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CHAPTER I

INTRODUCT ION

The subject of this thesis is the development of a satellite
communications antenna. The fundamental requirement is that the
radiation pattern of the antenna be broad enough to cover the
entire portion of the earth visible to it in the optical sense as
illustrated in Fig. 1-1. The desired radiation pattern should have
a maximum at the horizon while a local minimum is permissible mid-
way between the horizon look angles. This minimum is allowable due
to the increased path distance to the horizon as compared to the
shortest distance between the satellite and the earth's surface.
The local minimum can be as much as 6 dB below the maximum radi-
ation in the direction of the horizon. The desired bandwidth for
this antenna is 800-1000 MHz.

[-- -- lSATELLITE

EARTH -

Fig. 1-1. Satellite above the earth with a 600 look angle
to the horizon.
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Tile UHF satellite antenna under investigation is shown in the

photograph in Fig. 1-2. The antenna consists of four base-fed

monopoles fed in phase quadrature which produces circular 
polariza-

tion on the axis of the antenna. Three major factors controlling the

radiation pattern produced by this antenna are the 
flare angle of

the blades, the spacing between the blades, and the location of the

blades on the ground plane. Results for various flare angles,

spacings, and locations are presented in Chapter 
IV. The results

in Chapter IV are calculated using the Hy1tric Technique which co v-

hines the Method of Moments and the Geometrical Theory of Dif-

fraction [ ,2].

The Method of Moments [3] is discussed in Chapter II along

with Galerkin's Method [3], Point-matching [3], and 
the Reaction

Method [4,51.

An intr,)duction to the Geometrical Theory of Diffraction 
[6]

is presentd -n Chapter Ill. Particular attention is focused on

the equations for the diffracted field from a perfectly conducting

wedge. The edge diffracted field from a ground plane which 
is

electrically small is of great importance to the radiation pattern

shape.
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CHAPTER II

METHOD OF MOMENTS

A. Introduction

Associated with any general radiation problem there is an
appropriate integral equation. With the Method of Moments it is
possible to approximate the solution to the integral equation by
a system of linear algebraic equations.

Consider a metallic body with current density J on it. If the
body is a perfect conductor, then the boundary conditions require
that the tangential electric field be zero on the body's surface
as follows:

Si(2-1) Etan + Ean : 0

E San is a scattered electric field generated by the current density
S.E~n is the tangential component of an incident electric field
genera-ed by a source anywhere on or outside the body. Throughout
the remainder of this chapter, the tan subscript will be dropped,
and it will be understood that the tangential component is used
unless otherwise specified.

Equation (2-1) may be rewritten as,

(2-2) -E

The relationship between the current density J and the scattered
field ES may be written as

(2-3) L op(J) - _

where Lop is defined as an operator which must be determined for
the particular problem of interest. The concept of linear vector
spaces and operators can be used to write

(2-4) Lop(J )  E E

4
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In this equation, E is a known excitation function, and J is an
unknown response function to be determined. For the problem considered

4. in this thesis, Lop is an integral operator on the current density j.
For a given source, it is assumed that J is unique and may be expressed
as

(2-5) J = L (Ei
op-

For a given problem, the space of functions or the domain of
definition of the operator must be determined along with the functions
resulting from the operation or range. If J is unique, then the
operator must perform a one-to-one mapping in going from a subset
containing J to one containing El.

In addition to finding the domain and range of the operator,
it is necessary to formualte an inner product or reaction [7],
<J,E>. The reaction is a scalar quantity which satisfies the
following conditions:

(2-6) <J,E> = <E,J_>

(2-7) <aJ + J,E> = a<J,E + <J,E_>

if

(2-8) <J*,J> > 0, then J 0 0

if

(2-9) <J* ,J> = 0, then J 0

where a and B are scalars and * denotes the complex conjuagte. The
reaction is discussed in detail in Section D.

5



There are four basic steps in solving Eq. (2-5) by the technique
known as the Method of Moments:

1. J is expanded in a series of basis functions, Jn
w7hich span J in the lorain of L

2. A set of testing or weighting functions are defined
and a suitable inner product determined.

3. The inner product is taken and a matrix equation
formed.

4. The matrix equation is solved for the unknown, the
current.

Once the current is found, then the far-zone field pattern and
impedance may be calculated in a straightforward manner.

Depending upon how the basis functions, testing functions and
inner product are chosen, several differnt types of solutions are
obtained. If the basis and testing functions are chosen to be
identical, we have Galerkin's method. If Dirac Delta functions
are used for testing function, we have a method known as point-
matching. If we use the Reaction Integral Equation and piecewise
sinusoidal basis functions, we have Richmond's Reaction method [4],
which is equivalently a Galerkin formulation. The remainder of
this chapter is a discussion of each of these methods. The Reaction
Method is subsequently used to obtain the results in Chapter IV.

B. Galerkin's Method

In the first step of the general Method of Moments solution, the
response function J in Eq. (2-4) is expanded in a series of basis
functions J1 ,J,L,"" on a surface S and defined in the domain of
the operator Lop.

(2-10) J I I n -
n

The In's are unknown complex coefficients. The solution for these
gives the amplitude and phase of the current on the radiator. Sub-
stituting Eq. (2-10) into Eq. (2-4) yiclds

(2-11) Lop (In Ji) E i

6
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or, using the linearity of L

(2-12) 1 n L (J ) : E

n

The second step in the solution is to define a set of weighting
or testing functions WI,W2 ,.., in the range of L op. Next, the inner
product is formed

(2-13) n I n, L J n> = <WmL Eon>

n-

If 1 is set equal to Jm, then the formulation of the problem is
known as Galerkin's method, and Eq. (2-13) becomes

(2-14) In  <Jm, LopJ> = <Jm Ei >
n

In the third step, the inner products or reactions are calculated
and the matrix equation formed:

<JLop ie <J1 Lo J >  <J )% E >

<J2 L 2>  : <j3  Ei

(2-15) 2' L0p 12 2 -2 >

I < Jn Ei>

In compact matrix notation,

(2-16) [Z] (I) = (V)

[Z] represents the generalized impedances, (I) the generalized
currents and (V) the generalized voltages. Solving Eq. (2-16) for
(1):

(2-17) (1) = [Z] " (V)

where (I) is a column matrix containing the In 's in Eq. (2-10).

7
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At least two integrations must be performed for each impedance

element in Eq. (2-15). One of these integrations can be avoided by

using point-matching.

C. Point-Matching

In Galerkin's method, it is necessary to evaluate the generalized
impedance elements

(2-18) Zmn = <m, Lop(-n)>

If numerical integrations are involved, they may be tedious and
computationally expensive. This problem can be remedied by choosing
Dirac delta functions as weighting functions in Eq. (2-15) such that

L o Lop( 2)>... I i

(2-19) S Lop(j )> 12

-I -
\
n)

6(S-~, i>

-n

where S is the distance to some reference point and S is the distance
to the point at which the boundary condition is beirngapplied, E_
indicates that matching is being done at point 1, Q_ indicates tift
matching is being done at point 2, and so forth. Any further
integrations remaining are those due to Lop.

8
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The use of Dirac Delta functions is physically a relaxation of
the electric field boundary condition. Now the boundary condition
is only applied at discrete points on the surface and not continuously
over the entire surface, thus the term point-matching describes the
process. Accurate solutions are obtained if a sufficient nunber of
points are picked to match boundary conditions. The location of
these points is also important for accuracy. Equispaced points yield
good results for scattering problems or far-field patterns where the
observer is far-removed from the radiator. For near-field problems,
however, the number and location of the match points is more critical.

D. The Reaction Method

Richmond [4] utilizes the reaction integral equation (RIE) to
derive the impedance matrix for the thin-wire radiators or
scatterers in his thin-wire computer program [8]. The unknown
quantity in tile RIE is the current distribution of the wire
structure. To arrive at the impedance matrix from this viewpoint, it
is necessary to define suitable test sources and expansion modes.
The purpose of this section is to define the RIE and illustrate its
solution for the impedance matrix with the use of test sources and

4 expansion modes.

Consider a closed surface, S, of a wire structure with interior
volumetric region, V. There is an external source (Ji, Mi) in the
vicinity of the wire structure which generates the fields (E, H).
If the wire structure is removed, and the source is in a homogeneous
medium (1,c ), then the incident fields (Ei, Hi) are generated. The
scattered fields are defined as the difference between the fields
(E, H) and (E i, Hi ) with the wire structure present.

(2-20) E E - E.

(2-21) H = -

These are time-harmonic fields at the same frequency with the time-
dependence term eJwt suppressed.

From the surface-equivalence theorem of Schelkunoff [9], the
following surface-current densities can be assumed on S

(2-22) J : ̂  x H

9



(2-23) M E xn
-S -

The fields (E, H) interior to S can be assumed to be zero, while the
exterior fields(E. H) remain unchanged, allowing the wire structure
to be replaced by homogeneous medium (i',C). The unit vector n isdirected outward from the surface.

J and Ms generate the fields (Es, H,) exterior to the area that
once -ntained the wire structure. Since E and H are zero interior
to the region once containing the wire structure, from Eqs. (2-20)
and (2-21) these interior fields are -Ei and -H.

The Carson reciprocity theorem [10] is defined as

(2-24) (!1, -L2 - tl - !2) dv, ( _ -l - 112 - 1)jdv2
V1  2

(Jl, M1) and (J2, 2) are source, or impressed, current densities and
(El ,H1) are the fields from source 1 radiating in the presence cf
source 2, and vice versa for (E2, H 2). Either side of Eq. (2-L4) is
known as a reaction:

(2-25) <1, 2> (f1 I, - 2 - ~L _H)V
V
1

If reciprocity conditions are satisfied, then

(2-26) <1, 2> = <2, 1>

Equation (2-26) can be expanded to yield Eq. (2-24) (the Carson
reciprocity theorem). Reaction is considered as a measure of the
coupling between two sources, 1 and 2.

Going back to our original problem, a test source (Jm, Mm) is
placed in the interior region. The reaction of this test source
with the other sources is desired. Applying the Carson reciprocity
theorem and integrating over the surface of the test source:

(2-27) Jf1 Es Mm _Hsds -j Jf( .- ~ ds

I0
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where ( , s) are the fields generated by (J,,, Ms), and the origin
of (Ei, Hi) was discussed previously. Eq. (2-27ysis one form of
the reaction integral equation (RIE). Eq. (2-27) states that the
interior test source has zero reaction with the other sources.
Another form of the RIE may be obtained from Eq. (2-27) and the
reciprocity theorem:

(2-28) (3 J E. 14 . _ + dv 3 E-M 0 0.
S

(EID, [Im) are tile fields generated by the test source. The volume
integral is over that region which used to be occupied by the wire
structure. Electric test sources are used with Eq. (2-2") to determine
tile surface current distributions J and M for thin-wire problems.
With electric test sources applied to Eq.--2-28), a less general form
of the RIE is found known as the electric-field integral equation

(EFIE).

In the wire structure, let each segment have a circular cylindrical
surface. A circular-cylindrical coordinate system with unit vectors
(^, , ̂) is set up. The integral equation is simplified by assuming
the wire radius a to be much less than the wavelength A, and that the
length of the wire is much greater than its radius. Therefore, if
the wire is thin, the integrations over the ends of the ire can be
neglected along with the circumferential component of the surface-
current density J,. Furthermore, the axial component of the current
density Jz can be assumed independent of . By these assumptions,
the current density on the thin wire structure is related to the
total current by

(2-29) Js(z) ( - (z)
2-n a 27 a

z is a metric coordinate measuring position along the wire axis and
I(z) is the total current including conduction and displacement. If
one wire is within a few diameters of another or the wire is bent
to form a small acute angle, then a more elaborate formulation than
Eq. (2-29) is required.

If the wire structure is perfectly conducting, then Ms is zero.
Substituting Eq. (2-29) into the RIE (Eq. (2-28)), Eq. (2-28) reduces
to

(2-30) - J l(z) Em dz = V
J0f z II

I 11
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where L is the entire length of the wire.

(2-31) Vm fJ(~ f I m
- Hm dv

and

m 1 27r , Em

(2-32) Em 2 E d
z 7211

The sinusoidal reaction formulation for thin wires is based on
Eq. (2-30). The known quantities in this equation are Em and V
The unknown is the current distribution I(z). To solve-for I(zT'
suitable test sources and expansion modes need tc be defined.

A good choice for a test source for a perfectly conducting
thin wire is a filamentary electric dipole with a sinusoidal current
distribution. The piecewise-sinusoidal function is similar to the
natural current distribution of the perfectly conducting thin wire.
Also, the sinusoidal dipole represents a finite electric line source
in a homogeneous medium with simple closed-form expressions for the
near-zone fields, while the mutual impedance between two such dipoles
can be represented in terms of exponential integrals.

A V dipole, with different arm lengths and terminals at the
vertex, makes a typical test source. The current is a maximum at the
terminals and decreases sinusoidally to zero at the endpoints. The
terminal current is one ampere, and the current distribution has a
slope discontinuity at the terminals. The linear test dipole along
with its current distribution is shown in Fig. 2-1.

A

Z z2 z 3

Fig. 2-1. A linear test dipole and its sinusoidal current distribution

The endpoints are at zI and z3 with terminals at z2 .

12



The current distribution I(z) F(z) can be represented as
A

(2-33) 1( z P1 sin k(z-z I) z P2 sin k(z3-z)
sin k(z2-z- + sin k(z3-Z2)

where P1 = 1 on the interval zl<z<z 2 and zero elsewhere and P2 = 1
for z2<z<z and is zero elsewhere. k is the complex propagation con-
stant of te homogeneous exterior medium:

(2-34) k = jw/'i

This value of k is necessary for the assumptions made earlier
regarding the test source.

To simplify the integration in Eq. (2-32), the test dipole is
placed on the wire axis rather than elsewhere in the interior region
of the wire structure.

A practical problem may require many test dipoles located at
different positions along the wire axis to form an overlapping array.
A particular test dipole m will generate the fields (Eml, Hm) in the
homogeneous medium. Each of the test dipoles must satisfy Eq. (2-30).
Also, each dipole must radiate at the same frequency as the wire
structdre's true source. Thus, enforcing Eq. (2-30) requires each
test dipole in the array to have the correct reaction with the true
source. If there are N test dipoles, then Eq. (2-30) represents a
system of N simultaneous integral equations.

The current distribution on the wire structure may be expanded
in a finite series:

N

(2-35) L(z) I I F (z)
nl n

Fn(z) is a normalized expansion function equal to the test dipole

current distribution in Eq. (2-33). Since a single expansion function
relates to only a two-segment portion rather than the entire wire
structure, these functions are commonly referred to as subsectional
bases. The In's in Eq. (2-35) are complex constants which represent
samples of the current function I(z). The sinusoidal bases will
resemble the triangular bases of a piecewise-linear model as il-
lustrated in Fig. 2-2, if the wire segments are electrically short
in reference to wavelength. Also illustrated in Fig. 2-2 is the
current distribution 1(z) and its two-mode approximation I'(z).

13



F, (z) F2 (z.)

0 I 2 3

z

Fig. 2-2. The expansion functions Fl(z) and F2 (z), the current
distribution l(z) and the two-mode approximation
I'(z).

Notice the slope discontinuities of the piecewise-sinusoidal
expansion. These discontinuities occur at the generators, lumped
loads and wire corners. For all normal calculations, the calculated
samples In will be accurate, and the corresponding piecewise-
sinusoidal current distribution I'(z) will be satisfactory.

By substituting Eq. (2-35) into Eq. (2-30), the following
set of simultaneous linear algebraic equations is obtained:

N
(2-36) n~ 1 Zn Zmn : Vm  where m 1 2,.. .N

n=l

and where

( (2-37) Zmn F W F i

,t I

i 14



The integral in Eq. (2-37) has limits which extend over the two
segients in the range of expansion function Fn. For ease of computer
manipulation, Eq. (2-36' may be expressed in matrix notation:

(2-38) [Z m (In) = (Vi)

whiere [Znin] is a square matrix and (In) and (Vm) are the column
current and voltage matricies, respectively.

[Zmn ] is tile open-circuit impedance matrix for the wire-structure
where the first subscript in indicates the row and the second, n,
the column. Zmn also represents the mutual impedance between testdipole m and expansion mode n.

15



CHAPTER III

THE GEOMETRICAL THEORY OF DIFFRACTION

A. Introduction

The Method of Moments is usually referred to as a low frequency
technique as its use is usually applied to bodies small in terms
of wavelength. The geometrical theory of diffraction (GTD), however,
may be applied to bodies which are arbitrarily large in the
electrical sense and is thus referred to as a high frequency technique.
GTD employs rays in a systematic way to describe the field scat )red
by specific parts of a body, e.g., edges, tips, or corners. Only
perfectly conducting bodies in an isotropic, homogeneous medium will
be considered in the discussion that follows.

The basic problem in GTD is the two-dimensional case of the
diffraction of an electromagnetic wave from the edge of a perfectly
conducting wedge. Since this edge diffracted wave behaves like a
cylindrical wave radiating from the edge, the contribution from an
edge element on a three-dimensional body may be approximated by
assuming the element is on the edge of a wedge extending to infinity.
Wedge diffraction can, therefore, be applied to three-dimensional
geometries having finite edges.

GTD was originally based on plane wave diffraction coefficients
when applied to wedge diffraction. However, a different formulation
for the wedge diffraction is substituted depending upon whether the
incidEnt wave is cylindirical, conical, or spherical. Rudduck [6]
showed that in the treatment of antennas, it was necessary to utilize
the diffraction of cylindrical waves.

B. Wedge Diffraction

Consider the problem of a plane wave incident upon a wedge
with angle (VIA) equal to (2-n)n as shown in Fig. 3-1. At the
observation point P(r,) the z-component of the total field is
represented by u(r,)

(3-I) u(r,) = V(r, t- ') V(r, + ').

The plus sign is used if the electric field is polarized perpendicular
to the perfectly conducting edge, and the minus sign is used if the
electric field is parallel to the edge. V(r, * - 4') represents the
incident field and V(r, 4 + 4') represents the reflected field.

16
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/iT

P (r,

L INCIDENT
PLANE WAVE

I

R SB

IS- WA (2-n) 7r

-|S!

Fig. 3-1. Conducting wedge showing plane wave incidence.

These field quantities may be divided into the geometrical fieldf V* and the diffracted field VB 1

(3-2) V(r, a) = V*(r, o) + VB(r, B).

[The geometrical field is given by

Iejkr cos (a + 2, n N) if - n<a+ 2w n N <1w

0 otherwise

for N 0, ±l, ±2,....

F.
17
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For 6 = - p', Eq. (3-2) gives the incident field. The incident
field will be seen by any observer in regions I and II of Fig, 3-1.
This region is referred to as the illumination region (O< <r+ ')
for the incident field. At 6 = 7r+ ', the incident shadow boundary
(ISB) is encountered. Beyond this angle is the shadow region
(n+ '<q <un). Any observer in the shadow region will not see an
incident field. For 6 = + '. Eq. (3-2) yields the reflected
field. The illumindeion region for the reflected field is region I
of Fig. 3-1 (O< <ia-p'). At 0 = -a - p' is the reflection shadow
boundary (RSB). Any observer beyond the RSB and outside of region I
is in the shadow region for the reflected field and will not see
that component of the field.

As indicated by Eq. (3-2), each geometrical field has a dif-
fracted field VB(r, 6) associated with it. The diffracted field
takes into account the diffraction phenomenon at the edge of the
wedge and combines with the geometrical field to eliminate dis-
continuities on the shadow boundaries.

The diffraction problem from a conducting wedge was first solved
by Sommerfeld [11]. His solution was in the form of a contour integra-
tion which proved inconvenient for computational purposes. He later
derived a more practical solution, but it was only valid for large
values of kr(l + cos 6). The form of this solution is

(3-4) VB(r, ) : e )sin

i2 kr Cos - cosn

n n

Pauli [l2] developed a practical formula for the field diffracted
by a conducting wedge which turned out to be more accurate than
Sommerfeld's solution, especially in the vicinity of the shadowboundaries. His solution is:

C

(3-5) VBYr, 6) 2 e I sin L 1 2
o ( n1  n)Cos Cosi

n n

eJkr cos a e - j 2 dT + [Higher Order Terns]
j rl + Cos 8)

The higher order terms may be neglected for large values of kr.

18



A diffraction coefficient D(03) designated by Keller [13] may be
related to thle VB function by

-jkr
(3-6) VB(r, 0) = D( ) e

In 1967 a formulation introduced by Hutchins and Kouyoumjian
[14] yielded far better accuracy, particularly near the shadow bound-
aries and for r<x than that obtained from the Pauli formulaticn
(Eq. (3-5)). Hutchins' and Kouyoumjian's formulation is given by,

(3-7) VB(L, o, n) = I (L, , n) + I+ {L, B, n),

where
-j(kL 4

(3-8) I+ (L, f6, n) - e a- cot( 2
-n1)

e akL7 g e-j 2 d + [Higher Order Terms]

where

(3-9) a = 1 + cos (c - 2 nN).

N is a positive or negative integer or zero, whichever best satisfies
the equations,

(3-10) 2 nrN - :- , for I1

and

(3-11) 2 nrN - : +n , for I

L is a distance parameter to be defined later.

19



Consider a source -field El(s') located at s'(p',p') as depicted
in Fig. 3-2. The source may be either electric or magnetic and may
generate an incident wave on the edge of the wedge which is either
plane, cylindrical, conical, or spherical. The diffracted vecLor
field at the point s(p, ) may be represented in terms of a dyadic

.1 diffraction coefficient. The diffracted fields may be represented
in a more compact form if they are expressed in terms of a ray-fixed
coordinate system centered at the point or points of diffraction QE
as suggested by Kouyoumjian and Pathak [15].

The diffracted field may be written as

(3-12) Ed (s) = E'i(QE) • DE (S, T) A(s)e-jks

The relationships between the orthogonal unit vectors is shown in
Fig. 3-2. Writing the diffracted field in a more convenient form
involving the VB function,

(3-1) 11 I~j I'IQE) _Lre jkL A(s)e-jks
(3-3) I [V+ :i: sin 0

where

(3-14) V VB(L,B", n) VB(L, 8+ , n).3-14 V B  ,

The minus sign is used for an electric field polarized parallel to
the edge (soft boundary condition), and the positive sign is used
for the electric field polarized perpendicular to the edge (hard
boundary condition). $+ = T ' where the minus sign is used for
the incident field and the positive for the r'cflected field. The
ray divergence factor or spatial attenuation factor A(s) is defined
as

1 for plane, cylindrical and

(3-15) conical wave incidence

A(S) :

s r spherical wave incidence
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The distance L parameter is defined as

r2
s sin 2  0 for plane wave incidence

(3-16) L P PP for cylindrical wave incidence
p__________
s's sin 2 {o for conical and spherical wave

s + s" incidence

Through the introduction of L by Pathak and Kouyoumjian, it is
possible to use the diffraction formulation of Eq. (3-13) for near-
zone cases. Experience has shown that accurate results may be
obtained for kL > 1. This formulation will prove useful in
Chapter IV when we consider a source near a conducting wedge.
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CHAPTER IV

A HYBRID TECH1NIQUE COMBINING THE METHOD OF MOMENTS
AND THE GEOMETRICAL THEORY OF DIFFRACTION

A. Introduction

Consider the problem of a monopole near the edge of a perfectly
conducting wedge as shown in Fig. 4-la. To determine the current
distribution on the monopole, it is necessar to change Eq. (2-38)
to include the effect of the edge. This modified equation for the
impedance matrix is given as [1 ,2]

(4-1) [i] (I'n) = (Vm)4-in m n :

where [Zn] is the new impedance matrix. I') -is the modified
4 column current matrix due to the effect of the edge, An element

of [Z'n] may be expressed as

(4-2) Zmnir Zmn + AZmn

Z is the original impedance mat' ix from Eq. (2-.37) and AZ is
tIe additional term due to the effect of the ede.m

To gain some physical insight into the probem, consider
Fig. 4-lb. The monopole is segmented, and on each segment the
current is assumed to be constant. Zmn is interpreted physically
to be due to the z component of the electric field at segment in
from the unit current passing through segment n. AZin is defined
as the reaction between a field diffracted from the edge of the
wedge due to a unit current flowing in segment n. , and the
current density in segment 

m JI as follows:

(4-3) AZinn , Ed

The geometry of the situation is shown in Fig. 4,-lc. Ed (_ is found
by applying geometrical theory of diffraction techniques. To calcu-
late AZInn, the near-field incident upon, the edge due to segment n is
found using the method of moments. The component of this field
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Fig. 4-1a. Monopole on a conducting wedge.
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m
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Fig. 4-lb. Monopole on a conducting wedge with segment m
receiving radiation from source segment n.
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Fig. 4-1c. Monopole on a conducting wedge with segment m
receiving diffracted radiation from source
segment n.

which is perpendicular to the edge and to the direction of propaga-
tion is the term EI(QE) in Eq. (3-13). This component is found from
the total field by:

(4-4) E Ei sin ' + Ei Cos
(QE) = z

E and Ez are the p and z circular cylindrical coordinate components
o tile electric near field due to the current on segment n of the
monopole. The field diffracted from the edge is now calculated by
applying Eq. (3-13):

(45) d ( V+ i JF ejkL -jksE (s) = VB E (QE) sin a (s) e

5o = 90', therefore, sin Bo = 1. For spherical wave incidence

A (s) (Ss -s.S) and L sSs Equation (4-5) may now be

written as
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(4-6) Edis) = VB El s+s L s s s' V

ik eiks

Simplifying,

(-) Eds) V+ i*S e s+ s]
(4-7) Ed (s) -VB E. (QE) s + s'

Equation (4-7) is then substituted for Ed in Eq. (4-3), and the

reaction integral is carried out:

(4-8) AZmn Jm E: (s) cos dk m

where the integral is over the length of segment m.

For each of the impedance elements, Zmn, of Eq. (2-38), the
modified impedance element Zn is determined by summing Zmn with the

corresponding aZmn. Zmn is then substituted for Zmn in Eq. (2-38)
which, when solved, will result in a new current (I').

B. Far-Zone Field Pattern Calculation

The far-zone field patterns are determined by using the hybrid
technique and a two-point diffraction method as illustrated in Fig.
4-2a to approximate the true physical situation depicted in Fig. 4-2b.
The two-point diffraction method assumes that the ground plane extends
to infinity in the x direction, allowing us to ignore the contribution
of the diffracted fields from those edges and the corners. The
true physical situation will have diffracted field contributions
from all four sides and corners, but the contributions from points 1
and 2 in the o-plane will dominate. The sum of X1 and X2 in Figs.
4-2a and b equals 28 inches.

The patterns are calculated by summing the direct electric field
due to the new current (I') on segment n with the incident near field
from segment n diffracted from points 1 and 2 into the far zone,

(4-9) T E D
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nnwhere E is the direct field from segment n, E' and E2 are the
fields diffracted from points 1 and 2, respectively, and ET is the
total far-zone field due to segment n. The geometry is depicted
in Fig. 4-2c. At a given angle of o, the total fields for each
of the monopole's segments are summed to give the particular
far-zone field at that angle.

I 8ODzl80°0

90 °  2700

X 'rxy

Fig. 4-2a. Two-point diffraction approximation for determining
far-field patterns for a single mnopole on a ground
plane. X1 + X2 = 28.

27

Vl



1800

41

z

i 90 ° 2 270O

Fig. 4-2b. True physical situation. X 1 + X 2 "28"

The direct electric field from segment n is calculated via the
Method of Moments, while the diffracted fields from the edges are
found using tihe Geometrical Theory of Diffraction. The same procedure
applied before in this chapter to find the modified impedance matrix

I is used here. However, instead of finding the edge diffracted field
at another segment m on che ny -n-:Dole due to a segment n, tihe edge
diffracted field in the far zone is desired. Applying Eq. (3-13),
we find the perpendicular component of the diffracted field to be,

djk Ls,- eJks X sin e
(4-10) E (S) =-V B E, (QE) s, e IFs'le
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Fig. 4-2c. Contributions to the far-zone field include
the dirept field En and the diffracted fields

bandE
-t-

where x is the distance from the edge to the point where the phase
is referenced, and the term ejkx silno puts the diffracted field in
the proper phase with the direct field. In the far zone s is much
much greater than s'; therefore, Eq. (4-10) becomes

(4-11) Ed (s) V i s' ejks ' e 
jkx  sino ejks

-jB Is

The term Ls is suppressed in the far zone reducing Eq. (4-11) toS

(4-12) Ed (s) -v! Ee

Since the electric field is polarized perpendicular to tihe
edge of the ground plane V+ is used. The significance of the
+ and - signs was discusseg in Chapter III.
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Fig. 4-2d. Geometry for the second order diffracted fields.

To take care of discontinuities occurring in the patterns at
the edges of the ground plane, it was necessary to include the
second order diffracted fields from edges 1 and 2. The second order
diffracted field is an edge diffracted field whose incident field
is the diffracted field from the opposite edge due to a particular
monopole segment n. The geometry is shown in Fig. 4-2d. There are
two steps in finding the contribution of the second order diffracted
fields in the far zone. First, the near-field diffraction from
one edge and incident upon the opposite is calculated. For this, a
form like Eq. (4-7) is used, rss 1

d s jk s + s'
(4-13) E (s) = -VB E' s + s' e

Two fields must be calculated using Eq. (4-13). One field travels
across the top of the ground plane (E~ ) and the other travels alongthe underside ( w) as shown in Fig. 4-2d. Since each of these
fields are graziU whcident fields (direction of propagation parallel
with ground plane), they are each.divided by a factor of two and
substituted into Eq. (4-12) for E(QE). The two results are summed
to yield the second order diffracted field in the far zone. The
seo2nd ord26 diffracted fields are calculated for both edges
(Eu and E ) and then sunmed in Eq. (4-9) to yield a new expression
f"o the toial far-zone field as follows,
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,j(4-14) E T .En + D7D 2

With these expressions, the far-zone field patterns of one monopole
or two monopoles on a ground plane are accurately approximated.

C. Single Monopole on a Ground Plane

The far-field pattern of a quarter wavelength monopole calculated
using the two-point diffraction approximation is shown in Fig. 4-3a.
The Xl and X2 values in Fig. 4-2a are each three wavelengths as in-
dicated by the computer drawn sketch in Fig. 4-3a. This pattern is
compared with the measured pattern of the actual situation and the
calculated pattern of Lopez [16] in Fig. 4-3b. Lopez's patterns are
those of a stub on a circular ground plane with a three-wavelength
radius. Lopez also used a two-point diffraction approximation.
His two-point diffraction method is valid everywhere except near
the caustic which exists in his problem. By studying the measured
and calculated patterns in Fig. 4-3b, it is evident that this is
indeed the case. From 0 to about 10 degrees in Fig. 4-3b, the shapes
of the calculated and measured patterns differ. It is seen from Figs.
4-3a and b that the two-point diffraction method is a reasonable
approximation for the true physical situation as the two points are
the dominate diffraction mechanisms, and the only other contributor
to the far-field pattern is the monopole.

In Figs. 4-4a through 4-6a the far-field patterns are calculated
using the hybrid technique and two-point diffraction at 14 inches to
either side of the 1/4x nonopole. The a parts of Figs. 4-4 through
4-6 are to be compared with the b parts which are far-field patterns
of a stub on a four-sided ground plane calculated by Burnside's GTD
computer program [17]. The reason for making the comparison with
the pure GTD program is to provide an independent check on the
validity of our computer program.

Burnside's program uses infinitesimally short current sources
which have amplitudes and locations so as to simulate a quarter
wavelength monopole with a sinusoidal current distribution. His
program also takes into account the diffraction from the four
corners and all four sides. However, in this comparison, the two
opposite sides are set at distances much greater than the other
two so as to approximate Fig. 4-2a and so that the points on the
two closer sides will dominate the diffracted field contribution.
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Fig. 4-3b. Radiation pattern of a stub on a circular ground

plane.
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Also contained in Figs. 4-4a, 4-5a, and 4-6a are the far-field
patterns of the monopole as if it were on an infinite ground plane
with no diffracted field contributions. This pattern is indicated
by the + symbol on the curve and the pattern with the edge
diffraction by the El symbol. By comparing these two patterns, the
effect of the edge diffraction is quite noticeable. The level
differences of the patterns between the a and b parts of Figs. 4-4,
4-5, and 4-6 is because the pattern including diffraction is
normalized with the pattern from the monopole on an infinite ground
plane. Nonetheless, the similarity between the pattprns calculated
by the two different methods is apparent. Also, Fig. 4-6b has dis-
continuities at 90° and 270*, which are similar to those encountered
with the hybrid technique before the second order edge diffraction
was included.

D. Two Monopoles on a Ground Plane

Computer-drawn sketches in each of the figures in this section
describe the geometry for that particular pattern. An explanation
of these sketches is illustrated with an example. Fig. 4-7 is a
representation of the computer sketch in Fig. 4-8a, Fourteen inches
is the corresponding dimension between the center of the two monopole
array and the edge of the ground plane, while 0.2 inch is the spacing
between the tips of the monopoles. The relative size of the monopoles
in the computer sketch is not to scale, and the inclination angle of
the monopoles to the ground plane indicated by the sketch does not
necessarily represent the actual angle used. The angle of the
monopoles or elements with respect to the ground plane is
indicated to the right of the computer sketch (200, in this case).
All patterns in this section begin (0) on the underside of the
ground plane so that endfire for the array occurs at 180' as
indicated in Fig. 4-7 and the computer sketches.

Just as with the single monopole cases, the pattern from the
antenna without the edge diffracted fields is indicated by the +
symbol in the figures to follow and the total field with diffraction
by the [] symbol. By comparing these two patterns, the effects of
the edge diffraction in all cases can be studied.

In the first group of patterns, Figs. 4-8, 4-9, 4-10, three
random cases are chosen and compared with Burnside's GTD computer
program for the same geometry.

The signal levels between the hybrid method and Burnside's GTD
program differ because the field including diffraction is normalized
with the field containing no diffraction for comparison purposes in
Figs. 4-3a, 4-9a, 4-10a. The discontinuities occurring in some of
the patterns around 90 and 270 degrees are due to the noninclusion
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Fig. 4-7. Representation of the computer drawing below
the patterns in this section.

of higher order diffraction. It is not worth the added computational
efforts for our purposes to include higher order diffraction around
the edges of the ground plane. The two programs calculate the
patterns by different methods but display a great deal of similarity.

Figures 4-11a, b, c are the patterns of the monopoles located
symmetrically on the ground plane for 800, 900, and 1000 MHz. The
desired pattern shape appears to be obtainable at the higher
frequencies. At 800 MHz, the null at 1800 is intolerable.

Figures 4-12a, b, c and Figs. 4-13a, b, c demonstrate the effects
on the pattern by locating the monopoles asymmetrically on the
ground plane. The monopole or element spacing and angle with respect
to the ground plane are the same as in Figs. 4-11a, b, c. As with
the symmetric cases, the pattern evolves more to the desired
pattern as the frequency increases to 1000 MHz. As the frequency
increases, the levels of the nulls in the region of main concern
from 1200 to 2400 grow shallower.

Figures 4-14a-f display the effects of the far-field patterns
due to changes in the separation between the two monopoles or
elements. As the spacing is increased, the pattern shape becomes
less desirable due to the deepening of the center null. The

41



'I smaller spacings are, therefore, more useful in achieving the
desired pattern. Thus, 0,3 inch was chosen as a reasonable
spacing for the remaining patterns in the section.

Figures 4-15, 4-16, and 4-17 illustrate the effects on the
pattern due to changes in the angle of the monopoles with respect
to the ground plane.

Angles less than 30 degrees were excluded because the close
proximity of the monopoles to the ground plane in the true
physical situation could result in inadequate input impedances
over the range of frequency. Angles greater than 45 degrees were
also tested but resulted in nondesirable pattern shapes.

A monopole angle of 30 degrees with a tip spacing of 0.3 inch
seems to yield the optimum results. In Figs. 4-18 through 4-22
these geometrical values are used to test for the two monopole array
at different locations on the ground plane.

In Figs. 4-18a, b, c the discontinuities around 70 to 110
degrees are due to the close proximity of the edge to the monopole
array. Even still, the general pattern shape is valid. From
studying Figs. 4-18 through 4-22 a more desirable pattern shape
is obtained as the monopole array is moved closer to the edge. As
the array is shifted toward the center, deep nulls, particularly
at the low end of the frequency range (800 MHz), develop.

Additional patterns are contained in Appendices I and II.
Appendix I contains patterns with the center of the monopole array
located at 12 inches from one ground plane edge and 16 inches from
the other edge with the monopoles angles set at 30 and 45 degrees
for various element spacings.

Appendix II has patterns with the center of the monopole array
located eight inches from one edge and 20 inches from the other,
The monopoles angles are set at 30 degrees, and different element
spacings are tested.
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CHAPTER V

SUMMARY AND CONCLUSIONS

This research and development effort, which investigates the
radiation patterns of a proposed UHF satellite antenna, has
utilized a combination of two powerful computational techniques,
the Method of Moments and the Geometrical Theory of Diffraction
(GTD), combined into a Hybrid Technique. The Hybrid Technique
allows us to investigate the performance of the satellite antenna
at various locations on a 28" by 28" panel without making an assumption
about the current distribution in amplitude or phase as one would
normally do in a pure GTD approach to the problem. Instead, the
current distribution is treated as an unknown in the moment
method part of the hybrid technique.

The radiation pattern results presented in Chapter IV have been
checked against an independent computer program and against measure-
ments in the literature. In all cases agreement is good, giving
one the necessary confidence in the data and the conclusions that can
be drawn from them. It is surprisingly apparent from the data that
the best location for the UHF antenna is near one edge of the panel,
rather than near the center.

There are, of course, other antennas and scattering objects
on the panel that will redirect some of the energy and cause per-
turbations in the radiation patterns from those shown here. The
method we used here and the associated computer program can be
extended to include these effects. It is recommended that such
an effort be undertaken.
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APPENDIX I

The patterns contained in this appendix are those of a two
monopole array with the array center located 12 inches from one
ground plane edge and 16 inches from the opposite edge.

Figures I-la-e are patterns for various element spacings
at 800 MHz. The angle of the elements is 30 degrees. Figures
I-2a-e and Figs. I-3a-e have the same geometric set ups as Figs.
I-la-e but the frequency is 900 and 1000 MHz respectively.

Figures I-4a-f, I-5a-f, and I-6a-f are patterns for
various element spacings with the angle of the elements set at 45
degrees. Figures I-4a-f are at 800 MHz while Figs. l-5a-f and
Figs. i-6a-f are at 900 and 1000 MHz respectively.
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APPENDIX II

The patterns contained in this appendix are those of a two
monopole array with the array center located at 8 inches from
one ground plane edge and 20 from the opposite edge. The angle
of the monopoles with respect to the ground plane is 30 degrees.
Figures II-la-e are at 800 MHz while Figs. II-2a-d and Figs,
II-3a-e are at 900 and 1000 MHz respectively.
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