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ABSTRACT 

■^ A system of n components under the care of one repairman 
Is modeled. The components are subject to failure, where- 
upon they may be repaired one at a time. It Is desired to 
repair  failed components  In such  a manner that  the  ergodlc 
probability that  the system works   Is maximized. 

) 
. . 

It  Is assumed that each component  and the system as a whole 
can be either working or failed,  with  the relationship 
between  the working of  the  system and  the working of the 
components given by a coherent  structure function.     The  time 
a component works,  or  the time  to  repair a component  Is  an 
exponential random variable of  known  rate.    All components 
are  Independent, and at most one component may be under 
repair at  a given time. 

Although  the general problem Is  In principle soluble by 
known methods,  computational difficulties are enormous  for 
moderate sized systems.     In addition,  such methods give no 
general  Insight Into the structure of  the optimal policy. 
Therefore, bounds and approximations  for general systems are 
highly useful.^—-. 

One bound  for the optimal ergodlc  probability that  the 
system works Is given by the  ergodlc  probability that the 
system works under a particular policy.    The time reversible 
policy given yields easily obtainable ergodlc probabilities 
for all states, and Is useful  for bounding purposes. 

Most  real systems are highly reliable In nature.    Parametri- 
zatlon of  the rates of  the exponential random variables 
given earlier allows Investigation of asymptotic system 
properties as the system becomes very reliable.    Specifi- 
cally,   for a given policy,   the asymptotic ergodlc probability 
of all states and the asymptotic  passage times between states 
may be computed.    These results allow one to obtain the 
asymptotic optimal unreliability  of an arbitrary system,  and 
to obtain the asymptotically optimal policy for assignment of 
the repairman in many cases.     Intuitively,  the asymptotically 
optimal policy is close to optimal  for highly reliable 
systems. 

Although highly unreliable systems occur less frequently, 
such systems may be treated  In a similar manner with similar 
results. 

Two specific examples of systems are treated in the paper: 
the series system and an arbitrary system of stochastically 
identical components.     The series  system occurs often in 
practice,  since many simple systems  cannot tolerate failure 
of any components. 

-C- 
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These  two  examples  lead  to relatively simple solutions. 
Arbitrary systems generally do not.     The two component 
parallel system yields a fairly complicated criterion for 
choosing between the two potentially optimal policies. 

When the series system Is composed of  components whose 
failure rates are Identical,   the  ergodlc probability  that 
the system works Is  Independent of policy. 

For  the two component series system,   It   Is optimal to repair 
the  longer expected lifetime component  first, and this is 
true even  if the repairman Is subjected  to random Intervals 
during which  i n is not allowed to work. 

For an    n    component series  system,   the  optimal policy seems 
to be  to repair the components  in order of increasing 
expected  lifetimes.    This result  can be proven if the 
optimal policy can be written as  a list,  but a more general 
proof  seems  to be elusive. 

When a system is composed of stochastically identical 
components,   it  is often possible  to eliminate most policies 
from consideration.    Two examples of  this technique are 
given,   including one in which the optimal policy is 
explicitly obtained. 
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l.l Introduction 

The field of reliability theory has seen great 

activity recently.  A central assumption to many models is 

the binary state assumption; that is, that each component 

and the system as a whole can assume two states:  working 

and failed.  Analysis of the relationship between the sys- 

tem's state and the state of the components under reasonable 

assumptions is the subject of coherent structure theory. 

Given coherent structure theory, it is easy to 

obtain deterministic and probabilistic models for the wear 

out of a system when the wear out characteristics of each 

component are known. 

An extension of the probabilistic model of the 

last, paragraph treats a system whose components fail and 

39 .   . are then repaired.  Ross  treated a maintained system in 

which each component fails and is repaired again in accord- 

ance with an alternating renewal process.  Keilson and 

12 2 4 2 7 38 
others  '  '  '  deal with the same model under the more 

specific assumption that the time that the i— component 

works and the time required to repair the i— component are 
5 

exponential random variables.  Barlow  treats a system where 

other components are in a state of "suspended animation" 

during repair of a component.  All Df these maintained sys- 

tem models approximate a system which has separate repair 

resources dedicated to each component.  A more realistic 

assumption for some systems is that the system possesses 

t..iii-.mB.a.i^mliarfi,wiiiii,-ii^^^»..,,^....^^...^,.,:.;../..^^..  i'.i:.^..^. ...^^^...,^.,..,.-^..^,:.^...^ 
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limited repair resources which may be allocated to failed 

components as needed. We attempt to model such a system. 

In the simplest case, the system possesses linear- 

ity of repair resources and no comparative advantage in the 

repair of different components by different resources. As 

will be shown in section 2.1, all repair resources may be 

optimally concentrated on a single component at any time. 

Thus, in this case, the system may be thought of as having 

a single repairman who can repair at most one component at 

a given time.  This model will be the principal object of 

investigation in this paper. 

Classical repairman models2'3'4'8'10'20f22'31'33'41 

deal with a system of components and spares.  Upon failure, 

a component is replaced with a working spare, if available, 

and then sent into queue at the repair facility to be re- 

paired.  Usually, only one working component is treated in 

such a model. ,> 
:' " '■ 

v. • ' 
For our model, if general  failure and repair dis- 

39 tnbutions  are  allowed, as in Ross,       things become very 

complicated.     Such a model needs Markovian decision theory 

on uncountable  state spaces, with all  the attendant diffi- 
24 culties.     Therefore,  as in Keilson,       we assume that all 

failure and repair distributions are exponential.    The 

memoryless property of the exponential distribution allows 

us to specify the system state solely in terms of the binary 

states of all components. 

In section  1.2 we describe  the assumptions and 

.,       ^jaiMBiW*     n----              ■  ~—~..      .— .   .      _.     —- 
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results of coherent structure theory appropriate to our 

model, which is described in section 1.3.  Our objective 

will normally be to maximize the ergodic probability that 

the system works.  Section 1.4 proves the intuitive and im- 

portant result that it is not optimal to leave the repair- 

man idle. 

General results for the model are often difficult 

to obtain. Division II describes three methods for approx- 

imating and boundary optimal system characteristics. 

In Chapter 2 we find a particular policy for which 

the ergodic probabilities are easily obtainable.  The opti- 

mal performance is bounded by the performance of any given 

policy, and in particular, is bounded by the performance of 

the policy given in Chapter 2.  In addition, the coordinates 

appear to be associated under the above given ergodic 

probabilities, allowing a further simplification in the 

computation of a system bound. 

Chapters 3 and 4 deal with asymptotic results for 

highly reliable or unreliable systems respectively. These 

results are obtained by assuming that the failure rates or 

repair rates of all components are multiplied by a common 

factor k, and looking at small k.  The ergodic probabilities 

of states under arbitrary policies are asymptotically pro- 

portional to integral powers of k, allowing computation of 

the asymptotic optimal unreliability or reliability of the 

system in terms of specific constants multiplied by powers 

of k.  An alternating renewal theory approach then allows 

ilMiiiiiiiilliMaiWiwiof •"-• n -"-,' 
~ ^ •'' ^ür-nhiiiiit-'^iMiriiMiiaM -   -' - :-     'I ■—-  
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one to find an easy to use optimization procedure which 

often determines the action which is asymptotically optimal 

in a given state. 

The third division of the paper deals with various 

specific systems.  The general complicated nature of the 

problem of deciding the optimal policy is illustrated with 

the solution of a two component parallel system. 

We then treat a series system in which the compon- 

ents have identical failure rates.  The somewhat surprising 

conclusion is that the policy does not matter.  The ergodic 

probability that the system works, the Laplace transform of 

the time to fix the system from any state and the expected 

integral of the discounted time the system works are all 

obtained. 

For the series system with two components, the 

optimal policy is to repair the component with smaller fail- 

ure rate first.  This is true even if the repairman is sub- 

ject to interruptions; intervals of time in which he is not 

allowed to work.  This result shows that if the optimal 

policy of the series system is in the form of a list, the 

components must be repaired in order of increasing failure 

rate. A policy of such a form is intuitive for the series 

system, but no proof is yet available. 

We next treat a system made of stochastically 

identical components.  Often, symmetries in the structure 

function show that certain actions in certain states are 

non-optimal.  Sometimes enough actions can be ruled out to 

f.- .„i. .■^J.. ■. ..,-,>A^;.^-J.I...,I^M,>..,,-»-a.:■,,... ,;,i.«.^^.v^.j>-.-     :- ^J .r..,*.^,Cl^rU*i*UlMmMI**t**Li~*Mä*i, M^MMWMHIMHMHIIMHI 
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actually give the optimal policy.  Several examples of the 

use of this technique are given. 
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1.2   Coherent Structure Theory 

One of the common assumptions for reliability 

models is the existence of a coherent structure.  We in- 

clude these assumptions for our model. 

Specifically, we assume that the system is made 

up of n components, and that the system itself and each com- 

ponent can be in one of two states, functioning or failed. 

Thus the state of the n components can be summarized by a 

binary n-vector X with the understanding that X^ = 1 iff the 

i— component is functioning, and that X. > 0 iff the i— 

component is failed. This vector X will be called the state 

of the system. 

We further assume that whether the system is func- 

tioning or failed is a function only of the states of the n 

components, or equivalently, if x represents the set of all 

binary n-vectors, 

3 ♦:  X -•■  (0,1}  , s.t.  , 

♦ (X) = 1 iff the system is functioning when 

the system's state is X, 

•MX) = 0 iff the system is failed when the 

the system's state is X. 

The function $ is called the structure function. 

It is reasonable to assume that $ is monotone non- 

decreasing, corresponding to the intuitive notion that 

■ Mmiilitatii)MtmmmAn lili-Mli-lll    l       i     l   ^ä^^^^mä^ttamm^ummm^^m,^^^^^,^^^^^ 
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repair of a component cannot cause system failure. 

A component, i, is relevant if 4»{1. ,X) ^ ♦(OJ,X) 

for some X. Here the notation 

i.,X = (Xw...,X.,/i,X. ..».../X )  / 

and       0.,X = (X,,...,X._^/0,X.+, ,...,X )  . 

Without loss of generality we need only consider relevant 

components. 

A structure function that is non-decreasing and 

for which all components are relevant will be called coher- 

ent. 

Given a coherent structure function $, X is a path 

vector if ^(X) = 1.  The corresponding path set is C,(X) ■ 

{i|x=l}. A path set is minimal if no proper subset of the 

path set is a path set.  It is easily seen that <MX) =1 if 

and only if some minimal path set is a subset of C,(X). 

Every component must be in at least one minimal path set. 

Similarly a vector X is a cut vector if (MX) = 0. 

The corresponding cut set is (MX) § {ilX^O}. A cut set 

is minimal if no proper subset of the cut set is a cut set. 

It is easily seen that 4» (X) =0 if and only if some minimal 

cut set is a subset of CQ (X) . Every component must be in 

at least one minimal cut set. 

iMMMl.-tMM.I^i.t ■   »,     ... i^-.^.,.^..,  ""•-'-''-"-''---' mma^^mmttm^mil^ltitlltm 
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1.3    The Model 

We deal with an n component system with a coherent 

structure function $.    We  assume that the evolution of the 

state vector,  X,  is governed by the following rules: 

1. The i— component functions for a random per- 

iod of time exponentially distributed with rate y.   >  0. 

After such a period of time,   it fails. 

2. The  i— component, when failed and under repair, 

is  repaired  (goes from failed to functioning state)   in a 

random period of time, exponentially distributed with rate 

X.   >  0.    When the i— component is failed and not under re- 

pair it does not change state. 

3. The component evolutions   (given the component 

under repair)   are independent of each other and the previous 

history of the system. 

We also assume the following two rules for assign- 

ment of the repairman. 

4. The component under repair may be changed 

arbitrarily quickly. 

5. At most, one component may be under repai-  at 

a given time.    Note that we have the option of leaving the 

repairman idle. 

A policy will be defined to be any rule  for assign- 

ment of the repairman.    A policy is a stationary pure policy 

if the repairman is assigned by a deterministic function of 

state only.    For a stationary pure policy Tr,iT(X)  will denote 

the component under repair in state X. 

■.j;iL...,..-iito(JrJ...»^^^,.|(|l||niiiinmfii,"--^-iittiii"ilili —^-- -.■^"-'-^"- "J""'fa"J"lt"Wj-'"—         
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Define F to be the expected integral of the dis- 

counted time  the  system is working.     Thus  for S>0,  B  an 

arbitrary policy,  and X(t)   the  system state X at time  t, 

F(TI,S,   XQ)     =     E^ e'St   (X(t))dt|X(0)=Xo 

36 

(1.3.1) 

Standard results       tell us  that there exists  a 

stationary pure policy  v*,   such  that 

FtTT^S,)^) =    s up FCTT.S,)^) (1.3.2) 

The same TT* satisfies   (1.3.2)   regardless of X-. 

When  the state  space  is  finite,  as  in our model, 

a stationary pure policy  TT* exists,   such that   (1.3.2)   is 

true  for all X^.  and S<S0 with  S  >0.     Furthermore, 

lim    SF(TT*,S,Xn) 
S-0 X:*(X)=l 

*Tt*W (1.3.3) 

where e * (X) is the ergr lie probability of the state X 

under policy TT*. Thus to find a policy which maximizes 

F(TT,S,X0) over TT for small valves of S, we need only find a 

stationary pure policy which maximizes the ergodic probabil- 

ity that the system works.  Our objective in the following 

paper will normally be to maximize the ergodic probability 

that the system works over the stationary pure policies 

possible. 

^■..■...f-u,,,»*-^..;^' v.i-yjl^ 
...iMiriHiMtt 
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1.4        Strict Optimality of Assignment of Repairman 

In this section we prove the intuitive notion that 

the repairman should never be  idle unless all components of 

the system are working. 

Theorem 1.4 A.    Let ir'  be a stationary pure policy 

in which the repairman is idle in at least one state which 

is not 1.    Then at least one state X* ^ 1 with the repair- 

man idle must be positive recurrent under the Markov chain 

which describes the system evolution under ir1-. 

Proof;     Clearly 0 is positive recurrent since all  Mi   > 0, 

and since there are a finite number of states. 

If the theorem is not true,  then some component j 

is under repair in the 0 state.     Since A.   > 0, we obtain 

l.,0 is positive recurrent.     Repeating this argument n times 

tells us that 1 is positive recurrent. 

But again p.   > 0  implies all states are positive 

recurrent,   a contradiction.     End of proof of Theorem 1.4 A. 

Theorem 1.4 B.    A stationary pure policy i»'  which 

leaves the repairman idle in some state not 1 does not 

maximize F(IT,3,XL)   for any value of S or any X^. 

Proof:     We contradict the optimality of ir*  by comparing it 

with a derived policy ir".     The evolution of the state under 

ir',  X* (U/t) • and under ir",     xMu^t); will be mapped into the 

■ l>l I IIIMI  - ■■'■"•-■-«^-^^^—i^Jg 
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same probability space in such a way that X/Mu^t) ^ X'(w#t) , 

V u),t.  Thus, by the monotonicity of $, 4» (X" (u),t))  >_ 

^{X* («it)), V u),t. Furthermore we show that (MX" (w,t)) ■ 1 

and «MX' (u,t)) = 0 on a set large enough to contradict the 

optimality of TT ' . 

Let (ti,i»,P) support two processes X' and Y with 

the following joint distribution:  Let X* evolve according 

to policy n' with X" (u),0) = X^j.  Let 6 be the first time that 

X' reaches the state X* whose existence is guaranteed by 

Theorem 1.4 A, let r be time spent in X* before the first 

failure.  Conditional on X', let Y describe the system evolu- 

tion with Y(w,0) = 0 under the following policy: before time 

x repair the smallest numbered component in C0(X*) which is 

failed in Y (if none are failed, leave the repairman idle) 

and after time t let the repairman be idle. 

Now define X" on {«,?,?) as follows: 

X"{t)  =  X' (t) , 0 _< t < S    , 

X" (t)  =  X'(t) V 4(t-6)Y(t-6) , 6 _< t< " , 

(1.4.1) 

where (X V Y) . = maxU^Y^ , and where A(t-6) is a diagonal 

matrix with A^UQ-ö) = 0 if X^(t) = 1 for some &   < t   < tQ ^    , 

1 otherwise. My thanks to Jamr»s Pitman who considerably 

shortened the original argument to this point. 

It is clear that X" is the proper system evolution 

under a policy which uses policy ir" until X* is reached, then 

repairs the lowest numbered failed component until there is 

"--'•'-'■■' ■■ ,*•,*.■„„■■.■Mmiuutm^mäu^mmi 
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a failure in C^U*)» and then repairs the component nMX*) 

(unless this component is working, in which case the repair- 

man is idle) . This is some non-stationary probabilistic 

policy. 

From (1.4.1) X"{t) >^ X'(t) . We now show strict 

domination for each of two cases. 

Case 1.  <MX*) - 0.  We note that there is non-zero 

probability that under IT", all components in C0(X*) are re- 

paired in the interval (6,6-fr).  This shows strict domination 

since $(1) * 1 for a coherent structure. 

Case 2.  ♦(X*) ■ 1.  Pick a component jeC-CX*) and 

let a minimal cut set containing j be K. Such a minimal cut 

set can always be found for any component of a coherent 

structure.  Let K* = K H C1(X*). 

We know that there is non-zero probability that 

only the components in K* fail without repairs occuring 

for X* in an interval beginning at 6, while, during the same 

interval, all components in C0(X*) are repaired for X" with- 

out failures occuring for these components. 

In this case «MX*) = 0 since K is a subset of 

the failed components of «MX'), and <j>(X") s 1 since the 

failed components of X" are a proper subset of a minimal cut 

set K.  End of proof of Theorem 1.4 B. 

Corollary; A stationary pure policy which does not assign 

the repairman in a state not 1 cannot achieve the maximum 

»j—■ _ : ; 1 i i i IK   ---■ ■■■-^^.^. ^- ^■-^..^■i.^ 
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ergodic probability that the system works. 

Definition;    A stationary pure policy which 

assigns  the  repairman in all states ft 1 will       (1.4.2) 

be  called a candidate policy. 

Thus,   in optimizing the ergodic probability that 

the system works, we need only consider candidate policies. 

Arguments similar  to those  used in  the proof of 

Theorem 1.4 A tell  us  that  the system evolution under a 

candidate  policy is  governed by a finite,   irreducible con- 

tinuous  time Markov chain. 

mmmimii«««« „^^^^^^^^ 
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2.1 Simultaneous Effort and Mixed Policies 

Suppose that we allow the repairman to simultan- 

eously expend a portion of his effort on several  failed 

components.     If, while  in state X,  he expends a proportion 

of his effort PJ (X)   on  the i— failed component,   it is 

reasonable to assume  that the  i— component's  repair rate 

is  then p.(X)X.,  with failure rates  remaining unchanged. 

By  arguments  similar to those advanced  in section 1.4,  if a 

policy  is  such  that the  repairman does  not expend all his 

effort in a given state,  the system evolution under  that 

policy  is  dominated by the system evolution under another 

policy which expends  all the repairman's effort in the same 

state.    Also,   standard results tell us  that an optimal policy 

is  a stationary policy. 

Thus,   in  finding optimal policies when allowing 

the repairman  the  flexibility of simultaneous effort de- 

scribed in the previous paragraph, we need only consider 

candidate simultaneous effort policies  defined below. 

(2.1.1)     Definition:    A candidate simultaneous 

effort policy is described by a set of probability n-vectors 

p(X),   X 5^  1,  with the properties: 

a) p^X)   = 0,  ieC^X)   , 

b) pi(X)   >_ 0, 

n 
c) I    p. (X)   = 1   , 

i=l i  - 

and with the  interpretation that the proportion of the 

.>i.ft^tt^v*;^.^^..^,^^^^^ ..^ | iV | 
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repairman's effort spent on component i in state X is PjfX). 

Thus, the repair rate of component i in state X, ieC/jiX) 

is p.l^X..  The failure rate of component i is unchanged 

and is y-. 

Note that a candidate policy is a special case of 

a candidate simultaneous effort policy. 

Another model which gives rise to restricted 

simultaneous effort policies is the following: the system 

If the i— man is 

th 

possesses m repair resources, or "men. 

th allocated to the j— component, the .repair rate for the j 

component is X. ■.  We assume there is no comparative advan- 

tage of men in repairing components, or more precisely, 

X. ./X. .  is independent of j.  Furthermore, we assume that 

the application of repair resources to the system is linear, 

or more precisely, if the men in a set I. are assigned to 

fix component j, then the repair rate of component j is 

I      X 
iel^ 13 

Thr fact that there is no comparative advantage 

of men in fixing components requires that 

hi  ' Vj (2.1.2) 

m 
where r.   can be normalized so that    E    r.   s 1. 1 i=l    1 

Thus,   in this model,   if we employ a stationary 

policy wherein the men in the set 1^ (X)   are assigned to re- 
j -   n 

pair failed component j in state X, with U Ij (X) = 
j-1 ■, ~ 

{l,2,...,m} ,  X ^ 1, then the system evolution is equivalent 

^ -■ ■" -—--, 
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to the system evolution under a candidate simultaneous 

effort policy of definition  (2.1.1), with 

PjU)     = 
iel.(X) 

(2.1.3) 

and X.   and r.   given by   (2.1.2). 

(2.1.4)     Definition.    A policy,  IT,   is called a 

stationary probabilistic or mixed policy,   if upon change 

of the system state to  X,  the  repairman  is  assigned to repair 

component i with probability qi(X),  and is not reassigned 

until the system changes state again. 

The  following theorem provides  a way  to compare 

ergodic probabilities  under simultaneous effort policies 

with ergodic probabilities under mixed policies. 

Theorem 2.1 A.     Let e(X)  be  the ergodic probability 

of state X under the Markov chain which describes the system 

evolution under a policy given in definition   (2.1.1),  and 

let e'(X,i)   be  the ergodic probability of state X with the 

i— component under repair in the Markov chain which describes 

the  system evolution  under definition   (2.1.4).     Furthermore 

let: 

L (X)  = p. (X) (X.+MMX))/    E      p, (X) (X.+vi*(X))f     ieC0(X) 1 ~ i -      i - / jrCnU)   3-D u .0VA; 

0 otherwise. 
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where u* (X) »   I        \i.     ,  and q and p are the q and p 
ieC1(X)  1 

from the appropriate definitions qlven above. 

Then 

e{X)  »    Z      eMX^i) 
ieC0(X) 

(2.1.6) 

Proof;    All states of the second chain which are possible 

to enter are easily seen to be positive recurrent. 

Since the first chain is ergodic,  it satisfies 

the balance equations. 

[M*(X)+       I      P. (X)A.]e(X)»       Z       A.p. (04,X)e(0.,X)     + 
ieCo(X)   ^        *      -    ieCiU)   x 1    x "       1 

(2.1.7) 

I      y.e(l. »X) 
ieCo(X)  1      1 " 

We will show that 

eMX,!)     -    e(X)pi(X)       , (2.1.8) 

which proves the desired result.  This is done by showing 

that (2.1.8) satisfies the balance equations for the second 

chain, which are: 

(li*(X)+X.)e,(X,i)  - q. (X) [  Z       X.e» (0. ,X,j)  + 
1 " jeCi(X) J    :, ~ 

(2.1.9) 

Z        Z      u^e'd^X^k)] 
k jeC0(X) J   J 
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Substituting   (2.1.8)   into   (2.1.9), we obtain 

p.(X) (liMX)+X.)e(X)     =    q. (X) I       E       X.p.(0.,X)e(0.,X)     + 1 ~ -      i       - i  -    jeCl(x)   3   3     J J 

(2.1.10) 

£       Mse(l.,x)l     . 
JEC0(X)   ■,       J 

Substituting   (2.1.7)   into the square brackets gives: 

Pi(X) (u*(X)+Xi)e(X)     = 

q4(X) [(y*(X)+       I      p. (X)Ai)e(X)] 
jeC0(X)   J J 

(2.1.11) 

and equality  in   (2.1.11)   is  guaranteed by   (2.1.5). 

We note  that  the transformation between £ and £ 

of   (2.1.5)   is  a one to one  and onto transformation between 

probability vectors defined to be non-zero on CQ (X) .    End 

of proof of Theorem 2.1 A. 

The  inverse transformation of   (2.1.5)   is 

q^X) 

Pi(xl    " 

Xj+WMX) 

Z                 "1 <*' 

JECo(X)          V^1 

(2.1.12) 

We have the following collary to Theorem 2.1 A: 

--•■ -■ .■■:->..^^-. -  ^■- ■....■,.■.-. ...  !.i 

•■'"     ■■■>~"—^   ■ ' '     --- ^ ---■■-*■ 
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If the repairman Is allowed to expend simultaneous 

effort as in definition  (2.1.1),  the ergodic probability 

that the system works may be maximized by maximizing the 

ergodic probability that the system works over candidate 

policies.    This  follows from Theorem 2.1 A and the standard 

result that mixed policies need not be considered for optim- 

ization purposes. 

Thus,  for the model of  linear repair resources 

without comparative advantage presented earlier,   all re- 

sources may optimally be allocated at any time to one failed 

component. 

. 
-■—■"-- 

■v .'..A.k' jt'.fr rflfa'.fri I iSUli 
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2.2 The  Time Reversible Chain 

Simultaneous Effort Policy 

A continuous  time Markov chain  is  said to be time 

24 reversible      if  there  is  equality of ergodic  flows  between 

any  two states.     Thus we  require ^i^e^ =  ^-i-ie-i   ^or any two 

states i and j,  where  A, .   is  the rate of  transitions  from i 

to  j,   and e.   is  the ergodic probability of state  i. 

Theorem 2.2 A.     There is a unique  set of probabil- 

ity  vectors £(X),  X /  1 such  that Pi{X)   = 0,   ieC^iX) ,   for 

which the system evolution under the policy  described in 

definition   (2.1.1)   is  governed by a time  reversible Markov 

chain.    This policy will be  called the time   reversible 

policy. 

Furthermore,  the  unique £(X)   are determined for 

X ^  1 by 

PiW     = 
C0(X) 

ieC0{X) 

(2.2.1) 

otherwise     , 

24 and the ergodic potentials,       TT (X) ,   are 

n(X)     =     |Cn(X) |   1        n (ti) 
U ieC0(X)   Ai 

(2.2.2) 

Here |Cn(X)| denotes the cardinality of C0(X). 

-:"'■■■'■'-'■■• imi M -" - 
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Proof;    Assume the existence of  the proper |3(X) .    Arbitrar- 

ily define the potential of 1 to be 1, 

"(1) (2.2.3) 

We now prove the theorem by Induction on |CQ(X)|. 

When |C0(X)| - 1, ]3(X) must be given by (2.2.1). 

Also by balance of ergodic flows between 0. ,1 and 1^ 

Xin(Oi,l) -    yiTT(i)    , 

Tr(0ifl) 
ui 

"   ^1 

or (2.2.4) 

(2.2.5) 

which satisfies the  theorem. 

Now assume that the theorem is true for   |CQ(X)| 
B 

m-1.     By equating ergodic  flows, we obtain: 

^   Pi   iOi   ,...04   ,l)ir(0,   ,. ..,0.   ,1)     = 
ij   ^-j     1l ^-m -        11 xm - 

y.   Tr(0.   ,...,0.        ,0.        ,...»0.   ,1) (2.2.6) 
1j       il ^-j-l    ij+l ^-m - 

for j = 1,...,m    . 

Now,  using the  induction hypothesis that   (2.2.2) 

is true for the  right hand side of   (2.2.6),  we obtain 

p.   (0.   ,...,0.   ,l)n(0.   ,...,0.   ,1) 
1j    ^-l 1in "■       il Sn " 

(2.2.7) 
m      Vi 

(m-1)   1     n     (^J-) 
j=l      ij 

""""'^"^"''••■■'•■'ili'iiWri-ir i   '     ifhi MMiillliha'    '■ -    ■-^-■^^iMir  mm 
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or  that all p.     are equal,   i.cCr.(X) 
lj j      u   — 

Thus, 

Pi  (0,   ,...,oi  ,1) 
j        1 m m (2.2.8) 

and 

TT(0.    ,...,0.   ,1) 
^•l m 

m       \i. 
=    m 1     n     (Jp-) 

3=1     XlJ 
(2.2.9) 

The  theorem is   therefore   true for   |C0(X)|   = m,  and 

the   induction  is  complete. 

We have actually constructed a time reversible 

chain, and assuming its existence, shown its uniqueness. 

End of  proof of Theorem 2.2  A. 

The ergodic probabilities  are just the normalized 

potentials.     Therefore the ergodic probability that the 

system works,  W,  under the time  reversible policy  is 

w 

I 7T(X) 

X:(MX)=1 

I   Tr(X) 
X 

(2.2.10) 

where TI (X) is given by (2.2.2). 

W is a lower bound to the optimal ergodic reliabil- 

ity of the system. 

Theorem 2.1 A tells us that W can be achieved by 

the mixed policy given in definition (2.1.4) i 
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for ieC0(X) . 

xi+u*(x) 

E   (X.+M*{X)) 
jeC0{X)  ^ 

25 

(2.2.11) 

Of course the system evolution in this case is not 

given by a time reversible chain. 

.^■L^.:i.^..^.....■■,■■,..■■..■■■■. .-.:. .^^ SÜS? ^^,Vmmmmmi''m'*'fr^ii"'^i'W>rr'^ 
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2.3        Association of   the Components 

Under  the Ergodic  Probabilities  of 

the Time Reversible Policy 

The bound,   W,  of  the previous section is difficult 

to compute  if  the number  of components  in  the system is  sub- 

stantial,   since  the number of  states  is equal   to 2   ,  where 

n is   the number of components. 

The computation of  a  bound for the ergodic  prob- 

ability  that  the  system works  could be simplified  a great 

deal   if  the Esary-Proschan-Walkup cut set bound       is  appro- 

priate.     This  requires association of the components.     It is 

conjectured that when  the state probabilities  are  given by 

the  normalized potentials of   (2.2.2),   the components  are 

associated.     However,   only  the  association of  any   two com- 

ponents   is  proven  in  this  section. 

7 
Definition:       Random variables T,,...,T    are 

associated if cov [r (T), A (T) )   >^ 0  for all pairs of  increasing 

binary  functions   r,A. 

Therefore,   the components are associated if; 

E[r{X)A(X)]    >   E[r(X)]ElA(X)] (2.3.1) 

for  all  increasing binary  functions  r,A.     (2.3.1)   is  equi- 

valent  to 

p[r(x)=i,A(x)=i] > p[r(x)=i]p[A(x)=i] (2.3.2) 

^^»iUr'iiT.l.riiHI    ■,ir,|..,„J|.,..  .-.-,..^„.   w,....^-..^...H^:.,^..^  ■.,^.. ,. . . ...,      ,r...^1J.^J 
■"""■'"■■'- ■—-'-■■.-. 
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Therefore, using (2.2.2), we have that the coor- 

dinates are associated under the ergodic probabilities of 

the time reversible policy of: 

Z  TT(X) 
X 

E    TT(X) 
X:r(X)=l 

A(X)-1 

(2.3.3) 

I       ii(X) 
X:r(X)=l 

; 

J:  TT(X) 
X:A(X)=1 

for.  all increasing binary functions  r and t.     (2.3.3)   is 

equivalent  to 

I TI(X) 
X:r(X)=0 

MX)=0 

E       TI(X) 
X:r(X)=l 

A(X)=0 

Z       Tr(X) 
X:r(X)=l 

A(X)=1 

Z 1T(X) 
X:A(X)=1 

r(x)=o 

(2.3.4) 

Theorem 2.3 A.     When ti (X)   is  given by   (2.2.2), 

(2.3.4)  is  true for all binary increasing  functions  r and A 

of the coordinates  X.   and X.. 

Proof:     If  the right hand side of   (2.3.4)   is   zero,   the 

inequality  is  satisfied,   since all  terms on the left hand 

—    '•, ••  ■ "■■-—■■■um--...--—-"■:.^--..- , 
UUUMIM 
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side are positive. 

The only binary  increasing  F and A which give a 

non-zero  right  hand side are  V = X.,   A =  X.  or vice versa. 

Thus we need show that 

I     TT(X) 
X:X.=0 

X1 = 0 
] 

E     TT(X) 

X:X.=1 
" xJ=o 

I     TI(X) 

X:X.=1 
"X^l 

] 

Z     TT(X) 

X:X.=0 
-x^i 

3 

(2.3.5) 

We accomplish this through the inequality 

ir(Oi,0.,X)TT(li,lj,Y)   +  ir(0i,0j,Y)ir(li,l:jfX)  > 

(2.3.6) 

n(0i,lj,X)u(li,0j,Y)   +   Ti(Oi,lj/Y)Tr(li,Oj/X) 

When (2.3.6) is summed over all X and Y we obtain 

32 times (2.3.5). 

To prove (2.3.6) let a = ICQU^I^X) 

b = iCQd^l^Y)]   . 

Then by (2.2.2), (2.3.6) reduces, after division by a common 

factor, to 

a!(b+2)!  + bl(a+2)!  >  2 (a+1) ! (b+1) ! (2.3.7) 

immmmmmmMat»** -"-^-^  
III. MWllWW—t—. "-   ^a—| mmmmmn»"—■■■■'■ 
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b+2 
5+r 

a+2 (2.3.8) 

which  is  readily verified to be  true  for a,b 21 0.    End of 

proof of Theorem 2.3 A. 

Actually,   (2.3.4)   seems  to be true  for  T and  A 

arbitrary binary increasing  functions of all coordinates, 

but  the proof seems  rather  involved. 

,^_^_ ■ -■-■'■■ - ^mji^jtaai 
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CHAPTER   3 

Highly Reliable Systems 

Approximations of highly  reliable systems are 

treated in  the  following chapter.    We assume  that the i— 

component's  failure rate is ky^  and the i— component's 

repair rate  is   X   .     As  k goes  to zero,   we wish  to know the 

optimal policy,   and also the approximate optimal  unreliabil- 

ity of  the system.    An example of  the application of the 

results obtained  in  this chapter to a  highly  reliable system 

is given. 

 ■.i-..:^-.^.^J^^»^..--.~^-- ■■-■-^  ^-^»■■»■i-.  — -^^.^ ■.^.-~,:-^......  ....„..,.. 
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3.1        Limiting Ergodic Probability of States 

for Candidate Policies 

Theorem 3.1 A.     Let the failure rate of the i— 

component be ku.,  and the repair rate of the i— component 

be  X..     Let n be a candidate policy   (see section 1.4),   and 

e   (X,k)   be the ergodic probability of state X under policy 

ir.     Then 

lim   {k1'lC0(^)I)   e.(X,k)     -     0 
k*0 *'-' 

(3.1.1) 

Proof;     The result is proven by induction on  |CQ(X)|. 

Clearly   (3.1.1)   holds  for   |C0(X)|   - 0,  since 

0 < e   (X,k)   <  1.    Now assume   (3.1.1)   is true for   |Cn(X)|   - 

Of...*m<n. 

When we equate the ergodic  rate of entering and 

leaving the group of states for which  |CQ(X)|  £ m,  we obtain 

Jltth^; 11 il jja-at^^u^i. 

X:|C0(X)|=m+l  1I(^,   ^ " X: |C0(X) |=m 
efXfk)       E      ky. 

"   "       ieC1(X)     1 

(3.1.2) 

Multiply both sides of equation   (3.1.2)   by k"m and 

take the limit as k goes to zero.     By the induction hypothe- 

sis,   the right hand side has a limit of zero as k goes  to 

zero. 

Since the left hand side  is a sum of non-negative 

m.A^A.ai.^mA,«;.^,,;,,,, na.  -.,.:...l ^jja'- '—■ • lri m      ,, Miiiliiiinwiiiir'inilmiiiiMiliiriM«^^ ««MHM 
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terms,   the  limit of each  term as  k -♦  0 must be  zero.     The 

induction is  established since  Xn#X)   / 0»   v * ^^   lco^l 

m +  1  >  0.     End of  proof of Theorem 3.1 A. 

For  the  remainder of the chapter,   we suppress  the 

dependence of e    on k. 

Theorem  3.1 B.     Under the conditions of Theorem 

3.1 A, 

limk-|Co(x)ie_(x) 

k-^-O 
u  — - V**   ' (3.1.3) 

with 0   <  g7T(X)   <   00»   and 9^(1)   =  1     > 

wfY»gw(X)   = Z       y.g   (l.,X)        ,     X^l        .        (3.1.4) 
ieC0(X) 

Thus,   g   (X)   can be computed recursively  for in- 

creasing   |CQ{X) I • 

Proof;    Again  use  induction on   |C0(X)|.     We note that 

le   (X)   » 1.     Theorem 3.1  A tells  us  that  lim ew(X)   ■ 0, 
X ^ ~ k^O    ^ ~ 

' X ^  1.     Thus,   lim e   (1)   =1,   establishing the theorem for 
k^O    * 

|C0(X)|   =  0. 

Now assume that the theorem is  true  for all X 

such  that   |C0(X)|   = m. 

Equating the ergodic rate of leaving and entering 

a state X yields: 

J 
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(X1t(X) + k     E     Mi)e1I(X)    - 
ieC1(X) 

L       Vir^i'^ +k    Z      uie7T(1i'^) 

ieCxCX) 
i=n(Oi,X) 

ieC0(X) 

(3.1.5) 

Assume   |CQ(X)|  = m+l.    Multiply both sides of 

(3.1.5)  by k"(In+1,.     Since ieC1(X)   implies   |C0(Oi,X)|   - m+2. 

Theorem 3.1 A tells us all terms  in  the first summation on 

the right hand side have zero limit. 

Also  ieC0(X)   implies that   |C0(l.rX)|   = m,  so that 

the  induction hypothesis tells us  the limit of the second 

sum on the right hand side is      I        ^^-(X). 
ieCo(X) 1 ^ 

Theorem 3.1 A tells us the second term on the left 

hand size has zero limit. We conclude that 

lim k"(m+1)X .„.e (X) 
ieC0(X) *■ v    x 

thus establishing  (3.1.3)  and  (3.1.4)   for   JC0(X)|  ■ m+l. 

The  fact that 0 < g, (X)   < »  is established by the 

induction hypothesis,   (3.1.4),  and the fact that the right 

hand summation of   (3.1.4)  is non-empty  for X / 1. 

We are now interested in higher order approxima- 

tions to the probability that the system works. 

Theorem 3.1 C.    Under the conditions of Theorem 

1  T"-. -    """n,   innnitiaaiiMi H.nn.i ..■■■ '      in      irimi     .HJMMI--- —■■■     ....^■.■^^J^, 
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3.1 A, 

k-^0 

^ '2' 

(3.1.6) 

where g|2) (X)  can be determined recursively on  |C0(X)|  by 

the equations 

n 
I 

i«l 
g(2)(i)     .    -19,(0^1)     '       and 

\m<2)W 
Z        X.g^O.^X)     + 

ieC^X) 

i^irCOi^) 
(3.1.7) 

zv^ii^V z      w.g^cx)    »   x^i. 
ieC0(X) ieC1(X) 

Proof:     Equations (3.1.4)   and   (3.1.5)  can be combined to 

give: 

iasiI(0ifX) 

to  n    xi-lclCo(li'- 'g  (l^X)l k      l      Mile   (lif*)  < yn*  i - 
ieC0(X) 

k        I        Mi%W 
ieC1(X) 

X ^ 1     • 

(3.1.1J) 

----- ••    »m,tmm»m,mm n   in mm „MM^H^^^^^^^ 
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We prove the theorem by induction on CQ (X) . 

When X - 1 use the fact that £e (X) - 1 and 
-  - X ^ " 

theorem 3.1 B to establish the result. 

Now assume the theorem is true for X such that 

|CQ(X)| ■ m. We wish to establish that the theorem is true 

for X such that |c0(X)| - m+1. 

Multiply both sides of (3.1.8) by Ic",'C0(-)'"l and 

take the limit as k goes to zero. Theorem 3.1 B and the 

induction hypothesis then give the desired result for X such 

that |CQ(X) I = m+1.  End of proof of the theorem. 

In a similar manner one can prove the following 

theorem. 

Theorem 3.1 D.    Under the conditions of theorem 

3.1 A,  define g1[1) (X)   - g^U),  then 

lim k-lC0 W l-mle   (XHkl00^ Ig*11 (X)-.. .-klC0 <*> 1^-^) (x) ] 
k-»-0 

gim+I)(X) (3.1.9) 

Where g^m      (X) can be determined recursively in 

terms of smaller m and |CQ(X)| as follows 

g(m+l) (1) E g(n»+l-|Co(X)l) (x) 

X:0<|C0(X)|<m+l ^ 

and 

tM., .-»^ .,— •"""'--^^"-'■"■^tiiii ————>—>« uammamtaM mammaamammmtm 
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.   „(m+1) /Y\ 
ieCi(X) 
i-nCO^X) 

^g^co^x)   + 

(3.1.10) 

ieC0(X) 1 ^     1     ieC^X) i 

X / 1 

Proof; The proof exactly parallels the proof of theorem 

3.1 C and is omitted. 

trniriliriiiirlriniinuaüililfii i 
naSHissEEi 
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Theorem 3.2 A.  For a given X, a candidate policy 

IT minimizes g (X) given in theorem 3.1 B over possible 

candidate policies if and only if *Viy)t  ^ V^CQ (^) for all 

^ such that C0{^)cC0(X). 

Furthermore, 

( 

min g^ (X)  = n     M. 
ieC0(X) 

lCo(X) 
i n~ 

perr.utations j=l    "j 
of C0(X) 

(3.2.1) 

where X.* =    max 
3    k e first j 

elements of 
the permutation 

Proof; Again by induction on JC0(X)|.  The theorem is true 

vacuously when |C0{X)| - 0 or |C0(X)| = 1. Now assume the 

theorem is true for all ^ such that |c0(^) | = m. 

Let X be such that |c0(X)| = m+1.  Equation 

(3.1.4) tells us that 9^ (X) is minimized iff \/X) 1 ^ 

ieC0(X) , and g^di^X) is minimized for all ieC0 (X). 

Therefore, by the induction hypothesis, 9^(X) is 

minimized iff ^/y) lXiVieCo^ for a11 X. »«t« co ^^ c 

C0 (X) ; establishing the first part of the theorem. 

For the second part, note that (3.1.4) tells us 

■■iuL^AflW.aJrt!^v^.-t.;.Wii,^LJ ^^ | .||r. ■ . .,,.■„,■ ^yjriük^.k.hJaitJAt ^^,^.1^^^. *m*mm 
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min giT(X) 
TT 

max     X l       ^i min g1r(1i'^, 

jeC-{X)   :,  lec0^, 
-0'^' 

(3.2.2) 

Substituting for min g^dj^X) by the induction hypothesis 
IT 

gives 

min  gw(X) 
IL__ =          1                   j. 

iEc
n

{x)
Mi ieca5fv/i ieC0(X)   permutations  j-1       "j ieCnCX) 3eC0(X)                 0   -    of ^(^-{i} 

|c0(x)|-i , 
1 *       TT*     ' 

•ox-' 

but the double sum simplifies to give: 

(3.2.3) 

C0(X)|-1  , u n x .* permutations  j=l   j 
of C0(X) 

and we also obtain by definition 

max X. 
jeC0(X) ■* 

=  X c0(x)| 

for  any permutation,  and thus  the  second result is esta- 

blished.     End of proof of  theorem 3.2 A. 

Theorem 3.2  B.     Let U(k)  be the optimal ergodic 

unreliability of the previously described system.     Let m, 

min  cardinality of  the  cut sets = min cardinality of the 

minimal cut sets.     Then 

-m 

lim k 
k-K) 

U(k)     =    C, (3.2.4) 

»wwiiii .        .    ..:—^ .^^^^rrr-Tr^r.-j..,..-.-..! v..  '"..i1!'!!." .'. A' M.I.I.—^^^:r-:-:.:.;....,...-^..ik^i^J^uai*Uii 
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where C, is defined below. 

mi . 
C, -      I n y.     I ^    r~ (3.2.5) 

K:     K  permutations j»l j* 
K is a cut set       of K 

|K| - it»! 

where ^j* ■ max X^ 
ie first j elements of the permutation 

Furthermore, for all k < k», for some k0 > 0, a 

policy ir is not optimal unless, for every cut set K with 

|K| ■ m1 and every j£ such that C0 (^) c K, ^^i^x  i X^VICCQ^) 

Proof; Let n be a candidate policy which minimizes all 

g1T(X) as given in theorem 3.2 A. Let n' be a candidate 

policy which does not have the property given in the last 

paragraph of theorem 3.2 B. Let U (K) be the ergodic 

unreliability of policy TT , U* (K) be the ergodic unrelia- 

bility of policy TT*. Then by theorem 3.2 A 

lim k'miu0(k) < lim k'^U'(k) (3.2.6) 
k-^0 k-K) 

and thus for all k < MTT«) with Mir') > 0, policy TT» is not 

optimal. Since the number of candidate policies is finite, 

the last paragraph of the theorem holds. 

Furthermore, if TT" is a candidate policy which 

minimizes g-(X) for all C0 (X) which are cut sets of 

cardinality m^, then 

U ft -.ft.    . ......        .-:..-    ■.~-. ,        . -    n „.Mm ■ i mn-II rf < iiimr«tlM<ilMi 
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lim k"miuH(k)     =    C, 
k->0 i 

(3.2.7) 

where C, is given by (3.2.5). 

Thus (3.2.4) is true since for all k < k« the 

optimal policy must be of the form given for IT", of which 

there are a finite number.  End of proof of theorem 3.2 B. 

The higher order approximations of theorem 3.1 D 

can now be applied to further narrow the possible optimal 

policies for small k. Such extensions appear quite messy. 

It appears somewhat easier to use alternating 

renewal theory to further specify the optimal policy for 

small k.  Such an approach is taken in section 3.3 which 

follows. 

MH MUfHNMM«* . .■■ir. -  . .-  ktMHUMiWi 
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3.3    Limiting Expected Passage Times 

Theorem 3.3 A.     For the previously described 

system,  and ir a candidate policy,  let T  (k,X)  be the expec- 

ted time to go from state  X under policy IT to the  1 state. 

Then 

lim T-(k,X)  » T(0,X)  « Z        J^ 
k-^0 '        ieC0(X)   Ai 

(3.3.1) 

Proof;  The equations for the expected passage times yield 

solutions continuous in k, and the passage time in the 

absence of failures is easy to compute and is independent 

of policy.  End of proof of Theorem 3.3 A. 

Theorem 3.3 B.  Let B^fkfX) be the expected time 

the system is failed during passage from X to 1 under policy 

IT.  Let I (X) be the minimum number of component failures in 

X to cause system failure.  Then 

lim k1"1^ B (k,X)  = 0 
k*0        "  "" 

(3.3.2) 

Proof;  The proof is by induction on I (X). Theorem 3.3 A 

establishes the result when I (X) a 0. 

Now assume that the theorem is true for all X 

such that I(X) = 0,1,...,m and that 

.^—... .. - 
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lim k1"mB_(k#X) (3.3.3) 

for X such that  I(X)   > m. 

The following identity for B^Ck^X), X / 1, obtained 

by conditioning is helpful. 

(X ,Y. + k   Z       y4)Bir(k#x) 
71 (^    ieC^X)  1 ff  * (3.3.4) 

6o^(x) + xnx)B^'lnx)'*) *kitC
z
m

viB*{k'0i'V 

Here 6 is the Kronecker delta, 6. . = 0, i ^ j; 6. . ■ 1, 

i = J 

*{X) = 1 

Now let X be such that I(X) > m+1, which implies 

We must show that 

lim k'mB (k,X) 
k-0 

= 0 (3.3.5) 

and our inductive proof in complete. 

Multiply both sides of (3.3.4) by k"m, and let 

k->-0.  By (3.3.3) the sum on the left hand side goes to 

zero as k goes to zero. We also have that ^QAfx) = ®'    T^e 

last term on the right hand side has zero limit since 

I(0.,X) > I(X)-1 = m, and (3.3.3).  We will thus establish 

(3.3.5) as desired if 

«UM'«»!'*'«"-'" 
^ .-,<:.. ■:': 

,i.-.MiTa.iiiMM. I mittf^^fa/lilujiuilttg^ —  
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(3.3.6) 

Note that Kl^wX) i KX) » m+l so that (3.3.6) is the 

same type of statement as (3.3.5).  We prove both of these 

by subinduction on |C0(X)|. 

B1T(k,l) » 0 so that (3.3.5) is true when CQ (X) - 

1.  If (3.3.5) is true for |C0(X)| ■ j then (3.3.6) is true 

for ICQU^X) ,X) | - j implying (3.3.5) is true for |C0(X)| » 

j+1.  End of the subinduction and end of inductive proof of 

Theorem 3.3 B. 

Theorem 3.3 C. 

lim k"I(->B_(k,X) 
k-O 

V*> (3.3.7) 

where 0 < d^U) < «, X p* 1 . 

If ({»(X) = 1, dw(X) are determined by 

XTr(x)dTT(X)  ~  6I(X),I(lTr(x),X)XTi(X)diT(1Tr(x)'^)  + 

(3.3.8) 

ieCi(X) 
I(0,,X)=I(X)-1 

Mid^O^X) 

i — 

If ())(X) = 0, cl (X) is the time to fix the system 

when k = 3. 

Proof;  The theorem is proven for (MX) - 0 by a continuity 

. ......^,^ .^....^ -   iifiiiiiiiii!,!! --"■■ ■- ■-^..^^^..>..-^- ^.-.a...^.i.u..„...t J.-^..^.,-,., .^... s...........^:,..^ ;^,..,„„.J 
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argument similar to that used in proving 3.3 A. 

Now assume the theorem is true for £ such that 

I(^) = l,...,m.  Let I(X) = m+1. Multiply both sides of 

(3.3.4) by k"(m+1) and let k -♦ 0. The sum on the left hand 

side goes to zero by Theorem 3.3 B. The first term on the 

right hand side is zero, and the third term on the right 

hand side has a limit equal to the last term in (3.3.8) by 

the induction hypothesis, and Theorem 3.3 B.  If Id1I(v\'X)> 

I(X) the second term on the right hand side has zero limit. 

(3.3.8) is thus established for a maximal element 

of {x|l(X) = m+l), and for a maximal element of the set 

deleting a maximal element, and so forth. 

Inductively, d (X) < <*>  and does not equal zero, 

since the last term on the right hand side of 3.3.8 is non- 

zero inductively. 

"-"■■—- 
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3 .4        Limiting Optimal State Actions 

Under First Order Passage Times 

In em intuitive sense, we wish to minimize the 

expected time  in failed states during passage between two 

states,   as k goes to  zero,  since the expected passage time 

becomes independent of policy.    We can make this  idea more 

precise using alternating renewal  theory. 

Theorem 3.4 A.    Suppose  that  for two candidate 

policies  IT    and ir 

B1T0(k,X) 
;.  i  >^ b (ergodic probability the system is  failed 

under Tr') 
SrO^'*' 

(3.4.1) 
for k < k. 

with k0 > 0, b > 0 

and 

B1T0(k/X) < c B^.^X)   for k < k0 , 

with 

0<.c<l, k0>0 

(3.4.2) 

Then as k goes to zero, n* is not optimal. 

Proof;  We contradict the optimal!ty of n' as follows. 

Construct a policy ir" which uses policy IT between X and 1 

and uses policy TT' between 1 and X. 

~—   _ mmmm 
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Let S(k,X)   be the expected time  to  pass from 1  to 

X under policy  v ' ,   and let FO^X)  be  the expected time the 

system is  failed during passage   from 1  to X under n *.    By 

alternating  renewal  theory,     '       the ergodic probability 

that the  system is  failed under TT'   is 

P^, (<MX)=0) 
B7iI (k,X)+F(k,X) 

T^, (k,X)+S(k,X) (3.4.3) 

and  the ergodic probability  that the system is  failed 

under TT "  is 

P7TH(0(X)=O) 
B7r0(k,X)+F(k/x) 

T7T0(k,X)+S(k,X) (3.4.4) 

E 
Now suppose TT" is not strictly better than TT' or that 

P7T„(^(X)=0) > P^, (<f(X)=0) (3.4.5) 

Substitutions  from   (3.4.3)   and   (3.4.4)   into   (3.4.5) 

and suppression of  the arguments gives 

T
TTO   IV   + 

(B^.+F) 
(3.4.6) 

using   (3.4.2)   in   (3.4.6)   gives 

•,0  i^.   -   (|-   l)BnO- 
(T

TT-
+S) 

B^.+F 
(3.4.7) 

for k < k0. 

i   L 
 .   -.    ■:-:,...^^^..^....^.^^...-^„J.V.^1l   ]imim 
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Using   (3.4.1)   and  (3.4.3)   In   (3.4.7)  we obtain 

TiO  < V   -   <£" ^"rrO (3.4.8) 

for k < k0, a contradiction as k -*- 0 since 11m T^g  " 
k-^O 

lim T ,  , by Theorem 3.3 A. End of proof of Theorem 3.4 A. 
k*0 

Theorem 3.4 B. A candidate policy ir* which does 

not minimize the d^ (X) of Theorem 3.3 C is not optimal for 

k < k' for some k' > 0. 

Proof:  Suppose d^U) < dn( (X) .  Then by (3.3.7) of Theorem 

3.3 C 

B^tk^X) < cB^.fkrX)  for c < 1, 

all k < k0. 

satisfying   (3.4.2)   of Theorem 3.4 A. 

By Theorem 3.2 B,  if -nr'   is optimal as k goes to 

zero then 

lim k",ni   (ergodic probability of failure under TT') 
k-^O 

(3.4.9) 

where m, is the minimal size of a cut. 

Theorem 3.3 C tells us that 

Urn k"I(^)Bwll(k,X) 
k-K) 

VW (3.4.10) 

■ i   -.;..    j.^..^.^.».^--^.-...^.-.^.-.. .i-.-^.^,!...   .-.. ...-.„.... .-..;.»..! ,!- :.aa-.J..ii-J^..M-IMa-jaLi^^^i, ^-■----—  '     '-   "'  
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Since I(X) 1 m^, (3.4.9), (3.4.10), and Theorem 3.3 A imply 

condition (3.4.1) of Theorem 3.4 A.  Theorem 3.4 A now gives 

the desired result.  End of proof. 

We now use Theorem 3.4 B and equation (3.3.8) to 

find many of the optimal actions for the limiting optimal 

policy as k goes to zero. 

When <MX) = 0, minimize E —r— over sets of com- 
ic A  i 

ponants A which, when fixed in state X, fix the system. 

One of these components must be under repair in the limiting 

optimal policy.  Thus rule translates to:  a failed system 

should be repaired in such a manner that the time to repair 

in the absence of failures is minimized. 

Now successively minimize d ,xv in the following 

manner.  First compute d  for the set of X with I (X) = 1. 

Choose a maximal element in this set and minimize according 

to (3.3.8).  (The optimal action is to repair the failed 

component with largest A. in this case.)  Continue to choose 

maximal elements of the uncomputed states with I(X) = 1 

minimizing according to (3.3.8) until the minimal d 's are 

computed for all states X, with I (X) = 1. Now do the same 

procedure with the set of states with I(X) = 2, then with 

the set of states with I (X) = 3, and so forth until d is 

minimized for all states. 

One easy example to compute is the parallel system. 

The limiting optimal policy for small k must always choose 

the largest repair rate failed component in any state. 
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To model highly unreliable systems we may take the 

model of the last chapter and examine the behavior as k goes 

to infinity. 

By a time rescaling argument such a model is equi- 

valent to a system for which the  i— component's  failure 

rate  is  \i.  and for which the i— component's   repair rate is 
i 

T * 
Thus,  we may equivalently consider a model  for 

which the i— component's  failure rate is  y. ,  and for which 

the i— component's  repair rate is kX. r  and examine the 

behavior as  k goes to  zero. 

Much of  the  analysis is similar to that of the 

last chapter,  and we shall be  interested  in  the approximate 

optimal  reliability of the system and the optimal action  for 

small k. 

Intuitively  the results for highly unreliable 

systems  are  of  less usefulness than the results  for highly 

reliable systems. 

itHU^Au,, .■ '"--■^■'~'^-       ^^  
1 . LI'-.-ML^1.,'^. MMwMi 
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4.1 Limiting Ergodic Probability of 

States for Candidate Policies 

For a candidate policy TT   (see  section  1.4),   define 

L   (X)   = minimum possible number of repairs under 

it  to  reach X from 0  irrespective of 

failures. 

(4.1.1) 

Thus,   X =  0  is   the only state  X such that L^(X)  = 

0.  and X =  1   lns i  0  is  the only state X such that L   (X)  ■ 1. 
— TT(0j— — TT   — 

The  only states  X with L   (X)   = 2 are X = l^/nw   ^-/i n^' 
TT   - - TTVU; li

1T(0) '-' 
0  and X = 1 

^^(O)'^'   "   * 

Theorem 4.1 A.     L   (X)   has  the  following properties: 

S(X)   < n 

^(X)   >   ^^^(X) I 

(4.1.2) 

(4.1.3) 

If X > Y,  then ^(X)   > L^Y) (4.1.4) 

If L   (X)  « m > 0,  then either i ieC1(X)   s.t.  L^ (O^JOsm-l, 

i=TT(Oi,X), 

or3ieC0(X)   s.t.  L^d^X)   =m (4.1.5) 

If ^(X)   = m > 0,   then3ieC1(X)   s.t.   L1I(0i,X)    <        (4.1.6) 

m- 1. 

m  -initmimmii 
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Proof;  (4.1.2)  Any state may be reached by repairing all 

components and then allowing components in CQ (X) to fail. 

(4.1.3) In order to reach X from 0# every compon- 

ent in C, (X) must be repaired at least once. 

(4.1.4) One way to reach * _5 X is to reach X 

first and then allow the components in C, (X) - C, (Y) to fail. 

(4.1.5) Let X be such that L (X) - m, and let — IT — 

0,x,,X2,.. . ,X. ,X be the successive states passed through in 

reaching X from 0 using m repairs.  Each state X. is obtained 

from the previous state X. , by one repair or one failure. 

At least one such path is possible by the definition of 

L (X). v ~ 
We have two possibilities. Either the transition 

from X. to X is from a repair, or the transition from X. to 

X is from a failure. 

In the  first case L^ (Xj)   _<m-l#  since we have a 

path from (^ to X.   with m-1 repairs.     In addition,  L^^)   1 

m-1 since the  existence of a path to X.   with  fewer than m-1 

repairs implies  the existence of a path to X with  fewer than 

m repairs,   a contradiction.    Thus L1T(X. )  = m-1.    Choose 

i ■ C, (X)   - C, (X. )   to satisfy the first condition on the 

right hand  side of   (4.1.5). 

If the transition from X^ to X is  from a failure, 

we conclude in  an analogous matter than L^X. )   ■ m.    Now 

choose i * ci^?L)   " ciM   to satisfy the second condition on 

the right hand side of   (4.1.5). 

(4.1.6) Again let O^X,,. .. ,X. ,X be  the successive 

 .^^   ■■■    ■-■-■■"^'-Ha, , ■■■,■,, 
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states passed through in reaching X from 0 using m repairs. 

Let the last repair take place in state X^.  Then by the 

argument used in the proof of (4.1.5), L_(X ) = m-1. 

Let i = ■"(x ), then iec, (X), since if not by 

(4.1.4) X J ^ => L^ (X) ^m-l, a contradiction. 

However 0.,X < X_ since the last repair (which was 

component i) took place at X .  Thus (4.1.4) tells us 

L   10-,X)   _< m-1 and (4.1.6) is proven. 

End of proof of Theorem 4.1 A. 

Theorem 4.1 B.  Let the failure rate of the i— 

component be y. , and the repair rate of the i— component 

be kX..  Let TT be a candidate policy and e (X) be the ergo- 

dic probability of state X under policy TT (note that the 

dependence on k has been suppressed) . Then 

lim (k1"LTT(-))e (X)  -  0 
k-t-O 

IT — 
(4.1.7) 

Proof;  The proof is by induction on L (X) . Clearly (4.1.7) 

holds when L (X) = 0 since e„ (X) is bounded. Now assume 
TT — TT — 

that (4.1.7) is true 'for X such that L^ (X) = m < n. 

Equating the ergodic rate of entering and leaving 

the group of states G = toJL (X) _5 ro) yields the following 

equation. 

 ■—- ■--■■ -*■-■ • - ■—■'-»- - - ^-.^.^^..^.^---^^..i^.-.^.^. 



.liffimii.ti ■  ■■ >"" ■" mmmm      — 

53 

I        e   (X) Z w. 
X:L„(X)>in ieCiCX) 

L   (Oi,X)<m n '-' 

X:L   (X)=m ^(X)6*^ 

(4.1.8) 

We note that the restrictions on the summations 

in   (4.1.8)   are correct as  follows.     (4.1.4)   tells  us that 

G    can be entered only through failures,  and left only 

through repairs.    Also L, (X)   < m, L,(lw/vWX)   > m    =>   L  (X)s 

TT— —    TiTr(X)— ir- 

rn. 

Now multiply both sides of (4.1.8) by k""1.  By the 

induction hypothesis the limit of the right hand side as k 

goes to zero is zero.  Since all terms on the left hand side 

are positive, they must all have zero limit.  (4.1.6) tells 

us that every X such that L_ (X) = m+1 has a term on the left 

hand side which is a non-zero constant coefficient multi- 

plied by k~me (X) .  We have thus proven (4.1.7) by induction. 

End of proof of Theorem 4.1 B. 

Theorem 4.1 C.  Under the conditions of Theorem 

4.1 B 

lim k"^^ (X) 
k-0        * " 

f*<*> 
(4.1.9) 

where 0   < fir(X)    < •.    Furthermore,  f^ (0)  =  1 and  for X ^ 0 

a'.-J..-,>
,n,;it.^,.,i,...uiJ^..,-^^.^.J,..K„ J,.,.... ■„.■.. .„ ^.-ri.^vinniyfjjjlji^n^ «MMI mm k^LvMdiMmism 
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i'"C1(X) 1 icCi(X) 
i=TT(Oi,X) 

L (Oi/X)=L (X)-l 

X.f^O^X) 

(4.1.9) 

ieC0(X) 

W^-V*) 
Mi^d^X) 

Equation (4.1.9) allows computation of f^(X) recur- 

sively starting with the lowest values of L (X) and maximal 

elements of sets of constant L (X) . 

Proof;  The proof again is by induction on L^.  (4.1.7) tells 

us that lim e (X) =0, X ?< 0, thus lim e (0) = 1, establish- 
k-0 k>0 

ing the theorem when L = 0. 

Now assume the theorem is true for all X s.t. 

L (X) < m < n. Write the balance equation for e (X) as 
ti —  — TT — 

follows: 

i"C1(X) 
yi + kXn(X))e1r

(^) 

(4.1.10) 

Z   kX.e (0.,X)  +    E  y.e (l.fX) 
ieC^X)  1 ^ 1 *     ieCn(X) ^ ^ 1 " 

i=ir(0i7x) 
u 

Assume L^ (X) = m+1.  Multiply both sides of 

(4.1.10) by k"*1"  .  By Theorem 4.1 B, the second term on 

the left hand side has zero limit as k goes to zero.  Now 

<...,. .U... i.iJMiurfi, .ihic '■■mimmmä 
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consider the first sum on the right hand side,  i ■» MO^/X) 

=>Ln(0.,X) > m,  so that by Theorem 4.1 B a term in this sum 

will have xero limit unless ^(O.iX) ■ m.  In this case we 

know the limit by the induction hypothesis. Now consider 

the second sum on the right hand side. Since L (l.,X) > 

L^CX) by (4.1.4), LTT(li,X) > m+1.  Unless hll{li,X)   = m+1 

a term in this sum will have zero limit by Theorem 4.1 B. 

Now let XA be a maximal element of (xlL (X) • m+1}. 

A maximal element of sets of binary n vectors always exists. 

By the reasoning of the previous paragraph the theorem is 

true for x^. Non-zero of ^(XA) follows from (4.1.5). 

Let X, be a maximal element of {XlL (X) = m+1} - 
—i —  IT — 

(Xß}.  By the same reasoning the theorem is true for X, , 

and eventually for every element of (xlL^Cx) ■ m+l). End 

of induction, and end of proof of Theorem 4.1 C. 

Note that higher order approximations similar to 

those of Theorem 3.1 D may be obtained in a similar manner 

if desired.  The statement and proof are omitted. 

X .BtMa^^B 
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4.2        Limiting Optimal  Ergodic 

Reliability of  the System 

Theorem 4.2 A.     Let R(k)   be  the optimal reliability 

of  the previously described system.     Let m» ■ min cardinality 

of  the  path  sets  = min cardinality of the min path sets. 

Then 

lim k"m0R(k)     =    C0 , (4.2.1) 
k-0 

where 

X X ... X. 

co =  ,.    max .    .   [WL TW, -Kii )..Av; VTT^l   )] 
ul"-"1m0

; 11       ^l     12 ll % 
is  a path  set 

(4.2.2) 

without loss of  generality the elements i.,iq,...,iM    may x     £ mn mo 
be  arranged so that Vi      < M •      < . ..    < y^ 

il - 12 -    - imo 
Furthermore, for all k > k0 for some k- > 0 any 

candidate policy n • which does not repair i , in the state 

1. ,1. ,...,1. ,0Vn <nin-l for some set {i,,... ,i } which 
ij^  i2      in -    - u i     mg 

achieves the maximum in (4.2.2) is not optimal. 

Proof;  Let IT be a policy which repairs i . in the state 

1. ,1. , ,1. , OVn < nv.-!, for a set {i,,... ,i  } which 
^■l 12     ^-n ~    "" u 1     m0 

maximizes (4.2.2). 

Then TT has no working states X with L n (X) < WQ 

by (4.1.3), and exactly one working state X with L n (X) « nu, 

IMtÜMtMl^Hi^.,..,-.^.«. ■■ „...i-,. ■..,:.......■,..-....■■ ..,^.1^..^^.^...,-,.;....,,,.-..-.■». .,...,.,...;^uvJ.....J.,l.,.^:,,-..^^.^agB||BgM|||^ 
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the state  1.   f...,l.     ,0   ,  since any other states X with 

L o (X)   ■ in0 must have C. (X)   <  m   . 

Let R  (k)  be the ergodic reliability of the system 

under policy n  .    By Theorem 4.1 C and the last paragraph 

together with the fact that the number of states  is  finite, 

we  obtain 

lim k'm0R0(k) 
k-^O 

=    f. o(i^  »•. • »1^    #0) 
1 mg 

(4.2.3) 

But   (4.1.9)  yields 

^O^i   '•••'li    /0)     = =    C, 
mr 

(4.2.4) 

where C0  is given by   (4.2.2). 

The policy ir*  can have no working states X with 

Lw, (X)    <mn,   and at most one working state X with L   . (X)   = m^ *— 0 ' — TT'— 0 
This will be  the case if it mimics policy TT  ,  but for a path 

set   {i,,...,i    } which does not maximize the expression  in 1 m0 

(4.2.2).    Regardless, we conclude from Theorem 4.1 C that if 

R* (k)   is the ergodic reliability of policy ir'. 

lim k'^Ri (k)    < c. (4.2.5) 
k-'-O 

Comparison of   (4.2.5)   and   (4.2.3)   shows  that TT ' 

is not optimal for k   < k0. 

The theorem follows  from the fact that the number 

of candidate policies is finite.    End of proof of Theorem 4.2 A. 

l>«mdliAa^iwjmi^u,^,W..,.;^al.tfa^~^^^^^  ..^^.^^^-j,.,;,,. ..-w.^^ikMjllillliiaai -'-"-'-'■'•■■■-- " ■-■'-'"■"^^.^-^^-..^..■^ 
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4.3   Limiting Expected Passage Times 

Some of the terminology in section 4.3 will be 

identical with terminology in section 3.3 although having a 

different meaning.  Chapters 3 and 4 are independent and 

no confusion should arise for the reader. 

Theorem 4.3 A.  For the system described in 

Theorem 4.1 B, let T (k,X) be the expected time to go from 

state X to state 0 under candidate policy TT.  Then 

lim T(k,X) 
k-*-0 

«  T(0,X)  < « (4.3.1) 

Proof;  The equations for the expected passage times yield 

solutions continuous in k.  However, the passage time to 0 

in the absence of repairs is finite and independent of policy. 

End of proof of Theorem 4.3 A. 

Theorem 4.3 B. Let G (k^X) be the expected time 

the system is working during passage from X to 0 under candi- 

date policy TT.  G (k,0j = 0.  Let K (X) be the minimum .amber 

of repairs under policy TT (allowing any number of failures) 

to reach a working state from X without passing through 0. 

We make the convention that HX) = 1 -> K (X) = 0. Then 
— TI — 

lim k1"KTT(^)Gw(k/X)  = 0 
k-»-0 

-TT —'H' (4.3.2) 

..■■■.. ,„. .vk   JMWV ,- I..-.-. .s..^.».^^^ f:......-'....^-..,.:..^..-,,M..^,...,..„^^^ 
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Proof;  The proof is by induction on K (X) . Theorem 4.3 A 

establishes (4.3.2) when K (X) - 0. 
IT   — 

Now assume   (4.3.2)   is  true for X such that K^ (X)    < 

m and assume that if K   (X)   >_ m,   then 

lira k1"mGw(k,X)     =    0 . (4.3.3) 
k-O 

The following identity is easily obtained in the 

standard manner.  If X / 0, 

ieC, (X) x MXj  ir 
1 " (4.3.4) 

6l*^ + iecSx)'^^'01'- ^^w^^'^m'^ 

Now suppose K   (X)   >^ m+1 which implies ♦(}()   • 0. 

Multiply both sides of   (4.3.4)   by k~m.     The induction hypo- 

thesis   (4.3.3)   tells us the second term on the left hand 

side has  limit  zero as k goes  to  zero.     We note in general 

KTT ^(x)'-^   - KTT^"1'  8ince one possible way to reach a 

given working state from X is to go through   (^/v)'*). 

Specifically ^tl^/ywX)   ^ m,   and the  induction hypothesis 

(4.3.3)   tells us the  last term on the right hand side has 

limit zero. 

We note that K^O^X)   i K^ (X) ,  so that   (4.3.4)   and 

the arguments of the previous  chapter show that if X.  is a 

.■■,.;»^ataMii.i,^».v,...^.iy^..„... ,..-  .„. ,■  ,....,;.„...     ■..,...^,,^J^..^.^|g|B|gUjM|MM||1^ 
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minimal element of   {xjK^ (X)   > m+l)  -   (0)   then 

lim JTV-O^O  = 0. 
k-^-O "" 

Similarly we establish the same result for a minimal element 

of {XJK^U) > m+l} - {0} - {x^} and so forth for all X with 

K (x) > m+l. End of the induction proof and end of the 

proof of Theorem 4.3 B. 

Theorem 4.3 C. 

lim k'^^G-dc^X)  = C (X) (4.3.5) 
k--0 

(4.3.6) 

where 0 <C1T(X) < », X ?< 0. 

For X such that (j> (X) = 0, 

( z     M^C^IX) =    i y.cfo. ,x) 
iec.U)   ^ ieCiU) i ^ x 

K (O^Xf-K (X) 

\WW*U)'*)+1 ^wc^1-w'-, 

Proof; The theorem is proven for K^ (X) = 0 by a continuity 

argument similar to that used in Theorem 4.3 A.  The rest 

of the proof is based on (4.3.4) and is similar to previous 

proofs of this type given and is omitted. End of proof of 

Theorem 4.3 C. 

Smmmmmmt ■« i»'..——— ^^^^^^^^^^^^         
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4.4        Limiting Optimal State Actions 

Under First Order Passage Times 

Theorem 4 .4 A.     Suppose that for two candidate 

policies IT     and n' 

Gno(k,X) 
>_   b     (ergodic probability the 

system works under IT *) 
(4.4.1) 

for k   < k0 with k-  > 0, b > 0,   and 

GTTO^'*)   > YGTJ. (k,X) (4.4.2) 

for k   < kn  and y >  1. 

Then as k goes to zero, ir *   is not optimal. 

Proof;    We  contradict the optimality of IT'   as follows. 

Construct a policy IT" which uses policy IT    between X and 1^ 

and uses IT '  between 1 and X. 

Let s(k,x)  be the expected time to pass from 1 to 

X under policy it*,  and let F(k,X)  be the expected time the 

system works during passage from 1 to X under policy ir',    By 
36   37 alternating renewal theory,     '      the ergodic probability that 

the system is working under ir'   is 

P1T,(«(X)-1) 
GTT.O^X)   + F(k#X) 

^.(k^X)   + S(k,X) 
(4.4.3) 

 ..-^-.-..l.-^..»..!-! 
...  li   ,,v. 
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and the ergodic probability  that the system works under 

policy n" is 

P^.. (<MX)   - 1) 
(4.4.4) 

T  odt.X)   +  S(k,X) 

Now suppose that n" is not strictly better than 

TT ', or that 

P7T„((|>(X) = 1)     < 

P^. (0{X) = 1) 

(4.4.5) 

I 

:  
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Substitution from (4.4.3) and (4.4.4) into (4.4.5) and 

suppression of the arguments gives 

T
W0 i Tn.  + 

(Twl+S) 
V        -  (Gw0 " G^.) 

(G^.+F) 

(4.4.6) 

Using (4.4.2) gives 

(V+S) 
r0 t   T,. + d-yXV) — +F) 

(4.4.7) 

for k < k0. 

Now , using (4.4.1) and (4.4.3), we obtain 

T^o t    \*   +b(l--)T1T0 
(4.4.8) 

for k < k0, a contradiction as k -^ 0 since 

lim T^o 
k*0 

lim T^. 
k*0 

by Theorem 4.3 A.  End of proof of Theorem 4.4 A. 

Theorem 4.4 B. A candidate policy IT' such that 

K^.U) ^ min Kir(X) is not optimal for k < k' for some k' > 0. 
IT 

Furthermore, a candidate policy ir' such that 

C . (X)  ^       max       lCffO tX) 1 
*' *     nOtK o(X)-minKir(X) 

is not optimal for k < k' for some k' > 0. 

-------ii■ iir-iiMitrriiiiiiii   i ■-" ^. v.^.... 
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Proof;    Compare ff'  with TT    where n    has both of  the above 

properties.    By   (4.3.5)   we have that 

lim k'KnO(X)G^n(x) 

k+0 
rOW =   c nOW (4.4.9) 

But K^o ^ mo ^ min cardinality of path sets. 

Therefore, (4.4.9), (4.2.1), and (4.3.1) imply condition 

(4.4.1) of Theorem 4.4 A. 

Also Theorem 4.3 C implies condition (4.4.2) of 

Theorem 4.4 A, and the remainder of the theorem follows from 

4.4 A. End of proof of Theorem 4.4 B. 

Theorem 4.4 B and (4.3.6) give us a valuable 

technique to solve for the limiting optimal policy. 

., Wliiioami»» wmmntirii -■"■  
 '■■'■' '■ 
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Specific Cases 

In the next two chapters we treat various examples 

of specific structure functions and or specific repair or 

failure rates. 

The two component parallel system shows that, in 

general, such specific cases are extremely complicated. 

This system has a symmetric structure function of only two 

components, and there are only two candidate policies to 

consider. Nevertheless, the region of optimality for each 

candidate policy is somewhat complicated. 

Let TT, be the candidate policy which repairs com- 

ponent 1 when both components are failed, and let IT- be the 

candidate policy which repairs component 2 when both compon- 

ents are failed. 

If P. • is the ergodic probability of (i,j) under 

policy 1, then by standard methods P< ■ can be computed from 

the following equations: 

(wl+li2)Pll X2P10+X1P01 

(X2+VP10 

(WP01 

X1P00 

lJ2Pll+XlP00 

^11 

^lO^Ol 

(5.0.1) 

.:- 
a4ri.*~M 

r.hft.iaufBa.iiiitini-' ,,. ..: ^...- 
■^■"-■'-    ■  :-■-■ — 1 illMMl 
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P00   +   P01   +   P01  +  Pll    "     1 

The solution to the previous equations is: 

P00    "    *~1V1V2^l+V2+Xl*X2) 

P01    "    d'l»lXlX2 

P = d" y2X1(y1+y2+X1) 

.-!• 
Pll    "    d    X

1
A2(VJ2 + A1) 

(5.0.2) 

where 

d =     (M1+A1) (M2X1+M2X2+u;LP2+y2 +^^2^ 

The ergodic probabilities under policy n. are ob- 

tained by symmetry by exchange of the subscripts in the last 

equations,     TT     is easily seen  to be optimal if 

y1M2X1+vi2X1
2+M2

2X1+X1
2X2 

(5.0.3) 
M1W2X2+M1X2

2
+y1

2X2+X2
2X1 

a criterion not expressible in the  form:    f (MwX.)   >^ g(y2/X2) 

The results  from Chapters 3 and 4  tell us  that for 

highly reliable systems we  should repair the component with 

largest X.   first,   for highly unreliable systems we should 

repair the component with 

j(i>w»i.*i»'»'»""v 

---— 
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largest ratio 

One result we can easily prove is the following: 
X   X 

if a) A. > A, and b) ^— > r— , then for the two component 

parallel system it is optimal to repair the first component 

first. 

Proof: 

A-     A        A.  A. 

by inequality b; and is ;> 

by inequality a, 

and thus ir is optimal by (5.0.3). 

Whether or not the fact that the same action is 

optimal for both highly reliable and highly unreliable systems 

implies it is also optimal for all values of the parameter 

k given in chapters 3 and 4 is an open question. 
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———— pniiuijiwif-.r-i.nii 

CHAPTER 5 

The Series System 

The structure function for the series system is 

4» (X) ■ nx. . We note that there is only one state vector X 

for which (j)(X) = 1, this is X « 1.  Since the dwell time in 

the working state and transitions to other states are inde- 

pendent of policy, alternating renewal theory tells us that 

maximizing the ergodic probability of the working state is 

equivalent to minimizing the expected time until the working 

state is reached. 
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5.1        Series System with y,   5 w 

We  first consider the case where the failure rates 

are  identical, p.   = u,   for every i.     We arrive at the  sur- 

prising conclusion that the policy doesn't matter 1    The 

heuristic reasoning that all components must be repaired 

anyway,  so that the policy obviously doesn't matter;   is 

spurious becauwa components are subjected to failure during 

the course of repair of other components,  and will be contra- 

dicted when the failure rates are not identical. 

Theorem 5.1 A.     Let IT be a candidate policy   (see 

section 1.4), and let T   (X)   be the random variable which is 

the  time to reach state 1  from state X under policy n.    Then 

E[e-8T^^]  = 
MX) 

LTTT 
(5.1.1) 

where 

L(X)     =    1 + s      E        ji + s(s+y)       I ^-    +  ...  + 
iec1(X)     i i<j i j 

i, jeC1(X) 
(5.1.2) 

8(s+y)...(s+(|c1(X) |-l)y)      n        r" 
ieC1(X)     i 

Proof:     Let L   (X)   = Ele"sT^(-)]. 
IT   - 

We obtain the  following set of equations for X ^ 1 
24 by standard techniques. 
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(XTr(X) + lCl(^lM + sj^CX)  = 
(5.1.3) 

IT(X) n MX) -    jec1(X) ^ j 

These equations, with the boundary condition 

L (1) = 1 uniquely determine L„(X). We show that L(X) given 

by (5.1.2) satisfies (5.1.3), thus establishing (5.1.1). 

It is readily seen from (5.1.2) that for X ?< 1, 

s + S(S+M)   I ^ + ... + (5.1.4) 
ieC1(X)  i 

s(s+y) . .. (s+|c1(x) |y)   n   5-- 
ieC1(X)  i 

It also follows  from   (5.1.2)   that 

E       L(0.,X)     =     IC^X)!     + 
jeC1(X)        :, 

(|C1(X)|-l)s       E        r-i +   (1c, (X) |-2)s(s+y) l        T-T-    + 
1 * ieCMX)   Ai 1 - i<j        iAj 

1 i,jeC1(x) 

...  + s(s+y) ...(s+dc, (X) |-2)w)      E      X. 
1 ieC1(X)   1 

n     x. 
JEC,(X)    3 

1 " (5.1.5) 

and   (5.1.2),   (5.1.5),  and   (5.1.4)   check when substituted in 

--•;... MMkrtSZ    ^ 
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(5.1.3)   since  the  factors which multiply  lx r— 
A •     • • • A 4 1i      1 

found to be equal by the  following  readily 

identity. 

are 

verified 

(1c, (X) |y+s) (s(s+y) ... (s+(m-l)y)]     - 
1 (5.1.6) 

s (s+y) ... (s+my)   + y [ |C,(X) |-in]s(s+u) .. . (s+(m-l)u) 

End of  proof of Theorem 5.1 A. 

We  note that the previous  theorem is valid also 

for simultaneous effort or mixed policies,  provided full use 

is made of the repairman.    The proof is similar. 

Note that Theorem 5.1 A says that the time to re- 

pair the system is stochastically independent of the candi- 

date policy, and thus the expected time to repair the system 

is independent of candidate policy. We conclude/ by alter- 

nating renewal theory that the ergodic probability that the 

system works  is independent of candidate policy. 

We also easily obtain by standard methods the ex- 

pected time to fix the system: 

EiV*» - alv*) 
-L-WLm+UX)!/ (1) 

8=0 (L(l)) 

(5.1.7) 

s=0 

or that 
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EIT1T(X)) 
(i^C^X)1! 

(5.1.8) 

0~T 2i J: 
i<j<k "i"j"k 

{i,j/k}^C1(x) 

4.   Ulli) ÜJ 
n-1 

The ergodic probability  that the system works 

under any  candidate policy  is readily available through al- 

ternating  renewal  theory,   or from the ergodic probability 

of the  time  reversible policy whose  potentials are given in 

{2.2.2).     Let e(l)  be the ergodic probability of 1 under any 

candidate policy.    Then 

e(l)     = 
l+E 

n 
+2!   I 

i<j 
rrxr 
i  3 

+ n!  n   (j*-) 
i=l    i 

(5.1.9) 

We can also easily compute 

,00 

F(IT,S,1)      =    Ef     e_St(|)(X(t))dt|X(0)=l)dt 
J0 

the expected integral of the discounted  time that the system 

works,  by  an alternating renewal  theory  approach.    The ex- 

pected value of  this integral for  the  first working period 

is 

-nyt.l,,     -st.,,.     _ nye [—(1-e      )jdt    = ny+s 

' 
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The expected discounted time  until the system begins  its 

second working period is E(e~    it)     = 

n       l   n L^i'V u _1 
li 
I  \ 

(n-2)s(s+M)5:   j-^T +  •••   + S(S+M) ... (s+(n-2)y) J-JJ-    1 
i<j"i "j 

We  thus obtain by alternating renewal theory 

F(TT,8,1)     =    —i-    + E(e"8Til)F(n,s,l) ny+s (5.1.10) 

We conclude that: 

F(Tr,s,l) 

L(l) 

(5.1.11) 

s+s (s+y) ^ r=- + s(s+y) (s+2vi)   E ^ \    +.. .+s(s+y) ... (s+ny)^-- 
i i<j  i j i i 

and that 

F(Tr/s#X)     = 
L(X) 

L(l) 
F(Tr,s,l) (5.1.12) 

v 

I ^_^^_^mt^_m_t^ 
^■-i.^.^,j..^...^^w..,....../^_.^_.^^ 
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5.2 The Two Component Series  System 

We now relax the assumption that the failure rates 

of all components are identical.    We start with a two com- 

ponent series  system. 

Again,   there are only two candidate policies to 

consider.     Let n,   be the candidate policy which repairs com- 

ponent 1 when both  components are  failed,  and define itj 

similarly.     If  ti(X)   denotes  the expected time to go from X 

to 1  under policy TT. ,   then we obtain easily: 

^((0,0)) 

^({^O)) 

Y- + ^({1,0)) 

X^ + I^tl^0'0^ 

(5.2.1) 

which has  the solution 

^((0,0)) 
Xl+X2+lJl 

(5.2.2) 

t2((0,0)) W2 ~r77" 

where t2  is obtained by interchanging the subscripts  in the 

expression  for  t,   by symmetry.     Thus TT,   is  superior to iTj 

if y,   <  u2,   a relatively simple criterion.     It is somewhat 

surprising that the repair rates are irrelevant for deter- 

mination of  the optimal policy. 

._„„..;    .... 

ui^ -liriirr ifW^jiitfjMniiiiiMaiMiMii^ 
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We are now interested in the distribution of time 

to reach (1,1) from (0,0) under policy it,. We proceed in 

the following standard manner.  Make the state (1,1) an 

absorbing state.  The system evolution is then governed by 

a continuous time Markov chain with the following transition 

diagram 
24,37 

The negatives 
of the eigenvalues24 are then r1 and 

r2 where 

r1    =     l/2[(X1+X2+w1)   + /(X^X^iV^X^l 
(5.2.3) 

r,     -     1/2[(X1+X2+M1)   -  /(X^X^i   -4X^1 

The  system 

P{X(t)   =   (0,0)) 

evolution conditioned on X(0)  = 0  is 

rl  E2 rl r2 

P{X(t)   =   dfO)} 

-X 

r1-r2 
1_ e"1^  + 1_ e-r2t 

rrr2 

(5.2.4) 

...„ .M^^fc.....-.^..-,«...^...,^ 
 —   -'■         -   MMMMH •n unk' «'iiMlil'iifJiirihJil'ftnlMlltf I'Bi >' V 
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Thus  if  X.,   is the random variable denoting the 

passage time from   (0,0)   to   (1,1)   under policy  TI^   then 

-r. 
Fll(t) rrr2 

r^ + rrr2 
i_ e"r2t (5.2.5) 

where F^t)   = P(X11   >  t}. 

Note  that F2l(t)   is also determined by   (5.2.5) 

where r, and r2 are determined from   (5.2.3)   by  replacing ^ 

with u,.    Thus,   regarding Fu(t)   and r, and r2 as functions 

of y 1' 

F21(t)     =    F11(t)   + 

f   aF11(t) 

9M I 
dp. (5.2.6) 

Theorem 5.2 A.     If ^ 1 ^ then Xll   ~t ^V OX 

equivalently F^t)   < F21(t)  V t >  0.     Furthermore,  if 

yi<y2,   thenFu(t)   <F21(t)  Vt>0.     lfH-V2. 

xll st h.v 

p.oof: we use (5.2.6) and show that -|^ > 0 for t > 0 

We first note that from (5.2.3) r^ = X^, so 

that 

3r: 
r1 3W! 

(5.2.7) 

Taking the partia 1 derivative of F11(t),  we obtain by 

   ,_..__.«.  -— ■— .^^■^^„■... -.... — — 
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the chain rule: 

af,. (t) 3F11(t)  3r1      giiU)   ar^ 
3^! 

(5.2.8) 

Substituting from  (5.2.5)   and   (5.2.7)  yields: 

^11^1    .    lIlLl^lL.l2-2e^l'r2)t
+ir1--r2)til^l^2^)] 

"     3y.    .        -  .2 ay. 1   (r^rj) 

(r1-r2)t, 

(5.2.9) 

3r 
We note from (5.2.3)  that -r-— >  0.    We conclude 

that all  the terms outside the square brackets are strictly 

positive.    We note that the term in the square brackets can 

be written as   [2-2eX + X(l+eX)]  where X =   Uj-r^t >  0 if 

t >  0.     Let f(X)   = 2-2eX + X(l+eX) .    We will show f(X)   >  0, 

X >  0,   and thus the theorem will be proven as desired.    Note 

that f(0)   = 0,   f (0)  = 0,   f"(X)     >  0,   X >  0;   and the desired 
42 

result follows  from Taylor's theorem with remainder. End 

of proof of Theorem 5.2 A. 

 ^^^..^...^.^^u ..-;... .^^mtuiuimiim  - - ...^    - -   ■   ■     - :^^^****<m*M*m 
^^^ 
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5.3    The  "Lazy" Repairman Two 

Component Series System 

In this section we improve the results of the last 

section.    Specifically,  we assume that the repairman is 

interrupted periodically and does no work on the system. 

These interruptions occur independently of the state of the 

system.    Of course,   failures  in working components can occur 

during the  interruptions.     We show that,   in  this more general 

setting,   if M,  <  \i -  the system is repaired stochastically 

more quickly by using policy n,  while the repairman works 

than by using policy ir - while the repairman works.     If y,  ■ 

M»   the time onder both policies  is  stochastically equal. 

We  then have  the  following model.     The repairman 

works for  the  first time period of length t,,   is   idle for 

the second time period  of  length t»,  works   for the third time 

period of length t3,   is   idle for the fourth time period of 

length t.,  and etc. 

The evolution of  the system state during odd 

periods and under  policy IT .   is governed by a continuous time 
24  37 Markov chain with  the  following transition diagram,     ' 

-A 

and the evolution of the system state during even time 

  '.'. —'--'■- ■■ ■    ■- — _»_** **"-"*"    —-   - -— Mill •t^niM^^M 
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periods is governed by a continuous time Markov chain with 

the following transition diagram: 

Theorem 5. 3 A. Under the system evolution pre- 

viously described, in which the repairman alternately works 

and is idle, the time to reach (1,1) from (0,0) under policy 

IT, of section 5.2 is strictly stochastically less than the 

time to reach (1,1) from (0,0) under policy nj if M^ <  U?' 

If y. = p2, the times are stochastically identical. 

Proof;  We show that the probability that the system has 

been repaired at any time using policy TT, is cheater than 

the probability the system has been repaired at the same 

time using policy n^.  It is easily seen that we need only 

consider odd numbered time intervals, since repairs cannot 

occur during the even numbered intervals. We show that this 

is true for period 2n-l, regardless of length, by induction 

on n.  Theorem 5.2 A shows that the claim is true for n ■ 1. 

We now assume that the theorem is true for period 

2n-l, and wish to show its truth for period 2n+l. At the 

end of period 2n-l, the probability vector for the system 

state under TT, is 

»a. ii;i»M*>iit.iiiiiMili>    -^..^...^^.„„^^^ MMMk ämtm^m mmM 
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( 2n-l 
P    (x{    I ti) = (0,0)) 
^l "   i=l 

1      ] 
pll 

2n-l 
P     (X(     I  tJ-d,©)) 

^1 "    i«l  1 
■ 

12 

(5.3.1) 

for some V^ and P12. 

Similarly  under ir2,   the probability vector 

for the system state is 

2n-l 
P     (X(    £  ti) = (0,0)) 

w2 "    i-1 

2n-l 
Pw   (X(    I t.) = (0,l)) 

^2 -    i-1 1 

21 

22 

(5.3.2) 

for some P.,   and P22' 
At the end of period 2n,  the appropriate state 

vectors are 

2n 
P     (X(  Z  t.) = (0,0)) 
^l ' i-1 1 

2n 
P     (X(  I t.)=(l,0)) 

^1 "" i=l 

P^P^d-e-^n) 

P12e 
-Vilt2n 

(5.3.3) 

and 

■■  -■ ■ -     -  - . ■....i..,^..,..       .    ■■■■■      .......■-..■.„■   ■..^■„: 



2n 
P, (X( I  t.)=(0,0)) 

2 ~ i=l 

2n 
Pw (X( I  t.)»(0,l)) 

2  i-1 

P +P  (l-e~y2t2n) 
^21 r22u e     ' 

r22e 
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(5.3.4) 

Mow introduce the following notation. 

F,,(t) = P (repair time is greater than t from (0,0) 

under tr. with repairman always working) 

F12(t) = P (repair time is greater than t from (1/0) 

under v    with repairman always working) 

F.. (t) - P (repair time is greater than t from (0,0) 

under ir. with repairman always working) 

F22(t) ■ P (repair time is greater than t from (0,1) 

under TT with repairman always working) 

(5.3.5) 

Let  t be the elapsed time  in  period 2n+l.    Letting 

Fjft)  be the probability the system is not yet repaired at 

this time under policy n,, and ^(t)  be the probability the 

system is not yet repaired at this  time under policy IT./ 

and using   (5.3.3),   (5.3.4),  and   (5.3.5)   we obtain 

fl{t)   "   [P11+P12(1-e"VJlt2n)lFii(t)   + Pi2e'Vlt2nF12(t) 

(5.3.6) 
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and 

F2(t)   »   lP21+P22(l-«"W2t2n)lF21(t)   + P22e"M2t2nF22{t)      . 

(5.3.7) 

Note that by induction hypothesis if t,    = 0,   then 

F, (t)   < F, ^   since period 2n+l is then just a continuation 

of period 2n-l.    Again equality occurs iff y^ = u2. 

Now let t-     ■* » in   (5.3.6)   and   (5.3.7).     We note 2n 

by the  induction hypothesis that P^ + P12 <^ P21 + P22 

since  these represent the  respective probabilities  that re- 

pair occurs after the end of period 2n-l under the two 

policies.    Again equality occurs iff Wn  = W2.     The  fact that 

F-jtt)   ^ F21(t)  was  shown in section 5.2,  so that as t2n •*■ 

»,  F^t)  < F2(t). 

Thus,   for t2n = 0 or t2n ■► », ^(t)   < F2 (t) , with 

equality iff y,  ■» y2.    We show that this  implies there is no 

value of t2n such that F^t)   > F2(t). 

Taking derivatives of   (5.3.6)   and   (5.3.7)   yields: 

af^t) 
"5t 2n 

" V1P12liril(t)"F12(tne"yit2n (5.3.7) 

and 

3F2(t) 
^—= ^2P22tF21(t)-F22(t)le 

-U2t 

•2n 
(5.3.8) 

We see that by   (5.3.5)   ^(t)   > F12(t)   and 
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F21(t)   > F22(t)   so  that 

3F1(t) 3F2(t) 
-5t— > 0 and TET- > 0     ' 2n 2n 

Now assume there is a value of t>n,  such that when 

t2    ■ t',  F. (t)  - F-Ct)   > 0.     We show this  leads  to a contra- 

diction. 

Consider the above expression as a function of 

^n* 

G(t2n)   - F1(t)   - F2(t) (5.3.10) 

Taking the  derivative of   (5.3.10)  with respect to 

t^« and using   (5.3.8)   and   (5.3.9)  we obtain 2n 

GMt.J  = k.e^l^n - k e"y2t2n (5.3.11) 

where 

kl " ylP12[ril(t)   " fri2(t)1   >   ; 

k2 "  y2P22[F2l(t)   " F22(t)1   >  0 

Since G(0)    < 0 and G(t')   > 0 we require for some 

t0   <tl,  G'(t0)   > 0.     But   (5.3.11)   requires that G'(t)   > 0, 

t > t'  since y, 1^2'    We conclude that G^t^   > 0'  t > t', 

a contradiction as t -•• 00. 

If y, < ^2'  by the same reason^n9 we cannot have 

G(t,)   > 0  since G(0)    < 0. 
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Stochastic equality of the  repair times follows 

when ^ " ^2  8ince ^(t)   _< F2(t)   and F2(t)   < ^(t).     End of 

inductive proof,  and end of  the proof of Theorem 5.3 A. 

Corollary;     When the periods t.   are  random variables inde- 

pendent of the state of the  system,  Theorem 5.3 A still 

holds. 
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5.4        The  n Component Series System 

The results of  the  last section intuitively tell 

us that the optimal policy for an n component series system 

is to repair the components in order of increasing p. .     Un- 

fortunately, this general result seems difficult to prove. 

We can prove the following result. 

Theorem 5.4 A.     Suppose n is a candidate policy 

in the form of a list;   i.e.,  suppose policy TT  always repairs 

the  failed component closest to the top of some  fixed list 

of the components.     If the components on the  list are not 

arranged in order of  increasing failure rates,  then if  is not 

optimal. 

Proof;    Find two components on the list for ir  in which the 

failure rates axe  inverted.     Call these components  i and j. 

Repair of  the  system from 0 under TT will take the 

following form.    First,   in phase 1, repair all the components 

on the list above i and j.    Then,  in phase 2, repair compon- 

ents  i and j,   interrupting the repair of i and j   to repair 

the set of components above i and j on the list if any should 

fail.     Lastly,  in phase  3,  repair the reot of the components, 

interrupting if necessary. 

However, by Theorem 5.3 A we know that  the second 

phase   (repairing  i and  j  with  interruptions)   can be done 
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strictly faster if the order of repair of these two compon- 

ents is switched. 

Thus a policy IT ' which uses IT during phases 1 and 

3 and switches the order of repair of components i and j 

during phase 2 will have an expected system repair time 

strictly less than the expected system repair time under 

policy TT , contradicting the optimality of n. End of proof 

of Theorem 5.4 A. 

Theorem 5.4 B.  If an n component series system 

whose repairman is subject to the kind of interruptions 

described in section 5.3 always has a component, i, which 

may be optimally repaired whenever failed, then the optimal 

series policy is in the form of a list. 

Proof:  The proof is by induction on n. The theorem is 

clearly true for n = 2.  For an n+1 component system, note 

that under a policy with component i always repaired, if 

possible, the repairman's availability to the n other compon- 

ents follows the interrupted repairman model of the last 

section.  Thus, if the theorem is true for n components, it 

is also true for rn-l components.  End of proof of Theorem 

5.4 B. 

Intuitively, the complete symmetry of the series 

system suggests that a list policy is optimal. However, we 

will see in section 6.3 that optimal policies for general 
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systems are not always expressible in the form of a list. 

S ! 
i 

-^.._.,       ~ • — -   - ■-   
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CHAPTER  6 

Stochastically   Identical Components 

When all components  are stochastically  identical, 

i.e.,   A.   5  X,   \i.   ^   p;   certain  symmetries   in   the  structure 

function can often be exploited to show  that certain actions 

are  not optimal.     Thus,  by  contradiction,   the  optimal  action 

in   a  given  state  can  often  be   obtained. 

-...■    ..:       ....■      ■■.,     y^     |tf -■■^J-.^.^ 
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6 .1 Permutation Operators 

When all components are stochastically identical, 

the proper system evolution is maintained whenever working 

components are permuted,  providing  that the permutations 

depend only on  the past history of the system.     Similarly, 

the proper system evolution under a different policy  is ob- 

tained if non-working  components are permuted,  provided that 

permutations depend only on  the past history of  the  system. 

We  are  particularly  interested  in permutations 

which take place  at system state transitions. 

Let the  system evolution under a candidate policy 

Ti  be on a probability  space   (ft,?,P) .     Thus,   given mcU we 

know X(t,u)   for all t  ^ 0.     Without  loss of generality,   let 

the n— transition  for X(t,oj)   occur at t   (w)   with 0    = 

t   (u)   < t,(ti))   <  t2 (a))   <   t3((jj)   <   ... .     This  is possible 

since the measure  of  the set of points u) without this 

property is zero.     Let the  total number of transitions up to 

and including  time t be N(t,h)). 

A permutation operator,   p, will  permute  the com- 

ponents of an n vector.     Thus p can be specified by  a per- 

mutation of the first n integers,  p =   (n,,...n   )    ,  n.  / n.   , 

i ^ j  ;   and n.e(l,...,n)   with the understanding  that   (PX).   = 

S 
The identity permutation operator, I, will be 

defined to be I - (l,2,...,n). 

For a permutation operator p, and an integer i, 

_^   Thus, if p = (2,1,3)  , p(X1,X2,X3) = {X2,X1,X3). 

— "" -"  ■,.,^,...^^^.i^^.. ...^^■^■^^i-.^taMU^    ■ 
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1 ^ i  <_ n  define  p(i)   = C1(p(li,0)) . 

We are  particularly   interested in a new  system 

evolution  X', whose   transitions occur at  the  same  times  as 

the  times  of  transition  for  X,   and whose  state at  a  time  of 

transition,   X'(w, t. (CJ) ) ,   is  obtained by permutation of 

X(üj,t. (w) ) ,  the original  state  vector at the  same  time. 

Given  p.(u)),   i  =  0,1,...        ,  permutation operators, 

define  the permutation operator  p   (u)   as   follows: 

P   (w)     =     p   (ü)) p     , (ID) .. .P0(üJ) (6.1.1) 

-1 By  convention p     (UJ)   =   I.     Now define  the permuted process 

X' (u,t)   as   follows: 

X' (wft)     =     P   (u)X(w,tn(u)) ,   tn(w)   ^ t <   tn+1(ü))      .    (6.1.2) 

Theorem 6.1 A.  Let the system evolution under 

candidate policy TT be on a space (n,?,P) with the properties 

previously described in this section. Let P- (u) depend only 

on X(u),t) for t < t. (u) , with the property that 

p (ui)X(u),0) = X(w,0), and for i = 0,...   , 

Pi+1(a))p
1(a))X(a),ti + 1(a))) = p1 (UJ) X (co, ti + 1 (w) ) (6.1.3) 

Then X'(w,t) given by (6.1.2) gives the proper system evolu- 

tion on (fi,?,P) for some non-stationary policy which depends 

on the past history of the system. 

——- - ■ .1iiliilHM>.<lWy..„^li.;.Ji.'i,>........   .,,.  .,.;.., i|||,J,   „.....^.^ ■i| 
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ProoC:     Uit tJu."  component under repair  under n '   at   (w,L) 

when   t. (ui)   f_ t  <   t. ., (w)   be   constant  and be  the  component 

which  is  constantly  under  repair under  n  in  the  same   inter- 

val,  permuted by   p   ((■)).     This  is   just   p   (w) (ir (X(üJ,t. (w)))). 

The   proper   future  system evolution  under  ii' ,  yiven 

the  past history  of  the   system,   follows  immediately   from 

(6.1.2),  and  from the proper  future system evolution of X 

given  the past history  of  X guaranteed by  the  probability 

space   {fJ,7,P) . 

More explicitly,   a repair in  the  original  process 

is  accompanied by  a repair  in  the primed process,   and the 

failure of a particular  component j  in the original  process 

is  accompanied by  the   failure of  the working component in 

the primed process  associated with component  j   through 

permutation.     The  stochastic identity of  the components 

insures that the  proper  law is followed for the primed 

process.     End of  proof  of  Theorem 6.1 A. 

As  an example of  the use of Theorem 6.1 A,  we show 

how the system evolution under all candidate policies can 

be mapped into the  same probability space. 

Let the  system evolution under  a candidate policy 

TT be  on the space   (^,7,?)   previously  described.     We  show how 

to obtain  p. (u)   so  that the system evolution  under  another 

candidate policy  n'   is  given by   (6.1.2). 

For X(w,ti(ai))   =  1,  pi(ü))  =  I.     For X^t^w))  ^ i, 

and i = 0,1,...      ,   let  p. (w)   be the permutation operator which 

^   l.nn.iM.HMintikll'llHli.lH.l.Mft.niM.i,,^,.!   , ,■       ^,-^,.... ■■ .,  ^ ,„,.....„.     _ 
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exchanges   the coordinates  p        (w) [it (X(<4)#tj (u))) ]   and 

TI'IP        (w) Xfw#ti (ui)) ] ,     By construction,  p.((ij)   exchanges 

coordinates which  are   zero in   p       X(w,tj(ü))),   and  thus 

(6.1.3)   is  satisfied. 

By  the argument given  in the proof of Theorem 6.1 A, 

the  component under repair  under TT '   for   ((jj,t) ,   t. (OJ)   <_ t  < 

t. ., (a)) ,   is  p.lwlP1"   (oj)(TT(x(ü3,t))).     By the construction of 

p. (to),   this  is  just  TT* (p        (w) X(u,t. (w)) ].     However,  by 

(6.1.2)   and   (6.1.3),   this   is   just TT • (X* (a), t)) . 

Thus,  by  Theorem 6.1 A,   X'((jj,t)   given by   (6.1.2) 

is  the   proper system evolution under candidate policy  IT ' . 

Notice  that  the  above  argument is correct even  if 

p . (w)   permutes  coordinates  which  are  equal  to   1  in 

p1"1(u))X(u),ti((ij)) . 

         ■      ■   ■    ■ ■       -     - L.i: -.— .-* ^.:.~. ^  -   ■ .■^■wm.^fckui 



"" '»"'"I wmm ---—r-,—~~.^,  

93 

6 .2 Contradiction o£ Optimal Policies 

The primary ur.e of Theorom 6.1 A is to contradict 

the optimality of candidate policies. 

Assume candidate policy v  is optimal.  We attempt 

to choose the p. (w) in such a manner that the evolution 

under (6.1.2) of X' strictly dominates the evolution under 

the original policy of X.  That is, we choose p. (w) in 

Theorem 6.1 A so that if ({)(X(ü),t)) = 1, then ^(X' (u^t)) = 1 

and that on a set of non-zero measure in w and t, 

^(X* (w,t)) = 1 and (|»(X(üj,t)) = 0. This, of course, implies 

the existence of a policy TT • which is strictly better than 

n, and thus contradicts the optimality of TI. 

. 
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6. 3 An   i:xüinplc 

In   the   following example we  show  the use of  the 

previously  described mothod  for  determination of  the  optimal 

policy. 

Consider a  four component  system whose structure 

function  is  given  by: 

♦((X1,X2,X3,X4))     =     1-(1-X1X2)(1-X3X4) (6.3.1) 

Such a structure function may be represented pictorially as 

a network as follows: 

1 

-0- 

with the interpretation that the system works iff there is 

a path from A to B through working components. 

Intuitively, due to the symmetry present, the 

optimal policy is of the following form:  repair any failed 

component when none or two of the components work.  When one 

component works, repair the component whose repair causes 

the system to work. For other states there is no choice 

allowed in a candidate policy. 

To prove that such a policy is optimal, we contra- 

dict the optimality of any candidate policy not of the given 

u~ 
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form.  Ail candidate policies of the given form are then 

easily seen to have stochastically equivalent values of 4». 

We now show that the optimal policy cannot repair 

component 3 in the state (1,0,0,0). 

Let IT be a candidate policy which repairs compon- 

ent 3 in the state (1,0,0,0).  Let the evolution under TT be 

described on a probability space (n,?,P). Let n* be a 

candidate policy of the type which was described to be 

intuitively optimal. 

Use the method described at the end of section 6.1 

to map the system evolution under policy n* into (nf?,P) . 

Remember that p-((o) may arbitrarily permute working coordin- 

ates of p1- (a)) X(ü),t. (UJ) ) .  We now give a rule for permuting 

such coordinates. 

If X1(w,ti(u))) ■ X2 (ü)/ti (u)) = 1, choose Pi(u)) 

such that either 

or 

Pi (U))P1'1(ü)) (1,1,0,0) - (1,1,0,0) 

Pi (a))p1"1(u)) (1,1,0,0) = (0,0,1,1) 

If  X3(a),ti(a)))   =  X4(oj,ti(a)))   =  1,  choose  P^w) 

such  that either 

Pi (w)p1"1(a)) (0,0,1,1)   =   (1,1,0,0) 

or 

Pi (u)p1"1(w) (0,0,1,1)   =   (0,0,1,1) 

r.iu,l,r.^.,,.v,,.ii^^W<...M.i^aüa^^ . .  ,....  . .    ...,.....,.,......., ..■,....-....-.... -^.,.      .. 
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We have yet to show that it is always possible to 

so choose p . (OJ) . 

Theorem 6.3 A.  It is always possible to choose 

p.(u) as described immediately previously, and (MX1 (oj/t. (w) ) 

> $ (X(IJJ, t .(ui) ) for every i. 

Proof;  The proof is by induction on i.  For i = 0, X'(u),0) ■ 

XlWjO) and Pn(w) need not permute working coordinates of 

X(a),0) so that the theorem holds in this case. 

Now assume the theorem holds for i.  We show that 

the theorem is true for i+1. 

The transition at t..,(u)) can either be a repair 

or a failure.  If the transition at t. -(w) is a repair and 

HX(u>,t.+1(w) ) = 1, then Ic^ (X(u),t.+, (w)) )| > 2 and thus 

|C1(X' ((*»,t.+1{oj) )) | ^2 and by the nature of TT ' , 

((i (X1 (w,t. , (CIJ) )) = 1.  If the transition at t. ,{u)) is a 

failure and «MX ((jj,t. , (w)) ) = 1 then by construction of p., 

either X| (u, ti+1 U) ) = X^ (ü),ti+1(w)) = 1, or X^ (u),ti+1 (u)) = 

X^{aJ,ti+l(ü))) = 1; so that 4) (X' (w, ti + 1 (u) ) = 1. 

.st Thus , regardless of the type of the i+1— transi- 

tion, «HX'(w,ti+1 (w)) = 1 if <|> (X(tü , ti+1 (Cü) ) = 1. This 

condition assures domination of the primed process over the 

unprimed process at (u),t.+, (u>) ) and also ensures that 

p. .(w) can be chosen as desired.  End of induction. 

Strict domination follows when repairs occur for 

X = (1,0,0,0).  End of the proof of theorem 6.3 A. 

,^__^„ 
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Corollary;  A candidate policy which does not repair compon- 

ent 2 in state (1,0,0,0) is not optimal. 

This follows from the last theorem and the 

symmetry of components 3 and 4. 

Corollary; The intuitive optimal policy described earlier 

is optimal. 

This follows from the last corollary, the symmetry 

of components, and the easily proven fact that all candidate 

policies of the intuitively optimal form can be mapped into 

the same probability space with pointwise equivalent values 

of 4».  Such a proof is similar to the proof of Theorem 6.3 A, 

and is omitted. 

We note that the optimal policy for the system 

described in this section contradicts the hypothesis that 

all optimal policies can be expressed in the form of a list 

(see section 5.4) . 

When components 2 and 4 are failed in the state 

(1,0,0,0) it is strictly optimal to repair component 2. 

When components 2 and 4 are failed in the state (0,0,1,0) 

it is strictly optimal to repair component 4. 

■-"—■"11-'T^Mmi.LlMLJ 
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6 . 4   A Second Kxamplo 

The previous kind of argument does not always 

find the optimal actions for all states of an arbitrary 

structure function.  Often, a substantial number of candi- 

date policies can be eliminated and the solution for systems 

can be considerably simplified. 

For example, consider the following 5 component 

system 

with the following structure function 

(|)( (X1,X2,X3,X4,X5)) = 1-(1-X1X2) (1-X3X4X5) .   (6.4.1) 

By arguments based on the symmetry similar to 

those given in the last section, the state of the system can 

be summarized by the following two coordinates, 

(X1+X2, X3+X4+Xt.) •  In the same manner, there are only two 

possible actions to consider in any state which are 1) repair 

one of the  first two components, and 2) repair one of the 

last three components.  We can also prove by arguments 

similar to those of the last section that the following 

actions are optimal. 

 , ;.-.. ,tI .; ■ ..Uiim 
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State 

(0,0) 

(1,0) 

(2,0) 

(0,1) 

(1,1) 

(2,1) 

(0,2) 

(1,2) 

(2,2) 

(0,3) 

(1,3) 

(2,3) 

Act on 

N.A. 

Thus, the only state in which the optimal action 

is not readily obtainable is (0,2). This is because action 

2 dominates action 1 for small numbers of transitions where- 

as action 1 dominates action 2 for some larger numbers of 

transitions. 

Nevertheless, we need only compare 2 candidate 

policies.  After much algebra, we find that action 2 is 

optimal in state (0,2) regardless of X and y.  (This is the 

highly reliable and highly unreliable optimal action.) 
n  (i) There are n j J candidate policies to consider 
J-2 

for an n component system.  When n = 5 this number is 

5*4 '3  *2 « 10  , and thus we have provided considerable 

simplification. 
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