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SUMMARY 

1.  Background 

In early 1974, after some, preliminary investigative work by IRO, 

study was assigned to that same office by the AMC (now DARCOM) Directorate 

of Supply, to formulate and test methodologies with potential for improving 

demand forecasts for Army managed secondary items.  Moving average and 

exponential smoothing forecasting schemes had been investigated extensively 

in the past and have specific data retention rules.  Other more structured 

forecasting models had not been tested; the catalog approach for other than 

insurance items, Bayesian estimators which combine item history and demand 

distributions over a whole catalog of items, and techniques (e.g. Kaiman 

filters) which handle changing demand rates should be added to a list of 

potential techniques. 

At the time, Martin Cohen was studying techniques for forecasting that 

utilized program data (flying hours, end item densities).  The study re- 

ported here did not duplicate the effort with those techniques, but it was 

found that the procedures (algorithms) developed herein could be applied 

to demands or to demand per unit program rates. 

2.  Purpose & Objectives 

PI  Investigate untried but theoretically rigorous forecast techniques 

including methods applicable to items for which a program factor 

is not feasible. 

P2  Develop implementation procedures and specifications for the 

retention and upkeep of item past history. 

01 Use the available 28 quarters of AVSCOM demand and program data 

for forecast model building and comparative evaluation. 

02 Determine hov much item history should be retained, how often 

should ehe retained data be updated, and what importance or weight 

should be attached to various demand estimators (e.g. how the age 

of the data should be weighted). 

03 Determine the merit of various performance measures for comparing 

forecast techniques. 

**—  .. »..■■ 



3.  Scope 

The study is limited to developing procedures for the forecasting of 

world-wide recurring demands for Amy managed Class IX secondary items 

(repair parts and spares) including Stock Fund and PEMA items.  The pro- 

cedures are to be applied in the Commodity Command Standard System (CCSS) 

inventory management function implemented at the Army's National Inventory 

Control Points (NICP). 

The focus of this report in terms of a "best" forecast technique is 

on an algorithm which U6es an ancillary variable (FH program or density 

program).  A further study and subsequent report will concentrate on the 

techniques described herein which may be applied to items for which program 

data is not meaningful, and on the results utilizing a data base of such 

items. 

This current study was nob intentionally limited to aircraft items but 

the only adequate program data available over 7 years was for such items. 

Methodology is developed which extends the scope to items from other Commands 

for which end item density is the ancillary variable. 

A. Methodology 

a. Postulate uoc'els of the demand process. 

b. Develop algorithms which theoretically would best forecast this 

process.  At this point is also determined the time series on which to apply 

the algorithms - demand Dt demand per flying hour D/H, logarithm of demand 

log D, logarithm of demand per flying hour log D/H. 

c. Determine algorithm parameter values for various stratifications 

of items, e.g. classify items by annual requisition frequency. 

c. Screen the many algorithms by their performance with several 

statistical error measures (e.g. mean square error by item class). 

d. Evaluate the remaining candidate algorithms by their cost-performance 

averaged over individual items in the simulation model of the Array supply 

management system. 

The final selection was made on the basis of smallest aggregate simulated 

inventory cost for constant time-weighted requisitions backordered. 
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5.  Results 

a. "Best" algorithm:  Kaiman filter (see Section 5.3) to estimate 

demand per unit program (DP). 

(1) It is akin to exponential smoothing with a varying smoothing 

or weighting parameter which depends upon the program in a period (quarter) 

and a "k-factor". 

(2) The "k-factor" is updated yearly from the items demand 

frequency class. 

(3) Older data is given less weight. 

(A)  Periods with high program given more weight. 

(5)  Forecast - DP x program in future period. 

b. Cost-Performance Comparison:  "Best" versus Present Army Program 

Factor (1794), based on simulation projections for 10,000 items. 

(1) For same average days wait, $1,800,000 annual savings are 

realized. 

(2) At constant average yearly cost, wait is reduced ^ 12%. 

• 

c. Tables of parameters are presented for forecasting by item class- 

as are extensive tables of error measure values by item class for the 

various algorithms. 

d. Several candidates (non-program related) algorithms for forecasting 

common Items have been found. 

6.  Conclusions 

a. This study has reinforced Cohen's findings - that forecast 

algorithms utilizing flying hours perform becter on the AVSCOM data base 

than strictly demand dependent algorithms. 

b. Recommended technique yields substantial Improvement in terms of 

cost savings. 

c. The technique can be applied across Commodity Commands with only 

a change in algorithm parameter values. 

L —.— -■■^iiMrfüi I r m»»t  ■   .—J 
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d.  Methodology has been developed which can be applied to a broad 

spectrum of common items. 
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CHAPTER I 

INTRODUCTION 

In many approaches to demand forecasting, several general forecast 

techniques (moving averages; single and double exponential smo»thing; 

linear regressions on time or another independent variable) are applied 

to groups of items.  Average performances with respect LO an error me*sure(s) 

are compared; optimal forecast parameters (smoothing parameters, moving 

average base) need to be determined by search or enumeration, observing the 

error measure values.  Such approaches are somewhat haphazard; the fore- 

cast parameters would be Justified a posteriori, no consistent theory on 

the structure of the underlying processes would have been developed, and 

extensions of empirical results and the techniques would be made more diffi- 

cult. 

In this study, several models of a demand process or a demand - flying 

hour (FH) process are postulated.  Basically the models consider a process 

mean corrupted by some noise in the observed values; in addition the mean 

itself of the process is changing randomly and/or non-randomly.  For the 

most part, nothing is assumed about the probability distributions of the 

random varlates.  Models for how the demand series over time D is changing 

and for how the demand per FH series D /H  ia changing are described.  For 

example one might expect that if a demand - FH relation exists, the mean of 

the rate D/H would be relatively stable. 

The advantage of  this modeling is that available and newly developed 

(/3) theory dictates what are the optimal and suboptimal forecast algorithms 

associated with each model.  For example, since in general the models assume 

the process mean co be changing, a sample mean of all past history is not 

the best forecast technique.  Kaiman filters (akin to exponential smoothing 

with changing smoothing constants) and moving averages with variable base 

lengths are indicated.  Also parameters of the forecast algorithm are re- 

lated to noise variances in the process.  Analysis of the time series of 

the process for groups of Items can determine these process noise parameters 



on an average basis.  If patterns in these average values develop over 

groups of items, this is one indication that the model in question is 

appropriate.  Finally, these process parameters lead to the forecast 

parameters without the need of a search; and the performance of the al- 

gorithm relative to others indicates which model best describes th^ process. 

Before proceeding with models of the processes and associated fore- 

cast algorithms (Chapter II), we briefly describe in Chapter II the data 

base of items used in the analysis.  Chapter IV describes the computer 

program for evaluating the forecasts via statistical error measures. 

Stratified empirical results comparing about 25 algorithms are presented, 

as are 10 average values of an important forecasting parameter - the k 

factor - for items grouped by requisition frequency.  Trends and relative 

values in the tables are analyzed.  In Chapter V, the most promising can- 

didate algorithms are used as forecast routines in the simulator of the 

Army wholesale supply operation.  Based on cost performance in the simula- 

tor runs, three final algorithms for forecasting using FH are compared to 

the current AVSCOM program factor technique.  Projected savings are dis- 

cussed in Chapter VI, as are implementation considerations and modifications 

of the best algorithm to utilize end item density as the program factor 

rather than a usage variable (FH). 

A short chapter on conclusions, recommendations for forecasting and 

further work on common items, and some caveats or aids to future re- 

searchers ends this report. 

■ill     i i       li mi ,.-, in,  .«.I«. <■>■,.  



CHAPTER II 

DATA BASE 

The conclusions in this report are based on studies made using 

chronological demand data from AVSCOM.  Flying hours were obtained from 

DCSLOG.  Details of the data organization and editing are found in an 

IRO report by Cohen (f). The final data base contained over 10,000 

"peculiar" parts - those that are on only one type of aircraft and hence 

can be associated with specific flying hour values.  A larger data base 

of common items ( ^ 30000) has oeen retained to 6tudy forecast algorithms 

de»eloped here which do not depend on usage (FH); this will be a future 

task (see Chapter VII). 

All data has been summarized by quarter.  For each quarter we have 

worldwide totals of the number of requisitions (R \   , the quantity de- 

manded {l ] , and the flying hours JH ». The flying hour totals are 

broken cut by aircraft type/model/series (TMS).  The data spans the 28 

quarters from Jan 1967 thru Dec 1973.  The scope of this work is limited 

to recurring demand; requisitions for initial issue, mobilization, and 

rebuild are not included. 

Table 2.1 shows the distribution of items in the final data base by 

classes (definitions follow). 

TABLE 2.1 DISTRIBUTION BY ITEM CHARACTERISTICS 

ITEM CLASS TOTAL COUNT PEMA ASF NON-REP REP INS 

LDV Non-Dynamics 10350 29 10321 9877 44S 25 

LDV Dynamic 1008 24 984 957 51 

LDV Total 11358 53 11305 10834 499 25 

HDV Non-Dynamic 174 30 144 66 108 

HDV Dynamic 99 52 47 26 73 

HDV Total 273 82 191 92 181 

Total Non-Dynamics 10524 59 10465 9943 556 25 

Total Dynamic 1107 76 1031 983 124 

Total 11631 135 11496 10926 680 25 

10 
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The last columns give breakouts by funding (PEMA, ASF) and segment 

(non-reparable, reparable or insurance items).  Usually PEMA are expensive, 

reparable items.  HDV items have in at least one year an average yearly 

dollar demand of at least $50,000 or average yearly frequency (requisitions) 

of at lease 100; the LDV class is comprised of the other item6 (low and 

medium dollar value).  Dynamic components are defined based on a descrip- 

tion of the items FSC, and are those experiencing high rotation rates 

(rotor blades, transmissions, engine components) - the demand for which 

may be quite dependent on FH.  Non-dynamic components are more structural 

in nature.  The LDV non-dynamic class is intended to contain relatively 

cheap non-reparables. 

Again refer to Cohen (4) for a fuller description. 

11 
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CHAPTER III 

MODELS OF PROCESSES AND FORECAST ALGORITHMS 

3.1 Models of Processes 

3.1.1 Structural Forms of Underlying Processes 

Dynamic Mean 

yt -*c+Tt 

xt * Vi + \ (3i) 

E(?t)   - E(vc)   - o 

Var7t - rt
2 

Var  vt  -  qt
2 

y » observed value of process at time (qtr) t 

x e mean of process at  tine t 

•y  ■ additive noise random variable with variance r 

v  ■ additive random change in mean x from time t-1 to time t. 
t 2 

Variance is q 

This model is sufficiently complex to explain short term trends in 

a time series.  Its mean is non-stationary in that it changes from period 

to period.  Moving averages and single exponential smoothing work well on 

this process. 

12 



Linear Growth 

yt -xt +7t 

xt " xt-itßt * vt (3il) 

et-^i^t 

E(St)   - o        Var 5t  - V* 

fi     m  incremental growth in mean of process at time t 

£  - random change in growth term 

Other definitions as above. 

This model allows for linear growth over time of the process mean. 

Its forecast algorithm is a general version of double exponential smoothing. 

Linear regression over time would do well. 

Dynamic Proportion 

2t - V pt • pt 1° 

ufc ■ ut_1 u   , ut >_ o (3iii) 

E(pt) - E(ut) - 1 

2 
Var ot - exp (rfc ) - 1 

2 
Var wt - exp (qfc ) - 1 

z ■ observed value of process at time t 

u ■ mean of process at time t 

P    **  multiplicative noise random variable 

to  - multiplicative random change or "percentage" change in 

mean u from t-1 to t. 

13 

^  



Thl6 model is useful for avoiding theoretically possible negative 

values as in (3i).  Random changes can be regarded as percentages.  With 

the variances expressed as in (3iii) we may make the transformations ; 

xc - log(ut) - 1/2 tt
4 

yt - log (zt) 
(3iv) 

and thereby use system (3ii) with 

2 
6t -1/2 qt Var 6  - o 

J.1.2 Processes Utilized in Structural Forms 

The time series [D /H \  and |D j are natural candidates for 

investigation in the three structural forms.  The former will yield fore- 

cast algorithms for a demand per FH rate which in turn can be used to 

predict future demand based on projected FH.  Algorithms for the latter 

process will also be developed here and for comparison purposes be applied 

to the current peculiar item data base, but their real potential will.be 

realized when forecasting common items or where the use of a program ( *Hj 

factor is not feasible. 

In (3i)    let xt - E(Dt>,     then yt - Dt 

In (3i)    let xt = E(Dt/Ht)    then j.    - Dt/Ht 

In (3iii)  let ut - E(Dfc) then y ■ log D 

In (3iii)  let ut - E(Dt/Ht)    then yt - log (Dt/Ht) 

It is now apparent that past history of four time series (D }, {D /H \, 

I log D j, Llo8 Dt/
H
t \ ma>r be used in algorithms to forecast their upcoming 

values.  Appropriate transformations will then yield forecasts for demand. 

See Reference jf3].  u,j*,uare assumed log-normally distributed. 

14 



There are many combinations as we shall see and the investigation becomes 

quite comprehensive. 

3.2 Forecast Algorithms 

The following sections describe each algorithm tested, relating it 

to a model.  As applied to the four time series in Section 3.1.2, the 

algorithms forecast a value y over a given lead time where y represents 

D, D/H, log D, log D/H.  Initialization procedures are described in 

Chapter IV.  The theory for the development of these procedures is given 

in Orr [/3]. 

Each section has designated abbreviations for referring to tabulated 

results in Chapter IV.  The underlying model is also noted. 

For each of the three model structures in Section 3.1, there is an 

optimal algorithm, which minimizes mean square error of forecast of a 

future period.  These algorithms are Kaiman filters and are designated 

as such in the following sub-sections.  Sub-optimal algorithms are 

also described; exponential smoothing is seen to be a special case of 

Kaiman filtering; moving average algorithms are in a separate class but 

are particularly suited for dynamic mean models, with the base period 

parameter related to the Kaiman filter parameters. 

3.2.1 Kaiman Filter - 1st Order 

(i)  Designator - KAL-1 

yn(») 

Model - Dynamic Mean 

(1) 

- x    ,  T G -(y    - x    .) n-1        n    n        n-1 

„2 + r2G ^n n      n 
n+1      ,2+r2G    +r nn n      n n+1 

(2) 

(3) 

* 

. ■ i ii  ■   n 

where 

- observed value in period (QTR) n 

In our context, sub-optimal refers to methods which also can "fit" the 
model generated data and use the process parameters. 

15 



x » estimate of mean of process at end of period n 
n 

y (O » forecast at end of period n of the process value X. 
n 

periods later 

G * variable weight, "smoothing parameter" 
n 

2   2 
q  , r     : as defined in (3i) 
^n   n 

(ii)  Exponential Smoothing 

Designator - EXPSM - a sub-optimal algorithm for 

Dynamic Mean 

Let G be a constant G.  Then (2) is exponential 
n 

smoothing relation. 

It is seen in Section (3.3) that an appropriate G 

for a corresponding moving average of base B is 

il  + 4c - 1 
2c 

with c - (2IT - l)/6 

<4) 

(5) 

(iii)  Moving Averages with Fixed or Variable Base Lengths B 

Designator - MAA, MA8, MAI2  Model - Dynamic Mean 

(Denotes ('  Qtrs) 

y (O - x 
n      n 

(6) 

n   B j-i n"j 

Designator - MAKB 

as in (6) and (7) with 

B - >/(l+6k)/2 

(7) 

(8) 

where k is forecast parameter discussed in Section 3.3. 

With this B, a moving average is suboptimal. 

16 



3.2.2 Modified KAL-1 Based on Cohen's Results 

(i)  Designator - KALl-H Model - Dynamic Mean for 

y - D/H 

In Cohen's investigation [4], the best algorithm tested 

was basically REG8 described below.  We can postulate a model for which 

this REG8 is a suboptimal algorithm. 

Dt*\Ht+7t (9,) 

a «a , + Y 
t   t-1   t 

(10) 

Dividing (9') by Ht we obtain 

Dt/Ht - S + } (9) 

where equations(9) and (10) are in Dynamic Mean form (3i) and where 

Var \    - 1/Ht
2 Var 7^ (11) 

We assume a constant k (see Section 3.3.1) defined by 

Var V 
2,    2  _ 

Var 
t     2, 

77  * rt /qt (12) 

Assuming Var?' not dependent on H  (homoscedasticity), 

rt
2 Ht

2 - constant - r^2 H^2 (13) 

- 

Therefore equation (3) becomes (using subscript n now to denote algorithm 

iterations) 

2    2 
q  + r  G 
n    n  n         

"+1       q2+r2C    +r
2H2/H      2 nn n      n n      n      n+1 

1 + kG 

1+kGn+k Hn2/Hn+12 

17 
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and as before in Section 3.2.1 

>:
n<«> " \ (15) 

"B ' Vl * *n% - Vi> (16) 

Note that, as with exponential smoothing, (16) gives less and less 

weight to older quarters.  On the other hand (14) indicates that quarters 

with relatively high FH are given more weight; if H ., >> H  then 
n+i     n 

G ,. •*■   1 and x .- -v y  . 
n+1 n+1  7n+l 

(ii)  Regression Technique from Cohen [4] 

Designator - REG8       Model - Dynamic Mean (9),(10) 

Use only with y « D/H 

yn(i) - xn (i7) 

*n"   I V|*lVjfl W 
J-l 

where weight  M _ is given, 

2  8    2 
u, 4 - H  , / t  H  / (19) 

Designator - REGKB 

Use B given by (8) in place of 8 Qtrs 

Equation (18) is in the form of a weighted moving average.  Cohen's 

algorithm written in this way demonstrates its appropriateness for forecast 

model (9),(10).  According to theory, the weights should be inversely 

proportional to the variance of the process variables y when forming 

minimum variance estimators of the type (18).  REGKB is an obvious 

modification, to allow the base to vary. 

18 



3.2.3  Kaiman Filter - 2nd Order 

Designator - KAL 2 - GEN Model - Linear Growth 

\U)   -Xn + **n (20) 

XnBVl+Vl + Gn'^-Vl(1)) 

*A-««-l + V   (yn" Vl(1>) 

(21) 

(22) 

G    changes as  in   (3) 

Hn'^ /l-Gn)/(100 rVqn
2) (23) 

H  is an approximation assuming p  in system (3ii) is 
n n 

small. 

(21) and (22) are again the basic filter where variable weights G , H 
n  n 

are applied to the one-step-ahead error to obtain adjustments to the 

previous estimates of the process level and growth means, x and ß 

3.2.A Modified KAL 2 for Log Series 

Designator - KAL 2 - BQ       Model - Dynamic Proportion 

Use (20), (21), (22), (23) with 

H - o 
n 

ßn - - 1/2 cn 

(24) 

(25) 

This algorithm is used with log D or log D/H series of values, by 

which (3iii) is transformed to (3ii) thru (3iv). 

3.3  k-Factors 

An important parameter of both the models and the algorithm is the 

k-factor. 

. m  Variance of noise in process 
Variance of random change in process mean 
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q  is associated with short term correlations in changes in the mean, 
n 

k is assumed constant in all of the models. 
2 

If in addition r  does not vary by period, i.e. 

2 
r  ■ 
n 

2 
r 

then (3) becomes 

Gn+1 

1+k G 
n 

1 + <V l)k 

(27) 

(28) 

G in (28) approaches a limit G - 
/l + 4k - 1 

2k 

Orr [/3] shows that given a dynamic mean model with parameter k, the "best" 

(in the sense of minimizing mean square error of i-period ahead forecasts) 

moving average algorithm should use B periods (quarters) as its base with 

B given by (8). 

k is an indicator of how stationary the process is; high k values 

imply relatively small changes in the process mean and more reliance 

should be put on past history for forecasting; low k indicates changes 

in the mean, short terra trends, and relatively low observation noise, 

and more weight should be put on recent observations (note (28)). 

There are several ways of obtaining estimates of k.  Orr [n] 

obtains formulas for k using mean square errors of moving average forecasts. 

Average values of k for items falling in cells of various stratifications 

were obtained in this study.  A stratification by yearly requisitions 

showed the most definite patterns and the average values of k are tabulated 

in Chapter IV for the four time series.  These tabulated results are used 

to update k every year in the above algorithm in cases where an item 

migrates from one requisition class to another.  In a sense the algorithms 

have now become dependant on a catalog parameter (average k) derived 

for groups of items which is updated yearly. 

k is quite valuable in determining the parameters for suboptimal 

algorithms.  If one is constrained to use a MA or exponential smoothing 

algorithm rather than a Kaiman fiBer, equations (4), (5), and (8) give 

all the necessary relations among G, B, k and are a rigorous alternative 
2 

to Brown's [3]  G ~ -r-r 
B+1 20 



CHAPTER IV 

ERROR ANALYSIS 

4.1 Computer Program to Gather Error Statistics 

The program, though long, is conceptually quite simple.  Only the 

forecasting subroutine is changed in a given run.  Different error 

measures (Section 4.2) are averaged over a time horizon by item and stored 

on a tape by item for suosequent stratifv ng procedures.  A preliminary 

output gives the error measures averaged over items in two strats: 

AYDx UP   :   0 - $5000, $5000 - 50000, $50,000 & up 

AYF (req)  :   0-3, 4-12, 13 & up 

Significant Logic: 

1. 735 items deleted for zero FH in last quarter. 

2. 9 item»deleted with an absolute error larger than 2000 

in any quarter, using moving average of 8 quarters. 

3. Estimates of AYD, AYF are averages over the time horizon 

of the 8 quarter moving averages. 

4. Time horizon goes from quarter ID to qtr 28 where ID is 

the first non-zero FH qtr for the item. 

5. Forecasts start in 8th qtr after ID (i.e. 2 year warmup) 

6. Error statistics accumulate in 12th qtr after ID. 

4.2 Error Measures for One Item 

Described in the following subsections are all the error statistics 

accumulated on demand forecast error.  Note 

D (I)  - forecast at quarter T of demand in quarter f + /. 
T 

So if process forecast y (£) is for the observed variable D/H then D (!) 

yT(*) • HTiJ. where &    ^  1B the projected2 FH in period T** 

These measures are averaged over items in particular stratification 

schemes. 

Study used actual FH for "future" periods, but these did not differ sig- 
nificantly from projections, which are really target programs. 

21 



Mean Absolute Deviation 

This error measure and the following are computed for one quarter 

MAD|t and four quarters MAD.  All un-subecripted measures refer to yearly 

values. 

T 

l r+T , t- 
MAD--   ZT-MD   -0«» 

T  if •! 

Mean Square Error 

MSEX :  replace |- | by (.)2 in (1) 

MSE  :  replace! ■ | by (-)2 in (2) 

(1) 

(2) 

Error Bias 

Error. : replace j • | by (•) in (1) 

Error  : replace • • . by (•) in (2) 

Absolute Error Over Forecast F 

|^1!/F1  :  replace | • | by I 'l/D^U) in (1) 

A 
\V\lY      :     replace j • j by I • I /   Z. D _(0   in  (2) 

/ = l 

Absolute Error Over Actual Demand A 

|ei|/A1  :  replace | ■ I by I • \l\^  in (1) 

4 
\l\lk       :  replace | • | by | • | / Z   D  .  in (2) 

Absolute Error Over Average of Demand and Forecast 

;ti(7 1/2 (A^) 

If 1/ 1/2 (A+F) 

obvious 

22 
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Relative MAD 

MAD/AYD 

Relative MSE 

MSE/(AYD)2 

In the final tabulation of the algorithms, we looked at error 

measures of one year forecasts since this corresponds to representative 

lead times.  ; /F and |C|/A have built-in disadvantages when F or A 

equal 0 or F,A are large.  MSE is more sensitive to large error than MAD. 

Final four measures selected are: 

MAD, MAD/AYD, MSE/(AYD)2, jc'i/l/2(A+F) 

The lnst three are relative measures, necessary when combining items with 

different demands.  The MAD is useful for low demand items. 

Before presenting the tabulated results (Section A.5), tabulated 

values on the k-factor are presented. 

A.3 k-factor Tables 

Methodology is presented in Orr Q3).  For log D and log D/H, both k 

and q are obtained since ß - -1/2 q is needed (equation (25) Chapter III), 

Stratifications using the following variables were investigated - 

requisitions per year 

average yearly demand 

1/ Unit Price 

dollar demand 

average order size 

req 

AYD 

1/UP 

AYD • UP 

AYD/req 

req and AYD • UP give similar patterns by strat cell which are explainable. 

Other stratifications did not yield strong patterns.  Table 4.1 gives the 

k-values by item requisition for the four processes, D, log D, D/H, 

log D/H. 
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TABLE 4.1 k-FACTOKS BY REQUISITION CLASS 

D | log I) D/H 1 log D/H 

Cell Upper 
Bound 

f 
Items 

Avg  1 
Reg  . 

k        MA j 
Qtrs. 

q k MA j 
Qtrs 

V; MA 
Qtrs 

% k MA 
Qtrs 

1 1 1489 .59 0 1 .16 3.69 •j 0 1 .34 14.56 I 

2 2 1354 1.52 3.164 3 .20 6.77 « ' 7.34 5 .38 31.59 8 

3 3 1176 2.50 4.251 A .22 8.12 5 14.18 7 .36 48.13 9 

A 4 873 3.49 4.399 4 .26 8.18 5 ,20.79 8 .38 52.71 9 

5 5 636 4.49 
1 

4.71 4 .26 9.75 5 '.31.19 
1 

10 .38 54.71 10 

6 6 513 5.51 j   3.464 3 .30 7.67 4 ;28.31 
i 

10 1.46 54.7 10 

7 8 768 6.95 3.864 3 .34 6.87 4 •75.9 15 |.40 54.7 10 

8 12 943 9.74 3.674 3 1.36 7.23 4 
i 

eO !.42 50.16 10 

9 lb 747 14.68 3.120 3 .42 5.43 3 L oO .38 58.88 10 

10 ■ft 1204 35.99 2.022 3 1.44 3.96 3 J  <x> oO 1.34 77.0 12 

For D, D/H:  MA Qtrs found from B , 
l+6k 

For log D, log D/H:  MA Qtrs found by search to minimize (A.7) 

V   error in forecasting process value 
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Analysis 

2 2 Remember r  is process variance around a mean and q  is associated 

with short term correlation in changes in the process maan.  High k 

reflects stationary processes; low k is associated with short term trends. 

k values for D/H and log D/H processes increase with increasing 

activity (req).  This is because demand becomes more correlated with FH 

as activity rises.  The nean of the D/H rate becomes more stationary 

(higher k).  Also the k values are higher than those for the corresponding 

D and log D series since these processes are more volatile and reflect 

trends in FH. 

Note that for D and log D series that k increases, then decreases 
2 2 with req.  For low // of requisitions, q  is high (relative to r ) in- 

dicating that demands tend to come in correlated "bunches".  For high 

requisition activity, these demand series show trends due to changes in 

FH.  Hence k is somewhat lower at top and bottom of these columns than 

in the middle. 

The behavior of q under log transformations (see columns) is not 

fully understood. *^# 

4.A Forecast Algorithms - Initialization and k-'Jpdating in Computer 
Program 

Equations for KAL-1 in (2) and (3) Chapter III are started up using 

where 

*0 ■ /* + G
0 <V7*> 

r2 

^ 2 T +r o 

y ■ initial observed value of process 

h   B  mean of a prior distribution on X 

2 
T  ■ variance of a prior distribution on X 

2 
r ° variance of estimate y 
o Jo 
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• 

In lieu of a catalog approach, using statistics on groups of items 
2 to get A,Tj which was not used (see Chapter VII), the 8 qtr warmup 

period was used. M  was obtained from an 8 qtr average and y  from the 
2    °     2 

last 4 qtrs.  Assuming some constant process varianceK in warraup,T ** 
2 2 

A /8 and rQoc/l2/A>  Therefore G was assigned a weight of 1/3. 
o 

For KAL-2 , ßo  - 0 

For moving average algorithms, the initial x is obtained from the 

previous B quarters. 

Every 4 qtrs, starting with 8th qtr, k or B is updated by a table 

lookup for the appropriate process based on the current 8 qtr moving 

average estimate of the yearly requisitions. 

4.5 Tabulated Results on Error Measures 

The following 16 tables present the average values of the four error 

measures - MAD/AYD, MSE/(AYD)Z, MAD, /£",'/1/2 (A+F) - for forecast techniques 

applied to the four time series, {D}, [D/Hj, (log DJ, Jlog D/HJ.  The 

results were obtained using the same stratification (on average requisitions 

which gave the final k-values.  This natural consistency in performing 

stratifications allows one to observe how error measure values vary as 

k-factors change, and indicates how implemented forecast procedures which 

may vary by requisition class would perform. 

Refer to Section 3.2 for a description of the designators.  Not all 

designators - time series - error measure combinations are included. 

Some forecast techniques were eliminated due to preliminary runs with un- 

promising results; as the experimental design evolved some branches of 

the combinatorial tree were not climbed to a great extent; not all of the 

modified algorithms based on Cohen's results (see Section 3.2.2) were run, 

since all of these are tested in the simulator. 
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' 

Cell 

1 

2 

# 
Items 

1489 

1354 

Avg. 
Rcqs/yy 

.59 

1.52 

3 j  1176 I  2.50 

T-- 

7 

8 

9 

10 

873    3.49 

•7- 

636    4.49 

—l , 
513    5.51 

 j_ 1 
768 

943 

747 

i 1204 

9703 

9.74 

MA4 

1.402 

:-!AK3 

ALGORITHM 

KALI 

1.291 

KAL2-GEN 

1.337       1.418 

1.148 

1.064 

#-—-•> ■ ■■»■ 

1.185 

1.071 

1.757 

1.422 

4.832 

1.608 

1.177     1.262 

1.067   |  1.141 

EXPSM 
G:  MA4 

2.764 

1.375 

I 

1.136 

1.052 

{   .976 .978 I 

.965 .950 

.960     1.017        .944 

.929      .994        .944 

6.95 i       .913 .898 

J 
14.68 I 

35.99 

TOTAL. 

.850 .838 

.755 

.669 .641 

1.045 1.036 

.869 

.802 

.918       .885 

.839 

.717 

.610 

1.089 

.742 

.623 

1.599 

.825 

.753 

.653 

1.235 



Cell 
# 

,   Items 

1A89 

Avg. 
Reqs/yv. 

< 

.59    , 

MA4 MA8 

ALGORITHM 

MAI 2 MAKB KALI REG KB REG 8 

1 1.134 

1.088 

3.764 

1.382 

10.265 

1.946 

3.529 

1.629 
i 
I.«. .... - i 

,     3.682 

1.614 

2.705 |    3.293 

2 1354 1.52 
i 

j 
2.50 

i 

L 

1.386 i    1,21? 

3 1176 .892 

.875 

.960 1.201 

1.174 

j     1.082 

  

j     1.102 

;    1.093 
i 

1.091 

1.005 .934 

4 873           3.49 .988 .955 |      .886         1 
'                        j 

5 636 

1 

4.49    i f        .782 

.768 

.806 

.836 

.912 i        .912                  .873 
! 
i                            f 

.845 .789          j 
i                        i 

NJ        6 oo 513 

11   '        "i 

5.51 
| - ^ 5 

.931 .928 .880 .850 

!                          t 
\ 

.786 
f 

7 768 
r 

6.95    1 .723 
1 

.745 .831 .879 .792 .781 
• 

.727 
j 

8 943 9.74 .658 .671 .734 .776 .687 .720 
i 

.663 

9 747 14.68 .593 .616 .663 
; 

.701 .621 .648 .610 

10 i 1204 33.99 

1 

.479 .491 .524 .563 .493 .515 .482 

9703 
I 

TOTAL.    | 

1 

.829 1.285 2.392 1.351 1.341 1.149 1.175 

J C 1 



\ 

Cell Items 
Avg. 

Reqs/yr«* 

1A89    |        .59 

1354 1.52 

1176    i     2.50 

1.242 1.325 
i 

i 
1.041 1.073 

MA4  

1.219 

KAKB 

ALGORITHM 

JULL 

1.428 

KAI:-£C 

I 

8.659             7.991 
-I  

1.808 1.605 

KAT 7-fiEN 

7.918 

1.733 

1.135 



r 

Cell 
I 

i Items 

1489 

1354 

Avg. 
Reqs/yr', 

• 

.59 

1.52 

MA4 MA8 

ALGORITHM 

MAKB KALI KAL2-BQ 

1 .551 

.736 

.748       .773 

.708       .710 

1 

\-   ■     ■     ■ 

.770 

.694 

.714* 

,09* 

.547 

.694* 2 

3 1176 

873 

2.50 

9.4) 

.747 

.744 

.731 .725 

.721 

.749 

4 .724 !   .754 
1 

1        ! 
t 

5 636 4.49 j 
[ 

\     .728 .722 .720   j  .710 .774 

j 
o o 513 5.51 \ •  .707 .698 .690 

1 
.674       .743 

1 i 
7 768 

] 
6.95 1 I  .676 .674 .678 .661 .746 

'; 

8 943 9.74 .643 .647 .656 .642 .738 | 

9 747 
> 

14.68 j .575 .588 .607 .587 .698 

1 

! 

10 / 1204 35.99 .461 .474 .499 .482 .642 ' t 

9703 
~  1 

TOTAL. .646 .671 .679 .666 .693 
1 
i 

J 1 I 

PPPOR   MFAS1IRE:      MAD/AYD 



r 

I ; 

Cell 

1 

2 

#      Avg 
Items 

1489 

AVg.   1 

Req MA4 

3 

4 

5 

2 6 

7 

8 

9 

10 

.59 

1354    1.52 

1176 I  2.50 » 

873 j  3.49 

 T  

636 4.49 

513 .  5.51 

768 

943 

747 

i  1204 

9703 

6.95 

9.74 

12.967 

4.127 

2.661 

2.288 

KMBB 

ALGORITHM 

KALI 

12.940 

5.081 

KAL2-GEN 

I 
4** 

J  1.889 

1.888 

2.997 

2.498 

2.089 

33.872 ! 184.346 

■     -  "-" 4.917 6.093 

EXPSM 

81.278 

4.078 

2.896    !       3.266 

2.362 2.653 

2.432 

2.072 

1.904 

1.680      }         1.732 

 4  

1.402      j 1.436 

14.68 

35.99 
:... 

TOTAL 

1.142 1.130 

.874 .841 

3.818 4.034 

1.764 

1.640 1.886             2.092 

^     4 .   I 

1.970      j 1.718 

1.545 

1.269 

1.713 1.478 

1.417 i 1.246 

.997 

.728 

6.878 

1.107 

.802 

28.427 

1.011 

.761 

13.295 

     vrcp/rAYnV 



[ 

ALGORITHM 

Cell  i 

1 

2 

Avg.    i 
Reqe/yrj  ^ 

1489    ,        .59 

1354 1.52 

1~ 

10.309  ■  519.026 

4.983  !  29.499 | 
I i 

-,HA12 .^3- 

3093.089  !  481.246 

u SAI.l 
\     - 

437.013 

44.812     31.073  I  19.281 
i 

1176 :  2.50 j 

873 i  3.49 

w 6 

7 

8 

9 

10 

636 |  4.49 

513 

768 

943 

747 

6.95 

111 

1.711 

3.152 

3.126     7.192  ; 

7.404  I   8.955     5.724  |   5.784 

5.230  ;   3.223 
i 

1.278      1. 760 2.691 2.873     1.897 

1.592      2.685      3.261     3.241  j   2.335 

1.170 
i 

 4- 

1.397 

14.68 

. 1204 

9703 

35.99 

TOTAL. 

.935 » 1.112 

.757 .864 

.523 .563 

3.295 78.465 

2.489 

1.579 

2.801 f 1.60. 

1.899  j   1.144 

1.167  j   1.322 

.784      1.015 

443.859 76.630 

.864 

.590 

65.714 

RFf. WP 

155,219 

7.051 

3.172 

J£fi*W^- 

365.904 

1.886 

2.239 

1.270 

.925 

.624 

24.423 

5.446 

2.580 

2.331 i   1.880 

1.438 

1.641 

1.461 |   1.174 

1.001 

.818 

.532 

53.634 

SERIES: D/H- ERROR MEASURE: MSE/(AYD)' 



ALGORITHM 

Cell 

1 

2 

Itema 

1489 

1354 

Avg.  , 
Reqe/yr'] 

.59 

1.52 

3    1176 i  2.50 

4 

5 

| 1 
873 t  3.49 

S 6 

8 

9 

10 

636 , .4.49 

513 ,  5.51 

768 

943 

747 

i 1204 

9703 

6.95 

9.74 

KAKB KALI   1  KAL2-BQ 

13.776     23.377   ! 269.750     231.188 

 \  
4.572       3.567 3.440     3.684 

1 

1.983      2.004 

KAL2-GEN 

228.724 

4.327 

1.466 

(  1.133 1.120 

1.916 1.465 1.969 

1.447       |      1.296                 1.006*               1.384 
 1 I I  

.969 .776* 1.068 

1.085       i       1.072 .896 .716* 1.016 
 »  

.990       j       1.006 
 \  

.834 

.881 .917 

14.68 

35.99 

I 
TOTAL 

.747 .790 

.548 .608 

3.367 4.899 

.757 

.706* .960 

.660* 

.655 

.504 

41.915 

.561* 

.398* 

35.842 

.881 

.793 

.662 

35.801 



ALGORITHM 

Cell 
# 

1 Items 

1489 

1354 

i.  

Avg. 
Reqe/yf, 

- ,M ! 
1.52 ! 

MA4 MA8 MAKB KALI KAL2 - BQ 

1 3.400 

1.538 

5.893 7.273 
L 

4.244 

1.351* 

3.196* 

1.416 2 1.422   |  1.435 

!             1 
3 1176 

873 

t  2.50 • 
■ — j 

3.49 | 

!  1.319 

1.279 

1.278 1.262 

1.197 

1.220* 

I-.. ...  . 

,  1.145 

j  1.027 
i 

.943 

l  1.321 
1 

4 1.205 1.247 
1 

5 636 4.49 i I 1.070 
i 

1.064 1.053 

1.002 

i 

1.162 i » 

u> 6 513 5.51 j - 
' 1.099 1.038 1  1.078 

' 

7 768 6.95 1 
1  .963 .952 .980 .928 1.086 

i 
« 

8 943 9.74 ;  .845 .858 .893 .844 1.020 
1 
I 

9 747 
i 

14.68 .670 .708 .746 .693 .878 i 
t 

10 i 1204 35.99 .445 .465 .514 .471 .700 I 

9703 
I 

TOTAL. 1.387 1.719 

r 

1.926 1.447 1.408 

  

i 

c 
SERIES:  log D/H BRROR MEASURE:  MSE/(AYD)4 
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Cell i Items 

1 

2 

4 

5 

8 

9 

10 

1489 

1354 

Avg. 
R^.qs/yy 

.59 

1.52 

1176 i  2.50 

873 3.49 

636 4.49 

513 ,  5.51 

768 

943 

747 

i 1204 

9703 

6.95 

MA4 

3.267 

MAKB 

ALGORITHM 

KALI 

3.007 

KAL2-GEN 

7.5*        7.844 

JL < 
j 11.105 

j 16.020 

} 20.784 

11.058 

16.508 

20.725 

3.328 

7.873 

5.436 

8.711 

EXPSM 
G: MA4 

4.102 

|  7.690 

10.942  | 11.627      10.845 
i 

16.362  j 17.344   \    15.864 

1 

\  3 9.384   ;  19.065 

1 30.241   j  29.976 

9.74 42.792 

14.68 

35.99 

TOTAL. 
I 

42.287 

64.763 63.630 

156.807   ! 150.811 

38.668 37.795 

19.860  j 21.176      19.761 

' [  
18.869 

29.130 

40.320 

20.457 19.206 

31.050 29.295 

42.356 

60.641 

143.636 

36.326 

63.696 

147.556 

38.208 

41.225 

63.102 

152.131 

37.b74 

mnrtn   \iv » cirrtj? .       v**n 

! 
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- • 

Cell 

1 

2 

Items 

1489 

1354 

Avg. 
Reqa/yr' 

.59 

1.52 

3   .1176 I  2.50 
! 

4     873 i  3.49 

Os  O 

636 !  4.49 

513 :  5.51 

7 

8 

9 

10 

768 

943 

747 

/ 1204 

9703 

6.95 

MA4 MA8 

2.548  |  4.693 

ALGORITHM 

MA12 KAKB 

9.003 5.068 

h : - k 
5.960 6.909 

8.849 

13.117 

i    16.983 

15.634 

9.299 

13.949 

23.936 

16.814 

17.281 

8.819      7.773 

10.733  j   9.666 

KAU 

5.001 

7.916 

15.509 i 15.163 

9.834 

15.122 

24.525 

9.74 

_L 
14.68 

33.320 33.050 

35.'>9 

49.848 51.325 

1 112.445  ( 112.545 

TOTAL 

_ 

29.218 29.899 

18.026     18.211 

19.029     18.771 

17.921 

18.192 

26.510 

34.758 

27.717     26.233 

35.716 

54.903 

117.403 

32.414 

57.288 

122.116 

32.511 

33.162 

51.926 

1.2.024 

REG KB 

4.071 

7.145 

9.189 

13.S72 

17.351 

33.942 

53.562 

114.163 

30.558 30.338 

SERIES: D/H ERROR MEASURE:  MAD 

REG8 

4.184 

6.530 

9.252 

13.137 

16.542 

17.580  I  16.283 

25.036  j  24.046 

32.708 

51.334  j 

109.144 

29.093 



I 

# •     Avg. 
Cell  |   Items [Reqs/yr'' 

1 1489 |       .59 

2 1354 1.52 

MA4 

2.072 

MAKB 

ALGORITHM 

KALI 

2.163 

KAL2-BQ 

4.960       i     4.560 

5.400 5.599 

.1176    I     2.50 8.21] 

4 

5 

r~ "7 

s 6 

7 

8 

9 

i     3.49 
J  

636 4,49 l   15.440 

-    i 
513    ,     5.51 

768 

10 

943 

747 

, 1204 

9703 

14.68 

6.95 

35.99 

TOTAL. 30.635 

8.299 

6.509 

8.399 

5.919 

7.693 

KAL2-GEN 

4.608 

6.401 

11.575 

15.353 

11.388       j   10.555 

8.491 

11.837 

-f— 

1.555 11.6 

14.629       I   13.739* 15.282 

^l .„ 

14.522 !     14.410 

21.672        I     21.627 

32.032 32.424 

I 
51.838 52.502 

129.535   : 129.478 

30.772 

13.8!     12.8:       14.298 

20.183 

30.039 

18.863* 21.4A8 

28.652*   j  32.108 

1 ■ ■ ■ ■  — ■> ■ 

48.739 

120.449 

29.384 

46.155* 

106.202* 

26.766 

53.226 

138.863 

32.816 

SERIES:  log D ERROR MEASURE:  MAD- 



I 

Cell 

1 

2 

Itema 

1489 

Avg. 
Reqa/yj-* 

.59 

1354    1.52 

T 3    1176    2.50 

873    3.49 

S 6 

8 

9 

10 

MM 

1.180 

3.881 

MA8 

1.231 

3.775 

ALGORITHM 

MAKB      KALI 

6.896 

10.564 

636 ( .4.49 

513  :  5.51 

768 

943 

747 

9.74 

15.156 

6.795 

1.239  |  1.199 

3.720       3.692* 3.785 

KAL2-BQ 

1.059* 

6.745     6.671* 

10.606     10.618   j 10.454* 

6.827 

14.686 

Li 819 
14.503   j 14.515 15.175 

14.266   !  14.370 

6.95 j 21.088 20.882 

30.912 31.116 

14.68 

i 1204 

9703 

35.99 

TOTAL. 
1 

48.513 50.029 

108.579     110.350 

26.990 27.261 
1 r 

14.313    14.C33 
-f  

20.982 

31.367 

14.948 

20.585    j  22.243 

30.925   ; 34.257 

51.481 

116.950 

23.308 

50.269 

113.580 

27.665 

57.534 

153.826 

34.075 

SERIES:  log D/H ERROR MEASURE:  MAD 



. 

\ 

\l 

Cell 

1 

2 

u>   6 

7 

8 

9 

10 

1 
Items 

Avg. 
Reqs/yy 

1489    |     ..59 

1354 1.52 

1176 2.50 

7 873 

636 

3.49 

4.49 

513    i     5.51 

768 

943 

747 

/ 1204 

9703 

6.95 

9.74 

MA4 

.539 

.966 

1.013 

.995 

.963 

>:AKU 

.463 

ALGORITHM 

KALI 
EXPSM 

G:    MA4 

.591 .893 

.964 

1.025 

.996 

.962 

1.051 1.101 

1.060               1.064 
 I   „  J  

1.017 1.025 

.958 

.956        i       .953 

.913        i       .911 

 4  
.876 .869 

14.68 

35.99 

TOTAL. 

.816 

.719 

.802 

.697 

.853 

SERIES:    D 

.838 

.944 

.957 

.956 

RQ7 

.849 

.910 

.869 

.783 

.684 

.869 

.814 

.725 

.933 

ERROR MEASURE:     It 1/1/2(A+F) 



r. 

\ 

#   I  Avg. 

Cell | Items [Re?*/yr 

1489  I   .59 

ALGORITHM 

MA12      MAKB 

SERIES:  D/H 
ERROR MEASURE:  K 1/1/2 (A+F) 



I 

Avg. 
Cell » Items I Reqs/yr'" 

1 

2 

5 6 

8 

9 

10 

1489 .59 

135A    1.52 

.1176 I  2.50 

 -    "" 
873 ;  3.49 

636 A.49 

513 i  5.51 

768 

943 

747 

. 1204 

9703 

6.95 

MA4 

.406 

.890 

1.018 

1.017 

.973 

I  .954 

KAKB 

.429 

ALGORITHM 

KALI 

1.538 

.944 1.342 

—1~ 
1.058 1.186 

1.023      1.090  j 

.972 

.951 

.990 

.708 .905 

.964 

.894 

9.74  3  .860 

14.68 | 

35.99 -I 
TOTAL. 

.857 

.803 .807 

.695 .690 

.820 .836 

.845 

.783 

.677 

1.074 

SERIES:  loz D ERROR MEASURE:  !f1/1/2(A+F) 



Cell 

1 

2 

#      Avg. 
Items 

1489 

1354 

Reqa/yr'- 

.59 

1.52 

1176 i  2,50 

4 

5 

873 i  3.49 

£6 

7 

8 

9 

10 

-r 

MA4 

.388* 

MA8 

ALGORITHM 

MAKB 

.485 

KALI 

.475   i  .556 

.910      .917 .872*       .920 
t 

1.088 1.047 

I 1.121 

636 4.49 

513  i  5.51 

( 
i 1.140 

1.103 

768 

943 

747 

1204 

9703 

9.74 

i 

1.136 

1.163 

1.117 

1.078   j 1.069 

1.131   I 1.119 

6.95 i  1.071    ■  1.091 

1.006 

14.68 

35.99 

TOTAL. 

1.031 

.881 .913 

.688 .720 

.880 .922 

1.165   ; 1.151 

1.114     1.101 

1.095 

1.049 

t 
1.073 

1.031 

.951 

.776 

.930 

.926 

.753 

.931 

^r^f,  n/u mnnn »/r.rimr.   l&fMM/*t«*N 



4.6 Analyses of Relative Performances and Trends in Tables 

Trends in a Column 

For the MAD measure, values increase as activity (reqs) increases, 

since the demand is growing larger and hence errors increase.  For the other 

three relative error measures, the general tendency is for column values 

to decrease with activity; the denominator tends to increase faster than 

the error function in the numerator.  In some cases (especially note 

|* 1/1/2 (A+F)^there is an initial increase before this general tendency 

takes over; for the first few cells with very low requisition activity, 

there are aberrations - frequent zero error with actual and forecast being 

zero, giving very low average values of the measure - after which increased 

occurrence of demand spikes amongst the zero periods raises the error 

measure value for a tine. 

Relative Performance of Algorithms by Series 

D series:  Expected results hold across the four measures.  For 

majority of cells, KALI is best.  Good performance of EXPSM indicates that 

part of KALI performance is due to the iterative formula of exponential 

smoothing.  MAKB does a little better than MA4. 

D/H series:  Longer base periods did not do well (MA4 best, 

MA12 worst).  The data base has strong impact here since rates based on 

very low FH in the initial warmup period can give quite inaccurate estimates 

of the D/H rate for the remainder of the horizon (shorter base periods do 

not pick up these low FH or do not keep them a. long).  KALI does better 

than most of the MA's and is the best for most cells under measure 

if 1/1/2 (A+F).  REGKB and REG8 do better than KALI for three measures and are 

quite close in performance between themselves. 

log D series:  MAKB outperforms MA4 in the middle cells but not 

overall; this is contra theory.  KALI is generally better than these as 

expected and KAL2-BQ, which accounts for the theoretical bias due to log 

transformations, does the best in the majority of cells. 
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log D/H series:  Explanation is basically same as D/H series. 

Log transform has tempered impact of low FH and cell 1 results are not 

as horrendous.  KALI is outperforming the MA's in most of the cells. 

KAL2-BQ's performance is disappointing. 

Comparative Performance Betveen Series 

D vs D/H:  Values for comparable columns indicate smaller values 

for D/H series, especially for the higher activity.  This is theoretically 

expected; nore active items are correlated with FH, D/H rates :.re relatively 

srable, k-values are higher, hence forecast errors are smaller. 

D vs log D:  Except for measure |ti/l/2 (A+F) (the significance 

of which shall be seen in Section 4.7 and Chapter V), the error measure 

values for log D are smaller than those for D.  This is apparently due to 

log D forecasts having smaller variance; hence the overall variance of 

forecast error may be smaller, although the bias may be significant. 

D/H vs log D/H:  Same comments as above. 

log D vs log D/H: The general observation is that values for 

comparable columns are smaller for log D/H for less active items. This 

is counter-intuitive; a theoretical explanation is given in Orr ['$), 

4.7 Candidates for Further Study 

Section 4.6 indicated some general patterns and some particular 

comparisons.  When analyzing all 16 tables simultaneously to select several 

promising candidates, one must be circumspect.  The "totals" roust not be 

too influential, because one or two cells might have had large impact.  Cell 

1 acts strangely in many cases due to the occurrence of many zero-demand 

quarters; anyway the final forecast algorithm would not be utilized for 

very inactive items. 

The "best" algorithm (I shan't give reasons.  One may check tables) 

which is not too complex is a hybrid: 

Cells 1,2,3      Use KAL2-BQ - log D/H „^ 

Cells 4-10       Use KAL2-BQ - log D 



Of those involving FH which does not duplicate (4.i) and is not a hybrid 

KALI - log D/H (4.ii) 

Based on Cohen's [4] results, REG8, and its modification REGKB and the 
2 

theoretically modified KAL-H will be studied further 

REG8   -  D/H (4.iii) 

REGKB  -  D/H (A.iv) 

KAL-H2 -  D/H (4.v) 

Two algorithms not involving FH are chosen.  KAL2-BQ-log D is already part 

of 4.i.  MAKB - log D was chosen over KALI - log D since it was a bit more 

consistent and not much worse than MA4 - log D, but more interesting. 

Finally KALI was chosen as the algorithm on the pure [}») series 

MAKB - log D (4.vi) 

KALI - D (4.vii)  Stf 

The performance of these algorithms in terms of cost-effectiveness 

curves based on simulation results are presented in Chapter V. k 

4.8 Relative Merits of Statistical Error Measures 

We wish to have some indication rA  how well the 4 statistical error 

measures rank the algorithms in Section 4.7 as compared to their rankings 

by cost performance in the simulator.  We use results from the forthcoming 

chapter on simulation runs for some 60 active items (HDV-Dynamic group). 

To be comparative we obtained average lankings for the last 5 cells in the 

appropriate columns of the tables.  The results .ire shown in Table 4.3. 
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TABLE 4.3:  RANKINGS OF b  ALGORITHMS BY PERFORMANCE MEASURE 

MEASURE ALGORITHMS 

RECK3 
D/H 

REG8 
D/H 

KALI 
D 

MAKB 
log D 

KALI 
log D/H 

SIMULATOR COST 
PERFORMANCE 

1 2 3 A 5 

MAD/AYD A 2 5 3 1 

MSE/AYD" A 2 5 3 1 

MAD A 2 5 3 1 

•t1/1/2 (A+F) 2 1 3 4 5 

2 
For the 3 measures MAD/AYD, MSE/AYD , MAD, we had seen previously that 

the algorithms on log series had generally lower error measure values than 

those of D, D/H methods.  These 3 measures are sensitive to variance of 

the forecast, which is lower for "log" algorithms.  Since 

2 
Variance of forecast error ■ variance of forecast + (bias) 

(5) 
+ process variance, 

these "log" types perform well despite bias term.  However, simulator cost 

performance apparently is sensitive to a bias (consistent over or under 

forecasting). 

The algorithms involving D, D/H have higher variance of error (and 

hence higher MAD, MSE) but lower bias and this is reflected in their 

simulator performance. 

Note that the iC//1/2 (A+F) measure "tracks" the simulator rankings 

fairly well.  This is explainable; briefly, the measure is related to a 

mean square error on the logarithm of forecasts and in calculating variance 

of the log of the forecast, little inherent advantage is accrued by log 

series algorithms.  However, this measure can obtain values only between 0 

and 2; it is less discriminate than the other 3 as can be seen from tables. 
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The following summary table summarizes the merits of the error 

measures. 

TABLE 4.4 MERITS OF MEASURES 

PERFORMANCE 
MEASURE 

TYPE USEFULNESS 

MAD/AYD  , 
MSE/(AYD)' 

MAD 

161/1/2 (A+F) 

SIM 

Forecast     Initial Screen:  gives good discrimina- 
Error      tion of log algorithms amongst themselve 

Statistic    or non-log models amongst themselves 

Cost 
Performance 

! 
As above.  Especially useful for inactiv 
items (cells 1,2) 

Initial Screen - qualitative rankings 
of algorithms correlates with simulator 
rankings.  Suffers from "sameness" of 
values. 

Final Screen - jseful for several 
candidates.  Tends to be costly. 
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CHAPTER V 

SIMULATION ANALYSIS 

5.1 Simulator Overview & Special Features 

The final selections were cade by observing the algorithms* performance 

in Army NICP environment using the DoDI A140.39 simulator (See Cohen [/7]). 

Subsequent changes to the simulator and a description of its operation is 

found in Cohen [4-]« 

The results of the simulation runs appear in the next sections in the 

form of cost-performance curves. 

p 

4 

1   i 

The curves are traced thru several "A" points for each algorithm.  The 

lambda Q\)  values reflect an operating policy, in terms of a marginal 

cost for time weighted requisitions short, based on budgetary constraints. 

See Deemer, Kruse [&]   for a complete description. 

Features of Simulator Operation Differing from Cohen [4] Runs 

The algorithms have the same starting conditions prior to accumu- 

lating performance statistics.  To do this, during the warmup period 

(2 years) all algorithms utilize the MA8-D algorithm.  Of course, also 

during warmup, the algorithms obtain their various forecast parameter 

starting values. 

At the end of the simulation, excess cost is charged to assets over 

and above RO assuming projected annual demand obtained from the highest 

A3 
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forecast among MA4-D, HA8-D, MA12-D predictions.  Projected assets re- 

maining after this maximal forecast i6 a conservative estimate of excess. 

Forecasting Between Quarters 

In many cases policy dictates forecasts at times other than on 

the quarter.  The algorithms were derived for forecasting periodically 

(quarterly) and updating parameters every quarter.  The modification for 

forecasting between quarters is to use the algorithms basic relation for 

x on a "moving" quarter of observations on the process variable y.  The 

new values are not retained after the forecast, nor are any parameters 

updated. 

Example:  KALI at time n+£« where L is a fraction of qtr. 

x + G cy 
n   n *\ 

- x ) 
n+£    n 

where *J    is a "moving" qtr up to time n+A . Then forecast 

P    (.V) ■ z.  These values are not retained after n-HA. 

5.2  Inltl.il Runs 

The seven algorithms of Section 4.6 were programmed in subroutines 

and simulation runs were made for various /k values on 60 HDV - dynamic 

items.  These runs are not too costly because of the few number of items; 

but these costly active items give an immediate indication of the Impact 

of using program factors.  The resulting curves are presented in Figure 5.1 

One can see that the log type algorithms do not do well on a cost 
2 

performance measure.  The three D/H algorithms, REG3, REGKB, KAL-H are 

clearly superior, indicating that use of FH in forecasting is warranted. 

(This agrees with Cohen's results).  Hereafter we shall investigate only 

the FH algorithms and modifications; the results for D and log D series 

will be studied in a future project for forecasting common Items. 
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5.3 Final Four Algorithms and Resulting Curves 

The final program factor algorithms are summarized below.  1794 

is the designator for the current Army program factor technique and is 

the base case for obtaining relative performances and cost savings 

(Chapter VI).  All algorithms operate on the variable y - D/H, three 

of which are weighted moving averages. 

REG8: 
8 

Xn * *  Wn-j+l yn-j+l 
(1) 

2     ;   2 
Vj+i ■ VjV l

±ml Vi+i (2) 

REGKB: 
As above with KB qtrs for 8 qtrs 

KB updated yearly based on requisition class. 

1794: 
x - 
n jal Vj+iVj+i 

8 

n-j+1        n-J+1     .   .     n-i+1 
(3) 

Note difference  in weights  (2),   (3) 

KAL-H   : 

x    -x     ,+G     (y    -x     .) n        n-1        n   wn        n-1 (4) 

1 + kC 

n+1 1+kG    +k H2/H* 
n     n n+1 

(5) 

With k updated yearly based on requisition class. 

Yearly forecasts are obtained from x and the projected FH for the 

next 4 quarters. 

D(year) - ^ . (H^ + H^ ♦ Hn+3 ♦ H^) 

51 

(6) 

Ui* | _  j^«r i  .iiii.M 



Simulation Groups:  The simulations were run for '♦ groups of items 

separately (see Chapter II). 

HDV - Dynamic 

HDV - non-Dynamic 

LDV - Dynamic 

LDV - non-Dynamic 

60 items 

151 items 

736 items (722 PEMA items) 

^ 8500 items (the few PEMA items were 

not included in the results).  Due to 

cost of runs, 1/4 of these iuems were 

randomly selected for simulation in 

obtaining average costs per item in group. 

The final combined curves for all items were obtained from the other 

4 graphs by weighting costs by fl items in the group and by weighting days 

by // requisitions and if  items. 

Overall rankings were (best to worst): 

KAL-H2, RECKB, REG8, 1794 

This was theoretically expected.  Details of the cost savings are 

discussed in the next chapter. 

? 
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CHAPTER VI 

SAVINGS & IMPLEMENTATIONS 

6.1 Cost Savings Over 1794 Policy 

Fron the curves In Figure 5.6, we can obtain the annual cost savings 

per item at a given days requisition delay.  Seventeen days wait is an 

average using the 1794 policy operating at current >. values. 

TABLE 6.1  PER ITEM SAVINGS AT 17 DAYS WAIT 

REG8  vs 1794 

REGKB vs  1794 

KAL-H vs 1794 

$100 

$120 

$180 

These averages were obtained from a data base of 9433 items 

(see Section 5.3).  However, it is reasonable for exposition and mnemonics 

to present for total savings a standard AVSCOM base of 10,000 aircraft- 

peculiar items (and which constitute the bulk of safety level investne it 

at AVSCOM).  Most of this savings is in the HDV-dynamic group (a small 

group of active, costly items), as can be seen in Figure 5.2,  Table 6.2 

summarizes the pertinent cost-savings for this 10,000 item base. 

6.2 Implementation Considerations 

The $1 million savings for REG8, over the 10,000 items, on 

annual investment costs to obtain the same performance (in terms of 

mean days requisition delay) is a significant improvement - the result of 

Cohen's investigations. The algorithm is easily implementable since it 

is a moving average type, differing from the current 1794 algorithm only 

in its weights. 

The REGKB algorithm yields marginal improvement over REG8 and presents 

Further editing reduced data base of Chapter IV, e.g., two aircraft 
types with extremely low initial FH were removed. 
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COMPARISON 

REGS VS 1794 

REGKB VS 1794 

KAL-IT VS 1794 

TABLE 6.2    SAVINGS, PERFORMANCE ON 10t000 ITEMS 

COST SAVINGS AT 
17 DAYS WAIT 

PERCENT SAVINGS DUE 
TO HDV-DYN. 

REDUCED DAYS WAIT (FROM 17) 
AT CONSTANT COST 

$1,000,000 

$1,200,000 

$1,800,000 

78.3% 

75.5% 

86.4% 

On average, excess cost savings *-» 44% of total savings 

15.7 DAYS 

15.4 DAYS 

14.8 DAYS 



implementation problems; some of the requisition classes <6ee Table 4.1) 

require 15 qtrs or more of past history on demand and FH to be retained. 

( *v 4 years or more) . 

The additional savings for KAL-H is dramatic and implementation is 

feasible but presents new considerations.  The formulae in equations (4) 

and (5) of Chapter V look forbidding, but are not really complex.  We 

now summarize what is involved. 

Data Retention (above current requirements): 

Table of k-values by requisition class 

Current value of k-factor 

Current value of estimate x of mean of rate D/H 

Current value of "smoothing constant" G 

Updating : Qtrly 

t     *i "■ 
2 year files of { D ; and ' H J and j R ■ 

1 + k G n-1 

i + k G   . + k or . fnh 
n-l     n-l n (1) 

x . + G n-l   n 
(D/H - xn  ) 
n n   n-l 

(2) 

Updating : Yearly 

Compute average yearly requisitions from last 8 qtrs 

Table look up to find new k 

Requisitions  0-1 1-2  2-3  3-4  4-5  5-6  6-8   >8 

k        0  7.34 14.18 20.79 31.19 28.31 75.9  999 

Forecasting : At n  Qtr 

D-lll.(H±.+HJi,+H,. + Hx/) \  n    n+1   n+2   n+3   n+4 (3) 
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Forecasting : Between Qtrs 

z - x + C.  ("4 - x ) 
n   n  '   n W 

where  ; found from Interpolation of DRD and FH 

files to yield a current quarter rate 

D - z • (years projection of FH at current time) 

There are also necessary special procedures, due to the exponential 

smoothing structure, to handle adjustments of forecasts due to backorder 

cancellations and to breakout forecasts by area (if an item migrates to 

an HDV class).  ALMSA can modify the necessary CCSS routines, with IRO 

assistance, to implement these procedures. 

6.3 Modifications of Algorithms to Use End Item Density as a Program 
Factor 

IRO did some additional analysis which broadens the scope of application 
2 

of the KAL-H algorithm.  Defining f> as an end item density variable and 

I i°i » as the corresponding time series, the algorithm of Section 6.2 may 

be used with ;'J   substituted for H and a different 'able of k-values as 

seen below.  Commands may use P  as the program factor; there must be 

some Justification in that end item density ■ should be correlated with 

some usage variable (e.g. flying hours, miles, rounds fired).  The estimate 

x is related to the rate D//> in this case and the forecast 

D -(x )• (^   +°   +j   +  p      *\ V V  V n+1   r+2  • n+3   n+4; 

Orr [n] does some theoretical analysis which relates the k factor 

for D/f  to the k factors for D/H by the residual variance of a regression 

fit of H by ,-> and by the variance of the time series £/* } itself.  It 

was found for AVSCOM data that 72% of the variance in H could be explained 

by variance in f>  .  Therefore the demand/end item rate is less stationary 

than the demand/FH rate; hence smaller k's and shorter base periods 

B (for MA algorithms) are called for; i.e. less weight is given to observa- 

tion on D/f far in the past.  The following table is instructive. 
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TABLE 6.3 K-FACTOR FOR 3 TIME SERIES 

0 

3.164 

4.251 

A.399 

4.71 

3.464 

3.564 

3.674 

3.120 

2.022 

1 

3 

4 

4 

4 

3 

3 

3 

3 

3 

0 

4.02 

5.765 

6.25 

6.91 

5.16 

5,55 

5.88 

4.99 

3.235 

D/£ D/H 

J 1 

7.34 5 

14.18 7 

20.79 8 

31.19 10 

28.31 10 

75.9 15 

'^> oO 

r*A ^O 

Note that forecasting using only D utilizes short base periods in MA 

algorithms and small k's (less stationary process)^whereas k and B 

increase for D/p and D/H accordingly. 

w 
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TER VII 

CONCLUSIONS, RECOMMENDATIONS & FUTURE WORK 

7.1 Conclusions 

This study has reinforced Cohen's findings - chat forecast algorithms 

utilizing flying hours perform better on the AVSCOM data base than strictly 

demand dependent algorithms.  REC8 is clearly superior to the current 
2 

Array method of utilizing FH as a program factor.  KAL-H yields additional 

substantial improvement in terms of cost savings.  We have also developed 

a rationale and presented empirical tables for forecasting by item class 

(requisition frequency).  A modified algorithm and tables for forecasting 

using end item density as a program factor have been presented. 

Other Valuable Conclusions and Results 

Moving average base periods should be short ( ^4 Qtrs) for 

/D ; series.  MA base periods should vary by item class for ^ D/Hj series. 

Several candidates (non-program factor) for forecasting common items have 

been found.  Three such algorithms are KALI-D, MARB-D, KAL2-aQ-logD. 

7.2 Recommendations 

2 
a. KAL1-H be implemented as the FH-based algorithm for AVSCOM. 

ALMSA, with IRO assistance, to determine the best way of modifying 

CCSS routines. 

b. Analogous algorithms be used at other major subordinate Commands. 

If end item density is the program factor, parameter values need 

to be adjusted. 

c. IRO be tasked to obtain the best non-program factor forecast 

procedure for common items (or where program factor not feasible). 

Common item data base from AVSCOM be used to further screen 

candidates found in this study. 

7.3 Future Research - Aids & Caveats 

Any future studies on demand forecasting at the wholesale level for 

Army secondary items which use this report and Cohen as starting points 
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should be aware of other aspects not fully discussed in this report. 

Forecasting at other Services and/or other support levels should find 

investigation of the models - algorithms useful but not necessarily with 

the same parameter values. 

k-values - These were obtained from time series 7 years in length. 

The most basic assumption in this forecasting is that the past describes 

the future.  However, as more history is accumulated, these k /alues should 

be redetermined on some periodic basis and over some "moving" base length 

(say 5 or 7 years). 

Outlier Analysis - Little work was done on determining which observa- 

tions in a tire series are erroneous or outliers in some sense.  Some 

items (see Section 4.1) were deleted because of very large forecast errors. 

Also it was found that 1171 items had over 50% of their total dsmand over 

the 28 Qtr horizon in 1 Qtr.  Mostly these are inactive items and are 

quite unforecastable by any technique. 

Other Stratifications - Section A. 3 listed some of the item stratifica- 

tions.  Reparable - non-reparable breakouts and weapon system breakouts 

were appended to these strats; some weapon systems had distinctive k values 

for D series, but this was not pursued due to perfomancc of D/H based 

algorithms.  Stratifications by IMPC or FSC were not attempted. 

Error Measures - There is interest in finding statistical error 

measures that correlate better with the simulator cost performance. 

Weighting quantitative error functions (such ab MAD) by unit price or order 

size may prove fruitful.  Future work which could quantify a relation 

between cost performance and forecast error properties would reduce 

considerably the number of simulator runs. 

Prior Distributions - Catalog Approach 

For the Kaiman algorithms where prior parameters (. M 4   C
1  ; 

see Section A. A) are required for startup, some time was spent on devising 

techniques to use statistics on a catalog of items during initial experience 

or warmup.  The catalog aspect was finally scrapped because: 

6A 
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a. The items in the data base are nore heterogeneous than insurance 

items, where a catalog approach is tnore sensible.  This is the case oven 

using a sub-catalog based on an item stratification.  Due to heterogeneity, 

catalog technique can give quite bad estimates for  /- Tv on a particular 

item. 

b. We were unable to develop a reasonable procedure for scaling or 

normalizing a catalog. 

c. After 2 years of warmup, for most items, much weight should be 

given to data experience on that item. 

d. Such a catalog procedure would not accurately reflect real world 

where maintenance factors (engineering estimates of consumption rates) and 

prior distributions based on some other classification of similar items 

may be used. 

Other Forecast Techniques Excluded from Investigation 

a. Subjective - not practical 

b. Segmentation - individual forecasting methods or use of particular 

information for classes of items - not included per se. 

c. Monitoring methods - problems with untrained personnel, clerical 

effort, undesirable response to transients. 

d. Adaptive filters, stochastic approximation - too many data points 

required; item dependent. 

e. Box - Jenkins models - Orr [/3] shows the relationship to techniques 

in this study.  However, it has same disadvantages as in d. 

f. Econometric - Regression methods - only done for FH.  KAL2 is 

actually a general form of a time dependent linear regression model. 

g. Triple Exponential Smoothing - performed quite badly in preliminary 

investigation by Orr and Cohen. 
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