A026223

LIGRARY TECHNICAL REPORT SECTION NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA 93940

TP-76-5

Wave Climate at Torrey Pines Beach, California

by

Steven S. Pawka, Douglas L. Inman, Robert L. Lowe, and Linda Holmes

TECHNICAL PAPER NO. 76-5 MAY 1976

Approved for public release; distribution unlimited.

Prepared for

U.S. ARMY CORPS OF ENGINEERS COASTAL ENGINEERING RESEARCH CENTER,

> Kingman Building Fort Belvoir, Va. 22060

Reprint or republication of any of this material shall give appropriate credit to the U.S. Army Coastal Engineering Research Center.

Limited free distribution within the United States of single copies of this publication has been made by this Center. Additional copies are available from:

> National Technical Information Service ATTN: Operations Division 5285 Port Royal Road Springfield, Virginia 22151

Contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

	PAGE	READ INSTRUCTIONS
REPORT NUMBER	2 GOVT ACCESSION NO	BEFORE COMPLETING FORM
TP 76-5	2. 0011 400233104 110.	o REONTERT S CATALOG RUMPER
TITLE (and Subtitio)		5. TYPE OF REPORT & PERIOD COVEREN
		Technical Denor
WAVE CLIMATE AT TORREY PINES BEAC	H, CALIFORNIA	6. PERFORMING ORG. REPORT NUMBER
A 1171 (STAL)		
Chause C. Daula Dauglas I. Isman		8. CONTRACT OR GRANT NUMBER(*)
Robert L. Lowe, and Linda Holmes	2	DACW72-72-C-0021
PERFORMING ORGANIZATION NAME AND ADDRESS	5	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Scripps Institution of Oceanograp La Jolla, California 92037	hy	A 31463
. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Department of the Army		May 1976
Coastal Engineering Research Cent	er (CERRE-OC)	13. NUMBER OF PAGES
Kingman Building, Fort Belvoir, V	irginia 22060	372
4. MONITORING AGENCY NAME & ADDRESS(II differen	nt from Controlling Office)	15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		15. DECLASSIFICATION/DOWNGRADING SCHEDULE
		-
		·
S. SUPPLEMENTATIONES		
. KEY WORDS (Continue on reverse side if necessary a	nd identify by block number)	
. KEY WORDS (Continue on reverse elde II necessary a	nd identify by block number)	
Array measurements Directional spectra Tilting spar	nd Identify by block number) Wave climate Torrey Pines	Beach, California
Array measurements Directional spectra Tilting spar ABSTRACT (Continue on reverse side II necessary and The wave climate at a site of using a line array of four pressu coastline at a depth of 10 meters station that contained accelerome meters and a surface-piercing sta to a shore recording station.	nd Identify by block number) Wave climate Torrey Pines d Identify by block number) f Torrey Pines Be re sensors which . The pressure s ters and, at time ff. The data wer	Beach, California ach, California, was studied roughly parallels the ensors were linked to a she s, electromagnetic current e transmitted by radio link
Array measurements Directional spectra Tilting spar ABSTRACT (Continue on reverse elde II necessary on The wave climate at a site of using a line array of four pressu coastline at a depth of 10 meters station that contained accelerome meters and a surface-piercing sta to a shore recording station.	nd Identify by block number) Wave climate Torrey Pines d Identify by block number) f Torrey Pines Be re sensors which . The pressure s ters and, at time ff. The data wer	Beach, California ach, California, was studie roughly parallels the ensors were linked to a she s, electromagnetic current e transmitted by radio link (continued)
Array measurements Directional spectra Tilting spar ABSTRACT (Continue on reverse side if necessary and The wave climate at a site of using a line array of four pressu coastline at a depth of 10 meters station that contained accelerome meters and a surface-piercing sta to a shore recording station.	d Identify by block number) Wave climate Torrey Pines d Identify by block number) f Torrey Pines Be re sensors which . The pressure s ters and, at time ff. The data wer	Beach, California ach, California, was studie roughly parallels the ensors were linked to a she s, electromagnetic current e transmitted by radio link (continued) UNCLASSIFIED

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

20. Abstract.

Wave records were taken four times daily for a 16-month period from February 1973 to May 1974. The pressure-sensor array data were used to calculate estimates of the frequency-directional spectra of the wave field. The spectra were investigated in an effort to characterize the principal components of the wave field. The wave components were identified as peaks in the frequency spectra. The energy, peak frequency, bandwidth, and direction of these wave components were obtained in the data analysis. These parameters of the wave field are recorded in a tabular form. Seasonal groupings of the wave data reveal the variations of the typical wave conditions over the year.

Improvements to the anchoring of cables and connections of the shelf station eliminated most of its failure modes, and the SAS system remained on station and operative during some seven storms in the winter of 1974. The SAS shows promise of being a reliable long-term data collection system for nearshore waters.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

PREFACE

This report is published to provide coastal engineers with climatic data to augment and help evaluate information and techniques obtained in the wave climate program of the U.S. Army Coastal Engineering Research Center (CERC).

This report is published, with only minor editing, as received from the contractor; results and conclusions are those of the authors and are not necessarily accepted by CERC or the Corps of Engineers.

This report was prepared by Steven S. Pawka, Research Assistant; Dr. Douglas L. Inman, Professor of Oceanography; Robert L. Lowe, Senior Development Engineer; and Linda Holmes, Research Assistant; Scripps Institution of Oceanography, La Jolla, California, under CERC Contract No. DACW72-72-C-0021. The authors acknowledge the assistance of Darold E. Palmer, John C. Boylls, Wayne Spencer, Michael Kirk, and Earl Murray in the collection of the data, and installation and maintenance of the equipment.

Dr. Dinorah Esteva was the CERC technical monitor for this contract under the supervision of Dr. D. Lee Harris, Chief, Coastal Oceanography Branch, Research Division.

Comments on this publication are invited.

Approved for publication in accordance with Public Law 166, 79th Congress, approved 31 July 1945, as supplemented by Public Law 172, 88th Congress, approved 7 November 1963.

JAMES L. TRAYERS Colonel, Corps of Engineers Commander and Director

	Pag
Ι	INTRODUCTION 9 1. Background 9 2. Scope of the Study 10
II	WAVE CLIMATE DATA SYSTEM101. Installation102. Data Acquisition103. Data Processing104. Sensors105. Underwater Cables and Connectors106. Field Operation of System22
III	ARRAY THEORY
IV	CHARACTERISTIC PARAMETERS FOR WAVE SPECTRA
V	COMPARISONS OF VARIOUS METHODS AND TECHNIQUES
	 4. Orbital Velocity as a Function of Wave Energy and Frequency
	6. Direction from Accelerometers 60 7. Directional Spectra of High Frequency Waves 63
VI	WAVE CLIMATE
VII	CONCLUSIONS
	LITERATURE CITED
APPENDIX	
A	THEORETICAL DEVELOPMENT OF DIRECTIONAL SPECTRA 89
В	DYNAMICS AND EXPECTED PERFORMANCE OF THE TILTING BAR 99
С	DESIGN AND OPERATION OF SURFACE-PIERCING WAVE STAFF 108
D	TABULAR REPRESENTATION OF CHARACTERISTIC PARAMETERS OF WAVE SPECTRA
Е	FREQUENCY OF OCCURRENCE OF SPECTRAL PEAKS
F	COMPARISONS OF ENERGY LEVELS OF VARIOUS SENSORS

CONTENTS-Continued

Page

APPENDIX

G	COMPARISONS OF DIRECTIONAL RESULTS OF VARIOUS GROUPINGS OF THE SENSORS
Η	COMPARISON OF SPECTRA OF WAVE STAFF AND PRESSURE SENSOR
I	TABULAR COMPARISONS OF SENSORS
J	SEASONAL ENERGY-DIRECTIONAL PLOTS FOR GIVEN FREQUENCY BANDS
	TABLE

-1	A	compar	rison	of	direc	tior	nal	result	:s	from	the	cur	re	nt				
	I	neters	with	tha	t of	the	pre	ssure	se	nsor	arra	iy		•		•		46

FIGURES

II-1	Location map of pressure-sensor array and shelf station at Torrey Pines Beach		0	11
II-2	Schematic of pressure-sensor array	Ļ	٠	13
II-3	A sample analog record of pressure and accelerometer data			14
II-4	Photograph of pressure-sensor assembly	٠		17
II-5	Underwater photograph of the current meter mounted on the shelf station	٠	0	18
II-6	Photograph of the bottom section of the original shelf station	۰	•	20
II-7	Photograph of the redesigned bottom section of the shelf station	•	0	21
III-1	Directional response of the 1-2-1 array to 14.2- and 4-second waves	٠	•	27
III-2	Directional response of the 1-2-1 array to 4.7- second waves	•	٠	29
IV-1	Comparison of a measured directional spectrum with a directional model for well directed southern swell		•	32

FIGURES-Continued

			Page
IV-2	Comparison of a measured directional spectrum with a directional model for northern waves of period 6.9 seconds		33
V-1	Frequency spectra of records of two pressure sensors displaying a disparity at low frequencies	0	36
V-2	Frequency spectra of records of two pressure sensors displaying a disparity at high frequencies	۰	37
V-3	Frequency spectra of two pressure sensors with depth correction factor applied from 0.0 to 0.5 hertz	٠	39
V-4	Frequency and cross-spectra of a bottom-mounted pressure sensor and a surface-piercing resistive wire gage off Scripps Pier	٠	40
V-5	Frequency and cross-spectra of accelerometers mounted on the tethered spar		42
V-6	Comparisons of measured with theoretical orbital velocity for SAS 1-13 Nov 73-01	•	47
V-7	Comparisons of measured with theoretical orbital velocity for SAS 1-12 Nov 73-04	•	48
V-8	Comparisons of measured with theoretical orbital velocity for SAS 1-09 Nov 73-01	•	49
V-9	Comparisons of measured with theoretical orbital velocity for SAS 1-11 Nov 73-03	0	50
V-10	Frequency and cross-spectra of longshore and onshore- offshore current measurements		52
V-11	Frequency and cross-spectra of onshore-offshore current measurements and bottom pressure	0	57
V-12	Current meter directional spectrum for a wave period of 8.8 seconds for SAS 1-14 Jun 73-02	•	58
V-13	Directional spectrum from pressure-sensor array for 8.8-second waves for SAS 1-14 Jun 73-02	•	59
V-14	Coordinate system defined by the axis of the accelero- meters and that defined by the axis of the current meters		61

FIGURES-Continued

		P	age
V-15	Comparison of spectral results of orthogonal accelerometers mounted on the station	0	62
V-16	Directional response of the 1-2-1 array to 3.0-, 3.9-, and 4.5-second waves		64
V-17	A plot of coherence between pressure sensors versus separation distance for several wave frequencies	•	66
V-18	Frequency and cross-spectra of two pressure sensors for the data used in Figure 17		67
V-19	Directional spectra evaluated from the line array for wave periods 3.9 to 4.5 seconds	٠	68
V-20	Frequency and cross-spectra of two pressure sensors for the data used in Figure 19	٠	69
VI-1	Map displaying linear shadowing effects of offshore islands for the wave climate at Torrey Pines Beach	•	71
VI-2	Plot of peak energy versus peak period for spectral peaks recorded during the summer months of 1973	•	72
VI-3	Histogram displaying energy versus direction summed for 14.2-second waves for the summer months	٠	73
VI-4	Frequency and cross-spectra of two pressure sensors displaying a typical bimodal summer form	•	74
VI-5	Plot of peak energy versus peak period for spectral peaks recorded during September, October, and November	•	76
VI-6	Plot of peak energy versus peak period for spectral peaks recorded during December, January, and February	٠	77
VI-7	Histogram displaying energy versus direction summed for 14.2-second waves for the winter months	•	78
VI-8	Histogram displaying energy versus direction summed for 8.1-, 7.4-, and 6.9-second waves for the winter months		79

٠

FIGURES-Continued

Page

VI-9	Plot of peak energy versus peak period for spectral peaks recorded during the months of March, April, and May	80
VI-10	Comparison of sum energy recorded during a storm with the total energy budget of the project	82
VI-11	Plot of the probability distribution function for significant wave height for the four seasons	83

WAVE CLIMATE AT TORREY PINES BEACH, CALIFORNIA

by

Steven S. Pawka, Douglas L. Inman, Robert L. Lowe, and Linda Holmes

I. INTRODUCTION

1. Background.

Wind-generated waves represent a significant energy input into the coastal region. Waves incident to the coast provide the principal driving force for several nearshore processes, including: longshore currents; rip currents; nearshore circulation cells; the seasonal changes in the equilibrium profile of the beach; and longshore transportation of sand. A full understanding of these processes in the natural environment requires knowledge of the incident wave characteristics, which collectively are referred to here as wave climate.

The primary objective of this study was an investigation into the nature of the frequency-directional spectra of waves in coastal waters, and, in particular, off Torrey Pines Beach, California. The site was selected for its straight coastline and offshore bathymetry in an effort to avoid complicated refraction effects. Torrey Pines Beach is exposed to several wave-generating regions in the North and South Pacific. However, offshore islands shelter the study site from waves propagating from certain sectors.

The frequency-directional spectrum may be obtained in a number of ways. Cote (1960) treated the use of stereo wave photographs as a means of deriving directional information. Longuet-Higgins, Cartwright, and Smith (1963) discussed the use of a tilt buoy for measurement of directional spectra. Barber (1963) discussed the directional resolving power of an array of wave detectors. Inman, Komar, and Bowen (1969) and Komar and Inman (1970) used wave arrays for determining the mean direction of near-breaking waves. Munk, et al. (1963) used a two-dimensional array of pressure sensors to resolve the directions of swell from distant sources. Simpson (1969) used a buoy system to make a limited number of observations of the directional spectra of waves in the coastal zone. Panicker and Borgman (1970) computed several directional spectra from the records of the nearshore five-gage CERC array at Pt. Mugu, California. The basic techniques employed in this study parallel the directional finding methods developed for electromagnetic wave antennas, and adapted for ocean waves by Barber (1963) and others.

2. Scope of the Study.

Both pressure-sensor arrays and buoy systems appear to be practical devices for daily measurement of frequency and directional properties of waves. However, a simple array can be constructed that gives much better directional resolution than a buoy recording system. The line array avoids problems of the shoaling transformation of the frequency-directional spectra as it is roughly parallel to the depth contours. Accordingly, a 1-2-1 spacing line array of pressure sensors was used in this study. This array is not an optimal design for directional resolution, but it does offer redundancy for a reliability analysis.

The spectra of the various sensors in the array were compared on a routine basis. The results of the directional analysis of the several groupings of pressure sensors were compared to determine the stability of the array's response to the waves. In addition, the results of a surface-piercing staff were compared to that of a pressure sensor. The frequency spectra of current meters at depth were also compared to those of the pressure sensors. Some parameters of the frequency spectra were compared to visual observations made from the beach and from a 300-foot cliff overlooking the site.

II. WAVE CLIMATE DATA SYSTEM

1. Installation.

The study site was on South Range off Torrey Pines Beach. This is a straight section of the coastline approximately 3 kilometers north of Scripps Pier. The location of the site is shown in Figure II-1.

A shelf station equipped with radio telemetry link to a shore station was located on South Range at a depth of 10 meters. The shelf station has a transmission capacity of 15 data channels. A line array of bottom-mounted pressure sensors was employed that had a measured alinement of 13° east (clockwise) to that of the coastline which in this area runs true north-south (Figure II-1). The sensors had relative spacings of 1-2-1 with 30.5 meters as the unit spacing. Sensor 3 was located on the base of the shelf station. The shelf station was also equipped with accelerometers and at times with current meters, and a surface-piercing staff.

2. Data Acquisition.

Data for the wave climate was collected using a shelf station with a PCM (Pulse Code Modulation) radio telemetry link to the shore station, referred to as a Shelf and Shore (SAS) system (Lowe, Inman, and Brush, 1972). The primary wave sensors were four absolute pressure sensors (Statham Model PA506-33) deployed in a linear array roughly parallel to the coastline. The mean water depth at all sensors was 10 meters.

Figure II-1. The location of the shelf station and pressuresensor array off Torrey Pines Beach, California.

The shelf station consists of an air-filled fiberglass spar having a 9 cm (3.5 inches) outside diameter. The spar section is coupled to an anchor assembly through a universal joint, so that the rigid spar is free to tilt in response to currents but not to rotate. A schematic diagram of the station complete with the pressure sensor array is shown in Figure II-2.

Signals from the pressure sensors pass through underwater cables, enter the glass spar through underwater bulkhead connectors, and finally pass up the center of the spar to the telemetry package in the top section of the spar. The signal conditioning and analog to digital conversion for each pressure sensor are performed in the telemetry package.

A timing circuit in the telemetry package controls the period during which data are gathered. This circuit is set to sample waves four times per day (0400, 1000, 1600 and 2200 hours PST). Each sampling period lasts for 1 hour. The data from each sensor are sampled 125 times per sec, each sample is converted to a 10-bit binary number and transmitted back to the shore station over a PCM telemetry radio link. The high sampling rate before transmission of the data is required to provide virtually simultaneous sampling of the data. At the shore station the data are received and processed by PCM synchronizing equipment. The data are filtered by a specially designed digital filter to eliminate digital noise due to transmission of the data. The cutoff frequency of this filter is approximately 10 Hz which will not affect the wave data being collected. The digital filter is part of the data communication system and contains, in addition to the digital filter, a small buffer memory. The memory is loaded with the data at the high rate of the communication system and unloaded at the slower rate of the digital magnetic tape, which for this study was four samples per second. The data in between the slower samples were not used in this study.

Each data channel is converted back to analog voltages and displayed on an oscillographic recorder, and recorded on IBM compatible magnetic tape. The analog record (Figure II-3) acts as a data quality monitor. Only 4,096 data points are recorded on the magnetic tape at four samples per second, producing one raw data file. The digital record represents only the first 17 minutes of the 1-hour sampling period. In retrospect, all of the data should have been recorded on digital tape. If the entire 1-hour sample were available, more sophisticated data analysis procedures could have been used to avoid some of the noise problems discussed later in this report.

3. Data Processing.

After the data has been recorded on magnetic tape, it is ready for processing on an 1130 IBM computer. A special data reduction system was devised which produces processed tapes, a printed output of the

Figure II-2. Schematic of the shelf station and pressure sensor array.

G

Figure II-3. Analog record from Torrey Pines Station. The top four traces are from the pressure-sensor array; the tilt of the station is indicated by accelerometer traces 5 and 6, and current near the base of the station is shown on traces 7 and 8. The occurrence of the change in tilt of the shelf station is referenced to local tide in the insert above traces 5 and 6.

statistics for each pressure sensor (including the mean, maximum, minimum, and standard deviation values) and a summary of the energy values of each pressure sensor.

The data reduction system reads and processes each specified magnetic tape data file from the raw data tape produced by the telemetry system. If magnetic tape or sequencing errors exist, the data run is aborted and the system resumes processing at the next specified file. The raw data of each channel of a run are then reformatted and calibrated. Next, a Fast Fourier Transform (Cooley and Tukey, 1965) is performed and cross-spectra of all combinations of the four pressure sensor channel pairs are calculated. The Fourier coefficients are multiplied by a depth correction coefficient up to a cutoff frequency of 0.25 Hz. The cross-spectral values allow phase and coherence to be calculated for each of the six possible channel pairs. These, together with the energy values, are used to calculate the directional spectra; first using all four sensors (1, 2, 3, 4), then for the two redundant three-sensor arrays (1, 2, 3 and 2, 3, 4). This procedure gives a degree of redundancy in the calculations which was desired by CERC. The Fourier coefficients are then squared and grouped by 11 to form the frequency spectra values. Grouping by 11 was desired for compatibility with CERC data. However, in light of the poor resolution in the lower frequency bands, grouping by a smaller number of bands would be desirable (e.g., band 6 includes wave periods ranging from 18.4 to 15.4 seconds). Considering the trade-off between frequency resolution and statistical reliability, we feel that grouping of eight is optimum for investigation of surface waves with this sample rate and record length. Finally, a program which selects spectral peaks in the frequency spectrum, gives their energy and bandwidth, and also sums the energy of the spectrum (up to 0.25 Hz), outputs this information for each pressuresensor channel on the line printer. This printout is used in tabulating the tables for Appendixes A and B. The processed data tapes contained the following seven files for each SAS run (when all four sensors were functioning):

File 1. Identification information and contents list.

- 2. Reformatted and calibrated raw data time series for each channel (4096 data points each).
- 3. Fifty spectral values (energy density) for each channel.
- 4. Fourier coefficients, consisting of 1,024 floating point numbers per channel (i.e., 512 real, 512 imaginary which give phase).
- Directional spectra values for four-sensor array (181 real words giving values from 0° to ±90°).

- Directional spectra values for three sensors (i.e., 1, 2, 3).
- 7. Directional spectra values for three sensors (i.e., 2, 3, 4).

For other purposes, such as analyzing current meter or accelerometer data, or any other time series recorded on one of the available channels, the individual programs used in the data reduction system were available to supplement any further programing. Plotter programs exist which plot frequency spectra for any pair of channels along with the phase and coherence between that pair. Directional spectra plots for either the pressure-sensor array method, or the current meter method can be obtained when desired.

4. Sensors.

The four-pressure-sensor array is the primary wave measuring instrument. These sensors are Statham Model PA506-33 absolute pressure transducers with accuracy of ± 0.2 %. These sensors are housed in a PVC container to protect them from the seawater. Pressure is coupled to the transducer through a flexible rubber diaphragm and a silicone oil bath. A photograph of this assembly is shown in Figure II-4.

Accelerometers are used to measure the tilt of the station as it responds to waves and currents. Appendix B describes dynamic response of the spar and provides the analysis procedure used to obtain tilt angle from the raw accelerometer data. A high quality servo-type accelerometer is used. These accelerometers are Donner Model 4311AS-2A. Accelerometer data were found to be a valuable indication of the wave direction as well as current speed and direction (Section V-6).

An electromagnetic current meter was used on occasion to measure currents near the base of the station. The current meter resolves the current vector into two orthogonal components. In all cases, the probe was positioned to measure horizontal velocity. The meter was manufactured by Marsh-McBirney (Model 711) and has a velocity threshold of 1 cm/sec, and 0.2 second time constant. A picture of the meter installed on the shelf station is shown in Figure II-5. Wave directional spectra obtained from current meter data are discussed in Section V-5.

Wave height measurements of the sea surface were to be made using a recently developed digital wave staff. The digital staff was 5 meters long with contact spacing of 0.5 cm. Although the digital wave staff functioned properly, it did not prove to be adaptable to the shelf station. The positive buoyancy of the station was not sufficient to hold the staff vertical during low tide. A detailed, description of this wave staff is provided in Appendix C.

Figure II-4. A view of the disassembled pressure sensor showing the sensor and its PVC housing.

Figure II-5. Underwater photograph of the lower section of shelf station anchor assembly, universal joint, and electro-magnetic current meter.

A resistive wire gage was constructed for use on Torrey Pines shelf station. This gage is similar to others developed at Scripps Institution of Oceanography and used for wave studies off the research vessel *FLIP*. This gage is also described in detail in Appendix C. Data obtained from the resistive wire gage were compared with the pressure gage mounted directly below the staff. Two sets of data were taken, one set with the station free to tilt, and one set with the station tethered. Comparisons of these data are reported in Section V-2.

5. Underwater Cables and Connectors.

The electrical cables used to connect the pressure sensor to the shelf station proved to be a major source of problems in the early phase of the study. The pressure sensors were tied to 1.5-inch steel pipes that were driven approximately 4 feet into the sand bottom. Neoprene-jacketed cables with four 16-gage conductors were used to carry power to the sensor and the return signal from the sensor. These cables were weighted by 16-pound shackles placed about 20 feet apart. The idea was that the cables would quickly bury in the sand, thus protecting them from the wave forces. However, it was found that high waves uncovered the cable and caused it to loosen from the weights. Once freed from the weights, the cables were carried back and forth in the wave surge. This constant motion would "workharden" the electrical conductors causing them to break. Several different cable-weighting techniques were tried, with little success. The final solution to the cable problem was to use four conductor armor cable. This cable consists of four wires individually insulated with polypropylene inside a two-layer, counterlaid, steel wire outer jacket. A steel pipe, 2 inches in diameter, was jetted approximately 6 feet into the sandy bottom near the base of the shelf and at the pressure sensor locations. The armor cable was strung between these pipes by scuba divers. Care was taken to ensure that the cable had no sharp bends.

Of course, armor cables are more expensive and more difficult to install than are neoprene-jacketed cables, but this factor is more than offset by the reliability of the armor cables.

Problems were experienced with underwater connectors in the early phase of this study. Originally, a flush-mounted, right-angle connector (510F) manufactured by Electro Oceanics was used at the base of the shelf station (Figure II-6). These connectors were found to be unsatisfactory because they are structurally weak and were easily loosened. Both of these connector problems caused seawater to enter the shelf station, thus shorting out unprotected wires. A redesign of the base of the station (Figure II-7) allowed stronger connectors (Electro Oceanics 53E) with an improved "O" ring seal to be used. This new design completely eliminated the connector problems.

Figure II-6. Detail of the bottom section of the original shelf station showing the right-angle underwater connectors. The scale is in centimeters.

Figure II-7. Detail of the redesigned bottom section showing the improved connectors. The scale is in centimeters.

6. Field Operation of System.

The performance of the system used to obtain wave climate has been evaluated for the 16-month period from 5 February 73 to 31 May 74. A total of 1,130 data runs was collected during this period or approximately 59 percent of the scheduled runs (i.e., four per day). Of the 1,130 runs, 71 percent was with all four pressure sensors working, 25 percent with three sensors working, and 5 percent with two sensors functioning. The efficiency of the data collection system increased after several hardware improvements were made. During the period of February to May 1974, which followed the system improvements, 76 percent of the data runs was recorded, of which 80 percent had all 4 pressure sensors properly functioning. Forty-three percent of the data loss was due to structural failure of the fiberglass spars. There were two such occurrences which account for over one-third of the lost data. Both these events were structural failure of the fiberglass spars which required replacement of the entire shelf station. Close inspection revealed that the resin had fatigued causing the spar to develop pinhole leaks at the point of maximum bending stress. The first failure occurred on 18 April 73, and the second occurred on 14 November 73. After the first failure, the system was down for 1 month; the second time for 2½ weeks.

Other major causes of loss of data were problems with the telemetry package which accounted for 14 percent of the data loss, 13 percent of data loss was due to faulty cables and connectors, and 13 percent as a result of problems with the recording system. The remaining data loss was due to a number of minor causes, such occurrences as low batteries combined with long periods of bad weather preventing their replacement; storm waves breaking over the station interrupting data transmission; and component failures in the receiving system.

With the exception of failures due to fatigue, the SAS system has proved to be a very reliable system. With the experience and improvement of the system components, we are convinced that the system's major failure modes have been overcome. This has been proven to some extent by the successful operation of the system during the winter months of 1974 when 74 percent of the anticipated runs were recorded. It is important to note that the shelf station as a system remained intact and on station even during several storms when waves were breaking over the station in 10 meters of water.

III. ARRAY THEORY

An ocean wave field is composed of waves of various frequency, amplitude and direction of propagation. The total energy per unit surface area of the wave field, E, is related to the sea surface displacement η , by the relation:

$$E = \rho g \langle \eta^2 \rangle$$
 (III-1)

where ρ is the water density, g is the acceleration of gravity, and $\langle \eta^2 \rangle$ is the variance of the time series of η , which gives the meansquare elevation of the water surface due to waves. Spectral analysis is a determination of how $\langle \eta^2 \rangle$ is distributed with respect to wave frequency and direction. The frequency spectrum, S(f), is energy density as a function of wave frequency, in units of cm² per Δf , where Δf is the frequency bandwidth. The area under the frequency spectrum equals the variance of the sea surface displacement,

$$\langle \eta^2 \rangle = \int_0^\infty S(f) df$$
, (III-2)

where S(f) is the Fourier transform of the autocovariance function

$$R_{11}(\tau) = \langle \eta_1(t) \cdot \eta_1(t + \tau) \rangle, \quad (III-3)$$

so that

$$S(f) = 2 \int_{-\infty}^{\infty} R_{11}(\tau) e^{-2\pi i f \tau} d\tau$$
, (III-4)

where τ is a timelag, $i = \sqrt{-1}$, and $n_j(t)$ is a time series of sea surface displacements as measured by the sensor labeled j. The subscripts j, k of the function $R_{jk}(\tau)$ reference the sensors that were sampled for the data used in the computation of $\langle n_j(t) n_k(t + \tau) \rangle$. In general, R_{jk} is termed the covariance function and is referred to as the autocovariance function when j = k. The autocovariance function has the units of cm², which is proportional to energy, and it preserves the frequency structure inherent in the original time series.

The analysis of wave direction requires more than one blind sensor. Assuming that the waves are known to approach within a 180° arc, the direction of a single wave train can be determined from the relative arrival time of a wave crest at two blind sensors. The phase difference between the signals of two sensors expressed in radians is related to the direction of the wave train by the equation:

$$\phi = 2\pi \frac{\ell}{L} \sin \alpha , \qquad (III-5)$$

where $l \leq L/2$ is the distance between the sensors, α is the angle of the wave's approach relative to the normal to a line separating the sensors, and L is the wavelength. The phase difference of the wave signals of two sensors as a function of frequency is obtained from the frequency cross-spectrum. The frequency cross-spectrum, $C_{12}(f) - iQ_{12}(f)$, between two sensors is defined as the Fourier transform of their covariance function,

$$C_{12}(f) - iQ_{12}(f) = \int_{-\infty}^{\infty} R_{12}(\tau) e^{-2\pi i f \tau} d\tau$$
, (III-6)

where

$$R_{12}(\tau) = \langle \eta_{1}(t) + \eta_{2}(t + \tau) \rangle$$
 (III-7)

and the subscripts reference the sensors.

If the wave field is made up of a single wave train, then

$$\eta_1 = \sqrt{2A_0} \cos 2\pi ft$$
 and $\eta_2 = \sqrt{2A_0} \cos (2\pi ft + \phi)$, where $A_0 = \langle \eta^2 \rangle$

The cross-spectrum is then

$$C_{12} = A_{0} \cos\phi, \qquad (III-8)$$

and

$$Q_{12} = A_{sin\phi}, \qquad (III-9)$$

where

$$\phi = 2\pi \frac{k}{L} \sin \alpha = \tan^{-1}(Q_{12}/C_{12}).$$

Thus, the phase is related to the relative sizes of the real and imaginary parts of the cross-spectrum.

Equations (III-8) and (III-9) show that the cross-spectrum varies sinusoidally with the separation distance of the sensors. The frequency of this variation is k sina, where k = 1/L is the magnitude of the wave number and is fixed by the frequency of the waves by the dispersion relation,

 $(2\pi f)^2 = gk \tanh(2\pi kh)$,

where h is the depth. If the cross-spectrum is known for all separation distances in the two orthogonal horizontal directions x and y, then the complex function C(X, Y, f) - iQ(X, Y, f) may be defined as a continuous function analogous to the frequency cross-spectrum given in equation (III-6). C(X, Y, f) - iQ(X, Y, f) is the directional cross-spectrum and is defined by its relation to $\eta(x, y, t)$:

$$C(X, Y, f) - iQ(X, Y, f) = \int_{-\infty}^{\infty} R(X, Y, \tau) e^{-2\pi i f \tau} d\tau$$
, (III-10)

where

$$R(X, Y, \tau) = \langle \eta(x, y, t) \ \eta(x + X, y + Y, t + \tau),$$

and X and Y are horizontal component lags. The Fourier transform of C(X, Y, f) - iQ(X, Y, f) over X and Y space yields $S(f, \alpha)$, the frequency-directional spectrum:

$$S(f, \alpha) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[C(X, Y, f) - iQ(X, Y, f) \right] e^{-2\pi i (kX \sin \alpha + kY \cos \alpha)} dXdY.$$
(III-11)

The frequency-directional spectrum is the energy density as a function of wave frequency and direction, and has units of $cm^2/\Delta f \Delta \alpha$, where $\Delta \alpha$ is the directional bandwidth.

In reality the cross-spectrum is known only for the separations of the finite number of sensors in the array. For the linear 1-2-1 array with a unit spacing of l_0 equal to 30.5 meters the separations X = 0, ±1, ±2, ±3 and ±4 are known, and there are no Y separations. The equation for S(f, α) reduces to the summation:

$$S(f, \alpha) = C(X = 0, f) + 2 \sum_{n=1}^{4} \left[C(X = l_0 n, f) \cos(2\pi nk \sin \alpha) \right]$$

+
$$Q(X = l_o n, f) \sin(2\pi nk \sin \alpha)$$
, (III-12)

where n = 1, 2, ... are the number of unit spacings, l_{0} in the array.

Equation (III-12) was used for the calculation of the frequencydirectional spectra. The cross-spectra were calculated using the Fast Fourier Transform (FFT) method (Bendat and Piersol, 1971). The outline of how equation (III-11) reduces to equation (III-12) and a more detailed development of spectral theory in general are included in Appendix A.

The approximation of $S(f,\alpha)$ through the use of the summation in equation (III-12) rather than the integral in its definition, equation (III-11), leads to problems of "aliasing" and poor resolution. The spectral analysis problems in the frequency domain are analogous but less severe. Therefore, only inadequacies of the spatial transformation are discussed.

The finite total length of the array introduces a smearing of the directional spectra estimates leading to a lack of resolution in direction. This poor resolution is analogous to the spreading of light through a diffracting slit. The wave analogy to this application of the uncertainty principal (Dicke and Wittke, 1960) states that a wave packet with a finite width will have an uncertainty in wave number. Our finite array forces us to assume a finite width of the wave packet which leads to uncertainty in wave number, and thus in the direction as well.

This effect can be seen by using a cross-spectrum calculated for a single wave train in the summation of equation (III-12) for the estimation of $S(f,\alpha)$. The estimated $\hat{S}(f,\alpha)$ will have a spread in direction and is termed the array's response to a single wave train. The 1-2-1 array's response to 14 second waves propagating at normal incidence to the array is shown in Figure III-1.

The knowledge of the covariance function at discrete points in space, rather than in a continuous line, leads to the problem of aliasing or the confusion of wave directions. An inappropriately designed array will respond to waves from a particular direction with several peaks in its directional spectrum. All but the true peak are referred to as aliased spectral peaks. This problem can be easily seen for the case of only two sensors. Equation (III-5) does not have

Figure III-1. The directional response of the 1-2-1 linear array for waves with periods of 4.0 and 14.2 seconds approaching from 0°. The wide peak for the 14.2-second wave results from smearing due to the finite length of the array. The two "aliased" peaks at \pm 54° for the 4-second wave are caused by the discrete spacing for which $L < 2k_0$. This response function is referred to as a Barber Window and is obtained through equal weighting of the cross-spectral information.

an unique solution for α given ϕ , ℓ , and L if the wavelength L is not greater than 2ℓ . As an example, if $\ell = 3/2L$ and the phase equals 0, then equation (III-5) gives:

$$\phi = 0 = 3\pi \sin \alpha = n2\pi, \qquad (III-13)$$

where n is an integer. This equation can be satisfied with $\alpha = 0$ and $\pm 41.8^{\circ}$.

This problem becomes quite severe for higher frequency waves whose wavelength is short relative to the smallest sensor spacing of the array. A more mathematical treatment of the techniques of array analysis, and these analysis problems, is included as Appendix A.

It is apparent that while a long total length of array is desired, a small spacing between any two adjacent sensors is also necessary. With a maximum spacing specified for any two adjacent sensors, and a finite number of sensors, a line array will obviously give the maximum possible length of sensor arrangement, and hence the maximum resolution in direction. However, a line array has a 180° ambiguity in direction. The coast is effective in eliminating possible sources from two quadrants, providing wave reflection can be neglected.

With a set number of wave sensors, the size of the spacings desired is dependent upon the length of the waves of interest. For example, an array with large spacings that gives good resolution for long waves will seriously alias the spectra of the higher frequency waves. A good display of an array's performance with respect to waves of a particular frequency is the directional response function. This is the response of the array, in energy density versus direction, to waves of a single direction. Figure III-1 displays the response of the 1-2-1 line array, with 30.5-meter unit spacing, to 14.2 and 4second waves approaching the array from 0° from the normal to the array. While there is better central peak resolution of the 4-second waves, two alias peaks are also present. The array is best designed for waves of a period around 5.5 sec. That is, this is the period of waves for which the array has the best resolution while still having no serious aliasing problems. The response of the array to 4.7-second waves is plotted in Figure III-2. Aliasing is a serious problem for wave periods less than 4.5 sec (Section V-7). Although a longer array would have been desirable for the investigation of waves with periods of 10 to 18 sec, the total length used, 122 meters, appeared to be a practical limit considering problems of cable maintenance, continuity in bathymetry, and coherence of the wave field.

Figure III-2. The directional response of the 1-2-1 array to normally incident waves of period 4.7 seconds. This response function was obtained using a Barber Window, i.e., equal weighting of the cross-spectral information.

IV. CHARACTERISTIC PARAMETERS FOR WAVE SPECTRA

The wave field at any particular time may be complex and include components that differ in their place and circumstances of origin. These wave components can usually be identified as relative peaks in the frequency spectrum. In an effort to specify the principal wave components, the dominant peaks of the measured frequency spectra were routinely identified. The spectral peaks are characterized by three parameters: (1) peak frequency f_0 ; (2) bandwidth Δf ; and (3) energy Ep. The center frequency of the frequency band with the greatest energy density is designated the peak frequency. The cutoff frequency band for a peak is defined as the frequency band of minimum energy density between two adjacent peaks or the frequency band in which the energy density equals approximately 10⁻² of the energy at the peak frequency if there is no adjacent peak. The energy density in the cutoff frequency band between adjacent peaks is used in the determination of the energy of the peak with the lower frequency. The details of the peak selection procedure are included in Appendix A. A tabular display of the characteristic parameters evaluated for the data runs of this project is included as Appendix D.

Three directional parameters were developed to characterize the directional spectra. The directional parameters resulted from a comparison of the measured directional spectra with model directional spectra computed with the assumption of a single direction of wave propagation. This technique was used by Munk, et al. (1963) in observations of long-period swell. The model spectra were least-squares fit to the measured spectra, the variables of the fit being the energy and direction of the single wave train. The parameter α_0 is the direction of propagation of the single wave train model which best fits the measured directional spectrum. With well directed swell this angle will approximately equal the direction of maximum spectral density. The parameter $P(\alpha_0)$ is an indication of goodness of fit and is essential for the interpretation of α_0 . $P(\alpha_0)$ is related to the residual of the least-squares fit:

$$P(\alpha_{0}) = \frac{\sum_{\alpha = -90}^{90} \left[S(f_{0}, \alpha) - \hat{S}_{\alpha_{0}}(f_{0}, \alpha) \right]^{2}}{\sum_{\alpha = -90}^{90} \left[S(f_{0}, \alpha) \right]^{2}}, \quad (IV-1)$$

where $S(f_0, \alpha)$ is the measured directional spectrum for the frequency band centered on f_0 , and \hat{S}_{α} (f_0, α) is the model directional spectrum. The summation was O routinely computed for steps of 5° from $\alpha = 90^{\circ}$ north to $\alpha = 90^{\circ}$ south. For a mean value of $S(f_0, \alpha) - \hat{S}_{\alpha_0}$ (f_0, α) around $10^{-2}S(f_0, \alpha)$, $P(\alpha_0)$ would equal $4x10^{-3}$. Values as low as 1×10^{-3} have been recorded which imply a very narrow directional spectrum. Values of $P(\alpha_0)$ below about 10^{-1} are considered to be good fits and indicate the directional spectrum is unimodal and narrow. Figure IV-1 is a plot of the measured directional spectrum, $S(f_0, \alpha) - \hat{S}_{\alpha_0}$ (f_0, α) , for the run SAS-1-21 July 73-04. $P(\alpha_0)$ was 2×10^{-3} for this fit, indicating a good fit. Figure IV-2 is a plot of the measured and residual directional spectra for the 6.9-sec waves of SAS-1-21 July 73-04. The residual spectrum shows definite peaks indicating the multidirectional character of the incoming waves. $P(\alpha_0) \cdot$ for this fit was 0.5, which is considered to be a poor fit.

There is an uncertainty in direction of best fit, α_0 , when $P(\alpha_0)$ is a slowly varying function of the trial values of α_0 . The spread in trial values of α_0 for which $P(\alpha_0)$ is approximately the same is defined as the parameter $\Delta \alpha_0$. $\Delta \alpha_0$ has typical values ranging from ±1° to ±4°.

The spectral parameters are useful in the identification and characterization of waves from the various source regions. They may also be used as direct input into computational models. The practical validity of representing the spectra by the peak frequency, the total energy in the peak, and the mean direction in calculation of longshore wave power available for transport of sand was shown by Inman, Komar, and Bowen (1969) and Komar and Inman (1970).

V. COMPARISONS OF VARIOUS METHODS AND TECHNIQUES

1. Comparisons Among the Various Pressure Sensors.

The records of the various pressure sensors in the linear array were systematically compared to evaluate the stability of the measurement process. Wave by wave comparisons were deemed to be unrealistic because of the short crestedness of waves; further, the comparisons of the frequency spectra computed for the several pressure sensors yield easily interpretable results.

The total energy for each of the four sensors, their average, and the range about this average have been computed for the SAS runs analyzed, and included in Appendix E. The "total" energy included data ranging from 0.0 to 0.25 Hz. From a sample of 587 runs it was determined that 68 percent of the time the total range of the energy values was less than 20 percent of the mean. The total range was less than 30 percent of the mean for 90 percent of the runs. For 2 percent of the runs, the range of the energy values was greater than 50 percent of mean.

Figure IV-1. The measured directional spectrum and residual spectrum for southern swell of SAS 1-21, Jul 73-04. The residual spectrum is the difference between the measured and single direction model spectra. The fact that the residual spectrum is very small relative to the measured spectrum indicates the waves are approximately unidirectional.

Figure IV-2. The measured and residual spectra for northern waves of SAS 1-21, Jul 73-04. The bimodality and broadness of the measured spectrum are reflected in the peaks of the residual spectrum.

The sum energies recorded by each of the four sensors over two periods of extended four sensor operation were computed. The results are listed below:

60 Runs	Sensor 1	Sensor 2	Sensor 3	Sensor 4
29 Jan 74-31 Mar 74	49,649	50,061	47,853	46,456
24 Runs				
16 May 73-22 July 73	8,447	8,980	8,588	7,999

The range in the sum energies for the 60 runs in 1974 was 7.4 percent. Although this indicates some systematic difference in the energy levels of the various sensors, this range is small relative to the average range of energy levels over these runs, which was 15 percent. The range in the sum energies for the 24 runs in 1973 was 20.7 percent. The systematic difference in the energy levels of the sensors may be explained in part by the slight angle that the array makes with the bottom contours. This orientation has sensor 1 in the shallowest water; therefore, this sensor should see a slightly more shoaled version of the spectrum. The mean pressure difference between sensors 1 and 4 is equivalent to 0.6 meter of water.

A band by band comparison was made for the spectra of the four sensors for 27 SAS runs. The mean range of energy density values was calculated for the first 24 frequency bands, 0.0 Hz - 0.25 Hz. The range in the total energy of the first 24 bands, and the energy of the dominant spectral peak were also calculated for each of the SAS runs. There was some inconsistency in the selection of bandwidths of peaks in the records of the various sensors by the computer procedure. Therefore, the peak energy values were recalculated by visual inspection of the spectra. The results of these sensor comparisons are summarized in Appendix F, Table F-1. The mean range of energy density values of the four sensors over all the runs, 63.8 percent, was significantly higher than the mean of the ranges of total energy, 20.4 percent. This suggests that the sensors are measuring somewhat independent samples of a stochastic process. Since this is not a wholly deterministic process, the variance is to be expected. The estimate of the total energy has more degrees of freedom than the individual band estimate. However, the estimates of the energy contained in the dominant spectral peak appear to agree better than those for the total energy. The mean range of the peak energies for the 27 runs was 12.1 percent. This implies the waves of the dominant peak are more deterministic in their nature.
The runs which display a very large range in the total energy (>35%) as measured by the four sensors are affected by noise problems. Figure V-1 displays the more infrequent disparity in energy of the lower frequency bands. This may be caused by the "turn-on" transients of the pressure sensors and will only significantly affect the comparability of the total energy among the sensors when the wave energy is very low. The more common problem of variability of the high frequency region of the spectra is pictured in Figure V-2. This problem is due to noise in the system which in the more severe cases manifests itself in the form of data "dropouts." These dropouts are of sufficient length that no simple quality control measures could accurately recover the unaltered spectra. In 90 percent of the runs where the total range of the energy levels vary by more than 50 percent of the mean, most of the variation is in one sensor. The cause of these very high variations is an erratic sensor whose record is marred with dropouts.

Various groupings of 3 of the 4 sensors of the array have been used to calculate directional spectra. For example, the sensor groupings 1, 2, 3 and 2, 3, 4 represent redundant 1-2 spacing arrays. The direction of best fit to a single direction of propagation, a_0 , defined in Section III, was calculated for the directional spectra of each 3 sensor grouping. The results are included as Appendix G. The directions obtained for the lower frequency peaks agree well in general. A sample of 103 runs was selected which included runs from each of the seasons. For 90.7 percent of these runs, the range in a_0 for the dominant spectral peak was 3° or less. The maximum range in the values of a_0 was 7°. The range in a_0 was not well correlated with the range of total energy of the various sensors. Therefore, even though the range in total energy of the sensors indicates a possibility of nonstationarity in the wave field, it is not reflected in the directional estimates.

2. Surface-Piercing Staff Versus Pressure Sensors.

Measurement of the wave field by use of pressure sensors at depth requires that a rigorous relationship between the surface height and vertical pressure field be known. Linear wave theory has been assumed to relate the pressure signal at depth to the surface elevation. To validate the use of bottom-mounted pressure sensors for the measurement of sea surface elevations, a comparison was made of simultaneous records of a surface-piercing staff and a pressure sensor at depth. A continuous wire staff was designed which resembled other staffs developed at Scripps Institution of Oceanography. The staff is described in detail in Section II and Appendix C of this report.

Linear wave theory yields a solution which has a wave-induced pressure which decreases with depth as a function of its frequency. The pressure at distance z' from the bed of waves of frequency f is given as:

Figure V-1. Frequency spectra and the cross-spectral results for sensors 1 and 2 showing a large discrepancy in the energy density levels of the low frequency bands.

Figure V-2. Frequency spectra and the cross-spectral results for sensors 1 and 2 displaying a large discrepancy in the energy density levels of the high frequency part of the spectrum.

$$p(h,k) = p_0 \frac{\cosh(kz')}{\cosh(kh)}$$

(V-1)

where $p_0 = gH/2$ is the pressure fluctuation due to sinusoidal waves of height H at z = 0, k is the absolute value of the wave number, and h is the depth of the water column. The frequency spectra of the pressure records may be corrected to account for this filtering by the water column. The correction factor becomes exponentially larger for increasing frequency. Therefore, it is necessary to cutoff the correction beyond a frequency to avoid bringing the noise region of the spectrum up to the signal level. To determine where to fix the cutoff point, several spectra were corrected for depth out to 0.5 Hz. A high frequency trough (Figure V-3), at approximately 0.25 Hz to 0.3 Hz, appeared beyond which the increasing correction factor dominated the measured spectral trends. Therefore, the frequency 0.25 Hz was selected as the correction cutoff for these pressure sensors located at a mean depth of 10 meters. The frequency spectra were uncorrected for frequencies higher than 0.25 Hz.

A prototype of the continuous wire staff was tested off the end of Scripps Pier. The staff was maintained in a vertical position by nylon lines. Simultaneous records were taken with this staff and a bottom-mounted pressure sensor at a depth of approximately 5.5 meters. A representative plot of the frequency spectra obtained is shown in Figure V-4. The spectral values for the staff and the pressure sensor agree well across the spectral peaks. The spectral amplitude of the pressure sensor falls below that of the wave staff beyond the cutoff of the spectral correction for depth. Both spectra show a small peak around 0.3 Hz and there is a relative peak in the coherence at this frequency. As expected, the wave staff shows a higher level of energy in the high-frequency region of the spectrum. The staff in the pier configuration had a lower signal to noise ratio than that of the pressure sensor.

Following the experiment off the pier, a staff was attached to the SAS station at Torrey Pines Beach. The station was tethered temporarily by steel cables to restrict its motion. The results of the four runs of this experimental setup are included in Appendix H. A quantitative comparison was made of the spectral values across the coherent band, that is for wave periods of 4 to 18 seconds. The energy density of the grouped frequency bands was compared for the spectra from the two different sensors. A mean percent difference of the spectral values in the bands was calculated as follows:

$$D_{B}(\%) = \sum_{n=5}^{24} \frac{|S_{ws}(f=n\Delta f) - S_{ps}(f=n\Delta f)| \times 10}{\left((S_{ws}(f=n\Delta f) + S_{ps}(f=n\Delta f)) \right)}, \quad (V-2)$$

Figure V-3. Frequency and cross-spectra computed for pressure sensors 1 and 2 of the sensor array. The depth correction factor was carried out from 0.0 to 0.5 Hz. The rise in energy in the high-frequency region, above 0.25 Hz, is due to the unbounded nature of the correction factor.

Figure V-4. Frequency and cross-spectra of a bottom-mounted pressure sensor and the surfacepiercing resistive wire gage for simultaneous runs off Scripps Pier. The pressuresensor spectrum is depth corrected for a 5.3-meter depth from 0.0 to 0.25 Hz. The sensors show good spectral agreement below 0.3 Hz.

where D_B is the defined percent difference of the band energy, S_{ws} and S_{ps} are the frequency spectrum values for the wave staff and pressure sensor respectively, n is the frequency band number, and Δf is the bandwidth, 0.0107 Hz. Also considered was the percent difference of the total energy as calculated from the spectra of the two different sensors. The total energy was calculated as the area under the coherent region of the spectrum. The results of the comparisons are listed below:

Run	DB	% Difference of Total Energy	Sensor with Largest Total Energy
SAS 1-15 Feb 74-03	14.0	13.2	P.S.
SAS 1-15 Feb 74-04	27.0	. 25.3	W.S.
SAS 1-16 Feb 74-03	11.9	20.9	W.S.
SAS 1-16 Feb 74-04	12.7	8.4	P.S.
Average	16.4	17.0	

In three of the four runs the spectral values of one of the sensors were consistently higher than those of the other. However, for the run SAS 1-16 Feb 74-03 the lower frequency bands of the wave staff had larger energy density while for the higher frequency bands, from 6.0 to 4.0 seconds, the pressure-sensor values were higher.

Although the shelf station was tethered, there was some motion which was recorded by the accelerometers. The spectra of the accelerometers for SAS 1-15 Feb 74-03 are shown in Figure V-5. Although the standard deviation of the angle of tilt of the spar was only 2°, the spectra of the accelerometers closely resembled the spectrum of surface elevation.

The coherence of the records of the wave staff and pressure sensor drops off around 0.25 Hz and at the very low frequency bands. The run SAS 1-15 Feb 74-03 displays two fairly coherent higher frequency peaks located at 0.27 Hz and 0.34 Hz. This suggests that the wave staff used with a pressure sensor is useful in the identification of higher frequency peaks. The peak in coherence helps identify a spectral peak while the energy of the peak will be indicated by the 'spectrum of the wave staff. Generally, there is very low coherence at these frequencies between pressure sensors which are separated by large distances, the smallest spacing in our array is 30.5 meters. Therefore, positive identification of these low-energy peaks is difficult with the pressure sensors alone.

Figures H-6 and H-7 (App. H) are representative plots of results of cross-spectral analysis between a pressure sensor and the wave staff when the station was untethered. The spectral peak shapes appear quite similar, but the staff recorded more energy, particularly in the lower frequency bands. Also, the high-frequency region levels off at a much higher

Figure V-5. Frequency and cross-spectra of accelerometers mounted on the tethered spar. Although the standard deviation of the angle of tilt is only 2°, the motions have a close resemblance to the wave spectra (see Fig. H-4 in App. H).

energy than the case when the station was tethered. It is apparent that the tilt of the untethered station biases the data from the wave staff.

3. Comparison with Visual Estimates of Wave Height and Direction.

An effort was made to compare the measured wave spectra with visually observed wave conditions. Several of the characteristic parameters of the wave spectra (Section IV) are compared with observed wave parameters. The observations were made on a daily basis from the top of a 300-foot cliff overlooking the site of the Torrey Pines Station. The observer makes an estimation of an average breaker angle, and period of the dominant train of waves. An estimation of average wave height is made from the beach. The comparison of these observations with the spectral information should be most meaningful when the energy spectrum is largely composed of one narrow peak. With these conditions the observed wave period should be close to the peak period of .the spectrum.

The root-mean-square wave height H_{rms} measured at the station in 10 meters of water (h = 10 m) is related to the energy in a spectral peak by:

$$H_{rms}^2 = 8 < \eta^2 > ,$$
 (V-3)

where $\langle n^2 \rangle$ is the mean-square elevation of the water surface as measured at the station. From this and a knowledge of h/L where L is the deepwater wavelength, H_w can be obtained. Taking $\langle n^2 \rangle$ as the energy under a spectral peak and assigning it to the peak frequency allows the relationship for breaking solitary waves (Munk, 1949) to be used:

$$H_{\rm b} = H_{\infty} / 3.3 \left(H_{\infty} / L_{\infty} \right)^{+1/3}$$
 (V-4)

which uses the assumption $H_b/h_b = 0.78$, where h_b is the breaking depth, H_b is the height of the wave at breaking, H_b is the deepwater wave height, and L_{∞} is the deepwater wavelength. Snell's law was then used to compute the breaker angle at the depth at breaking.

Table F-2 (App. F) is a summary of the comparisons between the observed and measured parameters. The peak with period nearest the observed period generally agrees best in height and angle of approach with the visual observations. Since it is hard to judge angles accurately to the nearest degree, visual angles are usually recorded as 0° or 5° north or south and are useful mainly in checking the north-south tendency of direction. The observed wave heights agree well with the $H_{\rm TMS}$ of the major spectral peak when the peak is relatively narrow (bandwidth <0.15 Hz) and contains most (>80%) of the energy in the spectrum. In general, $H_{\rm TMS}$ of the major spectral peak, the sum of the rms wave heights of the peaks, and $H_{1/3}(=4(<n^2>1/2))$ do not correlate well with observed wave height. The observed wave height is generally smaller than $H_{1/3}$ and the sum of the rms wave heights.

4. Orbital Velocity as a Function of Wave Energy and Frequency.

A Marsh-McBirney Electromagnetic Current Meter, Model 711, was installed 1 meter above the bottom and 5 meters south of pressure sensor 3, which was mounted on the shelf station. The meter is a solid state water velocity sensor operating on the principle of electromagnetic induction and consisting of an electronics case, powered by ±6 volts, and a transducer probe 2.5 cm (1 inch) in diameter and 20 cm long with a permanently attached cable. The meter, which measures two orthogonal components of water flow perpendicular to the longitudinal axis of the probe, was calibrated in a wave channel by measuring voltage outputs for various known input velocities. The relation between velocity and voltage was linear. The meter has a resolution of 1.0 cm/sec with a response time of 0.2 sec, and a velocity range of 0.01 to 2.5 m/sec, as determined by tests conducted at SIO Hydraulics Laboratory and at the Naval Undersea Research and Development Center, San Diego, California.

Current meter data collected during special runs on 14 June 73, 16 June 73, and during routine runs in November allowed a comparison to be made between the field measurements of orbital velocities and the value predicted by linear wave theory. If u and v are the orbital velocity components of wave motion in the onshore-offshore and longshore directions respectively, then the magnitude of the orbital velocity as measured by the current meter is given by:

$$U_{cm} = \sqrt{u^2 + v^2}$$
, (V-5)

where the subscript cm denotes the measurement by current meters. The values of u,v are obtained from the velocity variance-frequency spectrum where the u, v signals are treated as is η in equations (III-3) and (III-4). From linear theory, the orbital velocity measured at a height z' above the seabed is:

$$U = \frac{\pi H}{T} \frac{\cosh kz'}{\sinh kh} \cos(\sigma t); \qquad (V-6)$$

here H is the wave height, T the wave period, k the wave number, and h the mean water depth. Or, since $\sigma = \frac{2\pi}{T}$ is the angular frequency of the wave,

$$U = \frac{H\sigma}{2} \frac{\cosh kz'}{\sinh kh} \cos (\sigma t). \qquad (V-7)$$

The wave amplitude is obtained from the pressure signal recorded by pressure sensor 3 which has been depth corrected (equation V-1).

Equations (V-5) and (V-7) were then used to compare the horizontal orbital velocities obtained from the electromagnetic current meter with the values predicted from linear wave theory.

Values were obtained for the 20 usable runs of November 1973 during which the current meter was installed. For these runs the value calculated from linear theory (equation V-7) was higher than the measured value (equation V-5) with an average ratio of 1.2 when the values for each run were averaged over the first 24 elementary frequency bands, that is, to 0.25 Hz.

However, most of the variation between the measured current velocity values and the theoretical ones is found at the high energy, low frequency peaks. The largest waves of these 20 runs were recorded on 13 November 73 (Table V-1) where the ratio of the theoretical current value to the measured value of the high energy-peak (872 cm^2) located at 10.9 sec was 1.7 (Figure V-6). Comparatively high waves were also present on 12 November 73. The 10.9 sec peak, 579 cm² of energy, (Figure V-7) has a peak ratio of 1.4.

For lower energy waves the ratio at the low-frequency peak is typically 1.2, such as those on 9 November 73 (Figure V-8), where the peak at 14.2 sec contains 85.5 cm² of energy; and on 11 November 73 (Figure V-9) where the 14.2 sec peak contains only 26.3 cm² of energy.

The discrepancy may be a calibration problem. However, the results indicate that another theory should be used in place of the linear one, especially for waves with periods larger than 10 sec, where the linear theory no longer gives the best approximation of wave characteristics. Similarly, there is a need for a better understanding of the relation between properties measured at or near the bottom and the actual surface behavior. Table V-1. Directional information for SAS 1-14 June 73-01 and SAS 1-14 June 73-02 showing the results of the preliminary current meter runs. The periods, E_p and BW were obtained from the pressure sensor data; α_0 and $P(\alpha_0)$ were computed from the directional array; α and α are angles obtained from the current meter data.

		E _p (cm ²)		Array		Current Meter	
Run	Period(sec)		BW(Hz)	αο	P(α ₀)%	α	ā
SAS 1-14 June 73-01	14.2 8.8	481 547	.075	5°S 1°N	1.7	5°S 4°N	7°N 7°N
SAS 1-14 June 73-02	12.3	463 692	. 070 . 097	2°S 1°N	0.2	4°N 4°N	9°N 7°N

Definition of Terms:

- Period : The period of the spectral peak at which the directional information was obtained.
- E_p: The energy contained in the spectral peak, average of the data of all four sensors.

BW : The bandwidth, an average of the data of all four sensors.

- α: The angle where the directional spectrum obtained from orbital velocity records reaches a maximum, measured from the normal to the beach, but corrected to the alinement of the array.
- $\bar{\alpha}$: The mean angle obtained from the current meter data as defined in the text.
- α_0 : The direction of the best fit to a single wave train obtained from the four-pressure-sensor array, measured from the vertical to the array. The fitting technique is based on the minimum value of $P(\alpha_0)$.

 $P(\alpha_0)$: A measurement of the effectiveness of the fit for the four-sensor array.

. Comparison of the orbital velocity measured by the current meter with that predicted by linear theory using the energy density values measured at pressure sensor 3. This run had the largest current velocities for which a comparison was made between the theoretical and measured velocity. This run also showed the largest discrepancy between the theoretical and measured rms velocity at the low-frequency peak.

Figure V-7. Comparison of the orbital velocity measured by the current meter with that predicted by linear theory using the energy density values measured at pressure sensor 3.

Figure V-8. Comparison of the orbital velocity measured by the current meter with that predicted by linear theory using the energy density values measured at pressure sensor 3.

Figure V-9. Comparison of the orbital velocity measured by the current meter with that predicted by linear theory using the energy density values measured at pressure sensor 3.

There is generally low coherence between the onshore-offshore and longshore velocities with significant coherence only at the lowfrequency peak. Figure V-10 shows a plot of spectrum of onshoreoffshore and longshore current velocities for SAS 1-09 Nov 73-01.

5. Direction from Current Meters and a Single Pressure Sensor.

Following Bowden and White (1966), the frequency-directional spectrum is defined by:

$$S(f, \alpha) = \frac{1}{dfd\alpha} \sum_{df} \sum_{d\alpha} \frac{1}{2} \bar{a}_{n}^{2} , \qquad (V-8)$$

where a_n denotes the mean value of the amplitudes a_n which represent the amplitudes of the n wave components. The summations are of the mean-square value of all wave component amplitudes contained in the infinitesimal ranges of frequency and direction (f, f + df) and $(\alpha, \alpha + d\alpha)$. Thus, $S(f,\alpha)dfd\alpha$ is the contribution to the mean-square value of n due to the wave components in the ranges (f, f + df) and $(\alpha, \alpha + d\alpha)$.

The frequency-directional spectrum $S(f,\alpha)$ can be written as a Fourier Series:

 $S(f,\alpha) = \frac{1}{2}a_{\alpha} + a_{1}\cos\alpha + b_{1}\sin\alpha + a_{2}\cos2\alpha + b_{2}\sin2\alpha$ (V-9)

+ ... + $a_n \cos \alpha + b_n \sin \alpha + \dots$

This sum is similar in form to the one of equation (III-12) where the coefficients are the directional cross-spectra. C(X, f) - iQ(X, f) in equation (III-12) is a function of the horizontal component lags X and is well defined in array theory due to the separation distances of the sensors in the array. The time series of pressure and two horizontal velocity do not involve separation distances. Other methods are used to obtain the coefficients a and b.

Figure V-10. Frequency and cross-spectra for channels 7 and 8 (*in situ* onshore-offshore and longshore velocities) used in calculating wave direction from the current meters.

If p represents the pressure fluctuations near the seabed and u, v the orbital velocity components of wave motion in the onshore-offshore and longshore directions respectively, then the frequency cospectra C_{ij} (as in equation III-6) can be formed of any pair of quantities, p, u, v:

$$C_{pp}(f) = \frac{1}{\cosh^2 kh} \int_0^{2\pi} S(f, \alpha) \, d\alpha$$

$$C_{uu}(f) = \left(\frac{gk}{2\pi f}\right)^2 \frac{\cosh^2 kz'}{\cosh^2 kh} \int_0^{2\pi} \cos^2 \alpha S(f,\alpha) d\alpha$$

$$C_{VV}(f) = \left(\frac{gk}{2\pi f}\right)^2 \frac{\cosh^2 kz'}{\cosh^2 kh} \int_0^{2\pi} \sin^2\alpha S(f,\alpha) d\alpha$$

(V - 10)

$$C_{pu}(f) = \left(\frac{gk}{2\pi f}\right) \frac{\cosh kz'}{\cosh^2 kh} \int_{0}^{2\pi} \cos \alpha S(f, \alpha) d\alpha$$

$$C_{uv}(f) = \left(\frac{gk}{2\pi f}\right)^2 \frac{\cosh^2 kz'}{\cosh^2 kh} \int_0^{2\pi} \sin\alpha \cos\alpha S(f,\alpha) d\alpha$$

$$C_{pv}(f) = \left(\frac{gk}{2\pi f}\right) \frac{\cosh kz'}{\cosh^2 kh} \int_0^{2\pi} \sin \alpha S(f,\alpha) d\alpha.$$

The above are related to the Fourier coefficients

$$a_{n} + ib_{n} = \frac{1}{\pi} \int_{0}^{2\pi} e^{ni\alpha} S(f,\alpha) d\alpha \qquad (V-11)$$

of the spectrum $S(f, \alpha)$ so that:

$$a_{o}(f) = \frac{1}{\pi} \cosh^{2} kh C_{pp}(f)$$

$$a_1(f) = \frac{1}{\pi} \left(\frac{2\pi f}{gk} \right) \frac{\cosh^2 kh}{\cosh kz^{\dagger}} C_{pu}(f)$$

$$a_{2}(f) = \frac{1}{\pi} \left(\frac{2\pi f}{gk} \right)^{2} \frac{\cosh^{2} kh}{\cosh^{2} kz} \left(C_{uu}(f) - C_{vv}(f) \right) \qquad (V-12)$$

$$b_1(f) = \frac{1}{\pi} \left(\frac{2\pi f}{gk} \right) \frac{\cosh^2 kh}{\cosh kz} C_{pv}(f)$$

$$b_2(f) = \frac{2}{\pi} \left(\frac{2\pi f}{gk} \right)^2 \frac{\cosh^2 kh}{\cosh^2 kz} C_{uv}(f),$$

where z' is the distance of the instrument from the seabed, h is the mean water depth, g is the acceleration due to gravity, f is the frequency of the waves, and α is the direction of wave approach.

From the pressure and orbital velocity data, the first five Fourier coefficients of the frequency-directional spectrum can be obtained. So, the first five terms of the series in equation (V-9) are known giving the partial Fourier sum, or an estimate of the frequency-directional spectrum,

$$\hat{S}(f, \alpha) = \frac{1}{2} a_0 + a_1 \cos \alpha + b_1 \sin \alpha + a_2 \cos 2\alpha + b_2 \sin 2\alpha.$$
 (V-13)

If the terms of higher order are small, equation (V-13) may be a good approximation to the true frequency-directional spectrum given by the infinite series in equation (V-9).

This method does not involve spatial aliasing as described in array theory (Section III). The spectrum obtained in this manner is broader than for the array method since only five terms are obtained as compared to nine for the four-sensor array (Equation III-12). If the directional spectrum for a fixed frequency is plotted, it will attain a maximum for some directional value which will be referred to as the peak direction, $\alpha_{\rm m}$. A look at equations (V-10 and V-12) indicate that a mean direction α can be found:

$$\tan \bar{\alpha} = \frac{b_1}{a_1}.$$
 (V-14)

This mean direction α has meaning only for unimodal narrow angular distributions. The better the agreement between the peak direction α_m and the mean direction α , the more the spectra can be considered as due to a single wave train approaching from the direction α .

The above method was used on data collected at the SAS station off Torrey Pines Beach. A Marsh-McBirney Electromagnetic Current Meter, Model 711 (described in Section V-4) installed 1 meter above the bottom and 5 meters south of pressure sensor 3 collected preliminary data during special long-term runs on 14 June 73 (0945 to 1120 hours PST), and 16 June 73 (1029 to 1200 hours PST) at a rate of 2 samples per second. Data on 16 June 73 were eliminated because of erratic pressure sensors and magnetic tape errors. Two segments of data from 14 June 73 were analyzed. The first 34-minute segment of 4,096 points was labeled as SAS 1-14 Jun 73-01, and the segment from 1019 to 1053 hours PST as SAS 1-14 Jun 73-02.

A computer program was written which used equation (V-12) to compute the coefficients a_0 , a_1 , a_2 , b_1 , and b_2 . A grouping of 22 adjacent bands was used in the calculation of the spectra. With the sampling rate of 2/sec and a total of 4,096 data points, this grouping yielded a frequency resolution of $\Delta f = 0.0107$ Hz. The coefficients were then used to calculate an estimate of the directional spectrum. Equation (V-14) was used to obtain $\bar{\alpha}$. Directional information was also determined from the four pressure-sensor array using the procedure described in Appendix A. The uncertainty in direction of positioning the orthogonal current meters is estimated to be of the order of $\pm 5^{\circ}$ to 10° . This results from the difficulty in adjusting a 2.5centimeter-diameter cylinder to a compass direction underwater. On the other hand, the position of the pressure sensor array has been determined to within 1° by horizontal sextant angles from known shore station. The array was measured to be alined 1.5° west of magnetic north. This indicates that the normal to the array 15 rotated 13° clockwise of true east-west, which is the normal to the beach shoreward of the array. Current meter directional values have been corrected to account for the alinement of the array.

For SAS 1-14 June 73-01 peak spectral energies were located at periods of 14.2 sec and 8.8 sec. The peaks have a similar amount of energy. However, the peak for the 8.8-sec waves is broader than that for the 14.2-sec waves (Table V-1). $S(f,\alpha)$, when calculated using pressure and two horizontal velocity components reaches a peak direction at 5°S for the 14.2-sec waves, the mean direction, α , is 7°N. The directional spectrum obtained from a four-pressure sensor array peaks at 5°S with $P(\alpha_0) = 1.7$ (where $P(\alpha_0)$ is defined by equation (IV-1)). For the 8.8-sec peak, the method using orbital velocities peaks at 4°N as the direction of the energy with $\alpha = 7^{\circ}N$. The array method gives peaks at 1°N with $P(\alpha_0) = 0.2$. In both procedures, the 8.8-sec peak fits better to a single wave model.

The energy spectrum from SAS 1-14 June 73-02 has peaks at periods of 12.3 sec and 8.8 sec. The peak direction from the current meter for the 12.3-sec wave is 4°N and from the array, 2°S. Here $P(\alpha_0) = 0.2$ while $\bar{\alpha} = 9^{\circ}N$. The 8.8-sec wave has a directional array spectral peak at 1°N with $P(\alpha_0) = 0.3$ and a current meter spectral peak at 4°N with $\bar{\alpha} = 7^{\circ}N$. In this run both peaks fit to a single wave since $P(\alpha_0)$ is small and α and α are close in value. The frequency spectral plots for the in situ onshore-offshore orbital velocity and pressure data is shown in Figure V-11. Normalized directional spectra plots for the 8.8second peak of SAS 1-14 June 73-02 are shown in Figures V-12 and V-13. Figure V-12 shows the directional spectrum as calculated from the time series of pressure and orbital velocities. Figure V-13 is the spectrum calculated from the array. Both figures also show the response of each method to a delta function. The current meter method has a much broader response than the array method. The current meter method response is broad since only five terms in the Fourier expansion of $S(f,\alpha)$ can be calculated from a knowledge of pressure and velocities. The advantage is, however, that the direction spectral windows are independent of frequency. This makes comparisons between different frequencies easier than for the array method whose windows are frequency dependent. Another advantage to the current meter method besides the frequency independent windows is that less instrumentation is required.

Visual observations made on 14 June 73 indicate waves with a period of approximately 10 sec were breaking at an angle of 5° from the north. The significant height was given as 2 meters. When shoaling and refraction are considered, these values correspond reasonably well with a breaker angle of 6°N calculated for the 8.8-sec spectral peak.

The fairly good agreement between the directions obtained using these two methods for the runs on 14 June 73 suggested that further comparisons would be useful. The current meter was reinstalled on 2 November 73 and operated through 13 November 73 during routine runs at the SAS station so that more comparisons with the directional array method could be made.

Twenty of these November 73 runs were usable, yielding a total of 38 peaks which were analyzed. Results are shown in Table F-3 (App. F).

Figure V-11. Frequency and cross-spectra of the *in situ* pressure (channel 3) and onshoreoffshore orbital velocity (channel 8) used in calculating wave direction from the current meters.

a single wave train of the same period having the direction of the spectral peak (smooth line). The broad spectrum is the result of having only five terms in the expansion of $S(f, \alpha)$ on a delta function. The spectrum is for 8.8-second waves from run SAS 1-14 Jun 73-02. The energy density values are normalized by the maximum value at 17° north, which was the angle obtained before the 13° correction was made to account for the alinement of the pressure-sensor array.

Assuming the normal to the array is rotated 13° clockwise of true east-west directional agreement is within ±5° for 21 of the peaks (55.3%). Agreement in direction is within ±10° for 92.1 percent of the peaks. In some of the runs with large disagreement, noise is noticeably present in the data. This is true, for example, of SAS 1-07 Nov 73-02 for pressure sensors 1 and 2 and in all pressure sensors for SAS 1-04 Nov 73-04. A faulty plug which was replaced 5 Nov 73 may have presented some of the difficulty. In other cases $P(\alpha_0)$ is large, indicating a poor single wave fit. For instance, $P(\alpha_0) = 59.7$ percent for the first peak on 11 Nov 73-04, $P(\alpha_0) = 61.7$ percent for the second peak on 12 Nov 73-03, and $P(\alpha_0) = 50.2$ percent for the second peak on 12 Nov 73-04 (refer to Table F-3, App. F). In other cases the higher frequency peaks are not necessarily well defined consistently throughout the pressure sensor and current meter data. This is true for the 8 Nov 73 runs. Comparisons with visual observations and with direction obtained from accelerometer data (Section V-6) are also included in Table F-3 (App. F).

6. Direction from Accelerometers.

Due to the difficulty in maintaining an array of pressure sensors, it would be desirable to obtain wave climate information using only the motion of the spar and one pressure sensor. To determine the feasibility of this, the accelerometer records were also used to obtain a direction for the 20 available runs during November 73 to augment the directional comparison between the current meter and array values. The accelerometers measure horizontal acceleration in orthogonal directions. Each is oriented 45 degrees from the normal to the beach. Since waves do not usually arrive from directions greater than ± 45 degrees from the normal to the beach, there is no ambiguity as to which quadrant the waves are coming from (Figure V-14). Thus, the spectral values (Figure V-15) of the accelerometers at the peak frequency are sufficient to obtain an angle. For each peak of interest, the square root of the spectral value of accelerometer 2 was divided by the square root of the spectral value of accelerometer 1 (Figure V-14). The arctangent of the result gives an angle which must then be corrected by 45 degrees to allow for the orientation of the accelerometers. It should be noted that a method similar to this was not used in the current meter analysis since the orientation of the current meters was such that waves could be arriving from either of the offshore quadrants (Figure V-14, quadrant II or III). The magnitudes of the onshore-offshore and longshore velocities alone is not sufficient to obtain a unique angle. At the shelf station, the ambiguity in the onshore-offshore axis is eliminated due to the presence of the beach (no waves would be arriving from quadrant I or IV (Figure V-14). The pressure record can be used to remove the ambiguity in the longshore axis by distinguishing between crests and troughs of the waves as was done in the current meter analysis discussed previously

(Section V-5). Results for the accelerometer analysis are also in Table F-3 (App. F) along with comparisons with visual observations when available, since they were not taken on weekends. Of the 38 peaks analyzed, 12 (26.3 percent) disagreed more than ±5° in direction between the accelerometer method

Figure V-14. The orientation of: (a) accelerometers; and (b) the current meters illustrating the coordinate system (and corresponding quadrants) defined by the axis of each instrument.

Figure V-15. Frequency and cross-spectra for accelerometer channels 5 and 6 (accelerometers 1 and 2 respectively in Fig. V-14) used in calculating wave direction from the accelerometers.

employed and the array method. Thus 73.7 percent of the peaks agreed within ±5°. All but four (10.5 percent) of these runs were within ±10°. However, direction from the current meter (Section V-5) and accelerometer agree to within $\pm 5^{\circ}$ for 65.8 percent of the runs. All but three of these runs (7.9 percent) were within $\pm 10^{\circ}$. Again, noise in the data records is evident in some runs such as SAS 1-07 Nov 73-02 due to a faulty plug. Most of the poor agreement occurs at the low-energy peaks. For the runs SAS 1-03 Nov 73-02, SAS 1-10 Nov 73-01, SAS 1-11 Nov 73-03, SAS 1-12 Nov 73-03, SAS 1-12 Nov 73-04, and SAS 1-13 Nov 73-01, directions for the high-energy peaks agree better than for the low-energy peaks of the same run (refer to Table F-3, App. F). However, this is not always the case as in SAS 1-08 Nov 73-03 where directions agree well for the low-energy peak also. There may be other causes for the disagreement, as in run SAS 1-11 Nov 73-03 where a jump occurs in the record due to a change in current. Once these effects are understood, the accelerometer records may prove valid for obtaining wave directional properties. General conclusions are not possible since the usable runs where array, current meter, and accelerometer data were all available, represent a small sample obtained under similar wave climate conditions.

7. Directional Spectra of High Frequency Waves.

The directional spectra were routinely evaluated up to a frequency of 0.25 Hz. This cutoff was based on the limited interpretative value of the directional spectra in the band from 0.25 Hz to 0.5 Hz. Also, the directional data stored and reported were unnecessarily bulky due to the inclusion of the generally meaningless directional spectra of the higher frequencies. The difficulty of interpreting the high-frequency directional spectra is discussed below.

The problems of sampling a directional spectrum with a finite number of sensors include aliasing and resolution. The problem of aliasing as discussed in Section III results in an ambiguity of the direction of approach of the waves. Figure V-16 displays the spectral response of the linear array to 3.9-second waves approaching the array at 0°. The measured directional spectrum has a peak at 0° but also at ±54°. The distance between these alias peaks and the true peak is a function of the wavelength compared to the smallest spacing array. For set spacings in the array, the distance between these peaks decreases as the frequency increases. Figure V-16 shows the response of the array to 4.5second waves, the longest period waves for which the alias peaks appear with an input of energy at 0° . As the distance between the peaks decreases at higher frequencies, more peaks will appear and the problem becomes more complex. The response of the array to 3-second waves propagating normal to the array is also plotted in Figure V-16. For this input there are four aliased peaks in the computed directional spectrum.

These serious problems of aliasing are compounded by the nature of the higher frequency waves. Significant peaks are rare in the higher

Figure V-16. The directional response of the 1-2-1 array to waves approaching from 0° with periods 3.9 seconds (A), 4.5 seconds (B), and 3 seconds (C). All peaks but those at 0° are "alias" peaks.

frequency, >0.25 Hz, area of the energy spectrum and the coherence is quite low. This implies a very wide band of directions bordering on directionless noise. The normal situation is for the energy spectrum to slope sharply from the region of 0.25 Hz, and for coherence above 0.25 Hz to be very low. Figure V-17 shows the coherence values of a frequency band on the slope of the spectrum as it compares with the coherence of the spectral peaks. The associated frequency spectra are plotted in Figure V-18. However, on occasion there have been fairly significant peaks recorded for wave periods from about 4.1 to 4.7 sec. The run SAS 1-17 May 73-02 is an example of this type of wave record. The coherence at the spectral peak, which is at 4.5 sec, is not very high (approximately 0.6) when compared to the values for the major peak. The interpretation of the directional spectra is still quite difficult. The directional spectra for wave periods, 4.5, 4.3, 4.1, 4.0, and 3.9 sec are included in Figure V-19. The associated frequency spectra of the run are plotted in Figure V-20. With no additional knowledge one should not be able to discount any of the major peaks present in the directional spectra. However, it is apparent that as one of the peaks shifts with increasing frequency, the peak around 10°N remains stationary. This implies that the peak around 10°N is a true peak and the other is an alias which shifts its position for the various frequencies.

The directional spectrum at 4.5 sec is quite clean and it probably can be concluded that a significant portion of the energy is well directed. The spectrum fits well into a single direction model, $P(\alpha_0)$ is approximately 20 percent for α_0 equal to 8°N. However, at the higher frequencies, the directional spectra are quite complex and possess many significant side lobes. There is no way of distinguishing which lobes are real or if they result from aliasing. The resulting ambiguity becomes quite severe, particularly in the case of 4.1 sec waves. Obviously, one could not expect to approximate the true spectrum in practical problems with these results.

The case illustrated above was for relatively coherent high frequency waves. The only information obtained from the spectra was that the energy is propagating from approximately 8° N. This result can also be derived from the phases between sensors. An average angle computed from the phases for 4.5-sec waves is 8.9°N. As with the directional spectrum, there is an ambiguity in this calculation as an angle of 60°S will also satisfy the phase relationships. However, as with the directional spectra this ambiguity may be eliminated by inspection of the results for a neighboring band if the energy in the adjacent bands is from approximately the same direction. The phases for 4.7-sec waves, for example, give estimates of 7.9°N and 73°S. Once again the stable peak around 8° N is indicated as the true peak.

It is therefore apparent that the interpretable information contained in directional spectra of coherent high-frequency waves is recoverable through simple phase calculations. The additional information the spectrum does contain is masked hopelessly by the aliasing problems.

Figure V-17. The coherence between the various sensors as a function of their separation. The data were taken from SAS 1-27 May 73-03. The associated frequency spectra are plotted in Figure V-18. The low-frequency waves, peak 2, are very coherent at separation distances comparable to their wavelength. The wavelength of 14.2-second waves in 10-meter depths is 137 meters. The coherence between sensors 1 and 2 in terms of the cross-spectrum (defined in equation III-6) is: $R^2 = (C_{12}^2 + Q_{12}^2/C_{11}C_{22}).$

Figure V-18. Frequency and cross-spectra of sensors 3 and 4 of the 1-2-1 array. These are the associated spectra for the coherence plot of Figure V-17. Most of the energy of the wave field is contained in the higher frequency peak.

Figure V-19. The directional spectra for 4.5- (A), 4.3- (B), 4.1- (C), 4.0- (D), and 3.9-second waves (E) for SAS 1-17 May 73-02. The peak at 8° north appears for each of the higher frequency bands while the southern peak shifts its position. This suggests the peak at 8° north is the true peak while the peak at 60° south is an "alias" peak.

Figure V-20. Frequency and cross-spectra computed for sensors 1 and 2 of the pressure-sensor array. These are the associated frequency spectra for the directional spectra plotted in Figure V-19. The coherence of the higher frequency peak is relatively high.

The high-frequency directional spectra would probably be useful if either one of two situations existed: 1) there be a limited band of directions that one would expect energy, thus enabling one to ignore other regions of the spectrum; 2) the sampling be of the nature as to give a high resolution, unaliased picture of the directional spectrum. Condition 1) can never be satisfied because of the wide directional band nature of the high-frequency waves. The higher frequency waves not only are refracted less than the longer period waves but many times come from local winds at large angles to the shore. Condition 2) could be met with a suitably designed array. However, it is evident that our array was not designed well for the investigation of higher frequency waves with periods less than about 4.8 sec. There is a trade-off, of course, between a good design for looking at high-or low-frequency waves with a limited array. It is felt that our array was designed more properly for the investigation of the lower frequency waves, wave periods of 5.5 sec and longer, which contain most of the energy along this coast.

VI. WAVE CLIMATE

The wave climate at Torrey Pines Beach is controlled by many factors. The location and intensity of wave-generating storms are important in determining the nature of the swell which approaches the area. The blocking effect of the continental land mass and offshore islands causes the study region to be shadowed from waves from certain directions. Figure VI-1 displays the directions shadowed at the Torrey Pines site. No diffraction or refraction effects were taken into account when calculating the extent of the island's shadows. Therefore, Figure VI-1 should be treated as only a rough approximation of the shadowing effects. The refraction of waves, both by offshore and nearshore topography, also affects the nature of the waves measured.

Investigations were made into both the specific and average characteristics of the wave data. To display the average tendency of the wave climate, the data were grouped in terms of the four seasons. Figure VI-2 and Table I-1 (App. I) are two displays of the general wave climate for the summer runs of 1973. Figure VI-2 is a plot of energy versus period of the waves. A point has been plotted for each spectral peak for the summer records. Figures V-11, 12, and 13 are equivalent plots for the other three seasons. It should be noted that at each frequency there is a wide spread of recorded energies. This may differ greatly from the results of a visual study. For example, the long-period southern swell is only visually detectable at medium to high amplitudes. This is particularly true when there is another significant wave component present. Table I-1 (App. I) includes much the same information, but has the directional data included.

Figure VI-3 is a histogram which displays for the summer months the sum of the energy measured at a given frequency for each direction of propagation. Only the data when the frequency is a peak frequency are included in this presentation. This type of data grouping is of particular help in determining the importance of the several wave-generating

Figure VI-1. A rough chart of the continental borderland off southern California which displays wave shadowing effect of the islands. The unshaded regions show unaffected angles of deepwater approach of waves from distant storms incident to Torrey Pines Beach. The angles are given in degrees from normal to the beach, which is oriented true north and south at the site of measurement.

Figure VI-2.

A representation of the wave climate for the months June, July, and August 1973. Each point represents the energy and central period for a spectral peak in a wave record. The bands A, B, and C represent the bandwidth of the frequency groups with central periods 16.8 sec, 26.2 sec, and 59.2 sec respectively. One hundred and nine runs were analyzed for the summer months. There are relatively few spectral peaks in the period range of 9 to 12 seconds. This fact reflects the persistence of the spectral trough shown in Figure VI-4 over the summer runs.

Figure VI-3. A plot of the total energy versus direction of propagation summed over 109 runs during June, July, and August 1973 for spectral peaks with a peak period of 14.2 seconds. The directions are in degrees from normal to the coast at Torrey Pines Station.

Figure VI-4. Frequency and cross-spectral results of two pressure sensors of the 1-2-1 array displaying the typical bimodal spectral form of summer wave field. The narrow low-frequency peak is south swell while the higher frequency waves are from a relatively local storm in the North Pacific.

regions during the various seasons. Appendix J includes the directional plots for the various wave periods and seasons.

The characteristics of the wave spectra generated from the several source regions determine the specific nature of the local wave field. A common summer form of the frequency directional spectra was observed. The characteristic bimodal form of the frequency spectra measured in the summer months is shown in Figure VI-4. The lower frequency peak is relatively narrow, about 0.04-Hz bandwidth, and the peak period is usually between 12-17 sec. The higher frequency peak is much broader, about 0.1 Hz in width, and its peak period is usually between 6-10 sec. The energy of the lower frequency peak is usually between 20-200 cm² with a mean energy of 100 cm². The higher frequency peak varies from 30-500 cm² with a mean of approximately 170 cm².

The directional data reveals that the lower frequency waves are very well directed and have angles to the beach at the 10-meter depth of 5° to 15° from the south. The higher frequency waves are in general less well directed and the peak is usually from 5° to 18° from the north. The bimodality of the spectra of the summer waves in this region has been noted in previous work (Inman, 1953).

The scatter diagram for fall (Figure VI-5) showing peak energy versus period is very similar to the plot for summer months. The directional plots reveal, however, that some of the long-period swell is coming from a northerly direction. In particular, the 12- to 14-second waves show a source around 6° to 9° north. The shorter period waves, below 12 seconds, are primarily coming from 8° to 20° north, while the waves around 16 seconds are still from the south.

The wave climate of the winter months differs greatly from that of summer and fall. Figure VI-6 shows the generally high-energy level of the spectral peaks in the winter. There is also an increase in the occurrence of medium to low energy 4-5 sec chop waves. The directional information indicates there are many components to the winter wave climate. The longer period waves are generally coming from 2° to 8° north, indicating North Pacific swell, but Figure VI-7 shows a definite southern component for the 14-sec waves. This south swell was also observed visually. The shorter period waves display a wider spread in directions, with primary sources from 2° to 15° north. However, Figure VI-8 shows a strong southern component to the 6.6- to 6.3-second waves. These relatively short southern waves are due to severe local storms which approach the area from approximately due west. The winds in the southeast quadrant of the approaching storm are southerly to southwesterly and are quite intense.

Figure VI-9 reveals a severe wave climate for the spring months. This is due primarily to storms which occur in the early part of the season. Figure VI-9 also shows that there is a larger occurrence of 9-12 sec waves in this season. The trough in this region of the spectrum for the summer months is definitely not evident here. The primary

Figure VI-5. A representation of the wave climate for September, October, and November 1973. Each point represents the energy and central period for a spectral peak in a wave record. One hundred and twenty runs were analyzed for the fall months.

Figure VI-6. A representation of the wave climate for December, January, and February. A total of 181 runs was analyzed. The energy levels of the low-frequency peaks are significantly higher than for the summer and fall quarters. There is also more occurrence of the very long-period (~ 60 seconds) peaks.

Figure VI-8. A plot of the total energy versus direction of propagation summed over 181 runs during December, January, and February for spectral peaks with peak period of 8.1, 7.4, and 6.9 seconds. The directions are in degrees from normal to the coast at the Torrey Pines Station. This plot displays a very wide directional band for higher frequency waves.

Figure VI-9. A representation of the wave climate for March, April, and May. The data were analyzed from 247 SAS runs. This quarter is a period of transition of wave climate and the result represents a mix of the summer and winter distributions. Therefore, the spectral peaks are relatively evenly distributed over the various energy levels and wave periods.

source of waves in this season are the North Pacific storms which generate waves with periods from 10 to 15 seconds coming from 2° to 8° north. The waves with periods around 16 seconds have both a northerly and southerly component but have generally much less energy than the shorter period waves.

Figure VI-10 displays the total energy of the 13.2- to 15.4second waves recorded for all the runs analyzed. The figure reveals at least three principal sources of energy: 10° to 12° south, 1° to 3° south, and 2° to 8° north. The shaded portion of the plot reveals the energy recorded during nine runs of the storm which occurred from 27 to 30 March 74. This indicates the importance that local storms play in the total energy budget for the year in this region.

The significant height, $H_{1/3}$, or the mean height of the highest 1/3 waves, is related to the variance $<n^2>$ by Longuet-Higgins (1952) for a narrow band Gaussian wave field,

$$H_{1/3} \sim 4 < \eta^2 >^{1/2}$$
. (VI-1)

This has been empirically justified by many researchers, including Longuet-Higgins (1952), Goda (1974), and Larsen (1974), for open ocean waves. The significant height was calculated from each run and the probability distribution function for the significant height is plotted in Figure VI-11. The plot reveals that the waves of winter and spring have a higher mean $H_{1/3}$ than summer or fall, but a larger expected variance of $H_{1/3}$ values also.

VII. CONCLUSIONS

The wave climate study off Torrey Pines Beach has provided considerable insight into the problems associated with obtaining wave energy and directional spectra in shallow nearshore waters. A summary of the findings from this study are presented below:

1. A trial performance of the system off Scripps Pier which was directed toward determining the likely long-term performance of the system was only moderately successful. This was because long-term structural fatigue of the fiberglass shelf station, which later led to flooding and station malfunctioning, could not be evaluated in a short period trial.

2. The SAS system has proven to be a viable method for obtaining data from the nearshore waters. It remained on station and intact during severe storm conditions. Identification of major failure modes and the elimination of these failures have resulted in increasing the recovered data to better than 75 percent of the scheduled observations.

Figure VI-10. A display of the total energy measured for the spectral peaks with a wave period of 14.2 seconds evaluated from all the measured runs. The 27 to 30 March 1974 data (shaded) shows the importance of storm waves in the total energy budget.

3. The frequency and directional information derived from the line array of pressure sensors were sufficient for the specification of wave climate. That is, the energy and primary direction of dominant spectral peaks (waves from 5 to 20 seconds) were obtained with some degree of confidence.

4. The array was best suited for measuring the directional spectra of waves with periods around 5.5 seconds. Directional measurements of lower frequency waves lacked resolution, while "aliasing" problems made the interpretation of higher frequency directional spectra difficult.

5. The measurement of directional spectra through the use of current meters suffers a lack of resolution relative to the array measurements. The determination of the primary direction of wave propagation from the two different methods agreed within $\pm 4^{\circ}$.

6. The total wave energy estimated by the various pressure sensors of the array had an average range in values of approximately 20 percent of its mean. The results of a sample of 27 runs indicated the range in energy of the dominant spectral peak as estimated from the four sensors varied by only 12 percent of the mean value.

7. The total wave energy obtained from the surface-piercing wave staff differed from the pressure sensor value by an average of 17 percent of the mean. The average difference of band energy density between the frequency spectra of the wave staff and pressure sensor was also approximately 17 percent of the mean. This suggests a systematic nature to the differences between the spectra of the wave staff and the pressure sensor. However, the sensor which recorded the highest energy level of the two varied over the runs.

8. The visual measurements of wave period and direction agreed with the array measurements when the wave spectra were narrow band in frequency and direction. The visual estimates of wave height did not agree consistently with the results from the pressure sensors.

9. The frequency band comparisons of spectral density of velocity fluctuations measured by a current meter with those estimated by a pressure signal yielded an average difference between the two of 20 percent of this mean. Significant differences up to 50 percent occurred at the frequency bands of maximum spectral density.

10. Accelerometer data used to obtain wave direction gave values which agree with direction from the array to within $\pm 5^{\circ}$ for 75 percent of the peaks compared. The motion of the spar was recorded by the accelerometers can provide a convenient method of obtaining wave direction.

11. Waves of dominant spectral peaks are well correlated (coherence 0.75) over distances greater than their wavelength. The coherence between sensors for relative minimums in the energy spectra drops sharply with sensor separation. The coherence for frequencies on the higher frequency slope of the energy spectra was consistently low for all sensor separations.

12. The frequency spectra of summer waves have a characteristic bimodal form. The relatively narrow lower frequency peak (10 to 16 seconds) is southerly and well directed. The broader high-frequency peak (peak period around 6 to 10 seconds) is generally less well directed and usually from 5° to 10° north.

13. The wave climate of the fall months closely resembles the summer results with the addition of a small northern component to the longer period waves.

14. The wave climate of the winter and spring months is much more severe than the summer and fall; the average total energy recorded for the spring and winter months was over two times as great as the average for the summer. The cumulative results for winter and spring showed a large amount of energy for waves of periods 12 to 15 seconds approaching the beach at angles of 5° to 15° north in 10-meter depth.

15. A small southern component to the longer period waves 13 to 18 seconds appeared in the wave climate of the winter months. Some higher frequency southerly waves, periods of 5 to 18 seconds, were correlated with local frontal passages.

16. The energy supplied by brief but severe storms of winter and spring contributes significantly to the total energy budget for a year.

LITERATURE CITED

- BARBER, N.F., "The Directional Resolving Power of an Array of Wave Detectors," Ocean Wave Spectra, Prentice-Hall, Englewood Cliffs, N.J., 1963, pp. 137-150.
- BENDAT, J.S., and PIERSOL, A.G., Random Data: Analysis and Measurement Procedures, Wiley-Interscience, New York, 1971.
- BOWDEN, K.F., and WHITE, R.A., "Measurements of the Orbital Velocities of Sea Waves and their Use in Determining the Directional Spectrum," *Geophysical Journal, Royal Astronomical Society*, Vol. 12, 1966, pp. 33-54.
- COOLEY, J.W., and TUKEY, J.W., "An Algorithm for the Machine Calculation of Complex Fourier Series," *Mathematics of Computations*, Vol. 19, No. 90, 1965, pp. 297-301.
- COTE, L.J., et al., "The Directional Spectrum of a Wind Generated Sea as Determined from Data Obtained by the Stereo Wave Observation Project," *Meteorological Papers*, Vol. 2, No. 6, New York University, N.Y., 1960.
- DICKE, R.H., and WITTKE, J.P., Introduction to Quantum Mechanics, Addison-Wesley, Reading, Mass., 1960.
- GODA, Y., "Estimation of Wave Statistics from Spectral Information," Proceedings of the International Symposium on Ocean Wave Measurement and Analysis, New Orleans, La., Sept. 1974.
- INMAN, D.L., "Areal and Seasonal Variations in Beach and Nearshore Sediments at La Jolla, California," TM-39, U.S. Army, Corps of Engineers, Beach Erosion Board, Washington, D.C., Mar. 1953.
- INMAN, D.L., KOMAR, P.D., and BOWEN, A.J., "Longshore Transport of Sand," Proceedings of the 11th Conference on Coastal Engineering, American Society of Civil Engineers, London, Vol. 1, 1969, pp. 298-306.
- KOMAR, P.D., and INMAN, D.L., "Longshore Sand Transport on Beaches," Journal of Geophysical Research, Vol. 75, No. 30, 1970, pp. 5914-5927.
- LARSEN, L.H., and FENTON, D.R., "Observations of Waves in the North Pacific," Proceedings of the International Symposium on Ocean Wave Measurement and Analysis, New Orleans, La., Sept. 1974.
- LONGUET-HIGGINS, M.S., "On the Statistical Distribution of the Heights of Sea Waves," *Journal of Marine Research*, Vol. XI, No. 3, Yale University, New Haven, Conn., 1952, pp. 245-266.
- LONGUET-HIGGINS, M.S., CARTWRIGHT, D.E., and SMITH, N.D., "Observations of the Directional Spectrum of Sea Waves Using the Motions of a Floating Buoy," Ocean Wave Spectra, Prentice-Hall, Englewood Cliffs, N.J., 1963, pp. 111-136.

- LOWE, R.L., INMAN, D.L., and BRUSH, B.M., "Simultaneous Data System for Instrumenting the Shelf," 13th International Conference on Coastal Engineering, American Society of Civil Engineers, 1972, pp. 95-112.
- MUNK, W.H., "The Solitary Wave and its Application to Surf Problems," Annals of the New York Academy of Science, Vol. 51, 1949, pp. 376-424.
- MUNK, W.H., et al., "The Directional Recording of Swell from Distant Storms," *Philosophical Transactions of the Royal Society of London*, Vol. 255, No. 1062, Series A, 1963, pp. 505-584.
- PANICKER, N.N., and BORGMAN, L.E., "Directional Spectra from Wave Gage Arrays," 12th International Conference on Coastal Engineering, American Society of Civil Engineers, 1970, pp. 117-135.
- SIMPSON, J.H., "Observations of the Directional Characteristics of Sea Waves," Geophysical Journal of the Royal Astronomical Society, Vol. 17, 1969, pp. 93-120.

APPENDIX A

THEORETICAL DEVELOPMENT OF DIRECTIONAL SPECTRA

The intent of this appendix is to give a more detailed description of the procedure for obtaining directional spectra. The problems introduced due to finite sampling are detailed. In addition, the procedures used in the interpretation of the analysis are developed and the terms used in the results of the analysis are defined.

Time series consisting of surface wave heights measured simultaneously at several points in space can be used to estimate a frequencydirectional spectrum for surface waves. The assumption of stationarity in space, that is, a frequency spectrum and cross-spectrum independent of position in the wave field has been used in the calculation of the energy-directional spectrum. The assumption of stationarity in time is required only for the interpretation of the results.

Before discussing the frequency-directional spectrum a few definitions will be introduced. Define the Fourier transform pair:

$$f(x) = \int_{-\infty}^{\infty} F(k_x) e^{2\pi i k_x x} dk_x$$

$$(A-1)$$

$$F(k_x) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i k_x x} dx ,$$

where $F(k_x)$ is the one-dimensional Fourier transform of f(x); x is a coordinate in the onshore-offshore direction; and $k_x = 1/L_x$ is the Wave number in the x-direction. Allow the above operations to be represented by the following notation:

$$F(k_{x}) \supset f(x)$$
(A-2)
$$f(x) \rightarrow F(k).$$

where the transform notation $F(k_x) \supset f(x)$ indicates that f(x) is

the Fourier transform of $F(k_x)$. Now, define the convolution of two arbitrary functions of x, f(x) and g(x), to be H(X) where X is a distance in the x-direction:

$$H(X) = \int_{-\infty}^{+\infty} f(x) g(X - x) dx , \qquad (A-3)$$

and let this operation be represented by the notation:

$$H(X) = g(x) * f(x).$$

The convolution theorem states:

$$f(x) \cdot g(x) \supset F(k_{\chi}) * G(\kappa_{\chi})$$

$$f(x) * g(x) \supset F(k_{\chi}) \cdot G(k_{\chi}),$$
(A-4)

where

. .

$$f(x) \supset F(k_x)$$
 and $g(x) \supset G(k_x)$. (A-5)

Barber (1963) has a good treatment of the convolution theorem.

The treatment of frequency-directional spectra below follows the development of Barber (1963). Consider the surface elevation, $\eta(x,y,t)$ as a function of the onshore-offshore coordinate x; the longshore coordinate y; and, time t. If $\eta(x,y,t)$ is known over a region extending in the x-direction from 0 to A, in the y-direction from 0 to B, and over the times t = 0 to t=C, the surface elevations may be represented by the following Fourier series:

$$n(x,y,t) = \sum_{\ell = -\infty}^{\infty} \sum_{m = -\infty}^{\infty} \sum_{n = -\infty}^{\infty} A_{\ell,m,n} e^{2\pi i \left[\frac{\ell x}{A} + \frac{my}{B} + \frac{nt}{C}\right]},$$
(A-6)

where l, m, and n are integers; and, $A_{l,n,m}$ is an infinite threedimensional matrix. The convolution of n(x,y,t) with itself gives the function called the lag correlogram, $R(X,Y,\tau)$ where X is a spatial lag in the x-direction; Y is a spatial lag in the y-direction; and, τ is the lag in time

$$R(X,Y,\tau) = \frac{1}{ABC} \int_{x=0}^{A} \int_{y=0}^{B} \int_{t=0}^{C^{-1}} (x,y,t) (x+X,y+Y,t+\tau) dx dy dt.$$
(A-7)

From the convolution theorem, the lag correlogram can be represented by the following series:

$$R(X,Y,\tau) = \sum_{\ell=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} |A|_{\ell,m,n}^{2} e^{2\pi i \left(\frac{\ell X}{A} + \frac{mY}{B} + \frac{n\tau}{C}\right)}, \quad (A-8)$$

where $|A|_{\ell,m,n}^2$ is the squared modulus of A Allow equation (8) to be expressed in the following integral form:

$$R(X,Y,\tau) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} S(k_x,k_y,f) e^{2\pi i (k_x X,k_y Y,f)} dk_x dk_y df, \quad (A-9)$$

where k_x and k_y are the x and y components of the wave number; f is the frequency, and $S(k_x,k_y,f)$ is a set of Dirac delta functions occurring at integer values of k_x,k_y , and f with integrated values equal to the appropriate $|A|_{\ell,m,n}^2$. The function $S(k_x,k_y,f)$ represents the frequency-directional spectrum and has the units cm/($\Delta f \Delta k_x \Delta k_y$). $S(k_x,k_y,f)$ can be found exactly if the lag correlogram is known for all separations X, Y, and τ . Assume $R(X,\ Y,\ \tau)$ is given for all values of X, Y, $\tau.$ Then,

$$R(X, Y, \tau) \supset S(k_{x}, k_{y}, f), \qquad (A-10)$$

where $S(k_x, k_y, f)$ is the true spectrum.

The results of finite sampling can be seen in the following way: Let $\hat{R}(X,Y,\tau)$ be a finite sampled version of $R(X,Y,\tau)$; in other words $\hat{R}(X,Y,\tau)$ is the function that we would actually measure:

$$R(X, Y, \tau) = R(X, Y, \tau) \cdot g(X, Y, \tau)$$
 (A-11)

where $g(X, Y, \tau)$ is a set of unit delta functions which weights the known values of the lag correlogram. That is $g(X, Y, \tau)$ is 0 except for values of X and Y that correspond to separation of sensors. At these space intervals $g(X, Y, \tau)$ is equal to 1 (Parber, 1963). The spectrum that we calculate, $\hat{S}(k_x, k_y, f)$, is then the transform of $\hat{R}(k_x, k_y, f)$.

In the analysis of the frequency-directional spectra it will be assumed that the time domain is sufficiently well known so that the sampling problems in the space domain can be treated separately. In this case $g(X,Y,\tau)$ is not a function of τ and the spectrum becomes:

$$\hat{S}(k_{x},k_{y},f) \supset \left(\hat{R}(X,Y,\tau) = R(X,Y,\tau) \cdot g(X,Y)\right). \quad (A-12)$$

From the convolution theorem:

$$\hat{S}(k_x, k_t, f) = S(k_x, k_y, f) * G(k_x, k_y)$$
 (A-13)

$$\hat{S}(k_{x},k_{y},f) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} S(k_{x0},k_{y0},f) G(k_{x0}-k_{x},k_{y0}-k_{y}) dk_{x0} dk_{y0},$$

where k_{xo}, k_{yo} are dummy variables and

$$g(X,Y) \supset G(k_x,k_y).$$
 (A-14)

 $G(k_x,k_y)$ is called the spectral window. For the linear array with four sensors, g(X,Y) is a set of 13 delta functions: one at X=0, Y=0, and the others at the ±6 lags available in the array. Each delta function in theory has an arbitrary integrated value; i.e., the known values of the lag correlogram may be weighted to optimize our estimate of the spectrum. The 1-2-1 configuration reduces the set of lags to 9 as the 1 and 3 lags are redundant.

A window suggested by Barber (1963) for its narrow central peak has equal integral values of all the delta functions, that is all equal to unity. This rectangular lag window introduced by Barber has the form:

$$G(k_x, k_y, f) = 1 + 2$$

$$\sum_{n = 1}^{4} \cos 2(k_x x_n + k_y y_n).$$
(A-15)

It should be noted that if $G(k_x, k_y, f)$ were a delta function, the calculated spectrum would equal the true spectrum (neglecting noise). Therefore, one attempts to construct a window which is close in shape to a delta function. The finite width of the central peak of this function introduces smearing of the spectral estimates and thus introduces a reduction in resolution. The major lobes of the function cause an ambiguity in direction or aliasing. A sample of a Barber window is plotted in Figure A-1.

The first step toward obtaining the frequency-directional spectrum is to transform the lag correlogram in time:

$$\begin{cases} \infty \\ R(X,Y,\tau) e^{-2\pi i f \tau} d\tau = C(X,Y,f) - iQ(X,Y,f). \end{cases}$$
 (A-16)

The functions C(X,Y,f) and Q(X,Y,f) are obtained from the band averaged Fourier coefficients from the FFT results. This, of course, only approximates the infinite integral of equation (A-16). The problems

Figure A-1. A plot of the Barber Window for waves of period 14 and 4 seconds. The Window gives the response of the array to waves of a single direction propagating at an angle of 45° north relative to the normal to the array. The energy density values are in relative units.

resulting from this approximation are analogous to those of the approximation of the space transformation, but are much less severe due to the large amount of time lags. The sampling rate of four samples per second is high enough to avoid aliasing problems in the frequency spectrum.

The analysis is now carried out at a frequency, f_0 . The frequency-directional spectrum is obtained from the transformation:

$$S(k_{x},k_{y},f_{o}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[C(X,Y,f_{o}) - iQ(X,Y,f_{o}) \right] e^{-2\pi i \left(k_{x}X+k_{y}Y\right)} e^{-2\pi i \left(k_{x}X+k_{y}Y\right)}$$
(A-17)

If it is assumed that C and Q are zero except at the spacial lags given by the array, the above integral becomes the summation:

$$S(k_{x},k_{y},f_{o}) = \sum_{n = -N}^{N} \left(C(X_{n},Y_{n},f_{o}) - iQ(X_{n},Y_{n},f_{o}) \right) e^{-2\pi i (k_{x}X_{n} + k_{y}Y_{n})}$$
(A-18)

for the 1-2-1 array where N = 4.

Let α be an angle measured from the normal to the array. Then $k_x = k \cos \alpha$ and $k_y = k \sin \alpha$ where k is the magnitude of the wave number. The only spatial lags are in the y-direction. Since

$$P(X_n, Y_n, f_o) = P(-X_n, -Y_n, f_o)$$
 and $Q(X_n, Y_n, f_o) = -Q(-X_n, -Y_n, f_o)$,

equation (A-18) becomes:

$$S(f_{o}, \alpha) = C(0, f_{o}) + 2 \sum_{n = 1}^{4} \left[C(Y_{n}, f_{o}) \cos(2\pi k Y_{sin\alpha}) + Q(Y_{n}, f_{o}) \sin(2\pi k Y_{sin\alpha}) \right],$$
(A-19)

where k is fixed by f_0 , and the depth by the linear wave theory dispersion relation (note that k was defined as 1/L instead of the usual $2\pi/L$):

$$2\pi f_0^2 = g k \tanh(2\pi kh). \qquad (A-20)$$

Equation (A-19) is used for the practical calculation of the directional spectrum, i.e., the energy density as a function of the directions of propagation of waves of frequency f_0 .

The limited number of sensors and the finite length of the array produce a window, $G(k_{x}, k_{y}, f_{0})$ which smears sharp spectral peaks into broader ones. In an attempt to better resolve the directional structure of the incoming waves, a fitting technique was implemented. It is assumed in this procedure that the wave trains present are well directed and few in number. The procedure begins with a fit of the measured spectra with a hypothesized result due to a wave train of single frequency f_{0} coming from a single direction. This procedure will be referred to as a fit to a single wave train. A model spectrum is generated by convolution of an ideal single wave train spectra with the spectral window. The model directional spectrum is least-squared fit to the measured space spectrum, the variables being the direction of propagation and energy of the hypothesized incoming waves. If $S(f_{0}, \alpha) =$ measured spectrum value, \hat{S}_{α} (f_{0}, α) = computed value of the model spectrum as a function of the hypothesized direction of propagation, α_{0} , then the relation,

$$P(\alpha_{0}) = \frac{\sum_{\alpha = -90}^{90} \left[S(f_{0}, \alpha) - \hat{S}_{\alpha_{0}}(f_{0}, \alpha) \right]^{2}}{\sum_{\alpha = -90}^{90} \left[S(f_{0}, \alpha) \right]^{2}} .$$
(A-21)

becomes a measure of best fit.

The function is given in percent and it is a measure of effectiveness of the fit as it is the ratio of the sum of squared residuals to the sum of data values squared. A plot of $P(\alpha_0)$ versus α_0 reveals a minimum and it is the α_0 which produces the minimum $P(\alpha_0)$ that is assumed to be the best direction of fit to a single wave train. The broadness of the minimum region suggests an uncertainty to the direction obtained. The spread in values of α_0 for which $P(\alpha_0)$ is approximately the same, within roughly 10 percent of the lowest value, is termed the uncertainty, $\Delta \alpha_0$. The size of $P(\alpha_0)$ suggests the effectiveness of the one wave fit. The summation (A-21) was routinely evaluated for steps in α of 5°. Values of $P(\alpha_0)$ (in percent) below 10.0 were considered indications of a good fit. This implies the true directional spectrum is unimodal and narrow. Values of $P(\alpha_0)$ between 10.0 and roughly 50.0 indicate some departure from the single direction model but α_0 should be the dominant direction of energy propagation. If $P(\alpha_0)$ is above 50.0, the fit is considered to be poor.

CHARACTERIZATION OF SPECTRAL PEAKS

The characterization of the frequency spectrum attempts to describe the total spectrum as a finite sum of significant peaks.

Energy peaks are selected for each channel of a run by a computer program which seeks the maximum energy value of the spectrum and then proceeds on a change of slope technique to choose the right and left limits defining the bandwidth of the peak. The values in the peak are then set equal to zero and the process continues for a maximum of four peaks. In order to avoid calling a single jump a peak, a condition is imposed that the energy value in question should be either at least twice as high as the previous value or higher than two previous ones.

Using this method, it is possible to compare the spectra obtained from the time series record of each of the four pressure sensors for any run. It is seen that the bandwidth of a given peak agrees among these four spectra to within $2\Delta f$ (where $\Delta f = 0.0107$). There were some instances where the bandwidths were more than $2\Delta f$ apart, but in these cases channels 1 and 2 agreed to within $2\Delta f$, while channels 3 and 4 agreed. This pairing of channels (1 with 2 and 3 with 4) is also evident in both the total energy of the spectrum and the energies of the individual peaks. Whether this is due to instrumentation, wave direction, or some other factor is not yet known.

The peak energy, peak period, and bandwidth of each spectral peak for the spectra of all four sensors were evaluated. The peak energy and bandwidth listed for each spectral peak in the tables of Appendix D are mean values of the results for the four sensors. The peak period given is the mode period of the results of the various sensors.

Figure A-2 displays a sample spectra which is used in the following example of how the peak investigation is carried out.

Single jumps, as at A_3 and A_6 are counted as separate peaks if their value is either: 1) higher than twice the previous one; or 2) higher than two previous values. For instance, A_3 is not counted as a peak since neither condition holds $(A_3=24<2A_2=32; A_3=24<A_1=56)$. On the other hand, A_6 is counted as a peak since condition 2) holds $(A_6=8>A_4=6)$ even though condition 1) does not hold $(A_6=8<2A_5=10)$. In this case three peaks would be chosen. Each peak is given the period of its highest energy value. Peak 3 is assigned the period of the point A_6 .

Figure A-2. Sample spectra illustrating the results of the peak selection procedure. The method employed has defined three peaks.

APPENDIX B

DYNAMICS AND EXPECTED PERFORMANCE OF THE TILTING SPAR

The dynamic response of the spar to oscillatory flow has been examined by laboratory modeling as well as by computer analysis of the nonlinear differential equations. The method of measuring the tilt angle using orthogonally mounted accelerometers is presented.

LABORATORY STUDY

The shelf station is a forced, damped oscillator and as such will have a resonant frequency. A model study was conducted to determine if this resonant frequency could be observed.

A one-seventh scale model of the station was constructed and tested in the wind-wave channel at Scripps Institution of Oceanography. Displacements of the station were measured photographically and wave height and period were measured using digital wave staff. The model was driven by waves of periods from 2.0 to 9.0 seconds.

Obtaining a meaningful resonance curve as a function of variable wave frequency requires that the maximum forcing torque, the restoring moment, the drag coefficient, and the coefficient of inertia remain the same for each driving frequency. This is accomplished by adjusting wave height with frequency to maintain a constant Strouhal number (the Strouhal number is defined as $u_m T/D$ where u_m is the maximum orbital velocity, T is the wave period, and D is the spar diameter), and by normalizing the displacements to equivalent maximum acceleration and displaced volume.

Figure B-1 gives the resonance curve for angular displacement normalized to the resonant frequency $(f_1 = 0.16 \text{ Hz})$ for equivalent maximum acceleration and displaced volume. The curve is of the proper shape and should reflect with some accuracy the resonant frequency of the fullsize spar. However, the model does not accurately reflect the magnitude of the resonance. While constant Strouhal conditions preserve the drag coefficient, the smaller orbital velocities under scaled conditions generate drag torques that are only 2 percent of what is necessary to compare in scale to those of the full scale spar.

ANALYSIS OF EQUATION OF MOTION

The tilting spar's motion can be described by considering the various forces acting on it. Because the spar is firmly anchored, only forces that produce torques about the universal joints are considered. Four moment-producing forces act on the spar. A buoyant force acts with a moment arm equal to the distance from the U-joint to the center of buoyancy times the sine of the tilt angle (θ). This moment is represented by the first term on the left-hand side of equation (B-1).

Figure B-1. Response curve obtained from 1/7th scale model of spar. Resonance is observed at 0.16 Hz. The magnitude of the resonant peak does not reflect the full-scale spar.

Two forces caused by the waves are represented by the second and third terms of equation (B-1). The first of these forces is the force that would exist on the water particles within the enclosed volume of the submerged spar in the absence of the spar. This force is distributed along the vertical axis of the spar. The second of the wave-generated forces is the virtual mass force, caused by a moving body in an accelerating fluid.

A drag force must also be included which is chosen to be proportional to the square of the relative velocity of the water and the spar. This force is also distributed along the vertical axis of the spar and is represented by the fourth term on the left of equation (B-1).

These moment-producing forces must be balanced by inertial forces which accelerate the spar. The term of the right-hand side of equation (B-1) is the moment of the spar itself:

$$\sin(\theta)g Z_{B}M_{B} - \rho a \int_{-h}^{0} \pi r^{2} z dz - \rho c_{a} \int_{-h}^{0} (a - \ddot{\theta} z) \pi r^{2} z dz$$

$$(B-1)$$

$$- \frac{1}{2} c_{f}\rho \int_{-h}^{0} |u - \dot{\theta} z| (u - \dot{\theta} z) 2rz dz = \ddot{\theta} I_{s},$$

where θ is the angle of tilt of the spar measured from the vertical, $\dot{\theta}$ is the angular velocity of the spar, g is the acceleration of gravity, Z_B is the distance from the U-joint to the center of buoyancy, M_B is the net buoyancy, ρ is the density of seawater, u is the horizontal water particle velocity, a is the horizontal water particle acceleration, r is the radius of the spar, z is the water depth, c_f is the drag coefficient and for a cylinder is approximately equal to 1.0, $\ddot{\theta}$ is the angular acceleration of the spar, I_S is the moment of inertia of the spar, and, $c_a = c_m - 1$ where c_m is the virtual mass coefficient and is approximately 2.0 for a cylinder.

The equation of motion (B-1) is a nonlinear ordinary differential equation which has been numerically integrated. It was assumed that the spar did not flex and that the velocity profile under the wave was independent of depth (i.e., shallow water wave theory applies). These assumptions were necessary in order to simplify the analysis. θ was small such that $\sin\theta \gtrsim \theta$ for all cases anlayzed. Response of tilt angle versus wave frequency for various maximum orbital velocities were computed. Figure B-2 is a plot of these response curves. It is clear from these curves that at high velocities (large waves) resonance is not apparent. At low orbital velocities, however, there is a marked resonance occurring at about 0.1 Hz.

Figure B-2. Computed response of the spar for various maximum orbital velocities (u_m). These curves were obtained by integrating equation B-1.

MEASUREMENT OF TILT ANGLE

Two accelerometers orthogonally mounted in the top of the spar detect the motion caused by the water movement. These accelerometers sense acceleration normal to the major axis of the spar. For waves with periods ranging from 5 sec to 16 sec, both the acceleration due to gravity and the motion must be taken into account. Equation (B-2) describes the acceleration sensed by one of the accelerometers:

$$a'(t) = -g \sin\theta (t) + L \frac{d^2\theta(t)}{dt^2}$$
, (B-2)

where a is the measured acceleration, g is the acceleration of gravity, L is the length of the spar, θ is the angle of tilt from the vertical in the x,z plane or the y,z plane. a(t) can be expressed in terms of its Fourier components:

$$\tilde{a}(t) = \sum_{n=0}^{k} A_{n} e^{in\Delta\sigma t}$$
, (B-3)

where the A_n are Fourier components, i is $\sqrt{-1}$, k is the number of incremental frequencies, $\Delta \sigma$ is the angular frequency resolution.

Solving equation (B-2) for each of the coefficients defined in equation (B-3) gives:

$$A_{n}e^{in\Delta\sigma t} = -g \sin_{\theta_{n}}(t) + L \frac{d^{2}\theta_{n}(t)}{dt^{2}}.$$
 (B-4)

Let $X_n = \theta_n(t)$, $\sin \theta_n(t) \sim \theta_n(t)$ for small angles,

$$\frac{d^2 X_n}{dt^2} - \frac{g}{L} X_n = \frac{A_n}{L} \frac{in\Delta\sigma t}{e}$$
(B-5)

The general solution of this differential equation is:

$$X_{n} = B_{n} e^{i(n\Delta\sigma t + \phi)}, \qquad (B-6)$$

where ϕ is an arbitrary phase angle, thus,

$$\frac{d^2 X_n}{dt^2} = -B_n (n\Delta\sigma)^2 e^{i(n\Delta\sigma t + \phi)}.$$
 (B-7)

Substituting for X_n and $\frac{d^2 X_n}{dt^2}$ in equation (B-5) gives:

$$-B_{n}(n\Delta\sigma)^{2}e^{i(n\Delta\sigma t + \phi)} - \frac{g}{L}B_{n}e^{i(n\Delta\sigma t + \phi)} = \frac{A_{n}}{L}e^{in\Delta\sigma t}$$
(B-8)

Dividing them by $e^{in\Delta\sigma t}$ and replacing $e^{-i\phi}$ with $(\cos\phi - i \sin\phi)$ gives:

$$-B_{n}(n\Delta\sigma)^{2} - \frac{g}{L}B_{n} = \frac{A_{n}}{L}\left(\cos\phi - i\sin\phi\right). \tag{B-9}$$

 ϕ can be eliminated by noting i sin_{φ} = 0; therefore ϕ = 0. Solving for B gives:

$$B_n = -\frac{A_n}{g + L(n\Delta\sigma)^2}.$$
 (B-10)

We can now write $\sin\theta_n(t)$ in terms of the Fourier coefficient of a(t):

$$\theta$$
 (t) = $\sum_{n=0}^{K} - \frac{A_n}{g + L(n\Delta\sigma)2} e^{in\Delta\sigma t}$ (B-11)

With the above procedure the spectrum and the time series of the angle of tilt can be obtained from the accelerometer data.

Figure B-3 is a plot of the position (in the x-y plane) of the shelf station as a function of time. The predominant motion is onoffshore which is caused by the swell and wind-driven wave. However, a longshore motion is also present and has a period on the order of 60 seconds as illustrated in Figure B-4.

Figure B-3. Angle of tilt of the shelf station as derived from the accelerometer data. The predominant onshore-offshore motion is caused by wind waves and swell. The 5° tilt grid represents a displacement of 0.9 meter from the vertical. Unfiltered loci of motion for 256 seconds of data is represented in this plot. Shelf station was in 10 meters of water on B Range of SIO.

Figure B-4. Angle of tilt of the shelf station with the wind waves and swell removed using inverse FFT filter. Only oscillations with periods greater than 40 seconds are shown. This motion is in general agreement with edge wave theory.

APPENDIX C

DESIGN AND OPERATION OF SURFACE-PIERCING WAVE STAFFS

It was our intention to use a digital wave staffon the shelf station installed off Torrey Pines Beach. However, these plans proved to be impractical to implement on a shelf station placed in 10 meters of water with a 2-meter tidal range because of undesirable drag and buoyancy characteristics induced by the wave staff. A new surface-piercing wave staff (resistive wire gage) was developed with characteristics more compatible with the shallow water installation. Digital wave staffs appear to be promising for rigid mountings and for shelf stations in water 20 meters and deeper.

DIGITAL WAVE STAFF

Under the sponsorship of Sea Grant, a 1000 contact, surface-piercing wave staff was designed to be used with the shelf station. The design approach was to construct the wave staff on printed circuit (PC) glass epoxy boards. The 1000 contact staff is constructed from 10 duplicate PC boards, each having 100 contacts spaced one-half cm apart (Figure C-1). The individual PC boards bolt together with no overlap of the contacts.

The wide copper conductor at one edge of the board provides +5 volts through the seawater for the contacts on the opposite edge. The wave staff electronic system operates on +5 volts current. Each contact is held to system ground by a 1 megohm resistor when not exposed to seawater. When a contact is shorted by seawater, the voltage is pulled to +5 volts, thus providing a logic level change to the electronic circuit.

A block diagram of the wave staff electronic system is shown in Figure C-2. The basic sensing portion consists of a L024 bit shift register. This register is parallel loaded with the information generated by the contacts. If the contact is out of the water, a binary "0" is loaded, but if the contact is underwater a binary "1" is loaded into the register. Once the contact information is loaded, the bit information in the register is shifted out serially as data. The data signal is used to control a 10-bit binary counter which is reset to an all zero state with the parallel load command. The binary counter is only advanced if the data line is a "1". Therefore, only contacts that are underwater are counted. After 1024 clock cycles the binary counter contains, in binary format, the number of contacts underwater. The content of the binary counter is transferred to a holding register when the next load command is received. The holding register drives a digital to analog converter whose output is a voltage proportional to the number of contacts underwater. With a clock rate of 50,000 Hz the contacts of the staff are examined approximately 500 times per second.

The electronics necessary to form the shift register are located on the PC board. These electronic components are protected from seawater by a heavy coat of polyurethane. Interconnection between boards

.

Figure C-1. Detail of 100 contact printed circuit board. Ten PC boards are used for the digital wave staff.

Figure C-2. Block diagram of the electronics for the digital wave staff.

ΞO

is made with jumper wires (only five are needed). The wave staff is attached to the shelf station spar by aluminum brackets.

The wave staff was tested off Scripps Pier in 10 meters of water with unsatisfactory results. It was found that the buoyancy characteristics of the shelf station were greatly altered by the wave staff. At low tide the station listed almost 30°, which is more than twice the tilt experience without the wave staff. This large tilt angle is experienced because shallow depth results in a small buoyancy of the spar which cannot support the additional weight of the wave staff. This unwanted characteristic of the digital wave staff made it incompatible with the shelf station when placed in shallow water. It would appear (although not proven by test) that the digital wave staff-shelf station combination would work successfully if placed in deeper water where the total buoyancy force is greater, or in a less dynamic environment such as tideless seas and large lakes.

RESISTIVE WIRE GAGE

Because of the unsatisfactory results experienced with the digital wavestaff when mounted on the station in shallow water, a second attempt was made to develop a surface-piercing staff that would function with the shelf station. A resistive wire gage was constructed. Two taut 30gage nichrome high-resistive wires were flush mounted in teflon onto the face of a 3.5-cm aluminum U-channel (Figure C-3). The wires form a resistance loop when shorted by the sea surface. The total resistance of the loop changes proportionally to the path length of the wires which depends on the relative water level along the major axis of the gage.

An AC bridge circuit is used to measure the change in resistance of the wire loop. The block diagram of this circuit is shown in Figure C-4. A 5-KHz oscillator with a 20-volt peak-to-peak output is used to excite the bridge. The voltage unbalance caused by the resistance change is transformer coupled to a high-gain amplifier. The resulting signal is detected by a synchronous demodulator whose output is a DC voltage proportional to the resistance in the wire loop. A calibration of the gage was performed. This test showed the linearity to be within ±1 percent of full scale and that the linear range was 4.5 meters.

The resistive wire gage was attached to the Torrey Pines Shelf Station and the station was held vertical by the tethering system shown in Figure C-5. Several data runs were made with the station tethered. Comparisons between the resistive wire gage and the pressure sensor were made for all these runs. A detailed discussion of this comparison is given in Section V-2; but in general, good agreement was found. Based on these comparisons, it is felt that under normal conditions the pressure sensors are adequate for general wave climate.

It should be noted that the shelf station is not designed to be tethered. A storm front moved through the area while the station was

Figure C-3. Detail of the mounting for the resistive wire gage.

tethered, causing the tethering system to be torn loose, and resulted in structural damage to the shelf station. For this reason more comparisons were not made.

Several data runs were made with the station untethered. It was found that the energy-density spectra for the resistive wire gage were too high. This overestimate of wave height is caused by the tilting of the station due to currents and waves. By using the data from the accelerometer, it is conceptually possible to correct the gage but there were not sufficient funds in the contract to accomplish this work.

Appendix D.	A tabular presentation of the parameters characterizing wave energy	and directional
	spectra for a four element line array in water 10 meters deep off To	orrey Pines Beach,
	California. The terms are defined at the end of the table and are of	lerived in Appendix A.

Run	Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	ao	P(α ₀)%	Δαο
SAS 1-6 Feb 73- <mark>0</mark> 1	1 2 3	14.2 8.1 6.9	.056 .065 .064	866	364 296 166	0° 1°S	11 45	±3° ±3°
SAS 1-12 Feb 73-01	1	14.2	.150	3840	3380	15°S	.80	±2°
SAS 1-12 Feb 73-04	1 2	12.3 7.4	.078	1490	1100 334	17°S 29°S	1.2 56	±2°
SAS 1-13 Feb 73-01	1 2	12.3 5.0	.104	1650	1200 395	15°S 39°S	8.2 51	±3° ±5°
SAS 1-13 Feb 73-02	1 2	12.3	.107	1720	1220 452	12°S	10	±3°
SAS 1-13 Feb 73-04	1	9.8	.165	1060	965	20°S	33	±5°
SAS 1-14 Feb 73-01	1	14.2	.193	2050	2000	11°S	.44	±1°
SAS 1-14 Feb 73-02	1 2	14.2	.143	1860	1640 103	9°S 10°S	8.5 50	±2° ±2°
SAS 1-14 Feb 73-03	1 2 3	14.2 6.9 5.6	.080 .027 .085	1400	1060 130 148	9°S 7°S	.80 51	±2° ±3°
SAS 1-14 Feb 73-04	2 1	60.2 14.2	.043	789	11.5 770	12°S	.72	±2°
SAS 1-15 Feb 73-03	2 1	10.9	.064	1120	374 670	13°S 1°S	2.3 18	±2° ±2°
SAS 1-16 Feb 73-02	2 1	60.2 14.2	.064 .133	1110	50 986	7°S 14°S	.01	±1°

Run	Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_{p}(cm^{2})$	α ₀ .	$P(\alpha_0)$ %	Δαο
SAS 1-17 Feb 73-01	2 1	20.4 12.3	.027	746	4.2 623	12°S	4.2	± 3°
SAS 1-17 Feb 73-04	1 2 3	12.3 6.9 5.9	.094 .059 .048	849	631 142 97	12°S 4°S	1.0 44	± 2° ± 3°
SAS 1-18 Feb 73-01	1 2 3	14.2 8.1 5.3	.061 .082 .068	1420	1080 268 52	8°S 5°S	.40 24	± 2° ± 2°
SAS 1-18 Feb 73-02	1 2	14.2 7.4	.075 .054	1690	1420 118	10°S 9°S	.60 50	± 1° ± 4°
SAS 1-18 Feb 73-03	1 2 3	14.2 7.4 5.0	.079 .075 .054	1580	1250 240 51.2	10°S 8°S	.51	± 1° ± 2°
SAS 1-18 Feb 73-04	1 2 3	14.2 6.9 4.8	.107 .059 .059	1590	1420 109 27	4°S 10°S	.43	± 1° ± 2°
SAS 1-19 Feb 73-02	3 1 2 4	60.2 14.2 8.1 4.3	.043 .075 .095 .054	1090	58 876 120 4.2	15°S 6°S	2.4 28	± 2° ± 3°
SAS 1-20 Feb 73-01	3 1 2 4	60.2 20.5 12.3 6.4	.032 .043 .064 .093	837	34 473 283 33	14°S 12°S	.19 12	± 2° ± 3°
SAS 1-20 Feb 73-03	1 2 3 4	16.8 8.8 5.9 5.0	.089 .043 .043 .021	1330	1130 135 38 9.3	13°S 14°S	.26 2.5	± 1° ± 2°

Run	Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	αo	P(a ₀)%	Δαο
SAS 1-21 Feb 73-02	1 3 2	16.8 6.9 5.6	.111 .021 .038	790	722 12 15	13°S 10°S	.65 56	±1° ±3°
SAS 1-21 Feb 73-05	1 2	14.2 6.4	. <mark>1</mark> 25 .091	670	627 20	11°S 2°S	1.1 52	± 2° ± 4°
SAS 1-22 Feb 73-01	1 2 3 4	14.2 10.9 5.3 4.1	.032 .097 .029 .047	687	430 226 4.4 4.2	15°S 13°S	5.0 32	± 2° ± 5°
SAS 1-22 Feb 73-02	1 2	14.2 5.0	.136	584	523 7.5	17°S 6°S	1.7 110	± 2°
SAS 1-23 Feb 73-01	1 2	14.2 5.3	.091 . <mark>0</mark> 70	217	182 15.2	7°S 33°S	2.0 44	± 2° ± 2°
SAS 1-23 Feb 73-02	1 2 3	12.3 6.9 4.5	. 097 . 043 . 048	163	134 6.8 4.7	3°S 33°S	6.9 48	± 2° ± 3°
SAS 1-24 Feb 73-01	1 2	12.3	.091 .054	147	129 6.9	3°S 38°S	4.8 44	± 2° ± 3°
SAS 1-24 Feb 73-02	1 2	12.3 7.4	. 095 . <mark>0</mark> 64	150	127 7.6	4°S 22°S	10 11	± 3° ± 3°
SAS 1-24 Feb 73-03	1 2	9.8 4.5	.129 .054	745	692 37	3°S 37°S	21 70	± 2°
SAS 1-24 Feb 73-04	1 2	9.8 5.3	.142	1390	1250 76	10°S 33°S	41 37	± 3° ± 2°
SAS 1-25 Feb 73-01	1	12.3	.148	2200	1870 126	2°S	.40	±1°

Run	Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	ao	P(α ₀)%	Δαο
SAS 1-25 Feb 73-02	1 2 3	10.9 7.4 6.4	.086 .021 .021	3060	2420 154 119			
SAS 1-25 Feb 73-03	1 2	14.2	.091 .027	2710	2320 153			
SAS 1-25 Feb 73-04	3 2 1	36.6 14.2 10.9	.043 .032 .097	2340	33 925 1000			
SAS 1-26 Feb 73-01	1	12.3	.145	1660	1580			
SAS 1-27 Feb 73-01	1 2	14.2 8.1	.091 .086	1720	1490			
SAS 1-22 Mar 73-01	3 2 1	60.2 14.2 6.9	.043 .043 .107	1230	13.3 156 834	6°S 2°S	1.5 49	±3° ±5°
SAS 1-06 Apr 73-01	1 2	5.0 14.2	.093 .040	207	93.0 34.9	7°N	92	±3°
SAS 1-07 Apr 73-03	1 2	6.9 10.9	.075	451	186 40.3	87°N	60	
SAS 1-10 Apr 73-02	1 2 3	14.2 9.8 4.1	.102 .054 .048	149	10 ⁸ 25 7			
SAS 1-10 Apr 73-03	1 2 3 4	12.3 9.8 6.4 4.3	.062 .056 .048 .035	160	107 35 5 3			
SAS 1-11 Apr 73-01	1 2 3	12.3 9.8 4.1	.078 .097 .049	147	90 40 14			

Run	Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	ao	P(α ₀)%	Δαο
SAS 1-11 Apr 73-03	3 1 2	16.8 12.3 4.5.	.032 .110 .333	172	11 88 45			
SAS 1-12 Apr 73-01	1 3 2	10.9 8.1 4.8	.078 .050 .064	198	117 25 28			
SAS 1-12 Apr 73-03	1 2	14.2	.064	740	302 194			
SAS 1-13 Apr 73-03	2 1 3	14.2 5.9 4.1	.067 .075 .030	1081	283 368 135			
SAS 1-14 Apr 73-01	2 1 3	12.3 6.4 4.1	.056 .070 .027	760	135 284 63			
SAS 1-14 Apr 73-03	3 1 2	12.3 6.4 4.5	.050 .091 .040	1072	106 659 140			
SAS 1-15 Apr 73-02	2 1	12.3 6.9	.046 .099	719	86 431			
SAS 1-16 Apr 73-03	2 1	16.8 6.9	.048 .086	564	101 293			
SAS 1-17 Apr 73-01	1 2 3	14.2 5.6 4.1	.086 .069 .046	463	145 117 92			
SAS 1-17 Apr 73-03	1 4 2 3	12.3 9.8 6.4 5.3	.056 .026 .047 .054	679	208 69 154 133			

1.71

120

1.00

Appendix D.	(Cont'd	1)							
Run		Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	ao	P(α ₀)%	Δαο
SAS 1-18 Apr	73-01	1	8.1	.134	2250	1630			
SAS 1-16 May	73-02	2 1 3	14.2 9.8 4.3	.029 .110 .059	172	19 131 15	22°S 0° 28°S	4.8 4.4 76	±3° ±2° ±5°
SAS 1-17 May	73-01	1 2	10.9 4.3	.121	241	187 37	6°S 30°N	11.5 66.4	± 2° ± 5°
SAS 1-17 May	73-02	1 2	10.9 4.5	.140	301	270 21	2°S 8°N	2.0 25.4	± 2° ± 3°
SAS 1-18 May	73-01	1 2 3	14.2 9.8 4.5	.048 .054 .067	220	78 57 50	25°S 2°S 22°S	0.1 17.4 74.1	±1° ±3° ±3°
SAS 1-18 May	73-03	1 2	12.3	.089	292	186 60	10°S 2°S	5.2 54.2	± 2° ± 5°
SAS 1-18 May	73-04	1 2	12.3	.110	218	158 22	13°S 43°S	4.6	± 2° ± 4°
SAS 1-19 May	73-01	1 2	12.3	.118	270	230 21	11°S 40°S	5.7 70.3	± 2° ± 3°
SAS 1-19 May	73-02	2 1 3	14.2 10.9 4.8	.040 .083 .083	261	46 117 42	28°S 4°S 28°S	0.6 3.7 73.3	± 1° ± 2° ± 4°
SAS 1-19 May	74-04	1	16.8 5.0	.137	204	154 32	21°S 40°N	1.8	± 2° ± 5°
SAS 1-20 May	73-01	1 2	16.8	.088	234	143 54.3	26°S 48°S	.4 87.2	± 1° ± 4°
SAS 1-20 May	73-02	1 2 3	16.8 10.9 4.5	.043 .080 .032	241	115 69.7 10.2	24°S 5°S	.5	± 1° ± 2°

Run	Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	ao	P(α ₀)%	Δαο
SAS 1-20 May 73-03	2 1 3	16.8 10.9 5.9	.038 .083 .035	244	86.7 111 14.8	25°S 2°S	1.5 10.1	±1° ±2°
SAS 1-20 May 73-04	2 1 3	14.2 10.9 6.4	.048 .069 .046	162	43.3 51.5 22.6	21°S 2°S	10.8 28.2	± 2° ± 2°
SAS 1-21 May 73-01	2 1 3	14.2 9.8 4.8	.038 .064 .051	232	70.5 78.5 35.2	28°S 1°N	24.9 11.8	± 3° ± 2°
SAS 1-21 May 73-03	2 1	14.2 5.6	.064 .078	314	89.3 120	20°S	50.0	± 5°
SAS 1-21 May 73-04	1 2	14.2	.056 .043	267	88.7 69.3	20°S	27.4	± 5°
SAS 1-22 May 73-03	1 2	10.9 6.0	.093 .061	262	175 62.7	0°	7.9	± 2°
SAS 1-23 May 73-02	2 1	12.3 9.8	.054 .064	195	42.9	18°S 3°S	12.6	± 3° ± 3°
SAS 1-23 May 73-03	1 2	10.9 6.0	.125	175	101 50.6	4°S 30°N	19.8 85	± 3° ± 5°
SAS 1-24 May 73-01	2 1	9.8 6.9	.059	271	36.8 110	6°S 3°S	6.2 9.6	± 2° ± 2°
SAS 1-24 May 73-02	2 1	12.3	.054	284	23.3 229	8°S 4°N	43.0 47.8	± 5° ± 3°
SAS 1-24 May 73-03	2 1	14.2	.054	159	25.0 107	36°S 4°N	56.2 33.7	± 5° ± 3°
SAS 1-24 May 73-04	2 1	14.2	.100	212	85.8 93.8	21°S	4.7	<u>+</u> 2°

122

P.

App	end	ix	D	. (((Co	n	t 1	d	Ì

Run	Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	ao	P(α ₀)%	Δαο
SAS 1-25 May 73-01	3 1	12.3 6.9	.082	853	151 323	2°S	5.5	± 2°
	2	4.1	.050		240	17°N	92.2	± 4°
SAS 1-25 May 73-03	1 2	12.3	.082	373	168 79	5°S 6°S	4.5 82.2	± 2° ± 5°
SAS 1-25 May 73-04	2 1	12.3	.081 .064	358	112 113	7°S 25°S	85.3	± 3° ± 4°
SAS 1-26 May 73-01	1 2	12.3 6.4	.105	600	248 207	5°S 2°N	1.1 42.1	± 2° ± 2°
SAS 1-26 May 73-02	2 1	12.3 7.4	.051	733	131 502	8°S 0°	4.7 30.6	± 2° ± 3°
SAS 1-26 May 73-03	2 1	10.9 7.4	.067 .081	548	197 270	3°S 1°S	2.8 31.3	± 2° ± 3°
SAS 1-26 May 73-04	2 1	10.9	.075	670	185 328	4°S 1°N	2.7	± 2° ± 4°
SAS 1-27 May 73-01	2 1	14.2 8.1	.032	656	39.0 516	27°S 2°N	1.4	± 3° ± 3°
SAS 1-27 May 73-02	2 1	14.2 8.1	.032	610	34 373	31°S 2°N	4.1 22.1	± 2° ± 2°
SAS 1-27 May 73-03	3 1 2	14.2 8.1 6.9	.032 .193 .036	431	24.1 223 97.3	29°S 1°S	.3 53.2	±1° ±5°
SAS 1-27 May 73-04	2 1	14.2	.043	244	25.2 121	30°S 2°N	1.2 26.1	± 1° ± 2°
SAS 1-28 May 73-01	3 1 2	12.3 8.8 6.0	.048 .054 .043	176	26 56.3 41.2	30°S 3°N	3.6 20.0	± 2° ± 2°

Run	Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	E _p (cm ²)	α _o	P(α ₀)%	Δαο
SAS 1-28 May 73-02	2 1	12.3	.048	235	24.2 145	32°S 0°	3.6 38.2	± 2° ± 2°
SAS 1-28 May 73-04	3 1 2	12.3 8.8 6.4	.054 .072 .035	124	18.4 44.1 23.2	30°S 3°S	7.1 10.1	± 2° ± 2°
SAS 1-29 May 73-02	2 1	14.2 8.8	.048	176	34.2 99.0	23°S 1°N	2.0 13.1	± 2° ± 2°
SAS 1-29 May 73-03	1 2	14.2	.059	106	33.1 32.3	23°S 0°	.5 49.6	±1° ±3°
SAS 1-30 May 73-01	1 2 3	16.8 8.1 5.3	.057 .059 .046	176	51.2 45.1 23.0	20°S 1°S	.8 39.1	±1° ±3°
SAS 1-29 May 73-04	2 1	14.2 8.8	.043	121	28.1 46.2	26°S 4°S	1.0 39.3	± 2° ± 3°
SAS 1-30 May 73-02	1 2	14.2 8.1	.060	133	38.3 32.1	23°S 3°N	.7 50.8	±1° ±3°
SAS 1-30 May 73-03	2 1	14.2 7.4	.075	106	38.4 46.0	21°S	8.8	±2°
SAS 1-30 May 73-04	1 2	14.2 8.1	.064	142	35.0 23.2	22°S 0°	2.0 53.3	±1° ±2°
SAS 1-31 May 73-01	4 3 2 1	14.2 8.1 5.6 4.1	.038 .035 .054 .056	1080	60.1 73.2 167 525	22°S 1°S	21.8 77.8	±4° ±3°
SAS 1-31 May 73-02	2 1 3	14.2 10.9 6.4	.046 .051 .051	209	60.1 88.5 22.6	23°S 1°N	1.0 8.6	±1° ±2°

Appendix D. (Cont'd)

Appendix D. (Cont'd	d)							
Run	Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	ao	P(α ₀)%	Δαο
SAS 1-31 May 73-03	1 2 3	16.8 10.9 7.4	.040 .043 .051	254	116 58.5 38.3	24°S 2.S	.3 6.7	± 1° ± 2°
SAS 1-31 May 73-04	2 3 1	14.2 10.9 4.3	.054 .035 .080	333	74.2 51.6 135	22°S 2°S	2.0 9.1	± 2° ± 2°
SAS 1-01 Jun 73-02	1 2 3	16.8 12.3 6.4	.036 .056 .083	243	96.2 90.3 25.3	23°S 1°S	.1 7.3	± 1° ± 2°
SAS 1-01 Jun 73-04	1 2	14.2 6.4	.113	260	205 37	25°S 4°N	2.8 76.8	± 2° ± 4°
SAS 1-02 Jun 73-03	1 3 2	10.9 7.4 4.3	.091 .064 .064	446	266 75.6 83.7	0° 2°N	.6 11.4	± 1° ± 2°
SAS 1-02 Jun 73-04	1 2 3	12.3 8.8 6.9	.056 .032 .046	462	256 110 42.1	12°S 4°N	18.4 16.2	± 3° ± 2°
SAS 1-03 Jun 73-01	2 1 3	14.2 10.9 6.4	.046 .062 .054	234	49.6 116 30.3	26°S 1°S	.4 8.1	±1° ±2°
SAS 1-03 Jun 73-02	1	10.9	.183	234	210	0°	17.1	±3°
SAS 1-03 Jun 73-03	1 2	12.3	.114 .047	198	157 16.4	12°S 10°N	41.9 80.9	± 4° ± 5°
SAS 1-03 Jun 73-04	2 1	14.2 8.8	.032	357	51.4 246	25°S 2°N	3.8	± 2° ± 2°
SAS 1-04 Jun 73-01	1 2	14.2	.094	274	115 86.9	25°S	2.9	±2°

Run	Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	ao	P(α ₀)%	Δα
SAS 1-04 Jun 73-02	1 2 3	14.2 8.8 4.3	.065 .079 .061	193	90.1 66.9 23.9	23°S 5°N	2.9 9.2	± 2° ± 2°
SAS 1-04 Jun 73-03	2 1 3	12.3 8.8 4.3	.027 .126 .043	182	130 32.8 11.9	15°S 5°N	15.3 7.2	± 3° ± 2°
SAS 1-04 Jun 73-04	1 2	12.3 4.5	.149 .046	170	139 15.7	15°S 52°S	48.4	± 5° ± 5°
SAS 1-04 Jun 73-05	1 2 3	12.3 9.8 6.9	.054 .039 .050	114	36.1 26.2 15.7	5°S 3°N	16.1 8.2	± 3° ± 1°
SAS 1-05 Jun 73-01	3 1 2	12.3 9.8 8.1	.038 .029 .065	194	39.8 52.3 48.4	10°S 8°N	23.8 16.3	± 4° ± 3°
SAS 1-05 Jun 73-02	3 2 1	16.8 12.3 8.8	.027 .035 .070	134	7.9 23.2 40.2	28°S 29°S	9.8 34.4	± 1° ± 3°
SAS 1-05 Jun 73-03	2	12.3 8.8	.051 .081	198	34.7 89.5	6°S 1°S	36.6	± 3° ± 2°
SAS 1-05 Jun 73-04	1 2	8.8	.107	498	126 41.5	0° 0°	2.4 63.8	± 2° ± 3°
SAS 1-06 Jun 73-01	2 1 3	14.2 4.5 6.9	.089 .107 .016	204	39.6 140 4.7	23°S 53°S	2.3 83.6	± 2° ± 4°
SAS 1-06 Jul 73-05	2 1 3	14.2 9.8 5.3	.040 .105 .054	625	60.9 488 47.5	30°S 0°	.5	±1° ±2°

Appendix D. (Cont'd)

- with monthly	D (Cont	121
ADDenary	V	CONC	u)

Run	Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	a o	P(a ₀)%	Δαο
SAS 1-06 Jul 73-06	1 2	9.8 5.0	.142	811	632 64.8	1°S 20°S	7.2 83.7	± 2° ± 5°
SAS 1-06 Jul 73-07	2 1	14.2 8.8	.029 .102	692	584 37.1	26°S 1°N	.8 14.6	±1° ±2°
SAS 1-07 Jul 73-01	3 1 2	12.3 9.8 6.4	.040 .070 .051	346	43.1 196 76.0	26°S 1°N	.8 10.8	±1° ±2°
SAS 1-07 Jul 73-02	1 2	8.8 6.0	.134	305	211 55.6	2°N 9°N	3.2 51.5	± 1° ± 3°
SAS 1-07 Jul 73-03	1 2	8.8	.096 .043	372	191 75.7	5°N 5°S	51.2 62.5	± 3° ± 4°
SAS 1-07 Jul 73-04	1 2	8.8 5.6	.121	351	256 81.0	4°S	4.3	± 2°
SAS 1-07 Jul 73-05	1 2	8.8 6.4	.102	366	254 108	1°N 12°N	10.9 58.6	± 2° ± 4°
SAS 1-07 Jul 73-07	2 1	10.9 7.4	.107	268	197 39.4	27°S 3°N	29.9 27.3	± 3° ± 3°
SAS 1-08 Jul 73-01	3 1 2	12.3 7.4 4.8	.051 .115 .038	136	14.8 88.0 24.1	30°S 2°S	7.4 28.5	± 2° ± 2°
SAS 1-08 Jul 73-03	3 1 2	12.3 7.4 5.6	.051 .079 .075	209	23.4 120 41.6	30°S 1°S	2.9 36.2	± 2° ± 2°
SAS 1-08 Jul 73-05	2 1 3	14.2 7.4 6.0	.051 .075 .056	206	26.8 138 23.9	24°S 6°N	.5 20.7	± 1° ± 4°

Run	Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	α _o	P(α ₀)%	Δαο
SAS 1-08 Jul 73-07	3 1 2	14.2 8.1 6.0	.057 .079 .057	188	18.6 109 42.4	26°S 1°N	.2 34.2	<u>+</u> 1° ±3°
SAS 1-09 Jul 73-01	3 1 2	12.3 8.1 5.0	.035 .080 .059	152	20.1 76.3 37.2	26°S 5°N	2.1 12.8	± 2° ± 2°
SAS 1-09 Jul 73-03	2 1	16.8 8.1	.043 .115	187	25.0 137	25°S 3°N	.8 16.4	±1° ±3°
SAS 1-10 Jul 73-01	2 1 3	14.2 8.8 6.9	.043 .062 .056	226	52.2 123 25.3	25°S 2°N	3.7 26.2	± 2° ± 3°
SAS 1-10 Jul 73-02	3 1 2	14.2 8.8 4.8	.039 .093 .036	268	24.9 174 33.4	24°S 3°N	.7 36.4	± 1° ± 3°
SAS 1-11 Jul 73-01	3 1 2	14.2 9.8 6.9	.032 .083 .071	327	30.2 194 77.0	25°S 1°N	2.1 44.1	± 1° ± 3°
SAS 1-11 Jul 73-02	3 1 2	14.2 9.8 5.3	. 043 . 094 . 064	202	23.6 120 33.5	26°S 0°	1.4 39.5	± 1° ± 3°
SAS 1-16 Jul 73-03	3 1 2	14.2 9.8 5.9	.035 .070 .083	269	26.7 120 86.0	22°S 1°N	1.4 36.9	± 1° ± 4°
SAS 1-16 Jul 73-04	2 1	14.2 9.8	.056	174	35.8 120	24°S	. 3	± 1°
SAS 1-17 Jul 73-01	2	14.2	.091	260	72.9 171	22°S	.5	± 1°

.

Appendix D. (Cont'd)

Appendix D. (Cont'o	i)							
Run	Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	ao	P(α ₀)%	Δαο
SAS 1-18 Jul 73-04	1 3 2	$16.8 \\ 5.6 \\ 4.1$.070 .057 .064	208	60.8 50 59.1	25°S	.4	±1°
SAS 1-19 Jul 73-01	1 3 2	16.8 5.6 4.7	.064 .061 .078	304	124 60.3 102	24°S 2°N	.9 81.4	±1° ±5°
SAS 1-19 Jul 73-03	1 2	16.8 5.9	.070 .126	259	140 98	22°S 7°N	3.3 76.8	± 3° ± 4°
SAS 1-19 Jul 73-04	1 2	16.8 5.9	.070 .142	420	229 177	24°S 6°N	.5 74.9	± 1° ± 3°
SAS 1-20 Jul 73-01	2 1	14.2 6.0	.059 .140	368	147 193			e
SAS-1-20 Jul 73-03	2 1	16.8 6.9	.061 .139	390	151 195	25°S 5°S	0.4	±1° ±2°
SAS-1-20 Jul 73-04	2 1	14.2 6.4	.061 .150	461	101 345	23°S 27°S	0.675.7	±1°
SAS 1-21 Jul 73-01	2 1	14.2	~059 .139	425	95 290	25°S 2°N	0.7 46.1	±1° ±5°
SAS 1-21 Jul 73-02	2 c 1	14.2 6.9	.069 .140	740	238 [.] 456	22°S 6°N	1.2 26.4	± 2° ± 3°
SAS 1-21 Jul 73-03	2 1	14.2 7.4	.078 .161	395	143 218 [.]	24°S 1°N	1.0 33.1	± 2° ± 3°
SAS 1-21 Jul 73-04	2 1	16.8 7.4	.059	612	261 306	25°S 8°N	0.2 54.3	±1° ±3°
SAS 1-22 Jul 73-01	2 1	16.8 8.1	.054	699	199 464	27°S 4°N	0.4	±1° ±2°

Run	Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	α _o	P(a ₀)%	Δα
SAS 1-22 Jul 73-02	2 1	14.2 7.4	.064	733	258 436	25°S 3°N	0.4	±1° ±2°
SAS 1-22 Jul 73-03	1 2	16.8 8.1	.064 .097	515	211 205	25°S 9°N	.2 20.9	$\pm 1^{\circ}$ $\pm 3^{\circ}$
SAS 1-22 Jul 73-04	2 1	14.2 8.1	.054	442	166 186	27°S 3°N	.8 57.9	±1° ±3°
SAS 1-23 Jul 73-01	2 1	14.2 8.8	.043 .078	495	64.7 260	25°S 67°N	1.2 51.6	± 2°
SAS 1-23 Jul 73-03	3 1 2	14.2 9.8 5.6	.048 .075 .075	466	58.7 241 123	23°S 3°N	.6 58.3	±1° ±3°
SAS 1-24 Jul 73-02	2	16.8 8.1	.037 .097	680	64.3 625	29°S 3°N	.1 67.3	$\pm 1^{\circ}$ $\pm 4^{\circ}$
SAS 1-27 Jul 73-04.	1 2	14.2 8.8	.050	220	118 60.4	28°S 42°S	1.0 39.8	± 2° ± 4°
SAS 1-28 Jul 73-02	1 2	14.2 8.8	.082	141	64.2 57.4	24°S 3°N	7.5 57.6	± 2° ± 4°
SAS 1-29 Jul 73-02	2 1	16.8 5.6	.062	191	48.1 87.4	26°S 8°S	.5 83.4	±1° ±5°
SAS 1-29 Jul 73-04	1 2	16.8	.086	243	146 63.1	26°S	3.2	±3°
SAS 1-30 Jul 73-01	1 2	14.2 4.7	.094	251	146 72.3	29°S	.2	±1°
SAS 1-30 Jul 73-02	1 3 2	14.2 8.8 5.3	.061 .047	268	162 30.0 64.1	26°S 2°N	.8 44.3	±1° ±3°

•

(Cont'd)

Appendix D.

Run	Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_{p}(cm^{2})$	ao	P(α ₀)%	Δαο
SAS 1-31 Jul 73-01	1 2	14.2 8.1	.057	218	158 46.4	27°S 2°N	.4 20.1	±1° ±3°
SAS 1-01 Aug 73-02	2 1	14.2 5.3	.079 .096	204	60.0 103	25°S 1°S	.1	±1° ±4°
SAS 1-01 Aug 73-03	2 1	14.2 6.9	.071 .143	149	42.7 93.9	24°S 9°N	1.0	± 2° ± 4°
SAS 1-02 Aug 73-01	2 1	14.2 8.1	.082 .118	245	103 109	24°S 5°N	.5	±1° ±3°
SAS 1-02 Aug 73-03 SAS 1-02 Aug 73-04	2 1 3 2 1	14.2 8.1 14.2 8.8 6.9	.046 .161 .043 .043 .100	233 220	44.9 170 40.0 66.0 127	25°S 6°N 27°S 5°N	.1 11.4 .4 17.6	± 1° ± 3°. ± 1° ± 3°
SAS 1-03 Aug 73-01	1 2	14.2 7.4	.068 .132	181	83.6 69.9	26°S 5°N	1.8	± 2° ± 3°
SAS 1-10 Aug 73-01	4 3 2 1	14.2 8.1 6.0 4.3	.067 .054 .056 .056	917	115 209 251 328	24°S 5°N	2.4 7.2	± 2° ± 2°
SAS 1-10 Aug 73-03	2 1	14.2 8.1	.064	207	88.4 100	25°S 7°N	.3 11.3	±1° ±4°
SAS 1-11 Aug 73-01	2 1	14.2 6.9	.072 .134	178	81.4 87.9	27°S 5°N	2.9 11.9	± 2° ± 2°
SAS 1-11 Aug 73-02	2 1	14.2 5.6	.080	175	53.6 82.4	25°S	1.3	±2°
SAS 1-11 Aug 73-03	2 1	14.2 6.4	.072	322	95.1 184	23°S 12°S	.3 86.8	±1° ±6°

Appendix D. (Cont'd)

Appendix D. (Con	nt'd)							٨α
Run	Peak	Period (sec)	·BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	ao	P(a ₀) %	0
SAS 1-11 Aug 73-04	4 2	14.2	.056	314	63.1 103	26°S	1.3	± 2°
SAS 1-12 Aug 73-0	1 2	14.2	.054	391	134 187	25°S 22°S	.6 52.2	± 1° ± 3°
SAS 1-12 Aug 73-0	2 2	14.2	.056	281	82.6 121	25°S 6°N	.2 62.1	± 1° ± 4°
SAS 1-14 Aug 73-0	4 1	16.8	.102	89.8	42.6	27°S 15°N	.3 73.4	± 1° ± 4°
SAS 1-15 Aug 73-0		16.8	.080	132	82.4 36.9	26°S 1°N	.1 55.8	$\pm 1^{\circ}$ $\pm 4^{\circ}$
SAS 1-15 Aug 73-0)2 1	16.8	.099	197	151 20.0	23°S 4°N	.1 80.1	± 1° ± 4°
SAS 1-16 Aug 73-0)3 1	16.8	.048	360	302 45.4	23°S 7°N	1.4 57.7	± 3° ± 4°
SAS 1-16 Aug 73-0	2 04 1	14.2	.080	387	314 32.2	24°S 4°N	.3	± 1° ± 3°
SAS 1-20 Aug 7303	z 3 2	12.3	.069	246	74.7 125	24°S 6°N	4.5 73.9	± 3° ± 4°
SAS 1-20 Aug 73-	04 1	16.8	.059	169	54.6 53.8	24°S 11°N	.1 38.3	± 1° ± 3°
SAS 1-21 Aug 73-	01 1	16.8	.075	291	84.2 71.9	27°S 8°N	.3 40.8	± 1° ± 3°
SAS 1-21 Aug 73-	02 1 2	16.8 7.4	.067	264	107 75.0 70.3	25°S	1.5	±1°
SAS 1-21 Aug 73-	3 03 1 2	5.9 16.8 8.1	.074	369	183 122	26°S	1.7	±1°

Run	Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_{p}(cm^{2})$	ao	P(α ₀)%	Δαο
SAS-1-22 Aug 73-02	2 1	16.8 8.1	.040 .161	572	213 349	26°S 1°S	14.8 40.0	± 2° ±3°
SAS 1-22 Aug 73-03	3 1 2	16.8 7.4 6.0	.056 .070 .099	764	167 342 284	27°S	3.0	± 2°
SAS 1-22 Aug 73-04	2 1	16.8 6.4	.064	897	198 621	27°S	.8	±1°
SAS 1-23 Aug 73-01	2 1	14.2 8.8	.038 .153	1220	122 1010	25°S	.5	±1°
SAS 1-23 Aug 73-02	2 1	14.2 8.1	.032	1026	107 851	24°S 1°S	0.6	±1° ±2°
SAS 1-23 Aug 73-03	3 1 2	14.2 8.1 6.4	.043 .081 .075	937	114 556 228	25°S 2°S 7°S	0.1 20.5 41.3	±1° ±2° ±3°
SAS 1-24 Aug 73-02	2 1	14.2 8.1	.046 .171	674	101 552	25°S 6°S	1.5 37.2	± 2° ± 2°
SAS-1-24 Aug 73-03	2 1	16.8 8.1	.046	603	45.4 386	24°S 4°S	1.7 2.3	± 2° ± 2°
SAS 1-24 Aug 73-04	2 1	16.8 8.1	.035	480	59.0 361	30°S 2°S	0.4 23.9	±1° ±3°
SAS 1-25 Aug 73-01	2 1	14.2 8.8	.032	489	35.2 423	27°S 1°S	10.1 0.6	±3° ±1°
SAS 1-25 Aug 73-02	3 1 2	14.2 8.1 5.6	.038 .080 .056	400	32.6 265 64.2	24°S 2°S 6°N	1.8 2.5 39.4	± 2° ± 1° ± 2°

Run	Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_{p}(cm^{2})$	ao	P(α ₀)%	Δαο
SAS 1-25 Aug 73-03	3 1 2	14.2 8.1 5.6	.048 .062 .083	208	21.2 102 55.7	25°S 0°S	0.9 4.7	±1° ±2°
SAS 1-25 Aug 73-04	3 1 2	12.3 8.1 6.4	.052 .070 .092	232	17.9 105 83.2	36°S 3°N	30.0 10.3	±3° ±3°
SAS-1-26 Aug 73-01	2 1	12.3 6.9	.036	247	17.0 142	33°S 5°N	10.3 34.0	± 3° ± 2°
SAS 1-26 Aug 73-02	2 3 1	16.8 12.3 6.9	.039 .032 .122	129	18.3 13.1 72.0	24°S 33°S 9°S	0.1 15.2 60.9	±1° ±2° ±4°
SAS 1-26 Aug 73-03	2 1	16.8	.046	121	27.8 73.9	23°S 1°N	0.1 25.2	±1° ±3°
SAS 1-26 Aug 73-04	2 1 3	16.8 8.8 5.0	.064 .089 .046	127	31.3 46.3 16.3	26°S 0°	0.2	±1° ±2°
SAS 1-27 Aug 73-01	2 3 1	16.8 9.8 4.5	.035 .056 .075	219	43.5 42.2 95.6	27°S 1°N	0.1 12.1	±1° ±2°
SAS 1-27 Aug 73-02 .	2 1 3	16.8 9.8 5.0	.040 .078 .078	208	67.7 77.7 30.7	27°S 1°S	0.1 5.2	±1° ±2°
SAS 1-31 Aug 73-01	3 1 2	16.8 9.8 4.3	.027 .102 .059	204	21.9 82.1 43.1	27°S 3°N	11.3 27.9	±4° ±2°
SAS 1-06 Sept 73-01	2 3 1	16.8 8.1 4.8	.043 .054 .107	350	97.6 79.2 138			

Appendix D. (Cont'd)

Appendix D).	(Cont'd)	Period			D (2)		D(~)8	٨a
Run	1		Peak	(sec)	BW(Hz)	$E_{T}(cm^{2})$	E (cm ²)	α _O	r (a) %	0
SAS 1-06 S	Sept	73-02	2 1	16.8 7.4	.043	522	179 302	22°S 0	51.7 58.0	± 4° ± 4°
SAS 1-06 S	Sept	73-03	2	16.8	.043	533	203 298	26°S 1°S	24.6	± 5° ± 5°
SAS 1-07 5	Sept	73-01	2	14.2	.039	934	238 646	24°S 2°S	25.9	$\pm 4^{\circ}$ $\pm 4^{\circ}$
SAS 1-07 S	Sept	73-02	2	14.2	.043	678	260 317	25°S 0°	52.4 80.9	± 3° ± 5°
SAS 1-07	Sept	73-03	2	14.2	.059	776	309 446	26°S 1°S	41.9 85.4	± 4° ± 5°
SAS 1-08	Sept	73-01	2	14.2	.048	749	273 414	25°S 0°	34.9 69.6	± 4° ± 5°
SAS 1-08	Sept	73-02	2	12.3	.043	668	73.8 534	7°S 4°S	13.3 37.0	± 3° ± 5°
SAS 1-08	Sept	73-04	2 1	36.6 10.9	.042	792	10.8 685			
SAS 1-09	Sept	73-01	1	12.3	.140	590	507			
SAS, 1-14	Sept	73-01	$\frac{1}{2}$	14.2	.054	192	`106 59.7	23°S 5°S	41.3 23.7	± 4° ± 3°
SAS 1-14	Sept	73-02	1 2	14.2	.054	199	82.3	24°S 4°S	50.8 15.9	± 4° ± 3°
SAS 1-14	Sept	73-03	2	14.2	.054	197	80.3 88.8	22°S 2°S	41.7 17.4	± 5° ± 3°
SAS 1-15	Sept	73-01	2	14.2	.054	184	70.5	1°S	68.3	± 4°
SAS 1-17	Sept	73-02	1	16.8	.036	323	111	(cont'd)		

Appendix D.	(Cont'c	1)							
Run		Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	°o	P(α ₀)%	Δαο
SAS 1-17 Sept	73-02 nt'd)	2 3	12.3 6.0	.047		105 91.7			
SAS 1-17 Sept	73-03	1 2 3	16.8 12.3 5.0	.032 .057 .097	263	112 70.3 60.6	22°S 2°N	57.5 15.5	± 5° ± 4°
SAS 1-17 Sept	73-04	1 2 3	16.8 12.3 5.6	.039 .043 .122	203	87.3 55.3 47.5	22°S 7°S	32.8 24.4	± 3° ± 4°
SAS 1-18 Sept	73-01	1 2 3	16.8 10.9 5.6	.032 .057 .107	373	249 53.7 42.5	19°S 1°N	23.2 10.0	± 4° ± 3°
SAS 1-18 Sept	73-03	2 3 1	14.2 9.8 6.4	.036 .043 .129	343	88.5 75.7 153	20°S 1°S	28.4 19.5	± 4° ± 4°
SAS 1-18 Sept	73-04	1 2 3	14.2 9.8 6.0	.032 .054 .068	338	185 62.4 57.1	22°S 3°S	25.1 26.4	± 4° ± 4°
SAS 1-19 Sept	73-02	2	14.2 6.0	.050	353	115 195	25°S 11°S	27.0 67.5	± 3° ± 4°
SAS 1-19 Sept	73-03	2	14.2	.075	298	67.8 140	21°S 4°S	28.0 67.4	± 4° ± 3°
SAS 1-19 Sept	73-04	2	14.2	.043	254	94.6 -122	20°S 1°S	20.7 78.5	± 3° ± 4°
SAS 1-20 Sept	: 73-01	1 3 2	14.2 9.8 5.6	.047 .025 .079	243	79.8 34.2 71.6	17°S 0°	26.3 11.2	± 4° ± 3°

Run	Peak	(sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	°o	P(α ₀)%	Δαo
SAS 1-20 Sept 73-03	2 3 1	14.2 9.8 6.4	.064 .021 .125	346	152 35.4 213	22°S 1°N	20.2 11.8	±4° ±3°
SAS 1-20 Sept 73-04	3 2 1	12.3 9.8 6.4	.043 .043 .122	461	92.1 123 220	4°S 5°S	20.9 18.8	± 3° ± 4°
SAS 1-21 Sept 73-01	2 3 1	10.9 8.8 6.4	.079 .021 .122	431	156 44.1 211	3°S 3°S	32.0 26.0	±3° ±2°
SAS 1-21 Sept 73-02	2 1	10.9 7.4	.072	876	225 625	5°S 6°S	21.2 42.2	± 3° ± 2°
SAS 1-21 Sept 73-03	1 2	12.3 7.4	.072	663	317 315	5°S 3°S	36.5 46.9	± 3° ± 3°
SAS 1-22 Sept 73-01	1 2	12.3 7.4	.075.107	509	338 149	2°S 2°N	27.2 62.3	± 3° ± 4°
SAS 1-22 Sept 73-02	1 2	12.3 7.4	.072	629	318 279	9°S 1°S	10.9 61.7	±4° ±3°
SAS 1-22 Sept 73-03	1 2	9.8 6.4	.096	418	256 124	1°N 8°N	13.7 55.0	± 3° ± 4°
SAS 1-23 Sept 73-03	2 1	12.3 6.0	.072	387	98.9 272	1°S 11°N	41.2	$\pm 4^{\circ}$ $\pm 4^{\circ}$
SAS 1-23 Sept 73-04	2 1	12.3	.061	452	104 309	2°S 9°N	29.7 43.4	±3° ±4°
SAS 1-24 Sept 73-03	2 1	10.9 7.4	.067	640	197 339	0° 9°N	29.3 67.7	±3° ±3°
SAS 1-24 Sept 73-04	1 2	10.9	.067	693	261 254	3°S 1°N	3.7	±2° ±2°

App	endix	D.	(Cont"d	[)							
	Ru	ın		Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	ao	P(a ₀)%	Δα _o
SAS	1-25	Sept	73-01	2 1	9.8 7.4	.032	632	65.4 336	1°N 9°N	3.4 65.1	± 2° ± 3°
SAS	1-27	Sept	73-01	3 1 2	16.8 12.3 8.8	.032 .054 .093	475	83.0 246 125	21°S 5°S	2.1 46.6	±2° ±4°
SAS	1-02	Oct 7	73-01	2 1	14.2 10.9	.043	104	34.0 58.6	18°S 1°S	27.6 1.6	±4° ±2°
SAS	1-02	Oct 7	73-02	2 1	16.8 12.3	.032 .086	131	14.8 54.8	15°S 24°S	0.8 5.0	±2° ±3°
SAS	1-02	Oct 7	73-03	3 1 2	16.8 10.9 6.4	.040 .067 .043	119	23.2 44.3 23.8	18°S 17°S	5.0 56.5	±3° ±4°
SAS	1-03	Oct 7	73-02	2 1	16.8 8.1	.054 .072	294	49.8 119	19°S 3°N	2.2 52.4	±3° ±3°
SAS	1-03	Oct 7	73-03	2 1	16.8	.038	325	82.9 181	23°S 10°N	0.7	±2° ±3°
SAS	1-03	Oct 7	73-04	2 1	16.8 9.8	.046 .091	198	59.9 85.1	23°S 1°N	0.2 38.8	±1° ±3°
SAS	1-04	Oct 7	3-01	2 1	16.8 9.8	.048 .078	222	58.8 96.6	25°S 4°N	0.3 9.3	±1° ±2°
SAS	1-06	Oct 7	73-03	1 2 3	14.2 9.8 6.0	.051 .044 .096	205	101 30.9 25.4	25°S 4°N	2.0 6.1	±3° ±2°
SAS	1-08	Oct 7	3-01	2 1	14.2 8.8	.054	111	32.6	23°S 0°	0.6	±2° ±1°

Appendix D. (Cont	d)	Portiod						
Run	Peak	(sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	αo	P(α ₀)%	Δαο
SAS 1-08 Oct 73-02	3 1 2	14.2 7.4 5.0	.043 .081 .086	310	26.8 131 123	23°S 2°N	3.1 40.0	± 3° ± 4°
SAS-1-09 Oct 73-02	2 1	16.8 7.4	.043	917	47.9 841	26°S 5°N	0.1 35.7	± 2° ± 3°
SAS 1-10 Oct 73-01	2 1	16.8 6.0	.081 .121	284	82.0 166	24°S 5°N	0.1 57.0	± 1° ± 3°
SAS 1-10 Oct 73-03	2 1	14.2 6.9	.043	329	69.8 241	26°S 0°	0.2 39.7	± 2° ± 3°
SAS 1-10 Oct 73-04	2 1	16.8 7.4	.043	321	72.5 189	25°S 2°N	0.2	$\pm 1^{\circ}$ $\pm 4^{\circ}$
SAS 1-11 Oct 73-01	2 1	14.2	.048 .107	182	54.1 88.0	24°S 6°S	0.6 36.9	± 2° ± 3°
SAS 1-11 Oct 73-02	2 1	14.2 7.4	.043	213	49.2 118	22°S 45°S	1.2 37.2	± 3° ± 4°
SAS 1-11 Oct 73-03	1 2	14.2 9.8	.036 .043	213	44.8 43.0	25°S 1°S	1.3	± 4° ± 4°
SAS 1-12 Oct 73-04	2 1 4 3	14.2 8.8 6.4 5.0	.043 .064 .032 .068	146	34.8 44.8 11.6 29.3	25°S 8°S	1.0 45.9	± 3° ± 4°
SAS 1-13 Oct 73-02	1 2 3 4	14.2 8.8 7.4 6.0	.072 .039 .032 .047	187	66.4 41.9 25.6 23.6	24°S 7°S 4°N	1.0 32.8 24.3	± 3° ± 3° ± 3°
SAS 1-13 Oct 73-03	2 1	14.2 7.4	.064	151	39.9 83.2	23°S 8°N	· 2.0 24.4	± 2° ± 4°

Appendix D. (Co	ont'd)							
Run	Peak	(sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	ao	P(α ₀)%	ao
SAS 1-14 Oct 73-	01 1 3 4 2	16.8 7.4 6.4 4.1	.072 .047 .039 .064	190	91.2 27.5 21.1 41.0	22°S 6°N 1°N	0.5 29.5 48.2	± 1° ± 3° ± 4°
SAS 1-14 Oct 73-	02 1 4 3 2	14.2 10.9 6.9 4.3	.054 .029 .057 .075	230	130 23.7 26.4 29.4	21°S 5°S	1.7 8.5	± 3° ± 2°
SAS 1-14 Oct 73-	04 1 3 2	14.2 10.9 5.3	.043 .032 .063	256	154 16.8 48.2	23°S 5°S	8.9 16.7	± 3° ± 3°
SAS 1-15 Oct 73-	01 1 3 2	14.2 8.1 4.5	.043 .054 .096	343	215 20.1 82.0	17°S 4°S	6.0 28.8	± 3° ± 3°
SAS 1-15 Oct 73-	04 1 2	16.8 5.0	.096 .118	442	246 116	26°S 6°N	0.275.2	±1° ±2°
SAS 1-16 Oct 73-	01 1 2	14.2 5.3	.094 .065	336	173 111	24°S 3°N	5.6 70.9	± 3° ± 4°
SAS 1-16 Oct 73-	02 1 2	14.2 5.3	.064	329	234 77.1	21°S 0°	0.5 76.8	± 2° ± 3°
SAS 1-19 Oct 73-	01 1 . 3 . 2	14.2 9.8 5.0	.054 .043 .086	882	334 72.1 117	24°S 0°	0.1 15.2	± 2° ± 4°
SAS 1-19 Oct 73-	03 1 2	16.8 5.0	.086	428	257 98.1	22°S 2°N	0.6 43.0	± 1° ± 2°
SAS 1-20 Oct 73-	01 1 3 2	16.8 9.8 4.8	.054 .043 .086	492	170 79.7 151	28°S 2°S	0.8	± 3° ± 4°

Appendix D.	(Cont'd	1)							
Run		Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	α	P(α ₀)%	Δαο
SAS 1-20 Oct	73-04	3 1 2	36.6 16.8 5.3	.032 .054 .107	741	82.1 273 208	26°S 1°S	1.0 11.4	± 4° ± 3°
SAS 1-21 Oct	73-03	1 2	14.2 4.1	.107	496	358 11.7	26°S 26°S	16.7 62.9	± 4° ± 2°
SAS 1-21 Oct	73-04	2 1	16.8 9.8	.032	562	62.9 412	23°S 16°S	26.1 30.5	± 3° ± 3°
SAS 1-22 Oct	73-01	2	14.2 9.8	.043	791	179 547	22°S 10°S	13.7 25.1	± 3° ± 3°
SAS 1-22 Oct	73-03	2 1	14.2 10.9	.043	397	110 270	21°S 2°S	8.8 21.8	± 3° ± 3°
SAS 1-22 Oct	73-04	2 1	14.2 8.1	.064	363	154 171	20°S 1°S	9.4 66.7	± 2° ± 3°
SAS 1-23 Oct	73-01	1 2	12.3 7.4	.086	270	159 86.2	12°S 19°S	61.8 72.7	± 5° ± 4°
SAS 1-23 Oct	73-03	1 2	14.2 7.4	.075 .079	167	102 43.2	22°S 28°S	8.5 43.6	± 2° ± 3°
SAS 1-23 Oct	73-04	1 2	12.3 5.0	.107	636	434 172	5°S 11°N	1.5	± 3° ± 4°
SAS 1-24 Oct	73-01	1 2	14.2	.075	836	385 322	8°S 10°N	17.3 71.2	± 3° ± 4°
SAS 1-24 Oct	73-02	1 2	12.3	.075	991	516 349	5°S 10°N	9.4 14.9	± 3° ± 4°
SAS 1-25 Oct	73-01	1 2 3	10.9 8.8 5.3	.075 .075 .032	528	237 155 34.8	2°S 2°N	5.0 9.8	± 2° ± 3°

Appendix D. (Cont'	d)								
Run	Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_{p}(cm^{2})$	ao	Ρ(α ₀)%	Δαο	
SAS 1-25 Oct 73-02	2 1	16.8 9.8	.032	382	22.6 335	23°S 0°	29.5 25.4	± 4° ± 5°	
SAS 1-25 Oct 73-03	2 1	16.8 8.8	.021	447	29.7 394	25°S 3°S	0.1 22.2	± 1° ± 3°	
SAS 1-25 Oct 73-04	2 1	16.8 8.8	.032	426	27.3 391	28°S 1°N	22.3 20.8	± 4° ± 3°	
SAS 1-26 Oct 73-01	2 1	14.2 8.8	.043	398	24.4 347	25°S 3°N	4.4 3.1	± 3° ± 2°	
SAS 1-26 Oct 73-02	3 1 2	16.8 9.8 5.6	.021 .107 .054	421	42.3 319 51.2	25°S 2°N	0.3 3.2	± 1° ± 2°	
SAS 1-26 Oct 73-03	3 2 1	16.8 9.8 7.4	.043 .054 .091	232	37.6 73.3 86.0	26°S 1°S	0.6	± 3° ± 2°	
SAS 1-26 Oct 73-04	2 1	16.8 8.8	.032	307	31.1 237	28°S 0°	1.6	$\pm 3^{\circ}$ $\pm 3^{\circ}$	
SAS 1-27 Oct 73-01	· 2 1	16.8	.043	193	26.9 143	23°S 3°S	0.6	± 2° ± 2°	
SAS 1-27 Oct 73-04	1 3 2	14.2 10.9 6.9	.054 .032 .064	193	76.8 29.2 44.3	20°S 2°S	23.7 9.1	± 5° ± 3°	
SAS 1-28 Oct 73-03	1	14.2	.086	208	157	4°S	3.3	± 3°	
SAS 1-28 Oct 73-04	1	14.2	. 097	283	209	9°S	8.0	± 3°	
SAS 1-29 Oct 73-01	1 2	12.3 6.9	.097	405	284 97.4	5°S 4°N	2.9	± 2° ± 1°	
Appendix D.	(Cont'o	i)							
--------------	---------	-------------	---------------------	----------------------	-----------------	-------------------	-------------	-----------------------	--------------
Run		Peak	(sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	ao	P(α ₀)% .	Δαο
SAS 1-29 Oct	73-02	1 3 2	16.8 12.3 8.1	.032 .032 .075	722	242 190 237	17°S 2°S	1.7 1.7	± 3° ± 2°
SAS 1-29 Oct	73-04	1 2	14.2 9.8	.043	1470	919 475	4°S 2°N	0.4	± 3° ± 3°
SAS 1-30 Oct	73-01	2 1	60.2 14.2	.032	1380	55 1291	5°S	1.4	± 3°
SAS 1-02 Nov	73-02	1 2	14.2 8.1	.078 .070	411	228 79.2	17°S 1°N	25.6 1.9	± 4° ± 2°
SAS 1-03 Nov	73-01	1 2	·8.8 7.4	.105	694	344 146	0° 2°N	0.75.1	± 2° ± 2°
SAS 1-03 Nov	73-02	1 2	12.3 7.4	.073.035	352	118 49.8	8°S 1°N	13.0 6.9	± 4° ± 2°
SAS 1-04 Nov	73-02	2 1	14.2	.054 .073	452	62.3 149	17°S 1°S	4.3 24.9	± 3° ± 2°
SAS 1-04 Nov	73-04	2 1	16.8 7.4	.043	714	127 356	26°S 1°N	0.8	± 2° ± 2°
SAS 1-05 Nov	73-01	2 1	16.8 7.4	.059 .072	688	141 168	18°S 1°N	4.7	± 3° ± 2°
SAS 1-05 Nov	73-02	1 2	16.8	.072	528	183 156	17°S 4°N	3.2 43.1	± 3° ± 4°
SAS 1-07 Nov	73-02	1 2	12.3	.107	534	345 105	5°S	4.8	± 3°
SAS 1-08 Nov	73-01	2 1	14.2 9.8	.043	386	99.2 104	24°S 2°N	0.6	± 2° ± 2°
SAS 1-08 Nov	73-03	2 1	14.2	.024	406	39.2 202	25°S 4°S	0.7	± 3° ± 4°

Appendix D.	(Cont'd)							
Run		Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	α _o	P(α ₀)%	Δαο
SAS 1-09 Nov	73-01	1 2	14.2 8.1	.075	233	85.5	18°S 8°S	2.9 53.2	± 3° ± 3°
SAS 1-09 Nov	73-03	2 1	16.8 10.9	.032 .089	244	42.5	24°S 2°S	0.6 2.3	± 2° ± 3°
SAS 1-10 Nov	73-01	2 1	14.2 9.8	.030 .107	404	67.5 284	24°S 4°S	0.8 14.0	± 2° ± 2°
SAS 1-10 Nov	73-02	1	10.9	.134	364	310	8.S	7.5	± 2°
SAS 1-10 Nov	73-04	2 1	14.2 9.8	.024 .081	391	53.9 238	24°S 16°S	1.3 18.8	± 3° ± 4°
SAS 1-11 Nov	73-03	2 1	14.2 9.8	.021 .102	460	26.3 370	27°S 11°S	0.9 28.2	± 2° ± 3°
SAS 1-11 Nov	73-04	1	8.8	.152	255	225	26°S	59.7	± 4°
SAS 1-12 Nov	73-01	2 1	14.2 9.8	.027 .102	330	22.3 288	25°S 11°S	0.7 32.5	± 3° ± 4°
SAS 1-12 Nov	73-02	1 2 3	12.3 8.8 5.0	.057 .093 .064	428	200 189 12.0	8°S	2.2	± 2°
SAS 1-12 Nov	73-03	1 2	12.3	.102 .097	867	625 218	7°S 30°S	1.8 61.6	± 2° ± 3°
SAS 1-12 Nov	73-04	1 2	10.9 4.8	.123 .088	795	579 180	2°S 56°S	1.4 49.8	± 2° ± 4°
SAS 1-13 Nov	73-01	1 2	10.9 5.3	.113 .094	1080	872 161	1°S 2°N	0.8 29.9	± 2° ± 2°
SAS 1-13 Nov	73-03	1 2	9.8 5.6	.137	1040	820 190	2°S	12.6	± 2°

|44

Appendix D.	(Cont'd)							
Run		Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	α _o	P(a ₀)%	Δαο
SAS 1-20 Nov 3	73-04	1 2 3	12.3 7.4 4.5	.075 .086 .036	890	422 290 40.1	6°S 5°N	50.3 51.2	± 3° ± 3°
SAS 1-21 Nov	73-01	1	10.9	.204	863	820	1°N	46.1	± 4°
SAS 1-01 Dec	73-02	1 2	14.2 7.4	.082 .091	877	759 49.6	6°S 22°S	0.4 30.8	± 2° ± 3°
SAS 1-01 Dec	73-03	1 2	14.2 7.4	.064	638	564 28.5	12°S 3°N	2.1 10.1	± 3° ± 2°
SAS 1-01 Dec	73-04	1 2	14.2	.075	347	278 11.8	5°S 2°S	0.4 8.1	± 2° ± 2°
SAS 1-02 Dec 7	73-01	2 · 1 3	14.2 10.9 4.8	.032 .064 .107	545	199 200 67.6	8°S 4°S	0.4	± 1° ± 2°
SAS 1-02 Dec 7	73-02	3 1 2	14.2 9.8 5.0	.043 .054 .107	780	214 279 222	10°S 1°S 25°S	4.0 8.2 17.1	± 2° ± 2° ± 3°
SAS 1-03 Dec 3	73-02	1	9.8	.215	771	730	3°S	2.3	± 2°
SAS-1-04 Dec	73-01	2 1	14.2 8.8	.030	459	.28.6 374	19°S 0°	2.2	± 3° ± 3°
SAS 1-05 Dec 7	73-02	1 2 3	16.8 8.8 6.4	.059 .046 .072	258	102 59.6 51.0	6°S 2°N	0.3	± 2° ± 2°
SAS 1-05 Dec 7	73-04	1 2	16.8 4.8	.107	594	334 155	7°S 1°S	0.1 7.6	± 1° ± 1°
SAS 1-06 Dec	73-01	1 2	14.2	.091	620	261 167	4°S 0°	0.7	± 2° ± 1°

Appendix D.	(Cont'd	.)							
Run		Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_{p}(cm^{2})$	ao	P(a ₀)%	Δαο
SAS 1-07 Dec	73-01	1	16.8	.107	798	754	7°S	0.2	± 1°
SAS 1-07 Dec	73-02	1	14.2	.128	437	396	7°S	0.4	± 1°
SAS 1-08 Dec	73-01	1 2	14.2	.113	679	546 61.6	5°S 10°N	0.8 29.7	± 1° ± 3°
SAS 1-08 Dec	73-02	1 3 2	14.2 8.8 6.4	.099 .043 .089	537	382 50.2 82.1	12°S 15°S	1.0	± 2° ± 2°
SAS 1-08 Dec	73-03	1 2	14.2	.113	934	775 93.6	8°S 2°S	50.0 50.0	± 3° ± 3°
SAS 1-08 Dec	73-04	3 1 2	20.5 14.2 6.4	.025 .091 .059	516	38.7 346 76.9	9°S 5°S	0.1 2.9	± 1° ± 3°
SAS 1-09 Dec	73-01	2 1 3	16.8 12.3 7.4	.029 .065 .097	593	87.3 387 62.5	12°S 6°S	1.0 1.9	± 2° ± 3°
SAS 1-09 Dec	73-02	3 1 2	16.8 12.3 6.9	.030 .072 .113	529	60.2 320 119	12°S 11°S	0.5	± 2° ± 2°
SAS 1-09 Dec	73-03	1 2	12.3 6.9	.097	397	279 49.2	9°S 6°N	8.1 67.3	± 3° ± 3°
SAS 1-09 Dec	73-04	1 2 3 4	14.2 9.8 6.9 5.6	.054 .038 .032 .048	362	167 83.2 36.4 28.2	12°S 0°	1.1 5.5	± 2° ± 2°
SAS 1-10 Dec	73-01	1 2	14.2	.102	300	232 37.0	14°S 18°S	2.1 55.0	± 2° ± 3°

Appendix D. (Cont'	d)							
Run	Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	ao	P(α ₀)%	Δαο
SAS 1-10 Dec 73-03	3 1 2 4	20.5 14.2 10.9 6.9	.032 .025 .043 .086	299	54.6 79.7 77.9 39.8	12°S 15°S	20.2 9.1	± 3° ± 2°
SAS 1-12 Dec 73-01	1 3 2	14.2 8.1 4.3	.064 .054 .096	563	470 18.5 28.0	6°S 35°S	0.6 48.6	± 2° ± 4°
SAS 1-12 Dec 73-02	1 3 2	14.2 6.9 4.3	.075 .054 .086	478	418 14.3 18.0	12°S 9°S	0.1 24.8	± 2° ± 3°
SAS 1-12 Dec 73-03	1	14.2	.096	449	395 13.6	8°S 68°S	0.1 10.5	± 2° ± 3°
SAS 1-12 Dec 73-04	1 2 3	12.3 6.9 4.8	.076 .068 .057	704	610 50.4 20.6	8°S 10°S	0.6	± 3° ± 3°
SAS 1-15 Dec 73-01	1 2 3	16.8 12.3 5.6	.043 .095 .086	1910	1070 612 140	2°S 1°N	, 7.2 13.8	± 3° ± 3°
SAS 1-15 Dec 73-02	1 2	14.2	.089	1880	1610 201	5°S 67°N	21.6 20.4	± 4° ± 5°
SAS 1-15 Dec 73-03	1	16.8 8.1	.075	2010	1400 372	11°S 90°N	9.4 63.6	± 3° ± 8°
SAS 1-15 Dec 73-04	1	16.8	.100	1990	1730 185	7°S	6.9	± 4°
SAS 1-16 Dec 73-01	1	14.2	.075	1560	1300 185	9°S 47°N	28.7 28.4	± 5° ± 4°
SAS 1-16 Dec 73-02	1	14.2	.139	989	953	4°S	15.8	± 4°

Run	Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_{p}(cm^{2})$	α _o	P(a ₀)%	Δαο
SAS 1-16 Dec 73-03	1	14.2	.150	720	680			
SAS 1-16 Dec 73-04	1	14.2	.149	629	.604			
SAS 1-17 Dec 73-01	1 2 3	14.2 9.8 4.8	.054 .107 .053	508	249 225 7.5			
SAS 1-17 Dec 73-02	1 2	14.2 8.1	.064	405	304 87.4			
SAS 1-17 Dec 73-03	1 2	12.3	.087 .098	598	421 161			
SAS 1-18 Dec 73-01	1 2	14.2 6.9	.064	725	460 240			
SAS 1-18 Dec 73-02	2 1 3	14.2 8.1 4.5	.043 .108 .055	679	126 457 53.9			
SAS 1-18 Dec 73-03	2 1	14.2 7.4	.043	590	203 323	15°S 10°N	46.2	± 5° ± 3°
SAS 1-18 Dec 73-04	1 2	14.2 7.4	.064	906	565 312	11°S 43°S	51.7 56.1	±4° ±4°
SAS 1-19 Dec 73-01	1 2 3	14.2 7.4 6.0	.075 .054 .065	1120	897 129 47.6	8°S 13°N	51.9 55.8	±4° ±3°
SAS 1-19 Dec 73-03	1 2 3	12.3 8.1 5.6	.064 .043 .086	411	319 64.7 37.7	10°S 20°N	51.2 56.5	±3° ±4°
SAS 1-19 Dec 73-04	2 1 3	20.5 10.9 5.6	.021 .108 .065	449	19.9 387 18.4	17°S 89°N	45.8 67.5	$\pm 4^{\circ}$ $\pm 10^{\circ}$

Appendix D. (Cont'd)							
Run	Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	αο	P(α ₀)%	Δαο
SAS 1-20 Dec 73-04	1 2 3	14.2 7.4 5.0	.075 .078 .054	1230	1080 87.6 14.5	11°S 44°N	53.5 63.8	± 4° ± 4°
SAS 1-21 Dec 73-01	3 1 2	60.2 14.2 6.9	.040 .075 .108	1370	39.0 1240 75.0	12°S 9°S	53.5 64.6	± 4° ± 3°
SAS 1-21 Dec 73-02	3 1 2	36.6 14.2 6.4	.086 .097 .032	923	19.0 865 22.0	13°S 33°N	51.1 61.0	± 4° ± 3°
SAS 1-21 Dec 73-04	2 1 3	60.2 12.3 6.0	.043 .085 .090	941	33.8 829 25.1	13°S 13°S	20.3 65.5	± 4° ± 4°
SAS 1-22 Dec 73-01	1 2	12.3 6.4	.085 .096	1100	878 211	12°S 9°N	16.9 83.1	± 3° ± 5°
SAS 1-22 Dec 73-02	1 2	12.3 4.8	.096 .098	1100	895 153	10°S	18.6	± 3°
SAS 1-22 Dec 73-03	1 2 3	12.3 6.9 4.8	.075 .070 .086	1540	686 557 237	3°S 3°N	22.0 31.4	± 4° ± 3°
SAS 1-22 Dec 73-04	1 2 3	12.3 7.4 5.6	.080 .075 .043	1780	1070 444 141	o° 9°N	24.1 39.0	± 3° ± 3°
SAS 1-23 Dec 73-01	3 1 2	60.2 12.3 8.1	.032 .069 .150	3120	88.9 2070 949	6°S 0°	19.5 31.8	± 4° ± 4°
SAS 1-24 Dec 73-04	1 2 3	16.8 9.8 6.9	.061 .043 .096	1590	869 430 208	12°S 4°S	16.0 27.8	± 3° ± 3°

Appendix D.	(Cont'd)							
Run	Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	α _o	P(α ₀)%	Δαο
SAS 1-28 Dec 7	⁷ 3-05 1 2	12.3	.125	409	309 84.4	10°S 0°	4.1 83.2	± 2° ± 3°
SAS 1-29 Dec 7	³ -01 1 2	12.3	.129	394	287 81.6	13°S 0°	3.3 69.5	± 2° ± 3°
SAS 1-29 Dec 7	23-02 2 1 3	12.3 6.4 5.0	.064 .089 .047	599	252 277 45.9	13°S 1°N	4.1 39.9	± 2° ± 3°
SAS 1-20 Dec 7	73-04 1 2 3 4	16.8 7.4 6.4 5.0	.064 .043 .043 .043	1250	734 265 146 52.2	9°S 2°S	4.8 15.4	± 2° ± 3°
SAS 1-30 Dec 7	73-01 1 2 3	14.2 8.1 5.0	.064 .075 .068	1550	926 488 69.6	6°S 1°S	7.4 12.2	± 3° ± 3°
SAS 1-30 Dec 7	⁷ 3-02 1 2	16.8	.082	1410	841 548	7°S 1°S	3.5 12.4	± 3° ± 3°
SAS 1-30 Dec 7	'3-03 2 1	14.2 8.8	.054	1680	484 1100	9°S 3°S	2.2	± 2° ± 3°
SAS 1-30 Dec 7	⁷ 3-04 1 2	14.2	.104	1880	1410 361	6°S 3°N	3.8 34.6	± 3° ± 3°
SAS 1-02 Jan 7	⁴ -03 1 2	16.8 8.1	.064	470	335. 125	17°S 14°N	18.4 45.7	$\pm 4^{\circ}$ $\pm 4^{\circ}$
SAS 1-02 Jan 7	74-04 2 1 3	16.8 10.9 6.4	. 032 . 068 . 095	408	95.6 219 75.0	28°S 6°S	13.8	± 4° ± 3°
SAS 1-03 Jan 7	74-01 2 1	14.2	.040	316	182 117	22°S 2°N	21.1 27.1	± 5° ± 4°

Run	Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	αo	P(a ₀)%	Δα _o
SAS 1-03 Jan 74-02	1 2	14.2 8.8	.056	429	303 103	25°S 4°S	13.7 7.8	± 4° ± 2°
SAS 1-03 Jan 74-04	1 2 3	14.2 9.8 4.1	.050 .054 .090	246	115 82.8 31.3	20°S 0°	18.9 54.3	±.4° ± 4°
SAS 1-03 Jan 74-05	1 2	14.2 10.9	.040	173	78.4 76.6	27°S 5°S	15.5	± 4° ± 3°
SAS 1-04 Jan 74-01	2 1	14.2 6.0	.055 .182	267	51.6 191	29°S 53°S	17.1 21.3	± 4° ± 3°
SAS 1-04 Jan 74-04	3 1 2	14.2 7.4 5.3	.032 .095 .075	1140	66.5 864 201	14°S 34°S	23.8 48.4	± 4° ± 4°
SAS 1-04 Jan 74-05	2 1 3	14.2 8.1 4.3	.032 .087 .078	603	45.6 502 41.5	23°S 16°S	17.5 47.8	± 4° ± 4°
SAS 1-05 Jan 74-01	2 1	16.8 8.1	.021 .193	2180	82.1 2050	12°S 20°S	14.6 30.7	±4° ±3°
SAS 1-06 Jan 74-04	3 1 2	14.2 8.8 7.4	.032 .043 .128	816	94.4 397 297	15°S 17°S 19°S	19.0 37.6 40.9	± 4° ± 3° ± 4°
SAS 1-06 Jan 74-05	2 3 1	12.3 7.4 5.3	.043 .054 .118	405	122 99.7 167	13°S 26°S	15.4 53.3	±3° ±3°
SAS 1-07 Jan 74-01	1 3 2	10.9 8.1 5.0	.064 .055 .086	278	101 66.6 75.8	8°S 12°N	31.0 47.8	±4° ±3°

Appendix D. (Cont'd)

Run	Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	α _o	P(α ₀)%	Δαο
SAS 1-02 Jan 74-02	1 2 3	12.3 7.4 5.3	.054 .075 .086	290	103 83.8 77.1	17°S 0	17.3 56.7	± 4° ± 4°
SAS 1-07 Jan 74-03	2 1	12.3 5.3	.086	284	112 134	15°S 51°S	20.2 71.6	± 4° ± 3°
SAS 1-07 Jan 74-04	2 1 3	12.3 6.9 4.3	.055 .094 .050	348	79.1 197 64.9	21°S 7°S	19.7 89.6	± 5° ± 5°
SAS 1-08 Jan 74-01	1 2	8.1 5.3	.110	705	534 145	41°S 36°N	38.7 58.1	± 4° ± 3°
SAS 1-08 Jan 74-02	1 2	8.8	.121	1160	879 219	43°S 22°S	39.1 70.8	± 4° ± 4°
SAS 1-08 Jan 74-03	1	8.8	.246	• 1590	1500	18°S	8.6	± 4°
SAS 1-09 Jan 74-01	1 2	8.1 4.3	.128	1660	1360 281	39°S 14°S	52.2 49.7	± 5° ± 4°
SAS 1-09 Jan 74-02	·1	8.8	.240	974	938	30°S	52.6	± 5°
SAS 1-10 Jan 74-03	1 2	20.5	.043	440	238 184	17°S 13°S	8.2 27.1	± 3° ± 3°
SAS 1-11 Jan 74-01	1 2	16.8 7.4	.068	569	431 98.0	8°S 34°S	13.7 48.6	± 4° ± 4°
SAS 1-11 Jan 74-03	1 2	14.2 7.4	.075	224	175 32.0	15°S 23°S	14.1 57.3	± 3° ± 4°
SAS 1-11 Jan 74-04	1 2	14.2	.074	156	125 21.0	18°S 5°N	15.6	± 3° ± 3°
SAS 1-12 Jan 74-01	1	14.2	.061	239	206	15°S 24°S	16.1	± 3° ± 4°

Appendix D. (Cont'd)
---------------	---------

Run	Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_{p}(cm^{2})$	ao	P(α ₀)%	Δαο
SAS 1-12 Jan 74-02	2 1 3	60.2 14.2 6.9	. 032 . 086 . 045	277	11.9 258 7.0	13°S 19°S	10.7 56.9	±3° ±4°
SAS 1-12 Jan 74-03	1 2 3	14.2 9.8 4.1	.049 .108 .036	365	197 136 5.7	18°S 22°S	14.4 16.1	±4° ±4°
SAS 1-12 Jan 74-04	1 2	14.2 8.1	.060 .110	495	298 184	16°S 21°S	14.6 17.1	±3° ±3°
SAS 1-13 Jan 74-01	1	14.2	.182	768	740	14°S	11.2	±3°
SAS 1-13 Jan 74-02	1	14.2	.161	962	946	11°S	11.6	±3°
SAS 1-13 Jan 74-03	1 2	12.3	.089	1700	1520 160	14°S 12°S	11.2 38.1	± 3° ± 3°
SAS 1-13 Jan 74-04	1 2	14.2 7.4	.078 .117	1310	1125 148	9°S 12°S	12.7 31.6	± 3° ± 3°
SAS 1-14 Jan 74-01	1 2 3	14.2 6.9 4.3	.092 .054 .065	1450	1250 74.5 13.9	12°S 5°S	12.7 37.1	± 3° ± 3°
SAS 1-14 Jan 74-02	1	14.2	.203	931	888	9°S	10.1	±3°
SAS 1-15 Jan 74-01	1 2	12.3 4.3	.160	658	611 6.1	5°S 65°S	18.0 39.1	± 3° ± 2°
SAS 1-15 Jan 74-03	1	12.3	.128	512	490	8°S	7.8	± 2°
SAS 1-15 Jan 74-04	2 1 3	16.8 12.3 5.0	.021 .119 .053	473	20.0 332 12.0	5°S	16.5	± 3°
SAS 1-16 Jan 74-01	2 1 3	16.8 10.9 5.3	.036 .096 .064	385	56.6 285 10.6	6°S 11°S	16.1 22.6	± 3° ± 3°

Appendix D.	(Cont'	d)							
Run		Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	ao	P(α)%	Δαο
SAS 1-18 Jan	74-02	1	10.9	.182	651	618	10°S	55.1	± 3°
SAS 1-18 Jan	74-03	1	12.3	.150	721	692			
SAS 1-19 Jan	74-01	1	12.3	.155	611	592			
SAS 1-19 Jan	74-02	2 1	14.2 9.8	.030	387	49.9 284			
SAS 1-19 Jan	74-03	1	10.9	.155	371	358			
SAS 1-19 Jan	74-04	1 2 3	10.9 6.9 4.5	.059 .075 .048	480	214 190 42.0			
SAS 1-20 Jan	74-01	1 2 3	10.9 6.4 4.5	.070 .065 .059	496	330 72.3 31.1			
SAS 1-20 Jan	74-02	1 2	14.2 6.9	.064	1920	1480 349	2°S 3°S	41.0 45.4	± 4° ± 3°
SAS 1-25 Jan	74-02	2 1	14.2 9.8	.036	220	146 64.2	14°S 3°S	27.9 32.6	± 4° ± 3°
SAS 1-26 Jan	74-01	2 1	14.2 7.4	.054	171	72.9 81.3	15° 2°N	14.3 15.0	± 4° ± 2°
SAS 1-26 Jan	74-02	2 3 1	14.2 8.8 4.5	.048 .059 .086	323	113 33.4 139	20°S 1°S	3.1 2.1	± 3° ± 2°
SAS 1-26 Jan	74-03	• 2 1	12.3	.054 .161	348	122 207	8°S 4°N	2.2 54.2	± 3° ± 3°
SAS 1-26 Jan	74-04	2 1 3	12.3 8.1 5.3	.051 .091 .048	856	161 459 151	4°S 13°S	3.8 10.3	± 3° ± 3°

Run	Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	αo	P(α ₀)%	Δαο
SAS 1-27 Jan 74-01	2 1	14.2 8.1	.034 .171	667	111 444	11°S 0°	0.5	± 1° ± 2°
SAS 1-27 Jan 74-02	2 1	10.9 8.1	.064 .134	632	176 401	3°S 0°	1.0 9.2	± 3° ± 3°
SAS 1-27 Jan 74-03	2 1 3	12.3 8.1 4.5	.054 .126 .042	1030	288 680 37.7	4°S 2°N	1.8 4.3	± 3° ± 2°
SAS 1-27 Jan 74-04	2 1	16.8 10.9	.040	1190	227 790	9°S 4°S	0.3	± 2° ± 3°
SAS 1-28 Jan 74-01	1 2	14.2 6.9	.061	697	377 271	6°S 7°S	4.7 54.1	± 3° ± 4°
SAS 1-28 Jan 74-03	1 2	14.2 6.9	.086 .085	414	308 90.3	5°S 0°	10.3 38.2	± 3° ± 4°
SAS 1-28 Jan 74-04	2 1 3	14.2 10.9 6.4	.027 .075 .094	554	145 321 65.8	10°S 4°N	13.6 47.9	± 4° ± 3°
SAS 1-29 Jan 74-01	1 2 3	12.3 9.8 7.4	.057 .036 .079	· 285	127 70.7 63.4	11°S 5°S	19.6 22.9	± 3° ± 3°
SAS 1-29 Jan 74-02	1 2	12.3	.137	468	410 36.4	10°S 4°N	1:7 43.9	± 3° ± 3°
SAS 1-29 Jan 74-03	2 1	14.2 9.8	.062 .156	437	210 212	14°S 8°S	0.1	± 1° ± 3°
SAS 1-29 Jan 74-04	2 1	14.2	.032	322	76.0 223	11°S 4°N	3.1	± 3° ± 2°
SAS 1-30 Jan 74-01	3 2 1	20.5 12.3 8.1	.021 .033 .121	416	17.3 73.0 281	12°S 8°S 5°S	0.1 1.6 9.8	± 1° ± 2° ± 3°

Appendix D. (Conc d)	Appendix	D.	(Cont'd)
----------------------	----------	----	----------

Run	Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	ao	P(α ₀)%	Δαο
SAS 1-30 Jan 74-03	2 1	14.2 6.9	.035 .145	284	113 156	9°S 8°N	20.4 65.0	± 3° ± 3°
SAS 1-30 Jan 74-04	2 1	14.2 6.9	.040	267	76.9 173	7°S 6°N	18.7 32.6	± 3° ± 3°
SAS 1-31 Jan 74-01	1 2	14.2 6.9	.076	240	114 113	6°S 10°N	15.9 35.0	± 3° ± 3°
SAS 1-09 Feb 74-02	1	14.2	.086	130	106			
SAS 1-09 Feb 74-03	1 2	14.2 8.8	.075	115	86.0 12.2	20°S 2°N	19.5 34.6	± 4° ± 4°
SAS 1-10 Feb 74-01	1 2	14.2 8.1	.075	175	128 11.8	17°S 1°N	20.5 35.6	± 4° ± 4°
SAS 1-10 Feb 74-04	1 3 2	14.2 7.4 5.0	.051 .054 .070	274	239 7.1 11.0	11°S 8°N 41°S	1.6 52.5 50.2	± 4° ± 4° ± 3°
SAS 1-11 Feb 74-01	1 2 3	14.2 6.9 4.8	.043 .064 .056	648	540 34.0 32.4	8°S 7°S 70°S	0.3 34.3 46.0	± 2° ± 3° ± 4°
SAS 1-11 Feb 74-02	1 2	14.2 5.3	.054	527	446 67.8	6°S 74°S	1.5 30.5	± 2° ± 4°
SAS 1-11 Feb 74-03	1 2 3	14.2 6.9 5.0	.043 .064 .075	1180	1020 68.1 61.6	4°S 5°S 11°S	2.0 5.8 28.3	± 2° ± 3° ± 3°
SAS 1-11 Feb 74-04	1 2	14.2	.054	698	607 68.0	11°S 1°S	1.0 36.1	± 2° ± 3°
SAS 1-12 Feb 74-01	1 2	14.2	.075	639	547 51.3	7°S 1°N	0.8 38.7	± 2° ± 3°

Run	Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_{p}(cm^{2})$	α _o	P(α ₀)	Δαο
SAS 1-12 Feb 74-02	2 1 3	16.8 12.3 5.3	.021 .067 .107	565	93.0 368 77.4	8°S 5°S	0.3	± 1° ± 1°
SAS 1-26 Feb 74-02	1 2	14.2 6.0	.091 .129	405	221 162	10°S 4°N	1.5	± 3° ± 2°
SAS 1-27 Feb 74-02	2 1	12.3 6.9	.078 .134	655	277 357	5°S 6°N	1.0 6.7	± 2° ± 2°
SAS 1-27 Feb 74-04	1 2	14.2	.075.124	571	441 103	10°S 0°	2.2	± 3° ± 2°
SAS 1-28 Feb 74-01	1	12.3	.099	829	742	6°S	0.6	± 3°
SAS 1-28 Feb 74-07	1	12.3	.121	609	546	4°S	1.0	± 2°
SAS 1-01 Mar 74-01	1	10.9	.118	748	609	1°S	0.5	± 1°
SAS 1-07 Mar 74-03	3 2 1	9.8 6.4 4.8	.050 .059 .064	230	42.2 73.1 84.9	4°S 78°N	12.4	± 2° ± 4°
SAS 1-07 Mar 74-04	2 1	14.2	.054 .150	200	25.9 139	5°S 46°S	1.0	± 3° ± 2°
SAS 1-08 Mar 74-01	1 2	14.2 6.9	.078 .121	625	444 161	6°S 47°S	0.2	± 2° ± 2°
SAS 1-08 Mar 74-04	2 1	14.2 8.8	.047 .183	2100	90.1 2000	6°S 2°S	3.2	± 3° ± 2°
SAS 1-09 Mar 74-01	1	10.9	.164	1520	1400	1°N	3.1	± 2°
SAS 1-09 Mar 74-02	1 2	10.9 7.4	.070.118	1130	622 482	5°S 24°S	1.7 63.1	± 3° ± 4°
SAS 1-09 Mar 74-03	1	10.9	.215	411	388	6°S	4.2	± 2°

Appendix D. (Cont'd)

Run	Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	ao	P(α ₀)%	Δαο
SAS 1-10 Mar 74-03	1 2 3	14.2 8.8 6.4	.064 .043 .085	124	50.2 30.8 30.0	13°S 4°S	3.2 58.2	± 2° ± 4°
SAS 1-11 Mar 74-01	1 2	10.9 6.9	.075	153	66.0 48.5	6°S 25°S	2.9 20.2	± 2° ± 3°
SAS 1-15 Mar 74-03	1 2	16.8 10.9	.032 .149	277	138 122	8°S 6°S	0.1	± 1° ± 2°
SAS 1-16 Mar 74-02	1 2	14.2 8.8	.054	170	136 23.3	12°S 7°S	0.7	± 1° ± 3°
SAS 1-16 Mar 74-03	1 2 3	16.8 12.3 8.1	.025 .039 .125	169	89.0 54.9 16.8	13°S 11°S	0.1 0.9	± 1° ± 2°
SAS 1-17 Mar 74-01	1	14.2	.118	209	188	11°S	2.0	± 2°
SAS 1-17 Mar 74-02	1 2 3 5 4	16.8 12.3 8.8 6.4 4.1	.024 .030 .053 .042 .060	224	94.4 86.7 25.4 6.5 17.5	20°S 6°S 11°S	0.6 7.3 5.9	± 2° ± 3° ± 3°
SAS 1-17 Mar 74-03	1 3 2	14.2 7.4 4.3	.055 .070 .075	210	159 11.7 23.6	14°S 10°S	0.5	± 2° ± 2°
SAS 1-22 Mar 74-01	1 2 3	14.2 7.4 4.3	.066 .078 .062	396	327 32.3 17.1	22°S 11°S 20°N	1.8 10.1 48.5	± 2° ± 2° ± 3°
SAS 1-22 Mar 74-02	1 2	14.2 4.5	.080	354	270 53.0	16°S 67°S	5.5 41.0	± 3° ± 3°
SAS 1-22 Mar 74-03	1 2	12.3 5.0	.095	188	131 23.5	11°S 13°N	7.3	± 2° ± 4°

Appendix D. (Cont'd)

Run	Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_{p}(cm^{2})$	۵ ₀	P(α ₀)%	Δαο
SAS 1-22 Mar 74-04	3 2 1	26.2 16.8 12.3	.021 .028 .102	149	6.7 54.0 61.0	22°S 22°S	0.4	± 2° + 3°
SAS 1-26 Mar 74-01	1 2 3	20.5 9.8 6.0	.062 .048 .112	1440	1090 136 23.6	18°S 12°S	9.2 27.7	± 3° ± 3°
SAS 1-26 Mar 74-02	1 2 3	16.8 8.8 6.0	.046 .054 .110	1660	1230 295 78.5	12°S 9°S	14.5 25.8	± 4° ± 3°
SAS 1-26 Mar 74-03	3 1 2	60.2 16.8 8.8	.030 .043 .134	1430	22.9 1200 169	13°S 9°S	14.9	± 4° + 7°
SAS 1-27 Mar 74-01	1 2 3	16.8 8.1 5.3	.060 .065 .084	1910	1610 189 36.5	6°S 6°S	13.8 29.7	± 4° ± 3°
SAS 1-27 Mar 74-02	1 2	16.8 8.1	.075 .115	1300	1120 183	16°S 4°N	16.1 74 7	± 4° + 5°
SAS 1-27 Mar 74-03	1	14.2	.151	2140	2090	11°S	20.7	+ 40
SAS 1-28 Mar 74-01	1	14.2	.161	1830	1780.	8°S	18.7	- 4 + 10
SAS 1-28 Mar 74-03	1	12.3	.155	1260	1200	9°S	20.7	- 4 + 2°
SAS 1-28 Mar 74-04	1	14.2	.144	1140	1110	9°S	10 3	4 70
SAS 1-29 Mar 74-01	1	20.5	.214	1320	1270	19°S	7 0	÷ 5 + 7°
SAS 1-29 Mar 74-02	1	14.2	.155	1630		8°S	10.2	- 3 + 7°
SAS 1-29 Mar 74-03	2 1	36.6	.022	2470	30.6 2370	7°S	. 16.7	÷ 3

Run	Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	ao	P(α ₀)%	Δαο
SAS 1-29 Mar 74-04	4 1 2 3	60.2 14.2 8.1 4.5	.040 .064 .053 .075	2300	69.1 1860 225 70.9	7°S 13°S	16.4 32.5	± 4° ± 4°
SAS 1-30 Mar 74-01	3 1 2	60.2 14.2 4.5	.038 .097 .068	1390	59.2 1150 64.6	7°S 86°N	17.7 32.7	± 4°
SAS 1-30 Mar 74-02	1 2 3	14.2 7.4 5.0	.054 .044 .096	1580	1180 221 70.7	7°S 15°S	18.9 41.3	± 4° ± 3°
SAS 1-30 Mar 74-03	1	14.2	.144	1110	1070	5°S	15.9	± 3°
SAS 1-30 Mar 74-04	2 1 3	60.2 14.2 4.5	.038 .142 .064	1180	44.4 1080 33.6	12°S 4°N	17.7 35.5	± 4° ± 3°
SAS 1-31 Mar 74-01	1 2	12.3 6.0	.086	1440	1060 333	8°S 16°S	18.3 80.3	± 3° ± 3°
SAS 1=31 Mar 74-02	1 2 3	12.3 8.1 4.3	.064 .080 .065	2400	1190 922 192	8°S 9°S	19.7 40.1	± 4° ± 3°
SAS 1-01 Apr 74-01	1 3 2	12.3 8.1 6.0	.059 .055 .076	2140	1610 161 284	7°S 0°	20.1 36.9	± 3° ± 4°
SAS 1-01 Apr 74-02 °	3 1 2	60.2 12.3 5.6	.054 .129 .065	1680	35.3 1480 84.7	8°S 4°S	20.1 35.0	± 3° ± 3°
SAS 1-01 Apr 74-03	1 2	12.3 8.1	.064	1590	918 595	4°S 4°S	2.0 72.5	± 3° ± 4°

THE R PERSON NEWS

Appendix D. (Cont'd)

Run		Peak	(sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	ao	P(a_)%	Δα
SAS 1-01 A	pr 74-04	1 2	14.2	.087	1660	1160 398	11°S 10°S	18.7	± 3° ± 4°
SAS 1-02 A	pr 74-01	2	14.2 5.6	.070	1530	567 942	7°S 5°S	17.7	± 4° ± 4°
SAS 1-03 A	or 74-01	1	8.8	.172	1900	1790	3°S	3.3	± 2°
SAS 1-03 Ap	or 74-03	1	9.8	.180	2500	2380	6°S	4.0	± 2°
SAS 1-03 Ap	or 74-04	2 1	16.8 8.8	.043 .091	1340	415 636	17°S 2°S	0.4	± 1° ± 3°
SAS 1-04 Ap	or 74-01	2	16.8 9.8	.064	1140	261 578	14°S 3°S	3.1	± 3° ± 2°
SAS 1-04 Ap	or 74-02	2	16.8	.043	963	235 665	21°S 7°S	0.7	± 1° ± 2°
SAS 1-05 Ap	r 74-01	1	12.3	.129	522	521	6°S	3.1	± 3°
SAS 1-05 Ap	r 74-02	1	14.2	.140	487	440	14°S	3.1	± 3°
SAS 1-05 Ap	r 74-04	1	14.2	.126	348	315	20°S	2.2	+ 4°
SAS 1-05 Ap	r 74-05	1	12.3	.145	424	291	9°S -	0.9	+ 2°
SAS 1-07 Ap	r 74-02	2 1	14.2	. 075 . 064	522	233 251	11°S 2°S	3.6	± 3° ± 2°
SAS 1-07 Ap	r 74-03	1	12.3	.054	1220	1030	6°S	0.8	± 2°
SAS 1-09 Ap	r 74-04	1 2	12.3 8.8	.064	651	181 424	8°S 3°S	1.9	± 3°
SAS 1-12 Ap	r 74-03	2 1	16.8	.032	442	22.2			
SAS 1-13 Ap:	r 74-01	1	12.3	.107	612	596	1°S	0.6	± 2°

Appendix D.	(Cont'	d)
-------------	--------	----

Run	Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	ao	P(α ₀)%	Δαο
SAS 1-13 Apr 74-02	2 1	16.8 10.9	.011 .096	541	66.5 451	17°S 1°S	1.2	* 3° ± 3°
SAS 1-13 Apr 74-03	2 1	16.8 10.9	.032	443	80.4 330	11°S 7°S	1.0 3.1	± 2° ± 2°
SAS 1-13 Apr 74-04	2 1	16.8 10.9	.032 .140	383	113 236	12°S 2°S	4.4	± 2° ± 2°
SAS 1-14 Apr 74-01	2 1	14.2 10.9	.048	338	139 177	8°S 1°S	5.6	± 3° ± 3°
SAS 1-14 Apr 74-03	2 1	14.2 9.8	.048 .161	247	99.5 126	9°S 7°S	4.8 32.0	± 3° ± 4°
SAS 1-14 Apr 74-04	1	14.2	.139	229	212	16°S	5.2	± 3°
SAS 1-15 Apr 74-01	1 2	14.2 4.5	.115	266	168 45.0	17°S 32°S	3.5 42.8	± 3° ± 4°
SAS 1-15 Apr 74-03	1	14.2	.139	186	176	18°S	1.6	± 3°
SAS 1-15 Apr 74-04	1	14.2	.089	216	194	12°S	12.5	± 3°
SAS 1-16 Apr 74-01	1 2	14.2	.071	402	205 162	11°S 5°N	3.2 12.0	± 3° ± 3°
SAS 1-16 Apr 74-02	3 2 1	16.8 12.3 7.4	.019 .038 .121	744	45.6 162 493	30°S 2°	0.3	± 1° ± 3°
SAS 1-16 Apr 74-03	1 2 3	12.3 6.0 4.3	.912 .617 .429	761	525 167 54	3°S 5°N	3.2 35.5	± 3° ± 4°
SAS 1-16 Apr 74-04	1 2	9.8 5.0	.122	764	590 123	l°N 0°	0.5	± 3° ± 3°

17.10

1.15

Run		Peak	(sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_{p}(cm^{2})$	ao	P(a)%	Δα
SAS 1-17 Apr	r 74-01	1 2	12.3 8.8	.067	366	184 147	10°S 1°S	1.5	± 3° ± 2°
SAS 1-17 Apr	r 74-02	1 2	10.9 8.1	.066 .048	259	181 34.1	8°S 4°S	2.8	± 2° + 3°
SAS 1-17 Apr	r 74-03	1 2	10.9 4.3	.140	237	185 24.1	7°S 76°S	2.1	± 2° + 5°
SAS 1-18 Apr	c 74-01	2 1 3	16.8 10.9 4.1	.048 .099 .059	221	73.5 104 40.5	10°S 8°S	0.3	± 2° ± 3°
SAS 1-18 Apr	74-02	1 2 3	16.8 10.9 4.3	.043 .097 .064	317	186 65.3 45.1	6°S 8°S	0.1 3.6	± 1° ± 2°
SAS 1-18 Apr	74-03	1 3 2	14.2 10.9 5.3	.054 .054 .090	318	118 37.7 111	6°S 10°S	0.6	± 1° ± 3°
SAS 1-18 Apr	74-04	2 1	14.2	.040	812	146 576	9°S 3°S	3.0	$\pm 3^{\circ}$
SAS 1-19 Apr	74-01	2 1	14.2 8.8	.054	1300	285 890	4°S 3°S	1.1	± 3° + 2°
SAS 1-20 Apr	74-01	1	8.8	.097	625	593	11°S	11.8	+ 4 °
SAS 1-20		2 1	10.9 7.4	.032	498	92.0 354	9°S 1°N	3.5	± 2° ± 4°
SAS 1-20 Apr	74-03	1	10.9	.075	373	324	9°S	6.1	± 3°
SAS 1-20 Apr	74-04	2 1	16.8 9.8	.032	564	29.7 490	15°S 9°S	1.8	± 4° + 3°

Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	ao	P(a_)%	Δαο
2 1	16.8	.043	406	73.3 287	11°S 2°S	0.9 2.6	± 4° ± 4°
2 1	16.8	.043 129	343	58.8 252	10°S 11°S	2.1 20.6	± 3° ± 3°
2 1	16.8	.043	328	108 147	11°S 4°S	0.4	± 2° ± 2°
2 1	14.2 8.8	.054	434	112 317	11°S 8°S	2.1 4.9	± 3° ± 2°
2 1	14.2	.054	266	85.2 138	12°S 1°S	1.6 0.9	± 4° ± 3°
1 2	9.8 6.0	.107	245	141 85.2	3°S 9°S	7.0 38.3	± 2° ± 4°
3 1 2	20.5 14.2 4.8	.021 .043 .075	262	17.0 118 68.1	9°S 9°S	1.0	± 3° ± 3°
3 2 1	20.5 10.9 5.0	.011 .064 .122	369	16.4 93.1 234	3°S 10°S	0.7 61.0	± 3° ± 3°
3 1 2	16.8 10.9 5.0	.029 .093 .093	253	42.1 122 71.8	5°S 0°	3.2 1.4	± 3° ± 3°
• 2 1 3	16.8 10.9 4.8	.032 .102 .051	302	120 138 23.7	2°S 6°S	0.3 2.1	± 1° ± 3°
1	14.2	.118	356	327	10°S	1.4	± 3°
1	14.2	.078	262	246	8°S	1.6	± 3°
	Peak 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	Period (sec)216.818.1216.818.1216.8110.9214.218.8214.219.826.0320.5114.224.8320.5114.225.0316.8110.925.0216.8110.934.8114.2114.2	Period PeakPeriod (sec) $BW(Hz)$ 216.8.04318.1.140216.8.04318.1129216.8.043110.9.107214.2.05418.8.064214.2.05419.8.10726.0.096320.5.021114.2.04324.8.075320.5.011210.9.06415.0.122316.8.029110.9.09325.0.093216.8.032110.9.10234.8.051114.2.118114.2.078	PeakPeriod (sec) $BW(Hz)$ $E_T(cm^2)$ 216.8.04340618.1.140216.8.04334318.1129216.8.043328110.9.107214.2.05443418.8.064214.2.054266110.9.06419.8.10724526.0.096320.5.021262114.2.04324.8.075320.5.011369210.9.06415.0.122316.8.029253110.9.09325.0.093216.8.032302110.9.10234.8.051114.2.118356114.2.078262	Period (sec) $BW(Hz)$ $E_T(cm^2)$ $E_p(cm^2)$ 216.8.04340673.318.1.140287216.8.04334358.818.1129252216.8.043328108110.9.107147214.2.05443411218.8.064317214.2.05426685.2110.9.06413819.8.10724514126.0.09685.2320.5.02126217.0114.2.04311824.8.07568.1320.5.01136916.4210.9.06493.115.0.122.234316.8.02925342.1110.9.093.71.8216.8.032302120110.9.10213834.8.051.23.7114.2.118356327114.2.078262246	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Run	Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	ao	P(α ₀)%	Δαο
SAS 1-24 Apr 74-02	Ĩ	14.2	.097	287	275	7°S	4.1	± 3°
SAS 1-25 Apr 74-03	1 2	10.9 6.4	.072 .097	839	439 313	4°S 2°N	1.2 23.3	± 3° ± 4°
SAS 1-25 Apr 74-04	3 2 1	16.8 12.3 6.9	.032 .054 .107	806	90.5 270 275	24°S 5°S	0.3 2.0	± 2° ± 3°
SAS 1-26 Apr 74-01	1	7.4	.097	839	810	12°S	23.2	± 3°
SAS 1-26 Apr 74-02	3 2 1	16.8 10.9 7.4	.024 .024 .136	753	52.2 74.5 584	26°S 3°S	0.3	± 2° ± 4°
SAS 1-26 Apr 74-05	2 1	14.2 6.9	.043	467	100 318	23°S 3°N	1.0 43.8	± 1° ± 5°
SAS 1-27 Apr 74-01	2 1	14.2	.025	593	44.3 531	26°S 1°N	2.0 34.6	± 3° ± 4°
SAS 1-27 Apr 74-02	3 2 1	16.8 8.1 5.6	.064 .054 .107	244	59.8 80.1 93.5	24°S 4°S	0.9 32.2	± 1° ± 4°
SAS 1-27 Apr 74-03	2 1	14.2 8.8	.032	222	34.3 167 [.]	23°S 13°S	8.8 29.0	± 3° ± 5°
SAS 1-27 Apr 74-04	2 1	14.2	.032	383	34.9 293	13°S 14°S	13.3 25.6	± 4° ± 4°
SAS 1-28 Apr 74-01	2 1	14.2 8.8	.032	526	62.4 411	23°S 2°N	3.07.5	± 4° ± 4°
SAS 1-28 Apr 74-02	2 1	14.2 9.8	.043	431	62.8 298	26°S 1°S	3.6	± 4° ± 4°
SAS 1-28 Apr 74-04	1	6.9	.183	480	428	6°N	22.1	± 4°

Appendix D.	(Cont'o	1)							
Run		Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	α _o	P(α ₀)%	Δαο
SAS 1-29 Apr	74-01	2 1	12.3	.054	533	137 384	0° 5°N	6.1 7.0	± 3° ± 2°
SAS 1-29 Apr	74-03	1 2	10.9 6.9	.104	323	188 80.8	1°S 7°N	1.1 34.4	± 3° ± 4°
SAS 1-29 Apr	74-04	1 2	10.9 6.0	.113	256	162 80.7	0° 6°N	1.2 71.1	± 3° ± 4°
SAS 1-30 Apr	74-01	2 1	10.9 6.4	.067	321	75.6 216	4°S 19°S	4.6	± 2° ± 4°
SAS 1-30 Apr	74-02	2 1	12.3	.067 .142	189	44.9 131	10°S 23°S	9.2 38.7	± 2° ± 4°
SAS 1-30 Apr	74-03	2 1	12.3 5.3	.064	356	94.9 250	7°S 3°N	1.0 74.6	± 3° ± 5°
SAS 1-30 Apr	74-04	3 2 1	16.8 12.3 6.4	.027 .038 .104	352	36.8 50.6 182	24°S 10°S	0.3 2.8	± 3° ± 3°
SAS 1-01 May	74-01	2 3 1	16.8 12.3 6.9	.032 .025 .136	563	77.6 42.7 411	28°S 3°S	0.3 4.8	± 2° ± 3°
SAS 1-01 May	74-02	2 3 1	16.8 12.3 7.4	.043 .043 .114	268	84.1 61.9 100	26°S 7°S	0.1 2.0	± 1° ± 4°
SAS 1-01 May	74-03	1	12.3	.144	274	241	5°S	1.6	± 3°
SAS 1-01 May	74-04	1	14.2	. 086	206	195	23°S	0.8	± 2°
SAS 1-02 May	74-01	2 1	12.3	.075	478	170 261	6°S 2°N	2.4 27.0	± 3° ± 3°

Run	Peak	Period (sec)	BW(Hz)	E _T (cm ²)	$E_{p}(cm^{2})$	a	P(a)%	Δα
SAS 1-02 May 74-02	2 1	14.2 10.9	.043	287	67.1 191	20°S	1.2	3°
SAS 1-02 May 74-03	2	14.2 10.9	. 043 . 054	241	66.6 96.0	25°S	0.9	3° 2°
SAS 1-02 May 74-04	1 2	14.2 5.6	. <mark>091</mark> . 091	323	175 100	23°S 5°N	0.8	3°
SAS 1-03 May 74-01	1 2 3	16.8 10.9 5.3	.048 .051 .070	311	116 104 51.5	22°S 9°S	0.4 9.7	1° 3°
SAS 1-03 May 74-02	1 2	14.2	.097	617	422	17°S 0°	4.0	3°
SAS 1-03 May 74-03	1 2	12.3	.094 .070	567	400 136	4°S 10°N	1.0	3°
SAS 1-04 May 74-01	1	16.8	.104	499	447	25°S	0.1	4
	3 1 2	14.2 10.9 5.3	.032 .067 .094	482	99.1 243 108	27°S 5°S	0.2	1° 3°
SAS 1-04 May 74-04	2 1	14.2 10.9	.043	323	65.1 211	28°S 5°S	0.6	1° 2°
SAS 1-05 May 74-01	2 3 1	14.2 9.8 4.8	.048 .048 .110	351	98.0 69.8 170	26°S 2°S	0.75.2	1° 2°
SAS 1-05 May 74-02	1 2 3	14.2 9.8 5.0	.059 .070 .056	256	100 69.1 69.1	24°S 1°S	5.9 5.6	3° 2°
SAS 1-05 May 74-03	3 1 2	14.2 9.8 5.3	.054 .064 .051	303	80.3 104 85.6	18°S 3°S	7.4	3° 2°

Appendix D. (Cont'd)

2° 3° 3°

Appendix D. (Com								
Run	Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	ao	P(α ₀)%	Δαο
SAS 1-05 May 74-04	1 2	16.8	.102	235	146 79.3	21°S 7°N	0.1 22.7	± 2° ± 3°
SAS 1-06 May 74-01	2 3 1	14.2 8.8 6.0	.048 .022 .112	334	141 20.3 154	17°S 3°S	5.5	± 3° ± 2°
SAS 1-06 May 74-02	1	16.8	.059	240	123 92.3	22°S 6°N	0.2 86.8	± 2° ± 3°
SAS 1-07 May 74-01	1	14.2	.054	282	167 98.3	20°S 3°N	3.3 28.8	± 3° ± 2°
SAS 1-07 May 74-04	1	14.2	.050	175	124 34.0	13°S 3°S	5.1 23.5	± 3° ± 2°
SAS 1-08 May 74-03	1	12.3	.075	165	114 42.3	6°S 7°N	34.1 44.4	± 3° ± 2°
SAS 1-08 May 74-04	1	12.3	.080	171	134 21.8	14°S 29°S	27.7 32.0	± 5° ± 3°
CAS 1 00 Max 74-01	1	12.3	.118	213	199	10°S	12.0	± 4°
SAS 1-09 May 74-01 SAS 1-09 May 74-02	2 1 3	16.8 12.3 6.9	.027 .054 .108	249	84.6 96.4 54.5	9°S 18°S -	2.07.4	± 4° ± 3° -
SAS 1-00 May 74-03	1	16.8	.107	318	305	9°S	1.1	± 3°
SAS 1-09 May 74-04	1	14.2	.105	512	470 24.0	6°S 27°N	0.7 70.2	± 2° ± 2°
SAS 1-10 May 74-01	1	14.2	.095	457	376 58.8	10°S 43°S	6.6 64.6	± 2° ± 3°

Appendix D. (Cont'd)

Appendix D. (Cont	'd)							
Run	Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	ao	P(α ₀)%	Δαο
SAS 1-10 May 74-04	2 1 3	14.2 10.9 6.9	.032 .043 .085	471	107 231 133	13°S 3°S	4.3 1.8	± 3° ± 2°
SAS 1-11 May 74-01	2 1	14.2 8.8	.043	731	267 236	22°S 0°	3.6	± 3° ± 2°
SAS 1-11 May 74-02	3 2 1	20.5 12.3 8.8	.013 .037 .139	678	15.1 290 345	15°S 8°S 1°S	0.2 3.1 2.5	± 3° ± 3° ± 3°
SAS 1-11 May 74-04	1 2 3	14.2 10.9 8.1	.054 .035 .065	525	195 166 138	16°S 2°S 0°	13.7 0.8 10.8	± 4° ± 2° ± 3°
SAS 1-12 May 74-01	1 2	14.2 8.8	.056 .086	487	258 216	10°S 3°S	4.5	± 3° ± 2°
SAS 1-12 May 74-02	3 2 1	20.5 14.2 9.8	.021 .035 .117	594	23.5 202 316	17°S 14°S	0.27.0	± 3° ± 3°
SAS 1-12 May 74-03	1 2	14.2 6.4	.077 .117	414	304 96.0	8°S 3°N	1.7 22.6	± 3° ± 3°
SAS 1-12 May 74-04	2 1	16.8 8.1	.025 .171	554	77.6 421	21°S 1°S	0.5	± 1° ± 2°
SAS 1-13 May 74-01	2	16.8 12.3	.025	567	60.1 441	20°S 10°S	0.5	± 1° ± 3°
SAS 1-13 May 74-02	2 3 1	16.8 12.3 8.1	.032 .032 .128	736	192 72.0 358	23°S 20°S	0.1 5.9	± 1° ± 2°

Appendix D.	(Cont'd)								
Run		Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	ao	P(α ₀)%	Δαο
SAS 1-13 May	74-03	2 3 1	16.8 12.3 8.8	.032 .036 .110	805	151 150 387	25°S 3°S	0.2 2.7	$\pm 1^{\circ}$ $\pm 3^{\circ}$
SAS 1-13 May	74-04	2 3 1	16.8 9.8 8.1	.038 .032 .117	1010	282 216 499	26°S 1°N	14.9 4.3	± 3° ± 2°
SAS 1-14 May	74-02	1 2	16.8 7.4	.037	894	476 380	29°S 3°N	1.9 3.0	± 2° ± 2°
SAS 1-14 May	74-05	2 1	16.8 9.8	.048 .161	736	245 482	21°S 1°N	4.3	± 3° ± 2°
SAS 1-14 May	74-06	1 3 2	16.8 8.8 6.9	.047 .043 .107	597	251 145 153	24°S 3°N	2.9 5.1	± 3° ± 2°
SAS 1-15 May	74-02	1 2	16.8 7.4	.064	967	389 355	7°S 2°N	2.3 17.9	± 4° ± 2°
SAS 1-16 May	74-01	2 1	16.8 9.8	.048 .134	778	204 537	23°S 1°S	0.5	± 2° ± 2°
SAS 1-16 May	74-02	1 2 3	14.2 8.8 6.0	.055 .053 .098	968	509 303 126	11°S 2°N	7.27.5	± 3° ± 2°
SAS 1-16 May	74-04	2 1	14.2 9.8	.048 .123	642	229 380	21°S 2°S	1.4 2.7	± 3° ± 2°
SAS 1-17 May	74-01	2 1	14.2 8.1	.043	574	164 366	20°S 0°	3.8 3.0	± 3° ± 2°
SAS 1-17 May	74-03	2 1	12.3 7.4	.063	1040	250 762	4°S 3°S	5.2	± 3° ± 2°

A PRIME DOWNLOW SERVICE

K Br X A A T

UDDOUGTY DI (OONC G	(Cont'd)
---------------------	----------

Run	Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	ao	P(α ₀)%	Δαο
SAS 1-17 May 74-04	2 1	12.3	.059 .144	1250	255 932	10°S 2°N	6.3 15.6	± 3° ± 3°
SAS 1-18 May 74-01	2 1	12.3	.049 .139	1720	195 1440	5°S 4°S	2.5 51.7	± 3° ± 4°
SAS 1-18 May 74-02	2 1	12.3 8.1	.043	2750	241 2350	3°S 3°N	$\begin{array}{c}1.1\\10.6\end{array}$	± 2°. ± 3°
SAS 1-18 May 74-03	2 1	12.3 8.1	.048	2620	203 2380	4°S 7°N	1.7 9.4	± 3° ± 3°
SAS 1-19 May 74-01	1	8.1	.171	2070	2000	8°S	17.5	± 3°
SAS 1-19 May 74-02	2 1	14.2 8.8	.032 .150	1420	36.2 1330	23°S 2°N	0.5	± 3° ± 2°
SAS 1-19 May 74-03	1	8.8	.193	1100	1080	1°S	1.5	± 2°
SAS 1-19 May 74-04	3 2 1	14.2 10.9 7.4	.021 .032 .149	755	16.5 50.1 720	25°S 3°S 0°	0.7 2.0 5.2	$ \begin{array}{c} \pm 1^{\circ} \\ \pm 2^{\circ} \\ \pm 2^{\circ} \end{array} $
SAS 1-20 May 74-01	2 1	14.2 8.1	.032 .155	840	25.2 794	23°S 1°S	0.4 3.7	± 2° ± 2°
SAS 1-20 May 74-04	2 1	14.2 8.1	.043 .182	463	23.6 333	23°S 1°S	0.5 2.3	± 2° ± 2°
SAS 1-21 May 74-02	2 1	14.2 8.1	.054	462	42.3 400	23°S 0°	0.8	± 2° ± 2°
SAS 1-25 May 74-02	2	14.2	.043	283	107 170	23°S 1°S	0.7	± 2° ± 2°

Run	Peak	Period (sec)	BW(Hz)	$E_{T}(cm^{2})$	$E_p(cm^2)$	ao	P(α ₀)%	Δαο
SAS 1-25 May 74-03	1 2 3	16.8 8.8 7.4	.032 .044 .117	318	142 97.9 69.3	24°S 2°S 3°N	0.1 5.7 1.7	± 1° ± 2° ± 2°
SAS 1-25 May 74-04	2 1	16.8 8.8	.032	355	136 207	23°S 1°N	0.3	± 1° ± 1°
SAS 1-26 May 74-01	1 2	16.8 8.1	.030 .145	609	296 284	26°S 1°N	0.1 6.3	$\pm 1^{\circ}$ $\pm 2^{\circ}$
SAS 1-28 May 74-04	2 3 1	14.2 10.9 7.4	.036 .030 .141	235	88.6 46.7 90.6	23°S 2°S 0°	0.5 0.9 5.7	± 2° ± 2° ± 2°
SAS 1-29 May 74-01	1 2 3	14.2 10.9 6.4	.035 .054 .095	264	124 67.4 63.7	22°S 4°S 12°S	0.6 2.5 68.4	± 2° ± 2° ± 4°

Definition of Terms:

In a multimodal energy spectrum the peaks are ordered with respect to their energies.
The modal period for the defined peak of the data of all four sensors.
The bandwidth, an average of the data of all four sensors.
The total energy of the spectrum, average of the data of all four sensors.
The energy contained in a spectral peak, average of the data of all four sensors.

- α_{o} : The direction of the best fit to a single wave train for the four sensor array, measured from the vertical to the array. The fitting technique is based on the minimum value of $P(\alpha_{o})$.
- $P(\alpha_{\alpha})$: A measure of the effectiveness of the fit.

 $\Delta \alpha_{o}$: The uncertainty assigned to α_{o} .

Appendix E. A tabular display of the variability of the energy levels of the various sensors for a given SAS run. The terms are defined at the end of the table and are derived in Appendix H.

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-06 Feb 73-01	1 2 3 4	848 895 873 851	866	+3.3, -2.1	340 354 357 406	364	+11.5, -6.6
SAS 1-12 Feb 73-01	2 3 4	4130 3740 3630	3840	+7.5, -5.5	3290 3300 3540	3380	+4.7, -2.6
SAS 1-12 Feb 73-04	2 3 4	1600 1450 1420	1490	+7.4, -4.4	1200 1100 1000	1100	±9.1
SAS 1-13 Feb 73-01	2 3 4	1870 1570 1510	1650	+12.7, -8.6	1500 1010 1080	1200	+25, -10
SAS 1-13 Feb 73-02	2 3 4	1740 1750 1670	1720	+1.1, -2.9	1350 1130 1180	1220	+10.6, -3.3
SAS 1-13 Feb 73-04	2 3 4	1130 966 1090	1060	+6.6, -8.9	996 884 1020	965	+5.4, -8.3
SAS 1-14 Feb 73-01	2 3 4	1970 2100 2090	2050	+2.4, -3.9	1910 2040 2030	2000	+1.5, -4.5
SAS 1-14 Feb 73-02	2 3 4	1880 1830 1860	1860	+1.1, -1.6	1750 1590 1580	1640	+6.7, -3.6

Appendix	Ε.	(Cont	'd)
----------	----	-------	-----

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E_{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-14 Feb 73-03	2 3 4	1460 1410 1350	1400	+4.1, -3.4	1050 1070	1060	± .9
SAS 1-14 Feb 73-04	2 3 4	749 810 834	748	+4.5, -6.1	723 777 809	770	+5.1, -6.1
SAS 1-15 Feb 73-03	2 3 4	1260 1010 1100	1120	+12.5, -9.8	735 550 727	670	+9.7,-17.9
SAS 1-16 Feb 73-02	2 3 4	1160 1120 1060	1110	+4.5, -3.6	1010 1020 927	986	+3.4, -6.0
SAS 1-17 Feb 73-01	2 3 4	860 694 686	746	+15.3, -8.0	819 508 542	623	+31.4,-13.0
SAS 1-17 Feb 73-04	2 3 4	861 838 849	849	+1.4, -1.3	716 592 584	631	+13.4, -7.4
SAS 1-18 Feb 73-01	2 3 4	1390 1420 1470	1430	+2.8, -2.4	1050 1080 1100	1070	÷2.0, -2.5
SAS 1-18 Feb 73-02	2 3 4	1600 1710 1760	1690	+4.2, -5.2	1340 1490 1412	1420	+5.2, -4.9

Appendix	E.	(Cont'	(b)
----------	----	--------	-----

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-18 Feb 73-03	2 3 4	1710 1570 1480	1590	+7.6, -6.7	1310 1250 1190	1250	+4.9, -4.5
SAS 1-18 Feb 73-04	2 3 4	1650 1580 1540	1590	+3.8, -3.3	1510 1400 1360	1420	+4.4, -6.1
SAS 1-19 Feb 73-02	2 3 4	1170 1060 1030	1090	+7.8, -5.5	934 862 831	867	+6.7, -5.2
SAS 1-20 Feb 73-01	2 3 4	832 830 850	837	+1.5,60	467 474 477	473	+.84, -1.3
SAS 1-20 Feb 73-03	2 3 4	1360 1350 1310	1340	+1.5, -2.0	1110 1150 1130	1130	+1.9, -1.8
SAS 1-21 Feb 73-02	2 3 4	740 812 818	790	+3.5, -6.3	645 765 757	722	+4.8,-10.7
SAS 1-21 Feb 73-05	2 3 4	694 667 650	670	+3.6, -3.0	648 627 607	627	+3.3, -3.2
SAS 1-22 Feb 73-01	2 3 4	685 674 702	687	+2.2, -2.9	425 416 449	430	+4.4, -3.3
SAS 1-22 Feb 73-02	2 3 4	539 555 551	548	+1.3, -1.6	504 537 527	523	+2.7, -3.6

and the second

100

1.00

And Different

176

Run	Sensor E	r (cm ²)	Mean (cm ²)	Range (%)	$E_{p1} \cdot (cm^2)$	Mean (cm ²)	Range (%)
SAS 1-23 Feb 73-01	1 2 3 4	244 223 211 190	217	±12.4	196 187 185 159	182	+7.7,-12.6
SAS 1-23 Feb 73-02	1 2 3 4	194 173 147 139	163	+19., -14.1	147 139 124 127	134	+9.7, -7.5
SAS 1-24 Feb 73-01	1 2 3 4	181 165 127 116	147	+23.1,-21.	152 146 115 103	129	+17.8,-20.2
SAS 1-24 Feb 73-02	1 2 3 4	182 164 133 122	150	+21.3,-18.7	144 139 117 108	127	+13.4,-28.3
SAS 1-24 Feb 73-03	1 2 3 4	715 750 799 765	745	+7.2, -4.0	643 679 730 715	697	+5.5, -7.0
SAS 1-24 Feb 73-04	1 2 3 4	1380 1290 1440 1480	1390	+6.6, -6.9	1200 1110 1370 1320	1250	+9.3,-11.1
SAS 1-25 Feb 73-01	1 2 3 4	2240 2260 2390 1900	2190	+8.9,-13.6	1830 1880 2200 1570	1870	+17.6,-16.0

15

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E_{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-25 Feb 73-02	2 3	2970 . 3160	3060	±3.1	2340 2490	2420	±3.2
SAS 1-25 Feb 73-03	2 3	2770 2660	2700	±2.1	2310 2320	2320	± .3
SAS 1-25 Feb 73-04	2 3	2170 2110	2140	±1.4	881 1120	1000	±11.8
SAS 1-26 Feb 73-01	2 3	1680 1640	1660	±1.3	1640 1530	1590	±3.4
SAS 1-27 Feb 73-01	2 3	1820 1620	1720	±5.9	1540 1490	1490	±3.6
SAS 1-22 Mar 73-01	2 3 4	1080 1300 1310	1230	+6.5,-12.3	758 977 767	834	+17.1, -9.1
SAS 1-06 Apr 73-01	1 2 3 4	194 219 206 211	207	+6.3, -2.0	78 66 125 105	93	+16.1,-34.4
SAS 1-07 Apr 73-03	1 2 3 4	481 471 399 456	451	+11.5, -6.6	217 135 212 180	186	+16.7,-27.4
SAS 1-10 Apr 73-02	1 2 3 4	184 127 132 154	149	+23.5,-14.8	131 80 88 132	108	+22, -25.9

X X Y X Y
.

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E_{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-10 Apr 73-03	1 2 3 4	182 136 157 163	160	+13.8,-15	111 93 106 118	107	+10.3,-13
SAS 1-11 Apr 73-01	1 2 3 4	166 128 129 166	147	+13, -13	99 72 69 118	90	+31, -23
SAS 1-11 Apr 73-03	1 2 3 4	209 140 142 195	172	+21.5,-18.7	93 76 71 113	88	+28.4,-19.5
SAS 1-12 Apr 73-02	1 2 3 4	219 177 194 201	198	+10.6,-10.6	101 112 122 133	117	+13.8,-13.8
SAS 1-12 Apr 73-03	1 2 3 4	1120 613 656 574	740	+50.8,-23.7	287 346 352 224	302	+16.5,-25.8
SAS 1-13 Apr 73-03	1 . 2 3 4	1570 799 975 985	1080	+44.7,-26.1	486 291 314 381	368	+32, -20.9

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-14 Apr 73-01	1 2 3 4	934 655 732 719	760	+22.8,-13.8	321 195 238 381	284	+34.2,-31.4
SAS 1-14 Apr 73-03	1 2 3 4	1210 993 931 1160	1070	+12.5,-13.2	571 713 533 820	659	+9.3,-19.1
SAS 1-15 Apr 73-02	1 2 3 4	860 617 683 716	719	+19.7, -15.5	402 426 426 488	431	+13.2, -6.7
SAS 1-16 Apr 73-03	1 2 3 4	783 454 543 477	564	+13.8,-19.5	327 261 353 233	293	±20.5
SAS 1-17 Apr 73-01	1 2 3 4	806 342 313 389	463	+74.1,-32.2	157 137 138 151	145	+8.3, -5.5
SAS 1-17 Apr 73-03	1 2 3 4	794 715 623 585	679	+16.9,-13.8	204 197 226 204	208	+8.8, -5.3

Run	Sensor	E _T (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-18 Apr 73-01	1 2 3 4	2440 2020 2170 2560	2300	+11.3,-12.2	1750 1670 1550 1560	1630	+7.4, -4.9
SAS 1-16 May 73-02	1 2 3 4	179 182 173 156	172	+5.8, -9.3	136 137 128 123	131	+4.6, -6.1
SAS 1-17 May 73-03	1 2 3 4	242 235 236 248	240	+3.3, -2.1	172 187 194 196	188	+4.3, -8.5
SAS 1-17 May 73-02	1 2 3 4	313 309 305 277	301	+3.8, -8.0	278 275 276 249	270	+3.0, -7.8
SAS 1-17 May 73-01	1 2 3 4	248 224 208 202	220	+12.7, -8.2	90 85 70 68	78	+15.4,-12.8
SAS 1-18 May 73-03	1 2 3 4	280 312 320 254	293	+9.2,-13.3	186 197 188 173	186	+5.9, -8.1
SAS 1-18 May 73-04	1 2 3 4	197 229 261 183	218	+19.7, -9.7	151 176 155 144	157 .	+12.1,-10.4

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-19 May 73-01	1 2 3 4	262 279 294 246	270	+8.9, -8.8	222 232 232 220	227	+2.2, -3.1
SAS 1-19 May 73-02	1 2 3 4	230 370 243 199	261	+41.8,-23.8	139 106 105 92	111	+25.2,-17.1
SAS 1-19 May 73-04	1 2 3 4	199 219 211 185	204	+7.4, -9.3	157 162 151 146	154	+5.2, -5.2
SAS 1-20 May 73-01	1 2 3 4	235 274 225 201	234	+12.8,-14.1	143 141 164 147	149	+10.0, -5.4
SAS 1-20 May 73-02	1 2 3 4	226 290 241 207	241	+20.3,-14.1	108 112 143 99.1	115	+24.3,-14.3
SAS 1-20 May 73-03	1 2 3 4	245 259 262 209	244	+9.0,-14.3	86.7 86.7 89.0 81.4	86.0	+3.4, -5.3

Appendix E.	(Cont'd)
-------------	----------

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-20 May 73-04	1 2 3 4	141 165 209 132	162	+29.0,-18.5	42.8 43.3 44.7 42.3	43.3	+3.2, -2.3
SAS 1-21 May 73-01	1 2 3 4	254 244 227 203	232	+9.5,-12.5	76.0 72.8 67.2 66.2	70.5	+7.8, -6.1
SAS 1-21 May 73-03	1 2 3 4	287 338 355 276	314	+13.1,-12.1	72.3 79.9 111 94.2	89.3	+24.3,-19.0
SAS 1-21 May 73-04	1 2 3 4	304 286 	267	+13.8,-20.6	100 91.5 - 74.6	88.7	+12.7,-16.0
SAS 1-22 May 73-03	1 2 3 4	255 267 - 265	262	+1.9, -2.7	163 167 - 194	175	+10.8, -6.9
SAS 1-23 May 73-02	1 2 3 4	207 211 - 166	195	+8.2, -9.7	45.4 45.0 - 38.5	43.0	+5.6,-10.5

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-23 May 73-03	1 2 3 4	181 195 - 148	175	+11.4,-15.5	94.6 103 - 106	101	+4.9, -6.3
SAS 1-24 May 73-01	1 2 3 4	273 277 - 263	271	+2.2, -2.9	97.3 88.4 - 143	110	+30.0,-19.6
SAS 1-24 May 73-02	1 2 3 4	311 311 - 229	284	+9.5,-19.4	238 253 - 197	229	+10.5,-14.0
SAS 1-24 May 73-03	1 2 3 4	172 163 - 141	159	+8.2,-11.3	121 94.1 - 107	107	+13.1,-12.1
SAS 1-24 May 73-04	1 2 3 4	238 223 - 174	212	+12.2,-17.9	96.6 90.6 - 70.1	85.8	+12.6,-18.3
SAS 1-25 May 73-01	1 2 3 4	695 865 - 1000	853	+17.2,-18.5	262 316 - 392	323	+18.9,-21.3

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-25 May 73-03	1 2	396 393	373	+6.2,-11.8	185 180	168	+10.1,-17.3
	3	329			139		
SAS 1-25 May 73-04	1 2 3	393 375	358	+9.8,-14.2	116 97.1	113	+10.6,-14.1
	4	307			125		
SAS 1-26 May 73-01	1 2 3	664 621	600	+10.6,-14.0	271 247	248	+9.3, -9.3
	4	516			225		
SAS 1-26 May 73-02	1 2 3 4	786 702 711	733	+7.2, -4.2	581 500 - 426	502	+15./,-15.1
SAS 1-26 May 73-03	1 2	550 572	548	+4.4, -4.9	310 267	270	+12.9,-14.4
	3	-			234		
SAS 1-26 May 73-04	1 2	763	670	+13.9,-12.5	414 241	328	+26.2,-26.5
	3	586			330-		

Append	lix	Ε.	(Cont'	d)
--------	-----	----	--------	----

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-27 May 73-01	1 2 3 4	672 690 - 605	656	+5.2, -8.4	506 521 522	516	+1.2, -1.9
SAS 1-27 May 73-02	1 2 3 4	622 677 - 530	610	+11.0,-15.1	318 418 - 384	373	+12.1,-14.7
SAS 1-27 May 73-03	1 2 3 4	467 430 426 402	431	+8.4, -6.7	216 230 242 203	223	+8.5, -9.9
SAS 1-27 May 73-04	1 2 3 4	263 260 235 219	244	+7.8,-10.2	105 155 121 101	121	+28.1,-16.5
SAS 1-28 May 73-01	1 2 3 4	190 187 178 147	176	+8.0,-16.5	72.3 32.6 59.0 59.9	56	+28.6,-41.4
SAS 1-28 May 73-02	1 2 3 4	254 245 231 209	235	+8.1,-11.1	167 148 160 104	145	+15.2,-28.3

Statistics and a second s

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-28 May 73-04	1 2 3 4	121 118 138 118	124	+11.3, -4.8	32.8 33.6 44.6 65.4	44.1	+47.7,-25.0
SAS 1-29 May 73-02	1 2 3 4	181 187 174 161	176	+6.3, -8.5	89.4 101 105 101	99.1	+6.1,-10.1
SAS 1-29 May 73-03	1 2 3 4	104 119 102 98.7	105.9	+12.3, -6.6	34.9 32.7 32.7 32.3	33.2	+6.1, -3.0
SAS 1-29 May 73-04	1 2 3 4	120 122 125 115	121	+3.3, -5.0	40.7 52.3 45.9 42.3	45.3	+13.0,-10.9
SAS 1-30 May 73-01	1 2 3 4	132 273 153 147	176	+55.1,-25.0	43.9 58.0 51.6 51.2	51.2	+13.3,-14.3
SAS 1-30 May 73-02	1 2 3 4	137 156 128 110	133	±17.3	37.2 41.0 37.8 34.9	37.5	+9.3, -6.9

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-30 May 73-03	1 2 3 4	111 116 108 89.5	106	+9.4,-16.0	39.8 37.2 67.4 40.0	46.1	+46.2,-19.3
SAS 1-30 May 73-04	1 2 3 4	128 121 143 177	142	+24.8,-14.8	35.1 23.6 42.4 39.8	35.2	+20.5,-33.0
SAS 1-31 May 73-01	1 2 3 4	1009 1354 1101 848	1080	+25.0,-21.3	640 601 321 538	525	+21.8,-38.8
SAS 1-31 May 73-02	1 2 3 4	222 229 202 183	209	+9.6,-12.4	124 107 90.0 89.1	102	+21.5,-12.6
SAS 1-31 May 73-03	1 2 3 4	271 271 252 220	254	+6.7,-13.4	123 119 117 103	116	+6.0,-11.2
SAS 1-31 May 73-04	1 2 3 4	289 265 358 420	333	+26.1,-20.4	75.7 64.6 72.6 84.0	74.2	+13.2,-12.9

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-01 Jun 73-02	1 2 3 4	238 273 245 217	243	+12.3,-10.7	82.4 81.0 142 79.3	96.2	+47.6,-15.8
SAS 1-01 Jun 73-04	1 2 3 4	277 258 271 232	260	+6.5,-10.8	213 210 209 188	205	+3.9, -8.3
SAS 1-02 Jun 73-03	1 2 3 4	463 508 380 433	446	+13.9,-15.0	294 267 244 258	266	+10.5, -8.3
SAS 1-02 Jun 73-04	1 2 3 4	484 467 476 423	462	+5.2, -8.4	265 252 275 231	256	+7.4, -9.8
SAS 1-03 Jun 73-01	1 2 3 4	242 247 241 206	234	+5.5,-12.0	123 126 115 99.1	116	+8.6,-14.6
SAS 1-03 Jun 73-02	1 2 3 4	257 248 238 192	234	+9.8,-17.9	134 132 145. 129	135	+7.4, -4.4

Appoint at (oone a)	ont'd)	. ((E	pendix	Ap
---------------------	--------	------	---	--------	----

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-03 Jun 73-03	1 2 3 4	200 215 204 173	198	+8.6, -7.6	154 166 159 148	157	+5.7, -5.7
SAS 1-03 Jun 73-04	1 2 3 4	400 - 356 314	357	+12.0,-12.0	322 281 235	280	+15.0,-16.1
SAS 1-04 Jun 73-01	1 2 3 4	282 297 278 241	274	+8.4,-12.0	115 119 129 117	120	+6.9, -4.2
SAS 1-04 Jun 73-02	1 2 3 4	198 - 200 180	193	+3.6, -6.7	89.5 - 95.4 85.3	90.1	+4.8, -5.3
SAS 1-04 Jun 73-03	1 2 3 4	194 183 190 162	182	+7.7,-11.0	141 147 123 108	130	+13.1,-16.9
SAS 1-04 Jun 73-04	1 2 3 4	166 187 175 152	170	+10.0,-10.6	95.5 88.9 80.3 83.9	87.2	+15.2, -7.9

and the second second

1.20

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-04 Jun 73-05	1 2 3 4	107 155 104 90.5	114	+36.0,-20.6	37.0 36.3 34.9	36.1	+2.5, -3.3
SAS 1-05 Jun 73-01	1 2 3 4	206 - 199 176	194	+6.2, -9.3	46.3 57.5 53.1	52.3	+9.9,-11.5
SAS 1-05 Jun 73-02	1 2 3 4	139 156 129 112	134	+16.4,-16.4	36.3 32.8 45.9 45.9	40.2	+12.4,-28.5
SAS 1-05 Jun 73-03	1 2 3 4	162 169 196 264	198	+33.3,-18.2	81.3 77.8 94.1 105	89.5	+17.3,-13.1
SAS 1-05 Jun 73-04	1 2 3 4	515 289 728 460	498	+46.1,-42.0	123 69.7 207 104	126	+64.3,-44.7
SAS 1-06 Jun 73-01	1 2 3 4	247 207 202 161	204	+21.1,-22.1	175 126 145 114	140	+25.0,-18.6

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-06 Jul 73-05	1 2 3 4	637 649 648 568	625	+3.8, -9.1	451 516 506 481	488	+5.7, -7.6
SAS 1-06 Jul 73-06	1 2 3 4	889 919 758 681	811	+13.3,-16.0	501 749 647 631	632	+18.5;-20.7
SAS 1-06 Jul 73-07	1 2 3 4	678 817 663 612	692	+18.1,-11.5	579 630 590 537	584	+7.9, -8.0
SAS 1-07 Jul 73-01	1 2 3 4	393 341 341 308	346	+13.6,-11.0	205 183 227 170	196	+15.8,-13.3
SAS 1-07 Jul 73-02	1 2 3 4	306 338 299 278	305	+10.8, -8.8	211 210 219 202	210	+4.3, -3.8
SAS 1-07 Jul 73-03	1 2 3 4	394 340 392 364	372	+5.9, -8.6	264 138 144 220	191	+38.2,-27.7

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-07 Jul 73-04	1 2 3 4	391 337 361 314	351	+11.4,-10.5	271 269 260 224	256	+5.9,-12.5
SAS 1-07 Jul 73-05	1 2 3 4	362 381 384 339	366	+4.9, -7.4	242 262 231 280	254	+10.2, -9.1
SAS 1-07 Jul 73-07	1 2 3 4	285 299 250 240	268	+11.6,-17.2	204 212 196 178	197	+7.6, -9.6
SAS 1-08 Jul 73-01	1 2 3 4	161 147 129 107	136	+18.4,-21.3	105 98 76 72	88	+19.3,-18.2
SAS 1-08 Jul 73-03	1 2 3 4	216 229 206 184	209	+9.6,-12.1	118 126 123 113	120	+5.0, -5.8
SAS 1-08 Jul 73-05	1 2 3 4	208 216 203 195	206	+4.8, -5.3	125 142 141 142	138	+2.9, -9.4

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-08 Jul 73-07	1 2 3 4	185 218 179 172	188	+15.9, -8.5	106 105 114 111	109	+4.6, -3.7
SAS 1-09 Jul 73-01	1 2 3 4	156 173 139 141	152	+13.8, -8.5	60.7 70.0 77.7 96.7	76.3	+26.7,-20.4
SAS 1-09 Jul 73-03	1 2 3 4	190 206 177 186	187	+10.2, -5.3	136 137 137 138	137	+1.0, -1.0
SAS 1-10 Jul 73-01	1 2 3 4	213 242 235 214	226	+7.1, -5.8	123 119 155 96	123	+26.0,-30.0
SAS 1-10 Jul 73-02	1 2 3 4	260 278 	268	+3.7, -3.0	177 175 - 170	174	+1.7, -2.3
SAS 1-11 Jul 73-01	1 2 3 4	341 341 - 298	327	+4.3, -8.9	221 152 - 210	194	+13.9,-27.6

and the first state which as

1

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-11 Jul 73-02	1 2 3 4	198 220 204 188	202	+8.9, -6.9	124 109 125 120	120	+4.2, -9.2
SAS 1-16 Jul 73-03	1 2 3 4	276 292 266 241	269	+8.6,-10.4	108 125 144 102	120	+20.0,-15.0
SAS 1-16 Jul 73-04	1 2 3 4	175 173 175 173	174	±0.6	49 44 28 36	39	+25.6,-28.2
SAS 1-17 Jul 73-01	1 2 3 4	263 313 222 242	260	+20.4,-14.6	152 167 93 166	145	+15.2,-35.9
SAS 1-18 Jul 73-04	1 2 3 4	215 230 203 184	208	+10.6,-11.5	63 68 60 53	61	+11.4,-13.1
SAS 1-19 Jul 73-01	1 2 3 4	294 344 309 269	304	+13.2,-11.5	116 134 123 121	124	+8.1, -6.5

Run	Sensor	E _T (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-19 Jul 73-03	1 2 3 4	277 291 255 216	259	+12.4,-16.6	143 148 142 126	140	+5.7,-10.0
SAS 1-19 Jul 73-04	1 2 3 4	455 424 413 389	420	+8.3, -7.4	237 224 229 224	229	+3.5, -2.2
SAS 1-20 Jul 73-01	1 2 3 4	385 356 353 376	368	+4.6, -4.0	202 190 177 203	193	+5.2, -8.3
SAS 1-20 Jul 73-03	1 2 3 4	408 414 380 357	390	+4.6, -8.5	204 198 224 198	206	+8.7, -3.9
SAS 1-20 Jul 73-04	1 2 3 4	478 502 447 419	461	+8.9, -9.1	363 364 339 316	345	+5.5, -8.4
SAS 1-21 Jul 73-01	1 2 3 4	459 400 460 686	425	+8.2,-10.1	313 249 340 255	289	+17.6,-13.8

Append	ix	Ε.	(Cont	'd)
1 / h h n n n n n n			[

Run	Sensor 1	E_{T} (cm ²)	Mean (cm ²)	Range	(%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-21 Jul 73-02	1 2 3 4	701 868 706 686	740	+17.3,	-7.3	439 526 451 399	453	+16.2,-12.1
SAS 1-21 Jul 73-03	1 2 3 4	404 421 381 375	395	+6.6,	-5.0	141 147 146 139	143	±2.7
SAS 1-21 Jul 73-04	1 2 3 4	611 638 639 561	612	+4.4,	-8.4	259 281 271 236	262	+8.0, -9.9
SAS 1-22 Jul 73-01	1 2 3 4	727 696 698 674	699	+4.0,	-3.8	235 211 185 168	200	+17.5,-16.0
SAS 1-22 Jul 73-02	1 2 3 4	736 756 754 687	733	+3.1,	-6.3	246 258 265 264	258	+2.7, -4.6
SAS 1-22 Jul 73-03	1 2 3 4	519 556 518 466	515	+8.0,	-9.5	226 230 206 180	211	+9.0,-14.7

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-22 Jul 73-04	1 2 3 4	420 457 469 421	442	+6.1, -5.0	153 170 165 174	166	+4.8, -7.8
SAS 1-23 Jul 73-01	1 2 3 4	527 513 487 453	495	+6.5, -8.5	378 252 204 204	260	+45.4,-21.5
SAS 1-23 Jul 73-03	1 2 3 4	505 483 420 455	466	+8.4, -9.9	230 258 221 254	241	+7.1, -8.3
SAS 1-24 Jul 73-02	1 2 3 4	848 920 902 861	882	+4.4, -3.9	564 595 686 654	625	+9.8, -9.8
SAS 1-27 Jul 73-04	1 2 3 4	242 208 211	220	+10.0, -5.4	123 118 121 110	118	+4.2, -6.8
SAS 1-28 Jul 73-02	1 2 3 4	155 - 129 138	141	+9.9, -8.5	70.3 62.0 57.6 67.1	64.2	+9.5,-10.3

Appendix	E. ((Cont'd)

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-29 Jul 73-02	1 2 3 4	199 - 192 182	191	+4.7, -4.7	47.0 - 51.1 46.2	48.1	+6.2, -3.9
SAS 1-29 Jul 73-04	1 2 3 4	239 - 253 238	243	+4.1, -2.1	143 - 153 142	146	+4.8, -2.7
SAS 1-30 Jul 73-01	1 2 3 4	256 - 258 238	251	+2.7, -5.0	153 - 174 160	162	+6.9, -5.6
SAS 1-30 Jul 73-02	1 2 3 4	297 - 258 248	268	+11.2, -7.5	170 - 157 150	159	+6.5, -5.7
SAS 1-31 Jul 73-01	1 2 3 4	235 - 194 226		+7.8,-10.1	166 - 161 146	158	+5.1, -7.6
SAS -01 Aug 73-02	1 2 3 4	238 189 183 204	204	+16.7,-10.3	64.2 54.7 60.1 52.9	60.0	+7.0,-11.8

ippointer bi (como o)

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-01 Aug 73-03	1 2 3 4	161 - 142 143	149	+8.0, -4.7	67.9 - 84.2 60.2	70.8	+18.9,-15.0
SAS 1-02 Aug 73-01	1 2 3 4	252 245 238	245	+2.8, -2.8	95.9 - 111 101	103	+7.8, -6.9
SAS 1-02 Aug 73-03	1 2 3 4	260 220 220	233	+11.6, -5.6	148 - 155 143	149	+4.0, -4.0
SAS 1-02 Aug 73-04	1 2 3 4	272 193 197	220	+23.6,-12.3	125 - 112 143	127	+12.6,-11.8
SAS 1-03 Aug 73-01	1 2 3 4	211 161 170	181	+16.6,-11.0	91.9 - 86.0 72.9	83.6	+9.9,-12.8
SAS 1-10 Aug 73-01	1 2 3 4	918 860 872 1020	917	+11.2, -6.2	326 281 323 382	328	+16.4,-14.3

Appendix	E. ((Cont'd)
----------	------	----------

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-10 Aug 73-03	1 2 3 4	220 211 183 213	207	+6.3,-11.6	87.6 77.8 82.6 85.6	83.4	+5.0, -6.7
SAS 1-11 Aug 73-01	1 2 3 4	200 - 165 169	178	+12.3, -7.3	85.0 74.7 81.0 85.1	81.4	+4.4, -8.9
SAS 1-11 Aug 73-02	1 2 3 4	181 188 154 176	175	+7.4,-10.9	63.9 48.5 53.4 59.3	56.3	+13.5,-13.8
SAS 1-11 Aug 73-03	1 2 3 4	356 - 297 314	322	+10.6, -7.8	115 79.8 90.6	95.1	+20.9,-16.1
SAS 1-11 Aug 73-04	1 2 3 4	365 232 290 368	314	+17.2,-26.1	73.6 52.3 62.2 64.3	63.1	+16.6,-17.1
SAS 1-12 Aug 73-01	1 2 3 4	404 424 391 346	391	+8.4,-11.5	145 126 139 128	134	+8.2, -4.5

Run	Sensor	E _T (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-12 Aug 73-02	1 2 3 4	346 282 240 255	281	+23.1,-14.6	110 77.9 74.7 67.9	82.6	+33.2,-17.8
SAS 1-14 Aug 73-04	1 2 3 4	98.0 85.2 73.1 103	89.8	+14.7,-18.6	40.6 40.4 45.5 44.1	42.6	+6.8, -5.2
SAS 1-15 Aug 73-01	1 2 3 4	133 122 132 141	132	+6.8, -7.6	73.6 73.9 88.0 94.3	82.4	+14.4,-10.7
SAS 1-15 Aug 73-02	1 2 3 4	197 183 187 222	197	+12.7, -7.1	155 129 148 171	151	+13.2,-14.6
SAS 1-16 Aug 73-03	1 2 3 4	383 339 351 367	360	+6.4, -5.8	308 287 313 300	302	+3.6, -5.0
SAS 1-16 Aug 73-04	1 2 3 4	431 386 354 377	387	+11.4, -8.5	360 302 295 298	314	+14.6, -6.0

1. 1. 1.

A DESCRIPTION OF

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-20 Aug 73-03	1 2 3 4	253 243 234 255	246	+3.7, -4.	9 109 129 126 137	125	+9.6,-12.8
SAS 1-20 Aug 73-04	1 2 3 4	176 161 158 180	169	+6.5, -6.	5 44.2 36.3 41.4 43.0	41.2	+7.3,-11.9
SAS 1-21 Aug 73-01	1 2 3 4	319 264 277 304	291	+9.6, -4.	8 90.9 79.9 84.1 81.9	84.2	+8.0, -5.1
SAS 1-21 Aug 73-02	1 2 3 4	304 271 227 252	264	+15.2, -4.	5 107 92.8 109 119	107	+11.2,-13.3
SAS 1-21 Aug 73-03	1 2 3 4	361 335 353 425	369	+15.2, -9.	2 192 170 175 195	183	+6.6, -7.1
SAS 1-22 Aug 73-02	1 2 3 4	613 485 594 594	572	+7.2,-15.	2 400 291 356 347	349	+14.6,-16.6

Append:	ix E.	(Cont'd)
---------	-------	----------

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-22 Aug 73-03	1 2 3 4	791 778 755 734	764	+3.5, -3.9	276 395 367 329	342	+15.5,-21.9
SAS 1-22 Aug 73-04	1 2 3 4	938 782 886 983	897	+9.6,-11.6	258 248 227 230	241	+7.0, -5.8
SAS 1-23 Aug 73-01	1 2 3 4	1330 1140 1200 1220	1220	+9.0, -6.6	988 953 1040 1070	1010	+5.6, -5.6
SAS 1-23 Aug 73-02	1 2 3 4	1230 927 948 963	1020	+20.0, -9.1	1052 781 730 841	851	+23.6,-14.2
SAS 1-23 Aug 73-03	1 2 3 4	991 871 945 941	937	+5.7, -7.0	579 584 538 525	556	+5.0, -5.6
SAS 1-24 Aug 73-02	1 2 3 4	707 627 672 688	674	+4.9, -7.0	594 532 536 546	552	+7.6, -3.6

Appendix E. (Cont'd)

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1.} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-24 Aug 73-03	1 2 3 4	621 601 569 621	603	+3.0, -5.6	388 370 367 419	386	+8.5, -4.9
SAS 1-24 Aug 73-04	1 2 3 4	568 405 423 525	480	+18.3,-15.6	423 319 319 384	361	+17.2,-11.6
SAS 1-25 Aug 73-01	1 2 3 4	559 478 483 437	489	+14.3,-10.6	484 420 422 368	423	+14.4,-13.0
SAS 1-25 Aug 73-02	1 2 3 4	413 371 400 416	400	+4.0, -4.8	275 213 289 284	265	+9.1,-19.6
SAS 1-25 Aug 73-03	1 2 3 4	237 231 186 178	208	+12.0,-14.4	162 98.6 71.1 75.8	102	+58.8,-30.3
SAS 1-25 Aug 73-04	1 2 3 4	275 223 193 238	232	+18.5,-16.8	102 80.1 118 121	105	+15.2,-23.7

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-26 Aug 73-01	1 2 3 4	241 207 252 287	247	+16.2,-16.2	139 124 161 144	142	+13.4,-12.7
SAS 1-26 Aug 73-02	1 2 3 4	148 125 100 144	129	+14.7,-22.5	84.9 62.0 66.3 74.8	72.0	+17.9,-13.9
SAS 1-26 Aug 73-03	1 2 3 4	136 - 119 108	121	+12.4,-10.7	83.2 68.7 69.9	73.9	+12.6, -7.0
SAS 1-26 Aug 73-04	1 2 3 4	136 123 123 143	127	+12.6,-18.1	49.2 51.3 27.9 56.7	46.3	+22.5,-39.7
SAS 1-27 Aug 73-01	1 2 3 4	231 228 196 222	219	+5.5,-10.5	108 95.9 71.5 107	95.6	+12.9,-25.2
SAS 1-27 Aug 73-02	1 2 3 4	234 191 198 210	208	+12.5, -8.2	76.1 77.1 76.3 81.4	77.7	+4.7, -2.1

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-31 Aug 73-01	1 2 3 4	233 207 177 200	204	+14.2,-13.2	82.3 80.8 85.5 79.9	82.1	+4.1, -2.7
SAS 1-06 Sept 73-01	1 2 3 4	360 - 381 308	350	+8.9,-12.0	145 171 97.3	138	+23.9,-29.7
SAS 1-06 Sept 73-02	1 2 3 4	578 - 481 507	522	+10.7, -7.9	308 - 348 342	333	+4.5, -7.5
SAS 1-06 Sept 73-03	1 2 3 4	568 - 513 518	533	+6.6, -3.8	328 298 267	298	+10.1,-10.4
SAS 1-07 Sept 73-01	1 2 3 4	1000 - 854 949	934	+7.1, -8.6	671 - 597 671	646 `	+3.9, -7.6
SAS 1-07 Sept 73-02	1 2 3 4	- 633 726	678	+7.1, -6.6	- 285 319	317	+10.1,-10.1

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-07 Sept 73-03	1 2 3 4	- 732 820	776	+5.7, -5.7	431 460	446	+3.1, -3.4
SAS 1-08 Sept 73-01	1 2 3 4	- 742 756	749	+0.9, -0.9	- 408 420	414	+1.4, -1.4
SAS 1-08 Sept 73-02	1 2 3 4	- 620 716	668	+6.7, -7.2	- 589 479	534	+10.3,-10.3
SAS 1-08 Sept 73-04	1 2 3 4	- 725 859	792	+8.5, -8.5	- 636 733	685	+7.0, -7.2
SAS 1-09 Sept 73-01	1 2 3 4	- 581 600	590	+1.7, -1.5	- 483 531	507	+4.5, -4.9
SAS 1-14 Sept 73-01	1 2 3 4	203 - 197 176	192	+5.7, -8.3	100 93.5 125	106	+17.9,-11.3

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-14 Sept 73-02	1 2 3 4	- - 199	199		82.3	82.3	
SAS 1-14 Sept 73-03	1 2 3 4	224 - 185 183	197	+13.7, -7.1	102 81.6 82.7	88.8	+14.9, -7.9
SAS 1-15 Sept 73-01	1 2 3 4	212 - 163 176	184	+15.2,-11.4	110 75.4 78.0	87.8	+25, -14.8
SAS 1-17 Sept 73-02	1 2 3 4	343 - 293 333	323	+6.2, -9.3	114 - 105 114	111	+2.7, -5.4
SAS 1-17 Sept 73-03	1 2 3 4	276 - 258 255	263	+4.9, -3.0	107 - 113 117	112	+3.6, -4.5
SAS 1-17 Sept 73-04	1 2 3 4	211 - 197 202	203	+3.9, -3.0	96.4 	87,3	+10.4, -7.2

Appendix E. (Cont'd)

and the second sec

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-18 Sept 73-01	1 2 3 4	408 - 366 346	373	+9.4, -7.8	280 - 242 226	249	+12.4, -9.2
SAS 1-18 Sept 73-03	1 2 3 4	350 - 339 339	343	+2.0, -1.2	152 - 155 151	153	+1.3, -1.3
SAS 1-18 Sept 73-04	1 2 3 4	344 - 338 333	338	+1.2, -1.5	198 - 178 180	185	+7.0, -3.8
SAS 1-19 Sept 73-02	1 2 3 4	368 - 325 366	353	+4.2, -7.9	225 - 164 196	195	+15.4,-15.9
SAS 1-19 Sept 73-03	1 2 3 4	289 - 345 259	298	+15.8,-13.1	164 - 136 120	140	+17.1,-14.3
SAS 1-19 Sept 73-04	1 2 3 4	241 - 270 251	254	+6.3, -5.1	135 - 114 116	122	+9.6, -6.6

and the effect of the second second

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E_{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-20 Sept 73-01	1 2 3 4	251 - 280 198	243	+15.2,-18.5	89.6 - 78.0 71.7	79.8	+12.3,-10.2
SAS 1-20 Sept 73-03	1 2 3 4	392 - 316 331	346	+13.3, -8.7	203 - 182 253	213	+18.8,-14.6
SAS 1-20 Sept 73-04	1 2 3 4	418 - 486 479	461	+5.4, -9.3	195 227 239	220	+8.6,-11.4
SAS 1-21 Sept 73-01	1 2 3 4	473 - 413 408	431	+9.7, -5.3	245 - 186 203	211	+16.1,-11.8
SAS 1-21 Sept 73-02	1 2 3 4	955 - 831 841	876	+9.0, -5.1	683 - 594 597	625	+9.3, -5.0
SAS 1-21 Sept 73-03	1 2 3 4	718 - 664 608	663	+8.3, -8.3	313 - 329 308	317	+3.8, -2.8

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-22 Sept 73-01	1 2 3 4	554 - 496 476	509	+8.8, -6.5	353 - 343 319	338	+4.4, -5.6
SAS 1-22 Sept 73-02	1 2 3 4	730 - 579 579	629	+16.1, -7.9	363 - 296 295	318	+14.2, -7.2
SAS 1-22 Sept 73-03	1 2 3 4	443 - 409 402	418	+6.0, -3.8	274 - 295 200	256	+15.2,-28.0
SAS 1-23 Sept 73-03	1 2 3 4	408 - 394 358	387	+5.4, -7.5	310 268 238	272	+14.0,-12.5
SAS 1-23 Sept 73-04	1 2 3 4	519 - 421 415	452	+14.8, -8.2	350 - 298 280	309	+13.3, -9.4
SAS 1-24 Sept 73-03	1 2 3 4	682 736 568 572	640	+15.0,-11.3	396 373 263 322	339	+16.8,-22.4

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-24 Sept 73-04	1 2 3 4	771 683 642 676	693	+11.3, -7.4	292 333 214 206	261	+27.6,-21.1
SAS 1-25 Sept 73-01	1 2 3 4	658 695 546 628	632	+10.0,-13.6	373 355 288 329	336	+11.0,-14.3
SAS 1-27 Sept 73-01	1 2 3 4	503 429 447 519	475	+9.3, -9.9	316 256 199 212	246	+28.5,-19.1
SAS 1-02 Oct 73-01	1 2 3 4	100 113 107 95.5	104	+8.7, -7.7	43.9 49.9 73.3 67.3	58.6	+25.1,-25.1
SAS 1-02 Oct 73-02	1 2 3 4	130 145 - 119	131	+10.7, -8.4	67.9 57.1 48.0 46.2	54.8	+23.9,-15.7
SAS 1-02 Oct 73-03	1 2 3 4	112 146 - 99.7	119	+22.7,-16.0	49.6 53.3 42.2 32.1	44.3	+20.3,-27.5

Appendix	Ε.	(Cont'd)	
----------	----	----------	--

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-03 Oct 73-02	1 2 3 4	297 284 307 287	294	+4.4, -3.4	122 117 116 122	119	+2.5, -2.5
SAS 1-03 Oct 73-03	1 2 3 4	331 338 - 307	325	+4.0, -5.5	182 191 183 167	181	+5.5, -7.7
SAS 1-03 Oct 73-04	1 2 3 4	200 216 - 177	198	+9.1,-10.6	84.1 66.9 95.6 93.8	85.1	+12.3,-21.4
SAS 1-04 Oct 73-01	1 2 3 4	220 246 - 201	222	+10.8, -9.5	108 85.6 93.6 99.8	96.6	+11.3,-11.4
SAS 1-06 Oct 73-01	1 2 3 4	209 208 212 190	205	+3.4, -7.3	108 101 95.5 99.7	101	+6.9, -4.5
SAS 1-08 Oct 73-01	1 2 3 4	98.8 108 157 80.6	111	+41.4,-27.4	48.1 52.4 48.0 40.1	47.2	+11.0,-15.0
Run	Sensor	E _T (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
--------------------	------------------	-----------------------------------	-------------------------	-------------	------------------------------------	-------------------------	-------------
SAS 1-08 Oct 73-02	1 2 3 4	313 333 284 310	310	+7.4, -8.4	144 134 119 127	131	+9.9, -9.2
SAS 1-09 Oct 73-02	1 2 3 4	1026 915 829 897	917	+11.9, -9.6	952 848 738 827	841	+13.2,-12.2
SAS 1-10 Oct 73-01	1 2 3 4	277 339 270 251	284	+19.4,-11.6	177 188 144 154	166	+13.3,-13.3
SAS 1-10 Oct 73-03	1 2 3 4	338 323 - 326	329	+2.7, -1.8	262 232 215 255	241	+8.7,-10.7
SAS 1-10 Oct 73-04	1 2 3 4	335 334 - 295	321	+4.4, -8.1	196 207 158 193	189	+9.5,-16.4
SAS 1-11 Oct 73-01	1 2 3 4	179 215 - 153	182	+18.1,-15.9	89.6 107 85.6 69.9	88.0	+21.5,-20.6

Appendix	Ε.	(Cont	'd)
----------	----	-------	-----

Run	Sensor	E _T (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-11 Oct 73-02	1 2 3 4	227 197 216	213	+6.6, -7.5	134 114 120 104	118	+13.6,-11.9
SAS 1-11 Oct 73-03	1 2 3 4	217 243 179	213	+14.1,-16.0	45.7 46.5 - 42.3	44.8	+5.7, -3.9
SAS 1-12 Oct 73-04	1 2 3 4	144 162 - 131	146	+11.0,-10.3	45.6 46.2 39.7 47.8	44.8	+6.7,-11.4
SAS 1-13 Oct 73-02	1 2 3 4	169 214 - 179	187	+14.4, -9.6	63.8 65.2 75.7 61.0	66.4	+14.0, -8.1
SAS 1-13 Oct 73-03	1 2 3 4	144 167 	151	+10.6, -5.3	80.6 83.5 88.1 80.7	83.2	+5.9, -3.1
SAS 1-14 Oct 73-01	1 2 3 4	200 208 - 162	190	+9.5,-14.7	95.8 87.6 90.9 90.4	91.2	+5.0, -3.9

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E_{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-14 Oct 73-02	1 2 3 4	229 261 - 200	230	+13.5,-13.0	132 132 141 116	130	+8.5,-10.8
SAS 1-14 Oct 73-04	1 2 3 4	256 257 - 256	256	+0.3, -0.0	149 143 147 175	154	+13.6, -7.8
SAS 1-15 Oct 73-01	1 2 3 4	388 333 - 307	343	+13.1,-10.5	246 200 - 198	215	+14.4, -7.9
SAS 1-15 Oct 73-04	1 2 3 4	460 446 - 419	442	+4.1, -5.2	256 249 - 234	246	+4.1, -4.9
SAS 1-16 Oct 73-01	1 2 3 4	346 355 341 301	336	+5.7,-10.4	180 188 144 178	173	+8.8,-16.8
SAS 1-16 Oct 73-02	1 2 3 4	341 348 - 297	329	+5.8, -9.7	245 239 - 218	234	+6.8; -4.7

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-19 Oct 73-01	1 2 3 4	945 887 - 815	882	+7.1, -7.6	357 323 - 323	334	+6.4, -3.3
SAS 1-19 Oct 73-03	1 2 3 4	437 458 - 390	428	+7.0, -8.9	243 273 - 256	257	+6.2, -5.4
SAS 1-20 Oct 73-01	1 2 3 4	501 479 - 497	492	+1.8, -2.6	189 172 160 159	170	+11.2, -6.5
SAS 1-20 Oct 73-04	1 2 3 4	775 787 657 746	741	+6.2,-11.3	273 294 239 287	273	+7.4,-12.5
SAS 1-21 Oct 73-03	1 2 3 4	518 496 - 474	496	+4.4, -4.4	361 338 376 357	358	+5.0, -5.6
SAS 1-21 Oct 73-04	1 2 3	590 572	562	+5.0, -6.6	445 409	- 412	+8.0, -7.4

10.4

1.1.1

Appendix E. (Cont'd)

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-22 Oct 73-01	1 2 3	873 787	791	+10.4, -9.9	574 520	547	+4.9, -4.9
SAS 1-22 Oct 73-03	4 1 2 3 4	470 397 304 418	397	+18.4,-23.4	546 297 246 283 253	270	+10.0, -8.9
SAS 1-22 Oct 73-04	1 2 3 4	387 352 - 350	363	+6.6, -3.6	205 173 - 135	171	+19.9,-21.0
SAS 1-23 Oct 73-01	1 2 3 4	285 308 - 216	270	+14.1,-20.0	183 162 - 132	159	+15.1,-17.0
SAS 1-23 Oct 73-03	1 2 3 4	197 174 - 131	167	+18.0,-21.6	123 101 - 84.1	102	+20.6,-17.5
SAS 1-23 Oct 73-04	1 2 3	649 673	636	+5.8, -8.0	406 432 491	434	+13.1, -6.5

Appendix E. (Cont'd)

Append	lix	Ε.	(Cont'	d)
--------	-----	----	--------	----

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-24 Oct 73-01	1 2 3 4	880 896 - 733	836	+7.2,-12.3	472 430 300 336	385	+22.6,-22.1
SAS 1-24 Oct 73-02	1 2 3 4	1087 978 - 909	991	+8.8, -8.3	578 518 452	516	+12.0,-12.4
SAS 1-25 Oct 73-01	1 2 3 4	524 544 - 516	528	+3.0, -2.3	218 240 - 254	237	+5.9, -8.0
SAS 1-25 Oct 73-02	1 2 3 4	383 414 - 350	382	+8.4, -8.4	345 342 317	335	+3.0, -5.4
SAS 1-25 Oct 73-03	1 2 3 4	471 466 433 416	447	+5.4, -6.9	427 422 345 381	394	+8.4,-12.4
SAS 1-25 Oct 73-04	1 2 3 4	435 466 - 378	426	+9.4,-11.3	401 409 - 364	391	+4.4, -6.9

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-26 Oct 73-01	1 2 3 4	407 421 - 366	398	+5.8, -8.0	358 345 353 331	347	+3.2, -4.6
SAS 1-26 Oct 73-02	1 2 3 4	452 452 365 415	421	+7.4,-13.3	302 294 292 344	319	+7.3, -8.5
SAS 1-26 Oct 73-03	1 2 3 4	243 272 196 216	232	+17.2,-15.5	94.2 89.5 94.6 75.6	86.0	+10.0,-12.1
SAS 1-26 Oct 73-04	1 2 3 4	307 337 283 301	307	+9.8, -7.8	225 242 225 256	237	+8.0, -5.1
SAS 1-27 Oct 73-01	1 2 3 4	195 236 174 166	193	+22.3,-14.0	153 160 131 130	143	+11.9, -9.1
SAS 1-27 Oct 73-04	1 2 3 4	219 211 159 182	193	+13.5,-17.6	90.0 78.4 63.0 75.7	76.8	+18.2,-18.0

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1.} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-28 Oct 73-03	1 2 3 4	243 251 172 166	208	+20.7,-20.2	193 163 130 140	157	+22.9,-17.2
SAS 1-28 Oct 73-04	1 2 3 4	312 336 234 250	283	+18.2,-17.3	236 228 173 197	209	+12.9,-17.2
SAS 1-29 Oct 73-01	1 2 3 4	430 445 344 400	405	+9.9,-17.5	316 283 239 299	284	+11.3,-15.8
SAS 1-29 Oct 73-02	1 2 3 4	767 732 652 735	722	+6.2, -9.7	243 256 226 244	242	+5.8, -6.6
SAS 1-29 Oct 73-04	1 2 3 4	1610 1500 1300 1460	1470	+2.7,-11.6	961 911 829 975	919	+6.1, -9.8
SAS 1-30 Oct 73-01	1 2 3 4	1490 1460 1210 1370	1380	+8.5,-12.3	1390 1350 1130 1300	1290	+7.8,-12.4

and the second second

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-02 Nov 73-02	1 2 3 4	423 360 416 446	411	+8.5,-12.4	228 195 230 242	228	+6.1,-14.5
SAS 1-03 Nov 73-01	1 2 3 4	746 679 696 656	694	+7.5, -5.5	389 364 326 296	344	+13.1,-14.0
SAS 1-03 Nov 73-02	1 2 3 4	349 408 363 289	352	+15.9,-17.9	153 125 131 63,5	118	+29.7,-45.7
SAS 1-04 Nov 73-02	1 2 3 4	411 461 535 399	452	+18.4,-11.7	110 152 193 139	149	+29.5,-26.2
SAS 1-04 Nov 73-04	1 2 3 4	793 705 667 691	714	+11.1, -6.6	454 348 318 304	356	+27.5,-14.4
SAS 1-05 Nov 73-01	1 2 3 4	729 716 666 639	688	+5.6, -7.7	191 160 210 109	168	+25.0,-35.1

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-05 Nov 73-02	1 2 3 4	514 488 534 575	528	+8.9, -7.6	181 156 179 214	183	+16.9,-14.8
SAS 1-07 Nov 73-02	1 2 3 4	555 616 490 476	534	+15.4,-10.9	360 322 340 357	345	+4.3, -6.7
SAS 1-08 Nov 73-01	1 2 3 4	373 415 381 372	386	+7.5, -3.6	169 123 96.8 129	129	+31.0,-24.8
SAS 1-08 Nov 73-03	1 2 3 4	421 377 432 395	406	+6.4, -7.1	188 157 287 176	202	+42.1,-22.3
SAS 1-09 Nov 73-01	1 2 3 4	246 250 231 203	233	+7.3,-12.9	95.6 90.8 82.7 71.9	85.5	+12.9,-15.9
SAS 1-09 Nov 73-03	1 2 3 4	269 275 221 209	244	+12.7,-14.3	137 114 139 134	131	+5.8,-14.9

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-10 Nov 73-01	1 2 3 4	466 376 406 367	404	+15.3, -9.2	346 264 276 250	284	+21.8,-12.0
SAS 1-10 Nov 73-02	1 2 3 4	339 363 402 352	364	+10.4, -6.9	264 291 365 320	310	+17.7,-14.8
SAS 1-10 Nov 73-04	1 2 3 4	435 402 401 351	391	+11.3,-10.2	270 230 229 223	238	+13.4, -6.3
SAS 1-11 Nov 73-03	1 2 3 4	462 464 471 441	460	+2.4, -4.1	369 344 387 379	370	+4.6,-17.8
SAS 1-11 Nov 73-04	1 2 3 4	238 250 270 261	255	+5.9, -6.7	219 189 245 244	255	+8.9,-16.0
SAS 1-12 Nov 73-01	1 2 3 4	378 390 298 253	330	+18.2,-23.3	314 285 298 253	288	+9.0,-12.2

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-12 Nov 73-02	1 2 3 4	437 429 431 415	428	+2.1, -3.0	202 192 205 200	200	+2.5, -4.0
SAS 1-12 Nov 73-03	1 2 3 4	1000 850 815 803	867	+15.3, -7.4	684 637 594 586	625	+9.4, -5.0
SAS 1-12 Nov 73-04	1 2 3 4	852 749 829 750	795	+7.2, -5.8	623 545 590 557	579	+7.1, -5.9
SAS 1-13 Nov 73-01	1 2 3 4	1040 940 1150 1190	1080	+10.2,-13.0	789 683 975 1040	872	+19.3,-21.6
SAS 1-13 Nov 73-03	1 2 3 4	1140 855 1150 1000	1040	+10.6,-17.8	820 638 918 903	820	+10.1,-22.2
SAS 1-20 Nov 73-04	2 3 4	789 927 955	890	+7.3,-11.3	482 392 391	422	+12.4, -7.3
SAS 1-21 Nov 73-01	2 3 4	788 939 863	863	±8.8	650 939 862	820	+14.5,-19.6

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-01 Dec 73-02	1 2 3 4	881 879 909 839	877	+3.6, -4.3	816 700 750 771	759	+7.5, -7.8
SAS 1-01 Dec 73-03	1 2 3 4	657 624 651 620	638	+3.0, -2.8	590 500 595 571	564	+4.6,-11.3
SAS 1-01 Dec 73-04	1 2 4	345 401 296	347	+15.6,-14.7	312 249 273	278	+12.2,-10.4
SAS 1-02 Dec 73-01	1 2 3 4	516 539 633 492	545	+16.1, -9.6	218 198 181 204	200	+9.0, -9.5
SAS 1-02 Dec 73-02	1 2 3 4	854 800 790 677	780	+9.5,-13.2	326 289 326 174	279	+16.8,-37.6
SAS 1-03 Dec 73-02	2 3 4	739 816 757	771	+5.8, -4.1	650 797 744	730	+9.2,-11.0
SAS 1-03 Dec 73-04	1 2 3 4	414 455 550 382	450	+22.2,-15.1	338 320 317 310	321	+5.3, -3.4

Appendix E. (Cont'd)

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-04 Dec 73-01	1 2 4	449 515 412	459	+12.2,-10.2	389 363 369	374	+4.0, -2.9
SAS 1-05 Dec 73-02	1 2 3 4	276 274 255 226	258	+7.0,-12.4	123 103 98.2 84.2	102	+20.5,-17.4
SAS 1-05 Dec 73-04	1 2 3 4	613 633 561 570	594	+6.6, -5.6	346 312 330 346	334	+3.6, -6.6
SAS 1-06 Dec 73-01	1 2 3 4	563 752 630 535	620	+21.3,-13.7	272 297 243 232	261	+13.7,-11.1
SAS 1-07 Dec 73-01	1 2 3 4	785 789 832 784	798	+4.3, -1.8	747 709 800 758	754	+6.1, -6.0
SAS 1-07 Dec 73-02	1 2 3 4	451 493 438 367	437	+12.8,-16.0	441 376 408 359	396	+11.4, -9.3

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-08 Dec 73-01	1 2 3 4	691 631 708 684	679	+4.3, -7.1	555 487 588 553	546	+7.7,-10.8
SAS 1-08 Dec 73-02	1 2 3 4	545 605 535 461	537	+12.7,-14.1	376 399 412 342	382	+7.8,-10.5
SAS 1-08 Dec 73-03	1 2 3 4	916 878 1000 943	934	+7.1, -6.0	790 689 848 772	775	+9.4,-11.1
SAS 1-08 Dec 73-04	1 2 3 4	562 523 496 482	516	+8.9, -6.6	453 319 301 309	346	+30.9,-13.0
SAS 1-09 Dec 73-01	1 2 3 4	619 559 611 584	593	+4.4, -5.7	406 386 368	387	±4.9
SAS 1-09 Dec 73-02	1 2 3 4	503 571 528 514	529	+7.9, -4.9	341 315 319 305	320	+6.2, -4.7

Appendix E. (Cont'd)

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-09 Dec 73-03	1 2 3 4	379 400 417 393	397	+5.0, -4.5	308 281 253 275	279	+10.4, -9.3
SAS 1-09 Dec 73-04	1 2 3 4	328 403 384 334	362	+11.3, -9.3	156 155 181 175	167	+8.3, -6.6
SAS 1-10 Dec 73-01	1 2 3 4	272 337 308 284	300	+12.3, -9.3	221 224 243 240	232	±4.7
SAS 1-10 Dec 73-03	1 2 3 4	291 305 329 269	299	±10.0	99.0 72.6 63.6 83.6	79.7	+24.2,-20.2
SAS 1-12 Dec 73-01	1 2 3 4	627 626 535 463	563	+11.2,-17.8	546 479 454 399	470	+16.2,-15.1
SAS 1-12 Dec 73-02	1 2 3 4	441 505 494 473	478	+5.6, -7.7	394 396 440 442	418	±5.7

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-12 Dec 73-03	1 2 3 4	418 466 459 451	449	+3.8, -6.9	371 363 420 426	395	+7.8, -8.1
SAS 1-12 Dec 73-04	1 2 3 4	808 714 686 608	704	+14.8,-13.6	688 612 606 534	610	+12.8,-12.4
SAS 1-15 Dec 73-01	1 2 3	2000 1780 1950	1910	+4.7, -6.8	1050 890 1080	1010	+6.9,-11.9
SAS 1-15 Dec 73-02	1 2 3	1940 1770 1920	1880	+3.2, -5.9	1610 1410 1660	1560	+6.4, -9.6
SAS 1-15 Dec 73-03	1 2 3	2010 1820 2190	2010	+9.0, -9.4	1430 1410 1370	1400	±2.1
SAS 1-15 Dec 73-04	1 2 3	2010 1820 2130	1990	+7.0, -8.5	1790 1600 1810	1730	+4.6, -7.5
SAS 1-16 Dec 73-01	1 2 3	1620 1490 1560	1560	+3.8, -4.5	1340 1220 1330	1300	+3.1, -6.1
SAS 1-16 Dec 73-02	1 2 3	955 972 1040	989	+5.2, -3.4	955 884 1020	953	+7.0, -7.2

231

-

Append	lix	E.	(Cont	'd)
--------	-----	----	-------	-----

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E(cm ²)	Mean (cm ²)	Range (%)
SAS 1-16 Dec 73-03	1 3	752 689	720	±4.4	703 650	680	±3.4
SAS 1-16 Dec 73-04	1 3	572 686	629	±9.1	553 654	604	±8.3
SAS 1-17 Dec 73-01	1 3	496 519	508	±2.2	266 232	249	±6.8
SAS 1-17 Dec 73-02	1 3	410 399	405	±1.3	307 300	304	±1.2
SAS 1-17 Dec 73-03	1 3	601 594	598	±1.0	432 410	421	±2.6
SAS 1-18 Dec 73-01	1 3	721 729	725	±0.01	448 472	460	±2.6
SAS 1-18 Dec 73-02	1 3	662 696	679	±2.5	443 470	457	±3.0
SAS 1-18 Dec 73-03	1 3	573 607	590	±2.9	332 314	323	±2.9
SAS 1-18 Dec 73-04	1 3 4	947 858 902	906	+5.6, -5.3	563 561 571	565	±0.01
SAS 1-19 Dec 73-01	1 3 4	1200 1130 1020	1120	+7.1, -9.8	971 886 833	897	+8.3, -7.1
SAS 1-19 Dec 73-03	1 3 4	360 456 417	411	+10.9,-12.4	306 332 319	319	±4.1

Appendix E. (conc d	A	ppendix	Ε.	(Cont	'd)
---------------------	---	---------	----	-------	-----

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-19 Dec 73-04	1 3 4	437 445 464	449	+3.3, -2.7	367 386 409	387	+5.7, -5.2
SAS 1-20 Dec 73-04	1 3 4	1260 1240 1190	1230	+2.4, -3.3	1090 1110 1050	1080	+2.8, -2.7
SAS 1-21 Dec 73-01	1 3 4	1400 1450 1260	1370	+5.8, -8.0	1260 1330 1140	1240	+7.3, -8.1
SAS 1-21 Dec 73-02	1 3 4	945 930 894	923	+2.4, -3.1	876 873 845	865	+1.3, -2.3
SAS 1-21 Dec 73-04	1 2 3 4	921 1110 916 816	941	+17.9,-13.2	860 829 864 762	829	+4.2, -8.1
SAS 1-22 Dec 73-02	1 2 3 4	1580 1450 1750 1360	1540	+13.6,-11.7	731 596 702 714	686	+4.1,-13.1
SAS 1-22 Dec 73-01	1 2 3 4	1200 1110 1170 939	1100	+9.1,-14.6	949 878 929 756	878	+8.1,-13.9

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-22 Dec 73-02	1 2 3 4	1200 1110 1170 939	1100	+9.1,-14.6	949 946 929 756	895	+6.0,-15.5
SAS 1-22 Dec 73-03	1 2 3 4	1580 1450 1750 1360	1540	+13.6,-11.7	731 596 702 714	686	+6.6,-13.1
SAS 1-22 Dec 73-04	1 2 3 4	1760 1660 1980 1720	1780	+11.2, -6.7	1000 1060 1190 1040	1070	+11.2, -6.5
SAS 1-23 Dec 73-01	1 2 3 4	3250 3000 3160 3060	3120	+4.2, -3.8	2020 1980 1990 2300	2070	+11.1, -4.3
SAS 1-24 Dec 73-04	2 3 4	1590 1620 1560	1590	±1.9	776 929 902	869	+6.9,-10.7
SAS 1-28 Dec 73-05	1 2 3 4	- 428 412 388	409	+4.2, -5.1	- 323 313 292	309	+3.9, -5.5

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-29 Dec 73-01	1 2 3 4	336 426 419	394	+8.1,-15.1	260 319 282	287	+11.1, -5.9
SAS 1-29 Dec 73-02	1 2 3 4	- 584 623 589	599	+2.5, -4.0	244 257 256	252	+3.2, -2.0
SAS 1-29 Dec 73-04	1 2 3 4	- 1220 1330 1190	1250	+2.4, -4.8	701 760 742	734	+3.5, -4.5
SAS 1-30 Dec 73-01	1 2 3 4	- 1420 1670 1560	1550	+7.7, -8.4	906 953 918	926	+2.9, -2.2
SAS 1-30 Dec 73-02	1 2 3 4	1410 1460 1370	1410	+2.8, -3.5	906 848 769	841	+7.7, -8.6
SAS 1-30 Dec 73-03	1 2 3 4	1660 1760 1620	1680	+4.8, -3.6	- 1100 1250 964	1100	+13.6,-12.4

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-30 Dec 73-04	1 2 3 4	1880 1900 1720	1830	+3.8, -6.0	1510 1480 1230	1410	+7.1,-12.8
SAS 1-02 Jan 74-03	2 3 4	470 498 441	470	+6.0, -6.1	390 327 288	335	+16.4,-14.0
SAS 1-02 Jan 74-04	1 2 3 4	433 421 386 391	408	+6.1, -5.4	235 223 200 218	219	+7.3, -8.7
SAS 1-03 Jan 74-01	2 3 4	313 330 304	316	+4.4, -3.8	141 204 200	182	+9.9,-22.5
SAS 1-03 Jan 74-02	2 3 4	424 432 430	429	±0.01	329 296 302	309	+6.5, -4.2
SAS 1-03 Jan 74-04	2 3 4	256 240 243	246	+4.1, -2.4	125 102 119	115	+8.7,-11.3
SAS 1-03 Jan 74-05	1 2 3 4	183 166 165 176	173	+5.8, -4.6	89.5 70.9 75.0 78.0	78.4	+14.1, -9.6
SAS 1-04 Jan 74-01	2 3 4	281 291 230	267	+8.9,-13.8	206 211 156	191	+10.5,-18.3

100 P

Appendix E. (Cont'd)

Appendix	E.	(Cont	'd)	
----------	----	-------	-----	--

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-04 Jan 74-04	2 3 4	1240 1120 1060	1140	+8.8, -7.0	931 845 817	864	+7.8, -5.4
SAS 1-04 Jan 74-05	2 3 4	639 607 562	603	+6.0, -6.8	507 516 483	502	+2.8, -3.8
SAS 1-05 Jan 74-01	2 3 4	2170 2370 2000	2180	+8.7, -8.3	2050 2250 1850	2050	±9.8
SAS 1-06 Jan 74-04	2 3 4	836 816 797	816	±2.5	436 385 369	397	+9.8, -7.0
SAS 1-06 Jan 74-05	2 3 4	392 417 406	405	+3.0, -3.2	172 150 179	167	+7.2,-10.2
SAS 1-07 Jan 74-01	2 3 4	296 284 253	278	+6.5, -9.0	82.3 112 110	101	+11.9,-18.5
SAS 1-07 Jan 74-02	1 2 3 4	299 288 302 272	290	+4.1, -6.2	132 91.9 95.2 93.6	103	+28.1,-10.8
SAS 1-07 Jan 74-03	1 2 3 4	300 265 288 284	284	+5.6, -6.7	108 113 114 112	112	+1.8, -3.6

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-07 Jan 74-04	1 2 3 4	350 337 351 352	348	+1.1, -3.2	189 180 216 201	197	+9.6, -8.6
SAS 1-08 Jan 74-01	1 2 3 4	732 761 738 589	705	+4.7,-16.5	574 588 552 421	534	+10.1,-21.2
SAS 1-08 Jan 74-02	1 2 3 4	1130 1120 1290 1100	1160	+11.2, -5.2	830 840 953 894	879	+8.4, -5.6
SAS 1-08 Jan 74-03	1 2 3 4	1890 1550 1590 1330	1590	+18.9,-16.3	1640 1450 1570 1320	1500	+9.3,-12.0
SAS 1-09 Jan 74-01	2 3 4	1500 1800 1690	1660	+8.4, -9.6	1270 1380 1430	1360	+5.1, -6.6
SAS 1-09 Jan 74-02	1 2 3 4	922 897 1110 966	974	+14.0, -7.9	887 860 1080 926	938	+15.1, -8.3

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-10 Jan 74-03	1 2 3 4	435 409 468 446	440	+6.4, -7.0	214 217 258 264	238	+10.9,-10.1
SAS 1-11 Jan 74-01	2 3 4	570 608 529	569	±6.9	450 442 402	431	+4.4, -6.7
SAS 1-11 Jan 74-03	2 3 4	212 230 231	224	+3.1, -5.4	163 174 187	175	±6.9
SAS 1-11 Jan 74-04	1 2 3 4	152 148 167 158	156	+7.1, -5.1	124 119 126 131	125	±4.8
SAS 1-12 Jan 74-01	1 2 3 4	225 225 260 247	239	+8.8, -5.9	189 200 219 217	206	+6.3, -8.2
SAS 1-12 Jan 74-02	2 3 4	286 289 257	277	+4.3, -7.2	268 266 240	258	+3.9, -7.0
SAS 1-12 Jan 74-03	1 2 3 4	359 363 385 351	365	+7.5, -3.8	196 171 197 225	197	+14.2,-13.2

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-12 Jan 74-04	1 2 3 4	517 496 510 458	495	+4.4, -7.5	313 299 302 276	298	+5.0 -7.4
SAS 1-13 Jan 74-01	1 2 3 4	802 828 752 689	768	+7.8,-10.3	775 802 717 - 666	740	+8.4,-10.0
SAS 1-13 Jan 74-02	1 2 3 4	926 958 1020 943	962	+6.0, -3.7	919 948 1010 906	946	+6.7, -4.2
SAS 1-13 Jan 74-03	1 2 3 4	1620 1690 1760 1740	1700	+3.5, -4.7	1510 1520 1590 1460	1520	+4.6, -3.9
SAS 1-13 Jan 74-04	1 2 3 4	1250 1230 1410 1360	1310	+7.6, -4.6	1070 1060 1230 1140	1125	+9.3, -5.8
SAS 1-14 Jan 74-01	1 2 3 4	1240 1410 1640 1490	1450	+13.1,-14.5	1050 1220 1410 1330	1250	+12.8,-16.0

1

1000

owner and the state of the

240

Appendix E. (Cont'd)

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-14 Jan 74-02	1 2 3 4	1070 971 883 798	931	+14.9,-14.3	1000 940 840 770	888	+12.6,-13.2
SAS 1-15 Jan 74-01	1 2 3 4	766 628 644 592	658	+16.4,-10.0	658 594 609 581	611	+7.7, -4.9
SAS 1-15 Jan 74-03	2 3 4	503 551 482	512	+7.6, -5.9	479 531 461	490	+8.4, -5.9
SAS 1-15 Jan 74-04	2 3 4	486 461 471	473	+2.7, -2.5	337 336 324	332	+1.5, -2.4
SAS 1-16 Jan 74-01	2 3 4	362 428 364	385	+11.2, -6.0	283 294 278	285	+3.2, -2.5
SAS 1-18 Jan 74-02	2 3	720 582	651	±10.6	697 538	618	±12.8
SAS 1-18 Jan 74-03	2 3	747 695	721	±3.6	734 650	692	±6.1
SAS 1-19 Jan 74-01	2 3	551 671	611	±9.8	550 633	592	±6.9
SAS 1-19 Jan 74-02	2 3	352 422	387	±9.0	271 297	284	±4.6

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-19 Jan 74-03	2 3	402 340	371	±8.4	396 319	358	±10.6
SAS 1-19 Jan 74-04	2 3	477 483	480	±0.6	226 202	214	±5.6
SAS 1-20 Jan 74-01	2 3	451 541	496	±9.1	255 405	330	±22.7
SAS 1-25 Jan 74-02	1 2 4	240 222 199	220	+9.1, -9.5	127 152 160	146	+9.6,-13.0
SAS 1-26 Jan 74-01	1 2 4	180 169 165	171	+5.3, -3.5	73.9 77.4 67.4	72.9	+6.2, -7.5
SAS 1-26 Jan 74-02	1 2 3 4	343 322 342 285	323	+6.2,-11.8	120 120 107 103	113	+6.2, -8.8
SAS 1-26 Jan 74-03	1 2 3 4	342 347 372 331	348	+6.9, -4.9	215 202 200 212	207	+3.9, -3.4
SAS 1-26 Jan 74-04	1 2 3 4	821 911 888 798	856	+6.4, -6.8	436 482 504 414	459	±9.8

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-27 Jan 74-01	1 2 3 4	707 730 629 601	667	+9.4, -9.9	464 397 489 425	444	+10.1,-10.6
SAS 1-27 Jan 74-02	1 2 3 4	718 625 587 502	632	+13.6,-11.1	499 457 334 315	401	+24.4,-21.4
SAS 1-27 Jan 74-03	1 2 3 4	1180 1030 959 943	1030	+14.5, -8.4	805 660 619 634	680	+18.4, -8.9
SAS 1-27 Jan 74-04	2 3 4	1270 1240 1070	1190	+6.7,-10.1	742 790 838	790	±6.1
SAS 1-28 Jan 74-01	1 2 4	685 673 732	697	+5.0, -3.4	386 393 352	377	+4.2, -6.6
SAS 1-28 Jan 74-03	1 2 4	385 405 451	414	+8.9, -7.0	286 298 339	308	+10.1, -7.1
SAS 1-28 Jan 74-04	1 2 3 4	520 526 593 578	554	+7.0, -6.1	284 289 356 353	321	+10.9,-11.5

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-29 Jan 74-01	1 2 4	279 288 287	285	+1.0, -2.1	122 126 133	127	+4.7, -3.9
SAS 1-29 Jan 74-02	1 2 3 4	464 487 475 446	468	+4.1, -4.7	404 416 422 396	410	+2.9, -3.4
SAS 1-29 Jan 74-03	1 2 3 4	442 430 439 438	437	+1.1, -1.6	206 199 215 221	210	±5.2
SAS 1-29 Jan 74-04	1 2 3 4	333 335 315 306	322	+4.1, -5.0	231 210 232 220	223	+4.0, -5.8
SAS 1-30 Jan 74-01	1 2 3 4	418 414 439 393	416	±5.5	265 260 330 270	281	+17.4, -7.5
SAS 1-30 Jan 74-03	1 2 3 4.	324 298 264 249	284	+14.1,-12.3	180 177 130 136	156	+15.4,-16.7
SAS 1-30 Jan 74-04	1 2 3 4	286 271 287 222	267	+7.5,-16.9	199 182 188 123	173	+15.0,-28.9

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-31 Jan 74-01	1 2 3 4	246 233 242 239	240	+2.5, -2.9	121 111 115 110	114	+6.1, -3.5
SAS 1-09 Feb 74-02	1 2 3 4	138 128 128 124	130	+6.2, -4.6	112 101 101 105	106	+5.7, -4.7
SAS 1-09 Feb 74-03	1 2 3 4	115 110 126 109	115	+9.6, -5.2	91.5 86.6 85.1 80.7	86.0	+6.4, -6.2
SAS 1-10 Feb 74-01	1 2 3 4	187 180 169 165	175	+6.9, -5.7	132 131 124 125	128	+4.5, -3.1
SAS 1-10 Feb 74-04	1 2 3 . 4	247 267 306 274	274	+11.7, -9.9	217 234 260 243	239	+8.8, -9.2
SAS 1-11 Feb 74-01	1 2 3 4	631 643 678 638	648	+4.6, -2.6	515 534 567 544	540	+5.0, -4.6

Run	Sensor	E _T (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-11 Feb 74-02	1 2 3 4	542 502 534 530	527	+2.8, -4.7	440 425 463 457	446	+3.8, -4.7
SAS 1-11 Feb 74-03	1 2 3 4	1210 1080 1210 1210	1180	+2.5, -9.3	1030 921 1050 1060	1020	+3.9, -9.7
SAS 1-11 Feb 74-04	1 2 3 4	663 672 735 720	698	+5.3, -5.0	570 585 647 626	607	+6.6, -6.1
SAS 1-12 Feb 74-01	1 2 3 4	681 643 629 604	639	+6.6, -5.5	583 546 539 520	547	+6.6, -4.9
SAS 1-12 Feb 74-02	1 2 3 4	570 570 569 550	565	+0.9, -2.7	360 382 370 358	368	+3.8, -2.7
SAS 1-26 Feb 74-02	1 2 3 4	379 351 458 430	405	+13.1,-13.3	187 190 246 261	221	+18.1,-15.4

246

.

Run	Sensor	E _T (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-27 Feb 74-02	1 2 3 4	633 654 651 680	6 <mark>5</mark> 5	+3.8, -3.4	372 368 313 376	357	+5.3,-12.3
SAS 1-27 Feb 74-04	1 2 3 4	641 589 555 499	571	+12.3,-12.6	506 471 384 401	441	+14.7,-12.9
SAS 1-28 Feb 74-01	1 2 3 4	891 821 836 769	829	+7.5, -7.2	778 740 761 690	742	+4.9, -7.0
SAS 1-28 Feb 74-07	1 2 3 4	521 780 577 559	609	+28.1,-14.4	499 581 561 542	546	+6.4, -8.6
SAS 1-01 Mar 74-01	1 2 3 4	701 981 663 647	748	+31.1,-13.5	623 680 571 563	609	+11.7, -7.6
SAS 1-07 Mar 74-03	1 2 3 4	224 251 232 214	230	+9.1, -7.0	80.2 91.8 92.5 75.0	84.9	+9.0,-11.7

Run	Sensor	E _T (cm ²)	Mean (cm ²)	Range (%)	E _{p1} . (cm ²)	Mean (cm ²)	Range (%)
SAS 1-07 Mar 74-04	1 2 3 4	194 195 217 196	200	+8.5, -3.0	129 131 156 139	139	+12.2, -7.2
SAS 1-08 Mar 74-01	1 2 3 4	637 628 500 634	625	+1.9, -4.0	478 459 381 459	444	+7.7,-14.2
SAS 1-08 Mar 7 <mark>4</mark> -04	1 2 3 4	2310 2230 1990 1880	2100	+10.0,-10.5	2180 2120 1910 1800	2000	+9.0, -9.5
SAS 1-09 Mar 74-01	1 2 3 4	1630 1530 1440 1460	1520	+7.2, -5.3	1520 1420 1310 1350	1400	+8.6, -6.4
SAS 1-09 Mar 74-02	1 2 3 4	1240 1270 931 1090	1130	+12.4,-17.6	544 655 563 727	622	+16.9,-12.5
SAS 1-09 Mar 74-03	1 2 3 4	415 389 415 423	411	+2.9, -5.4	395 369 389 400	388	+3.0, -4.9

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-10 Mar 74-03	1 2 3 4	124 127 136 110	124	+9.7,-11.3	55.3 55.6 38.8 50.9	50.2	+10.8,-24.1
SAS 1-11 Mar 74-01	1 2 3 4	153 160 142 155	153	+4.6, -5.9	70.6 66.7 61.7 65.2	66.0	+7.0, -6.8
SAS 1-15 Mar 74-03	1 2 3 4	294 294 279 239	277	+6.1,-13.7	143 145 140 123	138	+5.1,-10.9
SAS 1-16 Mar 74-02	1 2 3 4	172 173 176 158	170	+3.5, -7.1	142 140 132 129	136	+4.4, -5.1
SAS 1-16 Mar 74-03	1 2 3 4	172 175 176 153	169	+4.1, -9.5	91.0 87.0 -	89.0	±2.2
SAS 1-17 Mar 74-01	1 • 2 3 4	225 213 216 180	209	+7.7,-13.9	201 191 197 162	188	+6.9, -8.5

	Ar	pen	dix	E. (Cont	'd)
--	----	-----	-----	------	------	-----

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E_{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-17 Mar 74-02	1 2 3 4	215 229 251 202	224	+12.1, -9.8	92.1 96.7 -	94.4	±2.4
SAS 1-17 Mar 74-03	1 2 3 4	213 207 231 187	210	+10.0,-11.0	164 157 160 155	159	+3.1, -2.5
SAS 1-22 Mar 74-01	1 2 3 4	401 404 428 350	396	+8.1,-11.6	336 337 356 277	327	+8.9,-15.3
SAS 1-22 Mar 74-02	1 2 3 4	389 371 348 307	354	+9.9,-13.3	284 290 267 238	270	+7.4,-11.9
SAS 1-22 Mar 74-03	1 2 3 4	193 191 193 176	188	+2.7, -6.4	138 137 124 125	131	±5.3
SAS 1-22 Mar 74-04	1 2 3 4	155 145 157 131	149	+5.4, -8.1	57.4 52.3 58.1 78.1	54.0	+7.6,-10.9
Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E_{p1} (cm ²)	Mean (cm ²)	Range (%)
--------------------	------------------	------------------------------	-------------------------	-------------	------------------------------	-------------------------	-------------
SAS 1-26 Mar 74-01	1 2 3 4	1280 1410 1610 1450	1440	+11.8,-11.1	1090 1210 1430 1260	1250	+14.4,-12.8
SAS 1-26 Mar 74-02	1 2 3 4	1650 1690 1630 1660	1660	±1.8	1180 1220 1270 1250	1230	+3.1, -4.1
SAS 1-26 Mar 74-03	1 2 3 4	1510 1530 1350 1320	1430	+7.0, -7.7	1240 1260 1140 1170	1200	±5.0
SAS 1-27 Mar 74-01	1 2 3 4	1990 2030 1820 1790	1910	±6.3	1710 1650 1560 1530	1610	+6.2, -5.0
SAS 1-27 Mar 74-02	1 2 3 4	1430 1390 1230 1160	1300	+10.0,-10.8	1250 1190 1040 980	1120	+11.6,-12.5
SAS 1-27 Mar 74-03	1 2 3	2270 2310 2070	2140	+6.1,-11.4	2220 2270 2010 1860	2090	+6.2,-11.0

Run	Sensor	E _T (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-28 Mar 74-01	1 2 3 4	1860 1880 1810 1760	1830	+2.7, -3.8	1810 1830 1760 1720	1780	+2.8, -3.4
SAS 1-28 Mar 74-03	1 2 3 4	1160 1190 1380 1320	1260	+9.5, -7.9	1080 1140 1320 1270	1200	±10.0
SAS 1-28 Mar 74-04	1 2 3 4	1190 1180 1150 1040	1140	+4.4, -8.8	1160 1150 1110 1010	1110	+4.5, -9.
SAS 1-29 Mar 74-01	1 2 3 4	1320 1400 1270 1290	1320	+6.1, -3.8	1260 1350 1240 1240	1270	+6.3, -2.4
SAS 1-29 Mar 74-02	1 2 3 4	1570 1610 1660 1670	1630	+2,5, -3.7	1430 1450 1530 1560	1490	+4.7, -4.
SAS 1-29 Mar 74-03	1 2 3 4	2610 2620 2300 2350	2470	+6.1, -6.9	2490 2530 2200 2260	2370	+5.9, -7.2

100

1

.

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-29 Mar 74-04	1 2 3 4	2230 2390 2400 2190	2300	+4.3, -4.8	1770 1930 1940 1780	1860	+4.3, -4.8
SAS 1-30 Mar 74-01	1 2 3 4	1390 1440 1360 1350	1390	+3.6, -2.9	1130 1250 1110 1110	1150	+8.7, -3.5
SAS 1-30 Mar 74-02	1 2 3 4	1760 1680 1330 1530	1580	+11.4,-15.6	1300 1260 994 1180	1180	+10.2,-15.8
SAS 1-30 Mar 74-03	1 2 3 4	1150 1100 1100 1080	1110	+6.3, -2.7	1100 1060 1050 1050	1070	+2.8, -1.9
SAS 1-30 Mar 74-04	1 2 3 4	1140 1150 1220 1190	1180	±3.4	1060 1070 1080 1090	1080	±1.4
SAS 1-31 Mar 74-01	1 2 3 4	1520 1440 1420 1360	1440	±5.0	1080 1020 1030 1090	1060	+2.8, -4.7

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-31 Mar 74-02	1 2 3 4	2520 2330 - 2340	2400	+5.0, -2.5	1380 1130 	1190	+16.0,-11.8
SAS 1-01 Apr 74-01	1 2 3 4	2120 2090 2200	2140	+2.8, -2.3	1730 1400 - 1690	1610	+7.5,-13.0
SAS 1-01 Apr 74-02	1 2 3 4	1720 1820 1510	1680	+8.3,-10.1	1520 1530 - 1380	1480	+3.4, -6.8
SAS 1-01 Apr 74-03	1 2 3 4	1550 1640 - 1590	1590	+3.1, -2.5	899 930 - 925	918	+1.3, -2.1
SAS 1-01 Apr 74-04	1 2 3 4	1620 1680 1810 1520	1660	+9.0, -8.4	1150 1190 1230 1070	1160	+6.0, -7.8
SAS 1-02 Apr 74-01	1 2 3 4	1520 1510 1570 1520	1530	+2.6, -1.3	934 910 926 996	942	+5.7, -3.4

Appendix E. (Cont'd)

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-03 Apr 74-01	1 2 3 4	1820 1910 2080 1790	1900	+9.5, -5.8	1790 1770 1860 1750	1790	+3.9, -2.2
SAS 1-03 Apr 74-03	1 2 3 4	2020 2460 3160 2350	2500	+26.4,-19.2	1820 2400 3110 2190	2380	+30.7,-23.5
SAS 1-03 Apr 74-04	1 2 3 4	1340 1400 1360 1250	1340	+4.3, -6.7	624 575 691 654	636	+8.6, -9.6
SAS 1-04 Apr 74-01	1 2 3 4	1240 1170 1060 1080	1140	+8.8, -7.0	626 553 547 586	578	+8.3, -5.4
SAS 1-04 Apr 74-02	1 2 3 4	1020 1030 974 827	936	+7.0,-14.1	755 736 671 499	665	+13.5,-25.0
SAS 1-05 Apr 74-01	1 2 3 4	517 539 536 497	522	+3.2, -4.8	509 565 522 487	521	+8.4, -6.5

Run	Sens <mark>o</mark> r	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-0 <mark>5</mark> Apr 74-02	1 2 3 4	483 470 471 523	487	+7.4, -3.5	431 413 438 481	440	+9.3, -6.1
SAS 1-05 Apr 74-04	1 2 3 4	303 335 385 367	348	+ <mark>10.6,-12.9</mark>	281 302 340 338	315	+7.3,-10.7
SA <mark>S</mark> 1-05 Apr 74-05	1 2 3 4	449 422 420 406	424	+5.9, -4.2	301 286 303 273	291	+ <mark>4</mark> .1, -6.2
SAS 1-07 Apr 74-02	1 2 3 4	495 542 542 507	522	+3.7, -5.2	225 214 245 220	233	+5.2, -5.6
SAS 1-07 Apr 74-03	1 2 3 4	1270 1260 1190 1150	1220	+4.1, -5.7	1100 1010 997 1010	1030	+6.8, -3.2
SAS 1-12 Apr 74-03	1 2 3 4	419 476 447 424	442	+7.7, -5.2	344 385 325 367	355	+8.5, -8.5

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-13 Apr 74-01	1 2 3 4	656 645 573 575	612	+6.7, -6.4	634 623 555 555	594	+6.3, -6.9
SAS 1-13 Apr 74-02	1 2 3 4	551 565 531 515	541	+4.4, -4.8	467 480 440 418	451	+6.4, -7.3
SAS 1-13 Apr 74-03	1 2 3 4	430 435 456 451	443	+2.9, -2.9	343 341 306 330	330	+3.9, -7.2
SAS 1-13 Apr 74-04	1 2 3 4	366 392 399 374	383	+4.2, -4.4	241 254 239 211	236	+7.6,-10.6
SAS 1-14 Apr 74-01	- 1 2 3 4	336 359 318 338	338	+6.2, -5.9	154 184 180 190	177	+7.3,-13.0
SAS 1-14 Apr 74-03	1 2 3 4	193 268 267 259	247	+8.5,-21.8	93.7 152 149 109	126	+20.6,-25.4

Appendix	Ε.	(Cont'd)
----------	----	----------

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-14 Apr 74-04	1 2 3 4	232 237 217	229	+3.5, -5.2.	212 221 204	212	±4.2
SAS 1-15 Apr 74-01	1 2 3 4	330 270 253 210	266	+24.1,-21.0	109 202 184 176	168	+20.2,-35.1
SAS 1-15 Apr 74-03	1 2 3 4	201 211 182 151	186	+13.4,-18.8	190 200 167 145	176	+13.6,-17.6
SAS 1-15 Apr 74-04	1 2 3 4	221 229 220 192	216	+6.0,-11.1	197 208 195 174	194 _	+7.2,-10.3
SAS 1-16 Apr 74-01	1 2 3 4	368 394 466 381	402	+15.9, -8.5	168 200 238 213	205	+16.1,-18.0
SAS 1-16 Apr 74-02	1 2 3 4	753 768 692 764	744	+3.2, -7.0	483 549 475 465	493	+11.4, -5.7

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-16 Apr 74-03	1 2 3 4	772 752 - 760	761	+1.4, -1.2	509 530 - 537	525	+2.3, -3.0
SAS 1-16 Apr 74-04	1 2 3 4	806 788 - 697	764	+5.5, -8.8	620 599 - 551	590	+5.1, -6.6
SAS 1-17 Apr 74-01	1 2 3 4	307 360 426 368	366	+16.4,-16.1	149 198 203 187	184	+10.1,-19.0
SAS 1-17 Apr 74-02	1 2 3 4	253 269 277 236	259	+6.9, -8.9	186 183 186 170	181	+2.8, -6.1
SAS 1-17 Apr 74-03	1 2 3 4	261 245 237 203	237	+10.1,-14.3	197 199 181 163	185	+7.6,-11.9
SAS 1-18 Apr 74-01	1 2 3 4	209 222 251 203	221	+13.6, -8.1	97.0 96.6 91.9 132	104	+26.9,-11.6

259

Appendix E. (Contra)

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-18 Apr 74-02	1 2 3 4	313 320 355 281	317	+3.8,-11.4	185 185 208 167	186	+11.8,-10.2
SAS 1-18 Apr 74-03	1 2 3 4	307 296 338 331	318	+6.3, -6.9	98.4 105 139 128	118	+17.8,-16.6
SAS 1-18 Apr 74-04	1 2 3 4	876 877 751 745	812	+8.0, -8.3	595 669 495 546	576	+16.1,-14.1
SAS 1-19 Apr 74-01	1 2 3 4	1310 1370 - 1220	1300	+5.4, -6.2	837 1040 - 794	890	+16.8,-10.8
SAS 1-19 Apr 74-01	1 2 3 4	711 660 - 583	651	+9.2,-10.4	495 386 - 391	424	+16.7, -9.0
SAS 1-20 Apr 74-01	1 2 3 4	643 670 - 561	625	+7.2,-10.4	630 611 - 537	593	+6.2, -9.4

•

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-20 Apr 74-02	1 2 3	501 484	498	+2.2, -2.8	362 339	354	+2.3, -4.2
	4	509		-	362		
SAS 1-20 Apr 74-03	1 2 3 4	378 397 - 344	373	+6.4, -7.8	325 358 290	324	+10.4,-10.4
SAS 1-20 Apr 74-04	1 2 3 4	577 585 - 531	564	+3.7, -5.9	506 499 - 466	490	+3.3, -4.9
SAS 1-21 Apr 74-01	1 2 3 4	385 371 431 435	406	+7.1, -8.6	294 264 283 307	287	+7.0, -8.0
SAS 1-21 Apr 74-02	1 2 3 4	335 351 - 342	343	+2.3, -2.3	247 235 - 275	252	+10.7, -6.7
SAS 1-21 Apr 74-03	1 2 3 4	349 334 332 295	328	+6.1,-10.1	155 140 144 150	147	+5.4, -4.8

ъ.

Run	Sensor	E _T (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-21 Apr 74-04	1 2 3 4	413 436 - 454	434	<mark>+4.6, -4.8</mark>	319 323 - 309	317	+1.8, -2.5
SAS 1-22 Apr 74-01	1 2 3 4	259 269 287 250	266	+7.9, -2.3	135 117 157 142	138	+13.8,-15.3
SAS 1-22 Apr 74-02	1 2 3 4	243 250 253 235	245	+3.3, -4 <mark>.</mark> 1	139 129 148 149	141	+5.7, -8.5
SAS 1-22 Apr 74-03	1 2 3 4	268 276 268 234	262	+5.3,-10.7	122 119 116 115	118	+3.3, -2.5
SAS 1-22 Apr 74-04	1 2 3 4	402 383 321	369	+8.9,-13.0	254 232 217	234	+8.5, -7.3
SAS 1-23 Apr 74-01	1 2 3 4	262 241 257	253	+3.6, -4.7	127 116 	122	+4.1, -4.9

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-23 Apr 74-02	1 2 3 4	317 303 300 287	302	+5.0, -5.0	147 140 133 132	138	+6.5, -4.3
SAS 1-23 Apr 74-04	1 2 3 4	375 368 - 325	356	+8.7, -8.7	340 327 - 313	327	+3.9, -4.2
SAS 1-24 Apr 74-01	1 2 3 4	269 265 - 251	262	+2.8, -4.2	257 248 - 234	246	+4.5, -4.9
SAS 1-24 Apr 74-02	1 2 3 4	278 282 - 300	287	+4.5, -3.1	268 268 - 293	275	+6.5, -4.0
SAS 1-25 Apr 74-03	1 2 3 4	795 876 - 845	839	+4.4, -5.5	418 452 - 448	439	+3.0, -4.0
SAS 1-25 Apr 74-04	1 2 3 4	794 867 873 691	806	+8.3,-14.3	252 266 319 266	275	+16.0,-8.4

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-26 Apr 74-01	1 2 3 4	842 853 - 822	839	+1.7, -2.0	755 853 - 822	810	+5.3, -7.0
SAS 1-26 Apr 74-02	1 2 3 4	803 803 741 666	753	+6.6,-11.6	644 571 577 544	584	+10.3, -6.8
SAS 1-26 Apr 74-05	1 2 3 4	479 467 - 455	467	+2.6, -2.6	328 320 - 307	318	+3.1, -3.5
SAS 1-27 Apr 74-01	1 · 2 3 4	622 667 - 490	593	+12.5,-17.4	578 588 - 427	531	+8.8,-19.6
SAS 1-27 Apr 74-02	1 2 3 4	252 252 - 229	244	+3.3, -6.1	98.0 95.9 - 86.6	93.5	+4.8, -7.4
SAS 1-27 Apr 74-03	1 2 3 4	234 228 - 204	222	+5.4, -8.1	186 164 - 152	167	+11.3, -8.9

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-27 Apr 74-04	1 2 3	390 374	383	+1.8, -2.3	325 307 -	293	+9.6,-15.6
SAS 1-28 Apr 74-01	4 1 2	386 541 525	526	+2.9, -2.7	247 411 387	411	+6.1, -5.8
CAC 1 20 Arr 74 02	3 4	512	431	+1 2 -1 6	436	298	+7.4, -4.0
SAS 1-28 Apr 74-02	2 3 4	436	701		320 - 288		
SAS 1-28 Apr 74-04	1 2 3 4	514 508 - 417	480	+7.1,-13.1	449 471 - 362	428	+10.0,-15.4
SAS 1-29 Apr 74-01	1 2 3 4	515 534 583 499	533	+9.8, -6.4	353 383 416 386	384	+8.3, -8.1
SAS 1-29 Apr 74-03	1 2 3 4	325 336 333 298	323	+4.0, -7.7	200 189 187 177	188	+6.4, -5.9

Appendix	E. ((Cont'd)
----------	------	----------

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-29 Apr 74-04	1 2 3 4	250 239 276 258	256	+7.8, -5.9	142 151 176 179	162	+10.5,-12.3
SAS 1-30 Apr 74-01	1 2 3 4	290 308 375 312	321	+16.8, -9.7	203 238 299 193	216	+10.2,-10.6
SAS 1-30 Apr 74-02	1 2 3 4	204 191 187 175	189	+7.9, -7.4	150 124 123 127	131	+14.5, -6.1
SAS 1-30 Apr 74-03	1 2 3 4	384 346 360 334	356	+7.9, -6.2	258 229 255 256	250	+3.2, -8.4
SAS 1-30 Apr 74-04	- 1 2 3 4	323 369 379 337	352	+7.7, -8.2	192 178 166 190	182	+5.4, -8.8
SAS 1-01 May 74-01	1 2 3 4	535 574 596 548	563	+5.9, -5.0	411 434 419 381	411	+5.6, -4.6

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-01 May 74-02	1 2 3 4	273 282 265 251	268	+5.2, -6.3	126 95.4 96.9 82.8	100	+26.0,-17.2
SAS 1-01 May 74-03	1 2 3 4	319 298 272 208	274	+16.4,-24.1	287 272 238 167	241	+19.0,-30.7
SAS 1-01 May 74-04	1 2 3 4	217 223 207 178	206	+8.3,-13.6	211 210 187 170	195	+8.2,-12.8
SAS 1-02 May 74-01	1 2 3 4	483 482 518 429	478	+8.4,-10.3	269 258 307 211	261	+17.6,-19.2
SAS 1-02 May 74-02	1 2 3 4	239 319 251 339	287	+18.1,-16.7	161 234 151 219	191	+22.5,-20.9
SAS 1-02 May 74-03	1 2 3 4	244 247 255 216	241	+5.8,-10.0	100 98.3 100 85.8	96.0	+4.2,-10.6

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-02 May 74-04	1 2 3 4	349 319 314 309	323	+8.0, -4.3	189 182 162 167	175	+8.0, -7.4
SAS 1-03 May 74-01	1 2 3 4	307 305 347 284	311	+11.6, -8.7	138 139 104 84.4	116	+19.8,-27.6
SAS 1-03 May 74-02	1 2 3 4	665 624 619 559	617	+7.2, -9.4	419 420 438 410	422	+3.8, -2.8
SAS 1-03 May 74-03	1 2 3 4	576 586 594 512	567	+4.8, -9.7	388 425 413 373	400	+6.3, -6.8
SAS 1-04 May 74-01	1 2 3 4	503 508 504 481	499	+1.8, -3.6	481 474 388 444	447	+7.6,-13.1
SAS 1-04 May 74-03	1 2 3 4	476 491 538 422	482	+11.6,-12.4	251 268 237 216	243	+10.3,-11.1

.

1.00

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-04 May 74-04	1 2 3 4	334 326 333 298	323	+3.4, -7.7	212 209 223 199	211	+5.7, -5.7
SAS 1-05 May 74-01	1 2 3 4	337 353 381 333	351	+8.5, -5.1	146 157 203 175	170	+19.4,-14.1
SAS 1-05 May 74-02	1 2 3 4	237 260 269 258	256	+5.1, -8.2	84.6 86.3 113 116	100	+16.0,-15.4
SAS 1-05 May 74-03	1 2 3 4	282 298 334 298	303	+10.2, -6.9	108 110 119 80.0	104	+14.4,-23.1
SAS 1-05 May 74-04	1 2 3 4	236 250 231 224	234	+6.4, -4.7	153 169 123 137	146	+15.8,-15.8
SAS I-06 May 74-01	1 2 3 4	349 352 334 302	334	+5.4, -9.6	197 159 142 117	154	+27.9,-24.0

269

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E_{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-06 May 74-02	1 2 3 4	217 229 271 244	240	+12.9, -9.6	102 110 145 136	123	+17.9,-17.1
SAS 1-07 May 74-01	1 2 3 4	254 278 326 269	282	+15.6, -9.9	155 150 196 167	167	+17.4,-10.2
SAS 1-07 May 74-04	1 2 3 4	198 187 172 144	175	+7.4, -6.3	136 127 127 105	124	+9.7,-15.3
SAS 1-08 May 74-03	1 2 3 4	171 156 162 169	165	+13.6, -5.5	117 101 112 127	114	±11.4
SAS 1-08 May 74-04	1 2 3 4	168 179 175 160	171	+4.7, -6.4	122 138 141 136	134	+5.2, -8.9
SAS 1-09 May 74-01	1 2 3 4	236 233 203	213	+10.8,-16.0	224 210 194	199	+12.6,-16.6

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-09 May 74-02	1 2 3 4	242 256 273 226	249	+9.6, -9.2	88.6 96.3 110 90.6	96.4	+14.1, -8.1
SAS 1-09 May 74-03	1 2 3 4	\$29 313 339 292	318	+5.7, -8.1	316 298 327 280	305	+7.2, -8.2
SAS 1-09 May 74-04	1 2 3 4	537 563 527 421	512	+9.9,-17.8	492 524 478 387	470	+11.4,-19.9
SAS 1-10 May 74-01	1 2 3 4	399 470 484 476	457	+7.2,-12.7	320 367 411 405	376	+9.3,-14.9
SAS 1-10 May 74-04	1 2 3 4	480 518 480 406	471	+9.9,-13.8	213 272 234 204	231	+17.7,+11.7
SAS 1-11 May 74-01	1 2 3 4	748 764 750 660	731	+4.5, -9.7	411 504 452 375	436	+15.6,-14.0

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-11 May 74-02	1 2 3 4	672 691 736 611	678	+8.6, -9.8	312 307 396 364	345	+14.8,-11.0
SAS 1-11 May 74-04	1 2 3 4	509 515 554 521	525	+5.5, -3.0	126 193 231 288	195	+16.9,-35.3
SAS 1-12 May 74-01	1 2 3 4	469 495 505 480	487	±3.7	270 267 269 226	258	+4.7,-12.4
SAS 1-12 May 74-02	1 2 3 4	588 603 622 561	594	+4.7, -5.5	323 318 330 291	316	+4.4, -5.4
SAS 1-12 May 74-03	1 2 3 4	416 419 434 387	414	+4.8, -6.5	316 311 335 253	304	+10.2,-16.8
SAS 1-12 May 74-04	1 2 3 4	547 576 577 516	554	+4.2,, -6.9	437 507 392 346	421	+20.4,-17.8

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1 (} cm ²)	Mean (cm ²)	Range (%)
SAS 1-13 May 74-01	1 2 3 4	569 623 574 501	567	+9.9,-11.6	458 465 482 359	441	+9.5,-18.6
SAS 1-13 May 74-02	1 2 3 4	741 773 736 692	736	+5.0, -5.9	310 357 373 392	358	+9.5,-13.4
SAS 1-13 May 74-03	1 2 3 4	866 778 802 770	805	+7.6, -4.3	431 436 378 301	387	+12.7,-22.2
SAS 1-13 May 74-04	1 2 3 4	- 1100 983 940	1010	+8.9, -6.9	576 441 480	499	+15.4,-11.6
SAS 1-14 May 74-02	1 2 3 4	- 861 972 849	894	+8.7, -5.0	490 492 447	476	+3.4, -6.1
SAS 1-14 May 74-05	1 2 3 4	- 767 715 725	736	+4.2, -2.9	- 521 457 468	482	+8.1, -5.2

	Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
ŝ	SAS 1-14 May 74-06	1 2 3 4	- 595 619 578	597	+3.7, -3.2	245 265 243	251	+5.6, -3.2
	SAS 1-15 May 74-02	1 2 3 4	972 - 962	967	±1.0	412	389	±7.1
	SAS 1-16 May 74-01	1 2 3 4	746 794 797 773	778	+2.4, -4.1	442 544 560 603	537	+12.3,-17.7
	SAS 1-16 May 73-02	1 2 3 4	1010 1010 973 877	968	+4.3, -9.4	529 550 509 448	509	+8.1,-12.0
(SAS 1-16 May 74-04	1 2 3 4	656 671 637 605	642	+4.5, -5.8	410 407 360 344	380	±6.3
	SAS 1-17 May 74-01	1 2 3 4	547 581 623 543	574	+8.5, -5.4	366 343 415 338	366	+13.4, -7.7

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-17 May 73-03	1 2 3 4	943 1110 1150 974	1040	+10.6, -6.3	662 832 864 689	762	+13.4,-13.1
SAS 1-17 May 74-04	1 2 3 4	1210 1330 1310 1140	. 1250	+6.4, -8.8	841 1040 994 854	932	+11.5, -9.8
SAS 1-18 May 74-01	1 2 3 4	1720 1920 1630 1620	1720	+11.6, -5.8	1450 1570 1330 1440	1440	+9.0, -7.6
SAS 1-18 May 74-02	1 2 3 4	2780 2950 2760 2490	2750	+7.3, -9.5	2390 2520 2310 2180	2350	±7.2
SAS 1-18 May 74-03	1 2 3 4	2840 2750 2590 2320	2620	+8.4,-11.5	2670 2470 2300 2060	2380	+12.2,-13.4
SAS 1-19 May 74-01	1 2 3 4	2050 2100 2280 1840	2070	+10.1,-11.1	1960 1990 2250 1810	2000	+12.5, -9.5

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{p1.} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-19 May 74-02	1 2 3 4	1350 1550 1400 1370	1420	+9.2, -4.9	1300 1440 1360 1330	1360	+5.9, -4.4
SAS 1-19 May 74-03	1 2 3 4	1120 1150 1100 1040	1100	+4.5, -5.5	1070 1130 1090 1030	1080	±4.6
SAS 1-19 May 74-04	1 2 3 4	898 801 699 620	755	+15.9,-17.9	869 773 673 566	720	+20.7,-21.4
SAS 1-20 May 74-01	1 2 3 4	841 897 870 750	840	+6.8,-10.7	800 860 820 696	794	+8.3,-12.3
SAS 1-20 May 74-04	1 2 3 4	475 461 485 430	463	+4.8, -7.1	341 352 335 302	333	+5.7, -9.3
SAS 1-21 May 74-02	1 2 3 4	474 460 484 430	462	+4.8, -6.9	411 396 421 371	400	+5.3, -7.3

Run	Sensor	E_{T} (cm ²)	Mean (cm ²)	Range (%)	E _{pl} (cm ²)	Mean (cm ²)	Range (%)
SAS 1-25 May 74-02	1 2 3 4	292 282 301 255	283	+6.4, -9.9	177 172 186 145	170	+9.4,-14.7
SAS 1-25 May 74-03	1 2 3 4	322 325 332 291	318	+4.4, -8.5	127 145 154 140	142	+8.5,-10.6
SAS 1-25 May 74-02	1 2 3 4	356 378 367 318	355	+6.5,-10.4	214 218 210 186	207	+5.3,-10.1
SAS 1-26 May 74-01	1 2 3 4	626 653 580 575	609	+7.2, -5.6	297 320 270 296	296	+8.1, -8.8
SAS 1-28 May 74-04	1 2 3 4	238 237 248 218	235	+5.5, -7.2	103 100 84.7 74.8	90.6	+13.7,-17.4
SAS 1-29 May 74-01	1 2 3 4	257 261 281 258	264	+6.4, -2.3	119 122 134 120	124	+8.1, -4.0

Definition of Terms:

ET:The total energy of the spectrum given for each sensor.Ep1:The energy of the major peak in the spectrum for each sensor.Range:The maximum deviations of the data from the mean.

APPENDIX F

TABULAR COMPARISONS OF SENSORS

Table F-1. Comparisons of the energy density values, total energy, and peak energy obtained from the frequency spectra of the four pressure sensors. The terms are defined at the end of the table.

	Rui	l		R _B (%)	R _T (%)	^R p(%)
SAS	1-17	May	73-02	34.8	11.8	10.8
SAS	1-18	May	73-01	64.3	20.9	4.4
SAS	1-18	May	73-03	63.4	22.5	8.7
SAS	1-18	May	73-04	75.5	29.4	13.2
SAS	1-19	May	73-01	57.6	17.7	9.1
SAS	1-19	May	73-02	119.0	65.6	16.4
SAS	1-19	May	73-04	54.0	16.7	10.3
SAS	1-20	May	73-01	94.0	26.9	10.9
SAS	1-20	May	73-02	81.7	34.4	11.8
SAS	1-20	May	73-03	66.5	23.3	7.3
SAS	1-20	May	73-04	65.3	47.5	7.3
SAS	1-21	May	73-01	69.4	22.0	14.1
SAS	1-21	May	73-03	61.6	25.2	14.8
		Ave	rage	69.8	28.0	10.7
SAS	1-09	Feb	74-02	72.9	10.8	9.2
SAS	1-09	Feb	74-03	77.5	14.8	10.9
SAS	1-10	Feb	74-01	53.5	12.6	9.3
SAS	1-10	Feb	74-04	70.1	21.6	17.1
SAS	1-11	Feb	74-02	51.0	7.5	8.7
SAS	1-11	Feb	74-03	59.1	11.8	13.7
SAS	1-11	Feb	74-04	56.4	10.3	12.7
SAS	1-12	Feb	74-01	49.1	12.1	11.2
SAS	1-12	Feb	74-02	56.8	3.6	6.5
SAS	1-26	Feb	74-02	50.9	26.4	33.0
SAS	1-27	Feb	74-02	61.4	7.2	14.2
SAS	1-27	Feb	74-04	54.6	24.9	15.6
SAS	1-28	Feb	74-01	53.8	14.7	11.9
SAS	1-11	Feb	74-01	50.6	7.2	9.6
		Aver	age	58.4	13.3	13.1

Definition of Terms:

Define $S_i(n\Delta f)$ as the energy density in $cm^2/\Delta f$ of the ith sensor at frequency equal to $n\Delta f$, where n is the band number and Δf the resolution of the grouped frequency band.

Definition of terms: (Cont'd)

R_B: The mean range of the energy density values of the spectra of the four sensors averaged over the first 25 frequency bands:

$$R_{B}(\%) = \sum_{n = 1}^{24} \frac{S_{m}(n\Delta f) - S_{\ell}(n\Delta f)}{\bar{S}(n\Delta f)} \times \frac{100}{24}$$

where m = sensor with maximum energy density frequency band n, $\ell = \frac{1}{5} \exp(n\Delta t)$ is the average of the values of the four sensors.

- R_T : The range in the total energy of the frequency spectra of the four pressure sensors. The total energy is defined as the sum area under the first 25 frequency bands.
- Rp: The range in the energy of the dominant spectral peak of the frequency spectra of the four pressure sensors. The method of obtaining peak energy and bandwidth is discussed in Appendix A.

SAS Run and Date	$E_{T}(cm^{2})$	T(sec)	E _p (cm ²)	BW(Hz)	H _b (cm)	^{-a} b Degrees	T _v (sec)	(H _b) _v (cm)	a _v Degrees
SAS-1-13 Feb 73-02	1720	12.3	12 <mark>2</mark> 0 452	.107 .1 <mark>1</mark> 0	178 91	0°	8.0	240	0°
SAS-1-14 Feb 73-02	1860	14.2	1640 103	.143	225 60	1°N 1°N	14.0	210	0°
SAS-1-20 Feb 73-03	1330	16.8 8.8 5.9 5.0	1130 135 38 9.3	.089 .043 .043 .021	185 75 42 22	0° 0°	15.0	190	0°
SAS-1-21 Feb 73-02	790	16.8 6.9 5.6	722 12 15	.111 .021 .038	191 27 28	0° 0°	14.2	180	0°
SAS-1-22 Feb 73-02	584	14.2	523 7.5	.136 .068	137 19	1°S 1°N	13.0	120	0°
SAS-1-23 Feb 73-02	163	12.3 6.9 4.5	134 6.8 4.7	.097 .043 .048	95 24 15	1°N 3°S	9.0	90	0°
SAS-1-10 Apr 73-03	160	12.3 9.8 6.8 4.3	107 35 5 3	.062 .056 .048 .035	85 53 21 12		13.0	90	5°N
SAS-1-12 Apr 73-03	740	14.2	302 193	.064	135 69		11.0	120	0°

Table F-2. A comparison of the characteristic parameters of the wave spectra measured with a pressure sensor array with visibly observed wave parameters.

SAS Run and Date	$E_{T}(cm^{2})$	T(sec)	E _p (cm ²)	BW(Hz)	H _b (cm)	^α b Degrees	T _v (sec)	(H _b) _v (cm)	a V Degrees
SAS-1-13 Apr 73-03	1081	14.2 5.9 4.1	283 368 135	.067 .075 .030	131 82 46		8.0	140	0°
SAS-1-16 Apr 73-03	564	16.8 6.9	101 293	.048 .086	91 84		11.0	160	0°
SAS-1-17 Apr 73-03	679	12.3 9.8 6.4 5.3	208 69 154 133	.056 .026 .047 .054	90 57 65 54		12.0	150	5°N
SAS-1-16 May 73-02	172	14.2 9.8 4.3	19 131 15	.029 .110 .059	49 79 22	1°S 2°N 0°	10.5	100	0°
SAS-1-17 May 73-02	301	10.9 4.5	270 21	.140	101 26	2°N 1°N	11.0	80	5°N
SAS-1-18 May 73-03	292	12.3 4.5	186 60	.089 .059	86 37	0° 3°N	8.5	120	0°
SAS-1-21 May 73-03	314	14.2	89.3	. 064	82	1°S	9.0	100	5°N
SAS-1-22 May 73-03	262	10.9 6.0	175 62.7	. 093	55 87 47	2°N	10.0	160	5°N
SAS-1-23 May 73-03	175	10.9	101 50.6	.125	86 42	2°N 10°N	9.0	110	5°N

283

Table F-2. (Cont'd)

Table F-2. (Cont'd)

SAS Run and Date	$E_{T}(cm^{2})$	T(sec)	$E_p(cm^2)$	BW(Hz)	H _b (cm)	α _b Degrees	T _v (sec)	(H _b)v (cm)	a Degrees
SAS-1-24 May 73-03	159	14.2 6.9	25 107	.05 <mark>4</mark> .122	53 60	2°S 3°N	8.5	90	5°N
SAS-1-25 May 73-03	373	12.3 6.4	168 79	.082	106 52	1°N 1°N	12.0	160	5°N
SAS-1-29 May 73-03	106	14.2 8.8	33.1 32.3	.059	57 51	1°S 2°N	8.6	80	0°
SAS-1-30 May 73-03	106	14.2	38.4 46	.075.088	61 49	1°S	9.3	80	0°
SAS-1-31 May 73-03	254	16.8 10.9 7.4	116 58.5 38.3	.040 .043 .051	92 66 41	1°S 2°N	8.0	120	5°N
SAS-1-01 Jun 73-02	243	16.8 12.3 6.4	96.2 90.3 25.3	.036 .056 .083	89 78 36	1°S 2°N	12.0	100	0°
SAS-1-04 Jun 73-03	182	12.3 8.8 4.3	130 32.8 11.9	.027 .126 .043	93 52 20	0° 3°N	8.0	80	5°N
SAS-1-05 Jun 73-03	198	12.3	34.7 89.5	.051 .081	54 66	1°N 2°N	9.5	70	5°N
SAS-1-09 Jul 73-03	187	16.8 8.1	25 137	.043	48 76	1°S 3°N	7.7	60	5°N

Table F-2. (Cont'd)									
SAS Run and Date	$E_{T}(cm^{2})$	T(sec)	$E_{p}(cm^{2})$	BW(Hz)	H _b (cm)	a _b Degrees	T _v (sec)	(H _b) _v (cm)	a _v Degrees
SAS-1-10 Jul 73-02	268	14.2 8.8 4.8	24.9 174 33.4	.039 .093 .036	52 85 31	1°S 3°N	9,0	60	0°
SAS-1-11 Jul 73-02	202	14.2 9.8 5.3	23.6 120 33.5	.043 .094 .064	51 75 74	1°S 2°N	8.0	90	0°
SAS-1-16 Jul 73-03	269	14.2 9.8 5.9	27.6 120 86	.035 .070 .083	55 75 51	1°S 2°N	6.7	80	5°N
SAS-1-19 Jul 73-03	259	16.8 5.9	140 98	.070.126	101 55	1°S 4°N	7.0	80	5°N
SAS-1-20 Jul 73-03	390	16.8 6.9	151 195	.061 .139	99 72	1°S 2°N	7.0	90	5°N
SAS-1-23 Jul 73-03	466	14.2 9.8 5.6	58.7 241 123	.048 .075 .075	71 99 55	1°S 3°N	11.0	120	5°S 5°N
SAS-1-24 Jul 73-02	680	16.8 8.1	64.3 625	.037	78 119	2°S 4°N	10.5	150	5°N
SAS-1-30 Jul 73-02	268	14.2 8.8 5.3	162 30 64.1	.061 .047 .093	99 49 42	2°S 2°N	14.0 9.0	100	5°S 5°N
SAS-1-01 Aug 73-03	149	14.2	42.7 93.9	.071	64 56	1°S 4°N	8.0	80	5°S

Table F-2. (Cont'd)

SAS Run and Date	$E_{T}(cm^{2})$	T(sec)	$E_p(cm^2)$	BW(Hz)	H _b (cm)	a _b Degrees	T _v (sec)	(H _b)v (cm)	a _v Degrees
SAS-1-02 Aug 73-03	233	14.2 8.1	44.9 170	.046	66 74	1°S 4°N	8.3	70	0°
SAS-1-10 Aug 73-03	207	14.2	83.4 100	.064	80 65	1°S 4°N	8.0	140	5°N
SAS-1-15 Aug 73-02	197	16.8	151 20	.099 .113	105 32	1°S 3°N	11.5	60	5°S
SAS-1-16 Aug 73-03	360	16.8 8.1	302 45.4	.048 .140	128 47	1°S 3°N	15.0	140	5°S
SAS-1-20 Aug 73-03	246	12.6	74.7 125	.069 .083	71 56	1°S 4°N	8.0	90	5°N
SAS-1-21 Aug 73-03	369	16.8 8.1	183 122	.056	109 72	2°S	14.0 8.0	80	5°S 5°N
SAS-1-22 Aug 73-03	764	16.8 7.4 6.0	167 342 284	.056 .070 .099	104 96 76	2°S	7.5	120	5°N
SAS-1-23 Aug 73-03	937	14.2 8.1 6.4	114 556 228	.043 .081 .075	86 113 75	1°S 3°N 1°N	8.0	150	0°
SAS-1-24 Aug 73-03	603	16.8 8.1	454 386	.046	65 100	1°S 2°N	8.3	110	0°
SAS-1-27 Aug 73-02	208	16.8 9.8 5.0	67.7 77.7 30.7	.040 .078 .078	80 61 36	1°S 2°N	15.0	80	5°S
Table F-2. (Cont'd)									
---------------------	-----------------	---------------------	-----------------------------------	----------------------	---------------------	---------------------------	----------------------	--	---------------------------
SAS Run and Date	$E_{T}(cm^{2})$	T(sec)	E _p (cm ²)	BW(Hz)	H _b (cm)	α _b Degrees	T _v (sec)	(H _b) _v (cm)	a _v Degrees
SAS-1-06 Sep 73-03	533	16.8 8.8	203 298	.043	102 97	1°S 2°N	7.0	90	5°N
SAS-1-07 Sep 73-03	776	14.2	309 446	.059 .097	137 112	2°S 3°N	9.6	110	5°N
SAS-1-14 Sep 73-03	197	14.2 10.9	80.3 88.8	.054	70 81	1°S 2°N	11.4	60	0°
SAS-1-17 Sep 73-03	263	16.8 12.3 5.0	112 70.3 60.6	.032 .057 .097	83 75 40	1°S 2°N	14.0	80	5°N
SAS-1-18 Sep 73-03	343	14.2 9.8 6.4	88.5 75.7 153	.036 .043 .129	73 60 65	1°S 2°N	10.0	90	0°
SAS-1-19 Sep 73-03	298	14.2	67.8 140	.075	64 59	1°S 2°N	18.6	100	0°
SAS-1-20 Sep 73-03	346	14.2 9.8 6.4	152 34.4 213	.064 .021 .125	96 52 72	1°S 2°N	8.5	110	5°N
SAS-1-21 Sep 73-03	663	12.3 7.4	317 315	.072 .140	54 92	1°N 2°N	8.0	150	5°N
SAS-1-24 Sep 73-03	640	10.9 7.4	197 339	.067	93 90	2°N 5°N	8.0	150	0°

SAS Run and Date	$E_{T}(cm^{2})$	T(sec)	$E_p(cm^2)$	BW(Hz)	H _b (cm)	^α b Degrees	T _v (sec)	(H _b)v (cm)	a _v Degrees
SAS-1-02 Oct 73-03	119	16.8 10.9 6.4	23.2 44.3 23.8	.040 .067 .043	49 57 35	0° 1°S	8.5	60	5°S
SAS-1-03 Oct 73-02	294	16.8 8.1	49.8 119	.054 .072	68 71	0° 2°N	7.5	110	5°N
SAS-1-08 Oct 73-02	310	14.2 7.4 5.0	26.8 131 123	.043 .081 .086	58 67 49	1°S 3°N	8.0	50	5°N
SAS-1-09 Oct 73-02	917	16.8 7.4	47.9 841	.043	74 59	1°S 3°N	6.0	140	5°N
SAS-1-10 Oct 73-03	329	14.2 6.9	69.8 241	.043	65 80	1°S 3°N	6.5	110	5°N
SAS-1-11 Oct 73-03	213	14.2 9.8	44.8 43.0	.036 .043	65 59	1°S 2°N	8.5	100	0°
SAS-1-16 Oct 73-02	329	14.2	234 77.1	.064	119 46	1°S 3°N	8.0	90	
SAS-1-19 Oct 73-03	428	16.8 5.0	257 98.1	.086	127 46	1°S 4°N	11.5	110	5°S
SAS-1-22 Oct 73-03	397	14.2 10.9	110 270	.043	82 101	1°S 2°N	14.0	140	5°S
SAS-1-23 Oct 73-03	167	14.2	102 43.2	.075	79 47	1°S 2°S	12.0	80	5°S

SAS Run and Date	$E_{T}(cm^{2})$	T(sec)	$E_{p}(cm^{2})$	BW(Hz)	H _b (cm)	α _b Degrees	T _v (sec)	(H _b) _v (cm)	α _v Degrees
SAS-1-24 Oct 73-02	991	12.3 7.4	516 349	.075 .097	132 92	1°N 5°N	13.0	160	5°N
SAS-1-25 Oct 73-03	447	16.8 8.8	29.7 394	.021	55 105	1°S 2°N	8.0	150	5°N
SAS-1-26 Oct 73-01	232	16.8 9.8 7.4	37.6 73.3 86.0	.043 .054 .091	63 59 62	1°S 2°N	8.4	120	5°N
SAS-1-29 Oct 73-02	722	16.8 12.3 8.1	242 190 237	.032 .032 .075	111 87 88	1°S 2°N	11.5	120	5°N
SAS-1-02 Nov 73-02	411	14.2 8.1	228 79.2	.078 .070	118 58	1°S 2°N	7.5	90	5°N
SAS-1-05 Nov 73-02	528	16.8	183 156	.072	107 62	0° 4°N	14.0	90	0°
SAS-1-07 Nov 73-02	534	12.3 6.0	345 105	.107	117 54	1°N	10.3	110	5°N
SAS-1-08 Nov 73-03	406	14.2 9.8	39.2 202	.024 .070	61 91	1°S 2°N	9.0	90	0°
SAS-1-09 Nov 73-03	244	16.8 10.9	42.5 131	.032 .089	67 75	1°S 2°N	9.5	60	0°
SAS-1-12 Nov 73-03	867	12.3	625 218	.102	142 150	1°N 9°S	10.0	120	5°N

Table F-2. (Cont's)								~
SAS Run and Date	$E_{T}(cm^{2})$	T(sec)	$E_p(cm^2)$	BW(Hz)	H _b (cm)	a _b Degrees	T _v (sec)	(Hbv (cm)	a _v Degrees
SAS-1-13 Nov 73-03	1040	9.8 5.6	820 190	.137	142 62	2°N	11.3	170	5°N
SAS-1-03 Dec 73-02	771	9.8	730	.215	142	2°N	8.5	120	0°
SAS-1-05 Dec 73-02	258	16.8 8.8 6.4	102 59.6 59.1	. 059 . 046 . 072	91 54 42	1°N 2°N	11.0	80	0°
SAS-1-10 Dec 73-03	299	20.5 14.2 10.9 6.9	54.6 79.7 77.9 39.8	.032 .025 .043 .086	78 78 76 42	0° 0°	12.0	90	5°S
SAS-1-12 Dec 73-03	449 =	14.2 4.1	395 13.6	.096	119 20	1°N 9°S	10.7	180	5°S
SAS-1-18 Dec 73-03	590	14.2	203 323	.043	111 93	0° 5°N	12.0 8.0	120 120	5°S 5°N
SAS-1-19 Dec 73-03	411	12.3 8.1 5.6	319 64.7 37.7	.064 .043 .086	112 56 36	0° 5°N	11.6	120	5°S
SAS-1-21 Dec 73-02	923	36.6 14.2 6.4	19.0 865 22.0	.086 .097 .032	74 176 34	0° 7°N	11.8	190	5°S
SAS-1-02 Jan 74-03	470	16.8 8.1	335 125	.064	131 73	0° 5°N	8.0	150	5°N

SAS Run and Date	$E_{T}(cm^{2})$	T(sec)	$E_p(cm^2)$	BW(Hz)	H _b (cm)	a _b Degrees	$T_v(sec)$	(H _b) _v (cm)	a _v Degrees
SAS-1-03 Jan 74-02	429	14.2	309 103	.056	137 65	2°S 1°N	11.8	110	5°S
SAS-1-08 Jan 74-03	1590	8.8	1500	.246	158	1°S	9.2	180	8°S
SAS-1-09 Jan 74-02	974	8.8	938	.240	145	4°S	8.0	120	5°S
SAS-1-10 Jan 74-03	440	20.5 9.8	238 184	.043	120 87	0° 0°	15.5	170	5°S
SAS-1-11 Jan 74-03	224	14.2 7.4	175 32.0	.075	103 41	0° 2°S	16.0	180	5°S
SAS-1-14 Jan 74-02	931	14.2	888	.203	179	1°N	13.0	170	5°S
SAS-1-15 Jan 74-03	512	12.3	490	.128	129	1°N	12.7	150	5°S
SAS-1-28 Jan 74-03	414	14.2	308 80.3	.086	137 52	1°N 1°N	10.0	100	0°
SAS-1-29 Jan 74-03	437	14.2 9.8	210 212	.062	113 93	0° 1°N	9.7	120	5°N
SAS-1-30 Jan 74-03	284	14.2 6.9	113 156	.035	83 68	0° 4°N	14.5	110	5°N
SAS-1-11 Feb 74-03	1180	14.2 6.9 5.0	1020 68.1 61.6	.043 .064 .075	178 55 40	2°N 2°N 0°	13.2	160	5°N

SAS Run and Date	$E_{T}(cm^{2})$	T(sec)	$E_p(cm^2)$	BW(Hz)	H _b (cm)	a _b Degrees	T _v (sec)	(H _b)v (cm)	v Degrees
SAS-1-12 Feb 74-02	565	16.8 12.3 5.3	93 368 77.4	.021 .067 .107	87 121 46	2°N 1°N	15.0	170	5°N
SAS-1-26 Feb 74-02	405	14.2	221 162	.091	116 63	1°N 4°N	11.0	80	0°
SAS-1-27 Feb 74-02	655	12.3 6.9	277 357	.078	104 88	1°N 5°N	8.5	90	0° 5°N
SAS-1-07 Mar 74-03	230	9.8 6.4 4.8	42.2 73.1 84.9	.050 .059 .064	58 51 42	1°N	8.0	60	0°
SAS-1-22 Mar 74-03	188	12.3 5.0	131 23.5	.095	93 28	0° 5°N	12.5	80	5°S
SAS-1-26 Mar 74-02	1660	$ \begin{array}{r} 16.8 \\ 8.8 \\ 6.0 \end{array} $	1230 295 78.5	.046 .054 .110	193 97 49	2°N 0°	15.7 12.3	210 110	0° 5°S
SAS-1-27 Mar 74-03	2140	14.2	2090	.151	233	0°	15.5	210	0°
SAS-1-28 Mar 74-03	1260	12.3	1200	.155	177	1°N	15.0	210	0°
SAS-1-29 Mar 74-03	2470	36.6 14.2	30.6 2370 -	.022	82 237	1°N	14.0	180	0°
SAS-1-01 Apr 74-03	1590	12.3	918 595	.064	177 117	2°N 2°N	12.1	190	0°

						~		(H,)	0
SAS Run and Date	$E_{T}(cm^{2})$	T(sec)	$E_p(cm^2)$	BW(Hz)	H _b (cm)	a _b Degrees	$T_v(sec)$	(cm)	v Degrees
SAS-1-03 Apr 74-03	2500	9.8	2380	.180	200	2°N	7.0	180	0°
SAS-1-04 Apr 74-02	963	16.8 8.8	235 665	.043	120 130	1°S 1°N	11.5	150	0°
SAS-1-05 Apr 74-02	487	14.2	440	.140	130	0°	10.7	100	0°
SAS-1-15 Apr 74-03	186	14.2	176	.139	103	1°S	11.1	70	5°N
SAS-1-16 Apr 74-03	761	12.3 6.0 4.3	525 167 54.0	.912 .617 .429	134 64 33	2°N 4°N	8.4	120	5°N
SAS-1-17 Apr 74-03	237	10.9 4.3	185 24.1	.140	90 26	l°N 11°S	12.0	110	0°
SAS-1-18 Apr 74-03	318	14.2 10.9 5.3	118 37.7 111	.054 .054 .090	85 53 52	1°N 0°	14.1	110	0°
SAS-1-22 Apr 74-03	262	20.5 14.2 4.8	17.0 118 68.1	.021 .043 .075	50 85 40	0° 0°	14.5	70	5°N
SAS-1-23 Apr 74-02	302	16.8 10.9 4.8	120 138 23.7	.032 .102 .051	99 77 28	1°N 1°N	15.0	60	5°N
SAS-1-24 Apr 74-02	287	14.2	275	. 097	129	1°N	14.0	50	0°
SAS-1-25 Apr 74-03	839	10.9 6.4	439 313	.072	128 76	2°N 4°N	8.0	100	0°

SAS Run and Date	$E_{T}(cm^{2})$	T(sec)	E _p (cm ²)	BW(Hz)	H _b (cm)	ab Degrees	T _v (sec)	(H _b) _v (cm)	α _v Degrees
SAS-1-26 Apr 74-02	753	16.8 10.9 7.4	52.2 74.5 584	.024 .024 .136	74 74 107	1°S 1°N	8.5	130	5°N
SAS-1-29 Apr 74-03	323	10.9	188 80.8	.104	91 52	2°N 4°N	8.5	110	5°N
SAS-1-30 Apr 74-03	356	12.3	94.9	.064	79	1°N	8.5	90	5°N
SAS-1-01 May 74-03	274	5.3	250 241	.136 .144	74 97	1°N	8.1	90	5°N
SAS-1-02 May 74-03	241	14.2 10.9	66.6 96.0	.043	71 84	1°S 1°N	8.7	110	5°N
SAS-1-06 May 74-02	240	16.8 5.3	123 92.3	.059	100 48	1°S 4°N	12.0	100	5°N
SAS-1-08 May 74-03	165	12.3	114 42.3	.075	87 44	1°N 4°N	12.0	70	5°N
SAS-1-13 May 74-03	805	16.8 12.3 8.8	151 150 387	.032 .036 .110	88 100 104	1°S 1°N	11.5	110	5°N
SAS-1-16 May 74-02	968	14.2 8.8 6.0	509 303 126	.055 .053 .098	135 98 59	0° 3°N	11.0	140	5°N
SAS-1-17 May 74-03	1040	12.3	250 762	.063 .134	99 117	1°N -3°N	8.2	170	5°N
SAS-1-21 May 74-02	462	14.2	42.3 400	.054	26 101	1°S 3°N	8.5	90	5°N

Definition of Terms:

295

- E_T : The total energy in the wave spectrum obtained from an average of the records of the four pressure sensors at a 10-meter depth.
- T: The period of a peak in the wave spectrum.
- E_p: The averaged energy of the particular spectral peak at a 10-meter depth.
- BW: The bandwidth of the spectral peak.
- H_b: The height of breaking depth of a single frequency wave with the energy of the spectral peak.
- α_b: The best single direction at breaking depth of the waves at the dominant period of the spectral peak. This direction is relative to the normal to the coastline at the Torrey Pines Station.
- T_y: The observed period of the waves obtained by counting the period of 10 crests.
- $(H_{b})_{v}$: The observed average height of the breaking waves.

 α_{v} : The observed breaker angle.

Table F-3. Comparisons of directional information for some November runs. The period and E_p were obtained from pressure sensor data. Also shown are the angles obtained from current meter data, accelerometer data, and visual observations.

				Directional Comparisons		 Visual Observations 		Shoaled Array Data					
				Aı	rray	Curre	nt-	Acceler- ometer					
Run	Peak	Period	E _p (cm∠)	a _o	P(a _o)	a m	ā	a	T _v (sec)	(H _b)v(cm)	av	H _b (cm)	ab
SAS 1-03 Nov 73-01	1 2	8.87.4	344 146	0° 2°N	0.75.1	2°S 1°N	2°S 2°N	2°N 3°N					
SAS 1-03 Nov 73-02	1	12.3 7.4	118 49.8	8°S 1°N	13.0 6.8	13°S 2°N	11°5 4°N	11°S 7°S					
SAS 1-04 Nov 75-02	2 1	14.2	62.3 149	18°S 1°S	4.3	23°S 11°S	23°S 10°S	16°S 4°S					
SAS 1-04 Nov 73-04	2	16.8 7.4	127 356	26°S 1°N	0.8	33°S 5°S	32°S 3°S	14°5 6°N					
SAS 1-05 Nov 73-01	2 1	16.8 7.4	141 168	18°S 1°N	4.7	28°S 3°S	29°S 0°	18°S 7°S					
SAS 1-05 Nov 73-02	1 2	16.8	183 156	17°S 4°N	3.2 43.1	18°S 14°N	17°S 33°N	15°S 6°N	14.0	91.5	0.0	101	1°S
SAS 1-07 Nov 73-02	1 2	12.3	345 105	5°S 24°S	4.8 80.1	15°S 15°S	16°S 15°S	19°S 19°S	10.3	107	5*S	119	3° N
SAS 1-08 Nov 73-01	2 1	14.2 9.8	99.2 104	24°S 2°N	0.6	26°S 4°S	25°S 4°S	23°S 4°S					
SAS 1-08 Nov 73-03	2 1	14.2 9.8	39.2 202	25°S 4°S	0.7	27°S 10°S	27°S 10°S	27°S 9°S	9.0	91.5	0.	91.5	3°N
SAS 1-09 Nov 73-01	1 2	14.2	85.5 60.4	18*S 8*S	2.9 53.2	20°S 6°S	20°S 7°S	21°S 9°S					
SAS 1-09 Nov 73-03	2 1	16.8	42.5	24°S 2°S	0.6	25°S 2°S	25°S 2°S	21°S 3°S	9.5	61.0	0°	82.4	4°N
SAS 1-10 Nov 73-01	2 1	14.2 9.8	67.5 284	24°S 4°S	0.8	25°S 4°S	25°S 4°S	16°S 5°S					
SAS 1-10 Nov 73-02	1	10.9	310	8°S	7.5	16°S	15°S	16°S					
SAS 1-10 Nov 73-04	2 1	14.2 9.8	53.9 238	24°S 16°S	1.3	27°S 17°S	26°S 16°S	21°S 15°S					
SAS 1-11 Nov 73-03	2 1	14.2 9.8	26.3 370	27°S 11°S	0.9 28.2	28°S 17°S	27°S 16°S	21°S 14°S					
SAS 1-11 Nov 73-04	1	8.8	225	26°S	\$9.7	17°S	16°S	16°S					
SAS 1-12 Nov 73-01	2	14.2 9.8	22.3 288	25°S 11°S	0.7	28°S 11°S	28°S 11°S	23°S 10°S	10	104	5°S	122	0°

the second s

					Dire		Comparis	ons	Visu Observ	al ations		Shoale Array Da	d ta	
				Ar	Array		Array Current- meter		Acceler- ometer					
Run	Peak	Period	$E_p(cm^2)$	ao	$P(\alpha_0)$	α _m	ā	aa	T _v (sec)	$(H_b)_v(cm)$	a _v	H _b (cm)	α _b	
SAS 1-12 Nov 73-03	1	12.3	625 218	7°S 29°S	1.8 61.7	13°S 2°N	13°S 1°S	10°S 6°S						
SAS 1-12 Nov 73-04	1 2	10.9	579 180	2°S 55°S	1.2 50.2	10°S 3°S	11°S 1°S	10°S S°N						
SAS 1-13 Nov 73-01	1 2	10.9	872 161	1°S 2°N	0.8	10°S 12°S	8°S 10°S	6°S 4°N	11.3	171		155	9°S	

Definition of Terms:

Peak:	In a multimodal energy spectra the peaks are ordered with respect to their energies.
Period:	The modal period for the defined peak of the data of all four sensors.
Ep:	The energy contained in a spectral peak at a 10-meter depth, average of the data of all four sensors.
α ₀ :	The direction of the best fit to a single wave train for the four sensor array measured from the vertical to the array. The fitting technique is based on the minimum value of $P(\alpha_0)$.
Ρ(α ₀):	A measure of the effectiveness of the fit.
a <u>m</u> :	The angle where the directional spectrum obtained from orbital velocity records reached a maximum, measured from the normal to the beach, but corrected to the alignment of the array.
ā :	The mean angle obtained from the current meter data as defined in the text.
a: a	The angle obtained from accelerometer data.
T _v :	The period of the waves as determined from visual observations from the cliff above the CERC station by counting the period of 10 crests:
(H _b) _v :	The observed average height of the breaking waves.
а: V	The observed breaker angle.
H _b :	The height of a single frequency wave at breaking depth which contained the energy of the spectral peak at the station.
a _b :	The best single direction at breaking depth of the waves at the dominant period of the spectral peak arriving at the station from the direction α_0 .

Appendix G. A tabular display of the comparisons of the directional results obtained using various sensor combinations of the array. All terms are defined below the table and are derived in Appendix H.

Run	Period (sec)	Array	α	P (α ₀)%	Δαο
SAS 1-06 Feb 73-01	14.2	1,2,3,4 1,2,3 2,3,4 1,2,4 1,3,4	0° 5°N 10°S 5°S 4°N	11.1 5.3 13.2 23.0 15.5	± 3° ± 4° ± 5° ± 3° ± 3°
SAS 1-23 Feb 73-01	14.2	1,2,3,4 1,2,3 2,3,4 1,2,4 1,3,4	7°S 5°S 8°S 9°S 7°S	2.0 .6 .7 3.9 5.3	± 2° ± 2° ± 2° ± 2° ± 2°
SAS 1-23 Feb 73-02	12.3	1,2,3,4 1,2,3 2,3,4 1,2,4 1,3,4	3°S 1°S 3°S 5°S 2°S	6.9 5.7 2.8 10.8 9.4	± 2° ± 2° ± 3° ± 2° ± 2°
SAS 1-24 Feb 73-01	12.3	1,2,3,4 1,2,3 2,3,4 1,2,4 1,3,4	3°S 1°S 2°S 4°S 3°S	4.9 4.5 1.2 12.5 4.1	± 2° ± 2° ± 2° ± 2° ± 2°
SAS 1-24 Feb 73-01	6.4	1,2,3,4 1,2,3 2,3,4 1,2,4 1,3,4	38°S 40°S 45°S 34°S 37°S	44.1 42.6 53.6 54.4 43.5	±3° ±3° ±3° ±2°
SAS 1-24 Feb 73-02	12.3	1,2,3,4 1,2,3 2,3,4 1,2,4 1,3,4	4°S 3°S 4°S 5°S 4°S	10.6 8.2 3.0 21.1 9.8	±2° ±3° ±3° ±2°
SAS 1-24 Feb 73-03	9.7	1,2,3,4 1,2,3 2,3,4 1,2,4 1,3,4	3°S 1°N 0° 8°S 3°S	29.4 19.5 15.7 41.4 12.4	±3° ±3° ±2° ±3° ±2°

Run	Period (sec)	Array	ao	P (a ₀)%	Δαο
SAS 1-24 Feb 73-04	9.7	1,2,3,4 1,2,3 2,3,4 1,2,4 1,3,4	10°S 4°S 6°S 11°S 10°S	40.7 26.1 39.3 32.1 40.4	±3° ±2° ±3° ±3°
SAS 1-06 Apr 73-01	14.2	1,2,3,4 1,2,3 2,3,4 1,2,4 1,3,4	7°N 20°S 25°N 90°S 90°N	92.0 184 8.5 328 378	±3° - ±3° -
SAS 1-16 May 73-02	14.2	1,2,3,4 1,2,3 2,3,4	22°S 22°S 22°S	4.8 1.5 1.1	±3° ±2° ±2°
SAS 1-16 May 73-02	9.8	1,2,3,4 1,2,3 2,3,4	0° 0° 1°S	4.4 1.7 2.2	±2° ±2° ±2°
SAS 1-16 May 73-02	4.3	1,2,3,4 1,2,3 2,3,4	28°S 31°S 27°S	76.0 78.8 83.3	±5° - ±4°
SAS 1-17 May 73-01	10.9	1,2,3,4 1,2,3 2,3,4	6°S 5°S 6°S	11.1 2.5 6.0	±2° ±2° ±2°
SAS 1-17 May 73-01	4.3	1,2,3,4 1,2,3 2,3,4	30°N 15°N 34°N	66.4 56.2 74.1	±5° - ±5°
SAS 1-17 May 73-02	10.9	1,2,3,4 1,2,3 2,3,4	2°S 3°S 2°S	2.0 1.1 0.5	±2° ±3° ±2°
SAS 1-17 May 73-02	4.5	1,2,3,4 1,2,3 2,3,4	8°N 9°N 59°S	25.4 20.9 25.4	±3° ±2° ±2°
SAS 1-18 May 73-01	14.2	1,2,3,4 1,2,3 2,3,4	26°S 25°S	0.4	±1° ±1°

Run	Period (sec)	Array	ao	P (a)%	Δαο
SA <mark>S</mark> 1-18 May 73-01	9.8	1,2,3,4 1,2,3 2,3,4	2°S 3°S 3°S	17.4 16.1 14.2	± 3° ± 3° ± 3°
SAS 1-18 May 73-01	4.5	1,2,3,4 1,2,3 2,3,4	22°S 43°S 42°N	74.1 67.2 54.7	± 3° - ± 5°
SAS 1-18 May 73-03	12.3	1,2,3,4 1,2,3 2,3,4	10°S 10°S 10°S	5.2 1.5 2.3	± 2° ± 2° ± 2°
SAS 1-18 May 73-03	4.5	1,2,3,4 1,2,3 2,3,4	2°S 43°S 40°N	54.2 82.2 65.4	± 5° - ± 5°
SAS 1-18 May 73-04	12.3	1,2,3,4 1,2,3 2,3,4	13°S 12°S 12°S	4.6 1.2 1.2	± 2° ± 2° ± 2°
SAS 1-18 May 73-04	4.8	1,2,3,4 1,2,3 2,3,4	43°S 20°N 38°S	63.2 71.3 57.7	±4° - -
SAS 1-19 May 73-01	12.3	1,2,3,4 1,2,3 2,3,4	11°S 11°S 12°S	5.7 1.5 2.5	±2° ±2° ±2°
SAS 1-19 May 73-01	4.8	1,2,3,4 1,2,3 2,3,4	40°S 0° 31°N	69.4 69.5 45.7	±5°
SAS 1-19 May 73-02	14.2	1,2,3,4 1,2,3 2,3,4	28°S 28°S 28°S	0.7 0.5 0.4	±1° ±1° ±1°
SAS 1-19 May 73-02	10.9	1,2,3,4 1,2,3 2,3,4	4°S 5°S 5°S	3,7 1.6 1.4	±2° ±2° ±2°
SAS 1-19 May 73-02	4.8	1,2,3,4 1,2,3 2,3,4	28°S 34°N 30°S	73.3 74.1 59.8	±4° ±3° ±3°

Run	Period (sec)	Array	ao	P (a)%	Δαο
SAS 1-19 May 73-04	16.9	1,2,3,4 1,2,3 2,3,4	21°S 21°S 20°S	1.8 0.2 0.3	±2° ±2° ±1°
SAS 1-19 May 73-04	5.0	1,2,3,4 1,2,3 2,3,4	40°N 36°S No fit.	63.2 51.7	±5°
SAS 1-20 May 73-01	16.8	1,2,3,4 1,2,3 2,3,4	26°S 26°S 26°S	.4 .1 .2	±1° ±1° ±1°
SAS 1-20 May 73-01	4.5	1,2,3,4 1,2,3 2,3,4	48°S 3°S 10°N	87.1 77.7 90.0	±3° ±5° ±5°
SAS 1-20 May 73-02	14.2	1,2,3,4 1,2,3 2,3,4	24°S 23°S 24°S	.5.1.3	±1° ±1° ±1°
SAS 1-20 May 73-02	9.8	1,2,3,4 1,2,3 2,3,4	5°S 3°S 7°S	15.0 5.5 5.7	±3° ±2° ±3°
SAS 1-20 May 73-03	14.2	1,2,3,4 1,2,3 2,3,4	25°S 25°S 25°S	1.5 .2 .9	±1° ±1° ±1°
SAS 1-20 May 73-03	9.8	1,2,3,4 1,2,3 2,3,4	2°S 1°S 3°S	10.8 5.1 8.5	±2° ±2° ±2°
SAS 1-20 May 73-04	12.3	1,2,3,4 1,2,3 2,3,4	21°5 20°5 22°5	10.8 5.6 5.3	±4° ±2° ±2°
SAS 1-20 May 73-04	9.8	1,2,3,4 1,2,3 2,3,4	2°S 1°S 6°S	28.2 8.2 21.7	±3° ±2° ±3°
SAS 1-21 May 73-01	12.3	1,2,3,4 1,2,3 2,3,4	28°S 27°S 25°S	25.0 18.1 10.4	±5° ±5° ±5°

`Run	Period (sec)	Array	ao	Ρ (α ₀)%	Δαο
SAS 1-21 May 73-01	8.8	1,2,3,4 1,2,3 2,3,4	1°N 1°N 1°N	11.8 12.5 14.8	± 2° ± 2° ± 3°
SAS 1-21 May 73-04	12.3	1,2,3,4 1,2,3 2,3,4	20°S 19°S 20°S	27.5 11.2 14.9	±4° ±4° ±4°
SAS 1-22 May 73-03	9.8	1,2,3,4 1,2,3 2,3,4	0° 0° 1° S	7.9 5.1 4.6	± 2° ± 2° ± 2°
SAS 1-23 May 73-03	10.9	1,2,3,4 1,2,3 2,3,4	4°S 5°S 6°S	19.9 28.0 14.6	± 3° ± 3° ± 3°
SAS 1-23 May 73-03	4.5	1,2,3,4 1,2,3 2,3,4	30°N 28°N 24°N	78.6 70.3 85.8	±5° ±5° ±5°
SAS 1-24 May 73-01	10.9	1,2,3,4 1,2,3 2,3,4	6°S 5°S 6°S	6.3 5.6 5,6	±2° ±2° ±2°
SAS 1-24 May 73-01	6.9	1,2,3,4 1,2,3 2,3,4	3°S 5°S 3°S	9.6 4.6 15.5	±2° ±2° ±2°
SAS 1-24 May 73-02	12.3	1,2,3,4 1,2,3 2,3,4	8°S - 15°S	43.0	±5° - ±5°
SAS 1-24 May 73-02	6.9	1,2,3,4 1,2,3 2,3,4	2°N 4°N 8°N	37.3 47.9 70.6	±3° ±3° ±3°
SAS 1-24 May 73-03	14.2	1,2,3,4 1,2,3 2,3,4	36°S 37°S -	56.3 50.1	±6° ±5°
SAS 1-24 May 73-03	6.9	1,2,3,4 1,2,3 2 3 4	4°N 2°N 6°N	33.7 48.3 51.4	±3° ±4° ±3°

Run	Period (sec)	Array	a	P (α ₀)%	Δαο
SAS 1-24 May 73-04	14.2	1,2,3,4 1,2,3 2,3,4	21°S 21°S 21°S	4.7 2.6 .7	± 3° ± 3° ± 1°
SAS 1-25 May 73-01	12.3	1,2,3,4 1,2,3 2,3,4	2°S 1°N 3°S	5.5 12.2 4.3	± 3° ± 4° ± 4°
SAS 1-25 May 73-01	4.1	1,2,3,4 1,2,3 2,3,4	18°S 11°S 35°N	92.2 73.1 84.9	±3° ±3° ±4°
SAS 1-25 May 73-03	12.3	1,2,3,4 1,2,3 2,3,4	5°S 7°S 6°S	4.5 9.2 2.3	±2° ±2° ±2°
SAS 1-25 May 73-03	6.4	1,2,3,4 1,2,3 2,3,4	5°S 12°S 9°N	82.3 75.3 70.5	±5° ±5° ±5°
SAS 1-25 May 73-04	12.3	1,2,3,4 1,2,3 2,3,4	7°S 8°S 7°S	8.5 4.6 1.9	±2° ±2° ±2°
SAS 1-25 May 73-04	6.4	1,2,3,4 1,2,3 2,3,4	25°S 10°N 27°S	66.5 64.9 69.2	±6° ±5° ±5°
SÁS 1-26 May 73-01	12.3	1,2,3,4 1,2,3 2,3,4	5°S 6°S 5°S	1.1 .5 .1	±2° ±2° ±1°
SAS 1-26 May 73-01	6.4	1,2,3,4 1,2,3 2,3,4	2°N 0° 2°N	42.1 55.3 32.6	±3° ±3°• ±4°
SAS 1-26 May 73-02	12.3	1,2,3,4 1,2,3 2,3,4	8°S 9°S 10°S	4.7 1.7 4.8	±2° ±2° ±2°
SAS 1-26 May 73-02	7.4	1,2,3,4 1,2,3 2,3,4	0° 1°S 1°S	30.6 22.1 21.0	±3° ±3° ±3°

Run	Period (sec)	Array	αο	P (α ₀)%	Δαο
SAS 1-26 May 73-03	10.9	1,2,3,4 1,2,3 2,3,4	3°S 2°S 4°S	2.8 2.7 4.5	± 2° ± 2° ± 2°
SAS 1-26 May 73-03	7.4	1,2,3,4 1,2,3 2,3,4	1°S 1°S 1°S	31.3 11.7 33.5	±3° ±3° ±2°
SAS 1-26 May 73-04	10.9	1,2,3,4 1,2,3 2,3,4	4°S 5°S 5°S	2.7 15.4 1.4	± 3° ± 3° ± 3°
SAS 1-26 May 73-04	7.4	1,2,3,4 1,2,3 2,3,4	1°N 2°N 4°S	55.2 42.6 45.8	±4° ±3° ±4°
SAS 1-27 May 73-01	14.2	1,2,3,4 1,2,3 2,3,4	27°S 26°S 26°S	1.4 .9 .9	±3° ±2° ±2°
SAS 1-27 May 73-01	8.0	1,2,3,4 1,2,3 2,3,4	2°N 2°N 1°N	10.7 9.9 8.1	±4° ±4° ±2°
SAS 1-27 May 73-02	14.2	1,2,3,4 1,2,3 2,3,4	31°S 34°S 32°S	4.2 6.1 3.8	±3° ±3° ±3°
SAS 1-27 May 73-02	8.0	1,2,3,4 1,2,3 2,3,4	2°N 2°N 1°N	22.1 14.1 15.5	±4° ±3° ±3°
SAS 1-27 May 73-03	14.2	1,2,3,4 1,2,3 2,3,4	29°S 30°S 28°S	.3 .3 .3	±1° ±1° ±1°
SAS 1-27 May 73-03	8.0	1,2,3,4 1,2,3 2,3,4	1°S 2°N 3°S	53.2 37.0 37.1	±5° ±4° ±5°
SAS 1-27 May 73-04	14.2	1,2,3,4 1,2,3 2,3,4	30°S 29°S 29°S	1.3 1.4 .2	±4° ±3° ±1°

Run	Period (sec)	Array	α	P (α ₀)%	Δαο
SAS 1-27 May 73-04	7.4	1,2,3,4 1,2,3 2,3,4	2°N 1°N 2°N	26.1 29.3 31.2	± 5° ± 4° ± 3°
SAS 1-28 May 73-01	12.3	1,2,3,4 1,2,3 2,3,4	30°S 30°S 29°S	3.7 4.3 .8	± 2° ± 2° ± 1°
SAS 1-28 May 73-01	8.8	1,2,3,4 1,2,3 2,3,4	3°N 4°N 2°N	20.9 11.1 24.4	± 3° ± 3° ± 3°
SAS 1-28 May 73-02	12.3	1,2,3,4 1,2,3 2,3,4	32°S 34°S 31°S	3.6 5.2 1.3	± 3° ± 3° ± 3°
SAS 1-28 May 73-02	7.4	1,2,3,4 1,2,3 2,3,4	0° 2°N 1°S	38.2 33.0 42.0	± 3° ± 3° ± 3°
SAS 1-28 May 73-04	12.3	1,2,3,4 1,2,3 2,3,4	30°S 29°S 31°S	7.1 8.2 1.1	± 3° ± 4° ± 3°
SAS 1-28 May 73-04	8.8	1,2,3,4 1,2,3 2,3,4	3°S 1°S 4°S	8.7 2.2 12.3	± 2° ± 2° ± 3°
SAS 1-29 May 73-02	14.2	1,2,3,4 1,2,3 2,3,4	23°S 23°S 22°S	2.0 .3 .7	± 2° ± 1° ± 1°
SAS 1-29 May 73-02	8.0	1,2,3,4 1,2,3 2,3,4	1°N 0° 0°	13.0 13.7 10.9	± 2° ± 2° ± 3°
SAS 1-29 May 73-03	14.2	1,2,3,4 1,2,3 2,3,4	23°S 24°S 23°S	.5	± 1° ± 1° ± 1°
SAS 1-30 May 73-01	16.8	1,2,3,4 1,2,3 2,3,4	20°S 22°S 20°S	.8	± 1° ± 1° ± 1°

Run	Period (sec)	Array	ao	Ρ (α ₀)%	Δαο
SAS 1-30 May 73-01	7.4	1,2,3,4 1,2,3 2,3,4	1°S 3°S 0°	39.1 29.8 40.1	± 3° ± 3° ± 3°
SAS 1-30 May 73-02	14.2	1,2,3,4 1,2,3 2,3,4	23°S 23°S 24°S	.7 .1 .1	±1° ±1° ±1°
SAS 1-30 May 73-02	7.4	1,2,3,4 1,2,3 2,3,4	3°N 8°N 1°S	50.9 37.9 54.1	±3° ±4° ±4°
SAS 1-30 May 73-03	14.2	1,2,3,4 1,2,3 2,3,4	21°S 21°S 20°S	8.8 3.5 3.0	±3° ±2° ±2°
SAS 1-30 May 73-03	6.9	1,2,3,4 1,2,3 2,3,4	1 °N 2 °N 1 °N	25.5 24.1 46.1	±4° ±3° ±3°
SAS 1-30 May 73-04	14.2	1,2,3,4 1,2,3 2,3,4	22°S 23°S 24°S	2.0 1.1 3.5	±2° ±2° ±2°
SAS 1-31 May 73-01	14.2	1,2,3,4 1,2,3 2,3,4	22°S 23°S 16°S	21.9 5.1 11.1	±4° ±3° ±5°
SAS 1-31 May 73-01	7.4	1,2,3,4 1,2,3 2,3,4	1°S - 3°N	77.8	±4° - ±5°
SAS 1-31 May 73-02	14.2	1,2,3,4 1,2,3 2,3,4	23°S 23°S 22°S	1.0 .2 .1	±1° ±1° ±1°
SAS 1-31 May 73-02	10.9	1,2,3,4 1,2,3 2,3,4	1°N 2°N 1°N	8.6 6.8 5.0	±2° ±2° ±2°
SAS 1-31 May 73-03	16.8	1,2,3,4 1,2,3 2,3,4	25°S 26°S 24°S	.3 .1 .1	±1° ±1° ±1°

Run	Period (sec)	Array	ao	P (a_)%	Δαο
SAS 1-31 May 73-03	10.9	1,2,3,4 1,2,3 2,3,4	2°S 3°S 2°S	7.5 6.8 5.8	± 2° ± 2° ± 2°
SAS 1-31 May 73-04	14.2	1,2,3,4 1,2,3 2,3,4	22°S 22°S 22°S	2.0 .4 1.0	± 2° ± 1° ± 1°
SAS 1-01 Jun 73-02	16.8	1,2,3,4 1,2,3 2,3,4	23°S 24°S 24°S	.1 .1 .2	±1° ±1° ±1°
SAS 1-01 Jun 73-02	12.3	1,2,3,4 1,2,3 2,3,4	1°S 2°S 1°S	7.3 7.2 6.9	±2° ±2° ±2°
SAS 1-01 Jun 73-04	14.2	1,2,3,4 1,2,3 2,3,4	25°S 24°S 24°S	2.8 .8 1.1	±2° ±1° ±2°
SAS 1-02 Jun 73-03	7.4	1,2,3,4 1,2,3 2,3,4	2°N 3°N 1°N	11.5 8.1 11.0	±2° ±2° ±3°
SAS 1-02 Jun 73-04	12.3	1,2,3,4 1,2,3 2,3,4	12°S 13°S 13°S	18.4 8.0 7.6	±4° ±3° ±3°
SAS 1-03 Jun 73-01	10.9	1,2,3,4 1,2,3 2,3,4	1°S 0° 1°S	8.1 5.1 4.2	±2° ±2° ±3°
SAS 1-03 Jun 73-02	14.2	1,2,3,4 1,2,3 2,3,4	25°S 24°S '25°S	1.3 .5 .3	±2° ±1° ±1°
SAS 1-03 Jun 73-03	6.0	1,2,3,4 1,2,3 2,3,4	10°N 	80.9 - 86.1	±6° ±6°
SAS 1-03 Jun 73-04	14.2	1,2,3,4 1,2,3 2,3,4	25°S 26°S 25°S	3.8 1.9 3.6	±3° ±2° ±3°

Run	Period (sec)	Array	αo	P (a ₀)%	Δαο
SAS 1-04 Jun 73-01	14.2	1,2,3,4 1,2,3 2,3,4	25°S 25°S 24°S	3.9 1.7 1.4	± 3° ± 2° ± 3°
SAS 1-04 Jun 73-02	8.8	1,2,3,4 1,2,3 2,3,4	5°N 4°N 4°N	9.2 3.8 2.3	± 3° ± 3° ± 2°
SAS 1-04 Jun 73-04	12.3	1,2,3,4 1,2,3 2,3,4	15°S 14°S 16°S	15.3 5.3 6.7	± 3° ± 2° ± 2°
SAS 1-04 Jun 73-05	4.5	1,2,3,4 1,2,3 2,3,4	51°S 43°S 47°S	77.3 72.9 76.3	±4° ±5° ±5°
SAS 1-05 Jun 73-01	9.8	1,2,3,4 1,2,3 2,3,4	3°N 2°N 2°N	8.2 5.0 11.6	±2° ±3° ±3°
SAS 1-05 Jun 73-02	12.3	1,2,3,4 1,2,3 2,3,4	10°S 14°S 11°S	23.9 12.9 14.1	±4° ±4° ±4°
SAS 1-05 Jun 73-03	14.2	1,2,3,4 1,2,3 2,3,4	30°S 28°S 27°S	9.8 5.5 4.2	±3° ±4° ±3°
SAS 1-05 Jun 73-04	8.8	1,2,3,4 1,2,3 2,3,4	1°S 2°S 2°S	8.8 11.2 6.7	±2° ±2° ±2°
SAS 1-06 Jun 73-01	5.6	1,2,3,4 1,2,3 2,3,4	0° 2°N 1°N	63.9 41.5 49.9	±3° ±3° ±3°
SAS 1-06 Jul 73-05	14.2	1,2,3,4 1,2,3 2,3,4	23°S 23°S 22°S	2.3 .9 .4	±2° ±2° ±1°
SAS 1-06 Jul 73-06	9.8	1,2,3,4 1,2,3 2,3,4	0° 0° 1°S	6.4 3.4 2.3	±2° ±2° ±2°

Run	Period (sec)	Array	ao	P (α ₀)%	Δαο
SAS 1-06 Jul 73-07	5.0	1,2,3,4 1,2,3 2,3,4	20°S -	83.7 - -	±5° -
SAS 1-07 Jul 73-01	14.2	1,2,3,4 1,2,3 2,3,4	27°S 26°S 27°S	.8 .2 .4	±1° ±2° ±1°
SAS 1-07 Jul 73-02	12.3	1,2,3,4 1,2,3 2,3,4	26°S 25°S 25°S	.8 .4 .4	±1° ±1° ±1°
SAS 1-07 Jul 73-03	6.0	1,2,3,4 1,2,3 2,3,4	10°N - 9°N	51.5	±4° - ±5°
SAS 1-07 Jul 73-04	8.8	1,2,3,4 1,2,3 2,3,4	5°N 5°N 4°N	45.2 38.0 41.1	±4° ±4° ±5°
SAS 1-07 Jul 73-05	8.8	1,2,3,4 1,2,3 2,3,4	5°S 5°S 5°S	4.3 3.9 .9	±2° ±2° ±1°
SAS 1-07 Jul 73-07	6.4	1,2,3,4 1,2,3 2,3,4	12°N 10°N 10°N	58.6 43.3 49.6	±4° ±4° ±4°
SAS 1-08 Jul 73-01	10.9	1,2,3,4 1,2,3 2,3,4	28°S 26°S 26°S	29.9 12.0 22.3	±3° ±3° ±3°
SAS 1-08 Jul 73-03	7.4	1,2,3,4 1,2,3 2,3,4	2°S 4°S 2°S	28.5 33.3 16.0	±4° ±5° ±4°
SAS 1-08 Jul 73-05	12.3	1,2,3,4 1,2,3 2,3,4	30°S 29°S 30°S	2.9 3.0 1.3	±3° ±3° ±2°
SAS 1-08 Jul 73-07	14.2	1,2,3,4 1,2,3 2,3,4	24°S 24°S 24°S	.5 .2 .2	±1° ±1° ±1°

Run	Period (sec)	Array	ao	P (a ₀)%	Δαο
SAS 1-09 Jul 73-01	8.8	1,2,3,4 1,2,3 2,3,4	1°N 2°N 1°S	34.2 9.7 17.1	± 3° ± 4° ± 4°
SAS 1-09 Jul 73-03	14.2	1,2,3,4 1,2,3 2,3,4	26°S 25°S 25°S	2.2 .7 1.0	± 3° ± 1° ± 3°
SAS 1-10 Jul 73-01	8.8	1,2,3,4 1,2,3 2,3,4	2°S 6°S 3°S	26.3 18.6 39.3	±5° ±4° ±4°
SAS 1-10 Jul 73-02	14.2	1,2,3,4 1,2,3 2,3,4	24°S 24°S 24°S	.8 .3 .1	±1° ±1° ±1°
SAS 1-11 Jul 73-01	9.8	1,2,3,4 1,2,3 2,3,4	1 °N 3 °N 3 °N	44.1 40.2 44.1	±3° ±4° ±4°
SAS 1-11 Jul 73-02	14.2	1,2,3,4 1,2,3 2,3,4	26°S 25°S 26°S	1.4 .6 .3	±3° ±2° ±2°
SAS 1-16 Jul 73-03	9.8	1,2,3,4 1,2,3 2,3,4	1 °N 2 °N 2 °N	36.9 32.8 31.7	±4° ±4° ±4°
SAS 1-16 Jul 73-04	14.2	1,2,3,4 1,2,3 2,3,4	24°S 24°S 24°S	.3 .1 .1	±1° ±1° ±1°
SAS 1-17 Jul 73-01	14.2	1,2,3,4 1,2,3 2,3,4	22°S 22°S 21°S	.5 .2 .3	±1° ±1° ±1°
SAS 1-18 Jul 73-04	5.3	1,2,3,4 1,2,3 2,3,4	62°S	48.6	±4°
SAS 1-19 Jul 73-01	16.8	1,2,3,4 1,2,3 2,3,4	24°S 23°S 24°S	.9 .1 .3	±1° ±1° ±1°

Run	Period (sec)	Array	ao	Ρ (α ₀)%	Δαο
SAS 1-19 Jul 73-03	5.6	1,2,3,4 1,2,3 2,3,4	9°N -	76.8	± 5°
SAS 1-19 Jul 73-04	16.8	1,2,3,4 1,2,3 2,3,4	24°S 25°S 24°S	.5 .1 .5	±1° ±1° ±1°
SAS 1-20 Jul 73-03	6.9	1,2,3,4 1,2,3 2,3,4	5°N 5°N 3°N	40.0 26.6 32.0	± 2° ± 2° ± 2°
SAS 1-20 Jul 73-04	14.2	1,2,3,4 1,2,3 2,3,4	23°S 22°S 22°S	0.6 0.2 0.1	±1° ±1° ±1°
SAS 1-20 Jul 73-04	6.4	1,2,3,4 1,2,3 2,3,4	27°S 4°S 7°S	75.7 65.7 72.1	-
SAS 1-21 Jul 73-01	14.2	1,2,3,4 1,2,3 2,3,4	25°S 25°S 25°S	0.7 0.1 0.2	±1° ±1° ±1°
SAS 1-21 Jul 73-01	6.4	1,2,3,4 1,2,3 2,3,4	2°N 1°N 3°N	46.1 37.8 45.1	±5° ±4° ±4°
SAS 1-21 Jul 73-02	14.2	1,2,3,4 1,2,3 2,3,4	22°S 22°S 22°S	1.2 0.1 0.6	±2° ±2° ±2°
SAS 1-21 Jul 73-02	6.9	1,2,3,4 1,2,3 2,3,4	6°N 7°N 8°N	26.4 25.3 18.4	±3° ±4° ±3°
SAS 1-21 Jul 73-03	14.2	1,2,3,4 1,2,3 2,3,4	24°S 24°S 24°S	1.0 0.4 0.1	±2° ±1° ±1°
SAS 1-21 Jul 73-03	7.4	1,2,3,4 1,2,3 2,3,4	1 ° N 1 ° N 1 ° N	31.3 10.0 34.5	±3° ±4° ±4°

Run	Period (sec)	Array	ao	P (a ₀)%	Δαο
SAS 1-21 Jul 73-04	16.9	1,2,3,4 1,2,3 2,3,4	25°S 25°S 25°S	0.2 0.1 0.1	± 1° ± 1° ± 1°
SAS 1-21 Jul 73-04	7.4	1,2,3,4 1,2,3 2,3,4	8°N 7°N 5°N	54.3 50.0 54.0	± 3° ± 3° ± 3°
SAS 1-22 Jul 73-01	16.9	1,2,3,4 1,2,3 2,3,4	27°S 27°S 27°S	0.4 0.1 0.1	± 1° ± 1° ± 1°
SAS 1-22 Jul 73-01	8.1	1,2,3,4 1,2,3 2,3,4	4°N 4°N 5°N	8.9 9.6 10.7	± 2° ± 2° ± 2°
SAS 1-22 Jul 73-02	14.2	1,2,3,4 1,2,3 2,3,4	25°S 24°S 25°S	0.4 0.1 0.1	±1° ±1° ±1°
SAS 1-22 Jul 73-03	8.0	1,2,3,4 1,2,3 2,3,4	9°N 10°N 6°N	20.9 19.7 19.6	±4° ±4° ±4°
SAS 1-22 Jul 73-04	14.2	1,2,3,4 1,2,3 2,3,4	27°S 26°S 27°S	0.8 0.2 0.9	±1° ±1° ±1°
SAS 1-23 Jul 73-01	8.8	1,2,3,4 1,2,3 2,3,4	67°N - 6°N	51.6 74.3	±5° - ±5°
SAS 1-23 Jul 73-02	7.4	1,2,3,4 1,2,3 2,3,4	3 °N 2 °N 3 °N	17.0 13.7 7.8	±2° ±2° ±2°
SAS 1-24 Jul 73-02	16.8	1,2,3,4 1,2,3 2,3,4	29°S 29°S 28°S	0.1 0.7 0.3	±1° ±1° ±1°
SAS 1-27 Jul 73-04	8.8	1,2,3,4 1,2,3 2,3,4	42°S 42°S 26°S	39.8 31.4 38.1	±5° ±5° ±5°

Run	Period (sec)	Array	a	P (α ₀)%	Δαο
SAS 1-28 Jul 73-02	12.3	1,2,3,4 1,2,3 2,3,4	24°S 23°S 23°S	7.5 5.2 3.9	± 2° ± 3° ± 3°
SAS 1-29 Jul 73-02	5.6	1,2,3,4 1,2,3 2,3,4	8°S - -	83.4	± 5° -
SAS 1-30 Jul 73-01	14.2	1,2,3,4 1,2,3 2,3,4	29°S 28°S 29°S	.2 .3 .5	±1° ±1° ±1°
SAS 1-31 Jul 73-01	8.0	1,2,3,4 1,2,3 2,3,4	2°N 3°N 2°N	20.1 38.3 12.6	± 3° ± 3° ± 3°
SAS 1-01 Aug 73-03	14.2	1,2,3,4 1,2,3 2,3,4	24°S 24°S 24°S	.9 .3 .3	±1° ±1° ±1°
SAS 1-02 Aug 73-01	8.0	1,2,3,4 1,2,3 2,3,4	5°N 4°N 4°N	10.8 8.0 11.9	±3° ±3° ±3°
SAS 1-10 Aug 73-03	14.2	1,2,3,4 1,2,3 2,3,4	24°S 24°S 23°S	2.4 .4 1.5	±2° ±1° ±2°
SAS 1-23 Aug 73-02	14.2	1,2,3,4 1,2,3 2,3,4	24°S 24°S 25°S	.6 .2 .2	±1° ±1° ±1°
SAS 1-23 Aug 73-02	8.1	1,2,3,4 1,2,3 2,3,4	1°S 2°S 1°S	10.6 18.5 5.8	±2° ±2° ±2°
SAS 1-23 Aug 73-03	14.2	1,2,3,4 1,2,3 2,3,4	25°S 25°S 26°S	.1 .1 .1	±1° ±1° ±1°
SAS 1-23 Aug 73-03	6.4	1,2,3,4 1,2,3 2,3,4	7°S 7°S 6°S	41.3 24.2 34.5	±3° ±2° +2°

ě.

Run	Period (sec)	Array	ao	P (α ₀)%	Δαο
SAS 1-24 Aug 73-02	14.2	1,2,3,4 1,2,3 2,3,4	25°S 24°S 24°S	1.6 .3 .9	± 2° ± 1° ± 1°
SAS 1-24 Aug 73-02	8.1	1,2,3,4 1,2,3 2,3,4	6°S 7°S 6°S	37.2 28.3 23.7	± 2° ± 3° ± 2°
SAS 1-24 Aug 73-03	16.8	1,2,3,4 1,2,3 2,3,4	24°S 24°S 23°S	1.7 .6 1.3	± 2° ± 2° ± 2°
SAS 1-24 Aug 73-03	8.1	1,2,3,4 1,2,3 2,3,4	4°S 4°S 4°S	2.3 1.9 1.8	± 2° ± 2° ± 2°
SAS 1-24 Aug 73-04	16.8	1,2,3,4 1,2,3 2,3,4	30°S 31°S 31°S	.4 .1 .2	±1° ±1° ±2°
SAS 1-24 Aug 73-04	8.1	1,2,3,4 1,2,3 2,3,4	2°S 1°S 5°S	23.9 10.1 18.7	± 2° ± 2° ± 3°
SAS 1-25 Aug 73-01	14.2	1,2,3,4 1,2,3 2,3,4	26°S 23°S 24°S	10.1 4.7 3.7	± 3° ± 3° ± 3°
SAS 1-25 Aug 73-01	8.8	1,2,3,4 1,2,3 2,3,4	1°S 1°S 1°S	.6 .5 .4	±1° ±1° ±1°
SAS 1-25 Aug 73-02	14.2	1,2,3,4 1,2,3 2,3,4	24°S 24°S 24°S	1.8 .8 .7	±2° ±1° ±1°
SAS 1-25 Aug 73-02	5.6	1,2,3,4 1,2,3 2,3,4	7°N 8°N 8°N	39.4 36.2 52.1	±2° ±2° ±2°
SAS 1-25 Aug 73-03	14.2	1,2,3,4 1,2,3 2,3,4	25°S 26°S 24°S	.9 .3 .4	±2° ±2° ±1°

314

 ${\bf e} \in$

Run	Period (sec)	Array	ao	P (α ₀)%	Δαο
SAS 1-25 Aug 73-03	8.1	1,2,3,4 1,2,3 2,3,4	0° 0°	4.7 11.2 1.6	± 2° ± 3° ± 2°
SAS 1-25 Aug 73-04	12.3	1,2,3,4 1,2,3 2,3,4	26°S 31°S 32°S	30.0 36.3 24.5	± 3° ± 3° ± 3°
SAS 1-25 Aug 73-04	8.1	1,2,3,4 1,2,3 2,3,4	3°N 4°N 3°N	10.3 10.9 13.9	± 2° ± 3° ± 2°
SAS 1-26 Aug 73-01	12.3	1,2,3,4 1,2,3 2,3,4	33°S 24°S 30°S	10.3 11.8 7.9	± 2° ± 2° ± 2°
SAS 1-26 Aug 73-01	6.9	1,2,3,4 1,2,3 2,3,4	5°N 6°N 1°N	34.0 22.6 36.3	± 2° ± 3° ± 3°
SAS 1-26 Aug 73-02	16.8	1,2,3,4 1,2,3 2,3,4.	24°S 25°S 24°S	.1 .1 .1	±1° ±2° ±1°
SAS 1-26 Aug 73-02	6.9	1,2,3,4 1,2,3 2,3,4	9°N 6°N 6°N	60.9 59.4 50.8	±3° ±4° ±4°
SAS 1-26 Aug 73-03	16.8	1,2,3,4 1,2,3 2,3,4	23°S 24°S 23°S	.1 .3 .1	±1° ±2° ±2°
SAS 1-26 Aug 73-03	6.9	1,2,3,4 1,2,3 2,3,4	1°N 2°N 0°	25.2 48.6 11.3	±2° ±3° ±2°
SAS 1-26 Aug 73-04	16.8	1,2,3,4 1,2,3 2,3,4	26°S 26°S 26°S	.2	±1° ±1° ±1°
SAS 1-27 Aug 73-01	16.8	1,2,3,4 1,2,3 2,3,4	27°S 27°S 27°S	.1 .3 .1	±1° ±1° ±1°

Run	Period (sec)	Array	ao	P (α)%	Δαο
SAS 1-27 Aug 73-02	10.9	1,2,3,4 1,2,3 2,3,4	1°S 0° 2°S	5.2 2.9 12.4	± 2° ± 3° ± 2°
SAS 1-31 Aug 73-01	10.9	1,2,3,4 1,2,3 2,3,4	3°S 6°S 7°S	27.9 34.2 24.1	± 3° ± 3° ± 2°
SAS 1-13 Apr 74-01	12.3	1,2,3,4 1,2,3 2,3,4	1°S 2°S 1°S	0.6 0.6 0.3	± 2° ± 2° ± 2°
SAS 1-13 Apr 74-01	9.8	1,2,3,4 1,2,3 2,3,4	0° 1°S 0°	1.2 2.4 0.4	± 2° ± 2° ± 2°
SAS 1-13 Apr 74-02	16.8	1,2,3,4 1,2,3 2,3,4	17°S 18°S 17°S	1.1 0.2 0.2	± 3° ± 2° ± 2°
SAS 1-13 Apr 74-02	10.9	1,2,3,4 1,2,3 2,3,4	1°S 1°S 1°S	0.8 0.5 0.1	± 3° ± 2° ± 1°
SAS 1-13 Apr 74-03	16.8	1,2,3,4 1,2,3 2,3,4	11°S 11°S 11°S	1.0 0.1 0.3	± 2° ± 2° ± 2°
SAS 1-13 Apr 74-03	10.9	1,2,3,4 1,2,3 2,3,4	7°S 8°S 7°S	3.1 1.0 0.6	±2° ±2° ±2°
SAS 1-13 Apr 74-04	16.8	1,2,3,4 1,2,3 2,3,4	12°S 14°S 12°S	4.4 0.2 0.2	±2° ±2° ±2°
SAS 1-13 Apr 74-04	10.9	1,2,3,4 1,2,3 2,3,4	2°S 2°S 3°S	1.7 0.4 1.5	±2° ±2° ±3°
SAS 1-14 Apr 74-01	14.2	1,2,3,4 1,2,3 2,3,4	8°S 12°S 8°S	5.6 3.2 0.3	±3° ±3° ±2°

Run	Period (sec)	Array	a	P (a ₀)%	Δαο
SAS 1-14 Apr 74-01	10.9	1,2,3,4 1,2,3 2,3,4	1°S 1°S 1°S	5.7 5.2 1.6	± 3° ± 3° ± 3°
SAS 1-14 Apr 74-03	14.2	1,2,3,4 1,2,3 2,3,4	9°S 9°S 11°S	4.8 0.6 0.8	± 3° ± 2° ± 2°
SAS 1-14 Apr 74-03	9.8	1,2,3,4 1,2,3 2,3,4	7°S 7°S 9°S	32.0 12.3 5.8	± 4° ± 4° ± 2°
SAS 1-14 Apr 74-04	14.2	1,2,3,4 1,2,3 2,3,4	16°S 16°S 15°S	5.2 0.9 0.3	± 3° ± 3° ± 2°
SAS 1-14 Apr 74-04	9.8	1,2,3,4 1,2,3 2,3,4	6°S 7°S 8°S	25.1 9.0 3.0	± 3° ± 3° ± 3°
SAS 1-15 Apr 74-01	14.2	1,2,3,4 1,2,3 2,3,4	17°S 15°S 17°S	3.5 0.6 0.2	± 3° ± 3° ± 2°
SAS 1-15 Apr 74-01	4.5	1,2,3,4 1,2,3 2,3,4	32°S 31°S 35°S	42.8 36.3 24.9	±4° ±3° ±3°
SAS 1-15 Apr 74-03	14.2	1,2,3,4 1,2,3 2,3,4	18°S 18°S 17°S	1.6 0.6 0.1	±3° ±3° ±1°
SAS 1-15 Apr 74-03	4.5	1,2,3,4 1,2,3 2,3,4	75°S 88°S 63°S	48.2 34.9 17.0	±4° ±6° ±5°
SAS 1-15 Apr 74-04	14.2	1,2,3,4 1,2,3 2,3,4	12°S 14°S 13°S	12.5 3.3 3.3	±3° ±3° ±3°
SAS 1-15 Apr 74-04	4.5	1,2,3,4 1,2,3 2,3,4	44°N 60°S	- 75.3 29.9	±5° ±4°

Run	Period (sec)	Array	ao	P (a)%	Δαο
SAS 1-16 Apr 74-01	14.2	1,2,3,4 1,2,3 2,3,4	11°S 11°S 11°S	3.2 0.4 0.7	±3° ±2° ±2°
SAS 1-16 Apr 74-01	6.4	1,2,3,4 1,2,3 2,3,4	5°N 5°N 6°N	12.0 19.8 15.3	±3° ±3° ±3°
SAS 1-16 Apr 74-02	16.8	1,2,3,4 1,2,3 2,3,4	30°S 32°S 29°S	0.3 0.1 0.3	±1° ±2° ±2°
SAS 1-16 Apr 74-02	12.3	1,2,3,4 1,2,3 2,3,4	2°S 2°S 3°S	1.6 0.8 1.3	±3° ±3° ±3°
SAS 1-16 Apr 74-03	12.3	1,2,3,4 1,2,3 2,3,4	3°S 3°S 4°S	3.2 0.2 1.9	±3° ±2° ±3°
SAS 1-16 Apr 74-03	6.0	1,2,3,4 1,2,3 2,3,4	5°N 7°N 5°N	35.5 15.5 22.0	±4° ±3° ±3°
SAS 1-16 Apr 74-04	9.8	1,2,3,4 1,2,3 2,3,4	1 °N 1 °N 1 °N	0.5 1.5 0.5	±3° ±2° ±2°
SAS 1-16 Apr 74-04	5.0	1,2,3,4 1,2,3 2,3,4	0° 4°N 33°N	80.3 55.6 46.4	±3° ±2° ±3°
SAS 1-17 Apr 74-01	12.3	1,2,3,4 1,2,3 2,3,4	10°S 10°S 10°S	1.5 0.4 0.5	±3° ±2° ±2°
SAS 1-17 Apr 74-01	8.8	1,2,3,4 1,2,3 2,3,4	1°S 1°S 2°S	4.6 1.4 4.7	±2° ±2° ±2°

Definition of Terms:

Period:The period at which the directional information
was obtained. α_0 :The direction of the best fit to a single wave
train for the four sensor array. The fitting tech-
nique is based on the minimum value of P (α_0).P (α_0):A measure of the effectiveness of the fit. $\Delta \alpha_0$:The uncertainty assigned to α_0 .

APPENDIX H

COMPARISON OF SPECTRA OF WAVE STAFF AND PRESSURE SENSOR

Figure H-1. Frequency and cross-spectra of a bottom-mounted pressure sensor and the surfacepiercing resistive wire gage for simultaneous runs off Scripps Pier. The pressuresensor spectrum is depth corrected for a 5.3-meter depth from 0.0 to 0.25 hertz. The sensors show good spectral agreement below 0.3 hertz.

Figure H-2. Frequency and cross-spectra of pressure sensor 3 and the surface-piercing resistive wire gage mounted on the station. The station was temporarily tethered. The spectral values for the pressure sensor are depth corrected from 0.0 to 0.25 hertz.

Figure H-3. Frequency and cross-spectra of pressure sensor 3 and the surface-piercin; resistive wire gage mounted on the station. The station was temporarily tethered. The spectral values for the pressure sensor are depth correct from 0.0 to 0.25 hertz.

Figure H-4. Frequency and cross-spectra of pressure sensor 3 and the surface-piercing resistive wire gage mounted on the tethered spar. The pressure-sensor spectrum is depth corrected from 0.0 to 0.25 hertz for a 10-meter depth.

Figure H-5. Frequency and cross-spectra of pressure sensor 3 and the surface-piercing resistive wire gage mounted on the tethered spar. The pressure-sensor spectrum is depth corrected up to 0.25 hertz for a 10-meter depth.

Figure H-6. Frequency and cross-spectra of pressure sensor 3 and the surface-piercing resistive wire gage mounted on the untethered station. The frequency spectra of the pressure sensor is depth corrected from 0.0 to 0.25 hertz.

Figure H-7. Frequency and cross-spectra of pressure sensor 3 and the surface-piercing resistive wire gage mounted on the untethered station. The spectral values of the pressure sensor are depth corrected from 0.0 to 0.25 hertz. Although the low-frequency peak is coherent, the wave staff recorded more energy and the signals of the two different sensors are not in phase.

APPENDIX I

FREQUENCY OF OCCURRENCE OF SPECTRAL PEAKS

Tabular representation of the frequency distribution of spectral peaks as a function of direction, period, and height class.

Table I-1. Frequency distribution of peak energy versus direction of propagation and wave period. The directions are for a depth of 10 meters and are relative to the normal to the coast at Torrey Pines Beach, California. The frequencies of occurrence are given in percent for 109 runs in the summer months.

Direction	20°	- 16° 5	outh			15°	- 11*	South			10°	- 6° So	uth			5°	- 1° S	outh	
Period (sec)	18.4- 15.4	15.3- 13.2	13.1- 11.6	11.5- 10.3	18.4- 15.4	15.3- 13.2	13.1- 11.6	11.5-10.3	10.2- 9.3	15.3- 13.2	13.1- 11.6	11.5- 10.3	10.2- 9.3	9.2- 8.4	8.3- 7.1	15.3- 13.2	13.1- 11.6	11.5- 10.3	10.2- 9.3
Energy (CM ²)																			
0 - 50	0.9		5.5		9.2	14.7	1.8			0.9									
50 - 100	1.8	0.9			5.5	14.7	0.9			1.8								1	
100 - 150 150 - 200		0.9			2.8	10.1 2.8		0.9		0.9					0.9		1.8		
200 - 250					2.8	0.9				0.9		ł					0.9		
250 - 300					0.9	0.9													
300 - 350					0.9	0.9													
350 - 400																			
400 - 450																			
450 - 500												1							
500 - 550							l .	1		l .									
550 - 600						0.9													
600 -650																			

Table I-1. (Cont'd)

Direction			0* -	5° Nort	h				6° -	10° N	orth						11* -	15° No	rth		
Period (sec)	13.1- 11.6	11.5-	10.2- 9.3-	9.2- 8.4	8.3- 7.1	7.0-6.2	6.1- 5.1	13.1- 11.6	11.5-10.3	10.2-9.3	9.2-8.4	8.3- 7.1	7.0-6.2	6.1- 5.1	13.1- 11.6	11.5- 10.3	10.2- 9.3	9.2-8.4	8.3- 7.1	7.0-	6.1- 5.1
Energy (CM ²)																					
0 - 50								0.9									1.8	2.8	2.8	0.9	1.8
50 - 100						0.9	0.9					0.9	0.9	0.9	0.9		1.8	1.8	0.9	0.9	0.9
100 - 150																0.9	1.8	2.8	3.7		0.9
150 - 200	0.9					0.9				0.9			0.9				1.8	0.9	0.9		
200 - 250													0.9			0.9	0.9	1.8	0.9		
250 - 300	0.9										1.8							0.9	0.9	0.9	k.
300 - 350															1				0.9		
350 - 400												0.9						0.9	0.9		
400 - 450																	0.9		0.9		
450 - 500																					
500 - 550												1									
550 - 600												0.9							0.9		
600 - 650																	0.9	0.9			
650 - 700																			0.9		

Table I-1. (Cont'd)

Direction		16° -	20° No	rth		21* -	25° N	lorth		No D	irecti	on Ob	tained		
Period (sec)	10.2- 9.3	9.2- 8.4	8.3- 7.1	7.0- 6.2	6.1- 5.1	8.3-7.1	7.0- 6.2	6.1- 5.1	11.5- 10.3	10.2- 9.3	9.2- 8.4	8.3- 7.1·	7.0- 6.2	6.1- 5.1	5.0- 4.0
Energy (CM ²)															
0 - 50			0.9		0.9			0.9			0.9	0.9	5.5	4.6	5.5
50 - 100	0.9	0.9	0.9	2.8	1.8		0.9				0.9	0.9	1.8	7.3	4.6
100 - 150	0.9	0.9	2.8		0.9		0.9			0.9		0.9	1.8	0.9	2.8
150 - 200			0.9	1	0.9]			0.9
200 - 250			1.8												
250 - 300											0.9				
300 - 350			0.9									0.9	0.9		
350 - 400															
400 - 450															
450 - 500				0.9											
500 - 550															
550 - 650															

Table I-2. Frequency distribution of peak energy versus direction of propagation and wave period. The directions are for a depth of 10 meters and are relative to the normal to the coast at Torrey Pines Beach, California. The frequencies of occurrence are given in percent for 120 runs in the fall months.

Direction		15° -	11° Sou	th			_		10° -	6° So	outh				5	° - 1°	South		_
Period (sec)	18.4- 15.4	15.3- 13.2	13.1- 11.6	11.5- 10.3	10.2- 9.3	9.2- 8.4	8.3- 7.1	18.4- 15.4	15.3- 13.2	13.1- 11.6	11.5- 10.3	10.2- 9.3	9.2- 8.4	8.3- 7.1	18.4- 15.4	15.3- 13.2	13.1- 11.6	11.5- 10.3	10.2- 9.3
Energy (CM ²)												,							
10 - 50	6.7	4.2					0.8	2.5	4.2						1.7			0.8	
50 - 100	2.5	5.8	0.8					4.2	5.8					0.8		1.7			
100 - 150	0.8	1.7						0.8	4.2										
150 - 200		0.8						0.8	4.2						0.8				
200 - 250	1.7	1.7				0.8			1.7						0.8	1.7			
250 - 300	0.8	0.8				1 .		0.8											0.8
300 - 350		1.7																	
350 - 400		1.7																	
400 - 450		0.8																1	0.8
450 - 500																			
500 - 550																			
550 - 600																			
600 - 650															ļ				
650 - 700																			1
700 - 800												ł							
800 - 900																			t i
900 - 1000																			
1000 - 1200																			
1200 - 1400																			
1400 - 1600																			
1600 - 1800																			
1800 - 2000																			

Table I-2. (Cont'd)

Direction		0° - 4°	North				5° -	9° Nort	h						10° -	14° N	lorth		
Period (sec)	15.3- 13.2	13.1- 11.6	11.5- 10.3	10.2- 9.3	15.3- 13.2	13.1- 11.6	11.5- 10.3	10.2- 9.3	9.2- 8.4	8.3- 7.1	7.0- 6.2	6.1- 5.1	13.1- 11.6	11.5- 10.3	10.2- 9.3	9.2-8.4	8.3- 7.1	7.0-6.2	6.1- 5.1
Energy (cm ²)																			
10 - 50						0.8	1.7		0.8	0.8	}			0.8	3.3	1.7	0.8	0.8	
50 - 100						2.5	1.7		0.8	1.7			0.8	3.3	5.0		1.7		0.8
100 - 140						0.8		0.8	1			0.8	0.8	0.8		0.8			1.7
150 - 200		0.8				0.8							0.8	1.7			1.7		
200 - 250					0.8		0.8	0.8						0.8	1	0.8		0.8	0.8
250 - 300	0.8			0.8		0.8		0.8		1		1		1.7	0.8	1.7	1.7		
300 - 350		0.8				1.7	0.8						0.8		0.8	1.7	1.7		
350 - 400				0.8												1.7	0.8		
400 - 450					0.8	1.7										1.7	1		
450 - 500																			
500 - 550				0.8		0.8		0.8				- I							
550 - 600														0.8					
600 - 650						0.8								1			0.8		
650 - 700													1						
700 - 800							÷	i	÷					0.8					
800 - 900														0.8	0.8				
900 - 1000						1													
1000 - 1200												1							
1200 - 1400					0.8					1									
1400 - 1600																			
1600 - 1800																			
1800 - 2000																			

- 12

Table I-2. (Cont'd)

Direction			15*	- 19° 1	North				20°	- 24°	North				No Di	rection	o Obtai	ined			
Period (sec)	13.1- 11.6	11.5- 10.3	10.2-9.3	9.2- 8.4	8.3-7.1	7.0-6.2	6.1- 5.1	5.0-4.0	8.3- 7.1	7.0-6.2	6.1- 5.1	5.0-4.0	18.4- 15.4	15.3- 13.2	13.1- 11.6	11.5- 10.3	9.2- 8.4	8.3- 7.1	7.0-6.2	6.1- 5.1	5.0-4.0
Energy (cm ²)																					
10 - 50			0.8		1.7														3.3	4.0	5.0
50 - 100	0.8		0.8					0.8	0.8				0.8	0.8				1.7		3.3	1.7
100 - 150			0.8		3.3	0.8	0.8	0.8		0.8					0.8		0.8	0.8	0.8	0.8	1.7
150 - 200				0.8	0.8		2.5				0.8	0.8	0.8				0.8		2.5	0.8	1.7
200 - 250																		0.8			0.8
250 - 300					0.8						0.8										
300 - 350			0.8	0.8		0.8			2.5	0.8											
350 - 400																					
400 - 450																					
450 - 500			0.8																		
500 - 550															0.8						
550 - 600					2																
600 - 650																					
650 - 700													ļ			0.8				1	
700 - 800															1						
800 - 900					0.8																
900 - 1000																					
1000 - 1200															[-		
1200 - 1400																					
1400 - 1600																					
1600 - 1800									1										_		
1800 - 2000																					

Table I-3. Frequency distribution of peak energy versus direction of propagation and wave period. The directions are for a depth of 10 meters and are relative to the normal to the coast at Torrey Pines Beach, California. The frequencies of occurrence are given in percent for 181 runs in winter months.

Direction	30	• - 21	• Sout	h			20	- 16°	South							15" = 1	1° South	3		
Period (sec)	9.2- 8.4	8.3- 7.1	7.0-6.2	6.1- 5.1	15.3- 13.2	13.1- 11.6	11.5- 10.3	10.2- 9.3	9.2- 8.4	8.3- 7.1	7.4-6.2	6.1- 5.1	5.0- 4.0	18.4- 15.4	15.3- 13.2	13.1- 11.6	11.5- 10.3	10.2-9.3	9.2- 8.4	8.3- 7.1
Energy (cm ²)																				
10 - 50										0.6		1.1	0.6							0.6
50 - 100		0.6			0.6									0.6	0.6					0.6
100 - 150				0.6																
150 - 200				0.6																
200 - 250									0.6											
250 - 300																				
300 - 350		0.6								0.6					0.6			1 °		
350 - 400													0.6	0						
400 - 450																				
450 - 500		0.6																		
550 - 600		0.0																		
600 - 650																				
650 - 700																				
700 - 800																				
800 - 900	0.6	0.6								0.6										
900 - 1000																				
1000 - 1200																				
1200 - 1400		0.6																		
1400 - 1600																				
1600 - 1800																				
1800 - 2000												. c.								

Table I-3. (Cont'd)

Direction			10	° - 6°	South							5° -	1° Sout	h			
Period (sec)	15.3- 13.2	13.1- 11.6	11.5- 10.3	10.2- 9.3	9.2- 8.4	8.3- 7.1	7.0- 6.1	6.1- 5.1	5.0- 4.0	18.4- 15.4	15.3- 13.2	13.1- 11.6	11.5- 10.3	10.2- 9.3	9.2- 8.4	8.3-7.1	7.0- 6.2
Energy (cm ²)																	
10 - 50	1.1					1.1	0.6										
50 - 100	0.6	0.6									1.7		0.6		0.6		
100 - 150	2.2			0.6							1.1	1.1			0.6		
150 - 200	1.1					0.6					0.6						
200 - 250								0.6	0.6		2.2						
250 - 300						0.6					0.6	0.6					
300 - 350										0.6	P						
350 - 400											0.6				0.6		
400 - 450																	
450 - 500																	
500 - 550											0.6					0.6	
550 - 600														- ^ -			
600 - 650																	
650 - 700																	
700 - 800											0.6						
800 - 900											0.6						
900 - 1000				0.6							0.6						
1000 - 1200												1.1		0.6			
1200 - 1400																	
1400 - 1600					0.6							0.6					
1600 - 1800																	
1800 - 2000						0.6											
2000 - 2500					1												
2500 - 3000											1						
3000 - 3500											0.6						

Table I-3. (Cont'd)

Direction				0° - 4°	North									5° - 9°	North				
Period (sec)	18.4- 15.4	15.3- 13.2	13.1- 11.6	11.5- 10.3	10.2-8.3	9.2- 8.4	8.3- 7.1	7.0-6.2	6.1- 5.1	5.0- 4.0	18.4- 15.4	15.3- 13.2	13.1- 11.6	11.5- 10.3	10.2- 9.3	9.2- 8.4	8.3- 7.1	7.0-6.2	6.1- 5.1
Energy (cm ²)																			
10 - 50								1.3	0.6									0.6	
50 - 100	1.7	1.1						1.1		0.6	1.1	0.6		1.1	0.6			1.1	2.2
100 - 150		1.7	1.1				1.1	1.1			0.6	0.6	0.6			0.6	0.6	1.1	0.6
150 - 200		0.6			0.6			0.6				1.1	0.6	0.6				0.6	
200 - 250	0.6	1.7	0.6	0.6									0.6	0.6	0.6		0.6	0.6	
250 - 300		0.6	1.1	0.6						0.6		1.1					1.1	0.6	
300 - 350			1.7								0.6	1.1	1.1						
350 - 400		0.6		0.6								1.7							
400 - 450		1.1	0.6								0.6	0.6	117		0.6				
450 - 500		0.6					0.6					0.6							
500 - 550		0.6	0.6									1.1							
550 - 600		0.6											0.6						
600 - 650		111	1.1	0.6										1					
650 - 700													1:1						
700 - 800	1.1	0.6									0.6	1.1		0.6					
800 - 900	0.6	1.1	1.7								0.6	1.1	0.6						
900 - 1000		0.6										1.1							
1000 - 1200		1.1						ĺ				1.7	11						
1200 - 1400	0.6	2.2	0.6																
1400 - 1600	0.6	0.6					8					1.1							
1600 - 1800		0.6									0.6	0.6							
1800 - 2000		0.6																	
2000 - 2500																			
2500 - 3000																			
3000 - 3500			0.6																

Table I-3. (Cont'd)

Direction			10°	- 14 ⁺	North						15°	- 19°	North			20°	- 24*	North
Period (sec)	15.3- 13.2	13.1-	11.5- 10.3	10.2- 9.3	9.2- 8.4	8.3- 7.1	7.0- 6.2	6.1- 5.1	5.0- 4.0	11.5-	10.2-9.3	9.2- 8.4	8.3- 7.1	7.0-6.2	6.1- 5.1	8.3- 7.1	7.0- 6.2	6.1- 5.1
Energy (cm ²)																		
10 - 50					0.6	0.6	1.1					0.6	0.6	1.1			0.6	
50 - 100				1.7		0.6	1.1					0.6	0.6		0.6	1.1	0.6	
100 - 150		1.7								0.6						1.1	0.6	
150 - 200			0.6						1.1					0.6	0.6		0.6	0.6
200 - 250														0.6	0.6			
250 - 300				0.6		1.1	0.6											
300 - 350							0.6			0.6						0.6		
350 - 400	0.6				0.6	0.6								1.1				
400 - 450																0.6		
450 - 500						0.6												
500 - 550																		
550 - 600					0.6		0.6							0.6				
500 - 650		0.6									- I				1			
650 - 700		0.6		0.6									0.6					
700 - 800				0.6														
800 - 900																		
900 - 1000						0.6												
1000 - 1200	0.6	0.6			0.6													
1200 - 1400		0.6																
1400 - 1600	0.6																	
1600 - 1800																		
1800 - 2000																		

.

338

- 442

Table I-3, (Cont'd)

Direction	1			No	Direc	tion O	btaine	d			
Period (sec)		18.4- 15.4	15.3- 13.2	13.1- 11.6	11.5- 10.3	10.2-9.3	9.2- 8.4	8.3-7.1	7.0-6.2	6.1- 5.1	5.0- 4.0
Energy (cm ²)											
10 -	50	0.6							1.1	2.8	6.6
50 - 1	00							2.2	3.9	1.7	4.4
100 - 1	50		0.6						1.7	2.8	1.1
150 - 2	00							0.6	2.8	1.7	0.6
200 - 2	50		0.6		0.6	0.6			1.1	0.6	0.6
250 - 3	00					0.6			}		}
300 - 3	50		0.6		0.6						
350 - 4	00				1.1			0.6			
400 - 4	50		0.6	0.6							
450 - 5	00		0.6					0.6	0.6		0.6
500 - S	50										
550 - 6	00										
600 - 6	50			0.6							
650 - 7	00		1.1	0.6							
700 - 8	00										
800 - 9	00										
900 - 10	00		0.6		0.6						
1000 - 12	00										
1200 - 14	00										
1400 - 16	00		0.6	0.6							1
1600 - 18	00										
1800 - 20	00		0.6								
2000 - 25	00		1								
2500 - 30	00			0.6							

Table I-4. Frequency distribution of peak energy versus direction of propagation and wave period. The directions are for a depth of 10 meters and are relative to the normal to the coast at Torrey Pines Beach, California. The frequencies of occurrence are given in percent for 247 runs in the spring months.

Direction	30°-2 South	1*	20° -	16 ⁴ So	uth				15" - 1	1° Sout	h					10°	- 6° S	outh	
Period (sec)	6.1- 5.1	5.0- 4.0	18.4- 15.4	15.3- 13.2	13.1- 11.6	18.4- 15.4	15.3- 13.2	13.1- 11.6	11.5- 10.3	10.2- 9.3	9.2- 8.4	8.3- 7.1	7.0- 6.2	6.1- 5.1	5.0- 4.0	18.4- 15.4	15.3- 13.2	13.1- 11.6	11.5- 10.3
Energy (cm ²)		-																	
10 - 50 50 - 100 100 - 150		1.2	0.4	2.0	1.2	0.4 2.4 1.2	2.0						0.4	0.4		2.0	4.9 4.4 0.8	0.4	
150 - 200 200 - 250 250 - 300						0.4									0.4	0.8	2.0 0.4 0.4		
300 - 350 350 - 400 400 - 450										1							0.8		
450 - 500 500 - 550 550 - 600	1											0.4							
600 - 650 650 - 700 700 - 800																			
800 - 900 900 - 1000 1000 - 1200																			
1200 - 1400 1400 - 1600 1600 - 1800 1800 - 2000																			

Table I-4. (Cont'd)

Direction			5	° - 1°	South					0° - 4° North										
Period (sec)	18.4- 15.4	15.3- 13.2	13.1- 11.6	11.5- 10.3	10.2-9.3	9.2 8.4	8.3- 7.1	7.0- 6.2	6.1- 5.1	18.4- 15.4	15.3- 13.2	13.1- 11.6	11.5-10.3	10.2-9.3	9.2- 8.4	8.3- 7.1	7.0-6.2	6.1- 5.1	5.0-4.0	
Energy (cm ²)																				
10 - 50	0.4										0.4	0.4	0.4		0.4	0.8				
50 - 100	0.4									2.4	1.2	0.8	0.4				0.4	0.4		
100 - 150		0.4	0.4							0.8	2.4	0.4	0.4	0.4						
150 - 200		1.2]	0.8	1.6	0.4		0.8					
200 - 250		0.8					0.4		Į		0.8	0.4			0.4	0.4			0.4	
250 - 300	0.4	0.4						0.4			0.4	0.8			0.4	0.4				
300 - 350									0.4	0.4	0.4	0.4	0.4							
350 - 400											0.4							0.4		
400 - 450	0.4	0.8	-									0.4		0.4						
450 - 500																				
500 - 550												0.4			0.4					
550 - 600																0.4				
600 - 650																				
650 - 700																				
700 - 800																				
800 - 900																0.4				
900 - 1000																				
1000 - 1200	0.4									0.4	1.2	0.4	0							
1200 - 1400										0.4										
1400 - 1600																				
1600 - 1800																				
1800 - 2000																1				
2000 - 2500			1								0.4			1						

Table	I-4.	(Cont'd)
		(

Direction			5° - 9	• North	_				10° - 14° North										
Period (sec)	18.4- 15.4	15.3- 13.2	13.1- 11.6	11.5- 10.3	10.2- 9.3	9.2- 8.4	8.3- 7.1	7.0- 6.2	18.4- 15.4	15.3- 13.2	13.2- 11.6	11.5- 10.3	10.2- 9.3	9.2- 8.4	8.3-7.1	7.0- 6.2	6.1- 5.1	5.0- 4.0	
Energy (cm ²)												_							
10 - 50	0.4	0.4	0.4		0.8	1.2	0.4				0.4	0.4	0.4	1.2	1.2	0.4	- 1		
50 - 100		0.4	1.2	2.4			0.4	0.4			0.4	2.4	1.6	0.8	0.8		0.4	0.4	
100 - 150	0.4	0.8	1.6	2.0	0.4				0.4		1.2	1.2	0.8	0.4	0.8	0.4		0.4	
150 - 200	0.4	0.8	1.2	2.4		1	0.4				0.8	2.4		0.4	0.4	0.4		0.8	
200 - 250		0.4	1.6	0.4							0.4	1.2	0.4	1.2	0.8				
250 - 300		0.8	0.8									0.4	0.4		1.2				
300 - 350		0.4		0.4										0.4	0.8	1		{	
350 - 400	0.4		0.8	0.4		0.4									1.2			}	
400 - 450				0.4										0.4	0.4				
450 - 500		0.4										0.4	0.4		0.4				
500 - 550		0.4	0.4				0.4				0.4		0.4		0.4				
\$50 - 600		0.4		0.4									0.8	0.4		0.4			
600 - 650							-				0.4	0.4		0.4					
650 - 700															1.2				
700 - 800						0.4													
800 - 900							0.4							0.4			0.4		
900 - 1000		1.2																	
1000 - 1200			0.4											0.4					
1200 - 1400		0.4.	1.2									0.4							
1400 - 1600		0.4						0.4											
1600 - 1800	0.4	0.4	0.4											0.4					
1800 - 2000		0.4	0.4				0.4							0.4					
2000 - 2500			0.4			0.4													

Table I-4. (Cont'd)

Direction	1	5" - 1	9° No	rth		20°	- 24°	North		No Direction Obtained										
Period (sec)	9.2- 8.4	8.3- 7.1	7.0-	6.1- 5.1	5.0- 4.0	8.3- 7.1	7.0-6.2	6.1- 5.1	5.0- 4.0	18.4- 15.4	15.3- 13.2	13.1- 11.6	11.5- 10.2	10.2- 9.3	9.2- 8.4	8.3- 7.1	7.0-6.2	6.1- 5.1	5.0- 4.0	
Energy (cm ²)																				
10 - 50		0.4			0.4		0.4		0.4		0.4		0.4	0.8		1.6	2.0	1.2	6.1	
50 - 100	0.4	0.8	0.4	1.2			0.4	0.4		0.8		1.2		0.4		0.8	2.0	2.0	5.3	
100 - 150	0.4	0.4	0.4					0.4		0.4	0.8	1.2					0.8	2.0	112	
150 - 200		0.4	0.4	0.4													2.4	0.4	0.8	
200 - 250			0.8	0.4								0.4					0.8		0.4	
250 - 300				0.4							0.4						1.2			
300 - 350	0.4		0.8						0.4		0.4			0.4			0.4	0.4		
350 - 400		1.2					0.4					0.4			0.4	0.4		0.4		
400 - 450	0.4		0.4							l						1	0.8			
450 - 500																0.8				
500 - 550		0.4						1										ļ		
550 - 600																				
600 - 650																		i.		
650 - 700																	0.4			
7:00 - 8:00																				
800 - 900																				
900 - 1000			0.4			1														
1000 - 1200														n						
1200 - 1400	0.4										0.4									
1400 - 1600																				
1600 - 1800																				
1800 - 2000																				
2000 - 2500		0.4				0.4														

APPENDIX J

SEASONAL ENERGY-DIRECTIONAL PLOTS FOR GIVEN FREQUENCY BANDS

Included are plots of the total energy versus direction of propagation for specific seasons and wave periods. Each plot indicates the summed energies for spectral peaks of a specific wave period centered in the given frequency band. The winter data consists of 181 runs taken during the months of December, January, and February; spring data consists of 247 runs taken during March, April, and May; summer data consists of 109 runs taken during June, July, and August; fall data consists of 120 runs taken during September, October, and November.

Figure J-1. A plot of the total energy versus direction of propagation during the summer months. The directions are in degrees from normal to the coast at Torrey Pines Station.

Figure J-2. A plot of the total energy versus direction of propagation during the summer months. The directions are in degrees from normal to the coast at Torrey Pines Station.

Figure J-4. A plot of the total energy versus direction of propagation during the summer months. The directions are in degrees from normal to the coast at Torrey Pines Station.

Figure J-5. A plot of the total energy versus direction of propagation during the summer months. The directions are in degrees from normal to the coast at Torrey Pines Station.

Figure J-6. A plot of the total energy versus direction of propagation during the summer months. The directions are in degrees from normal to the coast at Torrey Pines Station.

Figure J-7. A plot of the total energy versus direction of propagation during the summer months. The directions are in degrees from normal to the coast at Torrey Pines Station.

Figure J-8. A plot of the total energy versus direction of propagation during the fall months. The directions are in degrees from normal to the coast at Torrey Pines Station.

Figure J-9. A plot of the total energy versus direction of propagation during the fall months. The directions are in degrees from normal to the coast at Torrey Pines Station.

Figure J-10. A plot of the total energy versus direction of propagation during the fall months. The directions are in degrees from normal to the coast at Torrey Pines Station.

Figure J-11. A plot of the total energy versus direction of propagation during the fall months. The directions are in degrees from normal to the coast at Torrey Pines Station.

Figure J-12. A plot of the total energy versus direction of propagation during the fall months. The directions are in degrees from normal to the coast at Torrey Pines Station.

Figure J-13. A plot of the total energy versus direction of propagation during the fall months. The directions are in degrees from normal to the coast at Torrey Pines Station.

Figure J-14. A plot of the total energy versus direction of propagation during the fall months. The directions are in degrees from normal to the coast at Torrey Pines Station.

Figure J-15. A plot of the total energy versus direction of propagation during the winter months. The directions are in degrees from normal to the coast at Torrey Pines Station.

Figure J-16. A plot of the total energy versus direction of propagation during the winter months. The directions are in degrees from normal to the coast at Torrey Pines Station.

Figure J-17. A plot of the total energy versus direction of propagation during the winter months. The directions are in degrees from normal to the coast at Torrey Pines Station.

Figure J-18. A plot of the total energy versus direction of propagation during the winter months. The directions are in degrees from normal to the coast at Torrey Pines Station.

Figure J-19. A plot of the total energy versus direction of propagation during the winter months. The directions are in degrees from normal to the coast at Torrey Pines Station.

J-21. A plot of the total energy versus direction of propagation during the winter mon The directions are in degrees from normal to the coast at Torrey Pines Station.

The directions are in degrees from normal to the coast at Torrey Pines Station.

Figure J-23. A plot of the total energy versus direction of propagation during the spring months. The directions are in degrees from normal to the coast at Torrey Pines Station.

Figure J-24. A plot of the total energy versus direction of propagation during the spring months. The directions are in degrees from normal to the coast at Torrey Pines Station.

Figure J-25. A plot of the total energy versus direction of propagation during the spring months. The directions are in degrees from normal to the coast at Torrey Pines Station.

Figure J-26. A plot of the total energy versus direction of propagation during the spring months. The directions are in degrees from normal to the coast at Torrey Pines Station.

Figure J-27. A plot of the total energy versus direction of propagation during the spring months. The directions are in degrees from normal to the coast at Torrey Pines Station.

Figure J-28. A plot of the total energy versus direction of propagation during the spring months. The directions are in degrees from normal to the coast at Torrey Pines Station.

Pawka, Steven S. Wave climate at Torrey Pines Beach, California / by Steven S. Pawka, Douglas L. Imman [et al.] Fort Belvoir, Va. : U.S. Coastal Engineering Research Center, 1976. 372 p. : ill. (Technical paper - Coastal Engineering Research Center ; no. 76-5) (Contract - Coastal Engineering Research Center; DACW72-72-C-0021) Bibliography : pp. 86-87.	Pawka, Steven S. Wave climate at Torrey Pines Beach, California / by Steven S. Pawka, Douglas L. Inman [et al.] Fort Belvoir, Va. : U.S. Coastal Engineering Research Center, 1976. 372 p. : ill. (Technical paper - Coastal Engineering Research Center ; no. 76-5) (Contract - Coastal Engineering Research Center; DACW 72-72-C-0021) Bibliography : pp. 86-87.
Report presents a study of the wave climate at Torrey Pines Beach, California, using a line array of four pressure sensors which paral- leled the coastline at a depth of 10 meters. Data from the array were used to calculate estimates of the frequency-directional spectra of the wave field. 1. Wave spectra. 2. Pressure sensors. 3. Ocean waves. I. Title. II. Inman, Douglas L. III. Series : U.S. Coastal Engineering Research Center. Contract DACW72-72-C-0021.	Report presents a study of the wave climate at Torrey Pines Beach, California, using a line array of four pressure sensors which paral- leled the coastline at a depth of 10 meters. Data from the array were used to calculate estimates of the frequency-directional spectra of the wave field. 1. Wave spectra. 2. Pressure sensors. 3. Ocean waves. I. Title. II. Inman, Douglas L. III. Series : U.S. Coastal Engineering Research Center. Contract DACW72-72-C-0021.
TC203 .U581tp no. 76-5 627 .U581tp	TC203 .U581tp no. 76-5 627 .U581tp
Pawka, Steven S. Wave climate at Torrey Pines Beach, California / by Steven S. Pawka, Douglas L. Inman [et al.] Fort Belvoir, Va. : U.S. Coastal Engineering Research Center, 1976. 372 p. : ill. (Technical paper - Coastal Engineering Research Center ; no. 76-5) (Contract - Coastal Engineering Research Center; DACW72-72-C-0021) Bibliography : pp. 86-87. Report presents a study of the wave climate at Torrey Pines Beach, California, using a line array of four pressure sensors which paral- leled the coastline at a depth of 10 meters. Data from the array were used to calculate estimates of the frequency-directional spectra of the wave field	 Pawka, Steven S. Wave climate at Torrey Pines Beach, California / by Steven S. Pawka, Douglas L. Inman [et al.] Fort Belvoir, Va. : U.S. Coastal Engineering Research Center, 1976. 372 p. : ill. (Technical paper - Coastal Engineering Research Center; no. 76-5) (Contract - Coastal Engineering Research Center; DACW72-72-C-0021) Bibliography : pp. 86-87. Report presents a study of the wave climate at Torrey Pines Beach, California, using a line array of four pressure sensors which paralleled the coastline at a depth of 10 meters. Data from the array were used to calculate estimates of the frequency-directional spectra of the sensors of the sensors of the sensors of the sensors of the coast of the sensors of the s
 Wave Field. Wave spectra. Pressure sensors. Ocean waves. Title. Inman, Douglas L. III. Series : U.S. Coastal Engineering Research Center. Contract DACW72-72-C-0021. 	 Wave spectra. Pressure sensors. Ocean waves. Title. Inman, Douglas L. III. Series : U.S. Coastal Engineering Research Center. Contract DACW72-72-C-0021.
TC203 .U581tp no. 76-5 627 .U581tp	TC203 .U581tp no. 76-5 627 .U581tp

U17425