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ABSTRACT 

This report presents the results of a study of mathematical formulae and algo- 

rithms necessary for the implementation of the Quadrilateralized Spherical Cube 

Earth Data Base preprocessor function.   Topics covered include an improved 

formulation of the inverse equal-area transformation, f* ; the development of 

a new, exact, equal-area transformation utilizing a polar coordinate system on 

the cube face; an improved computation of the coefficients of the equal-area 

transformation, f, and its inverse, f* ; a rapid method of obtaining cube face 

coordinates from Keplerian elements and scanner angle; a new fast-filling algo- 

rithm; and the maintenance of multiple and variable resolution data bases. 

This report addresses the properties and merits of the newly derived transfor- 

mation and compares it with a previously derived form.   Approximation methods 

for the equal-area transformation are presented.   A revised, fast-filling algo- 

rithm is presented, which combines the new method of cube face coordinate 

computation with a recently suggested pixel sampling scheme.  Applications 

of these methods and algorithms to an initial operational preprocessor and to 

refined future programs are discussed. 
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SECTION 1 - INTRODUCTION 

Previous studies (References 1 and 2) have indicated that a quadrilateralized 

spherical cube dissectici of the Earth will provide a uniquely simple and useful 

set of coordinates in which to store remote sensor data on a global scale.   This 

representation divides the globe into six square grids, allowing an extremely 

simple and elegant addressing scheme. 

A mapping function (Reference 1) has been developed which permits an equiva- 

lent (equal area) mapping of a sphere onto the faces of a cube.   This mapping 

provides an ideal match to constant resolution sensors and allows the simplifi- 

cation of map factor calculations for meteorological applications.   Figure 1-1 

illustrates the cubic dissection of a sphere, and Figure 1-2 shows a map of the 

world as projected using the equivalent mapping function. 

In studying the feasibility of implementing this quadrilateralized spherical 

cube Earth data base system, a number of areas were identified which were 

deemed worthy of further study.   In the course of these studies, additional 

details and problems were brought to light.   The initial objectives of this 

study were 

• Improvement of the formulation of the data base mapping functions 

• Study of methods of representing satellite motions in terms of the 

data base coordinate system 

• Study of data base Input/Output optimization on the CYBER/175 

computer 

• Production of maps illustrating various geographic orientations of 

the data base cube 
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Figure 1-1.   Cubic Dissection of a Sphere by an 
Inscribed Cube 
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Additional studies required were 

• Study of algorithms required to implement a revised data base fill- 

ing scheme 

• Improvement in the accuracy of the data base mapping functions 

and the matching of direct and Inverse functions 

The general purpose in these studies has been twofold:   (1) to optimize the 

existing data base scheme and (2) to assist in the timely development of a pre- 

liminary implementation by improving and clarifying previously developed 

formulae and algorithms.   Most sections of this report deal with the mainte- 

nance of current data in the data base.   The portion of the system which will 

fulfill these functions has been designated the preprocessor program. 

This report presents several new and refined algorithms and mappings aimed 

at Improving the speed and accuracy of an operational preprocessor program. 
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SECTION 2 - BACKGROUND 

2.1 PRIOR RESULTS 

A proposed set of algorithms for implementing the quadrilateralized spherical 

cube data base was presented in another report (Reference 1).   That report ad- 

dressed numerous problems:  mapping points from the Earth's surface into the 

data base, determining serial addresses for data base locations, fast-filling 

and data retrieval, and determining the ground locations of scanner pixels.   The 

results presented herein are derived from further study of these problems. 

For background information. Sections 2.2 and 2.3 present the previously de- 

rived transformation and method of fast-filling. 

2.2 PREVIOUSLY DEVELOPED TRANSFORMATION 

Section 2 and Appendix A of Reference 1 present the mathematical development 

of the mapping function, f , and its inverse, f * .   These functions relate the 

data base coordinates   (x , y) to the rectangular coordinates  (4 , TJ) of the 

point on any cube face resulting from the central projection of a datum point 

on the sphere.   For convenience, the mapping functions, f and  f* , are re- 

peated here.   The coordinates  (£ , T)) are related to the data base coordinates 

(x , y) via 

4 = f(x, y) 
(2-1) 

v = f(y. x) 
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where the function f , called the direct function, is given by 

f(x, y)=yx+ ^   "g^-x 
r o 

2j 

+ x (rl-^l^I,^ 

(2-2) 

where 

6 - — -(M + 2y) + N/(i?- 4jiy + 4y2 + 16 ^y2) 
4r 

= 0.79048 64491 208 

^ = -i« (3 . 2y - M - 2r4 6) = -1.2254 41487 984 
2r 

(2-3a) 

(2-3b) 

y = y/rr/e 

r   »l/v/3 
o 

(2-3c) 

(2-3d) 

(2-3e) 
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and the coefficients  c     and  d   are 

c00 =-2.7217   05366   1814 

c     =-5.5842   16830   5430 

c     = 2.1711   17480   9423 

c     = -3.4578  62747   3390 

c     = -6.4160   15152   6783 

c     = 1.9736   26575   8872 

d   = 1.4833 12929  4187 o 

d1 = 1.1199 72606  9742 

d2 = 6.0515 38216   1464 

The inverse function, f* , relates  (x , y)  to  (£ f 7?) ; that is, 

x = f* «, T?) 

y = f* (n. i) 
(2-4) 

and is given by 

f*(^T7) = y*$+-i^=p-C3 

> 2/ 2    ,2\ 
&   (ro-0 6*+ 6 JI-O-«2) 

('o-''2)S°rA2) 
iaO 
j*0 

1*0 J 

(2-5) 
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where 

Y* = i/y 

M* - 1/jLl 

y* = l/(y + r^ ö) 

M* = l/(»i+2r^6) 

6* = (MJ - M*)/2r* 

W* = / l/2r4 Ws - 2y* - M* - 2r* ö*\ 

(yj - y*) 
01      2 r 

o 

-6* 

(2-6a) 

(2-6b) 

(2-6c) 

(2-6d) 

(2-66). 

(2-6f) 

(2-6g) 

and the coefficients c*   and d*  are 

c00* = 3.973   89249 

c* = 6.591   19476 

c01*«-25.368  92536 

c20* =-73.064  97000 

c11*» 77.381  61133 

c02* = 21.685   89623 

d0*« 1.811  28250 

d^» 37.635 47857 

d2*» 63.000  23653 

The use of f* in an algorithm for obtaining the data base coordinates  (x , y) 

of any datum point on the Earth's surface is described in Section 3.3.   The 

algorithm presented in Section 3.3 is the result of the present study to obtain 

a method of implementing f * in a computationally efficient manner. 
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2.3  PREVIOUSLY DEVELOPED FAST-FILLING ALGORITHM 

Sections 4 and 5 of Reference 1 present a "fast-filling" method for updating the 

data base.   The method was developed to obtain, as directly as possible, the 

data base location corresponding to the location of a given scanner data element 

and to store the value associated with that element in the calculated data base 

location.   Starting with a given satellite location and scanner angle, a series 

of five steps are necessary to calculate the corresponding data base location. 

1. Determine the three-dimensional Cartesian coordinates of the point 

observed by the scanner 

2. Determine the face onto which the point is to be mapped 

3. Project from the Cartesian (a, b, c) system into an intermediate 

system  (4 , r}) as shown in Figure 2-1 

4. Transform from  (4 , i?) into two-dimensional Cartesian coordi- 

nates   (x , y)  on the face of the data base cube 

5. Convert from face number and (x , y) to a serial location in the 

data base 

This transformation need not be performed for every point, since both the pro- 

jection onto the Earth's surface and the  (£, T?) to  (x , y) transformation may 

be linearly approximated over a relatively long range.   Thus, the complete com- 

putation is required only for widely spaced benchmark points, with intermediate 

points being determined by interpolation. 

Input and output are handled, as described in Section 5 of Reference 1, by 

blocking both the input data and the data base into rectangular arrays.   Methods 

for handling problems such as queuing data base I/O, splitting input blocks 

across face boundaries, and locating a vertex within an input block were also 

discussed in Reference 1. 
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Figure 2-1.  Projection From the Cartesian (a, b, c) System 
onto the Intermediate (C> rfy System 

2-6 



In Reference 3, this scheme was compared with an alternative scheme.   The 

alternative scheme follows the above method through step 3; then, instead of 

storing from the input block directly into the data base, the following steps are 

performed: 

• For each input data block, determine which data base blocks will be 

completely covered by the input data 

• Determine, in the  (^ , 77)  system, a set of benchmark points cor- 

responding to the corners of the data base blocks to be filled 

• Use the above benchmarks to interpolate the  (^ , tj)  coordinates 

corresponding to each (x, y) data base location and store the closest 

point in the input data block into the corresponding serial location 

This method offers the advantage of providing a completely filled data base 

block and eliminates data base read accesses during the update process.   After 

a thorough examination of this method, CSC concluded that the advantages out- 

weigh the slight addHioual computational cost incurred in finding the appropriate 

data base blocks.   Consequently, some of the work of this report was oriented 

toward this approach. 
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SECTION 3 - NEW PROJECTION AND 
TRANSFORMATION METHODS 

3.1  GROUND TRACE EQUATIONS IN KEPLERIAN ELEMENTS 

This section presents general relations that yield the geocentric coordinates of 

the subsatellite point and of any point on the Earth's (spherical) surface lying 

on an arc scanned by an onboard satellite sensor.   These geocentric coordinates 

are to be computed as an intermediate step in algorithms for computing data 

base coordinates (Sections 3.2 and 3.3). 

The following subsections distinguish between two cases: (a) the computation 

of the coordinates of the subsatellite point, and (b) the computation of the coor- 

dinates of any point on the scan arc.   Although the first case could be treated 

as a special case of the second, its development is separated in order to facil- 

itate computer implementation.   The following subsections summarize the 

results, which are developed in detail in Appendix A. 

3.1.1 Subsatellite Point 

It is assumed that the satellite ephemeris is available in the form of Keplerian 

orbital elements.   Expressions can be obtained in terms of these elements for 

the Earth-centered direction cosines  (1 , m , n) of the subsatellite point in 

the equatorial x, y, z coordinate system shown in Figure 3-1. 

Since the subsatellite point lies on the geocentric position vector of the satellite 

(see Figure 3-1), 1 , m , and n will be Identical with the corresponding direc- 

tion cosines for the satellite's orbital position. The desired expressions for 1 , 

m , and n are developed in Appendix A to be 

1 = +cos ft cos (to + f) - sin O sin (to + f) cos 1 

m = +sin O cos (to + f) + cos O sin (w + f) cos I (3-1) 

n = +sln (to + f) sin 1 

3-1 
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Figure 3-1.   Keplerian Orbital Elements and Geographic Coordinates 

3-2 



The angular arguments are Keplerian elements and are referenced to the true 

equator and prime (Greenwich) meridian of date coordinate system.   The di- 

rection cosines   (1 , m , n) in Equation (3-1) are obtained for the subsatellite 

point corresponding to any point in the orbit using the true anomaly, f , which 

reflects the motion of the satellite in its orbit, and the time-dependent node, O , 

which reflects the rotation of the Earth.   The time dependence of the node is 

given by 

O = O   - s (3-2) 
o 

where O    is the initial (constant) value of fi and s  is the elapsed Greenwich 

sidereal time since the instant that ft = ft   .   For high precision, (*, a), i , 

and s  should be corrected for the Earth's nutation, precession, and polar 

motion. 

3.1.2   Nonzero Scan Angle 

It is assumed that the satellite collects data through an onboard sensor which 

scans the surface of the Earth through an arc of fixed size in such a way that its 

sweep carries it through the subsatellite point in a direction at right angles to 

the direction of the satellite's orbital motion.   The trace of the scan arc on the 

surface of the (spherical) Earth is a segment of a great circle subtending a 

fixed central angle, $   , as illustrated in Figure 3-2.   The introduction of the 

central angle, ij)   , though generally applicable in defining the ground location 
o 

of a scan element (datum point), is particularly suitable when scan elements 

are spaced equally along the great circle arc. 

Expressions are presented below for obtaining the geocentric longitude, 6' , 

and colatitude, 0' , of any pair of points (datum points) on the scan arc which 

are located symmetrically with respect to the subsatellite point.   Details of 

their development are given in Appendix A.   These expressions are then 
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Figure 3-2.   The Scan Arc as a Central Angle 
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employed in Sections 3.2 and 3.3 in describing the two alternative algorithms 

for obtaining the data base coordinates  (x , y)  of the datum points. 

First, the sines and cosines of the geocentric longitude, 6 , and colatitude, 0 , 

of the subsatellite point are required in terms of the direction cosines available 

from Equation (3-1), i.e., 

•    ■ 

sin 0 cos 9 = 1 (3-3a) 

sin 0 sin 6 = m (3-3b) 

cos 0 = n (3-3c) 

Actually, Equation (3-3c) yields both  cos 0  and  sin 0 , since  0 ^ 0 s 180 de- 

grees.   Consequently, sin 9 and cos 9 can be determined from Equations (3-3a) 

and (3-3b). 

Returning to the scan arc, it is convenient to view ^/2 as a general variable 
t 

describing the positions of any pair of points along the arc. The following ex- 

pressions yield two unique values for both 9' and 0' , depending on the alge- 

braic sign of ty/2 .   Thus, 

cos 0' = cos 0 cos ^/2 - cos i sin 4>/2 (3-4) 

where  cos 0 and  cos i are already available.   Equation (3-4) gives 0' 

uniquely, since  0 ^ 0' s 180 degrees, from which  sin 0'  is then computed 

and used in 

sin (9- - 9) = cos^staisin^ 
v sin 0 sin 0' x     ' 
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cos (e. . e) = cos »/2 - cos 0 cos 0' 
*        ' sin 0 sin 0* y     ' 

to obtain 6' , where all of the terms to the right of the equalities have pre- 

viously been determined. 

Caution is necessary when applying Equations (3-5) and (3-6) near the poles, 

since these relations are singular for subsatellite points or datum points near 

the poles.   This is expected, since the geocentric longitudes 6 and  6' are 

undefined at the poles.   No problem need arise in computations, however, since 

the satellites are not expected to have exactly 90-degree inclinations and since, 

for the case of an equatorial orientation of the data base cube, it is a simple 

matter to regard the cube face coordinates of such datum points as zero within 

an arbitrary, but nonzero, distance from the pole. 

It is emphasized that Equations (3-4), (3-5), and (3-6) yield two unique values 

for both 6' and 0* , depending on the choice of ±^/2 ; therefore, both halves 

of the scan arc are treated efficiently using the same auxiliary quantities (sin 1 , 

sin 0 , etc.). 

The expressions just presented will be used in Section 3.2 in an algorithm em- 

ploying a newly developed transformation to obtain data base coordinates of 

datum points.   These results are also used in Section 3.3 in an algorithm de- 

signed to employ the older transformation of Section 2.2 to compute the data 

base coordinates of datum points in a computationally efficient manner. 

3.2  POLAR FORMULATION OF THE AREA-PRESERVING TRANSFORMATION 

Section 2 of Reference 1 presents an area-preserving transformation from the 

spherical square to the inscribed plane square.   That transformation utilizes a 

central projection onto the plane square and a transformation from the projected 
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coordinates (£, Tj) to the data base coordinates (x, y) .   This transformation, 

designated by f*, is given in Equation (2-4) as 

x = f*(4, V) 

y = HTJ, i) 

and is based on the Jacobian determinant.   It was noted in Reference 1 that the 

solutions obtained to differential equations based on this determinant are not 

fully constrained by requiring the interior and edges of the spherical square to 

map onto the plane square.   Additionally, it was found that, despite adding fur- 

ther constraints, no analytic solution could be found for f*.   An approximate 

solution was arrived at using a numerical steepest descent method.   Under the 

current contract, an alternative solution was studied; the results are presented 

below. 

Two sets of polar coordinate systems are considered (Figures 3-3 and 3-4). 

Figure 3-3 shows a spherical square of radius R, produced by the central pro- 

jection of an inscribed square upon the sphere.   The polar coordinates (6,0) 

are defined by an axis of the sphere passing through the center of the spherical 

square and by a great circle arc passing through the axis and bisecting one 

edge of the square.   The azimuthal angle, 6 , is measured from this "meridian" 

and the central angle, 0 , is measured from the axis.   For the case where the 

coordinate axis and meridian coincide with those of the sphere, 6 equals the 

longitude and 0 is the colatitude. 

Figure 3-4 shows a plane square of side 2r .   The axis in this system is nor- 

mal to the plane, passes through the center of the plane, and has its origin at a 

distance r  below the plane.   Coordinates  (ft, u) are defined in the same sense 

as (6, 0) . 
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Figure 3-3.   Polar Coordinate System on Spherical Square 

Figure 3-4.   Polar Coordinate System on an Inscribed Plane 
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If the axes of the two systems are aligned and the plane square is inscribed 

within the spherical square, it can be shown that 

r o = R/x/F (3-7) 

The area of the sphere is 

2 
A   =4irR (3-8) 

s 

and the surface area of the inscribed cube is 

A   =24r2 (3-9) 
CO 

The ratio of the areas of the spherical and plane squares is given by 

A      A  «2 
-f-'^r (3-10) 

P    2too 

Substituting Equation (3-7) into Equation (3-10) yields 

X = ir/2 (3-11) 

To further constrain the mapping of the spherical square upon the plane, con- 

sider the condition jx = f(6) , where pi is independent of 0 .   This condition 

implies the useful property that any great circle on the sphere passing through 

the center of the spherical square will map as a straight line passing through 

the center of the plane square.   This function must be area preserving in the 
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sense that sectors of equal area on the sphere must map into equivalent areas 

on the plane.   If the function f exists, then it is possible to relate the areas of 

differential elements d0 and  d^i of the spherical and plane squares, as shown 

below. 

To obtain the function ^ = f(6) , consider the right spherical triangle ABC in 

Figure 3-5, and let one side, B, be the meridian and A, the azimuth angle, 6 . 

For a unit sphere, R s 1  and b = ir/4 . 

From the general relation for the area of a spherical triangle 

S = R(A + B + C - IT) (3-12) 

and the area of the right spherical triangle is 

S   = 6 + jS - ir/2 (c = ir/2) (3-13) 
S 

By Napiers' identity, B = cos~ (sin A cos b) and 

S   = 6 + co8'1(sin 6 cos ir/4) - it/2 (3-14) 

This triangle may represent any segment of the spherical square in the range 

-ir/4 S 6 S ff/4 . 

The area of the corresponding right triangle on the plane (Figure 3-6) is 

ar 
S   =-r2- (3-15) 

p      2 y       ' 
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Figure 3-5.   Right Spherical Triangle ABC 

Figure 3-6.   Plane Right Triangle Corresponding to ABC 
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or, since  a = r tan /ji, 

r2 

S   =-£tanM (3-16) p      2        r 

For n = f(6) to preserve area, the condition must hold that, for any 6 , 

S /S   = X (3-17) s   p 

Thus, 

2 r 
Sg = tr/2 S   = -—. tan M (3-18) 

and 

M » tan"1/-^ S \ (3-19) 
^••) 

In the case of a unit sphere, r  = lA/S", and 
o 

M = tan"1(~sJ (3-20) 

M = tan"1 H Fe - cos1 (sin 6 cos J ) -1-1 j (3-21) 

It can be shown that M = 0 at 0=0 and ß = ±tr/4 at 6 = i:»r/4 .   The func- 

tion f is defined over the quadrant -ff/4 S (6, (i) S it/4 and, by reflection, 

over the entire spherical and plane squares. 
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To relate  v and 0 , expressions for the differential area elements, 0d9 and 

vdß , must be obtained.   Figure 3-7 illustrates a spherical zone of one base, 

having area 

S   =2irRh (3-22) s 

Substituting h = R - R cos 0  and taking R = 1 yields 

S   =2ir(l-cos0) (3-23) 
s 

Since 

J o 

S   = /     1 - cos 0 de 

dS   = (1 - cos 0) do 
S 

(3-24) 

The area of the corresponding sector on the plane is given by 

dS   =r2clM (3-25) 

In order to apply the area-preserving condition. Equation (3-17) is differentiated 

to yield 

dS   =ir/2dS (3-26) s p 

Substituting Equations (3-24) and (3-25) into Equation (3-26) gives 

r2du = 2/if (1 - cos0)de (3-27) 
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Figure 3-7.   Spherical Zone of One Base 

Since  r = r   tan f , Equation (3-27) can be rewritten as 

2 2 dö 
tan y = —(i-cos«)^ 

ffro 

(3-28) 

For fixed values of 6 and u , Equation (3-28) becomes 

tan w = C(X - cos 0) (3-29) 

where 

r-   2   Ü 
~J <** trr 

o e.u 
(3-30) 

Clearly, C can be evaluated from boundary conditions: 

1.      When 0 = 0, v-O points at the center map onto themselves 

2.      When 0 = 0niax 

»^max 
points on the boundary of the spherical 
square must map onto points on the 
boundary of the plane square 
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To develop these boundary conditions, it is necessary to obtain 0 and 
max 

V as functions of 6  and u , respectively.   Figures 3-8 and 3-9 illustrate 
max 

these angles.   It should be noted that to obtain the boundary of the spherical 

square, a central projection to the inscribed plane is employed.   This projection 

preserves both 9 and 0 and reduces the problem to the case of the plane 

square. 

The loci of points describing these edges can be expressed as 

r   = r   sec 0 (3-31) 
s      o 

and 

r   = r sec u (3-32) 
P      o 

and the central angles can be expressed as 

0        = tan~   sec 6 (3-33) 
max 

and 

V       = tan"1 sec u (3-34) 
max 

Substituting 0        and ^        in Equation (3-27) 
ITLclX iXläX 

tan2 V        = C(l - cos 0      ) (3-35) 
max max 
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Figure 3-8.  Relationship of 0        to 0 

0 
0 

0 
0 

B 
0 

Figure 3-9.   Relationship of v        to n 
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Therefore 

2 
tan   V                     2       -1                                    2 
 max tan   (tan    sec u)         sec  u     _ __ 

C   — —        ' ■ — 1 (u""oO) 

" co    max     1 - cos (tan"   sec 6)     1 - cos (tan    sec 6) 

Substituting C into Equation (3-35) yields 

and 

2 
2 S6C    11 

tan   U -  -JJ (1 - cos 0) (3-37) 
1 - cos tan     sec 9 

v = tarf1 /sec2u(l^cos0) ^^ 

1 - cos tan     sec 6 

This satisfies the boundary condition 0 = 0 , V = 0 , and additionally has the 

property that ß= 0 at 0 = 0 and 0^^ = V^^ , where  6 = ±ff/4 , u = ±ff/4 . 

This relation holds from 0=0 to 0 = ff/2 , and because 0        is never 
ITlclX 

greater than tan" ^2=0.95 , it is correct for the entire spherical square. 

Thus, Equations (3-38) and 

u = tan"1 {--[e + cos'^sin 6 cos j) - jj (3-39) 

represent an area-preserving transformation from the spherical square to the 

inscribed plane square for the quadrant. 

To treat the remaining quadrants, each is successively rotated into the quadrant 

of definition by subtracting multiples of ff/2 , as shown in Table 3-1. 
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Tab e 3-1.   Rotations of 6 and u'  for a Given 9' 

KanRe e Ul 

JUe. si 
4             4 9' u 

iT<ei    3tr 
4               4 2 

U+I 
2 

4                 4 9'-ff U + IT 

4                4 
9.-3ff 

2 
3ff 

U+2 

The quantities 9'  and u'  are input and rxitpul, 
respectively; and 9 and u are as used in the 
computation of Equations (3-38) and (3-39). 

3.3  REFINEMENT OF THE CARTESIAN TRANSFORMATION 

Section 4.2 of Reference 1 outlines a method for obtaining the data base coor- 

dinates  (x , y) of any datum point from Keplerian orbital elements, time, a 

scan angle, and parameters describing the attitude of the satellite using the 

Inverse transformation, f*(£, T» .   This method has been modified in order to 

improve computational efficiency.   The results are presented below in two 

parts: the first part treates the computation of the coordinates  (x , y) of the 

subsatellite point (zero scan angle); the second part develops the necessary 

added formalism for datum points lying along a scan arc, as defined in Sec- 

tion 3.1.2.   Details and derivations are included in Appendix C. 

IJ 

D 
n 

i 

G 

\:i 
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3.3.1   Data Base Coordinates of the Subsatelllte Point 

Computations for obtaining the data base coordinates  (x , y) of the subsatellite 

point are performed as follows: 

1. Evaluate Equation (3-1) for 1 , m , and  n , and note the appro- 

priate cube face by selecting the largest of 1 , m , and n and 

observing its sign.   Table 3-2 establishes the necessary conventions. 

The general variables £• , rj' , and p  are the geocentric rectan- 

gular coordinates of the subsatellite point deduced from 1 , m , 

and n by entering Table 3-2, where p is the largest in absolute 

magnitude of 1 , m , and n . 

2. Compute the variables a and ß defined by: 

a=4,/p 

/3=T?,/P 
(3-40) 

Table 3-2.   Cube Face Identification 

Face 
1 

Number V 7?« P 

1 m n 1 

2 -m n -1 

3 -1 n m 

4 1 n -m 

5 -1 -m n 

6 -1 m -n 
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3.      Compute x and y from 

x » f*(a, j3) 

y = f*03. «) 
(3-41) 

where f *(a , ß) Is developed in Appendix C.   For convenience, the 

functional relationship is repeated below. 

f*(a, 0) = r {ay* + a3 (l - y*) + aß2 (1 - a2) 

r+r-MMl-aVa-fl2) E CHa2V, 

a3(l-a2)  O^a-o2) E Dj«21 

(3-42) 

where a and ß are defined by Equations (3-40), r  =1/5, and 

the remaining constants are defined in Appendix C (Equations (C-10) 

and (C-ll)). 

3.3.2  Data Base Coordinates for Nonzero Scan Angle 

The data base coordinates  (x , y) for any pair of datum points lying on a scan 

arc at an angular separation of ±^/2 from the subsatellite point are obtained 

by performing the following computational steps: 

1.      Obtain the geocentric longitude, 6 , and colatitude, 0 , of the sub- 

satellite point using Equations (3-1) and (3-3).   (If the ground trace 

has already been determined, its direction cosines will already 

have been computed from Equations (3-1).) 
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2. Compute the sines and cosines of the geocentric longitudes, 6' , 

and colatitudes, 0* , of the datum points, using Equations (3-4), 

(3-5), and (3-6), and the results of step 1. 

3. Using the sines and cosines of 6' and 0' in Equations (3-3), ob- 

tain the two sets of direction cosines  (!' , m' , and n') of the 

datum points. 

4. Identify the appropriate cube face(s) and variables 4' • T7' • autl P 

using Table 3-2, and compute values for a and ß using Equa- 

tions (3-40) for each point. 

5. Calculate the (x, y) coordinates using Equations (3-41). 

3.4  APPROXIMATE FORMS 

The transformations outlined in the previous subsections share the common 

disadvantage of being complex and difficult to evaluate.   While studying the 

transformations  f and f * for the previous report, it was determined that a 

linear interpolation scheme was sufficient to find points between known bench- 

mark grid points (Reference 1, Section 4.3).   It is therefore evident that the 

transformation equation may be approximated by low-order polynomials,   liiis 

subsection presents a method for accurately approximating the transformations 

over the entire cube face using polynomials of varying degree with locally eval- 

uated and tabulated coefficients. 

Because of symmetry properties of the transformations, it is necessary to eval- 

uate the coefficierts of the approximation polynomial over only one octant of 

one face.   In addition, since 

x=f(4,T?); y = f(Tj,4) 
(3-43) 

€ = f*(x,y); 7?=f*(y,x) 
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only one set of coefficients is necessary to determine both x and y , and a 

second set to determine ^  awd tj. 

From Table 4-2 of Reference 1, it can be seen that a double linear interpola- 

tion scheme will allow computation of intermediate points to an accuracy of 

0.25 pixel over a range of at least 16 pixels (and up to 1024 pixels in the central 

region) on a 4096 x 4096 square.   Consequently, it is reasonable to assume that 

a higher order polynomial would allow one-pixel accuracy over considerably 

greater distances.  As a first approximation, it is assumed that determination 

and tabulation of coefficients on a grid with 64-pixel intervals will suffice.   This 

interval is convenient, since it corresponds to the proposed standard data base 

record size. 

To obtain suitable interpolating polynomials, the standard bivariate interpola- 

tion formulae were examined for three, four, and six points (Reference 4, 

Sections 25.2.65 to 25.2.67).   From Figure 3-10, the formulae are 

•       Three Points (Linear) 

fa ^O ^ Ph' yo + qk) = (1 " P " q) f0,0 + Pfl,0 + qf0,l + 0(h2)      {3'U) 

•        Four Points 

fa (x0 + ^ y0 + qk) = <! ' PH1 " (l) f0,o 
+ p(1 " q) fi,o 

+ q(l - p) f0> 1 + pqf^ 1 + 0(h2) (3-45) 
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a. THREE POINT INTERPOLATION 

: 

Ix0, y0) 

b. FOUR POINT INTERPOLATION i 

c. SIX POINT INTERPOLATION 

t 
Figure 3-10.   Grid Points Used for Interpolation 
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•        Six Points 

'aV^'V^^W-^-M 

Ml+pq-p2-q2)f0t0 

+ P(P-2q + ljif 

2 1,0 

+ q(q - 2p + 1) f0 1
+P^1 1 

+ 0(h3) 

(3-46) 

Equations (3-44) and (3-45) can be written as follows: 

fa(x,y) = a10x + a01y + a00 (3-47) 

fa(x.y) = ailxy + aiox + a01y + a00 (3-48) 

The coefficients a     , a     , ,.., are evaluated by setting up a set of linear 

equations corresponding to the interpolation benchmark points and solving them 

simultaneously. 

The six-point formula is less convenient to apply systematically, since it re- 

quires knowledge of points outside its range for solution.   A compromise form 

2 2 f(x.v)i=a    x+a    v+a    x + a    v + aÄÄ (3-49) a.     y'      20 02 10 01^      00 \0 ■»"; 

can be evaluated on five points, as shown in Figure 3-11.   This form eliminates 

the xy cross-product term and approximates the functional form with a parabo- 

loid of revolution whose axis Is perpendicular to the xy plane. 

3-24 



1 . 

Figure 3-11.   Five-Point Solution 

A computer program was written to solve the system of simultaneous equations 

arising from each of the above approximate forms on 64 x 64 pixel intervals on 

one octant of the cube face (Figure 3-12).   A standard IBM Scientific Subroutine 

Package (Reference 5) routine, SIMQ , was used for solution of the equations. 

To test the accuracy of each approximation, a set of evaluation points was 

chosen (Figure 3-13).   The approximations were used successively to deter- 

mine the coordinates of each evaluation point and a residual was computed for 

each point by solving the full transformation.   Any 64 x 64 region in which the 

largest residual exceeded one pixel was flagged and the next higher degree ap- 

proximation was tried.   Table 3-3 shows the number of coefficients necessary 

for one pixel accuracy as a function of location. 

The table size required is not excessive because, as stated above, only one 

octant (plus diagonal elements) must be stored.   For a 64 x 64 grid, this would 

be 

M x (312 + 16) = M x 977 

SIMQ employs the Gaussian elimination method using largest pivotal divisors. 
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Figure 3-12.   Origins of Coefficient Set Domains 
Necessary To Define Entire Face 

Table 3-3.   Number of Coefficients Necessarjr for One-Pixel 
Accuracy as a Function of Position 

4096, 4096 

2048, 2048 
4096, 2048 
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where  M is the largest number of coefficients required.   For the case where 

M = 5 , this requires 4885 words. 

The program which evaluates the coefficients for the approximate direct trans- 

formation f    is shown in Appendix E.   Appendix D tabulates the coefficients fl. 
derived and indicates the necessary number of coefficients for one-pixel ac- 

curacy.   The use of these approximations will be discussed in Section 4.1. 

• BENCHMARK 
POINTS 

X EVALUATION 
POINTS 

Figure 3-13.  Arrangement of Evaluation Points 

3. 5   COMPARISON OF TRANSFORMATIONS 

In the previous subsections, four different formulations were developed for the 

f* function (inverse transformation): 

1. The original Cartesian form (Equation (2-5)) 

2. The revised Cartesian form (Equation (3-42)) 

3. The polar form (Section 3.2) 

4. The approximate form (Section 3.4) 
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In choosing between forms 1 and 2, which produce the same mapping, form 2 

Is clearly arithmetically simpler and has proved to produce a more accurate 

determination of its coefficients. 

Form 4 may be used to approximate the Cartesian or the polar forms and is the 

most efficient form computationally.   It docs, however, require core storage 

for the coefficient tables. 

Figures 3-14 and 3-15 illustrate the differences in the nature of the mappings 

produced by the Cartesian and polar forms.   The salient difference is that the 

polar form exhibits nondifferentiability at crossings of the diagonals of the 

face.   This directional discontinuity arises from the condition that all great 

circles pass through the center of a face map as straight lines.   This problem, 

in conjunction with the somewhat slower computation time shown in Table 3-4, 

favors the Cartesian form for most applications.  The polar form retains the 

advantage of exactness in that it produces equal area to any desired accuracy 

Figure 3-14.   Distortions Arising From the Cartesian Form 
of the Transformation 
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Figure 3-15.   Distortions Arising From the Polar Form of 
the Transformation 

Table 3-4.   Execution Times for Transformation 
Forms on the IBM S/3 60-91 (One 
Ordered Pair) 

Transformation 
Execution Time 
(microseconds) 

1           Cartesian 

Polar 

Approximate 

300 

1000 

40 
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without recomputing the coefficients.   It is difficult to compute coefficients that 

produce Cartesian transformations which will match retransformed points below 

the 2-nautical-mile level. 

Both the Cartesian and polar formulations have their own uses:  the Cartesian 

system at moderate resolutions and the polar system at the highest resolutions 

over small areas not including a diagonal.   For benchmark transformations, 

the speed of either transformation is adequate, given a reasonably great inter- 

polation distance.   The high computational efficiency of the approximate forms 

tends to favor this approach for direct computation of data base coordinates (or 

for computation of corresponding points in the scan line buffer).   This technique 

could also be particularly useful in the corner regions where interpolation is 

not accurate over useful distances. 
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SECTION 4 - I/O SYSTEM DESIGN CONSIDERATIONS 

4.1  ALTERNATIVE METHOD OF FAST-FILLING 

Section 2.3 briefly outlines a proposed alternative fast-filling scheme for the 

preprocessor program.   This method, described in Reference 3, partially 

solves the problem of edge and vertex crossings and eliminates the necessity 

for explicit data spreading.   By combining this approach with the approximation 

techniques descussed in this report, the overall efficiency of the preprocessor 

function can be increased still further. 

Sections 3.1 and 3.3 present a method for obtaining data base coordinates 

(x , y) directly from Keplerian orbital elements and scanner angle.   By omit- 

ting the last step of the process outlined in Section 3.3, positions in the  (a , ß) 

system can be obtained, which is simply a rescaled (4 , tj)  system  (a = £/r   , 

ß * Tj/r ) .   Using this algorithm, a benchmark grid in (a , 0) can be obtained 

and a procedure can then be followed which consists of a modification to that 

described in Reference 3.   As outlined in Section 2.3 of Reference 3, filling is 

performed only for complete data base records (thus avoiding the necessity to 

read and update partially covered records).   The procedure employs a new 
R       R       R 

rotating Earth-centered coordinate system  (x   , y   , z  )  in which both scan- 

ner and data base benchmarks are defined.   CSC proposes modifying this pro- 

cedure as follows: 

R       R       R 
1. Instead of using the x   , y   , z     system, both scanner and bench- 

mark grids in a coplanar system should be defined, projecting the 

scan line grid into the inscribed cube face and transforming the data 

base coordinates to the same  Iß , ß) system. 

2. The data base benchmarks should be defined in terms of the pro- 

jected scanner benchmarks (i.e., the (E, L) coordinates of the 

data base benchmarks should be defined as shown in Figure 4-1). 
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• DATA BASE BENCHMARKS 

X SCANNER BENCHMARKS 

a, ß CUBE FACE COORDINATES 

E, L SCANNER COORDINATES 

x, y DATA BASE COOR Dl NATES 

il. 

Figure 4-1.   Coplanar Representation of Scanner and Data Base Grids 

3.      The (E, L) coordinates of each data base location should be inter- 

polated and the nearest pixel stored in that location.   (This may be 

done by offsetting the (E, L) system 1/2 pixel in both coordinates 

and obtaining E and L indices of the desired pixel by truncation.) 

The objective of this modification is to avoid the necessity of searching for the 

nearest pixel in a three-dimensional space. 

Neither this method nor the procedure in Reference 3 completely eliminates the 

edge and vertex crossing problems.   It is necessary to predetermine, from the 

benchmarks of the scanner array, which data base records will be completely 

covered by the scanner data currently in the input buffer.   This process must 

check for edge and vertex crossings. 

Figure 4-2 illustrates the relationship between the scanner data input buffer 

and the data base records.   The scan buffer must have sufficient length (in the 

along-track direction) to cover the longest diagonal of a data base record.   For 

the 64 x 64 pixel case, this will be approximately 128 pixels in the corners of 
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the face.   The scan line buffer must be organized as a creeping buffer, and no 

more lines may be added in the forward direction (and deleted in the backward 

direction) than the number of lines by which the buffer exceeds the minimum 

needed to cover the longest diagonal.  A typical scanner input buffer would have 

a width (along the scan direction) of approximately 1600 nautical miles (about 

1344 pixels), with a minimum length (in the ground track direction) of 128 pixels. 

This will require sufficient buffer storage for 172,032 pixels.   Two methods 

emerge for handling this large array.  The first is to pack more than one pixel 

per 60-bit word.   This would allow the entire buffer to be maintained in central 

memory on the CYBER/175 but would introduce a large packing and unpacking 

cost.   A second method would be to maintain the buffer in ECS, segmented so 

that it could be brought into core in blocks as required.   The scheduling of these 

blocks, along with the ordering of output records, could be determined from 

DATA BASE 
CUBECORNER 

SCAN LINE 
BUFFER 

GROUND TRACE OF 
SATELLITE 

Figure 4-2.   Relationship of Scanner Input Buffer and Data Base Records 
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the (x , y) locations of the projected and transformed scanner input benchmark 

grid, ordering the filling of data base records by their corresponding along-scan 

locations. 

Because the objective of this new method is to reduce redundant stores, it 

could also be useful to consider windowing down the along-scan length of the in- 

put buffer as a function of latitude to reduce scan path overlap at high latitudes. 

Similarly, at low latitudes, it may be necessary to subdivide data base records 

into two or more longitude bands and partially update the records rather than 

fully rewriting them. 

4.2  MAINTENANCE OF MULTIPLE- AND VARIABLE-RESOLUTION DATA 
BASES 

Considerable savings in computation and I/O time and in data base storage can 

be realized by reducing the resolution of the data base in areas of lesser inter- 

est (such as, perhaps, over land and in the southern hemisphere).   It may also 

be desirable\o be able to maintain higher resolution'for other selected areas. 

One method for providing such variable resolution coverage consists of main- 

taining a single, fully global data base at the lowest desired resolution, plus 

separate higher resolution partial data bases.   A second method consists of 

maintaining a single data base of variable resolution. 

In either case, it will be necessary to provide a system for indicating the de- 

sired resolution as a function of global position. This can be provided for by 

establishing a data block properties table (for example at the 128 x 128 or 

256 x 256 element level) which would contain the desired resolution described 

as a multiple öf the finest usable resolution or by the number of bits required 

for the serial address. This would allow the preprocessor program to deter- 

mine the desired resolution at any point. 

For the multiple data base scheme, the preprocessor program would first de- 

termine which elements of the resolution table are covered by the data currently 

in the scan line buffer and then access the table to determine what actions must 
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be taken.   This table would consist of entries for each of the desired resolution 

levels indicating 

• The desired resolution 

• A base address for the block of records corresponding to the table 

element 

• The size of the data base records (in elements) 

The resolution and record size for all records in a block corresponding to one 

table element can both be expressed as a number of bits to be added to the 

corresponding binary division levels of the basic global data base, i. e., if the 

desired resolution is twice the linear resolution of the basic data base, two 

more address bits must be added and, if the records are to have the same num- 

ber of elements, the record/element division of the serial string must take 

place two bits lower. 

The serial string for each resolution level would be kept separate, and the use 

of a base address for each record block would obviate any need for unused filler 

records in the data base.   For maximum flexibility, each resolution level could 

be maintained as a separate file. 

With multiple data bases, the size of a data base record would be adjustable to 

allow an optimum match of record size to scanner input buffer size and data 

item size (where one data item might be all of the simultaneously available, 

colocated scanner readings).   To maintain this match, a separate pass through 

the data will be required for each resolution level. 

In the variable resolution approach, only one pass through the data is required 

and all data records cover the same area.   This means that the ratio of the 

scanner buffer size to the data record area remains fixed, as do the total num- 

ber of I/O operations.   The total number of data records remains constant; 

thus, a consistent record numbering and ordering can be maintained, avoiding 
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the necessity of a table lookup for a block address, as in the multiple data base 

scheme.   In this case, the data block lookup table need contain only the reso- 

lution (which will also imply the record length). 

Both of the above schemes have advantages and disadvantages: 

• The multiple data base scheme requires redundant stores and com- 

putation 

• The variable resolution scheme requires stringing together unlike 

data base records, thus requiring a variable record length capability 

• The multiple data base scheme allows easy addition or deletion of 

nonstandard resolution areas for coverage of new areas of interest 

• The variable resolution scheme allows more systematic control 

over the data base storage allocations 

A possible resolution of these conflicts is to use a hybrid system in which the 

variable resolution format would be used for resolutions coarser than a set 

standard resolution level, and the multiple data base approach for higher reso- 

lution levels (and for other subdata bases required for special purposes or 

limited durations). 

A unified block properties table would be maintained which would allow display 

of the current status and availability of a data record in the system.   This table 

could be expanded to include such information as the last update time, satellite 

ID, dayside/nightside information, etc.   The advantages of such a scheme would 

be that multiple passes through the data would be restricted to selected regions 

of highest resolution, special changes in data base content could be accomplished 

without restructuring the main data base as a whole, systematic control over 

the entire data base could be maintained, and the serial string addressing 

scheme would be maintained for the standard resolution data. 
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SECTION 5 - GEOGRAPHIC ORIENTATION 

5.1 INTRODUCTION 

In order to maximize the usefulness and efficiency of the spherical cube data 

base, it may be necessary to orient the inscribed cube in some arbitrary man- 

ner with respect to the Earth.   The simplest orientation of the cube aligns one 

Cartesian axis of the cube coordinate system with the Earth's axis of rotation 

and points another cube axis toward the prime meridian.   A simple variation 

is to have one cube axis aligned with the Earth's axis of rotation and another 

pointing to a specified longitude.   This section will discuss these orientations 

and will present an algorithm for producing arbitrary cube rotations. 

5.2 SIMPLE ORIENTATIONS 

In Section 4.2 and Appendix E. 6 of Reference 1, algorithms are presented for 

the transformation of Earth-centered Cartesian coordinates  (a , b , c) to data 

base coordinates  (x , y) .   For the case where the Earth-centered (a , b , c) 

system is aligned as shown in Figure 5-1, the Cartesian coordinates can be 

represented as: 

a = cos (latitude) cos (longitude) (5-1) 

b = cos (latitude) sin (longitude) (5-2) 

c = sin (latitude) (5-3) 

To accomplish a simple rotation about the Earth's polar axis, the following 

algorithms can be used: 

a • cos (latitude) cos (longitude + 6) (5-4) 
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b = cos (latitude) sin (longitude + 6) 

c = sin (latitude) 

(5-5) 

(5-6) 

where  6 represents the angle of rotation. 

N (POLAR AXIS) 

/ • 

AXIS 

/ 

B 
-W LONGITUDE 90oE 

A AXIS B AXIS 

1       / } 
0° LONGITUDE 

/ 

m 

!! 

Figure 5-1.   Orientation of the Axes of the Cube (Unrotated) 

5.3 THE GENERAL ROTATION CASE 

In order to conveniently generate arbitrary rotations of the data base cube with 

respect to the sphere, a method was adopted for making successive rotations 

of the sphere about each of the axes of the cube.   By choosing the order in a 

suitable manner, this yields a conceptually simple way of arriving at a given 

orientation. 
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Taking a general set of orthogonal axes, G   , G   , G   , as shown in Figure 5-2, 
X A U 

the rotation about axis G-   can be expressed as follows: 

Let a be the desired angle of rotation about G. . For any arbitrary point. 

Si » g« » So » the position may be expressed in terms of the following three 

variables: 

• g   , the G-   coordinate 

• /J, the angular position of the projection of g- , g« , g-  on the 

G-G    plane measure from G_  in the clockwise sense 

• p , the perpendicular distance from g. , g» , g„  to the G-   axis 

For a pure rotation about Gj^  (Figure 5-3), g    and p are constant and the 

final orientation, g' , g'  , g'  , is determined by the new orientation angle, y , 
1       2       u 

where 

y = a + j8 (5-7) 

and since 

ß = tan"1(g3/g2) (5-8) 

then 

y = a + tan-1 (g-Zg.,) (5-9) 93' £i 

where 

P = g2 + g3 (5-10) 
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I    flvfl2'93 

Figure 5-2.   Point gi , g2 * S3 in ^e General Reference 
Frame, GD , G2 , G3 

0V 02.03 
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yielding 

gi=g1 (5-11) 

g^ = p cos y (5-12) 

g^ = p sin y (5-13) 

Using this general approach, a rotation through an angle a    is first made about 

the axis coincident with the Earth's axis of rotation.   This is functionally equiv- 

alent to the rotation described in Section 5.1 and results in a rotation of the a 

longitude line into the center of face number 1. 

The second rotation is made about the axis normal to the pole and emerging 

through a face normal to face number 1 (axis b in Figure 5-1).   If this rotation 

is through an angle a. » then the point with longitude a    and latitude a 2 12 
will be rotated into the center of face 1. 

A third rotation about the axis emerging from the center of face 1 will produce 

a "position angle" change on face 1 but will not translate the point at the center 

of the face. 

Using this method, any point whose latitude and longitude are known may be 

translated to the center of face 1 and the rotational aspect of that face may be 

altered without changing the latitude and longitude of the center.   Referring to 

Figure 5-1, the order of these rotations is about axes c, b, and a, respectively. 

Appendix E contains an algorithm for the application of the general transforma- 

tion to successive axes through the Interchange of components. 

Figures 5-4 and 5-5 Illustrate the continental outlines after the indicated rota- 

tions and are typical of maps generated by this process. 
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SECTION 6 - SUMMARY AND CONCLUSIONS 

6.1 NEW RESULTS 

The purpose of the research reported herein is to improve the procedures and 

algorithms required for the efficient maintenance of data in a quadrilateralized 

spherical cube Earth data base.   The new results obtained relate to the fast- 

filling of the data base.   A technique was developed for rapidly finding the ground 

trace and scanner-sensed locations from Keplerian elements and scanner angle. 

The previously derived form of the inverse transformation, f* , was improved 

by a change of variables.   A new inverse transformation was derived using polar 

coordinates, and a technique was developed for approximating the transforma- 

tion functions using low-order polynomials. 

All of these results will contribute to improving the accuracy and speed of the 

preprocessor function.  The general functioning of the preprocessor input/output 

algorithms was re-examined in light of an alternative scheme (Reference 3). 

This scheme and the previously developed fast-filling method (Reference 1) 

were compared, and a modification of the scheme described in Reference 3 is 

recommended. ; 
i 

In addition, improved world maps in data base coordinates were produced fob 

use in determining an optimum orientation of the data base cube.   Additional 

efforts were devoted to improving the accuracy of the transformations described 

in Reference 1.   The revised coefficients for these transformations are included 

in Appendix B of this report. 

6.2 RECOMMENDATIONS FOR FURTHER STUDY 

A number of topics considered during this study are worthy of additional atten- 

tion. The polar formulations of the transformation functions should be further 

developed using other constraints to maximize conformality of the mapping. 
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The role of the MAP HI processor in implementing the preprocessor function 

was excluded from this study because documentation is not available.   The role | 

which MAP III and the high-speed communications system's processor could 

assume in evaluating the transformation equations, particularly the approximate 

transformation, should be explored further. 

The various CYBER I/O access methods should be studied further, particularly i 

to ascertain whether or not they may cause fragmentation of the data base. 

Consideration should be given to producing display output in data base coordi- 

nates with a geographic grid overlay, thereby saving a major computation cost / 

in retransforming the data. ' 
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APPENDIX A - GROUND TRACE EQUATIONS 

This appendix presents the derivation of the expressions summarized in Sec- 

tion 3.1 and referred to elsewhere in this document.   Two problems are ad- 

dressed:  (1) the computation of the geocentric direction cosines  (1, m , n) of 

the subsatellite point in terms of the Keplerian orbital elements of the satellite 

and (2) the computation of the geocentric longitudes and colatitudes of any pair 

of datum points on a scan arc in terms of previously computed quantities (e. g., 

1 , m , n) .   A spherical Earth is assumed throughout. 

A. 1 THE SUBSATELLITE POINT 

Figure A-l shows the geometric relationship of the satellite, the satellite's 

orbit, and the Earth's equator to the (rotating) rectangular coordinate system 

(x , y , z) .   The coordinate system is fixed in the Earth and, therefore, ro- 

tates at the diurnal rate.  The Keplerian orbital elements whose definitions 

are given by the figure are the inclination, 1 ; the argument of perigee, co , 

shown as part of the angle (w + f) , where f is the satellite's true anomaly; 

and the node, O , which is not the usual fixed quantity, but varies with the 

fidereal time (diurnal rate), s , as follows: 

0 = 0  -s (A-l) o ^ 

where O   is the value of 0 at an arbitrary initial time. 

Figure A-l shows the subsatellite point having geocentric coordinates longitude, 

6 , and colatitude, 0 , and lying, by definition, on the line joining the satellite 

and the Earth's center.  Therefore, the direction cosines (1 , m , and n) de- 

scribing the direction to the satellite in the x, y, z system are Identical with 

those for the subsatellite point.   The straightforward relationship between the 

direction cosines and 6 and 0 will be exploited in Section A. 2.   First, the 
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Figure A-l.   Satellite Orbit Orientation and 
Geographic Coordinates 

A-2 



expressions for 1 , m , and n in terms of O, to , i , and f are derived 

below. 

Consider the geocentric position vector, "r", of the satellite in its orbit.   Ex- 

press "r" in the two-dimensional rectangular coordinate system (p , q) in the 

orbital plane, where the unit vector p is in the direction of the node and the 

unit vector q is in the direction 90 degrees in advance of p  (see Figure A-l) 

T= r cos (co + f) p + r sin (to + f) q 

where r is the magnitude of T.   The coordinates  (r   , r   , r ) of the satel- 

lite in the geocentric equatorial rectangular coordinate system are, then, 

r   =~r • x = r cos (co + f) p • x + r sin (co + f) q • x 

r   =■?■. y = r cos (co+f) p • y + r sin (a)+ f) q • y (A-2) 

r   «T-z» + r sin (w + f) q • z z 

where the term in p • z for r    is omitted, since p • "z = 0 z 

Now, 

p • x = cos O 

q • x = cos (90° + 0) cos i = -sin 0 cos i 

p • y = sin O (A-3) 

q • y = sin (90   + 0) cos 1 = cos 0 cos I 

q • "z = cos (90   - 1) = sin i 
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Substituting Equations (A-3) into Equations (A-2), r   , r   , and r   become 
x     y z 

r  = r cos O cos (co + f) - r sin 0 sin (OJ + f) cos i 

r   = r sin 0 cos (a) + f) + r cos O sin (w + f) cos i (A-4) 

r  = r sin (a> + f) sin i 

Since the satellite position vector, 1?, in the (^, y, z) system is 

_».      /\       /^       /\ 
r = r x + ry + r z 

x       jr      z 
(A-5) 

the direction cosines   (1 , m , n) of its position are defined by 

r • x = I?"! |x 11 

r •y= |r| |y|m (A-6) 

^ • z = I"?! |z I n 

Now, from Equation (A-5), 

r«x-rx'X=r 
x x 

r • y = r y • y = r V 
r»z = r Z'Z=r 

z z 
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which, when substituted into Equations (A-6), yields 

l = r /\T\\$\*r/r 

m = ry/l-r| ly| = ry/r (A-7) 

n = r /I"?! |z | = r /r z z 

since  |x| = |y | = |z | = 1 , and  jr"] = r . 

Equattons (A-4) and (A-7) then yield 

1 - cos O cos (to + f) - sin 0 sin (w + f) cos i 

m = sin O cos (co + f) + cos O sin (co + f) cos i (A-8) 

n = sin (co + f) sin i 

Equations (A-8) provide one way of defining the "ground trace" of the satellite, 

since 1 , m , and n may be regarded as the "unit" geocentric coordinates of 

the subsatellite point.   That is, assuming a spherical Earth, the actual coordi- 

nates of the subsatellite point are obtained by multiplying 1 , m , and n by 

the Earth's radius in whatever units are required (e.g., kilometers).  Equa- 

tion (A-8) is given as Equation (3-1) in the text. 

A. 2  THE LOCATION OF DATUM POINTS ON A SCAN ARC 

The satellite's onboard sensors are assumed to sweep out a scan arc having 

ground trace geometric properties as defined in Section 3.1.2 and as illustrated 

in Figure A-2.   It is convenient to regard the ground trace of the scan arc as 

being composed of pairs of datum points symmetrically placed on either side 

of the subsatellite point, and to regard ^/2 as a general variable locating the 

points by assigning alternate algebraic signs to 0/2 (e.g., the ends of the 
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scan arc are located at ±^ /2 from the subsatellite point).   It is desired to 

obtain pairs of values for the geocentric longitude, 6* , and colatitude, 0* , of 

the datum points in terms of known quantities in a computationally efficient 

manner. 

The sines and cosines of the geocentric longitude, 6 , and colatitude, 0 , of the 

subsatellite point are required as intermediate quantities in terms of 1 , m , 

and n from Equations (A-8).   By inspection of Figure A-l, 

cos 6 sin 0 = 1 

sin 6 sin 0 = m (A-9) 

cos 0 = n 

Care must be taken in using Equations (A-9) to obtain sin 0 , cos 0 , sin 6 , 

and cos 8 , since the algebraic signs of these quantities must be preserved for 

later use.   This is readily achieved by noting that cos 0 yields  0 uniquely, 

since  0 s 0 £ 180 degrees .   Straightforward manipulation yields the remaining 

quantities.   Equation (A-9) is given in the text as Equation (3-3). 

To obtain the values of 0' , the necessary relations may be derived by con- 

sidering the two spherical triangles  PSQ and PQR shown in Figure A-2 and 

having the common side PQ , which is the colatitude, 0 , of the subsatellite 

point.   These triangles are shown in detail in Figure A-3, where it is noted 

that the arc  PS is 90 degrees, that the scan arc intersects the ground trace 

at right angles, and that point R'  may be regarded as any point on the scan 

arc at a distance of ^/2 from the subsatellite point, Q .   (Figure A-2 shows 

only the end point of the scan arc, R , at a distance ty /2 from the subsatellite 

point.) Also shown in Figure A-3 are two auxiliary angles, A and ß , such 

that A + /3 + 90 degrees = 360 degrees . 
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The cosine law applied to triangle PQR* yields 

cos 0' = cos 0 cos 4>/2 + sin 0 sin ^/2 cos ß (A-10) 

Since ty/2 is a quantity given a priori, all of the quantities to the right of the 

equality in Equation (A-10) are known except cos ß , which is obtained as fol- 

lows. 

By definition 

ß = 270° - A 

Therefore 

(A-ll) 
cos ß = cos (270° - A) = cos (270 ) cos A + sin (270°) sin A 

= -sin A 

Applying the sine law to triangle PSQ , 

sin A   ^ sin (90° - i) 
.   nno sin 0 sin 90 

or (A-12) 

sin A = cos i/sin 0 

Employing Equations (A-ll) and (A-12) in Equation (A-10) yields 

cos 0' = cos 0 cos ^/2 - cos i sin ip/2 (A-13) 
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which is the desired relation for cos 0* .   Equation (A-13) yields  0' uniquely, 

since 0 s 0' £ 180 degrees , so that sin 0'  follows immediately.   By appropri- 

ately redrawing Figure A-3 and repeating the above analysis, it can be readily 

seen that 0'  for the datum point corresponding to -^/2 on the other half of the 

scan arc is obtained from Equation (A-13) simply by replacing ^/2 with -^/2 . 

Next, to obtain the values of 9' , Figure A-3 Is again used to note that the 

cosine law applied in triangle PQH* yields 

cos ty/2 = cos 0 cos 0* + sin 0 sin 0* cos (6' - 6) 

or (A-14) 

cos (6' - 6) = (cos f|)/2 - cos 0 cos 0')/sin 0 sin 0' 

Since 6 and all other quantities in Equation (A-14) are previously known 

through Equations (A-9), it remains only to obtain an independent relation for 

sin (6' - 6) to uniquely specify the quadrant of 6' .  The sine law applied to 

triangle PQR' yields 

sin g _ sin (6' - 6) 
sin 0' ~    sin ^/2 

or (A-15) 

sin (6' - 6) = sin 0 sin ^/2/sin 0' 

To obtain sin ß , it should be noted that, by definition, 

ß » 270° - A 
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Therefore, 

sin /3 = sin (270° - A) = sin (270°) cos A - cos (270°) sin A 
(A-16) 

= -cos A 

Applying the cosine law for angles to triangle  PQS , 

cos A = -cos (90° - i) cos (6 - 0) + sin (90° - I) sin (8 - O) cos (90°) 
(A-17) 

= -sin i cos (6 - O) 

However, the cosine law for sides in triangle  PQS yields 

cos (w + f) = cos (90 ) cos 0 + sin (90 ) sin 0 cos (9 - O) 

or 

cos (6 - O) = cos (w + f)/sln 0 

Therefore, Equation (A-17) becomes 

cos A = -sin 1 cos (co + f)/sin 0 (A-18) 

Substituting Equation (A-18) into Equation (A-16), and then substituting the 

result into Equation (A-15) yields 

sin (61 - 6) = cos (co + f) sin 1 sin 0/2/sin 0 sin 0' (A-19) 

Equations (A-14) and (A-19) are the desired expressions that uniquely deter- 

mine 6*  from previously known quantities.   Alternative forms for Equa- 

tion (A-19) were found, but the one given here offers the simplest functions 
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of the quantities, all of which are previously known and is the most rapid to 

compute, since no additional evaluations of trigonometric functions are required. 

Again, by appropriately redrawing Figure A-3 and repeating the above analysis, 

it can be readily seen that Equations (A-14) and (A-19) uniquely yield 6*  for 

the datum point corresponding to -^/2 on the other half of the scan arc.   This 

is accomplished by entering Equations (A-19) with -^/2 , and entering both 

Equations (A-14) and (A-19) with the appropriate 0' from Equation (A-13). 

The important results just derived are Equations (A-13), (A-14) and (A-19), 

which yield 0*  and 6'  for pairs of datum points on any scan arc, and are cited 

as Equations (3-4), (3-5), (3-6), respectively, in the text.   Caution is neces- 

sary when applying Equations (A-14) and (A-19) near the poles, since these 

relations are singular for subsatellite points or datum points at the poles. 

This is expected, since the geocentric longitudes 6 and 6* are undefined at 

the poles.   No problem need arise in computations, however, since the satel- 

lites are not expected to have exactly 90-degree inclinations and since, for the 

case of an equatorial orientation of the data base cube, it is a simple matter 

to regard the cube face coordinates of such datum points as zero within an 

arbitrary, but nonzero, distance from the poles. 
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APPENDIX B - BEST VALUES FOR THE COEFFICIENTS OF  f* 

For the form of the inverse mapping function, f ♦ , given in Equation (3-42) the 

best derived coefficients are 

y* = 1.3682 6932 2362 

T =-0.1268 8142 8338 

M =-0.0024 3108 1471 

ft   = -0.1583 3565 5509 

C     = 0.1014 5485 8689 

C      =0.0160 1398 7763 

C     =-0.0904 3332 1481 

C     =0.0574 8768 5173 

Cor, = -0. 0272 7606 9952 

C. _ = -0.0342 1969 6290 

D   =0.0292 5271 6867 

D   = 0.0059 2537 5028 

B-l 



APPENDIX C - REFINEMENT OF THE CARTESIAN 
TRANSFORMATION 

Section 3.3 of the text presented a numerically efficient and compact algorithm 

for employing the Cartesian transformation, f * , defined in Section 2,2 to obtain 

the data base coordinates  (x , y)  of any datum point or pair of datum points 

on the (spherical) Earth's surface.   This Appendix discusses the rationale for 

the new algorithms and provides a derivation of Equation (3-42). 

C.l  OVERVIEW 

The algorithm presented in Reference 1 (Section 4, Appendix B) already pro- 

vides the essential information needed to implement f* , but this study has found 

that the algorithm may be made more efficient computationally and better suited 

to computer programming by the following modifications: 

• Take advantage of the nondimensional analysis presented in Appen- 

dix A that removes the need to compute the three-dimensional 

spatial coordinates of datum points by relying on simple direction 

cosines  (1 , m , n) of the subsatellite point and on the longiv^uds 

and colatitudes of the datum points. 

• Allow for the Earth's rotation by using a varying node (see Appen- 

dix A) in computing the direction cosines instead of performing a 

separate transformation. 

• Reduce by about half the computations required in cases of nonzero 

scan angles by viewing the scan arc as a central angle ^    (see 

Appendix A) and computing the data base coordinates for points in 

symmetrically placed pairs instead of treating each datum point 

independently. 

• Remove a step from the algorithm, saving computations as well 

as yielding desirable numerical properties (see Section 3.4), by 
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introducing a change of variable that leads to a new formulation 

of f* .   The results of this step are summarized in Equations (3-40), 

(3-41), and (3-42) of Section 3.3.1.   The mathematical details are 

presented in Section C. 2 below. 

C.2  REFORMULATION OF  f* 

Table 3-2 (Section 3.3.1) establishes the conventions that define variables 4' » 

T)' , and p .   These variables also appear in Table 4-1 of Reference 1, differing 

only In that 1 , m , and n are dimensionless (see Appendix A), whereas a , 

b , and c  (of Reference 1) are spatial coordinates.   Mathematically, 4' f ^ » 

and p behave identically here and in Reference 1. 

In Reference 1, once £' , Tj' , P are found in Table 4-1, they are transformed 

to (C, T?) by 

I =«' P 
(C-l) 

T) = TI' P 

where P = r /p and r  = l/>/3".  The new variables £ and n are then used o o 
in f* to obtain the data base coordinates  (x , y) by 

x = f* (M) 
(C-2) 

y-f* (M) 

The transformation given by Equations (C-l) can be eliminated by defining new 

variables a and ß by 

a = 4Vp 
(C-3) 

ß =Wp 
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Comparison of Equations (C-l) and (C-3) shows that the new variables a and ß 

eliminate the computation of the intermediate quantity P and reduce the trans- 

formation to simple ratios of previously known quantities.   The introduction 

of a  and ß will now be completed by deriving f * (a, j3) f the transformed 

equivalent of f * (4 . TJ) , which was given in Section 2.2 and Reference 1 as 

f* M = y*i+ ^ i3 + «r?2 (C - C2) 6* + 6* (ro
2 - €

2) 

/    2       2\ V    * ^2i ,2J 
iäO 
j*0 

H^-ep^-^ie 

where  r    = lA/ÜT and 

v* = ~ 7 y 6   =—4 
2r 

1 4* y+TÖ o 

"1*=-^ 
M+ 2r4ö o 

w* =    1     (3 - 2y* - M* - 2r4 6*) 

2r 

1        2 r 
0 

Wj* ~y*) 
_ö* 

(C-5) 
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and y , JU , 6 , co , and the c*   and d* have the numerical values given in 

Section 2.2. 

First, Equation (C-4) is expressed in terms of £ , if , and p by using Equa- 

tions (C-l) 

Ml', T?', P) = y*r   C'/p + "^^ rJJ (4'/p)3 

2       o 

+ r
3 (4« TJ'V) K - r^ «Vp)2] jo* + 6* [r2 - r* «Vp)2] 

[r2 - r2 (n'/p)2]!; c* r21+2j (€Vp)21 (r,'/p) 2J, 

j*0 

(C-6) 

'o^'/^K-'o«'^2] 

W+[ro - ro <«,/p)2] E di rf ^,/p) 
(       «- u     u J iao 

Next, a and ß are introduced as defined in Equations (C-3), and powers of 

r    are canceled in Equation (C-6), where appropriate, to obtain 

f*(a, ft = roy*a + ro (1 - y*) a1 

+ ajS2 (l - a2) r 6* + 6* r2 (1 - a2) 

iiO    lJ 

3 „        2V   5 r ,      2 „       2VV^ Jlk   2i    2il a   (1 - a ) r    w* + r  (1 - a ) >. d«* r   a 0L ito 1  o      J 

(C-7) 
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Equation (C-7) may be simplified ultimately by introducing the definitions 

(Equations (C-5)) of 6* , to* , and 6* to obtain: 

f*(a, /?) = r y*a + r  (1 - y*) a3 + a/32 (1 - a2) r5 

M| - M*     ro /y* - y*     ß*- ß* 

n 4     + "Tl       4       "     ~ 4 2r r   \    r 2r o o \     o o 

(1-a ) 

-^(l-^Zc-r^a21^ 
i^O 
j*0 

+ a3(l-a2)r|j 

(C-8) 

i3-2ylt'-M*-2r^[(Mj--MV2r^ 

2r 

2 „       2V V J*   2i   2i + r   (1 - a ) 2^ d  r   a 

Equation (C-8) is simplified by factoring the expression by r    and carrying 
4 0 

r   through the terms in box brackets to obtain o 

f*(a, ^ = ro {y*a + (1 - y*) o3 + a/J2 (1 - a2) 7(MJ-M*) 

(yj - r- |(MI - M*)) (1" a2) Ml - /J2) E cfi 'o(i+J+3) «2i ^ 
i»0 

(C-9) 

+ a (1 - «2) jf (3 2y* - »i* + M* - MJ) + (1 - « ) 

xE/l.rr
,«ai 
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Three new constants, M , F , and ß   , are introduced to replace  6* , Cü* , 

and  6* through the following definitions 

M = j(M*-/i*) 

r = yj-y* (C-10) 

Ci1 = j(3-2y*-n*) 

By comparing Equation (C-10) with Equation (C-5), it is seen that these new 

constants are considerably simpler in form. 

Noting that r    is strictly a constant, r   = l/v/jf, new coefficients  C.. and D. 

are defined as follows 

c    =c*r2(i+J+3) 
Cij     Vo 

„       ,.   2 i+3 D = d* r v     ' 
i      i   o 

(C-ll) 

Using Equations (C-10) and (C-ll) in (C-9), the following is obtained 

f*(a, /3) = r <y*a + (l - y*) a3 + ajS2 (l - a2) 

M + (T - M) (1 - a2) + a - /32) Y, cu a21 f 
120 

a3(l-a2)  ft  +(l-a2)X)D1a
21 

L U0 

(C-12) 
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This completes the derivation of the transformed expression for f * . Equa- 

tion (C-12) is given as Equation (3-42) in Section 3.3.1 and its numerical ad- 

vantages are discussed in Section 3.5. 
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APPENDIX D - APPROXIMATION OF THE DIRECT AND 
INVERSE TRANSFORMATIONS 

This appendix presents tables of coefficients for the approximate forms of the 

transformations f and f* as presented in Section 3.4.   These tables are pre- 

sented for one octant of one face.   Each table contains 977 sets of coefficients 

(ordered by column), determined by using intersection points of a 32 x 32 tri- 

angular grid.   Each set of coefficients represents the approximate form of the 

transformation within one element of the 32 x 32 grid.   Each of these elements 

corresponds to one 64 x 64 element data face record at the 1.2 nautical mile 

scale. 

Figure 3-13 illustrates the table octant (octant 1) and the seven other octants. 

Table D-l is used to transform from  (x , y) to (£ , T}) and Table D-2 is used 

to transform from (£, n) to  (x , y) .  The steps outlined below are followed 

to transform from (x , y) to  (4, TJ); 

1. Add 2048.0 to x if x is less than 2048.0 

2. Add 2048.0 to y if y is less than 2048.0 

3. If y is greater than x , interchange x and y values 

4. Truncate the x and y values obtained, divide each by 32, and add 

one, use these integers and IX and lY indices and look up the co- 

efficients and number of terms in the table 

5. Evaluate f   (x , y) to obtain { 
a. 

6. Reverse steps 3, 2, and 1 to place £ in its proper octant 

7. Interchange x and y and repeat steps 2 through 7 to obtain TJ 

Alternatively, steps 1, 2, 3, and 7 may be avoided by constructing a iull 

64 x 64 table containing redundant data. 
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In Tables D-l and D-2, IX and IY (IP , IE) are the x and y  (4 i »)) indices of 

the table, x    and y    (£   » t? ) are the coordinates of the origin of the area of 

definition for the coefficient set, NTERMS is the number of terms to be eval- 

uated, a   ... a. are the coefficients, and RESID is the largest residual found 
O 5 

in the evaluation of the coefficients (in elements) as illustrated in Figure 3-12. 
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APPENDIX E - LISTINGS OF TEST AND 
EVALUATION PROGRAMS 

E.l    SUMMARY 

This appendix contains listings of FORTRAN programs used for testing and 

evaluating the transformations in this report and plotter programs used for 

generating the world maps. 

 Listing  Figure 

Program used for evaluating the coefficients of f*(|,T?) E-l 

Program used for verifying the f* transformations E-2 

Program used for verifying the polar transformation £-3 

Program used for evaluating coefficients of approximation 

polynomials E-4 

Program used for generating world maps E-5 

Alternative subroutines for E-5 using the polar transformation E-6 

E-l 
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Figure E-l (1 of 3) 
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BP»««rp<!f, 
M»»«n-»P*»> 
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PTTKI»! 
pwn 

nn»p»H 
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«HMOIITtNC MAP(XtV<XStVSI 

r pBfwsÄMMg« - F. iir.HAFi. n'NFHL 
r Cn^PIITFR   Sr.JFNCFS CORPORATION 
r   . I(7>P r.nLFStfiUP *o. SILVER SPRIWI Mn. 

«MPIICTT  RPAL*R   («-H,n-7i 
ncT* pf/s.iATSfl^As'isÄppnri/ 
n»T» B?>/n.is7n7o6?7ft7«i4onoi/ 
nur« Pt*/o,7PS!iq'<l<l«1iS,'7<t'>nnn/ 
nur«   Bn/n.vm'>o?isot««»Mnno/ 
n«TA sr.Ai p/n.'«Bio7inA'<«?Pssnni/ 
tFff.Fn.o.n.AMD.Y.fio.n.o» on TO ion 

vv.v 
»Wart 
i-(o»BMxi,fiF,nAHStvi» 10 in ?o 
IVV.) 
VV.YX vv,y 

90   r.OWTTMIIF 
oui=n»T*M(nnoRT(x*x*v*vi/RO) 
TwfT«.nATAM(nARSI¥V)/nAB5JXXI| 
AMii.n«TAM««fAti:»(THFT**nARf,nStnjIN(TH6TA)»DCns(PK»>-H?)» 
r.i.nnn/Hi.nnn-ncnsfnATAMn.nno/ncnsiTHETADD^cnsUMiM**?) 
p,Dn*n<nBT(r*n,ono-nrnsiPHi in 
iPdyv.en.ft) r,n rn ?o 
XC^nc |^M(S*n^1N(AMII) tx) 
vttf^Tr.M (a«nr.ns( AMii) ,V) 
peTMPM 

x<.n^tr.M(R*r>r.o^(AMin,xi 
v<:.n<Tr.M|R*nsiNlAM(i)fV) 
«ETIIBN 

lf>rt y<«.x 

BPTMBM 
pun 
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nc' 9iMriT*I''Fnii''?'eniiATin'j^ yri hnT« i“ ff)EFFlci'=“T5 inn" the
TUK ppnr;o»M hsps tmc trm ssp RnijTINf 
nc piMiiTAMPni'S eniiATl 
ADPPntIMATF TPANSFf'RXATIOM FA

iiinir.TION TMAP MAY PF HPniFiFn Tn r.ALL AiJY nfAiRFn TOAMSFOPPATinAi 
F FTAR. np THF PniAP TPAY^FORRATlnN ................... ..SlIRPnilTINE MAP

OBnr.uAMMFP - F. Mir.HAFt n'MFUL,
r.i'MPiiTFp Fr.iFwr.Fs r.nRpnRATioN
R7?R rniFSutLLF pn. SILVER SPRI«R. Mn.

■an
40
HO

OlMCfcKfnM «WFr.T(S|
HATA wnilT/A,/, MO|r./‘'l?/
PF*n|F,^0) WOUT *MP ir.tMAXn 
cf •D>/« T( a I s j 
OATA THI F9 /I ,0/
TMTCOs 9f»4«/MP If. 
nveA'Oir
OVeOV 
Y s70A® ,n
no 1 no IX*1 , INTF*l 
vo7n4P,n

fM r^nFr,*(A'r.%vFrT,x,v,nx,nv,TnLFB *RESini
icf rr ,cn,a-no .MAxn.i F.?) ^*0 Tn 30^_ _
r*t I ncr,;.twr,kwprT.x,v,nx*nY,TnLP»*RFS!ni
IF»Mr .en.4.np .HAxn.i F .4) r»n Tn 30 _ _ _ _
r « I I npr.*; ( Mr ,«VFr.T , X »Y ,HX ,0Y #TOJ. FR tRF SIH )
. 0TIP(MnPT,401 IX,iY,x,v,Mr,pwpr.T.PF^in ^^ 
FOOMATnX,iTF,?FR:?,!s,7X,SFl?.f»*^X,^12.S) 
vsv+nv

ion vrv+ny
^TOP

cnrooMTi^'P npnaiwr,ttuprT,x,v,nx.nv,Tf)L6R*RCSI«)
OiMpMCfOM PWPCTIS), AVFr.TI7S» 
nfMCM^IoM xPC3)tYP(aj ^
OATA VP/0,0,1.0,0,0/, YP/0.0,0,n,1,0/
Mr*a »
on 10 f«l,wr.
vvsV-»oy*xP( I )
vvsV4.nv*vP f I )
rwcr T n ) «T'^AP (XX ,VY )
A^fcrTf T )bXX
A»/crT(T + a jxVY
A'»PrT< )e1 #n

10 rOMTf*'HF
TAI 1 P|Mn( AWFr.T.RW?rT*MC .K*i) 
?Mpr,cSa(i,v';nxlnY,RVFr.T,TnLFR,RFSin,KVi
fCfVW.PO.l) MC«0 
PUPrT(4l»0,0 
pucrT(F)xO,o 
PCTHPM
CHPornTlMP vFP3(X,Y,0X.ov.RUFfTtTOLFRtRESIO*KV> 
nfMCM^fOM XP (4 I ,YP (4 ) ,AvPrT < s ) ^ ^ ^ ^ /
PATA XP/0,74,0,7S,0,75tn,?5/f VP/0.?5*0,?5#0*7^#0*75/
Mw-4
t'WsO
OPC U>xO,0
nn 10 IsI.WU
vvsV4,»'vtiyp( I )
vv-v*.nvPVP ( I ) _ . _.
yAxyy*RUPr.Tll )♦YV♦ftVFrT (2 I ♦HVFCTI ?)
XTxTM*P(XX,YV)
OCC IT«A«C(XA-XT )
IP(Pc^iT,r,T.PRSin) RFSin»RESIT- 

10 rn»<Tf*'iiP
fC(PC9TO.0T,TnLFP) XV«I
octhP’i
CMO

D

C
0
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sMn»niiT!M(E r»sß4«Nr.»<</i=rT.x,v,nxtnv,TnLER.«esfn> 
niMCMVIOM  l»«BCT(S>,   ä»   AWFf.tr?1!) 

n«T«  »P/O.n.l.Otl.O.P.O/,  YP/O.0,0.0,1,0,1,0/ 

nn in t.i,»ir. 
yv.y*nv«»p(j( 
vv,v+nv*vp(t| 
pwern II«T,<IP(XX,VV( 
Awertd      ).yx*vv 
»wprT(t+A    I^XX 
A»(:rT(I*B    )eVV 
«i/crT( t+i7)°i .n 

in rnMTtMiiF 
TAM    ^(Mn(AW|:f;T,«tfprT,Nr.,KS) 
istK'i.pn.i |  Mr,«-i 
r«l I    wPP«(»,Y,OX,nV,PVFr.T,TflLP«,RFSIO.KV) 
iE(«ii,Fn. j ( Mr»n 
MutrTfil «n.n 
r F T i m M 
P'lO 
«iiopniiTIMP   VBB«(X.V,nX,r)V.«wFrT,Tni.FR,RESID,KW) 
ni"PM«fn«i  XP(«l,Y*(*ltP,'PCT('il 
PAT»   »P/n.?<i,o.7S,0.7^,0.?S/,   YP/O.29,0.25,0.74,0.79/ 

pt? tn«n,o 
nn  in  t»l,wv 
vv-»»nv«XP(I( 
vviv*nv«vp(t i 
yi-.y»»YV«m/FrTt1 »♦XX«P>/FrT«7l*YY«RveCT(31*BVFCT(4) 
yT«TM*P(XX,YY| 
PC',IT»»«<;(«A-XTI 
TPIBC^tT.r.T.PPStO)   RFStn.PiesIT 

»n f (MT I'MIF 

If (ft^in.RT.TnLFRI   KV«I 
pr f itPM 

v^onnTTnp nPr.s(wr,«wFr.T,x,Y,nx,0Y,TnLeR,R6$fni 
nincmtrii   owprTIS),   *VFr.TI?S| 
nr-r-M«; IHM  XP(<i|,vP(s| 
n»'» «"/n.n,!.«,i.o,n,n,c.5/,  YP/O.o,o,0,l.n,1.0,0.5/ 

rn   to   IH,'if. 
yVBy+ny«yo(I ) 
vK,v,nv»vP(I) 
ovu-rT<?l»T«AP(X)(,YYI 
M'crTit      (•yx«xx 
«"trm+s  )«YY«YY 
Ai'Pf T( l*lf!)«yx 
«»prTi i+isitVY 
A'iBrTI t + ?0|«1.0 

10  rn'iTIMHF 
TAI i. «tinniÄWFr.T.RvecTtNr,KSI 
tFiK^.m.n ►•r»-i 
CM.)  >'FPS(x,Y,nx,nY,RvFr.T,TnLF(«,ResiOiKv» 
IP(KU.P0,1)   MC»0 
PPTMPM 

cimpmirtMF vFRsix.Y,nx,nv,nvFr.TtTnLFR,R6SlD,KV» 
nt(FM<io<i ypUi.vPUi.nvFrmi 
0»T«   XP/n.>S,n.7S,0.7S,0.25/,   YP/0.?5.0.25,0.75,0.75/ 

»w.n 
pp^fo.n.n 
no 10 »«i.Ny 
yy.y+ny»y6(f) 
vvBV«nv»YP(tI 
yA,yy»yx«i«wFrT(t i*yY»YY*l«werTC2 l*XX*PVECT( 3t*YY»RVFCTI4»*PVPr,T« 5» 
XT.T»»»P(XX,YY) 
VP<IT>«P<IX*-XTI 
fe(Bec?T.r.T."6Sln|   RFSIO-PFSIT 

in roMTU'i.p 
iFfOPtm.r.T.TOLFRI   KV«1 
RPTIIBM 
FMO 
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BSAI*«   FM»P,   P,   F 

cB(«->n/.P.o)»o.S773^ri/?04A,n 

Tt'i\P.TMAP*?0*l«.n/n.9773SP*?o««.0 
OPTIIPM 
«Mf» 
BuMrtfOn F'IAP|A«<M 

TMK   1«   POMAP   «1 
fnifOT  pe«!*«   (A-M,n-7» 
OUT» p^n/o.yj^^^^^^'SSinf»/ 
n«T«  r.MmA,i!iMr.AM/n.,»?3/<ni>5*«H?OO,O.?7639a7*«l4*!H00/ 
r-To rfl«,ffn,r'<»/-(<.77M7Ps^ni,-p;'5Sfi«?l»8!»f,>i"«?lTJil7*»ni/ 
n«T» ni,r.?n,r.o7/-o.(S4imonism,-0.^*57*^27401,n.i97^?M7ni/ 
P/iTA   no.ni ,07/0.l4«3?1?P?01,n.ni«»«>7?600l,0.60*15S«?10!/ 

n<oan«n 

P''AP.r.A^MA*A*n"r,AM/Rsn»A'<* 
i Ax-pMAPinMeRA+puA'too+oiPoso+n?***) )♦ 
7 A«n^n*0MA*!OPI.TA*'l'KO-l<<oT* 
» (r.on+r.io*ASn4.foj«iso*rn»»so*«so*cjo*/>**ro?*»«ii 
peri'nn 
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TMT« MncRtM punoycss wn«Lo »»PS IN OAT* B«SP cmmoiNATis 
(«iwr, TH6 WOLFPLOT Pif.K«r.6  AND CnNTINENTAl nilTttW ft*T»S*T 

ppnr.RAMMiBR F,  MlfHAFL   n'NFILL 
CftMPIITFR   SriFNf.FS  CORPORATIC 
R7Z« COLFSVILLF  RD.   SILVER   ! >RINr.t   NO. 

niMFM^inN  TMFTAIII 
f.Ai.i  r«i.<;i;(iB.o) 
f«ll.  »inTSTOnoi ,4) 
r.Ai.L <eTr.Rn(n.o,o,o,iA,o,lo.Oi«» 
r»M  srAi.F(-i.n.i^,n.-n.s, Q.StP» 

1   BF^nis.s.ewn.QQO)   THFTA 
s FnPMnrnfio.^) 

i.iP!TB(A,tA|   THFTA 
in  FOOMATM   «nTATIOM  ANRIFS   (nROFRED  3   2   Jl   SSFl?.?) 

on   is   I.),? 
•   IS  TMeTAn|»TMFTAin/57.3 

f.'LL "ORLOI THFTA) 
r«M CPMAHV 
r,r>   TO   1 

oqq  r.r>"TTM|iF 
«Too 
FMn 
«MBpnilTINF  wnRin(THFTA) 
iMTFr.fp»?  ix,IV 
ntHFkninM rnnRn(3) 
OIMFM^IOM   fHFTA«!) 
r'.^f.^!^.'   !X!A«l,.iVJ«fll,XUR),VUR),PP(*8l,EEU«l,IIFACE(AR) 

IHM  Hll?),   VLtl?) 
/n.o, A.o, R.n,n.n(o.n,2.o(7.0i4«o,«>Ot7«QtA«PtA«o/ 

i /7.n,».n,A.ntA.n>?.n,n.6tA.n,6.oto.Otft«(<t2>o,4.o/ 

nrwFmtnM xn(6i, vnlft» 
P|MFM«|nM xtt 
nATA »I ■" " 

'  n»TA vi . . .   ,.  ,.       _   . 
rxiT» xn/3.n,7.n,S.n,i.n,3.0,3.o/ 
ntr* vn/^.n,^.o,i.o,3.n,s,o»).o/ 
OUT»   OP.BS   /0(k*0,n/ 
BCAOI i) FAr.TnR 
F«rTnp.cACTOR/ST.?9S 
r/>ii. PinT(XLii»,yLni.5,»  •) 
r.Aii oinTixLiM.vuM.s,»  »i 
r«l|   PLnT(xUliltVL(l{l t7t'   •» I    I FHf.Fmfi 
1«l 
BFAflM ,FMn.oo<»)   M. (IV( JI.IXIJ), J>1,N) 
no   io .I»I,M 
A«lx(.i)*PArTnR 
n>1V(.t)»FAr.TnR 
rnopon )«f.ns(«)*r.ns(Al 
fnnpo(?).r.n^(R|*SIN(A) 

f.AII   »OT(f.nnRn,THFTA»  , 
CAM nTRAkiicnoRn.pp(jitfiF(.»),IF*CE» 
iF(iF«rF,Fo.LFArFi fin to * 
LFArF«tFAr.F 
IFM.FO.l)   RO  TO  5 
MM«,l«l 
TAIL   PinT|PPin,FEII),NN,*    •» 
UJ 

io pF(,n-FF(.ii ♦vnlfFArF) 
fiMaM.I*! 
TAU   P((1T(PPin,FFIII,NN,i    •( 

\n\ r.n TO I 
«4«  roMTIMIIF 

PFUIMD   I 
RFTIIP»! 
FMO 
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THt<  SIWUntlTINF  ROTATgSONg  MTUX  POINT  ABOUT  THREfi »X6S 
niMFNStn»! rnnftoJS). THgT*(Sl. j«x(3,3) 
MT«   .•AX/3,1.2,2,l,3tl,?,3/ 
nn  7n   f«xn.l,3 
x.rr>o»n(.i«x(?,!*xis») 
teix.pn.n.o)  x«l.OF-A 
v.r,nnon(j»xnfI»xisil 
»^(v.Fn.n.O) v»i.nF-6 
PU1.»T»N7(V,X) 
put.PHj+TMKTAtlAXISI 
0««OPT(X«X+V»V) 
rnn»n(.iAx(>,iÄX?<;ii»R»cns(PHi» 
ronpn(,i«xo,iAXt<;»)»R*siN(PHn 

>o  rnnTIniiF 
PCTIIPM 
enin 
«nBPniiTiMF ftTRAN!rnnRn,x.v,iF»rei_ 

THI«:   «;im«ni)T|MP   T*KFS   AS   IMPRT   THF   CARTESIAN COOHniNATF ARRAY 
f. (rnnpoi   «Nn  RFTIIRNS OAT»  BASF  COnRofNATeS   (X   AND  VI   AND  TMF 
r P«r,F   WdMRFR   (IFACFI   OF   THF   X tV   SYSTEM 

r DPnr-fl«MMFR   -  F,  MirHAFI.   O'NFHL 
f, COMPUTFR   SCIf-NCFS  CORPORATION 
r «7?B  miFSWlLLF   RD.   SILVER   SPRING,   MO. 

roMMOM  /TRAC.OM/   R^,SO,R^O.R^.CAMMA.nMGAM,DELTA,OMKRAt 
1 rnn,r.io,r.ni,rii,r.?o,cn?.no,oi,n? 
niMFM^TOM rnoRoni, r.oi, ROT»3,A), IROTO,»») 
OATA RnT/>.n,i.n,i.n, -i.o.i.o.-j.fi,  -1.0,1.0,1.0, 

1 1.0,1.0,-1.0,   1.0,-1.0,1.0,    >.0,1.0,-1.0/ 
OATA   fROT   /?,3,1,?,?.1,1 ,^,?,l ,^,?,?,),3,2,l,1/ 

r. rieT^MlNF   EAtF   MliMBFR   nY  FlMOINR   LARfiEST   (ARSi   COMPONENT 
rMAx.APStr.onROd) i 
.••1 
no  »o t«>,^ 
iPirMAx.Lt.fARSir.nnRnmil I  .'■! 
rMAXmABSlr.OOROU) 1 

to rnwTfMiiF 
IFArF».t«> 
leif.nnROC.II.RE.O.O) IFArF«IF^r.F-l 

r      IMTFPrHANr.F CARTESIAN COMPONENTS TO GET TO FACE SYSTEM 
no ?o H ,1 

70 nI»•ronRn(IROTII,IFACE)»*ROTII,IEACE» 
C      potuPCT TO PSI, ETA SYSTEM 

pD,i«on/r(^i 
Psf I I )»DR.I 
F»ri>)«p».i 

t TOAMtFORM   TO   X,Y 
XaFMAP(P,F)/RO 
V.BMAO(F,P)/RO 
RFTHRM 
Ff'O 
FlikT.TtOM  FMAP   (AA.PRI 

r      THIS   I«   FUNCTION   FMAPZ 
C PROGRAMMER   -  E.   MICHAEL   O'NEILL 
rc WJ^^ÜE^Üfi^So^sfeSM^^IN«.  MO. 

1«P|.ICIT RPAI.  »R   (A-H,0-;) 
OATA   RnoTI/n.lT^y^ORODl/ ,R0/0.57T3S0?69Pn/ 
OATA   GAMMAS/0, nT«R4B47>?t?01/ 
OATA   FM/0.«RftO4O)Ofl 1000-7/,   CG AM/-O.1316 1671*74000/ 
OATA   rnMGl/-0.1SQSOA73S47'.00/ 
OATA   COO/0,1411ROA3115?00/,   C 1O/0.BO97O12RA5250-1/ 
OAT "      "   '' '     "      " '    " 
OAT . . 
OATA   OO/O.7SOIQA7004A70-1/,      01/-0.217762490A99D-1/ 
OATA   nMftMS/-0,374B4fl47732000/ 
A>AA*enoT3 
B.BB*R00T3 
A7>A«A 
A^»A«A7 
A4.A7«A7 
A7aP«R 
P/.sP7«R7 
n'M>«i .noo-A7 
F'>AP7«Pn*U*GAMMAS*A3«OMGMS+A«R?»OMA2*(CGAM+A?»IEM-CfiAM|*n.OO-B2) 

• «ICOO*r.lO»A?*Cni«R7*Cll*A?*R?+C?0*A4+C07»B*)l 
• +Al«nMA2*ir,OMGl-OMA7*(On+01*A7l I I 

PCTMRM 
FWO 
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r <11«»OUTINF 0Ti«»N(r.nnRn.x.v,iF«CE) 
r TMIS MWRmirrMP TAKFS AS INPUT THF CARTESIAN cnnnniNATE «»»AV 
f. tr.noon)   »NO RETIIRNS OAT*   BASF  COOBniNATES   (X   »NO VI   AND TMF 
r FACF   MIIMRFR   (IFACE)   OF   THE   XfV   SYSTEM 
r 
r MoniFIFi»  TO (ISF   POLAR   FORM OF   TRANSFORMATION 
r. 
r PBnr,»*MMF« - E. MITHAFI. O<NFILL 
r COMPUTFR   Sf.IEMr.FS  CORPORATION 
f fl77B COLFSVIUE  RO.   SILVER   SPRING.   MO. 
r. 

PFAL*« P.F.II.V 
OIMFMSTON cnrtRno), r.m. ROTH.f.). iROTO.f») 
RATA POT/I.o.i.n.i.n, -i.n.i.o.-i.n, -i.o. I.o, i.o. 

1 1.0,1,0.-1.0,    l.0.-1.0,1.0.   1.0,1,0,-1.0/ 
OATA    IROT   /7,3,I ,?,^,l,lt1,?,1.3,7,?,l,3,2,l,3/ 
OATA   PO/0.'i773S07f<&I«9Ä1000/ 

r, nPTPPMJ»!«   FAfF   M>iflrtFR  BV  FINOINO   LARGEST   (ARS»   COMPONENT 
rMAx.ABSir.ooBom) 
.l"T 
no  in  t=?,^ 
iP(rM(\x.Lt,tARS(rmRO(iii i»  .(«i 
rMAx>Ans(roo0o(,ii) 

in rnnTi'KiF 
f FATP«,!*? 
tF(rno»o(j),r,F.o.o)  iFAr.F«iFAr.F-i 

r (MTPPrHAMr.F   CARTESIAN COMPONENTS   70 GET  TO FACE   SYSTEM 
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