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1.    INTRODUCTION 

Dctermininß a target aircraft's position, velocity, and ac- 
celeration from measurement of its position is a major problem in       r, 
modem antiaircraft gun,   laser,  and missile fire control» fftrfcrcTiCCir 
1 and 2)':    Many versions of the optimal or Kaiman state estimator have 
been used with varying decrees of successj^Reftrcnccs 3,  4,   and 5). 
This paper offers a new technique which allows detailed aircraft flight 
dynamics and constraints to be incorporated into the general Kaiman 
structure. 

llc\Xbl Thb^Mman estimator is viewed as a set of algorithms that 
uses sensor^(c.R., radar) data, the statis.ical properties of the 
sensor errors, the equations of the target motion, and the statistical 
properties of the errors of these equations to produce estimates of 
target position, velocity, and acceleration. 

Lot X denote the target's state 9 vector. The discretized 
dynamical equation is: 

X(n*l) - ♦(n) X(n) ♦ N(n), (1.0) 

where n denotes the time step.    The state transition or plant 9X9 
matrix, *(n), embodies target dynamics.    The plant noise random 9 
vector, N'(n), accounts for both ihe aircraft dynamics neglected by 
the plant und the randomness of pilot commands. 
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Let I! denote expected value and superscript T denote trans- 

pose.  The n  target state estimate, X(n), and the corresponding 

state error covariance matrix, l'(n) = Ii(X(n) - X(n))(X(n) - X(n)) , 
arc extrapolated to time step n*l by means of equation 1.0. The 
extrapol al iüiiti are corrected by the sensor measurement 3 vector 
ZCn+l) received at time step n+1. 

The extrapolation stage consists of equations 1.1 and 1.2 
below, 

XC(n) = -J(n) X(n) ♦ N(n) (1.1) 

where superscript e denotes extrapolated value and ( ) denotes most 
probable value. The extrapolated state error covariance Pc(n), is 
defined as, 

E(X(n*l) - XC(n))(X(n*l) - Xe(n))T. 

This definition, equation 1.1,  and the assumption 

E(X(n)  - X(n))   (N(n) - N(n)T = 0       yields: 

PC(n) = «(n)  P(n) *T(n)  ♦ Q(n), (1.2) 

where the plant noise covariance 9X9 matrix Q(n), is defined as: 

Q(n) = E{Nfn)  - N(n))(N(n) - N(n))T. 

At time step n+1, a new sensor measurement is received, 

Z(n*l) = ll(n*l) X(n+1) ♦ V(n+1). 

The state to measurement transformation 3X9 matrix, H(n+1), relates 
the state vector to the measurement vector (measurement-state combina- 
tions are discussed in Reference 6). The zero mean random sensor 
error is V(n*l) (e.g., thermal noise). 

The estimator weighs the confidence in the measurement 

Z(n*l) against the confidence in the extrapolated state X (n) and dis- 
tributes the 3 vector difference, Z(n*l) - H(n*l) X(n), to correct 

appropriately the extrapolated state 9 vector, X (n). Consider, 
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J =  (X(n*l) - Xc(n)) P^j  (X(n+1) - Xc(n))T 

♦  (Z(n+1) - Il(n4l) X(n+1)) R'^n+l)  CZ(n+l) 

- Il(n+1) X(n+1))T 

where K(n+l)f  the measurement noise covariance matrix, equals 

E V(n+1) V(n+1)T. 

Choosing X(n+1) to minimize J has the desirable effect of forcing 
e       e 

X(n+1) close to X (n) when P (n) is small (i.e., high confidence in 

X (n)) and forcing ll(n+l) X{n+1) close to Z when R(n+1) is small 
(i.e., high confidence in Z). Setting the derivative of J to zero 
yields: 

X(n+1) = Xe(n) + K(n) (Z(n+1) - H(n+1) Xe(n))    (1.3) 

where the Kaiman gain 9X3 matrix K(n) is given by: 

K(n) = Pe(n) HT(n+l) (n(n+l) Pe(n) HT(n+l) 

+ R^+l))"1 (1.4) 

The state error covariance matrix at the n+1 time step, 

P(n+1) = E(X(n*l)  - X(n+1))   (X(n+1) - X(n+1))T, 
e    T 

computed with the assumption E(X(n+l) - X (n))V (n) = 0 yields: 

P(n+1) = Pe(n) - K(n) H(n+1) Pe(n). (1.5) 

Equations 1.1 through 1.5, recognized as the Kaiman algorithms 
(Reference 7), may be used iteratively to compute X for all n. 

2.    DEVELOPMENT OF $, Q AND N 

Once the algorithms have been initialized, $, R, Q, H,  and 
N can be updated to incorporate information generated from past state 
estimates.    Nonlinear processes always require this sort of self- 
adapting mechanism.    Adaptive bandwidth, hypothesis testing,  and resid- 
ual testing filters are further examples that use past state estimates 
(Reference 8). 

Two self-adapting methods which incorporate detailed target 
dynamics and constraints into *, Q, and N are developed below. 



2.1    The Plant Noiso Moan Method. 

Express the tarp.ct state in earth coordinates and choose a 
plant matrix,  *,  that represents the dynamics of an aircraft whose 
Cartesian earth frame acceleration is constant over a time step. 

T At  i **~ 
'3x3    at    3x3      2 3x3 

03x3 I3x3 

3x3  3x3 

dt I 
3x3 

3x3 

where dt is the time step length, and I is the identity 5x3 matrix. 
The plant noise vector then takes the form. 

N = 

dt3: 
TA3 

dt2A 
2 A3 

dtA, 

N = 

<*3r 
-6A3 

2_A 3 

dtA, 

Q = 

dtu 

36 
dt" 
12 

dt 
6 

at5 at4 
dt 

12 4 2 

dt4 

6 
dt3 

2 
dt 

Q' 3x3 

where A is the target's earth frame acceleration rate 3 vector and Q' 
is the target's earth frame acceleration rate covariance 3x3 matrix. 
The above formulation is essentially a Taylor expansion of the target's 
position vector.    The plant,  <&,  accounts for the zero, first,  and sec- 
ond derivatives while the plant noiso, N,  is the remainder term.    N is 
thus identified with the target's acceleration rate. 

The acceleration rate statistics are controlled both by the 
desires of the pilot and the maneuver capabilities of the aircraft. 
For example,  the greater the target's capability to change the number 
of g's that it's pulling, the poorer the constant acceleration 
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assumption becomes (i.e., the poorer the plant *) and the larger the 
acceleration rate variance. The followinß analysis translates physical 
properties in aircraft body coordinates to mathematical properties in 
the earth reference frame.  I:or clarity, a zero gravitational field is 
considered first and the results then extended to the more realistic 
lg field. 

At any particular instant, a circle can be fitted to the 
target's flight path so thai the target velocity vector is tangent to 
its circumference and that the component of target acceleration per- 
pendicular to the velocity vector points towards its center (Reference 
9). The target acceleration is then expressed as, 

A=Vlv+kV2lN (2.1) 

where V equals the magnitude of the target velocity, lv is the unit 

vector in the direction of target velocity, and 1 is the principal 

normal.  1N, which is perpendicular to the target velocity vector and 
-1 

points toward the center of curvature, equals (kV) L. The curvature, 

k, is given by JVI cross A|v"'* (1/k = radius curvature). 

In this coordinate frame, a simple relationship exists be- 
tween target acceleration and physical aircraft quantities. The force 
on the target can be expressed as, 

F = Tlv + AP1N (2.2) 

where: F = force per unit mass vector, 
T = net thrust per unit mass,  and 

AP s air pressure force per unit mass. 

Comparing equations 2.1 and 2.2, 

T = V 7 (2.3) 
AP = kV 

A simple relationship also exists between acceleration rate and the 
pilot controlled physical quantities of thrust rate, roll rate, and g 
rate.    Differentiating equation 2.1, 

A = Tlv + Tiv + AP1N + APiN (2.4) 

and noting the Frenet equations  (Reference 9), 
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1  -■ kVl 

iN *  -kVlv ♦ TV1B (2.5) 

where t is the torsion, iV = W = target roll rate, and 1H = lv cross 
1N, and resolving A alonj; the Frcnct axis, yield: 

•        «23 
A dot lv = T - k V 

A dot 1N = kVV + AP (2.6) 

A dot 1D = kV
2W 

D 

T, Al*, and W are pilot controlled and are modeled as zero mean random 
variables.  Therefore, in the reference earth coordinate frame. 

A = T,:R I kVV   I (2-73) 

T 
0' = T  0' T v   'FR H V    FR 

T2   0.0 

Q^ =1 0.0  E AI'2    0.0  | (2,7b) 

^0.0   0.0   kV2EK2 

where Ä is recognized as the most probable value of the acceleration 
rate in reference coordinates, and Q' as the target's earth frame 
acceleration rate covariance.  T™ is the Frenet frame to reference 

FR 
frame coordiante transformation and QJ, the acceleration rate covari- F 
ance in Frenet coordinates. The random variables T, AP, and W are 
assumed independent. 

•2    • 2 
N, N, and Q are computed in terms of V, k, TRp, E(T ), E(AP ), 

and E W .  V, k, and TDC are computed each time step in terms of the 
. T most recent state estimate (T - T    ), 

Rr   FR 
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v-   (x4
2*x5

2 + x6V 

VB     (X4 X7 + X5 X8 + X6 V/V 

k -   «h X9 " X6 V2 +  (X4 X9 "  X7 V2 

♦ (x4 x8 - x5 ^r^/r 

\V1 * VV TRF21 S   (X7 -  X4 V/GN 

TRF12 = VV TRF22 =   (X8 "  X5 V/GN 

TßF
13 = X6/V TRF23 -  «9 - X6 V/GN RF 

31 12       23 13        22 
'RF     ~ 'RF    'RF    ' 'RF     'RF 

32 21        13 11        23 
RF           'RF      'RF      "   'RF       lRF 

33 11        22 21 12 f      . 
'RF      " 'RF     'RF     " 'RF     'RF                         v     ) 

*    -        «    -        *    -        2 2 
where A,p = (X. X_ + X. X0 + X, Xn)/V   and G.. = kV .    Typical maximum 

1 4/böDy N 
aircraft rates are given in Table 2-1.    Values used during validation 
of the method are also given. 

TABLE 2.1    AIRCRAFT ACCELERATION RATE 

Mechanized Values 
Maximum Rates (One Standard Deviation) 

T (M/sec3) 10.0 3.5 

AP (M/sec3) 20.0 7.0 

W (rad/sec) 3.2 1.1 

Extending this idea to a gravitational field requires distri- 
bution of gl- to the Frenet axes. 
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T = V + glzclotlv 

AP =   [g2(lzdotlB)2 *  (glzdotlN + kV2)2]'5 (2.9) 

where: T = target thrust minus drag,  and 
AP = aerodynamic force perpendicular to the target's 

wings,  and -gl    is the grativational acceleration 
vector. 

Equation 2.9 implies: 

V = T - gkVlzdotlN 

(kV2)  =  CjAP + c2W + gkVl2dotlv 

where: c    = AP/(gl dotl    + kV ) 

c2 =  -gkV2l2dotlB/(glzdotlN + kV2). 

Equation 2.6 becomes; 

Adotly = t -gkVlzdotlN - k2V3 

AdotlM = kW + gkVl.dotl., + c.AP + c_W 
N £ V 1 ^ 

AdotlD = kV2W 
D 

Hence,  analogus to equation 2.7: 

AdotlD = kV2W (2.10) 
D 

A = TFR 

/ -gkV lzdotlN - k2V3   \ 

I   kVV + gkV lzdotlv    j 

0.0 

ET2 0.0 0.0 

QJ, =       j      0.0    c^EAP2 + c2
2EW2    c2kV2EW2 

0.0 c2kV2EW2 k2V4EW2 
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2.2    The Dynamical  Plant Method. 

The acceleration rate mean can readily be incorporated into 
matrix «K 

Freuet frame,  then, 
the plant matrix <K    Let A , equal the acceleration vector in the 

AR = TFR AF 
• • • 
AR S TFR AF + TFR AF 

which can be written; 

T • T • 
AR = TFR   CTFk TFR) TFR AR + TFR AF 

where: 
T« 

T T 'FR FR 

**  = 

Therefore, 

0      -kV    0 \ 
AR = TFR   I   kV      0      O^R^^FRl   AI;    I        V-1" 

i       0     0/ ^kV W 

is the desired zero mean plant noise formulation.    For example,  con- 
sider an aircraft  flying in a deterministic circle, then, .its X and 
Y components of acceleration satisfy:. 

Ax = G cos u t 

Ay = G sin lü t 

Aj. « -u G sin co t 

Ay = w G cos u t (2.12) 

where R = 1/k  is the radius of the flight path circle, w = V/R,  and 
G =  |A|.    Equation 2.12 can be written as a special case of equation 
2.11. 
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The example also illustrates tlic essential equivalence of the 

ds.     ! 
and 2.8 imply, 

2  3 
two methods.     Since T = Al' = W =- V = 0 and k V    = Gw, equations 2.7a 

/-G.A 

A      = TFR          0 

V0/ 
/sin wt      cos wt tf 

TpR = 1 -cos wt      sin Out 0 

\     0               0 1 

Therefore, 

which is consistant with equation 2.12. 

Both methods essentially color the target's acceleration by 
fitting the instantaneous Frenet circle to the latest estimated target 
state.    With proper account given to the gravitational  field^ this ex- 
presses the plant noise in the target related quantities t, AP,  and W. 

3.    CONCLUSIONS 

Through the use of the Frenet equations,  target roll rate, 
thrust rate,  and g rate are embedded into the estimator formulation. 
This enables the estimator to provide more accurate state error cc- 
variances resulting in improved state estimates.    Similarly,  incor- 
porating the deterministic portion of the target's acceleration rate, 

N, provides a further improvement, particularly helpful along coordin- 
ated target turns. 

Computer simulations were used to compare the plant noise 
mean estimator to a close copy of the Gun Low Altitude Air Defense 
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System (Gl.MUS) estimator (Reference 4). The GLMDS estimator was 
chosen for reference because it performed very successfully during the 
recent field tests.  It takes excellent advantage of modern analytical 
techniques and most importantly it is formulated similar to the plant 
noise mean estimator. The principal difference is that the GLAADS 
estimator lacks an N term and uses a simpler plant error covariancc. 
The differences in performance are quantified in Figure 3.1 which com- 
pares the magnitude of the acceleration errors of the two estimators 
for an aircraft in a 4g coordinated turn.  After a 2-3 second settling 
time, the advantage of including detailed target dynamics is apparent. 

Additional benefits arise naturally from the physical approach 
taken by the plant noise mean and dynamical plant methods.  For example, 
Table 3.1 compares prediction accuracy obtained by iterating equation 
1.1 with and without the N term.  Including N results in prediction 
along the Frenct circle while omitting its results in constant accele- 
ration extrapolation. The two predictors are compared for various pre- 
diction times (e.g., bullet times of flight) along various coordinated 
turns. The table indicates that the relative superiority of the Frenet 
circle predictor grows with target g's and prediction times. In gen- 
eral, it is at least as good as the constant acceleration extrapolator 
along noncoordinated maneuvers. 

These ideas can be practically applied to real systems. The 
estimator-predictor algorithms, equations 1.1 through 1.5, slightly 
modified to include the singular case, K=0, have proven to be complete- 
ly stable for circular, popup and dive, straight line and jinking tar- 
get trajectories. The engineering expertise required to construct the 
appropriate hardware has already been successfully demonstrated in the 
GLAADS program.  In fact, the improved estimator-predictor could easily 
be programmed into the present GLAADS computer. 

In conclusion, the plant noise mean and the dynamical plant 
methods provide improvements to current state estimation technology 
and offer an approach to incorporating real target constraints into 
fire control logic.  In terms of practical payoff, these methods will 
enable the proposed Army Radar Gun Air Defense System (ARGADS) to more 
successfully engage maneuvering targets. 
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4g COORDINATED   MANEUVER 

PLANT NOISE  MEAN 
REFERENCE 

• ••••••, 

SEC/G'S 

2.5 5.0 
TIME (SECONDS) 

Figure 3.1. Comparison of Estimator Accuracy. 

FRENET CIRCLE/CONSTANT ACCELERATION 

1 2 '3 i\ 

1 0.0/0.1 0.0/0.2 0.0/0.5 0.0/0.9 

2 0.0/0.4 0.0/1.8 0.0/4.0 0.0/7.1 
3 0.0/1.5 0.0/6.0 0.1/13.5 0.2/23.9 

^ 0.0/3.6 0.0/W.2 0.2/31.9 0.4/56.6 

MAGNITUDE OF PREDICTED POSITION ERROR (METERS) 

TABLE 3.1   COMPARISON OF PREDICTOR ACCURACY 

/^ 
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