ORC 767
MARCH 1976

OPTIMAL REPAIRMAN ALLOCATION MODELS

by
DONALD R. SMITH

-

ADA026182

OPERATIONS |
RESEARCH  (oonromnx ]
CENTER | oin

Lppreved foT
Digdribution
ki

e

1yplisnited

- vame-
et s

UNIVERSITY OF CALIFORNIA < BERKELEY

i A St bt il e BRI

Lan i oy i b g et S bt o il S Rt



OPTIMAL REPAIRMAN ALLOCATION MODELS+

Operations Research Center Research Report No. 76-7

Donald R. Smith
Mathematical Methods of Engineering
and Operations Research
Columbia University
New York, New York

March 1976

U. S. Army Research Office - Research Triangle Park b

s
PRTTED

DAHCO4-75-G-0163 R b F

Operations Research Center
University of California, Berkeley

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

+Partially supported by the U, S. Army Research Office - Research
Triangle Park under Grant DAAG29-76-G-0042 with the University of
California. Reproduction in whole or in part is permitted for any :
purpose of the United States Government., 3




Bl stieagte g

THE FINDINGS IN THIS REPORT ARE NOT TO BE
CONSTRUED AS AN OFFICIAL DEPARTMENT OF
THE ARMY POSITION, UNLESS SO DESIGNATED
BY OTHER AUTHORIZED DOCUMENTS.




Unclassified
SECURI T Y Liss.n ATION OF TuiS PAGE When Date Fatered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

] ]2 GOVY ACCESSION NO.

ORC-76-7

3 RECIPIENT'S CATALOG NUMBER

e s——

/.

& TITLE and Subtitle ) o (.-— R,
J Research epﬁty !

% TYPE OF REPORT & PERIQD COVERED

OPTIMAL BEPAIRMAN_AllOLATION_ﬂODELGp

6 PERFORMING ORG. REPORT NUMBER

et

JTHOR

8 CONTRACY OR GRANT NUMBER(a)

f Donald R/Smith 4(

s g
—vawﬂﬂ Sl e, v R s ey | I e s

v DAHC@4-75- c 9163 é

9 PERFORMING ORGANIZATION NAME AND ADDRESS

" AREA 8 wonxuuufnuuacns

University of California

0 ti R h Cent
perations Research Center e @ﬁf

?g.P-lzsag-M \

Berkeley, California 94720

e

1t CONTAHROLLING OFFICE NAME AND ADDRESS
U. S. Army Research Office / Margh«ld® 76
P.0. Box 12211 &
Research Triangle Park, North Carolina 27/09 113
14 MONITORING AGENCY NAMF A& ADDRESS(!! dilferent from Cantrolling Oflice) 15. SECURITY CL ASS. (of this report)
Unclassified
15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16 DISTRIBUTION STATEMENT (of this Repaort)

Approved for public release; distribution unlimited.

7. DISTRIBUTION STATEMENT (ol the abstract entered in Block 20, if different from Report)

8 SUPPLEMENTARY NOTES

under Grant DAAG29-76-G-0042.

Also supported by the U. S. Army Research Office - Research Triangle Park

imal Repajir” Policy

19. KEY WORDS (Continue on rgverse aide Il neceasary and Identify by block number)

(SEE ABSTRACT)

20. ABSTRACT (Continue on reverse side Il neceseary and identity by block number)

Unclassified

DD , ';2:"73 1473 EDITION OF 1 NOV 65 1S OBSOLETE
S/N 0102.LF 014.6601
YR b ac e o T o G T e e

SECURITY CLASSIFICATION OF THIS PAGE ("Ion Data Bntered)

R70 750 i |

0S

Lo

)

>~r'»§"i'-r RN e

&
X

T Sy




To my wife, _ whose love, faith,

support, and encouragement provide a foundation for pursuit

of other things.




Acknowledgements

I would like to thank my thesis advisor, Professor
Sheldon M. Ross, whose inspired teaching helped motivate my
interest in Operations Research. Dr. Ross originally
suggested the problem investigated in this dissertation and
made many helpful comments and suggestions.

Thanks also to Professors Richard Barlow and James
Pitman, also on the dissertation committee, who provided
much guidance during the course of this endeavor. All three
members of the committee have outstanding technical and per-
sonal attributes, and it was a pleasure to have been able to
work with them.

Thanks to Professor Julian Keilson of the University
of Rochester with whom I spent a highly rewarding and pleasant
summer of 1974. Much that I learned that summer has been
applicable to this thesis.

Linda Federici typed the manuscript accurately
under considerable time pressure.

My appreciation to all the faculty, students, and
staff of the IEOR Department and Operations Research Center
of the University of California, Berkeley, who helped make

my stay there stimulating and enjoyable.




|

ABSTRACT

A system of n components under the care of one repairman
is modeled. The components are subject to failure, where-
upon they may be repaired one at a time. It is desired to
repair failed components in such a manner that the ergodic
probability that the system works is maximized.

) =i
*It is assumed that each component and the system as a whole

can be either working or failed, witrh the relationship
between the working of the system and the working of the
components given by a coherent structure function. The time
a component works, or the time to repair a component is an
exponential random variable of known rate. All components
are independent, and at most one component may be under
repair at a given time.

>A1though the general problem is in principle soluble by

known methods, computational difficulties are enormous for
moderate sized systems. In addition, such methods give no
general insight into the structure of the optimal policy.
Therefore, bounds and approximations for general systems are

highly useful.iss:i\\

One bound for the optimal ergodic probability that the
system works is given by the ergodic probability that the
system works under a particular policy. The time reversible
policy given yields easily obtainable ergodic probabilities
for all states, and is useful for bounding purposes.

Most real systems are highly reliable in nature. Parametri-
zation of the rates of the exponential random variables
given earlier allows investigation of asymptotic system
properties as the system becomes very reliable., Specifi-
cally, for a given policy, the asymptotic ergodic probability
of all states and the asymptotic passage times between states
may be computed. These results allow one to obtain the
asymptotic optimal unreliability of an arbitrary system, and
to obtain the asymptotically optimal policy for assignment of
the repairman in many cases. Intuitively, the asymptotically
optimal policy 1s close to optimal for highly reliable
systems.

Although highly unreliable systems occur less frequently,
such systems may be treated in a similar manner with similar
results,

Two specific examples of systems are treated in the paper:
the series system and an arbitrary system of stochastically
identical components. The series system occurs often in
practice, since many simple systems cannot tolerate failure
of any components.

—C—
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These two exampies lead to relatively simple solutions.
Arbitrary systems generally do not. The two component
parallel system ylelds a fairly complicated criterion for
choosing between the two potentially optimal policies,

When the series system is composed of components whose
failure rates are identical, the ergodic probability that
the system works is independent of policy.

For the two component series system, it 1s optimal to repair
the longer expected lifetime component first, and this is
true even 1f the repairman is subjected to random intervals
during which i« is not allowed to work.

For an n component series system, the optimal policy seems
to be to repair the components in order of increasing
expected lifetimes. This result can be nroven if the
optimal policy can be written as a list, but a more general
proof seems to be elusive,

When a system is composed of stochastically identical
components, it is often possible to eliminate most policies
from consideration. Two examples of this technique are
given, including one in which the optimal policy is
explicitly obtained.
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DIVISION I

Preliminaries

CHAPTER 1

Preliminaries




1.1 Introduction

The field of reliability theory has seen great
activity recently. A central assumption to many models is

the binary state assumption; that is, that each component

and the system as a whole can assume two states: working
and failed. Analysis of the relationship between the sys-
tem's state and the state of the components under reasonable
assumptions 1is the subject cf coherent structure theory.7

Given coherent structure theory, it is easy to
obtain deterministic and probabilistic models for the wear
out of a system when the wear out characteristics of each
component are known.7

An extension of the probabilistic model of the
last. paragraph treats a system whose components fail and
are then repaired. Ross39 treated a maintained system in
which each component fails and is repaired again in accord-
ance with an alternating renewal process. Keilson and

12,24,27,38 deal with the same model under the more

others
specific assumption that the time that the iEE component
works and the time required to repair the iEE component are
exponential random variables. Barlow5 treats a system where
other components are in a state of "suspended animation"
during repair of a component. All >f these maintained sys-
tem models approximate a system which has separate repair

resources dedicated to each component. A more realistic . o

assumption for some systems is that the system possesses
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limited repair resources which may be allocated to failed

components as needed. We attempt to model such a system.
In the simplest case, the system possesses linear-

ity of repair resources and no comparative advantage in the

repair of different components by different resources. As
will be shown in section 2.1, all repair resources may be
optimally concentrated on a single component at any time.
Thus, in this case, the system may be thought of as having
a single repairman who can repair at most one component at
a given time. This model will be the principal object_of
investigation in this paper.
Classical repairman modelsz’3'4'8’10’20,’22'3]"33"1
deal with a system of components and spares. Upon failure,
a component is replaced with a working spare, if available,
and then sent into queue at the repair facility to be re-
paired. Usually, only one working component is treated in
such a model. ) ﬁi'

For our model, if general failure and }épair dis-

39

tributions are allowed, as in Ross, things become very

complicated. Such a model needs Markovian decision theory

on uncountable state spaces, with all the attendant diffi-
culties. Therefore, as in Keilson,24 we assume that all

failure and repair distributions are exponential. The

memoryless property of the exponential distribution allows
us to specify the system state solely in terms of the binary
states of all components.

In section 1.2 we describe the assumptions and
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results of coherent structure theory appropriate to our
model, which is described in section 1.3. Our objective
will normally be to maximize the ergodic probability that
the system works. Section 1.4 proves the intuitive and im-
portant result that it is not optimal to leave the repair-
man idle.

General results for the model are often difficult
to obtain. Division II describes three methods for approx-
imating and boundary optimal system characteristics.

In Chapter 2 we find a particular policy for which
the ergodic probabilities are easily obtainable. The opti-
mal performance is bounded by the performance of any given
policy, and in particular, is bounded by the performance of
the policy given in Chapter 2. In addition, the coordinates
appear to be associated under the above given ergodic
probabilities, allowing a further simplification in the
computation of a system bound.

Chapters 3 and 4 deal with asymptotic results for
highly reliable or unreliable systems respectively. These
results are obtained by assuming that the failure rates or
repair rates of all components are multiplied by a common
factor k, and looking at small k. The ergodic probabilities
of states under arbitrary policies are asymptotically pro-
portional to integral powers of k, allowing computation of
the asymptotic optimal unreliability or reliability of the
system in terms of specific constants multiplied by powers

of k. An alternating renewal theory approach then allows

TR PO I F
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one to find an easy to use optimization procedure which
often determines the action which is asymptotically optimal
in a given state.

The third division of the paper deals with various
specific systems. The general complicated nature of the
problem of deciding the optimal policy is illustrated with
the solution of a two component parallel system.

We then treat a series system in which the compon-
ents have identical failure rates. The somewhat surprising
conclusion is that the policy does not matter. The ergodic
probability that the system works, the Laplace transform of
the time to fix the system from any state and the expected
integral of the discounted time the system works are all
obtained.

For the series system with two components, the
optimal policy is to repair the component with smaller fail-
ure rate first. This is true even if the repairman is sub-
ject to interruptions; intervals of time in which he is not
allowed to work. This result shows that if the optimal
policy of the series system is in the form of a list, the
components must be repaired in order of increasing failure
rate. A policy of such a form is intuitive for the series
system, but no proof is yet available.

We next treat a system made of stochastically
identical components. Often, symmetries in the structure
function show that certain actions in certain states are

non-ootimal. Sometimes enough actions can be ruled out to
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actually give the optimal policy. Several examples of the

use of this technique are given.

i
3
8
|
I




1.2 Coherent Structure Theory

One of the common assumptions for reliability
models is the existence of a coherent structure.7 We in-
clude these assumptions for our model.

Specifically, we assume that the system is made
up of n components, and that the system itself and each com-
ponent can be in one of two states, functioning or failed.
Thus the state of the n components can be summarized by a
binary n-vector X with the understanding that X; = 1 iff the
iEll component is functioning, and that X; = 0 iff the iEE
component is failed. This vector X will be called the state
of the system.

i We further assume that whether the system is func-
tioning or failed is a function only of the states of the n
components, or equivalently, if x represents the set of all

binary n-vectors,

F¢: x + {o,1} , s.t. ,
¢(X) = 1 iff the system is functioning when
the system's state is X, :
¢$(X) = 0 iff the system is failed when the

l the system's state is X.

:! The function ¢ is called the structure function.

It is reasonable to assume that ¢ is monotone non- 4

decreasing, corresponding to the intuitive notion that
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repair of a component cannot cause system failure.
A component, i, is relevant if 0(11'5) ¥ ¢(01,§)
for some X. Here the notation

li'

|o<

(Xl,...,xi_l,l,xi+1,...,xn) ’

and Oi,_)s= (Xl,...,Xi_l,o,xi+l,.-.,xn) .
Without loss of generality we need only consider relevant
components.

A structure function that is non-decreasing and

for which all components are relevant will be called coher-
ent.

Given a coherent structure function ¢, X is a path
vector if ¢(X) = 1. The corresponding path set is cl(g) dgf
{i|xi=l}. A path set is minimal if no proper subset of the

path set is a path set. It is easily seen that ¢(X) =1 if

and only if some minimal path set is a subset of Cl(§).
Every component must be in at least one minimal path set.

Similarly a vector X is a cut vector if ¢(X) = 0.
def

The corresponding cut set is C,(X) {i]x;=0}. A cut set

is minimal if no proper subset of the cut set is a cut set.

It is easily seen that ¢(X) = 0 if and only if some minimal
cut set is a subset of C,(X). Every component must be in

at least one minimal cut set.

e




1.3 The Model

We deal with an n component system with a coherent
structure function ¢. We assume that the evolution of the
state vector, X, is governed by the following rules:

1. The 1EE component functions for a random per-
iod of time exponentially distributed with rate By 2 0.
After such a period of time, it fails.

2. The .i.‘i-ll component, when failed and under repair,
is repaired (goes from failed to functioning state) in a
random period of time, exponentially distributed with rate
Ai > 0. When the 1E£ component is failed and not under re-
pair it does not change state.

3. The component evolutions (given the component
under repair) are independent of each other and the previous
history of the system.

We also assume the following two rules for assign-
ment of the repairman.

4. The component under repair may be changed
arbitrarily quickly.

5. At most, one component may be under repai. at
a given time. Note that we have the option of leaving the
repairman idle.

A policy will be defined to be any rule for assign-
ment of the repairman. A policy is a stationary pure policy
if the repairman is assigned by a deterministic function of
state only. For a stationary pure policy w,m(X) will denote

the component under repair in state X.
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Define F to be the expected integral of the dis-

counted time the system is working. Thus for §>0, ¥ an

arbitrary policy, and X(t) the system state X at time t,

F(n,S, X,) = E, |[e% (x(x))at|x(0=xy| . (1.3.1)

0

36

Standard results tell us that there exists a

stationary pure policy n*, such that

F(n*,S,X.) = sup F(m,S, (1.3.2)
m

X5 X9) -

The same m* satisfies (l1.3.2) regardless of KO'

When the state space is finite, as in our model,
a stationary pure policy m* exists, such that (1.3.2) is
true for all 50 and S<S0 with So>0. Furthermore,

lim SF(n*,S,gO) = ) e_x (X) E (1.3.3)
S-+0 X:¢(X)=1

where en*(i) is the ergolic probability of the state X
under policy n*. Thus to find a policy which maximizes
F(n,s,go) over 1 for small valves of S, we need only find a
stationary pure policy which maximizes the ergodic probabil-
ity that the system works. OJur objective in the following
paper will normally be to maximize the ergodic probability

that the system works over the stationary pure policies

possible. &
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1.4 Strict Optimality of Assignment of Repairman

In this section we prove the intuitive notion that
the repairman should never be idle unless all components of

the system are working.

Theorem 1.4 A. Let wn' be a stationary pure policy

in which the repairman is idle in at least one state which
is not 1. Then at least one state X* ¥ 1 with the repair-
man idle must be positive recurrent under the Markov chain

which describes the system evolution under n'.

‘Proof: Clearly 0 is positive recurrent since all u; > 0,

and since there are a finite number of states.

If the theorem is not true, then some component j
is under repair in the 0 state. Since Aj > 0, we obtain
1j,g is positive recurrent. Repeating this argument n times
tells us that 1 is positive recurrent.

But again u;, > 0 implies all states are positive
i

recurrent, a contradiction. End of proof of Theorem 1.4 A.

Theorem 1.4 B. A stationary pure policy 7' which

leaves the repairman idle in some state not 1 does not

maximize F(w,s,go) for any value of S or any 50.

Proof: We contradict the optimality of ' by comparing it
with a derived policy 7". The evolution of the state under

', X'(w,t) . and under 7", X"(w,t): will be mapped into the
- ¥} x ’

i i,
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same probability space in such a way that X" (w,t) > X'(w,t),

V w,t. Thus, by the monotonicity of ¢, ¢(X"(w,t)) 2>

¢$(X'(w,t)), ¥ w,t. Furthermore we show that ¢(X"(w,t)) =1

and ¢(X'(w,t)) = 0 on a set large enough to contradict the ' ‘

optimality of n',

Let (9,%,P) support two processes X' and Y with

R b

the following joint distribution: Let X' evolve according

to policy n' with X' (w,0) = Xg- Let § be the first time that

X' reaches the state X* whose existence is quaranteed by

liy W e

o )

Theorem 1.4 A, let T be time spent in X* before the first

ke

failure. Conditional on X', let Y describe the system evolu-

s e S Y

tion with Y(w,0) = 0 under the following policy: before time

gl co

51 T repair the smallest numbered component in C,(X*) which is
failed in Y (if none are failed, leave the repairman idle) ;
and after time t let the repairman be idle.

Now define X" on (Q,%,P) as follows:

"
>~
ct
o

A
cr
A

on

X" (t) ' (1.4.1)

X'(t) V A(t-6)Y(t-6), § <t<=,

x" (t)

where (X V Y). = max(X.,Y.), and where A(t-6) is a diagonal
R i’'i =

0 if X;(t) = 1 for some 6§ <t <t;, =

matrix with Aii(to—é)
1 otherwise. My thanks to Jamns Pitman who considerably
shortened the original argument to this point.

It is clear that X" is the proper system evolution
under a policy which uses policy 7' until X* is reached, then

) repairs the lowest numbered failed component until there is
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a failure in Cl(ﬁ*), and then repairs the component m'(X')
(unless this component is working, in which case the repair-
man is idle). This is some non-stationary probabilistic
policy.

From (1.4.1) X"(t) > X'(t). We now show strict

domination for each of two cases.

Case 1. ¢(X*) = 0. We note that there is non-zero
probability that under n", all components in Co(g*) are re-
paired in the interval (§,6+T). This shows strict domination
since ¢(l) = 1 for a coherent structure.

Case 2. ¢(X*) = 1. Pick a component jeC,(X*) and
let a minimal cut set containing j be K. Such a minimal cut
set can always be found for any component of a coherent
structure. Let K* = KN C, (x*).

We know that there is non-zero probability that
only the components in K* fail without repairs occuring
for X' in an interval beginning at §, while, during the same
interval, all components in C,(X*) are repaired for X" with-
out failures occuring for these components.

In this case ¢ (X') = 0 since K is a subset of
the failed components of ¢(X'), and ¢(X") = 1 since the
failed components of X" are a proper subset of a minimal cut

set K. End of proof of Theorem 1.4 B.

Corollary: A stationary pure policy which does not assign

the repairman in a state not 1 cannot achieve the maximum
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ergodic probability that the system works.

Definition: A stationary pure policy which
assigns the repairman in all states # 1 will (1.4.2)

be called a candidate policy.

Thus, in optimizing the ergodic probability that
the system works, we need only consider candidate policies.

Arguments similar to those used in the proof of
Theorem 1.4 A tell us that the system evolution under a
candidate policy is governed by a finite, irreducible con-

tinuous time Markov chain.




DIVISION II

Approximations and Bounds

CHAPTER 2

The Time Reversible Policy

15




2.1 Simultaneous Effort and Mixed Policies

Suppose that we allow the repairman to simultan-
eously expend a portion of his effort on several failed
components. If, while in state X, he expends a proportion

of his effort pi(g) on the iEﬂ failed component, it is

reasonable to assume that the iEn component's repair rate

is then pi(ﬁ)xi, with failure rates remaining unchanged.

By argumer.ts similar to those advanced in section 1.4, if a
policy is such that the repairman does not expend all his
effort in a given state, the system evolution under that
policy is dominated by the system evolution under another
policy which expends all the repairman's effort in the same
state. Also, standard results tell us that an optimal policy

is a stationary policy.

Thus, in finding optimal policies when éllowing

the repairman the flexibility of simultaneous effort de-
scribed in the previous paragraph, we need only consider
candidate simultaneous effort policies defined below.
(2.1.1) Definition: A candidate simultanecous
effort policy is described by a set of probability n-vectors
p(X), X # 1, with the properties:
a) p;(X) =0, ieC(X) ,

b) pi(ﬁ) >0,.

n
c) T pi()i) =1,
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repairman'e effort spent on component i in state X is pi(l).
Thus, the repair rate of component i in state X, ieC,(X)

is pi(ﬁ)ki. The failure rate of component i is unchanged
and is My

Note that a candidate policy is a special case of
a candidate simultaneous effort policy.

Another model which gives rise to restricted
simultaneous effort policies is the following: the system
possesses m repair resources, or "men." If the iEE-man is
allocated to the jEE component, the repair rate for the jEﬁ
component is Aij‘ We assume there is no comparative advan-
tage of men in repairing components, or more precisely,

A /Ai . 1s independent of j. Furthermore, we assume that

i,] J
1 2
the application of repair resources to the system is linear,

or more precisely, if the men in a set I. are assigned to

J
fix component j, then the repair rate of component j is
L A
ieIl. 1] *

-

The fact that there is no comparative advantage

of men in fixing components requires that

Aij = rikj (2.1.2)
m
where r; can be normalized so that I r; = 1.
i=1

Thus, in this model, if we employ a stationary

policy wherein the men in the set Ij(g) are assigned to re-
n
pair failed component j in state X, with U Ij(ﬁ) =
j=1
{1,2,...,m} , X # 1, then the system evolution is equivalent
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to the system evolution under a candidate simultaneous

effort policy of definition (2.1.1), with

p.(X) = 5 s H (2.1.3)
] iel (x) .

and Aj and r, given by (2.1.2).

(2.1.4) Definition. A policy, m, is called a
stationary probabilistic or mixed policy, if upon change
of the system state to X, the repairman is assigned to repair
component i with probability qi(i), and is not reassigned

until the system changes 'state again.

The following theorem provides a way to compare
ergodic probabilities under simultaneous effort policies

with ergodic probabilities under mixed policies.

Theorem 2.1 A. Let e(X) be the ergodic probability

of state X under the Markov chain which describes the system
evolution under a policy given in definition (2.1.1), and
let e'(X,i) be the ergodic probability of state X with the
iEﬁ component under repair in the Markov chain which describes
the system evolution under definition (2.1.4). Furthermore

let:

q; (X) = P-(X)(A-+u*(_)_(_)/ I ps(X) (A +u* (X)), ieC,(X)
i'= i'= i jECO(ﬁ) J ] 0

0 otherwise,
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where u*(X) = L H{ + and g and p are the q and p
iCCl (X)
from the appropriate definitions given above.

Then

e(x) = I e'(X,i) (2.1.6)
1eCy (X)

Proof: All states of the second chain which are possible
to enter are easily seen to be positive recurrent.

Since the first chain is ergodic, it satisfies

the balance equations.

u*(x)+ I pi(X)\JelX)= I A;p (0;,Xe(0,,X) +

ieCq (X) ieCy (X)
(2-107)
I yp;e(l,,X)
ieCp (X) A
We will show that
e'(_}_{_li) = e(l(_)Pi(E) ’ (2.1.8)

which proves the desired result. This is done by showing
that (2.1.8) satisfies the balance equations for the second

chain, which are:

(W (X)+r e’ (X,4) = q (X[ I Ae'(0,X,9) +
2 12 ey 3 3

(2.1.9)

L b u-e'(l-vilk)]~ .
k jeCo(x) 3 3

R i s i S
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Substituting (2.1.8) into (2.1.9), we obtain

P, (X) (u*(X)+r)e(x) = q. (X)[ I A.p.(0;,X)e(0,,X) +
i= S S 12 Yeep ) 13 3T

(2.1.10)

z U-e(l':ﬁ)] ]
jeCo(x) I J

Substituting (2.1.7) into the square brackets gives:

Py (X) (“*(3‘-)“1)"(’9 =

(2.1.11)

q; (X) [ (X)+ I py(X)IArjle(x)]
JjeCp (X)

and equality in (2.1.11) is guaranteed by (2.1.5).

We note that the transformation between p and gq

of (2.1.5) is a one to one and onto transformation between

probability vectors defined to be non-zero on C,(X). End

of proof of Theorem 2.1 A.

The inverse transformation of (2.1.5) is

(2.1.12)

We have the following collary to Theorem 2.1 A:
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If the repairman is allowed to expend simultaneous
effort as in definition (2,1.1), the ergodic probability
that the system works may be maxiinized by maximizing the
ergodic probability that the system works over candidate

policies, This follows from Theorem 2.1 A and the standard

result that mixed policies need not be considered for optim-

ization purposes.

Thus, for the model of linear repair resources
without comparative advantage presented earlier. all re-

sources may optimally be allocated at any time to one failed

component.
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2.2 The Time Reversible Chain

Simultaneous Effort Policy

A continuous time Markov chain iz said to be time

24

reversible if there is equality of ergodic flows between

any two states. Thus we require Aijei = Ajiej for any two
states i and j, where Aij is the rate of transitions from i

to j, and e, is the ergodic probability of state i.

Theorem 2.2 A. There is a unique set of probabil-

ity vectors p(X), X # 1 such that p; (X) =0, ieC,(X), for
which the system evolution under the policy described in
definition (2.1.1) is governed by a time reverzible Markov

chain. This policy will be called the time reversible

policy.
Furthermore, the unique p(X) are determined for
X # 1 by
1
pi(i) F —— ieco(g)
Co(x) | (2.2.1)
0 otherwise ,
and the ergodic potent:ials,24 T(X), are
ui
m(X) = |Cu(x)| ¢ O (5 . (2.2.2)
ieCy (X) i

Here |C,(X)| denotes the cardinality of C,(X).
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Proof: Assume the existence of the proper p(X). Arbitrar-

ily define the potential of 1 to be 1,

n(_]_-) - 1 . (2.2.3)

We now prove the theorem by induction on |C0(§)|.
When ICO(§)| = 1, p(X) must be given by (2.2.1).

Also by balance of ergodic flows between 0,,1 and 1

AT, = wm(l) or (2.2.4)
Hi
ﬂ(oi'l) - x; ’ (2.2.5)

which satisfies the theorem.
Now assume that the theorem is true for ICO(K)I =

m-1. By equating ergodic flows, we obtain:

Aijpij(oil'...oim"l-)"(oil'.."oim"];) =
uij"(oil’...'oij-l'oij+1'. im 3

for j=1,...,m .

Now, using the induction hypothesis that (2.2.2)

is true for the right hand side of (2.2.6), we obtain

Pij(oilr---;oimrl-_)"(oilr---loimll) -

(2.2.7)
m Ui .
(m-1) 1 1 (e

=1 1j i

Py
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or that all p.,. are equal, i.eC.(X) .
lJ J 0=

Thus,
Py (0 4uees0; 41) = -;— , (2.2.8)
J 1 m
and
m url_l
MO, 4eees0, 1) = mt I (d) . (2.2.9)
t1 'm j=1 "ij
The theorem is therefore true for |C,(X)| = m, and

the induction is complete.
We have actually constructed a time reversible
chain, and assuming its existence, shown its uniqueness.

End of proof of Theorem 2.2 A.

The ergodic probabilities are just the normalized

potentials. Therefore the ergodic probability that the

system works, W, under the time reversible policy is

L ™ (X)
X:¢(X)=1
W = (2.2.10)
m(X)

L
S

where 7w (X) is given by (2.2.2).
W is a lower bound to the optimal ergodic reliabil-

ity of the system.

Theorem 2.1 A tells us that W can be achieved by

the mixed policy given in definition (2.1.4) i
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Aj+u* (X)
(2.2.11)

q (X)) =
I (A +u* (X))

jeCy (X)

for ieCy(X).

Of course the system evolution in this case is not

given by a time reversible chain,
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2.3 Association of the Components

Under the Ergodic Probabilities of

the Time Reversible Policy

The bound, W, of the previous section is difficult
to compute if the number of components in the system is sub-
stantial, since the number of states is equal to 2", where
n is the number of components.

The computation of a bound for the ergodic prob-
ability that the system works could be simplified a great
deal if the Esary-Proschan-Walkup cut set bound16 is appro-
priate. This requires association of the components. It is
conjectured that when the state probabilities are given by
the normalized potentials of (2.2.2), the components are

associated. However, only the association of any two com-

ponents is proven in this section.

Definition:7 Random variables T,,...,T  are
associated if cov[I(T),A(T)] > 0 for all pairs of increasing

binary functions T,A.

Therefore, the components are associated if:
E(r(X)a(X)] > E[T(X)]E[A(X)] (2.3.1)

for all increasing binary functions I,A. (2.3.1) is equi-

valent to

pIr(x)=1,a(X)=1] > p[r(X)=1]pla(X)=1) . (2.3.2)

R gt

g i
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Therefore, using (2.2.2), we have that the coor-
dinates are associated under the ergodic probabilities of

the time reversible policy of:

I n(X) L n (X) 5
X X:T(X)=1 2
A(X)=1
(203-3)
I n(X) I n(X)
X:T(X)=1 X:A(X)=1 !

for all increasing binary functions ' and A. (2.3.3) is

¢quivalent to

I m(X) ™ (X) s
X:T (X)=0 X: T (X)=1 2
A (X)=0 A(X)=1
(2.3.4)
I m(X) I w(X)
X:T(X)= X:4(X)=1
8 (X)=0 I (X)=0

Theorem 2.3 A. When n(X) is given by (2.2.2),

(2.3.4) is true for all binary increasing functions T and A

of the coordinates xi and xj.

Proof: If the right hand side of (2.3.4) is zero, the

inequality is satisfied, since all terms on the left hand

TN A TIF T AT g e T Iy, e -

1
!

>
i3
“
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side are positive,
The only binary increasing I' and A which give a

non~zero right hand side are ' = X,

g0 b= xj or vice versa.
Thus we need show that
L 7n(X) LI n(X) .
X:X.=0 X:X =1 -
X.=0 X, =1
J ]
(2.3.5)
I om(x) I om(X) 4
E:Xi=l §:Xi=0 #
X.=0 X.=1 E
j j f
We accomplish this through the inequality %
3
(03,05, XM, 1Y)+ m(05,0,¥) WL, 10X) 2 ,i
(2.3.6) g

ﬂ(ol'ljlﬁ)"(lllojlz) + "(oilljl_!)ﬂ(lilojlé)

When (2.3.6) is summed over all X and Y we obtain

32 times (2.3.5).
To prove (2.3.6) let a = |C0(li'lj,§)|
b = |co(1i.1j,z)| ;
Then by (2.2.2), (2.3.6) reduces, after division by a common i

factor, to

al(b+2)! + bl!(a+2)! > 2(a+l)!(b+l)! (2.3.7)
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which is equivalent to

s R (2.3.8)

which is readily verified to be true for a,b > 0. End of

proof of Theorem 2.3 A.

Actually, (2.3.4) seems to be true for I' and A
arbitrary binary increasing functions of all coordinates,

but the proof seems rather involved.

B TG S Y

o P T r
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CHAPTER 3

Highly Reliable Systems

Approximations of highly reliable systems are
treated in the following chapter. We assume that the i-ti-rl
component's failure rate is kuy and the i-tiE component's
repair rate is Ai. As k goes to zero, we wish to know the
optimal policy, and also the approximate optimal unreliabil-
ity of the system. An example of the application of the
results obtained in this chapter to a highly reliable system

is given.

B b b L S e s e et s gl o B i U dd b



3.1 Limiting Erqodic Probability of States

for Candidate Policies

Theorem 3.1 A. Let the failure rate of the iEﬁ

component be k“i' and the repair rate of the ig-l component

be Ai' Let 7 be a candidate policy (see section 1.4), and
e"(g,k) be the ergodic probability of state X under policy

. Then

tim (271G ) o (x,0) = 0 : (3.1.1)
k0

Proof: The result is proven by induction on |C,(X)].
Clearly (3.1.1) holds for |C,(X)| = 0, since
0 <e (X,k) < 1. Now assume (3.1.1) is true for ICO(§)| =
O0see.,m<n,
When we equate the ergodic rate of entering and

leaving the group of states for which |Co(§)| < m, we obtain

e“(ﬁ,k) = z e_(X,k) L ku

A .
it X: [Cy(X) |=m T ieC, (X) =

L
X:|Cq(X) |=m+1

(3.1.2)

Multiply both sides of equation (3.1.2) by k™™ and
take the limit as k goes to zero. By the induction hypothe-
sis, the right hand side has a limit of zero as k goes to

zero.

Since the left hand side is a sum of non-negative
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terms, the limit of each term as k -+ 0 must be zero. The
induction is established since A (,, # 0, ¥ X s.t. |Co(X) | =

m+ 1>0. End of proof of Theorem 3.1 A.

For the remainder of the chapter, we suppress the

dependence of e, on k.

Theorem 3.1 B. Under the conditions of Theorem

3oL 1B

i k710 ® e (x) = ¢ ) (3.1.3)
| k0

with 0 < g _(X) < =, and g (1) =1

A g_(X) = I u.,g (1.,X) r X#L1 . (3.1.4)
n(ﬁ) u lECO (2(.) 1l°7 1
b Thus, g_(X) can be computed recursively for in-

creasing |Cqy(X)|.

| Proof: Again use induction on |C0(§)|. We note that

fe (X) = 1. Theorem 3.1 A tells us that lim e_(X) = 0,

x " k-0

T X # 1. Thus, lim e (1) =1, establishing the theorem for
k-0

|co(X) | = o.

Now assume that the theorem is true for all X

such that |C,(X)| = m.

Equating the ergodic rate of leaving and entering

‘| a state X yields: 1
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A (X) +k L ple(X) =
L T
(3.1.5)
£ A\e(0,X +k L ue (1,X .
fecy(x) + " AT iﬂ%ﬂﬁ)i L0

Assume ICO(§)| = m+l. Multiply both sides of
(3.1.5) by k™ ™1 since iec (x) implies |Cy(0,,X)| = me2,
Theorem 3.1 A tells us all terms in the first summation on
the right hand side have zero limit.

Also ieC,(X) implies that |C,(1;,X)| =m, so that
the induction hypothesis tells us the limit of the second

sum on the right hand side is I u;9,(X).
ieCq (X)

Theorem 3.1 A tells us the second term on the left

hand size has zero limit, We conclude that

k-(m+1)A

lim 7 (X)

i e (X) = I w9, (.

ieCy(X)
thus establishing (3.1.3) and (3.1.4) for [Cy(X)| = m+l.
The fact that 0 < g _(X) < « is established by the
induction hypothesis, (3.1.4), and the fact that the right
hand summation of (3.1.4) is non-empty for X # 1.
We are now interested in higher order approxima-

tions to the probability that the system works.

Theorem 3.1 C. Under the conditions of Theorem

Bl 2ok e 0

o i s W AL ik i NI ikt




3.1 A'

Lim 10 L e () -kIC0B g )
k-0
(3.1.6)

g{¥

where 9;2)(§) can be determined recursively on |C°(§)| by

the equations

(2) . _ 2
g, (1) if_lgﬂ(oi.;) , and
(2)
A g’ (x) = L A.g_(0.,X) +
n(X)°7 ieCy (X) i’ i
i=n(0;,X)
(3.1.7)
(2) _
o9, (130X L W9, (X) X#1.

ieCy(X) ieC, (X)
Proof: Equations (3.1.4) and (3.1.5) can be combined to

give:

e (x)-kIC0X lg (x)) = T ae (0.,X) +
L = jecy (0t 7T
i=ﬂ(Oi,_X_)

A1!(2(_)
Co(li,X)|
ko wile (1, %)kl Vg a,,01 -
ieCy(X) il LA

ieCy (X)




35
We prove the theorem by induction on C,(X) .

When X = 1 use the fact that §e"(§) = 1 and

theorem 3.1 B to establish the result.

Now assume the theorem is true for X such that

|C°(§)| = m. We wish to establish that the theorem is true

for X such that |Cy(X)| = m+l.
Multiply both sides of (3.1.8) by k-lco(i)l'l and
take the limit as k goes to zero. Theorem 3.1 B and the

induction hypothesis then give the desired result for X such

that |Co(§)| = m+l. End of proof of the theorem.

e e i) R e e e e

b aNaa

In a similar manner one can prove the following

i

theorem.

Bt

Theorem 3.1 D. Under the conditions of theorem

e

3.1 2, define g!! (x) = g_(X), then

1im k- 1€0(X) I-m[e“ (%) _x lco(x) |g1$1) (%) - . __xlco(x) |+m-lg1(rm) (X)]
k+0

= g{™b) () (3.1.9)

Where gém+1)(§) can be determined recursively in

terms of smaller m and |C,(X)| as follows

g™y = - ) g{M1-1Co (X)) (4)
X:0<|Cq (X) | <m+1

and ]

i SO e it
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(m+1) & (m)
‘g9 ¥ ieci(_)_(_) A9y (05.X) +
i=ﬂ(01,§)
0 (3.1.10)
(m+1) (m)
b H.g (L,,X) - X H:g (’_‘)
ieCqy (X) 1 ol ieC, (X) 17 '
X#1 .

Proof: The proof exactly parallels the proof of theorem

3.1 C and is omitted.
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3.2 Limiting Optimal Ergodic

Unreliability of the System

Theorem 3.2 A. For a given X, a candidate policy

7 minimizes g"(g) given in theorem 3.1 B over possible
candidate policies if and only if An(x)i Ai Vieco(x) for all
Y such that C, (y_)cco(f_) .

Furthermore,

( -
|Co (X) |
min g_(X) = moouy m 1' (3.2.1)
L ieC, (X) pernutations j=1 xj
of C,(X)
/ J
where Aj* = max Ak

k ¢ first j
elements of
the permutation
Proof: Again by induction on |Co(§)|. The theorem is true
vacuously when |C0(§)| = 0 or |Co(§)| = 1, Now assume the
theorem is true for all y such that |C0(1)| =m,
Let X be such that |C,(X)| = m+l. Equation
(3.1.4) tells us that g (X) is minimized iff A"(E) >N
ieCy(X) , and g, (1;,X) is minimized for all ieCy(X).
Therefore, by the induction hypothesis, g"(ﬁ) is
minimized iff A, (y) >A;VieCy(y) for all y s.t. Co(y) ©
Co(é); establishing the first part of the theorem.

For the second part, note that (3.1l.4) tells us

R

SUEE
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. 1 ,
min g"({) S e e L Wy min g"(li,)_(_) : (3.2.2)
n jeco(i) ) ieCy (X) n

Substitvting for min g"(li,g) by the induction hypothesis
m

gives
o 9q (X) L lco(x) -1
= L b I c
: , n Hi - Xj ieC, (X) permutations j=1 j
! 1eCy (X) JeCy (X) 07 of cy(x)-{i)
i (3.2.3)

but the double sum simplifies to give:

lcg(x) -1
permutations j=1 j
of C,(X)

and we also obtain by definition

e =R ol T i il

max A. A *
jeCo(ﬁ) |C0(§)| v
% for any permutation, and thus the second result is esta- 5

i blished. End of proof of theorem 3.2 A.

Theorem 3.2 B. Let U(k) be the optimal ergodic

unreliability of the previously described system. Let m =
min cardinality of the cut sets = min cardinality of the
minimal cut sets. Then

-m

‘ 1
] limk "U(k) = ¢ (3.2.4)
. k+0




where C1 is defined below.

c : . T 4 (3.2.5)
= U 2=
1 K: K ipermutations i=1 X;:
K is a cut set of K
|K| = my

where Aj* = max \j
ie first j elements of the permutation .

Furthermore, for all k < ko, for some ko >0, a
policy 7 is not optimal unless, for every cut set K with

|K| = m; and every y such that Co(¥) € K, Aﬂ(y_) 2 A vieCy(y).

Proof: lLet no

be a candidate policy which minimizes all
gﬂ(é) as given in theorem 3.2 A. Let 7' be a candidate
policy which does not have the property given in the last
paragraph of theorem 3.2 B. Let UO(K) be the ergodic
unreliability of policy wo, U' (K) be the ergodic unrelia-

bility of policy n'. Then by theorem 3.2 A

1im k™™g (k) < 1im k™ (k) (3.2.6)
k+0 k+0
and thus for all k < k(') with k(7v') > 0, policy 7' is not
optimal. Since the number of candidate policies is finite,
the last paragraph of the theorem holds.
Furthermore, if n" is a candidate policy which
minimizes g, (X) for all C,(X) which are cut sets of

cardinality my then




e
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lim k" Mlyn (k) = c, (3.2.7)
k-0

where Cl is given by (3.2.5).

Thus (3.2.4) is true since for all k < k, the

0
optimal policy must be of the form given for n", of which

there are a finite number. End of proof of theorem 3.2 B.

The higher order approximations of theorem 3.1 D
can now be applied to further narrow the possible optimal
policies for small k. Such extensions appear quite messy.

It appears somewhat easier to use alternating
renewal theory to further specify the optimal policy for
small k. Such an approach is taken in section 3.3 which

follows.

P R TR
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3.3 Limiting Expected Passage Times

Theorem 3.3 A. For the previously described

system, and 7 a candidate policy, let Tﬂ(k,g) be the expec-

ted time to go from state X under policy 7 to the 1 state.

Then
lim T (k,X) = T(0,X) = I & < o | (3.3.1)
k~+0 iec, (x) i

Proof: The equations for the expected passage times yield
solutions continuous in k, and the passage time in the
absence of failures is easy to compute and is independent

of policy. End of proof of Theorem 3.3 A.

Theorem 3.3 B. Let B_(k,X) be the expected time

the system is failed during passage from X to 1 under policy
T. Let I(X) be the minimum number of component failures in
X to cause system failure. Then

1im k17T(X)

B"(k'E) = 0 . (3.3.2)
k=0

Proof: The proof is by induction on I(X). Theorem 3.3 A
establishes the result when I(X) = 0.

Now assume that the theorem is true for all X

st SR e i

such that I(X) = 0,1,...,m and that
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lim k1-

"B (k,X) = 0 (3.3.3)
k+0

for X such that I(X) > m.

The following identity for B _(k,X), X # 1, obtained

by conditioning is helpful.

(A + k L u,)B_(k,X) .
. m(X) . i’%n 2
, - LR (3.3.4)

§ # A B (k,1_,. ,X) +k I u.B_(k,0,,X .
06 (X) mx)om e t(x) 2 fec, (x) 4" if

Here & is the Kronecker delta, Gij 0, i # j; Gij =1,

T I LR

Now let X be such that I(X) > m+l, which implies

We must show that

lim k™"B_(k,X) = 0 ; ‘ (3.3.5)
k+0
and our inductive proof in complete.
Multiply both sides of (3.3.4) by k", and let
k + 0. By (3.3.3) the sum on the left hand side goes to
zero as k goes to zero. We also have that 60¢(X) = 0. The

last term on the right hand side has zero limit since

I(0;,X) > I(X)-1 =m, and (3.3.3). We will thus establish

(3.3.5) as desired if
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lim k™™ B_(k,1
K+0

ﬂ(&)' 5) = 0 . (3.306)

Note that I(l ),5) > I(X) = m+l so that (3.3.6) is the

m(X
same type of st;tement as (3.3.5). We prove both of these
by subinduction on |Co(§)|.

B, (k,1) = 0 so that (3.3.5) is true when C,(X) =
1. If (3.3.5) is true for |Co(§)| = j then (3.3.6) is true

for |C0(1 = j implying (3.3.5) is true for ICO(§)| =

j+1. End of the subinduction and end of inductive proof of

Theorem 3.3 B.

Theorem 3.3 C.

lim k"1 (%)

B, (k,X) = d (X (3.3.7)
k-0 ,

where 0 < d (X) <=, X# 1.

If ¢(X) =1, d (X) are determined by

(L g X +

M T %t g 0t e

(3.3.8)
z Myd, (0,,X)

ieCy (X)
I1(0,,X)=I(X)-1

If ¢(X) =0, d"(g) is the time to fix the system

when k = 9.

Proof: The theorem is proven for ¢ (X) = 0 by a continuity

i o ca o s e e ads L e s
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argument similar to that used in proving 3.3 A,
Now assume the theorem is true for y such that
I(y) = 1,...,m, Let I(X) = m+tl. Multiply both sides of

(3.3.4) by k- (™*+1)

and let k + 0., The sum on the left hand
side goes to zero by Theorem 3.3 B. The first term on the
right hand side is zero, and the third term on the right
hand side has a limit equal to the last term in (3.3.8) by

the induction hypothesis, and Theorem 3.3 B. If I(1 ),§)>

m(X
I(X) the second term on the right hand side has zero lzﬁit.
(3.3.8) is thus established for a maximal element
of {X|I(X) = m+1}, and for a maximal element of the set
deleting a maximal element, and so forth.
Inductively, dn(ﬁ) < » and does not equal zero,

since the last term on the right hand side of 3.3.8 is non-

zero inductively.
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3.4 Limiting Optimal State Actions

Under First Order Passage Times

In an intuitive sense, we wish to minimize the
expected time in failed states during passage between two
states, as k goes to zero, since the expected passage time
becomes independent of policy. We can make this idea more

precise using alternating renewal theory.

Theorem 3.4 A. Suppose that for two candidate
1

policies “0 and 7

B_n(k,X)
no 2 \ . .
T X) > b (ergodic probability the system is failed
under m')
(3.4'1)
for k < ko
with ko >0,b >0
and
Bﬂo(k,i) <c B",(k,g) for k < k0 ’ (3.4.2)

with
0 <c<1l, ko >0 .

Then as k goes to zero, 7' is not optimal.

Proof: We contradict the optimality of n' as follows.

L

Construct a policy 7" which uses policy "0 between X and

and uses policy 7' between 1 and X.
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Let S(k,X) be the expected time to pass from 1 to

X under policy 7', and let F(k,X) be the expected time the

system is failed during passage from 1l to X under m'. By

36,37

alternating renewal theory, the ergodic probability

that the system is failed under 7' is i

B+ (k,X)+F (k,X)
Pﬂl(¢(§)=0) = Tn-(k:§)+5(k'z7

(3.4.3)

and the ergodic probability that the system is failed

under n" is

B_ o (k,X)+F (k,X)
Pnll(¢(_&)=o) = Tno(klz)+s(k'§)' * (3-404)

Now suppose 1" is not strictly better than ©' or that
P"u(¢(§)=0) > P“.(¢(§)=0) . (3.4.5)
Substitutions from (3.4.3) and (3.4.4) into (3.4.5)

and suppression of the arguments gives

(T_,+S)(B_g-B_,)
T,.0 < Tpo . LR , (3.4.6)
(B_,+F)

using (3.4.2) in (3.4.6) gives

(Tn,+S)

HO—E;T;@r- (3.4.7)

1
Tno f_T_", = (E- 1)B

for k < ko.
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Using (3.4.1) and (3.4.3) in (3.4.7) we obtain

1 .
Tpo & Tye = (5 = DIBT o (3.4.8)

for k < k,, a contradiction as k + 0 since lim T, o =

k+0
lim Toe o by Theorem 3.3 A. End of proof of Theorem 3.4 A.
k+0

Theorem 3.4 B. A candidate policy 7' which does

not minimize the d_(X) of Theorem 3.3 C is not optimal for

k < k' for some k' > 0.

Proof: Suppose d""(g) < d".(ﬁ) . Then by (3.3.7) of Theorem
3.3 €

B""(k,ﬁ) < cBﬂ.(k,K) forc <1,

all k < ko,

satisfying (3.4.2) of Theorem 3.4 A.
By Theorem 3.2 B, if w' is optimal as k goes to

zero then

lim k™™ (ergodic probability of failure under n') = Cl
k+0

(3.4.9)
where my is the minimal size of a cut.
Theorem 3.3 C tells us that
1in k"I @ k,0 = a_,(x) : (3.4.10)

k+0

Ln v L
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L Since I(X) < m (3.4.9), (3.4.10), and Theorem 3.3 A imply
condition (3.4.1) of Theorem 3.4 A. Theorem 2.4 A now gives

the desired result. End of proof.

We now use Theorem 3.4 B and equation (3.3.8) to

find many of the optimal actions for the limiting optimal

policy as k goes to zero.

When ¢ (X) = 0, minimize I —%— over sets of com-
ieA i
ponants A which, when fixed in state X, fix the system.

P e et

LR

One of these components must be under repair in the limiting
optimal policy. Thus rule translates to: a failed system

should be repaired in such a manner that the time to repair

S s et = e

in the absence of failures is minimized.

Now successively minimize dn(x) in the following

manner. First compute dn for the set of X with I(X) = 1.
Choose a maximal element in this set and minimize according

to (3.3.8). (The optimal action is to repair the failed

component with largest Ai in this case.) Continue to choose
maximal elements of the uncomputed states with I(X) =1
minimizing according to (3.3.8) until the minimal dﬂ's are
computed for all states X, with I(X) = 1. Now do the same
procedure with the set of states with I(X) = 2, then with
the set of states with I(X) = 3, and so forth until d is
minimized for all states.

One easy example to compute is the parallel system.
The limiting optimal policy for small k must always choose

the largest repair rate failed component in any state.

OO T AL DR NI Gy GV T
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CHAPTER 4

Highly Unreliable Systems

To model highly unreliable systems we may take the
model of the last chapter and examine the behavior as k goes
to infinity.

By a time rescaling argument such a model is equi-
valent to a system for which the iEﬁ component's failure

rate is My and for which the iEE component's repair rate is

A,
i

% -

Thus, we may equivalently consider a model for
which the iEﬁ component's failure rate is My and for which
the :l-t--rl component's repair rate is kki, and examine the
behavior as k goes to zero.

Much of the analysis is similar to that of the
last chapter, and we shall be interested in the approximate
optimal reliability of the system and the optimal action for
small k.

Intuitively the results for highly unreliable

systems are of less usefulness than the results for highly

reliable systems.
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4.1 Limiting Ergodic Probability of

States for Candidate Policies

For a candidate policy 7 (see section 1.4), define

L, (X) = minimum possible number of repairs under
1 to reach X from 0 irrespective of (4.1.1)
failures.

Thus, X = 0 is the only state X such that L_(X) =

0, and X = 0 is the only state X such that L_(X) = 1.

i)

The only states X with L_(X) = 2 are X = ln(g)' 1(1"(0)'9-),
” =

0 and X = l ’
= - n(ln(g),(_)_) =

Theorem 4.1 A. L“(§) has the following properties:

L (X) <n 5 (4.1.2)

L (X) > [c;(x)] . (4.1.3)

If X > Y, then L_(X) > L_(Y) . (4.1.4)

If L (X) =m > 0, then either3ieC,(X) s.t. L_(0,,X)=m-1,
i=ﬂ(oil§_)l

or3 ieCy(X) s.t. L (1;,X) =m . (4.1.5)

If L (X) =m >0, then3ieC,(X) s.t. L (0;,X) < (4.1.6)

m- 1.
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Proof: (4.1.2) Any state may be reached by repairing all
components and then allowing components in co(g) to fail.

(4.1.3) In order to reach X from 0, every compon-
ent in C,(X) must be repaired at least once.

(4.1.4) One way to reach Y <X is to reach X
first and then allow the components in Cl()_(_) = Cl(!) to fail.

(4.1.5) Let X be such that L (X) = m, and let
0,X;/X,s.-.,% ,X be the successive states passed through in
reaching X from 0 using m repairs. Each state g(_i is obtained
from the previous state Xi.1 by one repair or one failure. i
At least one such path is possible by the definition of |
Lﬂ(ﬁ).

We have two possibilities. Either the transition
from X, to X is from a repair, or the transition from )_(k to
X is from a failure.

In the first case L“(}_(k) <m-1, since we have a
path from 0 to Xy with m-1 repairs. In addition, L"(_)gk)

m-1 since the existence of a path to X with fewer than m-1
repairs implies the existence of a path to X with fewer than
m repairs, a contradiction. Thus L“(}_(k) = m-1., Choose
i=¢C;(X) ~C,(X) to satisfy the first condition on the
right hand side of (4.1.5).

If the transition from X, to X is from a failure,
we conclude in an analogous matter than L'n(Ek) = m, Now ¢
choose i = C,(X,) - C,(X) to satisfy the second condition on 3
the right hand side of (4.1.5).

(4.1.6) Again let 0,X;,...,X, X be the successive
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states passed through in reaching X from 0 using m repairs.

Let the last repair take place in state . Then by the

§e
argument used in the proof of (4.1.5), L"(ge) = m-1.

Let i = m(X,), then ieC,(X), since if not by
(4.1.4) X <X, =L (X) <m-1, a contradiction.

However 0,,X <X, since the last repair (which was
component i) took place at Xo- Thus (4.1.4) tells us
Ln(oi,ﬁ) <m-1 and (4.1.6) is proven.

End of proof of Theorem 4.1 A.

Theorem 4.1 B. Let the failure rate of the iEE

component be u,, and the repair rate of the iEll component
be kAi. Let m be a candidate policy and e"(g) be the ergo-
dic probability of state X under policy m (note that the

dependence on k has been suppressed). Then

lim kP ®e () = o, (4.1.7)
n_

k+0
Proof: The proof is by induction on L"(g). Clearly (4.1.7)
holds when L_(X) = 0 since e (X) is bounded. Now assume
that (4.1.7) is true ‘for X such that L“(K) =m <n,

Equating the ergodic rate of entering and leaving

the group of states G ='{§|L"(§)_§nﬂ yields the following

equation.
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) e (X) z M,

X:L_(X)>m " fecy(x) *
L.n (oi 05) <_m
(4.1.8)
L kA e_(X)
X:L_(X)=m m(X)m
Ln(lﬂ(ﬁ)'§)>m

We note that the restrictions on the summations
in (4.1.8) are correct as follows. (4.1.4) tells us that
Gm can be entered only through failures, and left only
through repairs. Also L_(X) < m, Ln(ln(é)'ﬁ) >m = Lﬂ(&)g
m.

Now multiply both sides of (4.1.8) by k™ ™. By the
induction hypothesis the limit of the right hand side as k
goes to zero is zero. Since all terms on the left hand side
are positive, they must all have zero limit. (4.1.6) tells
us that every X such that L_(X) = m+l has a term on the left
hand side which is a non-zero constant coefficient multi-
plied by k-me"(ﬁ). We have thus proven (4.1.7) by induction.

End of proof of Theorem 4.1 B.

Theorem 4.1 C. Under the conditions of Theorem

limk 1 ®e (0 = £ (x) ; (4.1.9)
k+0

where 0 <f (X) <«, Furthermore, £,(0) = 1 and for X ¥ 0
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( I ouw)f (X)) = L AE (0, ,X) +
iy (x) * T T ieCy (X) 1mirs
i=n(Oi,§)
Ly (0, X)=L_(X)-1
(4.1.9)
) po £ (1,,X)
ieCy (X) trorE

L, (1;,X)=L_(X)

Equation (4.1.9) allows computation of f_(X) recur-
sively starting with the lowest values of L _(X) and maximal

elements of sets of constant L"(i).

Proof: The proof again is by induction on L. (4.1.7) tells
us that lim en(X) =0, X# 0, thus lime_(0) = 1, establish-
= = == T -
k~+0 k=0
ing the theorem when L = 0.

Now assume the theorem is true for all X s.t.

L"(ﬁ) < m < n. Write the balance equation for e"(ﬁ) as

follows:

( L Wy o+ kkn(i))e"(ﬁ) =

(4.1.10)
D) ki.e (0.,X) + Z e (1.,X) .
iecp(x) "t ieCy (X) L
i=7(0,%)

Assume L_(X) = m+l. Multiply both sides of
(4.1.10) by g+l By Theorem 4.1 B, the second term on

the left hand side has zero limit as k goes to zero. Now

Sl n i
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consider the first sum on the right hand side. i = m(0,,X)
=>L (0,,X) > m, so that by Theorem 4.1 B a term in this sum
will have xero limit unless L (0,,X) = m. In this case we
know the limit by the induction hypothesis. Now consider
the second sum on the right hand side. Since L _(1,,X) >
L, (X) by (4.1.4), L (1,,X) > m+l. Unless L (1,,X) = mtl
a term in this sum will have zero limit by Theorem 4.1 B.
Now let X, be a maximal element of X|L (X) = m+l}.
A maximal element of sets of binary n vectors always exists.
By the reasoning of the previous paragraph the theorem is
true for X,. Non-zero of fﬂ(go) follows from (4.1.5).
Let X, be a maximal element of {X|L_(X) = m+l} -
{50}. By the same reasoning the theorem is true for Kl'

and eventually for every element of {XILH(K) = m+l}. End

of induction, and end of proof of Theorem 4.1 C.

Note that higher order approximations similar to
those of Theorem 3.1 D may be obtained in a similar manner

if desired. The statement and proof are omitted.
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4.2 LimiLting Optimal Ergodic

Reliability of the System

Theorem 4.2 A. Let R(k) be the optimal reliability

of the previously described system. Let my = min cardinality
of the path sets = min cardinality of the min path sets.

Then

lim x™™0R(k) = C
k=0

(4.2.1)

where

Ch = max

(11'... mo l ll 12 1 mo
is a path set

78t

(4.2.2)

without loss of generality the elements il,iz,...,i may

mo
be arranged so that uil __<ui2 L. _<uimo .

Furthermore, for all k > ko for some ko

1 in the state

> 0 any

candidate policy 7' which does not repair in+

lil,liz,...,lin,g ¥ n <my-1 for some set hl""'lmo} which

achieves the maximum in (4.2.2; is not optimal.

Proof: Let 70 be a policy which repairs i in the state

n+l
1, 41 4eeerl; » 0¥ <mp-l, for a set {i),...,i } which
1 2 n 0
maximizes (4.2.2).
Then 1° has no working states X with L o(X) <m,

by (4.1.3), and exactly one working state X with Lﬂo(é) =m,
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the state 1. ,...,1, ,0 , since any other states X with
1 m

L,o(X) = m, must have Cl(ﬁ) < my.

Let Ro(k) be the ergodic reliability of the system
under policy ﬂo. By Theorem 4.1 C and the last paragraph
together with the fact that the number of states is finite,

we obtain

1im k0RO (k) = £001 ,...0ly LO) (4.2.3)
k-+0 1 mo

But (4.1.9) yields

el e g

£.0(1; R ) = Cy ’ (4.2.4)
1 mg
where C0 is given by (4.2.2).

The policy 7' can have no working states X with
Lﬂ.(g) <“b' and at most one working state X with L“,(ﬁ) = mo.
This will be the case if it mimics policy no, but for a path
set'{il,...,im } which does not maximize the expression in

0 :
(4.2.2). Regardless, we conclude from Theorem 4.1 C that if %

R' (k) is the ergodic reliability of policy 7', 3
1im k"MOR! (k) <C, . (4.2.5) 3
k+0 :

Comparison of (4.2.5) and (4.2.3) shows that w'
is not optimal for k. <k0.
The theorem follows from the fact that the number

of candidate policies is finite. End of proof of Theorem 4.2 A.




4.3 Limiting Expected Passage Times

Some of the terminology in section 4.3 will be
identical with terminology in section 3.3 although having a

different meaning. Chapters 3 and 4 are independent and

no confusion should arise for the reader.

Theorem 4.3 A. For the system described in

Theorem 4.1 B, let T (k,X) be the expected time to go from

state X to state 0 under candidate policy m. Then

lim T_(k,X) = T(0,X) < = s (4.3.1)
k-0 -

Proof: The equations for the expected passage times yield .
solutions continuous in k. However, the passage time to 0
in the absence of repairs is finite and independent of policy.

End of proof of Theorem 4.3 A,

Theorem 4.3 B, Let Gn(k,g) be the expected time 1

the system is working during passage from X to 0 under candi- i
date policy . G“(k,g) = 0. Let K"(g) be the minimum 1, amber
of repairs under policy m (allowing any number of failures)
to reach a working state from X without passing through 0.

We make the convention that ¢(X) = 1 => K_(X) = 0. Then

l-'K-n' (_x_)

lim k G, (k,x) = 0 : (4.3.2) :

k=+0

ki 7
e £
B
._
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Proof: The proof is by induction on Kn(g). Theorem 4.3 A
establishes (4.3.2) when K_(X) = 0.
Now assume (4.3.2) is true for X such that K (X) <

m and assume that if K (X) > m, then

1im k}™G_(k,x) = 0 : (4.3.3)
k+0

The following identity is easily obtained in the

standard manner. If X # 0,

(iecz(x)ui KAy (g) ) Gp kR =
1°= (4.3.4)
61¢ (29 + L uiG" (kloir)i) + k)‘w ()-(-)G."(kll."(}_() l_}S)

ieC (X)

Now suppose K_(X) > m+l which implies ¢(X) = 0.
Multiply both sides of (4.3.4) by k™. The induction hypo-
thesis (4.3.3) tells us the second term on the left hand
side has limit zero as k goes to zero. We note in general
K"(lﬂ(i),g) > K (X)-1, since one possible way to reach a

given working state from X is to go through (1 ),5).

T (X
Specifically K"(lﬂ(x),g) > m, and the induction gypothesis
(4.3.3) tells us th; last term on the right hand side has
limit zero.

We note that K_(0;,X) > K (X), so that (4.3.4) and

the arguments of the previous chapter show that if 50 is a
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minimal element of (X|K (X) > m+1} -"{0} then

lim k™G, (k,%,) = 0.

k+0
Similarly we establish the same result for a minimal element
of {X|K (X) > m+l} - {0} - {x,} and so forth for all X with
K (X) > m+tl. End of the induction proof and end of the

proof of Theorem 4.3 B.

Theorem 4.3 C.

1im kKn (X)

G (k,X) = C_(X) (4.3.5)
k+0 T =

where 0 <C_(X) <=, X # 0.

For X such that ¢(X) = 0,

( L p.)C_(X) = L u.C_1(0.,X) +
iec;(x t T T ieCy (X) I
Ky (04, X)=K_(X)
(4.3.6)
A C_(1 , X)
$ T(X) m'Tn(X)'= 3
Ky (%) /Ky (L oy o X041 T2 £

M: The theorem is proven for K (X) = 0 by a continuity
argument similar to that used in Theorem 4.3 A, The rest

of the proof is based on (4.3.4) and is similar to previous
proofs of this type given and is omitted. End of proof of

Theorem 4.3 C.
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4.4 Limiting Optimal State Actions

Under First Order Passage Times

Theorem 4.4 A. Suppose that for two candidate

. policies "0 and n'
GTI'O (klz)
—————— > b (ergodic probability the (4.4.1)
T,0(k,X) system works under n')

for k <k, with k

0 0>0,b>0,and

G0 (k,X) > YG_, (k,X) (4.4.2)

for k <k0 and y > 1.

Then as k goes to zero, n' is not optimal.

Proof: We contradict the optimality of n' as follows.

0 petween X and 1

Construct a policy m" which uses policy
and uses m' between 1 and X.
Let S(k,X) be the expected time to pass from 1 to 5

X under policy 7', and let F(k,X) be the expected time the

system works during passage from 1l to X under policy w'. By

alternating renewal theory,36’37 the ergodic probability that

the system is working under n' is
G,y (k,X) + F(k,X)

P, (4(x)=1) = (4.4.3)
T, (k,X) + S(k,X)

oo e o
A e

5»{
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and the ergodic probability that the system works under

policy n" is

Palo(X) =1) =

(4.4.4)

G.no (kr_)_(_) + F(krl)

T o(k,X) + S(k,X)

Now suppose that 7" is not strictly better than

', or that

P w(6(X) = 1)

A

(4.4.5)

p“l(¢(§) = l) .
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Substitution from (4.4.3) and (4.4.4) into (4.4.5) and

suppression of the arguments gives
(T3 48) (
Tq0 2 Ty * G 0 = Gpi) 4.4.6)
n m (Gﬂ.+F) n m
Using (4.4.2) gives
1 ('1‘,,.+S)
(G“.*'F)
for k <k0.

Now, using (4.4.1) and (4.4.3), we obtain

-1

ﬂl

for k <ko, a contradiction as k + 0 since
lim T.q = lim T_, ’
k+0 k+0

by Theorem 4.3 A. End of proof of Theorem 4.4 A.

Theorem 4.4 B. A candidate policy n' such that

Kqo (X) # min K, (X) is not optimal for k <k' for some k' > 0.
m

Furthermore, a candidate policy m' such that

C..(X) # max [C_o(X)]
e 70:K_q (X)=minK_ (X) w0S
n0 = T

is not optimal for k <k!' for some k' > 0.




64

0

Proof: Compare m' with 7~ where 70 has both of the above

properties. By (4.3.5) we have that

. ~Koo (X)
lim k0012 G0 (X)

C,0(X) (4.4.9)
k=0

min cardinality of path sets. B

But K o < mg
Therefore, (4.4.9), (4.2.1), and (4.3.1) imply condition

! (4.4.1) of Theorem 4.4 A. .
] Also Theorem 4.3 C implies condition (4.4.2) of ;
? Theorem 4.4 A, and the remainder of the theorem follows from %
4.4 A. End of proof of Theorem 4.4 B. %

A

Theorem 4.4 B and (4.3.6) give us a valuable

technique to solve for the limiting optimal policy.
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DIVISION III

Specific Cases

In the next two chapters we treat various examples
of specific structure functions and or specific repair or
failure rates.

The two component parallel system shows that, in
general, such specific cases are extremely complicated.

This system has a symmetric structure function of only two
components, and there are only two candidate policies to
consider. Neverfheless, the region of optimality for each
candidate policy is somewhat complicated.

Let m, be the candidate policy which repairs com-
ponent 1 when both components are failed, and let LD be the
candidate policy which repairs component 2 when both compon-
ents are failed.

If P,. is the ergodic probability of (i,j) under

1]

policy 1, then by standard methods Pi'

j can be computed from

the following equations:

(Mg +ua) Py = AP 0%+ Pg

(Ag+ug)Prg = UPy1*A1Pgy
(5.0.1)
(A +ua)Pyy = ui Py,

MPoo = H1P10*HaPg
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P + P + P

00 01 tPh, =1 .

0l 11

The solution to the previous equations is:

-1

Pog = @ THpuy (Hy4uy+d +45)
Pyp = d4“1*1*2
(5.0.2)
-
Pio = 9, uph (i tuptdy)
P.o= a Il (ua+Arl)
11 122 (Ma¥hy '
where

_ 2
d = (ul+>\1) (u2Al+u2A2+ulu2+u2 +A1>\2) .

The ergodic probabilities under policy m, are ob-
tained by symmetry by exchange of the subscripts in the last
equations. Lo} is easily seen to be optimal if

2. 2 2
HpHaA g+ A THuy ", 42, 72,

| v

(5.0.3)

2 2 2
HpUp Aty Ao Ty TA +A,TAy

a criterion not expressible in the form: £(u,,%,) > glu,,3,).
The results from Chapters 3 and 4 tell us that for

highly reliable systems we should repair the component with

largest Xi first, for highly unreliable systems we should

repair the component with
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A
largest ratio — .
Hi
One result we can easily prove is the following:
A A
if a) A, > A, and b) ol 2 , then for the two component
parallel system it is optimal to repair the first component
first,
Proof:
A Al Al Az
L) [(Xlﬂl(u )+u2(u )+11( (U—))] 4
1 M1 Y2
A Az A AZ
Uy M ( )+A ( )+A ( )( —) ] '
H1¥2 l'u M, 1 My M,

by inequality b; and is >

A Az Al Az
MM, “‘1‘u2’“ 2 () ¥, (D) ) :

by inequality a,

and thus LAY is optimal by (5.0.3).

Whether or not the fact that the same action is

optimal for both highly reliable and highly unreliable systems

implies it is also optimal for all values of the parameter

k given in chapters 3 and 4 is an open question.

S
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CHAPTER 5

The Series System

The structure function for the series system is
¢(X) = NX,. We note that there is only one state vector X
for which ¢(X) = 1, this is X = 1. Since the dwell time in
the working state and transitions to other states are inde-
pendent of policy, alternating renewal theory tells us that
maximizing the ergodic probability of the working state is
equivalent to minimizing the expected time until the working

state is reached.

s
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5.1 Series System with u, = u

We first consider the case where the failure rates
are identical, Wy = Hs for every i. We arrive at the sur-
prising conclusion that the policy doesn't matter! The
heuristic reasoning that all components must be repaired
anyway, so that the policy obviously doesn't matter; is
spurious becauce components are subjected to failure during
the course of repair of other components, and will be contra-

dicted when the failure rates are not identical.

Theorem 5.1 A. Let m be a candidate policy (see

section 1.4), and let T (X) be the random variable which is

the =ime to reach state 1 from state X under policy 7. Then

L ()

-8Tq (X)
Efe L/ =] = m-.l-)— (5.1.1)
where
LX) = l+s I  y=+s(sty) I L

iec, (X) “i i<j i3
i,3eCy (X)
(5.1.2)

1
s(s+u)...(s+(|Cy(X)|-1)w) I
L iec, (X) XI

Proof: Let L (X) = Efe”8Tn (X)),

We obtain the following set of equations for X # 1

by standard techniques.24

e

-
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(Aw(g(_) + e (X) u + s)L (X)) =
(5.1.3)

' X) + 1 L L_(0.,X)
)= jeCl(ﬁ) L

A"(K)L"(l“(i
These equations, with the boundary condition

L (1) = 1 uniquely determine L_(X). We show that L(X) given

by (5.1.2) satisfies (5.1.3), thus establishing (5.1.1).
It is readily seen from (5.1.2) that for X # 1,

A () By () X = LD
s +s(stp) I g= 4.4 (5.1.4)
iecl(§) i
s(s+u)...(s+|C;(x){w) O Xl
ieC (X) "1
It also follows from (5.1.2) that
I LX) = [c x| +
jec, (x) I
(le;@1-1s T g2+ (o () |-2)s(s+m) I — o+
ieCy(X) "1 i<j i3
i, jeC) (X)
v Fs(sH) .. (st (lC (X [-2)w) T A
iecy (X)
T A, '
jec, (x) 7
(5.1.5)

and (5.1.2), (5.1.5), and (5.1.4) check when substituted in

X o AH)

T TR,
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3 K3 1
(5.1.3) since the factors which multiply Zx—————x—- are
iluoc im
found to be equal by the following readily verified
identity.

(lcy (X) [u+s) [s(s+p) ... (s+(m=1)u)) =
(5.1.6)

S(s+u)...(s+my) + u[lcl(g)|-m]s(s+u)...(s+(m-1)u) :

End of proof of Theorem 5.1 A.

We note that the previous theorem is valid also
for simultaneous effort or mixed policies, provided full use
is made of the repairman. The proof is similar.

Note that Theorem 5.1 A says that the time to re-
pair the system is stochasticalliy independent of the candi-
date policy, and thus the expected time to repair the system
is independent of candidate policy. We conclude, by alter-
nating renewal theory that the ergodic probability that the
system works is independent of candidate policy.

We also easily obtain by standard methods the ex-
pected time to fix the system:

-4 =L (X)L (1) +L(X)L" (1)
E(T,(X)] = 3L, (X) = (5.1.7)

§=0 (L2

s=0

or that

Ykl e o

A i s
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1 "
E[T (X)) = L + L i
= (idec, (0 i <y il
ti,30¢ec, (X) (5.1.8)
2 n-1
21 L - + ... ¢ dnzblu
gk ik 1
(i,3,k}ec) (x)

The ergodic probability that the system works
under any candidate policy is readily available through al-
ternating renewal theory, or from the ergodic probability
of the time reversible policy whose potentials are given in
(2.2.2). Let e(l) be the ergodic probability of 1 under any

candidate policy. Then

e(l) = — _ (5.1.9)
+ich 421 I fE— v Lol 4+ n T (ED)
iMoo i< Ml i=1 i

We can also easily compute
F(m,s,1l) = E"(I e-St¢(§(t))dt|§j0)=l)dt ’
0

the expected integral of the discounted time that the system
works, by an alternating renewal theory approach. The ex-

pected value of this integral for the first working period

is

¥ _-npt 1. _-st _
Jonue [§(l e yldt = Arrs

e T e
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The expected discounted time until the system begins its

second working period is E(e”STll) .

n 1 0 L0;.L 1
mrsla L T ! T RS L(Iy [Pt (n-l)s ERT
I
1 i i
(n-2)s (s+u)l + ... + s(s+u)...(s+(n-2)u)n—x— ]
i<7i7) . 3
h |
We thus obtain by alternating renewal theory
F(n,s,1) = —— + E(e 3T1l)p(m,s,1) (5.1.10)
’ " nu+s . 1’ [ . .
We conclude that:
F(m,s,1) = (5.1.11)
L(l)
s+s (s+u) X Xl + s(s+u) (s+2u) L X_X— +...+s(s+u)...(s+nu)nx—
i i<ji"i i
and that
L(X) "
F(r,s,X) = —— F(m,s,]l) 5 (5.1.12)

L(1)




The Two Component Series System

We now relax the assumption that the failure rates
of all components are identical. We start with a two com-
ponent series system.

Again, there are only two candidate policies to
consider. Let L8 be the candidate v»olicy which repairs com-
ponent 1 when both components are fziled, and define Ty
similarly. 1If t, (X) denotes the expected time to go from X

to 1 under policy L then we obtain easily:

£,(00,0) = 3%+ ¢ ((1,0)
1
(5.2.1)
£ ((1,0) = 72—+ it ((0,0)
2741 27411
which has the sclution
A +A .+
£, ((0,0)) = 21
1 0,
(5.2.2)
A+)‘ 4+H
t.((0,0)) = -2 2

where t, is obtained by interchanging the subscripts in the
expression for t, by symmetry. Thus LEY is superior to T,
if Hy < uyr @ relatively simple criterion. It is somewhat

surprising that the repair rates are irrelevant for deter-

mination of the optimal policy.
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We are now interested in the distribution of time

to reach (1,1) from (0,0) under policy m, . We proceed in

the following standard manner. Make the state (1,1) an

absorbing state. The system evolution is then governed by

a continuous time Markov chain with the following transition

24,37
M Ay
31

The negatives of the eigenvalues24 are then r,; and

diagram.

r2 where
= 2=
r, = 1/2[(xl+A2+u1) + /(A1+A2+u1) 4x1x21
(5.2.3)
= - 2—
r, 1/2[(X1+X2+u1) /(xl+x2+u1) 4x1x21

The system evolution conditioned on X(0) = 0 is

( 1 ( 1
Ay-r r,-A

+ —

e
r\"r2 )

- A
1 -t 1 -rzt
P{X(t) = (1 0)} — e + —— e

- ! r,"I, r, r,

l | J

(5.2.4)




Thus if X1 is the random variable denoting the

passage time from (0,0) to (1,1) under policy T.. then

-r r

F (0 = 3 2 eTFLE 4 o 1. rat (5.2.5)
1 72 1 72

where Fll(t) = P{xll > t}.

Note that FZI(t) is also determined by (5.2.5)
where r, and r, are determined from (5.2.3) by replacing ¥y
with u,. Thus, regarding Fll(t) and r; and r, as functions
of Uy

b B
aFll(t)

FZl(t) = Fll(t) + ——gizf—

dul

"1

Theorem 5.2 A. If u; < ¥, then Xy, < Xyyr OF
st

equivalently F,, (t) < F..(t) v t > 0. Furthermore, if
11 - 21 -

TP DY then Fll(t) < FZl(t) vto>0. Ifuy =1y

X11 st %21

3F ) (¢)
Proof: We use (5.2.6) and show that ——33———-> 0 for t > 0.
1l

we first note that from (5.2.3) rlr2 = AlAZ, o)

r2 -rz arl

= — S— —— 5.2.7
u ry aul ( )

rTaking the partial derivative of Fll(t), we obtain by
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the chain rule:

aFll(t) } BFll(t) or, 5 3F11(t) or, -
3u1 Brl 3ul 3r2 aul *er
Substituting from (5.2.5) and (5.2.7) yields:
F. . (t) ar, e Tl'r . -
s M 2_ (2-26F17T2) Ea (ryor e (14e F1TF) )
"1 Y1 (x -rz)
(5.2.9)

or

We note from (5.2.3) that 3Ul > 0. We conclude
1l

that all the terms outside the square brackets are strictly

positive. We note that the term in the square brackets can

be written as [2—2ex + X(1+ex)] where X = (rl-rz)t > 0 if

t > 0. Let £(X) = 2-2ex + x(1+ex). We will show £(X) > 0,

X > 0, and thus the theorem will be proven as desired. Note

that £(0) = 0, £'(0) =0, £'(X) > 0, X > 0; and the desired

result follows from Taylor's theorem with remainder.42 End

of proof of Theorem 5.2 A.

L e o b




5.3 The "Lazy" Repairman Two

Component Series System

In this section we improve the results of the last

section. Specifically, we assume that the repairman is

interrupted periodically and does no work on the system.
These interruptions occur independently of the state of the
system. Of course, failures in working components can occur
during the interruptions. We show that, in this more general
setting, if My < Hy the system is repaired stochastically
more quickly by using policy LEY while the repairman works
than by using policy LS while the repairman works. If My =
My the time under both policies is stochastically equal.

We then have the following model. The repairman
works for the first time period of length ty is idle for
the second time period of length t2, works for the third time
period of length ta, is idle for the fourth time period of
length tyr and etc.

The evolution of the system state during odd
periods and under policy LEY is governed by a continuous time

Markov chain with the following transition diagram,24'37

Jl.]_ A
2
B Y
’
——————
Hy

and the evolution of the system state during even time ;
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periods is governed by a continuous time Markov chain with

the following transition diagram:

€ (1,0)

Theorem 5.3 A. Under the system evolution pre-

viously cdescribed, in which the repairman alternately works

and is idle, the time to reach (1,1) from (0,0) under policy
T of section 5.2 is strictly stochastically less than the
time to reach (1,1) from (0,0) under policy T, if My < My

If Hy = Moo the times are stochastically identical.

Proof: We show that the probability that the system has
been repaired at any time using policy T is yseater than
the probability the system has been repaired at the same
time using policy Toye It is easily seen that we need only
consider odd numbered time intervals, since repairs cannot
occur during the even numbered intervals. We show that this
is true for period 2n-1l, regardless of length, by induction
on n. Theorem 5.2 A shows that the claim is true for n = 1.
We now assume that the theorem is true for period
2n-1, and wish to show its truth for period 2n+l. At the

end of period 2n-1, the probability vector for the system

state under L3} is




b
H
i
b
1
i
i
|
1
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2n-
P, (X( '2 t.)=(0,0)) Pll
) | =1
= i (50301)
2n-1
P (X( I t;)=(1,0)) P
L 1 o=l 1 L 12
for some P11 and P12'
Similarly under T,, the probability vector
for the system state is
( ( )
2n- W
p“z(i( iEltl)—(o’O)) P21
- = ’ (5.3.2)
2n-1
p. (x( I t;)=(0,1)) P
{ T, i=1 i { 22

for some le and P22.
At the end of period 2n, the appropriate state

vectors are

( 3 ¢
2n ~upt2
= o n
P" (&(.E ti) (olo)) Pll+p12(1 e )
1l i=1l
= )
2n
P, (%( I £,)=(1,0)) p. e ¥1t2n
- 1 12
L 1 7 i=l L

(5.3.3)

and




8l

A 4 \

| 7 -Hat2
P"z (X( I t;)=(0,0)) P21+P22(1-e n)
i=1
= . (5.3.4)
2n
P, (X( I t;)=(0,1)) p._e ¥2t2n

\ "2 i=1 22

Now introduce the following notation.

fll(t) P (repair time is greater than t from (0,0)

under ™ with repairman always working)

'y

(t) P (repair time is greater than t from (1,0)

12
under LAY with repairman always working)

Fél(t) = P (repair time is greater than t from (0,0)

under LB with repairman always working)

F}z(t) = P (repair time is greater than t from (0,1)

under T, with repairman always working)

(5.3.5)

Let t be the elapsed time in period 2n+l. Letting
Fi(t) be the probability the system is not yet repaired at
this time under policy w,, and ?é(t) be the probability the
system is not yet repaired at this time under policy LPY

and using (5.3.3), (5.3.4), and (5.3.5) we obtain

= = ceHltony 17 “u1tons
F, () [P +P;, (1-e )IF), (t) + P e Fy,(t)
(5.3.6)

ST e o
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and

F.(t) = [P, 4P, (1-e ¥2%2n))F_ (¢) + p,,e”"2%t2nF
2

21%P2, (1 21t 22 228 .

(5.3.7)

Note that by induction hypothesis if t2n = 0, then
fl(t) < Fé(t) since period 2n+l is then just a continuation
of period 2n-1l. Again equality occurs iff Hy = Hye

Now let t + o in (5.3.6) and (5.3.7). We note

2n

by the induction hypothesis that Pll + P, <P + P

21 22
since these represent the respgctive probabilities that re-
pair.occurs after the end of period 2n-1 under the two
policies. Again equality occurs iff My = Uy The fact that
Fll(t) < fél(t) was shown in section 5.2, so that as t, ~+
=, Fy(t) < Fy(t).

Thus, for toh = 0 or t2
equality iff My = My We show that this implies there is no

n * @ Fp(e) < F,(t), with

value of t2n such that Fl(t) > Fz(t).

Taking derivatives of (5.3.6) and (5.3.7) yields:

afl(t) _

= - -ut
T, " WP, [Fp, (B)-Fp, (E)Je "1m2n (5.3.7)
and
aF, (t)
2 = = ) -ust
—ggz;— = U2922[F21(t) Fzz(t)]e 3 (5.3.8)

We see that by (5.3.5) Fll(t) > Flz(t) and
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F21(t) > Fzz(t) so that

aFl(t) 8Fé(t)
!th >0 and !th >0

Now assume there is a value of tzn' such that when

t,. = t', Fl(t) - fz(t) > 0. We show this leads to a contra-

2n
diction.
Consider the above expression as a function of
tzn.
G(tzn) = Fl(t) -'Fz(t) (5.3.10)
Taking the derivative of (5.3.10) with respect to
t,, and using (5.3.8) and (5.3.9) we obtain

- -u1tan _ -H2t2n
G'(tzn) kle kze (5.3.11)

where

Cls s s ST S
bl
[
"

Since G(0) <0 and G(t') > 0 we require for some

t, <t', G'(to) > 0. But (5.3.11) requires that G'(t) > 0,

0
t > t' since Hy S My We conclude that G(t) > 0, t > t!',
& contradiction as t + =,

If Hy <Hy by the same reasoning we cannot have

G(t') > 0 since G(0) <O.

% M
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| Stochastic equality of the repair times follows

| when u, = K, since F (t) < F,(t) and F,(t) < F,(t). End of
|

inductive proof, and end of the proof of Theorem 5.3 A.
Corollary: When the periods t, are random variables inde-

pendent of the state of the system, Theorem 5.3 A still

holds.

oy aaTsap Y MARIR Y s L S

T s e s
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5.4 The n Component Series System

The results of the last section intuitively tell
us that the optimal policy for an n component series system
is to repair the components in order of increasing My Un-
fortunately, this general result seems difficult to prove.

We can prove the following result.

Theorem 5.4 A. Suppose 7 is a candidate policy

in the form of a list; i.e<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>