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"-p The purpose of this paper is to develop a tnet'hodologv for ana-
dlf aarlyzing surveillance sensor signals and to translate this .nalysis into1 decision rules. The use of Bayesian statistical technique. prov:ies a
powerful tool for a quantitative approach to decision makiag, t.sj:+c~ially when the analyst has the opportunity to observe or Saple T.:ior

t , to making any judgements. The increased reliance placed on ,f..in-,if.variety of sensors as an early warning system on the modern bitt~e-
field dictates the use of more sophisticated matheinatical. m,.thod,.
to digest the information Lent by these devices. The sosz rocent ex-
ample of this has occuri.ed in the Middle East: where the rrc,3'nc." of a
U.S. surveillance team is an integral facet of an interi.,i EgyptiJau-
Israeli settlement.

The September 1975 settlement engineered by Dr, 1&issingeir's
diplomatic shuttle provided for a U.S. Sinai Field Mis;sin near #:he
Mitla and Giddi Passes to monitor military movements of Israel and
Egypt. This force has the potential for providing surveillance of
not only the key passes but also of the entire length of the U.N.
Buffer Zone, from the Mediterranean Sea to the Gulf of Suez. Whileit can be assumed that these sensor responses will be subject to s,.ru-
tiny at the highest policy making levels, the initial analysis ef the
output will rest with the operators. The surveillance within th je- Imilitarized area can be expected .o consist of aignals from unattend-
ed ground sensors (UGS) and aerial tracking. The constraint on man-
power to support U.S. participation probably will not allow for the
luxury of even rudimentary manual analysis of information on where to
concentrate the surveillance effort. Hence, the observer force will
have to avail itself to state-of-the-art computer systems, their
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display capabilities, and operations research techniques to assist in
arraying even basic decision rules. A similar problem faced U.S. for-
ces in Southeast Asia in the uses of sensor systems. The plethora oi.
information electronically transmitted from UGS and aerial systems
such as SLAR (side-looking airborne radar) and infrared surveillance
required automated analysis to assist decision makers. In order to
meet this challenge and prepare for those that might be expected on a
European battlefield, the Army exerted a considerable effort to update
its command and control procedures by integrating automated data pro-
cessing (ADP) into command and s~aff organizations. The expertise
gained from these research and development efforts, coupled with that
received through the extensive employment of sensors in Vietnam, could
serve as the basis for the establishment of a sophisticated surveil-
lance system not only in the Sinai Peninsula but also in a European
environment.

In this situation, sensor responses can bc aggregated into

two categories: Those received from tracking aircraft ad those gen-
erated by ground forces. The signals from each systf. nre feed elec-
tronically to a centralized observition post where they arc rerorc-d
and routed into a computer for correlation and storage. Through a
predetermined program, the signals are analyzed for intznsit , type.
frequency, and proximity to other signals. Hence, the set of systems
can have a single random variable (not necessarily integer) resulting
from a constant updating of the computer's master file. The develop-
ment of decision parameters, coupled with operational and empirirýal
data from these signals, would allow for the use of a computer s-ib-
routine to fit a probability distribution to the random variate a,--
sociated with each set of sensor responses. At anytime during a
previously delineated observation period, a deci3ion maker can receive
information about both systems. However, at sometime a decision will
have to be made regarding the status of the surveillance plan----.if
surveillance will be increased in a particular area, continued, or
terminated. (This assumption negates any sequentical sampling and it
will be this point in time that will be addressed in thic study.)

DECISION ELEMENTS

The signal analyst can define the elements of a decision ma-
trix as an outcome space (W), a decision space (D), and a loss func-

on, L(W,D). For the purposes of a simplistic environment, W -
, w , where w is the state of nature indicating unusually high

litay activity In the area of surveillance and w2 is normal activi-
t for t e particular area in question. The decision space, D

lid 2,d3 ,contains the alternatives available for the observers:
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d Increase surveillance of an area by concentrating resour-
ces on thit locale.

d2: Continue current observation posture.
2

d : Decrease surveillance posture in the area in favor of
another l~cation.

The expected/estimated losses that result from these decisions
are discrete and, for the purposes of this formulation, could range
from 0, the best situation, to 10, the worst situation.

TABLE 1: Loss Function for D and W

d1 d2 d3

w 0 4 10
1

w2 6 2 0

(The numbers in Table 1 are, in fact, risks (r(wi,d) ..... or ex-
pected losses.) i
Graphically, these risks are shown in Figure I.

FIGURE 1: Risk Set
r(w 2 ,d)

dd

d 2•
10 .r(w ,d)

10

(The line segments, d1 - d2 and d2 - d 3 , define the admissible and
Bayes boundaries.)
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Since D and W are both finite, a minimax decision approach
is appealing because it minimize0s the worst possible loss.I r(w2 ,d) FIGURE 2 r(wld)

10

6

0 .25 .5 1.0
p

z
If the analyst could not make any obervations or samples before ar-
riving at a decision, P shown in Figure 2 would determine the ad-
missible decisions. Hence, for a P z .25, the analyst would choose
d (decrease the surveillance posture 4.n that area in favor of con-
cintration in another area). If P \ .5, d would be implemented (in-
crease surveillance of 'he area). d

However, as r -viously stated, the key element in this form-
ulation is the abilit to associ~te a probability distribution, with
a known mean (m) and variance (s ), to each type of snasor response.
Given the current status of technology and the vast number of tests
and simulations conducted with these systems, the assumption of a
conditional probability distribution for each value of w E W is not
presumptuous. If X is the random variable associated with UGS res-
ponses and Y is the random variable from the aerial surveillance,
then each would approximate some distribution •.

X wi -V • misi) Y Iwi -% m( mjsj

METHODOLOGY

Although X and Y are independent, the analyst must make a
a decision (d ) based on all information available. This would
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-require sampling outputs from both ground and aerial surveillance sys-
tems and incorporating them into a posterior probability function.
This is accomplished by using the prior distribution (e.g., z(w), the
analyst's feeling that the state of nature, wl, does exist (P(W-wl)))
and the likelihood, f(x,yiw). The posterior distribution takes the
form

z(wt x,y) - f(xylw) z(w) (Equdtion 1)

f(x,yl w) z(w) dw

or in other notation w
zIwI x,y)- * x,y) ) -~+___

f1( x,y ) + f 2 ( x,y ) 1+f 2 ( x,y )
( xy

(Equation 2)

Equation i expresses Bayes' Theorem which states that the posterior

probability equals the prior probability multiplied by the likeli-
hood function. Mathematically, the posterior probability is the
probability that some hypothesis is true given certain evidence,
the prior probability is the probability that the hypothesis was true
before the evidence was collected, and the likelihood is the probabil-
ity of obtaining the observed evidence given the hypothesis is true.
(If the observations come from a continuous distribution, the likeli-
hood is defined as the joint density function).

P is the probability that minimizes the expected losses
since the Bayes solution for the problem with no observations is the
desired Bayes action when observations of X and Y are considered (see
Figure 2). Therefore, by equating P to z( wlx,y), Equation 2 can besolved for those values of x and y w ich will allow the analyst to

choose d , d , or d with minimal concomitant risk. As the prior
probability ranges irom 0.0 to 1.0, a decision envelope is established
for the specified 6 and L(D,W).

DECISION RULES

For the purposes of this analysis, the random variables, X

and Y, approximate the following distributions:

X XW w, NW(7,1) X W w 2 ^. N(2,1)
Y w w N(5,I) Y 2 W 2 w N(1,1)
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(While the condition of normality enhances mathematical tractability,
the evaluation of multiple inputs is in no way limited to this prob-
ability distribution.)

Since X and Y are independent and the normal distribution is
continuous, the resulting likelihood is the joint probability density
function which takes the form

f(xylw) 1 I exp -[(x- m +()
2 sR S

xY x y

(Equation 3)

Using the prior distribution as z z(w), the posterior dist-ibution
can be found.

z(wl x,y) -ep-[x2

x -½ (x-7)e + (y-5)21(z)/2t exp -½(x

(Equation 4)

If z(w] x,y) P z then using Equation 2 and the values in Figure 2

Pz in•[ or in

.50 1 + f 2 (x,y)

f 1 (x'y)f2 i2

Theefore, 2 (x,y) i 3 when P .25 and I when P .5; also,

f (x,y) z z

(Y in= 1 2 2 (5 21\
f (xexp - (x-2) + (y 2_ (x_7)2 (y-5)
f 1 (x,y) z I

Expanding this expression

I - z exp (-Sx - 4y + 34.5) 3 (when P = .25)
z z

or 3.)

1 - z exp (-5x 4y + 345) = 1 (when P u.50).' ~3z
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Taking the natural log of both sides of the equation

log I - z + 34.5 -Sx - 4y 0 or

x + .8y - 6.9 + .21o;. I (Equation 5).

A similar operation when P - .5 yields
z

x + .By - 6.9 + .2log I - (Equation 6).
j z J

Referring back to Figure 2, the new decision rules are:
SRule A. For x + .8y L 6.9 + .2log (-z) choose d3 (de-

crease surveillance posture).Rule A. For x + .8y Z 6.9 + .2log (1~ choe (n

crease surveillance posture).

Rule C. For x + .8yŽ t 6 . 9 + .2log -- Z and for x + .8y!_•
(3z)

6.9 + .21og l-z) choose d2 (continue current posture).

By varying the prior probability from 0.0 to 1.0, the analyst can de-
termine values of X and Y which would indicate the best decision.

TABLE 2: Decision Envelope for Multiple Inputs

z * P(W-wI) Choose d3 when Choose dI when
x + .8y L x + .8y h

.1 7.119 7.339

.2 6.957 7.117

.3 6.849 7.069

.4 6.761 6.981

.5 6.680 6.900

.6 6.599 6.819

.7 6.510 6.731

.8 6.403 6.622

.9 6,240 6.461
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FIGURE 3
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Choose

d 2
Choose d 3
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.25 .50 .75 1.0

Prior Probability

Table 2 indicates that the decision space d E D is very small com-

pared to the other alternatives. The region is so constrained that

the analyst is essentially deciding whether to increase or decrease

his surveillance posture.

Using the same method of calculation (except the likelihood

in the form f(x~w) or f(ylw)), decision rules can be obtained when

the analyst receives input from a single source.

Sensor Input Only: Choose d if xL 4.5 + .2log(l-z/3z) and d if

x \4.5 + .2log(t-z/z). Choohe d2 otherwise.

Aerial Input Only: Choose d if yL3.0 + .125log(l-z/3z) and d if

"y . 3..0 + .1251og(l-z/z). Chhose d 2 otherwise.
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While Figure 3 shows the sensitivity of x and y to the vari-
ance in the prior probability, the analyst would also be expected to
change his loss function periodically to correspond to a particular
surveillance area. This subjective determination would alter the
original decision rules and the decision envelope. If equal "loss"
were attached to making the "wrong" decisions (d when w2 exists and
d 3 when w exists), the new L(D,W) might look liie this:

TABLE 3: Loss Function for D and W
d d2 d3

w 0 1 10

w 10 1 0
2

SLmilarly, the L(D,W) can be depicted graphically and minimizing
probabilities extracted.

FIGURE 4

r w2 ,d) r(w 1 ,d)

10 dl d 10

Y.1.

.1

:I
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The associated decision rules would be:

Rule A: If x + .8y Z 6.9 + .2 log (I -z/9z), choose d3.

Rule B: If x + .8y • 6.9 + .2 log (9(1 - z)/z), choose d

Rule C: If x + .8yý- 6.9 + .2 log (I - z/9z) and x + .8y!
6.9 + .2 log (9(1 - z)/z), choose d2.

By varying the prior from 0.0 to 1.0, values of X and Y that indicate
the best decision can be determined.

x + .8y8 
FIGURE 5

S ~Choose d
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Choose d2
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Choose d 3
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CONCLUSI ONS

The Bayesian methodology presents a viable technique for the
formulation of decision rules in a surveillance environment. Yet,
there is some controversy about this body of statistical theory since
it revolves around just what one is willing to assume concerning the
problem. However, the idea behind using such a procedure is to guard
against a catastrophic loss that might be encountered in a military
situation. Its utility in this instance is dep-.ndent upon the cap-
ability of modern ADP hardware to aggregate groups of signals and
translate them into a usable form, while maintaining the flexibility
to perform the subsequent numerical analysis.

With the advent of more machinery to assist the operations on
the battlefield, sophisticated analytical tools must be employed to 1
haadle the increased volume of information. Data which might have
previously been lost is now readily available through computerized
storage and recall. However, this reliance on machinery has a
tendency to divorce the individual from the action and negates much
of the "seat of the pants" decision making that has been so common *

in the past. In this atmosphere, Bayesian theory can be of great
assistance to the decision maker who probably feels alienated in the
antiseptic world of computer hardware. There will be critics who
say that major decisions are made based on a few mathematical
formulas and mechanical calculations. However, even from this simple
problem, it is evident that the mathem~atics and the hardware do not
eliminate the human being. The analyst's judgment about the prior
probability and the formulation of the loss function are the most

dependent on them. In the final analysis, the analyst or the

commander will still have to make his decision based on all informa-
tion, experience, and assistance that is available to him.
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