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Determining a target aircraft's position, velocity, and ac-

ccleration from measurcement of its position is a major problem in
modern antiaircraft gun, laser

‘1 and 2)Y
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= . &
, and missile fire controls, (Referonces

Many versions of the optimal or Kalman state estimator have
been used with varying degrees of success:(References 3, 4, and 5)

<= This paper offers a new technique which allows detailed aircraft flight '

dynamics and constraints to be incorporated into the gencral Kalman
structure.

'HS;:ghlman estimator is viewced as a sct of algorithms that
uses sensor'(e.p., radar) data

, the statis.ical propertics of the
sensor crrors, the cquations of the target motion, and the statistical
propertics of the crrors of these cquations to produce cstimates of
target position, velocity, and acceleration.

Let X dcﬁotc the target's state 9 vector. The discretized
dynamical cquation is:

X(nel) = #(n) X(n) + N(n), (1.0) '

where n denotes the time step.  The state transition or plant 9 X 9
matrix, ¢(n), cmbodics target dynamics. The plant noisc random 9

vector, N(n), uccounts for both the aircraft dynamics neglected by
the plant and the randomness of pilot commands.
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Let E denote expected valuce and superscript T denote trans-

th

pose. The n™ target state estimate, X(n), and the corresponding

statc crror covariance matrix, P(n) = E(X(n) - X(n))(X(n) - X(n))T,
arc cextrapolated to time step n+l by means of cquation 1.0, The
extrapolutions arce corrected by the sensor measurement 3 vector
Z(n+l) reccived at time step n+l,

The extrapolation stage consists of cquations 1.1 and 1.2
below,

X¢(m) = ¢(n) X(n) + N(n) ' (1.1)
where superscript ¢ denotes extrapolated valuc and (C) denotes most
probable value. The extrapolated state crror covariance PC(n), is
defined as,

E(X(n+1) - X°(n)) (X(n+1) - X¢(m))T.

This definition, cquation 1.1, and the assumption
E(X(n) - X(n)) (N() - NmT = 0 yields:
Po(n) = ¢(n) P(m) ¢' (n) + Qn), (1.2)

where the plant noise covariance 9 X 9 matrix Q(n), is defined as:

Q(n) = E(N() - R(n)) (N(n) - Rm))T.
At timec stcp n+l, a new scnsor measurcment is received,
Z(n+1) = H(n+1) X(n+1) + V(n+l).

The state to mcasurcment transformation 3 X 9 matrix, H(n+l), relates
the state vector to the measurement vector (mcasurcment-state combina-
tions arc discussed in Reference 6). The zero mean random sensor
error is V(n+l) (e.g., thermal noise).

The estimator weighs the confidence in the mecasurement

Z(n+1) against the confidence in the extrapolated state Xe(n) and dis-
tributes the 3 vector difference, Z(n+l) - H(n+l) X(n), to correct

appropriatcly the extrapolated statc 9 vector, Xe(n). Consider,
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J = (X(n+1) - X°(n)) P%;; (X(+1) - X°m))T
+ (Z(n+1) - H(n+1) X(n+1)) R™1(ne1) (Z(ne1)
- Ne1) X(n+1))T
where R(n+1), the measurement noise covariance matrix, equals
E V(n+l) V(ne1)T.

Choosing X(n+1) to minimize J has the desirable effect of forcing
X(n+1l) close to Xc(n) when Pc(n) is small (i.e., high confidence in
x°(n)) and forcing H(n+1) X(n+l) close to Z when R(n+1) is small

(i.e., high confidence in Z). Setting the derivative of J to zero
yiclds:

X(n+1) = X°(n) + K(n) (Z(n+1) - H(n+1) X°(n)) (1.3)
where the Kalman gain 9 X 3 matrix K(n) is given by: '

K(n) = P(n) H (n+1) (H(n+1) PE(n) H'(n+1)

* R(n+1))'1 : (1.4)

The state error covariance matrix at the n+l time stép,

P(n+1) = E(X(n+1) - X(n+1)) (X(n+1) - X(n+1))T,
computced with the assumption E(X(n+1l) - Xe(n))VT(n) = 0 yields:

P(n+1) = P°(n) - K(n) H(n+1) P®(n). (1.5)

Equations 1.1 through 1.5, recognized as thc Kalman algorithms
(Reference 7), may be used itcratively to compute X for all n.

2. DEVELOPMENT OF ¢, Q AND N

- Once the algorithms have been initialized, ¢, R, Q, H, and

N can be updated to incorporate information generated from past state
estimatcs. Nonlinear processcs always require this sort of sclf-
adapting mechanism. Adaptive bandwidth, hypothesis testing, and resid-
ual testing filters arc further cxamples that use past state estimates
(Reference 8).

Two self-adapting methods which _incorporate detailed target
dynamics and constraints into ¢, Q, and N arc developcd below.




2.1 The Plant Noise Mean Method,

Express the target state in carth coordinates and choose a
plant matrix, ¢, that represents the dynamics of an aircraft whose
Cartesian carth frame acceleration is constant over a time step.

B =
1, . dt 1 dt? I
3x3 3x3 2 3x3
i 03x3 I3x3 dt ISxS
_03x3 03x3 I3x3 _

where dt is the time step length, and I is the identity 3x3 matrix.
The plant noisc vector then takes the form,

m 3 ] m 3]
at’; at’s
6 3 6 3
N = QE?A , N= QE?X
23 23
dtA dtA
dt6 QE? ng
36 12 6
Q= 9_t.5 9_24 .‘.l.t_s Q' .
12 4 2 3x3
6 2 -

where A is the target's earth frame accelcration rate 3 vector and Q!
is the target's earth frame acceleration rate covariance 3x3 matrix.
The above formulation is essentially a Taylor expansion of the target's
position vector. The plant, ¢, accounts for the zero, first, and sec-
ond derivatives while the plant noise, N, is the remainder term. N is
thus identified with the target's acceleration rate.

The acceleration rate statistics are controlled both by the
desires of the pilot and the mancuver capabilities of the aircraft.
For example, the grecater the target's capability to change the number
of g's that it's pulling, the poorer the constant acceleration
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assumption becomes (i.e., the poorer the plant ¢) and the larger the
accceleration rate variance. The following analysis translates physical
propertics in aircraft body coordinatcs to mathematical properties in
the carth reference frame, For clarity, a zero gravitational ficld is
considered first and the results then extended to the more recalistic

1g ficld.

At any particular instant, a circle can be fitted to the
target's flight path so that the target velocity vector is tangent to
its circumference and that the component of target acccleration per-
pendicular to the velocity vector points towards its center (Reference
9). The target acceleration is then expressed as,

. 2
A= V1, + KV (2.1)

where V cquals the magnitude of the target velocity, lv is the unit
vector in the direction of target velocity, and IN is the principal

normal. 1., which is perpendicular to the target velocity vector and

N!

points toward the center of curvature, cquals (kV)-li . The curvature,

i v
k, is given by IVIV cross A|V g (1/k = radius curvature).

In this coordinate frame, a simple rclationship exists be-
twecn target acccleration and physical aircraft quantities. The force
on the target can be expressed as,

= + P .
F Tlv A 1y (2.2)
where: F = force por unit mass vector,
T = net thrust per unit mass, and
AP = air pressure force per unit mass.

Comparing equatidns 2.1 and 2.2,

T=V, (2.3)

AP = kV
A simple relationship also exists between acceleration rate and the
pilot controlled physical quantities of thrust rate, roll rate, and g
rate. Differentiating equation 2.1,

A= TlV + TlV + APlN + APIN (2.4)

and noting the Frenet equations (Reference 9),
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lv ® leN
1y = kvl ¢ V1 (2.5)
lB = -1V1N

where 1 is the torsion, 1V = W = target roll rate, and lB = 1V CTOSS
lN’ and resolving A along the Frenet axis, yield:

Adot 1, = T - k23
A dot lN = kVV + AP (2.6)
A dot 1y = kv2w

[ ] *
T, AP, and W arec pilot controlled and are modeled as zero mecan random
variables, Therefore, in the reference carth coordinate frame,

_ BB

A = s kVV (2.7a)
0
T

- t
Q' = Tep 'y Teg
;7% 0.0 0.0
q ={ 0.0 EA? 0.0 (2.7b)

0.0 0.0 kVZEW2

where A is recognized as the most probable value of the acceleration
ratc in refercnce coordinates, and Q' as the target's earth frame
acccleration rate covariance. 'I‘FR is thc Frenet frame to reference

frame coordiante transformation and Q% the acceleration rate covari-
ance in Frenet coordinates. The random variables T, AP, and W are
assumed indcpendent.

N, N, and Q arc computed in terms of V, k, Tops E(fz), ECKPZ),
and E‘Wz. vV, k, and TRF arc computed each time step in terms of the

. T
most recent state estimate (TRF = TFR)’
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P TS T 2L
va (x2ex’ex?
Ve (X, Xy 0 Xg Xg v X XV
I Y T
k= ((X Xy - X, X%+ (X, X - X X)
R X
. (X Xg - X X))y
n_ - 21~ -
T = Xg/V T = (X7 = X4 Ap/Gy
12 _: 2 & s
Tap = Xg/V Tep = (Xg = X5 A)/Gy
TRF13 = X /V Top = (g - X A6,
31 12 . 23 13 .. 22
Ter = Tor Tee - Toe Trr
32 . 21, 13 1., 23
Tor = Tor Tee - Thr Tgr
3311, 22 21 . 12
Tee " Tee Tor ~ The Tr (2.8)

- % 8 $ § < 2 e ' P,
where AT = (X4 X7 + xs X8 + x6 xg)/v and GN = kV™. Typical maximum
aircraft rates are given in Table 2-1. Values used during validation

of the method arc also given.

TABLE 2.1 AIRCRAFT ACCELERATION RATE

Mechanized Values

Maximum Rates (One Standard Deviation)
b Wsecdy 10.0 goe

AP (M/sec) 20.0 | 7.0

W (rad/sec) 3.2 1.1

Extending this idea to a gravitational field requires distri-

bution of glZ to the Frenet axes.
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T=V+ glzdotlv
2 2 2.2.% :
AP = [g (lzdotIB) + (glzdoth + kV7)7] ) (2.9)
where: T = target thrust minus drag, and
AP = acrodynamic force perpendicular to the target's

wings, and -gl_ is the grativational acceleration

vector, &

Equation 2.9 implies:

T - nglZdoth

KV 2N
(kVv5) = clAP + c2W + ng12d0t1v
_ 2
where: ¢, = AP/(ngdoth + kV7)
c, = —ngzl dotl /(gl. dotl + sz)
2 Z B Z N :

Equation 2.6 becomes:

L] ol * 2 3
AdotlV =T -nglZdoth - kv
Adoth = kVV + nglZdotlv + clAP + czw
Adot1y = kv2y (2.10)
Hence, analogus to equation 2.7:
2.3
i (-gkY 1,dotly - KV )
A= T, \ KW+ gkv 1,dotl
0.0
ET? 0.0 . 0.0
2.2 2.2 22
! = 3 2 5
QF 0.0 c1 EAP™ + c, EW CZRV EW
0.0 ckvEN’ k2v4Ew?
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2.2 The Dynamical Plant Method.

The acceleration rate mean can readily be incorporated into
the plant matrix ¢. Let AF equal the acceleration vector in the
Frenet frame, then,

which can be written:

. _ T . T °
Ap = Ter ek TrR) Ter Ar * Ter Ap ,
where: 0 -kv 0
Te
Tooilin KV 0 -
0 W 0
T
AF = | ap
0
Therefore,
0 -kv 0 T
- T .
Ry =Ter L XV 0 0 ) Tpp A+ Ty AP2 (2.11)
0 0 0 kVW

is the desired zero mean plant noise formulation. For example, con-
sider an aircraft flying in a deterministic circle, then, .its X and
Y components of acceleration satisfy: .

Gcosuwt

><>-
1

Gsinw t
-w G sinw t

wGcoswt ' (2.12)

u

L& &

where R = 1/ is the radius of the flight path circle, w = V/R, and
G = |A|. Equation 2.12 can be written as a special case of equation
2,11,
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hx 0 -kV AI

n,,’wanY

The example also illustrates the essential equivalence of the
2

two methods., Since T = AP = W= V = 0 and k
and 2.8 imply,

V3 = Gw, cquations 2.7a

- Gw
A = TFR 0
0
sin wt cos wt 0
TFR = | -cos wt sin wt 0
0 0 1 .
Therefore,
-Gw sin wt
i = Gu cos wt
0

which is consistant with equation 2.12.

Both mcthods essentially color the target's acccleration by
fitting the instantaneous Frenet circle to the latest estimated target
state. With proper account given to the gravitational field, this ex-
presses the plant noise in the target related quantities T, AP, and W.

3. CONCLUSIONS

Through the use of the Frenet cquations, target roll rate,
thrust rate, and g rate arc cmbedded into the estimator formulation,
This cnables the estimator to provide more accuratc state error cc-
variances resulting in improved state estimates. Similarly, incor-
porating the deterministic portion of the target's acceleration rate,

N, provides a further improvement, particularly helpful along coordin-
ated target turns.

Computer simulations were used to compare the plant noise
mean estimator to a close copy of the Gun Low Altitude Air Defensc

10
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System (GLAADS) estimator (Reference 4)., The GLAADS estimator was
chosen for reference because it performed very successfully during the
recent field tests. It takes excellent advantapge of modern analytical
techniques and most importantly it is formulated similar to the plant
noisc mean estimator. The principal difference is that the GLAADS
estimator lacks an N term and uses a simpler plant error covariance.
The differcnces in perforumance are quantified in Figure 3.1 which com-
pares the magnitude of the acceleration crrors of the two estimators
for an aircraft in a 4g coordinated turn. After a 2-3 sccond settling
time, the advantage of including detailed target dynamics is apparent.

Additional benefits arise naturally from the physical approach
taken by the plant noise mecan and dynamical plant methods. For example,
Table 3.1 compares prediction accuracy obtained by iterating equation
1.1 with and without the N term. Including N results in prediction
along the Frenet circle while omitting its results in constant accele-
ration extrapolation. The two predictors are compared for various pre-
diction times (e.g., bullet times of flight) along various coordinated
turns. The table indicates that the relative superiority of the Frenet
circle predictor grows with target g's and prediction times. In gen-
eral, it is at lcast as good as thc constant acccleration extrapolator
along noncoordinated mancuvers. |

These ideas can be practically appliced to real systems. The
estimator-predictor algorithms, equations 1.1 through 1.5, slightly
modified to include the singular case, K=0, have proven to be complete-
ly stable for circular, popup and dive, straight line and jinking tar-
get trajectories. The engineering expertisc required to construct the
appropriate hardware has alrcady been successfully demonstrated in the
GLAADS program. In fact, the improved estimator-predictor could easily
be programmed into the present GLAADS computer.

In conclusion, the plant noise mean and the dynamical plant
methods provide improvements to current state estimation technology
and offer an approach to incorporating real target constraints into
fire control logic. In terms of practical payoff, these methods will
enable the proposed Army Radar Gun Air Defense System (ARGADS) to more
successfully cngage maneuvering targets.

) 1
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MAGNITUDE OF ACCELERATION ERROR (M/SEC2)
SEMI-LOG
o
|

40
301
201

4g COORDINATED MANEUVER

— PLANT NOISE MEAN
wenines REFERENCE

2.5 5.0
TIME (SECONDS)

Figure 3.1. Comparison of Estimator Accuracy.

FRENET CIRCLE/CONSTANT ACCELERATION

SEC/G'S 1 2 '3 4
1 0.0/0.1 0.0/0.2 0.0/0.5 0.0/0.9
2 0.0/0.4 0.0/1.8 0.0/4.0 0.0/7.1
3 0.0/1.5 0.0/6.0 0.1/13.,5 0.2/23.9
4 0.0/3.6 0.0/14,2 0.2/31.9  0.4/56.6

MAGNITUDE OF PREDICTED POSITION ERROR (METERS)
TaBLE 3.1 CoMPARISON OF PREDICTOR ACCURACY
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