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INTRODUCTION

—_> ""”‘
Projectile penetration has-b‘.p studied. by military engi-
neérs since ancient times, but the analytical invesgigation of this

phenomenon was not undertaken until the eighteenti(century.

Robins

(1), Euler (2), and Poncelét (3) devéloped the firs

empirical

equatidns describing thé axial force which opposés the motion of a
rigid projectile as it passes through a deformable solid targetA
Experimeéntal data consisting of impact veloeéity and final depth of
Pénetration wére used to estimate thé coefficients in the relation
bétween axial force and projectile vélocity. However, these coef-
ficients were not spécified in térms of standard material proper-
ties, and so they were apincable only for the particular targets
for which they were determ;ned.__\:,/,“ﬁﬁf.}ﬂqua

Since the mid-twentieth century, the availability of high-
speed digital computers has mede it possible to analyze the
projéctile/target iiitéraction by means of two-dimensional finite-
differénce techniques. The constitutive relations for both the tar-
gét and the projectile can be accurately spec1fied and many of the
details in the penetration process can be realistically similated.
Analyseés of this kind are valuable because o0f the detailed informa-
tion which they provide, but they are usually too costly and cumber-
some for large scalé parameter studies.

In recent years, significant progress hées been made toward

the development of a simple rélation between penetration résistance
and fundamental target properties such as density and compressive
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strength. Bishop, Hill, and Mott (4) analyzed the quasistatic ex-
pansion of spherical and cylindrical cavities in metals and observed
& correlation between the resistance to cavity expansion and the
resistance to indentation by a rigid static punch. Goodier (5) used
an analogy with the dynamivc “exparsion of spherical cavities in
metals to develop a penetration theory for rigid spherical projec-

C>5§&L—tttESTi>In the present work, the quasistatic expansion of a spheri-

cal cavity in a concentrically layered medium will be analyzed in
order to obtain an approximation for the radial stress at the sur-
face of a slowly expanding spherical cavity in a vertically layered
medium with a plane interface. This approximation will then be used
to construct a simple equation of motion for a rigid cylindrical
projectile (with a conical or ogival nose shape) which penetrates a

layered target. S

SPHERICAL CAVITY EXPANSION IN
A CONCENTRICALLY LAYERED MEDIUM

Consider a slowly expanding spherical cavity surrounded by
an infinite medium composed of two distinct concentric layers
(Figure 1). The materials surrounding the cavity exhibit elastic-

plastic behavior without vol-
ume change (Figure 2). The
geometry is spherically sym-
metric and the material equa-
tion of equilibrium is

do
r 2(0_

, & tr (%o @)

where r 1s the radial coor-

dinate and o, and og are
respectively the radial and
circumferential components of
stress. (Compressive stress
and strain are taken to be
positive.) The stress-strain
relation for the material in
the elastic state is

LAYER 2

o, - Oy = %—E(er - ee) (2)
Figure 1. 8Slowly expanding

spherical cavity in a concen-

trically layered medium and in the plastic state it is
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F;gure 2. Material response to uniaxial stress
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o -a, =Y | (3)
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vhere E 1is the elastic modulus, Y is the compressive strength, J ? %ﬁ

and €, and €y are respectively the radial and circumferential 3

strains. Both materials are incompressible, and the relation be-~ 4 4
tween ¢, and ¢g is 4

€.+ 26 =0 ()

o
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Equations 2 and 4 are now combined so that the stress-strain rela-
-tion in the elastic state becomes

> R
HEA ST a5

r 6

The circumferential straein at any radial position is given by

o, - 0y = ~2Beg (5)

s}

= r_
€g = -ln 3 (6)
°
vhere ro 1s the initial radial position of a material particle
vhich has been displaced to position r . Assuming that the spheri-
cal cavity expands from a small initial radius a, to an instantan-

eous radius a >> a, , the principle of conservation of mass re-
quires that

Tk o S etk sl el ¥ N

r3 -3 = g3 - admgd (7)

When Equation 7 is rearranged, it follows that
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rz r3
and the expression £or the circumferential strain becomes
3
~ L - e
€ ¥ 3 In ({1 r3 - (9)

Restricting attention to small strains in the elastic state, Equa-
tion 9 is further approximated by

3

g ™ - 9—5 ' " (10)

Wik

and the stress-strain relation in the elastic state now becomes
3 .
~2p8
o, - oe‘ E r3 . (11)

Combining Equation 1 alternately with Equations 3 and 11, the mate~
rial equation of equilibrium in the plastic state is

dar

=. 2 '
& - "rl (12)
and in the elastic state it is

do
r_ b4_a
F——3E;-E (13)

Each material layer may contain distinct elastic and
plastic regions (Figure 3) which are separated by spherical plastic
"fronts" located at r =b and r =k in layers 1 and 2, respec-
tively. It is obvious from Figure 3 that b < h since the plastic
region in layer 1 camnot extend beyond the location of the layer
interface at r = h . Similarly, it follows that k > h in layer 2.
Evaluating Equations 12 and 13 at r =b and r = k and equating
the right-hand sides at each of these locations, then it is found
that

(1k)
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Figure 3. Location of concentric elastic and
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plastic regions surrounding cavity ﬁg
2E 3
; b=h, -ﬁ}-z_-h—?; (15)
i l =a
g and that
i 2E 3
cons e s
; 2 a
o5 N3 25 3
- 2 2._h
k=e\sr,) ¢ X,z 3 ()
2 2 a

vhere the subscripts 1 and 2 indicate the evaluation of quantities
in lsyers 1 and 2, respectively. Denoting the initial radial po-
sition of the layer interface by h, and evaluating Equation T at

r = h , the relation between the cavity radius and the position of
the layer interface becomes

3 an3 + 83 (18)

The positions of the layer interface and the plastic
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fronts are now completely specified in terms of the cavity radius,
and Equations 12 and 13 can be integrated to determine the radial
stress ¢ at the cavity surface:

a

dc Saat e .,
f Ze . b3 dr ar
°’[ardr 3E2a]T2Y2 r
© © r k
b . 8
o3 [ ar dr
-3Ee f rh-zylf = (19)
h b

It is assumed that o0, >0 as r + « , and, upon eveluation of the
integrals, Equation 19 reduces to

3 3 3
_ b b [0 & k b a
0-2Yllna+9El b3-h3 +2Y21nh+9E2k3 (20)

SPHERICAL CAVITY EXPANSION
IN A VERTICALLY LAYERED MEDIUM

‘Consider an infinite medium composed of two distinct ver-
tical layers separated by a plane interface (Figure 4). A slowly

LAYER
//INTERFACE

LAYER 1 LAYER 2

Figure 4. Slowly
expanding spheri-
\ cal cavity in a
vertically layered
medium
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BERNARD . : }

expanding spherical cavity is centered gn the z-axis at a distance

h, from the left side of the layer interface. A first-order approx-
imation for the radial streas o on the right hemisphere of the
cavity surface can be obtained by regarding the vertical layers as
quasi-concentric layers-with the-initial position of the layer inter-
face located at a radial distance r = hy from the center of the !
cavity. The effective radial position of the layer interface is ‘
then given by Equation 18, and the first-order approx1matlon for o©
is given by Equation 20.

PROJECTILE EQUATION OF MOTION
IN A VERTICALLY LAYERED MEDIUM

Projectile penetration and spherical cavity expansion rep- H
resent geometrically dissimilar processes. Nevertheless it has been _
observed that the axial force which opposes penetration is more or -
less proportional to o at low velocities in materials which are
composed of a single semi~-infinite layer (4,5). It has been further
observed that the relation between final depth and impact velocity
is approximately linear for deep penetration (5), which implies a
possible linear relation between the axial resisting force and the
projectile velocity.
These observations will
now be used as guidelines
in the formulation of an
ad hoc expression for the
effective stress normal
to the frontal surface of
a penetrating projectile.
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Consider a
rigid axisymmetric pro- D -
Jectile which penetrates

S

a semi-infinite target

.-
)

composed of two distinct
vertical layers (Fig-
ures 5 and 6). The pro-
Jectile axis of symmetry
coincides with the direc-
tion of motion, which is
normal to the target sur- .
face. The quantity o
contains the pertinent
dimensions and material
properties of the target

Figure 5.
surface partially embedded in a

o
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two-layer target
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as they relate to spheri-

-cal cavity expansion, and

LAYER2 tnis quantity will be used
as a scaling function in
e the determination of the

LAYER 1

HC—
4N
3
PO .

e PR NS

ki

}
L H
o = axial force which opposes 5
. o the motion of the %
7 T a projectile. ;
1 2] :

o - -2 Denoting the pro-
Jectile velocity by v and 3
' the target density by p , H

the followirng ad hoc expres-
sion is proposed for the ef-
fective stress oy(l) nor-
mal to any portion of the
z projectile frontal surface

> which is in contact with
layer 1:

A

4

Figure 6. Projectile with frontal .
surface in contact with both tar- Un(l) = (1 + sin a)ol
get layers at the same time
+ vVP101 (21)

The subscripts 1 and 2 are used to designate the evaluation of quan- ;
tities in layers 1 and 2, respectively. For conical nose shapes, 3
the quantity o represents the cone half-angle, which is related to :
the nose length L and the base diameter D by

-1/2 ' !

2
sin a = (h—g— + l) (22)
D

For ogival nose shapes, o represents the cone half-angle at the
nose tip, which is related to the ogive caliber radius (CRH) and to
L and D by

P T T e e

o o o horn - M2 up
2CRH hLa/Dz +1

(23)

SR

The evaluation of o; by equation 20 is the same as the evaluation
of ¢ for an equivalent spherical cavity with a radius equal to the
maximum radius of contact a; between the projectile and layer 1

(Figure 5). When the frontal surface is only partially embedded in
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BERNARD

the target, the equivalent spherical cavity is centered at the tar-
get surface, i.e.

h =7, z<1L (2k)

where T is the thickness of layer 1 and 2z is the penetration
depth. When the frontal surface is fully embedded in the target,
the equivalent spherical cavity is centered at the base of the nose,
i.e. .

h =T-z+L, L<z<T+L (25)

The evaluation of b, k , and h is the same as in Equations 1h4-
18 with a =g . ’

In accordance with Equation 21, the effective stress
on(2) normal to any portion of the frontal surface which is in
contact with layer 2 is

on(2) = (1 + sin a)02 +‘V1ﬁ§;i; ’ (26)

The evaluation of o0p is the sams as the evaluation of ¢ for an
equivalent spherical cavity with a radius equal to the maximum
radius of contact a, between the projectile and layer 2 (Figure 6).
This equivalent cavity is centered at the layer interface (h° = 0),
and Equation 20 reduces to

2 2E2
02=§-Y21+ln§g (27)

Tangential stresses are neglected, and the axial component
of the effective normal strecs is integrated over the embedded por-
tion of the frontal surface. The projectile equation of motion then

becomes:
n &= melo (1), z<T (28)
m %% = -n(af - ag)on(l) - 'nagcn(Q) s T<2z<T+1L (29)
n¥=malo (2) , 22741 (30)

where m is the projectile mass and t is time. The right-hand
side of the equation of motion represents the total axial force
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exerted on the projectile by the target. .

Whenever the condition o0p,(2) > o,(1) is satisfied, the
material in layer 1 undergoes_contained plastic flow, and Equa-
tion 21 represents & reasonable afproximation for o,(1) . However,
if this condition is not satisfied, then the containment provided
by layer 2 may be insufficient to prevent a loss of cohesion in
layer 1, and Equation 21 then represents an upper bound for the
value of on(l) . In this event, a lower bound can be obtained for
an(l\ by introducing the following "plastic interface criterion:"

I °n(2) < 0,(1) when b=h (i.e. when the spherical
piastic front located at r = b reaches-the effective layer inter-
face located at r = h), then Equation 21 is replaced by

~ Y = .
on(l) on(2, (1 + sin a)02 + V”V9202 (31)

PENETRATION AND PERFO-
RATION OF CONCRETIE SLABS

Canfield and Clator (6) have investigated the high speed
penetration of steel projectiles into thick slabs of 5000-psi rein-~
forced concrete, and their experimental results are shown in Fig-
ure 7. The projectile characteristics are m = 5.9 kg ,
D=1T6.2mm , and CRH = 1.5 (ogival nose shape, L/D = 1.12). The
target properties are p = 2.31 gm/cm3 , E = 240 kbar , and
Y = 0.347 kbar . The projectile equation of motion developed in the
present work is integrated to obtain the theoretical relation be-~
tween final depth and impact velocity (Figure 7), based on the as-
sumption of a single semi-infinite layer of homogeneous concrete.
The empirical results shown in Figure T are obtained from a pene-
tration nomogram for concrete developed by the National Research
Council (NRC) committee on passive protection against bombing (7).
The NRC nomogram is allegedly accurate to within 15 percent, and the
agreement achieved among the empirical, experimental, and theoreti-
cal results is typical for cohesive targets in which the distance
from the nose tip to the back face of the target is large in com-
parison with the projectile diameter (T - z >> D).

The results shown in Figure 7 provide partial verification
of the applicebility of the theory for cohesive targets composed of
a single semi-infinite layer. Now, in order to make an assessment
of the applicability for targets composed of distinct layers, the
theory is used to calculate the penetration and perforation of a
concrete slab of finite thickness. This represents an example of a

/0-

- e M ~, " 5
. 2 e e mh e s o o W A T WD 3d G Sda bt
' 2 < i RS L el et e i RS ST ALt
" T s pe g e N b &2 el
g e s aes e 9.
e Gl S

oy

T e n

o £0b A e B0 3

S s T T S

AT IR y
ﬁfusga s &3

" i\&i»ﬁ‘, ,',.v,"i > g':vi'i.- 5 ;2:

&

3,
s b

e UTe e
B 23T el e

Saa e 1y
""il‘g\“ .

St oS aaHR

i

s e
2ok
RRE VLS

R T (] LA PRV ATT

{
5
A
~208
~F
v
o

g € g
Rt S EOMR RN




"l"xi“z‘;.).?. :‘S‘:’Mék}é”.w"awwy{n'rd‘%?". R Tt 2

BERNARD
175~ )
LEGEND
O EXPERIMENT, CANFIELD AND
150 i~ CLATOR {6)
~— —~EMPIRICAL ‘RESUL TS, NRC
NOMOGRAM (7] ,
125~ THEORY, PRESENT WORK i
<
3
5 !
g §
£ 100 |- 3
a H
w \ :
o ;
2 75 oo’ ” ;
o f
z o7 ' |
Ty o
7 {
S0 — ' ;
el 1
o= |
25 : R
3 5
s .
o 1 1 1 1 J Rt 3
0 200 400 600 800 1000 ; g
IMPACT VELOCITY, M/SEC ] y
Figure 7. Penetration performance of T6-mm steel projectile i w2
in a semi-infinite “slab of 5000-~psi concrete Q% {%
' {3 <
43 .
two-layer configuration in which the first layer (concrete) has a i 5
. ¢; ‘iﬁ

finite strength ~nd density while the second layer (air or vacuum) :
has a negligible strength and density. The concrete properties and :
the projectile characteristics are identical with those used in the
foregoing calculation for a semi~infinite concrete slab, but in the
present calculation the projectile equation of motion is integrated
numerically to determine the minimum impact velocity required for

complete perforation¥ of a slab with a given finite thickness. The
theoretical results are compared with empirical results in Figure 8.
The empirical results are obtained from an NRC perforation nomogram
for concrete slabs (7) which is allegedly accurate to within -
15 percent.

PRI SRR N

Two sets of theoretical results are presented in Figure 8,

* Complete perforation means that the projectile frontal surface
passes completely through the slab, achieving a penetratlon depth
z>T+L (Figures 5 and 6).
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Figure 8. Minimum thickness of 5000-psi concrete required to
prevent complete perforation by a T6-mm steel projectile

" corresponding to calculations made with and without the plastic in-

terface criterion (Equation 31). The theoretical results form a
fairly tight band about the empiricel results, but the calculations
made with the plastic interface criterion produce the best agreement
with the NRC nomogram. The end points of the empirical curve coin-
cide with the ranges of impact velocity and slab thickness for which
the nomogram is applicable.

CONCIUSION

The projectile equation of motion which has been developed
herein appears to be applicable for cohesive slabs and layered tar-
gets in which the thickness of a given slab or layer is greater than
the projectile base diameter by at least a factor of five. The
spherical cavity expansion analysis, which is used as the basis of
the penetration theory, is inappropriate when the diameter of the
projectile is comparable wift® the dimensions of the target. The
analysis of the penetration of thin target layers (T < D) requires
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& different conceptual approach which lies beyond the scope of the
present work. The theory can be used to calculate the instantaneous
deceleration, velocity, and position of a rigid cylindrical projec-
tile (with conical or ogival nose shape) when the direction of
motion is coincident ‘with the prajéctile axis of symmetry and normel
to the target surface. The detn-.ls of the target motion are not
predicted by the theory, which relies on a highly idealized model 7
the projectile/target interactica. Two-dimensional finite-
difference solutions represert the c. 1y means pr.sently available
for assessing the details of the target be'.ivior during the pene-
tration process.
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