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INTRODUCTION ,-/ -2-.L \

_ -"Projectile penetration has . studied.b military engi-
neers since ancient times, but the analytical inves igati6n of this
phenomenon was not undertaken until the eighteenth century. Robins

i), Euler (2), and Poncelet (3) developed the firs impirical
equations describing the axial force which opposes the motion of a
rigid projectile as it passes through a. deformable solid targetA
Experimental data consisting of impact velocity and final depth of
Penetration were used to estimate the coefficients in the relation
between axial force and projectile velocity. However, these coef-

ficients were not specified in terms of standard material proper-
ties, and so they were applicable only for the particular targets
for which they were determined..

Since the mid-twentieth century, the availability of high-
speed digital computers has made it possible to analyze the
projectile/target interaction by means of two-dimensional finite-
difference techniques. The constitutive relations for both the tar-
get and the projectile can be accurately specified, and many of the
details in the penetration process can be realistically simulated.
Analyses of this kind are valuable because of the detailed informa-
tion which they provide, but they are usually too costly and cumber-
some for large scale pdrameter studies. ,i

In recent years, significant progress has been made toward
the development of a simple relation between penetration resistance
and fundamental target properties such as density and compressive
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strength. Bishop, Hill, and Mott (4) analyzed the quasistatic ex-
pansion of spherical and cylindrical cavities in metals and observed
a correlation between the resistance to cavity expansion and the
resistance to indentation by a rigid static punch. Goodier (5) used
an analogy with the dynahic °e9pansion of spherical cavities in
metals to develop a penetration theory for rigid spherical projec-

CA' ~. In the present work, the quasistatic expansion of a spheri-
cal cavity in a concentrically layered medium will be analyzed in
order to obtain an approximation for the radial stress at the sur-
face of a slowly expanding spherical cavity in a vertically layered
medium with a plane interface. This approximation will then be used
to construct a simple equation of motion for a rigid cylindrical
projectile (with a conical or ogival nose shape) which penetrates a
layered target.

SPHERICAL CAVITY EXPANSION IN
A A CONCENTRICALLY LAYERED MEDIUM

Consider a slowly expanding spherical cavity surrounded by
an infinite medium composed of two distinct concentric layers
(Figure 1). The materials surrounding the cavity exhibit elastic-

plastic behavior without vol-
ume change (Figure 2). The
geometry is spherically sym-
metric and the material equa-
tion of equilibrium is

h r r20da + r (ar a

where r is the radial coor-
dinate and ar and ae are
respectively the radial and
circumferential components of 4
stress. (Compressive stress
and strain are taken to be
positive.) The stress-strain
relation for the material in
the elastic state is

LAYER 2 2
S a E(c (2)

Figure 1. Slowly expanding r B- )
spherical cavity in a concen-
trically layered medium and in the plastic state it is
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Figure 2. Material response to uniaxial stress

y -a " (3)r e
where E is the elastic modulus, Y is the compressive strength,
and Cr and ee are respectively the radial and circumferential
strains. Both materials are incompressible, and the relation be-I

tween cr and £0 is

" +2£ =0o (l,
r .

Equations 2 and 4 are now combined so that the stress-strain rela-
tion in the elastic state becomes

a - I= -2E£5

The circumferential strain at any radial position is given by

£C =-ln _ (6)6 r

where ro is the initial radial position of a material particle
which has been displaced to position r . Assuming that the spheri-
cal cavity expands from a small initial radius a0  to an instantan-
eous radius a >>a o , the principle of conservation of mass re-
quires that

r 3 - r= 3 -a 3  a3  (7)r o a

When Equation 7 is rearranged, it follows that
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(8)
;; and the expression tor the circunftrential strain becomes '

Restricting attention to small strains in the elastic state, Equa-
Ii " tion 9 is further approximated by

3 r3 (rO)

and the stress-strain relation in the elastic state now becomes

2 a3
er 3a8 gE r3 l)

*Combining Equation 1 alternately with Equations 3 and 11, the mate- ?
rial equation of equilibrium in the plastic state isEqa

dr r

and in the elastic state it isbo

r 3

da .i a,
-= -- r (13)

Each material layer may contain distinct elastic and

plastic regions (Figure 3) which are separate.d by spherical plastic
"fronts" located at r =b and r =k in layers 1 and 2, respec-
tively. It is obvious from Figure 3 that b < h since the plastic
region in layer 1 cannot extend beyond the location of the layer

interface at r = h . Similarly, it follows that k > h in layer 2.
Evaluating Equations 12 and 13 at r = b and r = k and equating
the right-hand sides at each of these locations, then it is found
that

a2E 1/3 2E1  h3

ba ,3T -_3 (14)
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Figure 3. Location of concentric elastic and
plastic regions surrounding cavity

2E 3
bh -l" (15)

and that I
2E h3

k h, (16)
-
3

2 2~~1/3 2E() 2 h3 ()

where the subscripts 1 and 2 indicate the evaluation of quantities

in layers 1 and 2, respectively. Denoting the initial radial po- "
sition of the layer interface by ho  and evaluating Equation 7 at
r = h , the relation between the cavity radius and the position of
the layer interface becomes

h h3 + a3  (18)
0

The positions of the layer interface and the plastic

2r
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fronts are now completely specified in terms of the cavity radius,

and Equations 12 and 13 can be integrated to determine the radial

stress a at the cavity surface:

ah

-adr = - E 2 a J d' k 2YJ dr

rr

b a
-E a 3  r -Y 1  dr (19)

f rr
h b

It is assumed that or + 0 as r - , and, upon evaluation of the

integrals, Equation 19 reduces to

b . a . )k 1  a

a= 2Y in + E1  a a 2 n k 2 3 (20)
1b a 9l 3 h/ )n++2E k

SPHERICAL CAVITY EXPANSION
IN A VERTICALLY LAYERED MEDIUM

Consider an infinite medium composed of two distinct ver-

tical layers separated by a plane interface (Figure 4). A slowly

LAYER
INTERFA CE

LAYER 1 LAYER 2

Xl b -Figure 4. Slowly
k expanding spheri-

cal cavity in a
vertically layered

medium
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expanding spherical cavity is centered on the z-axis at a distance
ho  from the left side of the layer interface. A first-order approx-
imation for the radial stre3s a on the right hemisphere of the
cavity surface can be obtained by regarding the vertical layers as
quasi-concentric layers °rith the-;i-pitial position of the layer inter-
face located at a radial distance r = ho  from the center of the
cavity. The effective radial position of the layer interface is
then given by Equation 18, and the first-order approximation for a
is given by Equation 20.

PROJECTILE EQUATION OF MOTION
IN A VERTICALLY LAYERED MEDIUM

Projectile penetration and spherical cavity expansion rep-
resent geometrically dissimilar processes. Nevertheless it has been
observed that the axial force which opposes penetration is more or
less proportional to a at low velocities in materials which are
composed of a single semi-infinite layer (4,5). It has been further
observed that the relation between final depth and impact velocity
is approximately linear for deep penetration (5), which implies a
possible linear relation between the axial resisting force and the A
projectile velocity.
These observations will
now be used as guidelines j
in the formulation of an LAYER I LAYER 2
ad hoc expression for the
effective stress normal A

to the frontal surface of
a penetrating projectile.

Consider a T a 1
rigid axisymmetric pro-
jectile which penetrates
a semi-infinite target
composed of two distinct
vertical layers (Fig- LL
ures 5 and 6). The pro-
jectile axis of symmetry
coincides with the direc-
tion of motion, which is h =T
normal to the target sur-
face. The quantity a
contains the pertinent Figure 5. Projectile with frontal
dimensions and material surface partially embedded in a
properties of the target two-layer target
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~' as they relate to spheri-

*- cal cavity expansion, and
LAYER I LAYER 2 this quantity will be used

T as a scaling function in
the determination of the

axial force which opposes
the motion of the

A projectile.
a

D 2 Denoting the pro-

jectile velocity by v and

the target density by p ,

the following ad hoc expres-
sion is proposed for the ef-

S .fective stress an(l) nor-
mal to any portion of the

Z_ projectile frontal surface
which is in contact with
layer 1:

Figure 6. Projectile with frontal

surface in contact with both tar- an(l) =(i + sin a) I -
get layers at the same time

+ V Y p (21)

The subscripts 1 and 2 are used to designate the evaluation of quan-
tities in layers 1 and 2, respectively, For conical nose shapes,
the quantity a represents the cone half-angle, which is related to
the nose length L and the base diameter D by

/2 )~-1/2 

t

sin a 'D2 + (22)

For ogival nose shapes, a represents the cone half-angle at the
nose tip, which is related to the ogive caliber radius (CRH) and to
L and D by

sin a = (ICRH 1 = 4L/D

sin_____ aL/ (23)
2CRH 2/ +14L2/D2 + 1

The evaluation of a1 by equation 20 is the same as. the evaluation
of a for an equivalent spherical cavity with a radius equal to the
maximum radius of contact a, between the projectile and layer 1

(Figure 5). When the frontal surface is only partially embedded in

i -p
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the target, the equivalent spherical cavity is centered at the tar-
., get surface, i.e.

h T, z < L (24)

where T is the thickness of layer 1 and z is the penetration
depth. When the frontal surface is fully embedded in the target,
the equivalent spherical cavity is centered at the base of the nose,
i.e. 4

h T -z + L, L< z < T + L (25)
0

The evaluation of b , k , and h is the same as in Equations 14-
18 with a = a,

In accordance with Equation 21, the effective stress
on(2) normal to any portion of the frontal surface which is in
contact with layer 2 is

an(2) =(l + sin a)a2 + v YP2U2 (26) ': ii

The evaluation of a2  is the samu. as the evaluation of a for an
equivalent spherical cavity with a radius equal to the maximum
radius of contact a2  between the projectile and layer 2 (Figure 6).
This equivalent cavity is centered at the layer interface (ho  0),

and Equation 20 reduces to

a 2  Y + in 2E2) (27)

Tangential stresses are neglected, and the axial component
of the effective normal strecs is integrated over the embedded por-
tion of the frontal surface. The projectile equation of motion then
becomes:

dv 2m = _ra2a (1) z < T (28)

dV ( 2)a (l 2m _7 - a -a n(2) T < z < T +L (29)

dv 2 (0
-y 2i-- r r (2) z z>T +L (0

where m is the projectile mass and t is time. The right-hand 4

side of the equation of motion represents the total axial force

iii
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exerted on the projectile by the target..

Whenever the condition an(2) an(1) is satisfied, the
a4 material in layer 1 undrgoes contained plastic flow, and Equa-

tion 21 represents a reasonable a roximation for an(1) . However,
if this condition is not satisfied, then the containment provided
by layer 2 may be insufficient to prevent a loss of cohesion in
layer 1, and Equation 21 then represents an upper bound for the
value of an(l) . In this event, a lower bound can be obtained for I
an(l) by introducing the following "plastic interface criterion:"

If an(2) < an(l) when b = h (i.e. when the spherical
plastic front located at r = b reaches the effective layer inter-
face located at r = h), then Equation 21 is replaced by

a (1) a (2) = (1 + sin a)a2 + v p -a (31)

PENETRATION AND PERFO-
RATION OF CONCRETE SLABS

Canfield and Clator (6) have investigated the high speed
penetration of steel projectiles into thick slabs of 5000-psi rein-
forced concrete, and their experimental results are shown in Fig-
ure 7. The projectile characteristics are m = 5.9 kg ,

D = 76.2 mm , and CRH = 1.5 (ogival nose shape, L/D = 1.12). The
target properties are p = 2.31 gm/cm , E = 240 kbar and
Y = 0.347 kbar . The projectile equation of motion developed in the
present work is integrated to obtain the theoretical relation be-
tween final depth and impact velocity (Figure 7), based on the as-
sumption of a single semi-infinite layer of homogeneous concrete.
The empirical results shown in Figure 7 are obtained from a pene-
tration nomogram for concrete developed by the National Research
Council (NRC) committee on passive protection against bombing (7).

The NRC nomogram is allegedly accurate to within 15 percent, and the
agreement achieved among the empirical, experimental, and theoreti-
cal results is typical for cohesive targets in which the distance
from the nose tip to the back face of the target is large in com-
parison with the projectile diameter (T - z >> D).

The results shown in Figure 7 provide partial verification
of the applicability of the theory for cohesive targets c-omposed of h
a single semi-infinite layer. Now, in order to make an assessment
of the applicability for targets composed of distinct layers, the
theory is used to calculate the penetration and perforation of a A3

concrete slab of finite thickness. This represents an example of a

ZI
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IMPACT VELOCITY, M/SEC:1.Figure 7. Penetration performance of 76-mm steel projectile4
in a semi-infinite slab of 5000-psi concrete

two-layer configuration in which the first layer (concrete) has a .
finite strength -.nd density while the second layer (air or vacuum)A
has a negligible strength and density. The concrete properties and
the projectile characteristics are identical with those used in the

~; ~,fforegoing calculation for a semi-infinite concrete slab, but in the
present calculation the projectile equation of motion is integrated
numerically to determine the minimum impact velocity required for
complete perforation* of a slab with a given finite thickness. The
theoretical results are compared with empirical results in Figure 8. -

The empirical retults are obtained from an NRC perforation nomogramI for concrete slabs (7) which is allegedly accurate to within
15 percent.

Two sets of theoretical results are presented in Figure 8,

*Complete perforation means that the projectile frontal surface
passes completely through the slab, achieving a penetration depth
z T +L (Figures 5 and 6).
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Figure 8. Minimum thickness of 5000-psi concrete required to
prevent complete perforation by a 76-mm steel proJectile

corresponding to calculations made with and without the plastic in-
terface criterion (Equation 31). The theoretical results form a t'
fairly tight band about the empirical results, but the calculations
made with the plastic interface criterion produce the best agreement
with the NRC nomogram. The end points of the empirical curve coin-I
cide with the ranges of impact velocity and slab thickness for which -
the nomogram is applicable. " i

CONCLUSIONI

The projectile equation of motion which has been developed I
herein appears to be applicable for cohesive slabs and layered tar- .
gets in which the thickness of a given slab or layer is greater than
the projectile base diameter by at least a factor of five. The
spherical cavity expansion analysis, which is used as the basis of
the penetration theory, is inappropriate when the diameter of the
projectile is comparable wit* the dimensions of the .target. The
analysis of the penetration of thin target layers (T <! D) requires
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adJ6-fferent conceptual approach which lies beyond the scope of the
present work. The'theory can be used to calculate the instantaneous
deceleration, velocity, and position of' a rigid cylindrical projec-
tile (with conical or ogival nose shape) when the direction of
motion is coincident-4th thk prA'J~ctile axis of symmetry and normzl
to the target surface. The daein.ls of the target motion are not
predicted by the theory, which r'elies on a highly idealized model o
the projectile/target Interactioni Two-dimensional finite-
difference solutions represen~t the o.Ey- means pi asently available
for assessing the detailp of the target bc'.-'r1or during the pene-
tration process.
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