

END
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C.ELPH1C D.
C
C FUNCTION - COMPUTATION OF ALL EIGENVALUES GF
C A COMPLEX UPPER HESSENBERG
C MATRIX.
C USAGE - CALL ELRH1C ( HR ,HI , K , L , N , I H, WR , Wl

,

C INFER, IER)
C PARAMETER HR - INPUT MATRIX OF DIMENSION N BY N
C CONTAINING THE REAL COMPONENTS
C OF THE COMPLEX HESSENBERG MATRIX
C HR IS DES TROYEQ ON CUTPJT.
C HI INPUT MATRIX OF DIMENSION N BY N
C CONTAINING THE IMAGINARY COUNTER
C PARTS TO HE, ABOVE. hi IS
C DESTROYED ON OUTPUT.
C K INPUT SCALAR CONTAINING THE LOWER
C BOUNDARY INDEX FOR THE INPUT
C MATRIX. FOR UNBALANCED MATRICES
C SET K = 1.
C K INPUT SCALAR CONTAINING THE UPPER
C BOUNDARY INCEX FOR THE INPUT
C MATRIX. FOR UNBALANCED MATRICES
C SET L = N.
C N INPUT SCALAR CONTAINING THE ORCER
C OF THE MATRIX.
C IH INPUT SCALAR CONTAINING THE ROW
C DIMENSION OF MATRICES HR AND Hi,
C IN THE CALLING PROGRAM.
C WR OUTPUT VECTOR OF LENGTH N C3NTAIN
C ING COMPONENTS OF THE
C EIGENVALUES.
C WI OUTPUT VECTOR OF LENGTH N CONTAIN
C ING IMAGINARY COMPONENTS OF THE
C EIGENVALUES.
C INFER - OUTPUT SCALAR CONTAINING THE INDEX
C OF THE EIGENVALUE WHICH
C GENERATED THE TERMINAL ERROR.
C N*l INDICATED THE EIGENVALUE
C RECORDED IN THE OUTPUT
C PARAMETER, INFER, CDULD
C NOT 3E DETERMINED AFTER 30
C ITERATIONS. IF THE J-TH
C EIGENVALUE COULD NOT BE SO
C DETERMINED, THEN THE EIGEN
C VALUES J + l, J+2, ...,N
C SHOULD BE CORRECT.
C PRECISION - SINGLE/DOUBLE
C REQ'D IMSL ROUTINES - UERTST
C CODE RESPONSIBILITY - T.J. AIRD/E.w. CHOU
C LANGUAGE - FORTRAN
C
C LATEST REVISION - MARCH 22, 1973
C

SUBROUTINE ELRH1C ( HR , HI , K, L , N , I H , wR , Wl , INF ER , I E R

)

C
DIMENSION HR(IH,1),HI(IH,1),WR{1),WI(1)
DIMENSION TK2) ,T2( 2) ,T3(2)
CCMPLEX*16 X,Y,Z
DOUBLE PRECISION HR , HI , WR , W I ,EPS , ZR, ZI , T i , T 2, T3 , RDEL

P

DOUBLE PRECISIGN ZERO ,ONE ,T WO , SR ,S I , XR, X I , YR , RI , TR , TI
EQUIVALENCE ( X, Tl ( 1 ) ,XR ) , (Tl ( 2 ) , X I )

,

1 (Y,T2( 1) ,Y«) , (T2(2) ,YI)

,

2 (Z,T3(1) ,ZR) , (T3(2),ZI

)

DATA TWO/2. 000/
CAT A ZERO,CNE,RDELP/O.DO, 1. DO , Z3410000 000000000/
INFER=0
IER =
DO 5 1=1,

N

IF (I .GE. K .AND. I .LE. «_ ) GO TO 5
WR(I )=HR(I, I

)

Hid )=HI(I,I)
5 CONTINUE
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10

15

NN
TR
TI

IF
IT
N^
IF

NF
DC

= L
= ZERG
= ZERQ

(NN
s=o
1=NN-1
(NN .EQ. K)

SEARCH FCR NEXT EIGENVALUE
LT. K) G3 TO 9005

20
25
30

35

40

45

C
C

50
55

60

CO
M =

IF
IF

IF
SR
SI
XR
XI
IF
YR
YI
Z=
IF
X =

SR
SI
GC
SR
SI
DC

CC
TR
TI
IT

L-NN+K
20 LL=K,NM1
M=NPL-LL
MM1=M-1
IF (DABS(HR(M
RDELP*(DA8S(

DA8S(HR(M,
NTINUE
K
(M .EQ. NN) G
(ITS .EQ. 30)

.0 TO 25
LOOK FOR SINGLE SMALL SUB-DIAGONAL

ELEMENTS

,MM1M + DABS (HI (M,MM1) ) .LE.
HR(MMlfMMD) DABSiHl (MM1,MM1) )

M)) + DABS(HI(M,M) )) ) Gu TO 30

(ITS .EQ.
=HR(NN,.\IN)
HUNNvNN)
=HR(NM1,NN)*HR
=HR(NM1,NN)*HI
(XR .EQ. ZERO

= (HR(NM1,NMD-
=(HI(NM1,NM1)-
CDSQRT(DCMPLX(

( YR*ZR+YI*ZI
X/(Y+Z)
=SR-XR
=SI-XI
TO 40

=DABS(HR(NN,NM
=DABS(HI(NN,NM
45 I*K t NN
HR(I ,1 )=HR( I,
Hid, I )=HI(I,

NTINUE
=TR+SR
=TI+SI
S=ITS+1

TO 110
GO TO 115

FORM SHIFT
10 .OR. ITS .EQ. 20) GO TO 35

(NN,NM1)-HI (NH1,NN)*HI(NN,NV1 )

(NN,NMl)+HI(NMl,NNJ*HR(iMN,Nyi)
.AND. XI .EQ. ZERO) GO TO 40

SR)/TWO
SI I /TWO
YR**2-YI**2+XR, rWO*YR*YI*XI )

)

.LT. ZERO) Z=-Z

1 ) )+DABS(HR(NMl,NN-2) )

1 ) )+DABS(Hl (NMl,i\N-2) )

XR
YR
ZR
NN
IF

DO

=DABS(HR(NM1,N
=DABS (HR(NN,NM
=DABS <HR(NN,NN
J=NM1-M
(NMJ .EQ. 0)

I )-SR
D-SI

LOOK FOR TWO CONSECUTIVE SMALL
SUB-DIAG1NAL ELEMENTS

Ml ) )+DABS(HKNMl,NMl ) )

1 J )+DABS(Hl (NN,NM1I

)

) )+DABS(HI(NN,NN) )

GO TO 55
FOR MM=NN-1 STEP -1 UNTIL M+l DO

CC
Mf

50 J=1,NMJ
MM=NN-J
M1=MM-1
YI=*YR
YR=DA8S(HR(MM,M1) ) +D ABS ( HI ( MM , Ml) )

XI=ZR
ZR- XR
XR=DABS(HR(M1
IF (YR.LE.RDE

NTINUE
= M

,M1 ) )+DABS(HKMl,Ml) )

LP*ZR/YI*(ZR+XR+XI) ) GO TO 60

MP1=MM+1
DG 85 I=MP1,NN

IM1=I-1
XR=HR( IM1, IM1
XI=HI( IM1,IM1
YR=HR(I f IM1)
YI=HI( I,IM1)

TRIANGULAR OECCMPOS IT ION
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IF(DA3S(XR)+DABS(XI ).GE.CABS( YR)+DA3S(YI ) ) GO TO 70
C INTERCHANGE ROWS OF HR AND HI

DO 65 J=IM1,UN
ZR=HR(IM1, J)
HR(IM1, J)=HR(I, J)
HR( I,J)=ZR
ZI=HI(IM1, J)
HI( IM1, J)=HI (I, J

)

HI(I,J)=ZI
65 CONTINUE

Z=X/Y
WR(I )=ONE
GO TC 75

7C Z=Y/X
WR(I )=-ONE

75 HR(I,IM1)=ZR
Hl(ItIMl)*ZI
DO 80 J=I,NN

HR( I ,J)=HR( I ,J) -ZR*HR(IM1, J)+ZI*HI (IM1, J)
HI(I,J)=HI ( I, J)-ZR*HI (IMit J)-ZI*HRUM1, J)

80 CONTINUE
85 CONTINUE

C COMPOSITION
DO 105 J=MPl t NN

JM1=J-1
XR=HR( J,JM1)
XI=HI( J, JM1)
HR(J T JM1)=ZER0
HI( J,JM1)=ZER0

C INTERCHANGE COLUMNS OF HR AND HI IF
C NECESSARY

IF (WR(J) .LE. ZERO) GO TO 95
DO 90 I=M r J

ZR = HR(I, JM1 )

HR( I ,JM1 )=HR(I f J

)

HR(I,J)=ZR
ZI = HI( If JMU
HI(I,JM1)=HI (I, J J

HI(I,J)=ZI
90 CONTINUE
95 DO 100 I=M,J

HR(I,JM1) = HR( I, JM1)+XR*HR( I , J)-XI *HI ( I , J )

HI( I ,JM1) = HI (I, JM1)+XP.*HI ( I ,J)+XI*HP( I, J)
100 CONTINUE
105 CONTINUE

GC TO 15
C A RCCT FOUND

110 WR(NN)=HR(NN,NN)+TR
WI(NN)=HI(NN,NN)+TI
NN=NM1
GC TO 10

C SET ERROR-NO CONVERGENCE TC AN
C EIGENVALUE AFTER 30 ITERATIONS

115 INFER=NN
IER=129

900C CONTINUE
CALL UERTST ( I ER , 6HELRH1C

)

9005 RETURN
END
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C SUBROUTINE UERTST (IER,NAME)
C
C-UEPTST LIBRARY
C
C FUNCTION - ERROR MESSAGE GENERATION
C USAGE - CALL UERTST ( I ER , NAME

)

C PARAMETERS I ER - ERROR PARAMETER. TYPE + N WHERE
C TYPE= 128 IMPLIES TERMINAL ERROR
C 64 IMPLIES WARNING WITH FIX
C 32 IMPLIES WARNING
C N ERROR CODE RELEVANT TO
C CALLING ROUTINE.
C NAME - INPUT VECTOR CONTAINING THE NAME
C OF THE CALLING ROUTINE AS A SIX
C CHARACTER LITERAL STRING.
C LANGUAGE - FORTRAN
C
C LATEST REVISION - JANUARY 18, 1974
C

SLEROUTINE UERTST ( I ER, NAME

)

DIMENSION ITYP(5 T 4) ,IBIT(4)
INTEGER*2 NAMEOl
INTEGER WARN, WARF, TERM, PRINTR
ECU I VALENCE ( I BIT ( 1 ) , WARN

)

,<IBIT(2),WARF),(IBIT(3),
* TERM)
CATA ITYP /'WARNS'ING •,' '»* ,

f
< »i

* 'WARN' ,' ING( •, 'WITH' , 'FIX' .'
) ',

* 'TERM' ,

•

INAL* ,
' '

,
•

,

* IBIT / 32,64,128,01
DATA PRINTR / 6/
IER2=IER
IF (IER2 .GE. WARN) GO TO 5

IER1=4
GC TO 20

5 IF (IER2 .LT. TERM) GO TO 10

IER1=3
GO TO 20

10 IF (IER2 .LT. WARF) GC TO 15

NON-DEFINED

ERMINAL

WARNING(WITH FIX)
IER1=2
GC TO 20

C WARNING
15 IER1=1

C EXTRACT »N»
20 IER2=IER2-I3IT(IER1)

C PRINT ERROR MESSAGE
WRITE (PRINTR, 25) ( IT YP ( I , I ER 1 ) , I =1 , 5 ) , N AME , I ER2, I ER

25 FORMAT(» *** I M S L(UERTST) *** • ,5 A4 , 4X , 2A2, 4X , I 2

,

* • (IER = ', 13, )•

)

RETURN
END
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C FUNCTION CHM1E1 AND CHM2E1

C***
# "

(CART ESI AN* COORDINATES^
C
C
C PURPOSE
C
C CHM1E1 AND CHM2E1 RETURN THE VALUES (C0MPLEX*16) OF
C THE COEFFICIENTS FOR THE MATRICES IN THE FINITE
C DIFFERENCE FORM OF THE LINEARIZEO NAV I ER-STOKES
C EQUATION FOR POISEUILLE FLOW. BOTH FUNCTIONS RESULT
C FROM THE LINEAR COMBINATION OF EQUATION 1 AND
C EQUATION 3 TO ELIMINATE THE VELOCITY VECTCR
C POTENTIAL COMPONENT G AND ARBITRARILY SETTING THE
C COMPONENT F TO ZERO. Su , THEY APE THE COEFFICIENTS
C FOR THE VECTOR POTENTIAL COMPONENT H. CHM2E1
C RETURNS THE TERMS WHICH ARE COEFFICIENTS CF THE
C EIGENVALUE, GAMMA, AND CHM1E1 RETURNS THE REMAINING
C TERMS,
C
C USAGE
C
C XI = CHM1E1(K,Y)
C X2 = CHM2E1(K,Y)
C
C (CHM1E1 AND CHM2E1 MUST BE DECLARED C0MPLEX*16 IN
C CALLING PROGRAM)
C
C DESCRIPTION OF PARAMETERS
C
C THE FOLLOWING PARAMETERS MUST BE SET BY THE CALLING
C PROGRAM
C
C K - INDICATES THE POINT ON THE FINITE DIFFERENCE
C MESH RELATIVE TO THE CENTRAL PGINT IN THE CENTRAL
C DIFFERENCING SCHEME. IF THE DIFFERENCE IS BEING
C FORMED ABOUT THE N-TH POINT THEN K=l REFERS TO
C THE POINT N-2, K=2 REFERS TO THE POINT N-l,
C K = 3 REFERS TO N, K=4 REFERS Tu N + l, AND K=5
C REFERS TO N+2.
C K - INDICATES WHICH POINT ON THE FINITE DIFFERENCE
C MESH IS REFERRED TO THE CENTRAL POINT. IF THE
C DIFFERENCE IS BEING FORMED ABOUT THE N-TH POINT
C THEN K=l REFERS TO THE POINT N-2, K=2 REFERS TO
C THE POINT N-l, K=3 REFERS TO N, K=4 REFERS TC N+l,
C AND K=5 REFERS TO N+2.
C
C Y - THE VALUE OF THE POSITION RELATIVE TO THE CENTER
C OF THE CHANNEL. THE TWO BOUNDARIES ORE AT Y=+l
C ANC Y=-l.
C
C OTHER ROUTINES NEEDED
C
C NONE
C
C
c
c

FUNCTION CHM1EKK.Y)
IMPLICIT C0MPLEX*16 (A-H,0-Z)
CCMMCN / COEFNT / A, TH, G, REY ,OEL
REAL*8 REY, Y, DEL
REAL*8 TH,DUR

C
C THE FGLLOWING FUNCTIONS (Ml) EVALUATE THE COEFFICIENTS
C OF THE DERIVATIVES OF H FOR ALL TERMS EXCEPT THCSE
C CONTAINING GAMMA.
C

CH4MKY) = A*EI/REY
CH2MKY) = -1.5DO*A**2*EI2*(ldO-Y**2)+2DO*AEI*U**2)/

* REY
CHOMKY) = -AEI*< (A**2)*(1.5DO*AEI*(lDO-Y**2)-(A**2)
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* /REY)+3D0*AEI

)

C
C THE REGAINING FUNCTIONS (M2) EVALUATE THE COEFFICIENTS
C OF THE DERIVATIVES OF H WHICH ARE ALSO COEFFICIENTS
C OF THE EIGENVALUE GAMMA.
C

CF2M2(Y) = AEI
CFCM2(Y) = AEI * A**2
CUR = 0.0
DL = DCMPLX(DUR,TH)
EI = CDEXP(DU)
AEI = A*EI
EI2 = C0EXP(2*DU)

C
C SET UF THE FINITE DIFFERENCE VALUES FOR INDEX K FOR Ml
C

GC TO ( 1,2,3,2,1),K
1 CHM1E1 = CH4M1(Y)/DEL**4

GC TO 100
2 CHM1E1 = -4D0*CH4M1(Y)/DEL**4-H:H2M1(Y)/DEL**2

GC TO 100
2 CHM1E1 = 6D0*CH4Mim/DEL**4-2DC*CH2Ml(Y)/DEL**2
* +CHOMKY)

100 RETURN
C
C SET UP THE FINITE DIFFERENCE VALUES FOR INDEX K FOR M2
C

ENTRY CHM2E1(K,Y)
CLR = 0.0
CL = OCMPLX(DURtTH)
EI = CDEXP(DU)
AEI = A*EI
EI2 = CCEXP(2.0*DU)
GC TO (11,12,13, 12,11),K

11 CHM2E1 = (ODO,ODO)
GC TO 200

12 CF^2E1 = CH2M2(Y)/DEL**2
GC TO 200

12 CHM2E1 = -2C0*CH2M2(Y)/DEL**2+CHOM2(Y)
200 RETURN

EMC
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