

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS BEFORE COMPLETING FORM **REPORT DOCUMENTATION PAGE** 2. GOVT ACCESSION NO. TENTIENT'S CATALOG NUMBER SVHSER-6786 TTLE (and Sublition LAND COVERED Technical Repart Development of Hydrazine Gas Generator/Plenum 75 Apr. Dec System . C. 0 D.C DCDA AT NU BER 8. CONTRACT OR GRANT NUMBER(#) Abbott Our Contract Number Ε. NØ0014-75-C-1078 PERFORMING ORGANIZATION NAME AND ADDRESS PROGRAM ELEMENT, PROJECT, TASK Hamilton Standard Division of United Technologies Corporation Windsor Locks, CT 06096 11. Controlling office name and address REFORTONTE Jan 76 Department of the Navy Office of Naval Research, Naval Research Lab Arlington, VA 22217 78 4. MONITORING AGENCY NAME & ADDRESS(If dillerent from Controlling Office) 15. SECURITY CLASS. (of this report) Chief, Defense Contract Administration Service Office Unclassified Hamilton Standard DECLASSIFICATION/DOWNGRADING 154. Division of United Technologies Corporation Windsor Locks, Conn. 06096 16. DISTRIBUTION STATEMENT (of this Report) This report distributed in accordance with Enclosure. #1.of. Contract DISTAIEUTION STATEMENT A N00014-75-C-1078. Approved for public release; . Distribution Unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 dillerent from Report) N/A 18. SUPPLEMENTARY NOTES N/A 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Hydrazine **Gas** Generator Spacecraft Propulsion 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This report presents a programmatic review of the design, fabrication, and demonstration testing of a hydrazine Gas Generator/Plenum System, used to supply gas to very low thrust engines. DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) 161400 San Martin States A Contraction of the

HAMILTON STANDAR	D	Diversion of
	•	/

SHVSER 6786

51825

AND THE OWNER AND A DESCRIPTION OF THE PARTY OF THE PARTY

ACCESSION for NTIB	Wally Sections	7
BOS MANNOVICED JUSTIFICATION		0
		••••
	N/AVAILABILITY GO	

TECHNICAL REPORT

DEVELOPMENT OF

N2H4 GAS GENERATOR/PLENUM SYSTEM

Prepared by:

1/27/7L E. S. Abbott

Engineering Manager

Approved by:

76 27 L. Z1 gle Program Manager

Approved by:

R. D. Fisher Chief Development Engineer

DISTRIBUTION STATEMENT A Approved for public release; Distribution Unlimited

È.

EN LLOOM

11.4

SVHSER 6786

121.35

TABLE OF CONTENTS

an of

S VERTIER

Section		Page
1.0	INTRODUCTION AND SUMMARY	5
2.0	DISCUSSION	9
2.1 2.2 2.3 2.4 2.5 2.6 2.7	Introduction General Design Specification Unit Design Test Plan Fabrication Test Results Problems and Anomalies	9 9 12 12 13 20

<u>Tables</u>

I	Summary of Principal Design and Performance Characteristics	6
II	Summary of Gas Generator/Plenum Operational Characteristics	7
111	Functional Checkout Test Descriptions	18

Appendices

-			
A	General Design Specification, SVHS 6969	•	35
В	Gas Generator/Plenum System Part List		45
С	Test Plan, SVHS 7029		47
D	Vibration Test Log Data		57
E	Performance Demonstration Test Summary		73

SVHSER 6786

. . A CONTRACT OF A

LIST OF FIGURES

Figure No.

<u>).</u>	Page
N ₂ H ₄ Gas Generator/Plenum System	4
Parts Identification of Gas Generator/ Plenum System	10
Test Setup (Mechanical)	14
Control Panel and Junction Box	16
Typical Analog Data (R/T-1)	22
Typical Analog Data (R/T-2)	23
Typical Analog Data (R/T-3)	24
Typical Analog Data (R/T-4)	25
Typical Analog Data (R/T-4, △V/T-1)	26
Typical Analog Data (R/T-4, △V/T-2)	27
Typical Analog Data (R/T-4, △V/T-3)	28
Typical Analog Data (R/T-4, △V/T-4)	29
Typical Pulse Shape at P_{in} = 250 psia, R/T-1	30
Typical Pulse Shape at $P_{in} = 250$ psia, R/T-4	31
Typical Pulse Shape at P_{in} = 130 psia, R/T-1	32
Analog Data Depicting Electrical Interference	33

1.0

INTRODUCTION AND SUMMARY

Under ONR Contract Number N00014-75-C-1078, Hamilton Standard has designed, fabricated and completed a demonstration test program of a hydrazine Gas Generator/Plenum System (reference Hamilton Standard Drawing SV764130-1). This report presents a review of this effort.

The function of the N_2H_4 Gas Generator/Plenum System (GGPS) is to supply gas for the operation of milli (0.010 lb_f) thrusters and mice (30 to 1000 μ lb_f) thrusters.

The GGPS is comprised, as illustrated in Figure 1, of two (2) Model 10-16 Rocket Engine Assemblies (TEA), a coiled tube heat exchanger, a plenum chamber, two (2) GFE Linear Variable Differential Transformers (LVDT), and one (1) GFE potentiometric pressure sensor. The second LVDT and REA serve as redundant, backup components. Addition al descriptive details of the GGPS are presented in Section 2.3.

The basic operation of the GGPS is as follows: With the milli-thru valve activated, gas exits from the PT Plenum Chamber - thereby decreasing the plenum chamber pressure. The LVDT continually senses this pressure, and when the pressure diminishes to a preset level (established by electronic controls) the REA valve is signalled ope Hydrazine enters the catalyst bed chamber and is catalytically decomposed, with the gases supplied to the plenum chamber. When the plenum chamber pressure attains a second prodetermined level, the electronic controls automatically de-energize the REA valve to its closed position. Further details of the unit's operation are presented in Section 2.6.6.

The primary design and performance requirements along with the related results are outlined in Table I. Typical operating character istics of the GGPS, when operating in conjunction with the GFE mill micro thruster system and associated electronic controls, are presented in Table II. These characteristics include the operating pressure band for each of Reactor Threshold (R/T) and ΔV Threshold ($\Delta V/T$) select positions, the cyclic period for each of these, and the Gas Generator operating times. Further information regarding the operation and performance characteristics of the GGPS are provided in Test Sections 2.6.6 thru 2.6.9. Included in these section are typical analog data traces depicting the characteristics of PT plenum pressure, FC plenum (gas supply for micro thruster) pressure and REA chamber pressure during milli-thruster and micro-thruster activation periods.

5

SVHSER 6786

HAMILTCA STANDARD

SVHSER 6786

TABLE I

<u>Summary of</u> Principal Design and Performance Characteristics

	Item	Requirement	Results
1.	Envelope	Minimal and compact.	5.6" x 4.75" x 5.4"
2.	Maximum Weight (Note 1)	4.0 lbs.	3.1 lbs.
3.	Minimum Duration to 150°F Gas Out Temperature (Note 2)	90 secs.	737 secs (12.3 mins.) demonstrated
4.	PT Plenum Operating Pressure	0-60 psia	0-60 psia
5.	Proof	375 psia	375 psia
6.	Micro-Thruster Operation	Continuous	8 hrs. demonstrated

NOTE: (1) Excludes GFE items (2 LVDT's and 1 pressure sensor)

(2) The requirement here is that the GGPS be capable of sustaining continuous milli-thruster operation for a period not less than 90 seconds, during which time the gas outlet temperature shall not exceed 150°F.

SVHSER 6786

A REAL PROPERTY AND A REAL

TABLE II Summary of Gas Generator/Plenum Operational Characteristics

Milli-Thruster Operational Characteristics

	Lo - Hi Pres	ssure (psia)	PT Cycle Duration
Select Position	$e_{P_{in}} = 250$	$e_{P_{in}} = 130$	@ P _{in} = 250 psia (seconds)
R/T-1	8 - 20	6 - 18	7.1
R/T-2	16 - 28	12 - 25	4.5
R/T-3	31 - 44	28 - 40	2.4
R/T-4	40 - 53	36 - 50	1.9

- Notes: (1) Gas Generator on-time: 0.25 seconds at $P_{in} = 250$; 0.4 seconds at $P_{in} = 130$ psia
 - (2) Cycle duration not significantly affected by GG supply pressure, slightly less at $P_{in} = 130$ psia.

Micro-Thruster Operational Characteristics Lo - Hi Pressure (psia) PC Cycle Duration $P_{in} = 250$ psia (seconds) Select Position $@ P_{in} = 250$ $Q P_{in} = 130$ 4.5 - 5 28 **∆**V/T-1 - 11 8.5 - 11 60 **△**V/T-2 9 **∆**V/T-3 18 - 21 18 - 21 25 **△**V/**T**-4 37 - 44 36 - 43 45

- Notes: (1) For R/T-4, $\Delta J/T-2$, $P_{in} = 250$ psia test condition cime between PT plenum refills was 7 3/4 minutes.
 - (2) PC plenum cyclic duration essentially independent of GG supply pressure.

2.0 DISCUSSION

2.1 Introduction

The major steps in the program, leading to the demonstration testing of the Gas Generator/Plenum Assembly, included:

- a) The preparation of a general design specification.
- b) The design and analysis of the unit, including the preparation of drawings.
- c) Test Plan preparation.
- d) Fabrication of hardware.
- e) Testing of the unit.

2.2 General Design Specification

A General Design Specification was prepared at the outset of the program. This specification establishes the essential design and performance criteria of the GG/Plenum Assembly. The specification also describes the unit, defines requirements for mechanical and electrical interface with NRL equipment, defines its physical and operating requirements, establishes its operational environmental conditions, and outlines a general test program for demonstrating the unit's conformance to its requirements.

The primary design and performance requirements are presented below:

Item

Requirement

Configuration	Singular compact module with minimal envelope
Weight	4.0 lbs., maximum
Plenum Operating Pressure	4 to 60 psia
Plenum Gas Out Temperature	200°F, maximum
	150°F, design goal -
Milli-Thruster Operation	90, seconds, maximum (at .01 1b _f)
Micro-Thruster Operation	Continuous at 30 x 10^{-6} $1b_{f}$

Further details may be found in SVHS 6969, <u>Hydrazine Gas Generator</u>/ <u>Plenum System, General Design Specification For</u>, and is included herein as Appendix A. The contents of this specification are based upon inputs from NRL, and the completed specification was reviewed and approved by NRL.

2.3 Unit Design

Based on the General Design Specification, the design of the Gas Generator/Plenum System was implemented. The resultant design, as defined in drawing SV764130, consists of the following:

the state of the second s

2.3 continued

Two Model 10-16 Rocket Engine Assemblies

A Plenum Chamber

A Heat Exchanger

Two GFE Linear Variable Differential Transducers

One GFE Potentiometric Pressure Transducer

Mounting and Sealing Hardware

As shown in Figure 2, the photograph of the unit, the plenum chamber is fabricated from a cup approximately 2 1/2 inches in diameter and 2 1/4 inches long. A flange is welded at the top of the open cup, and serves as the mounting base for the various components. The top of the flange has four ports: two are for the LVDT's, one for the pressure sensor, and the fourth is the gas outlet port. Attached to the bottom of the cup is a plate, having a hole so as to fit about the cup. The plate contains four bolt holes for attachment of the GG/Plenum System to the NRL mounting plate.

Two Rocket Engine Assemblies are mounted off the flange extension. At each of the REA nozzle exits, 1/8 inch tubing is welded, with tubing subsequently manifolded to the heat exchanger. The heat exchanger consists of coiled tubing about the plenum, and is brazed to the plenum exterior for optimum thermal conductivity. The tubing outlet of the heat exchanger is brazed to the flange, with internal porting allowing gas to enter the plenum chamber.

The plenum chamber cup, its mounting plate, and the top flange are all fabricated from 347 stainless steel, with tubing fabricated firm Inconel 600. All the component interfaces, exclusive of the thrust chamber/heat exchanger but including the REA valve/thrust chamber and the inlet fitting/valve interfaces, are of mechanical configuration, with sealing effected by ethylene propylene rubber 0-ring seals.

In support of the design, analyses were conducted for sizing the plenum and for sizing the heat exchanger. Supplementary analyses included predicted performance and thermal operating characteristics, with their submittal to NRL for review.

Culminstion of the design/analysis took the form of fabrication drawings (Ref. SV764130), which were submitted to NRL for review and approval. A parts list for the Gas Generator/Plenum System is included in Appendix B.

SVHSER 6786

2.4 Test Plan

In parallel with the design effort, a test program was formulated and outlined in Test Plan SVHS 7029 (included as Appendix C). Th test plan defines the test sequence, test objectives, data requir ments, and includes a general description of each test. The spec tests, in the sequence given, and a brief description of the test conducted are given below:

- a) Examination of Product visual examination of hardware for defects and review of build data package.
- b) Proof at 375 psig GN₂, for structural integrity.
- c) External Leakage verify compliance with maximum leakage requirements of 10^{-6} scc GH_e/sec at 50 psia.
- d) Random Vibration demonstrates unit's ability to withstand structural vibration loads.
- e) External Leakage repeat of (c) above, verifying no damage resulting from prior vibration exposure.
- f) Functional Checkout brief operational checkout to verify readiness of unit for demonstration testing.
- g) Performance Demonstration operation of the Gas Generator/ Plenum System, demonstrating unit's ability to perform per specified requirements.
- h) External Leakage repeat of (c) above.
- Internal Leakage verify unit has been properly cleaned pric to shipment.
- Post-Test Inspection visual examination of hardware for discrepancies and/or damage.

2.5

Fabrication

Fabrication of the Gas Generator/Plenum System was initiated in July 1975 and completed at the end of October 1975. The most for midable manufacturing task, as expected, proved to be the fabrics tion and assembly of the heat exchanger. Experimenting with samp pieces of coiled tubing and simulated plenum cylinders eventually resolved the techniques in tube forming (obtaining the best coil diameter and maintaining design coil-to-coil spacing) and brazeme of the coiled tube to outer diameter of the simulated plenum cup. This approach proved beneficial in enabling success with the firs endeavor of the actual hardware fabrication.

SVHSER 6786

2.6 <u>Test Results</u>

Testing per SVHS 7029, and as briefly described in Section 2.4 of this report, was initiated in early November 1975 and completed two months later. The test results are presented below.

- 2.6.1 <u>Examination of Product</u> was visually examined for defects, and data package reviewed for completeness. The unit weighed 3.1 lbs vs. 4.0 lb maximum requirement. (The weight does not include GFE items).
- 2.6.2 <u>Proof</u> No deformation noted after unit, exclusive of LVDT's and pressure transducer, exposed to 380 psig GN₂ for 5 minutes and with REA values energized to open position.
- 2.6.3 External Leakage The unit satisfactorily met the maximum leakage requirement of 1×10^{-6} scc GHe/sec at 50 psia with each test:

Pre-Vibration Leakage - 4.6 x 10⁻⁷ scc GHe/sec at 50 psia

Post-Vibration Leakage - 8×10^{-7} scc GHe/sec at 60 psia

Pre-Shipment Leakage - 5 x 10⁻⁷ scc GHe/sec at 50 psia

2.6.4 Internal Leakage - The unit satisfactorily met the maximum internal (REA valve seat) leakage requirement of 1×10^{-6} scc GHe/sec at 250 psia.

Pre-System Testing (at the REA component level) - each REA exhibited less than 1.5 x 10⁻⁷ scc GHe/sec leakage

Post-System Firing (pre-shipment)
 - each REA exhibited less than 0.2 x 10⁻⁷
 scc GHe/sec leakage

2.6.5 <u>Vibration</u> - The unit was hard mounted to a rigid fixture and subjected, for two minutes in each of three orthogonal axes, to the specified random levels. The resultant vibration data, in the form of g^2/Hz vs. Hz graphs, are presented in Appendix D. Subsequent to the test, a visual examination of the unit was made. No damage was noted. Also, subsequent leakage and performance testing were satisfactorily conducted.

2.6.6 <u>Test Operation</u> - The basic mechanical test setup for the Functional Checkout and Performance Demonstration test setup, is shown in Figure 3, and consists of two major subassemblies: the Hamilton Standard Gas Generator/Plenum System and the GFE milli/micro-thruster system.

> The GG/Plenum System is mounted to a test plate, capable of being thermally conditioned. The milli/micro-thruster system is mounted next to it, with a short section of tubing (not shown in figure) interconnecting the outlet of the GG/Plenum to the inlet of the milli/ micro-thruster system. The integrated system is contained within a test altitude chamber so that operation of the unit can be conducted in a low ambient pressure environment.

Maintaining PT plenum pressure is achieved by the LVDT sensing pressure, and in conjunction with electronic controls effects opening and closing of the primary REA valve. When the plenum pressure decreases to a pre-set value, the REA valve is energized open, allowing hydrazine to enter the engine's catalytic chamber. The hydrazine is then catalytically decomposed, with the decomposition gases entering the plenum via the heat exchanger and thereby increasing the plenum pressure until the preset high limit is attained. At this time, the REA valve is automatically de-energized to its closed position.

The depletion of plenum chamber pressure is brought about by either operation of the milli-thruster or the micro-thruster. In the case of the latter, it has its own plenum, pressure sensing LVDT, and electronic controls. Thus, when the PC plenum (gas supply tank for micro-thruster) requires pressure replenishment, an upstream pulse valve is energized open to permit drawing of gas from the PT plenum chamber.

HAMILTON STANDARD

2.6.6 continued

The principal electronic controls used in establishing and controlling the hi-lo pressure settings, and for operation of the milli and micro thruster is shown in Figure 4. The Control Panel provides the test operator with switches for activating the hydrazine GG/Plenum System (Reactors A & B) and the PC Plenum System (Δ Vl-3); for operating the milli and micro-thrusters (right hand side of panel); and for selecting the hi-lo pressure levels. As shown in the pinel, each of the two plenum systems has four pre-set pressure ranges.

The Junction Box, also shown in Figure 4, contains all circuitry essential to pressure sensing and controls, and provides the interface with the control panel and the signal/data terminal board mounted on the milli/micro-thruster assembly breadboard. At the rear of the Junction Box are two adjustment screws for enabling altering the hi-lo pressure limits of "Select 4" (see photograph of Control Panel). Adjustment of the Select 4 levels was not made during the course of the program.

2.6.7 <u>Functional Checkout</u> - A functional checkout of the GGPS was conducted to ensure readiness of the unit for Performance Demonstration tests. More specifically, the checkout permitted the user to fauiliarize himself with the controls; permitted verification of data acquisition adequacy; and enabled basic operational functionality to be checked out. The tests were conducted with high and low hydraziue supply pressures, with room ambient temperature fuel and hardware, and in a simulated high altitude environment. The initial conditions and the operational mode (pressure control select posi≿ions, thruster activated, etc.) are presented in Table III.

> The Gas Generator/Plenum System operated satisfactorily and demonstrated its readiness for the subsequent Performance Demonstration tests.

2.6.8

j:

<u>Performance Demonstration</u> - The purpose of the Performance Demonstration is to verify compliance with the specified requirements. The testing included:

> Milli-thruster activation at various Reactor Threshold (R/T) select positions and extreme supply pressure levels

Micro-thruster activation at various ΔV -3 Threshold ($\Delta V/T$) select position

Long duration milli-thruster operation

SVHSER 6786

TABLE III

Functional Checkout Test Descriptions

Run Number	Initial Conditions	Operation
2220	$P_{in} = 250 \text{ psia}$ $T_f = 78^{\circ}F$ $T_{f1} = 87^{\circ}F$ $T_{go} = 87^{\circ}F$ $T_t = 150^{\circ}F$	With milli-thruster "on", Reactor A Threshold (R/T) Select positions were altered from 4 - 3 - 2 - 1.
2221	$P_{in} = 250 \text{ psia}$ $T_f = 78^{\circ}F$ $T_{f1} = 88^{\circ}F$ $T_{go} = 91^{\circ}F$ $T_t = 95^{\circ}F$	Unit operated for 2 minutes with milli-thruster "on" and R/T in Select 4.
2222	$P_{in} = 130 \text{ psia}$ $T_f = 78^{\circ}F$ $T_{f1} = 95^{\circ}F$ $T_{go} = 97^{\circ}F$ $T_t = 100^{\circ}F$	Similar to Run 2220, except at low inlet pressure.
2223	$P_{in} = 130 \text{ psia}$ $T_f = 77^{\circ}F$ $T_{f1} = 94^{\circ}F$ $T_{go} = 96^{\circ}F$ $T_t = 149^{\circ}F$	With micro-thruster on, R/T-4, unit was operated by varying Δ V1-3 Threshold (Δ V/T) from 4 - 3 - 2.
2224	$P_{in} = 130 \text{ psia}$ $T_{f} = 770\text{F}$ $T_{f1} = 930\text{F}$ $T_{g0} = 950\text{F}$ $T_{t} = 1390^{\text{F}}$	Unit operated for 15 minutes with $R/T-4$ and $\Delta V/T-2$.
	P _{in} - Inlet Pressure (to F	REA)
	T _f - Fuel Temperature	

T_{go} - Gas Outlet Temperature

T_{f1} - Plenum Flange (base plate) Temperature

T_t - REA Throat Temperature

2.6.8 continued

Long duration micro-thruster operation

Low temperature operational checks

Operational test after long term PT plenum chamber lockup

The basic operational characteristics of the integrated GGPS -Milli-Micro-Thruster System exhibited during the subject testing are presented in Table II (Introduction and Summary Section). These characteristics include: the pressure range - as effected by the Threshold Select position and the operational characteristics of the related components, the cyclic duration (time between plenum refills) and the hydrazine gas generator on-time as a function of hydrazine supply pressure.

The characteristics of the unit's operation are shown in Figures 5 thru 12. These figures depict typical PT plenum pressure, PC plenum pressure, and REA chamber pressure cycles for the various test conditions of threshold select positions and supply pressure previously described. These figures are copies of sections of Sanborn data.

In order to better depict the pulse shape of the REA chamber pressure, higher response, faster paper speed oscillographic data are shown in Figures 13 thru 15. These figures show typical REA chamber pressure and PT plenum pressure cycles for both high and low hydrazine supply pressures. It should be noted that the R/T Select position did not significantly alter, exclusive of start and end, the REA chamber pressure pulse shape. That is, the nominal chamber pressure and REA firing duration are similar from one R/T Select position to the other. This is attributed to the fact that the delta pressures among the R/T select positions demand about the same gas quantity for plenum refills.

Two long duration milli-thruster firing tests were conducted with R/T Select in Position 4. The first test was conducted with the fuel and PT Plenum mounting plate conditioned to 97° F and 105° F respectively. The second test was conducted with ambient temperature conditions (initial and fuel and hardware temperature about 88° F). Both tests were conducted with a hydrazine supply pressure of 250 psia. The test duration for these tests was established as the time to take for the gas outlet temperature to attain the design goal of 150° F. The resultant durations were 12.3 minutes for the first and 12.8 minutes for the second test. From the limited temperature data obtained, and assuming a mount resistance of 1.0 hr- $^{\circ}$ F/BTU, a heat flux of 100 BTU/ hr between plenum and mount is estimated.

HAMILTON STANDARD

2.6.8 continued

One of the tests conducted consisted of operating the micro-thruster for eight continuous hours. The basic test condition for this test was: 250 psia hydrazine supply pressure, 100° F conditioned fuel and hardware, R/T in Select #4, and $\Delta V/T$ in Select #2. The unit performed satisfactorily throughout the test, with critical PT plenum temperatures (e.g., gas outlet) exhibiting no temperature increases.

Low temperature, long REA off-time tests were also conducted at high and low GG supply pressures. Test conditions for these tests consisted of: conditioning fuel and hardware to $40-50^{\circ}$ F, and operating micro-thruster with R/T Select #4 and $\Delta V/T$ Select #1 until a few REA firings were obt ined. The unit performed satisfactorily during both tests, with the basic behavioral difference from ambient tests being that REA chainer pressure exhibited high or start overshoots. As discussed in the qualification report of the subject Rocket Engine Assembly, the start overshoot is a function of fuel and hardware temperature - with overshoots diminishing with increase in temperature.

A test was also conducted to show that the unit could be operated satisfactorily after a long term lockup of gases within the PT plenum chamber. Thus. subsequent to the termination of one of the conducted tests, the hydrazine decomposed gases were stored in the plenum for a period of eleven days. At the end of this period, the 12.8 minute milli-thruster firing (previously discussed) was conducted with completely satisfactory results.

The final test conducted in the series of Performance Demonstration test was the operation of the milli-thruster with the redundant gas generator, rather than the primary REA. The redundant REA thrust chamber had been exposed to decomposition gases effected by the primary REA operation of all prior tests. The test operation was satisfactory and the redundant REA performance showed no impact from its prior exposure to the PT plenum operation.

Further details of test descriptions and test results for the Performance Demonstration tests are provided in Appendix E.

Overall, the Gas Generator/Plenum System performed quite satisfactorily, with the PT plenum refill cycles exhibiting good repeatability characteristics.

2.7 <u>Problems and Anomalies</u>

a) <u>Electrical Noise</u> - Electrical noise, as shown in Figure 15, was frequently encountered. is noise/interference is attributed to a combination of the employed grounding concept and lack of

SVHSER 6786

2.7 continued

shielding. The electronic controls utilized a common return concept as opposed to individual returns. The problem was further aggrevated by the extensive line lengths and splitting of signals employed in data acquisition.

The electrical noise, of the type shown in Figure 16,occurred only with the actuation of the REA during micro-thruster operation. The noise would then disappear with the next cefill of the PC plenum chamber. Although the electrical noise was exhibited frequently under these conditions, it would not always occur at is shown by Figure 10. It should also be noted that the PC plenum refill cycle is considerably shorter with the presence of noise: approximately 28 to 42 seconds vs. the normal 54 to 60 seconds. See the two aforementioned figures tor comparison.

b) Brown Residue - During early checkout tests, the milli-thruster valve failed to open. The unit was returned to NRL where it was disassembled and examined. The internal parts were observed to contain a brown residue. Similarly, at the conclusion of the test program and during the flushing operation, a brown residue was noted to be in solution while flushing out of the millithruster.

A sample of the residue was given to the Materials Department for an infrared spectrum analysis. The results of this inspection is that the brown residue shows the features of hydrazine decomposed gases with ambient air. The test unit was frequently vented to ambient atmospheric conditions, which thus accounts for the presence of air. Since air in not present during flight application, it is concluded that the brown residue represents a ground test problem only. Shutting off all downstream valves upon test termination, thereby locking up the decomposition gases, will minimize this problem. Considerable testing was accomplished in this fashion. However, to preclude this residue formation with future ground tests, it is recommended that between tests that the altitude test cell be returned to ambient via nitrogen, rather than air.

. . .

GAS GENERATOR SUPPLY PRSSURE - 250 PSIA

1/2

RUN NUMBER - 1 ACTIVE THRUSTER - MILLI

a alteria

. . .

FIGURE 6. TYPICAL ANALOG DATA (R/T-2)

-

SVHSER 6786

agrigence i su su su

		<u> </u>			<u> </u>					 	1	RE	101.0. 7 A 7	CH	1 ЛМТ		·		SU:		(6	P	SIA	1/D	IV)								H	<u> </u>	ł		† -	╂
				<u> </u>								NI											1.				: :						-	<u> </u>		<u> </u>		i i i	t
-	44	<u> -</u> -						-			· · · · ·		1	10		<u></u>			<u></u>			<u></u>				-						1							+
4		<u> </u>	4	<u> ∷.</u> :	<u></u>		÷		<u> </u>	ļ	\downarrow				<u> </u>		<u> </u>				+		:									H:		H		┢	-	1	$\frac{1}{2}$
	r	1	4		- 4	ļ		₋	14			<u> </u>	-		<u> </u>	<u> </u>	·					÷			l:r				1				F			+	1		ł
	-	4	1	_				-	<u> </u>	 			 				<u> </u> -											•								<u> </u>			Ŧ
		1	1					 	 	Ľ.,	<u> </u>						 																+++	<u> </u>				+	+
1			<u> </u>	:.	4.4			<u> </u>	<u> </u>	-		· · · ·	<u> </u>	<u>ان _</u>			 	<u>الم</u>				-								-				-	-	<u> </u>		μ_	4
2		1			<u>† • : .</u>				-				-				†	<u></u>	<u></u>														-	<u></u>				l::	+
4		ļ:		·	- <u>-</u>		+			<u></u>	<u> </u>					<u></u>		<u></u>	<u> </u>	-0	- I	SI	A -	<u> </u>									, , , , , , , , , , , , , , , , , , ,		<u> </u>	┝──			4
-			┿	+-				i-	┝╍╸		• • • •															{										┝╍╍		\mathbf{H}	1
	1. 	 	ļ		<u> </u>	<u> </u>	4	L	<u> </u>	<u> </u>			.			. 			<u> </u>															ł	 	hint			+
_		L.	1					L_				-																									<u></u>	-	+
										<u> </u>	- ier	- 1 1	-			<u>lin</u>						·				<u> </u>													4
		Ľ			.::	<u>.</u>	.					<u> </u>										· .						<u> </u>						<u> </u>				ł-	+
			1.			Ľ.	1			ļ	<u> </u>		 				<u> </u>	<u>↓</u>		••••						ł	1	SE	COF	JD-			<u> </u>	<u> </u>	<u> </u>	Ļ			4
				1			1	1.1	L		::					<u> </u>					ļ													l:	<u> </u>	<u> </u>	₩	<u> </u>	4
		1									. · ·	L		<u>.</u>																						HH.	1	<u>#!!</u>	4
		E					1							· · · · ·				[Ľ-									<u> :::</u>		<u> </u>		 -	4
J		1					1			<u> </u>				[Ŀ										Ľ									<u> </u>	<u> </u>		ĮЩ	1
									1				1	• •		L	<u> </u>			: .	<u></u> .													<u> </u>	L	<u> </u>	 	14	4
		Ū					<u> </u>	L	<u> </u>					<u>.</u>		Ŀ	<u> </u>																	<u> </u>	<u> </u>	<u>ti i i</u>		<u>انتنا</u>	4
1		Γ	Γ		1.1	ŀ							· .												82										Į. –	1	1		ł
		[`			.				1					· .									•										Ľ		L				i
			t:		1	Γ	1	Γ		Γ_			Pl	P	LE	NUN	1 P	RE	SSU	RE	0	2 P	SI	A/I	DIV	j									<u> </u>				4
			1	1.	Γ	Γ	L	<u></u>		L			1			1	<u>.</u>	<u></u>	لنبينا	اللغ الم		المرا			1	.							<u>.</u>				L	1	4
	•	1	} .	1		Γ			[]												1				111					<u> </u>						<u> </u>	1	1	4
-1		1	[].		1	I	1	Γ	1	I ·			<u> </u>																	<u> </u>				L I	<u> </u>	<u> </u>		1	4
1			ľ				1	1		L				5				-		1																	1	.	J
	7				$\Box I$							1				~	L			4	1								1			-	1		\square	5	1	444	4
Π	Β,		1.1							1.1		·		' : : ·		9.0			·	·																		144	4
đ								[:]											n if																		Ш	ЦШ	4
T																																		<u> </u>	<u> </u>	<u> </u>		₽Щ ⁰	4
				Γ					[:_		:			•										<u> </u>	-0-	P	SI/	١.						Liii:		1	Ш		4
	;					Ξ.		·	[·	1									1:	$\{ e_{ij} \}$.	. pi	n in	ГЙ.	1951			li :		en Gene	1 5	÷.,	1.1	1.			16	1
	лi, t					ю.,		:	Ľ			÷ -		1.1	111							4	4	ЦЦ Ц					11.		13.5		• · '		1.1.	i E	1		1
-		 	-	H	┢┉	<u> </u>			 			<u></u>													hΗ									li ii		اين		ti i	t
4	H	 + +	-	 -		<u> </u>	 	li i i																	HH													Ħ.	1
ł	ri ii	l:#	1				 	<u> </u>					<u></u>				 		 									Ì.						hiii i		L	İ	T.	ţ
-1			-					<u>t –</u>	<u>ti</u>								1																			t III		t iii	Ħ
-			-						H																														Ħ
1	##		#	╂₩			ł::::	H	.																111													Ħ	Ħ
ų	Ψŀ			łĦ			l :	1.		H																													đ
4	tt:	i He		ł 🗄					<u></u>																H									HT.				H	t
∄		╟╫	HH:	₩			┢╧╧	.	f										H																	FTT		tiii	t
+	нH			H		ŀ	 		<u> </u>	<u></u>					H																							t i	t
		19493	1:.::	غيبنا	Little		مە ئىد	ER	1			-ine	أغفقها	ليستغنا	مغزما	نسنا			لسغيا	T :	-			سنسمه		أعنجوه	-			renard				-			PREAR	hid	۲

FIGURE 8. TYPICAL ANALOG DATA (R/T-4)

25

.....

,

without many and its to be

والمراجع فيافح عنيتك وتركرت ورعيات

and where a constant of

ана на правите простоя и правление со правление просто простояте в сторование со торова сторование со основност

-

FIGURE 9. TYPICAL ANALOG DATA $(R/T-4, \Delta V/T-1)$

.

مدمدن سيسترز إلياري

.....

1.11

ASA -----

FIGURE 13

TYPICAL PULSE SHAPE @ $P_{IN} = 250$ PSIA, R/T - 1

and the second sec

۰.

1

1

FIGURF 16. ANALOG DATA DEPICTING ELECTRICAL INTERFERENCE

33/34

APPENDIX A

GENERAL DESIGN SPECIFICATION

SVHS 6969

ALL SAME AND SHE

Hamilton	U	COD	E IDENT NO. 73030	SPECIFIC/ TIC	N NO,
Standard				SVES 6969 PAG	EIOF 8
SPECIFICATION TIT		LINE GAS GENE	ERATOR/PLEND	SYSTELI, GENERAL	DESIGN
Contraction of the second s					
PREPARED BY	•	DATE	APPROVED B	QUALITY	<u> 1221/6/2</u>
APPROVED BY	ALL ST	5-9-15 DATE	APPROVED E	BY	
APPROVED BY					<u>x7 6-1:</u> NG D
APPROVED BY	ERIALS	DATE		DESIGN	<u>لم 6-2</u>
APPROVED BY M	. Harris C. CONVINOL	DATE	APPROVED E		Ð
APPROVED BY	154 Linon	DATE	APPROVED E	SY	D
APPROVED BY	<u></u>		APPROVED E		Ď
CUSTODIAN		<u></u>			
BHP:			3767. RELEA	se <u>D. J. Hon</u>	yes_
				· · ·	•
·					
HIS DOCUMENT IS T In the express of In part, or used f	NOTION THA	t et is kor i	to de discle	JEO, REPRODUCI	ED IN MADL
CORPORATION WITH COSE OR USE ANY	OUT INS WRIT	TEN CONSEN	T, AND THAT	NO RIGHT IS GRA	NTED TO DI

.

1.1

 \mathbf{r}
87-758.1D 4/4/		•	
Hamilton Standard		CODE IDENT NO. 73030	SPECIFICATION NO. REV SVHS 6969
NUCCOR LOCKS, CONNECTICU			PAGE 2
1.0	SCOPE		
•	This specification test requirements f	defines the general pe for a Hydrazine Gas Gen	rformance, design and erator/Plenum System.
2.0	APPLICABLE DOCUMENT	<u>rs</u>	
2.1	Government Document	18	·
•	Federal	•	
	TT-I-735	Isopropyl,	Alcoho1
	Military		
•	MIL-P-26536	Fropellant,	Hydrazine
-	MIL-P-27401	Propellant Nitrogen	Presaurizing Agent,
	MIL-P-27407	Propellant Helium	Pressurizing Agent,
2.2	Hamilton Standard	Documents	· .
	Specifications HS 3150	Cleanliness Levels, H and Pressurization of	ligh - Processing, Testing. E Parts Subject to.
•	HS 4618 SVHS 6007	Packaging, Precision	- Cleaned Articles. ppropellant - NRL-0.2 1bf
•	Drawings SV 764130	Gas Generator/Plenum	System, Hydrazine
3.0	REQUIREMENT	· .	
3.1	Item Definition		
	The Hydrazine Gas following:	Generator/Plenum System	n shall consist of the
	. two (2) Model generate low	, 10-16 Rochat Engine A pressure gas	sscablies, used to
		storage of the gas	
	. two (2) LVDT	prozeure transducere,	used for on - off control
			· .

iomika	ກ ບ	FT COMPONE (V.M.	CODE IDENT NO. 73030	SPECIFICATION SVHS 6969	INO. RE
NORON LOCKS, CONN					PAGE 3
••		t		•	
	of REA's trol pac		ction with a sepa	rate electronic (con-
• .	. a heat e	changer, fo	r lowering of gas	temperature	
·		tiometric ty data acquis	pe) pressure tran ition.	ducer for plenut	a
3.1.1	Item Diagram - presented in 1		ematic depicting (the item componen	nts is
3.1.2	Interface Defi	Inition	•	•	
3.1.2.1	Mechanical Int	erface - Pe	r SV 764130.		
3.1.2.2	Electrical Int	erface - Pe	r SV 764130.		
3.2	Characteristic	8		}	
3.2.1	Performance Ch	aracteristi	<u>cs</u>	•	
3.2.1.1			ssure - The gas su eady-state operation		
3.2.1.2	Milli-Thruster erature shall	Gas Supply not exceed	Temperature - The 200°F, with a des	e item's outlet g Ign goal of 150°I	as temp-
3.2.1.3	gas (at requir from base line	ed pressure thermal en	- The item shall 1 - temperature convironment per para f 0.010 lbf thrus:	nditions), when a agraph 3.2.3.1.2	tarting
3.2.1.4	gas (at requir . from base line	ed pressure thermal en	- The item shall h - temperature con vironment per para on at 30 micro-pou	ditions), when a graph 3.2.2.1.2,	tarting
3.2.2	Physical Chara	cteristics			•
3.2.2.1	module with mi	nimal envelo	shall be packaged ope. Mechanical d Instrumentation/it	connections chall	
3.2.2.2	Weight - As a exceed 4.0 lbs		, the dry weight c	of the item shall	not

SF - 736, 10 4/47			•		
-lamilton_	NAN OF UKUSED AN CRAFT COMPONEN	CODE 10	ENT HO.	SPECIFICATION N SVHS 6969	O. REV
NINDSON LOCKS, CONNECTICUT	<u>ି</u> ଲ୍ଲାର ୦୦୦୨୦	L		PA	
3.2.2.3	Leakage - The ite Glie/sec at 50 psi		leakage a	hall not exceed 10	-6 scc
3.2.3	Environmental Com	ditions			•
3.2.3.1	mance requirement	s of this spe	cificatio	or capable of meeti on while operating al conditions below	in any
3.2.3.1.1	Ambient Pressure	- Sea level t	:o 10 ⁻¹¹ (orr.	
3.2.3.1.2	Ambient Temperatu tive).	<u>re</u> - 40 - 950)	? (both c	onductive and radia	!
3.2.3.2	Non-Operating Con performance requi to the environmen	rements of th	is specif	all be capable of m ication following	eeting exposure
3.2.3.2.1	Vibration				
	(a) Sinusoidal (a	ll axes)		Hz at 11 g, sweep ed one (1) octave	
	(b) Random (all a	xcs)	200-200	Hz at 0.1 g ² /Hz 10 Hz at -6 db/octa 10 (2) minutes per	
3.3	Design Constructi	<u></u>			
3.3.1	are compatible wi tures thereof. T	th the operat he operating	ing and/o fluids an	ed from materials of test fluids and hydrazine (per M ly decomposed hydr	mix- IL-P-
	<u>Test</u>	Fluids	Specif	ication Reference	
	Gaseous Water, H	igh Furity 1 Alcohol	MIL-P- MIL-P- HS3150 TT-1-7	27407 , paragraph 3.2.2	· .
3.3.2	Pressure - All co ceptible of wither mus burst person	anding a proc	f pressur	the REA's shall be e of 375 psia and	e a mîni-
	•				
· ·		39		•	

/

	FIVERING OF UNITED - BAFT COMON	CODE IDENT NO. 73030	SPECIFICATION NO. SV HS 6969	REV
NOSON LOCKS, CONNECTIC	UT OLONE		PAGE 5	
4.0	DEMONSTRATION TEST	PROGRAM	• •	anitan (<u>ar. an</u> it
	of test descriptions	est Program shall be co s below. The test meth retion of the cognizant	ods/descriptions may be	
4.1	Examination of Product	uct		
	with the requirement	kamined for physical de ts of Hamilton Standard eighed and the data rec	Drawing per SV 764130.	
4.2	Proof			
	pressure transducer of five (5) minutes medium, and evidence any, shall be record	ressurized to proof pre- per paragraph 3.3.2 f Pressure applied, the of leakage or permane- ded. There shall be no item shall subsequent test.	or a minimum duration me at pressure, fluid nt deformation - if damage or permanent	
4.3	External Leakage			
	external loakage sha	+15 ressurized with 50 -0 all be measured with a l l leakage shall not exc	helium mass spectro-	
4.4	Random Vibration			
	random vibration in requirements of para	ard mounted to a test f each of three (3) orthougraph 3.2.3.2.1(b). The ation as a result of the	ogonal axes per the nere shall be no darage	
4.5	Functional Tests			
4.5.1	Test Conditions	· ;	•	
	95 to 1050F heat str	stalls in a test cham k. When operating the the equivalent of 100K	item, the ambient press	Bur (
	Frict to normal oper	ation of the milli-thr. by evocuating the plenum		1

HEF-713.10 CODE IDENT NO. ę r SPECIFICATION NO. 1 1-21 6969 73030 SV HS - 1 · . - PAGE WHIDSOR LUCKS, CONFLICTICUT DOLES milli-thruster walves to low ambient pressure), then closing th valves, followed by energizing the item's control circuitry. 4.5.2 Test Operation (a) With a hydrazine supply pressure of 250 ± 10 psis, the mill thruster shall be operated for duration of 10 seconds, 30 seconds, and 90 seconds. Each thruster operation shall be initiated with the item temperature not exceeding 40°C. (b) Repeat above with the micro-thruster operating at 30 micropound level until thermal equilibrium is attained. (c) Repeat (a) above with a hydrazine supply pressure of $120 \pm$ (d) Repcat (a) above with the redundant system in operation. 4.5.3 Data Reguirements The following minimum data shall be recorded: - Pressure, Inlet, REA Model 10-16 - Pressure, Chamber, REA Nodel 10-16 - Temperature, Inlet, REA Model 10-16 - Pressure, Plenum Outlet - Temperature, Mount Flange, REA Model 10-16 - Temperature, Throat, REA Model 10-16 - Temperature, Inlet, Plenum - Temperature, Heat Exchanger - Temperature, Planum - Temperature, Inlet, Milli-Thruster - Current, Valve, REA Model 10-16 - Current, Valve, Milli-Thruster 4.6 External Leakage Test Repeat of test per paragraph 4.3. 4.7 Post-Test Inspection The item shall be visually examined for discrepancies and/or damage. 5.0 SPECIAL PESTRUCTIONS 5.1 Fackardrog Interim Packaging - All openings, shall be sealed with nylon f. 5.1.1 und that about whall be bagged in polyethylene for interim stor and transportation between tests. Packaging integrity shall | broken only prior to tast setup. 41

. ,	•		
Hamilton U Standard A.	COULTION (100) 73020	CECCIFICATION NO. SVHS 6969	KEV
WINDSOR LOCKS, CONNECTICUT DIONS		PAGE	7

Final Packaging - Packaging for delivery to stores or to the customer shall be per SVH3 4018 Type I. The double bagged unit shall be further packaged in a container for protection during handling, transit and storage.

Cleaning

5.1.2

5.2

5.3

5.4

External cleanliness (visual) per HS 3150 shall be verified after Examination of Product.

Pressurization and Venting

Pressure shall be introduced only at the REA inlet. All test fluids (liquid or gaseous) used to pressurize the REA shall be filtered to 10 microns abs, as a minimum. The REA shall be vented only in positive flow direction.

Data Package

The data package shall contain the following items:

a. Copy of all test data sheets

b. Copy of reduced digital performance data

c. Drawing SV 764130

HARSTON STADDARD

/

W/ Diversion of

SVHSER 6786

A second second

APPENDIX B

GAS GENERATOR/PLENUM SYSTEM

PARTS LIST

Will Dresson of

SVHSER 6786

Parts List for Gas Generator/Plenum System SV764130-1, Model GGA-9

No. Req'd. Part Identification 1 SV764130-1 Gas Generator/Plenum System 6 AN960C8 Washer-Flat AR MS20995C2 Wire, Safety or Lock 6 MS24674-8 Screw, Cap, Socket Head 8 MS 35275-214 Screw, Machine 8 NAS620C4 Washer 1 SV748537-103 Fitting, Brazed Tube 1 SV764130-200 Base 1 SV764130-202 Plate 2 SV764130-203 Plug, Nozzle 2 2 1 2 1 SV764130-204 Tube, Nozzle Exit SV764130-205 Tube, Connecting SV764130-206 Tube, Wound SV764130-207 LVDT (GFE) (Note 1) SV764130-208 Transducer, Pressure (GFE) (Note 2) 2 SV764130-209 Packing, Preformed (GFE) SV764130-210 Packing, Preformed (GFE) 1 1 SV764130-211 Engine SV755437-7 S/N 38 1 SV764130-212 Engine SV755437-7 S/N 45

1

HAMILTON STAPDARD

Note (1) LVDT - Gulton P/N 3255-8801, S/N 1021 and 1023.

SV764130-213 Flange

(2) Pressure Transducer - Bourns P/N 80294-2004831901

46

Calestat and a second

Hamilton	73030	SPECIFICATION NO. SVHS 7029	REV
		PAGE 1 OF	9
SPECIFICATION TITLE	TEST PLAN FOR	· .	
NRL	HYDRAZILE GAS GENERATOR/F	PLENUM SYSTEM	
PREPARED BY	APPROVED E	QUALITY QUALITY	,/ <u>//</u> , DAT
APPROVED BY 2.165.4	DATE 1/14/7C APPROVED E DATE	BY PURCHASING	DAT
APPROVED BY TECH. STANDARDS	APPROVED E	MANUFACTURING	DAT
APPROVED BYMATERIALS	DATE		DAT
APPROVED BY <u>M. Hunin</u> SPEC, CONTROL	<u> </u>	RELIABILITY	DAT
APPROVED BY	APPROVED E	3Y	DAT
APPROVED BY	APPROVED E	3Y	DAT
CUSTODIAN			: مستخدم مسلم
EXP. RELEASE	DATE	3£ <u></u>	DAT
			-
•			1
THIS DOCUMENT IS THE PROPERT ON THE EXPRESS CONDITION THA IN PART, OR USED FOR MANUFAC CORPORATION WITHOUT ITS WRIT CLOSE OR USE ANY INFORMATION DOES NOT LIMIT THE RIGHT TO UP	T IT IS NOT TO BE DISCLO TURE FOR ANYONE OTHER TEN CONSENT, AND THAT CONTAINED IN SAID DOG	DGED, REPRODUCED IN W R THAN UNITED AIRCRAF NO RIGHT IS GRANTED UMENT, THIS RESTRICT	VHOLE (T TO DIS- ION

 $\frac{1}{2}$

HDF (55,11) 4.54

Homilton U. Standard A.	CODE IDENT NO. 73030	SPECIF SV HS	TICATION NO. 7029	REV	
WINDSOR LOCKS, CONNECTICUT 06096		•	PAGE	2	

1.0 SCOPE

This test plan defines the Demonstration Test Program of the SV764130 Hydrazine Gas Generator/Plenun System. The test plan defines the test sequence, test descriptions, and data requirements. The primary functions of the test plan are (1) to present an overview for Engineering/ Management personnel and (2) to serve as a basis for the preparation of Test Procedures, which define the Specialized Test Equipment, the test setup (including schematics), and presents the step-by-step directions essential to accomplishing each specified test.

2.0 TEST ITEM DEFINITION

The test item, referred herein as the item, is the Gas Generator/Plenum Assembly per SV764130 (including customer furnished electronic controls).

3.0 TEST SEQUENCE

Testing shall be conducted in the following sequence:

- 1) Examination of Product
- 2) Proof
- 3) External Leakage
- 4) Random Vibration
- 5) External Leakage
- 6) Functional Checkout
- 7) Performance Demonstration
- 8) External Leakage
- 9) Internal Leakage
- 10) Post-Test Inspection

4.0 TEST DEFINITIONS

4.1 Examination of Product

4.1.1 Purpose - To verify that the unit is ready for testing.

4.1.2 <u>Test Description</u> - The item shall be examined for defects or imperfections. The items's record log shall be examined for compliance verification with applicable Hardinon Standard drawings.

The item, exclusive of customer furnished equipment (CFE), shall be weighed with the test equipment having an accuracy within $\pm 1\%$.

Hat was the same

	CONNECTICUT 05095 PAGE 2
	S, CONNECTICUT 05096 PAGE 3
4.1.3	Data Requirements - Any physical anomalies, evidence of substandard work- manship, or nonconforming dimensions and dry weight shall be recorded.
4.2	Proof
4.2.1	Purpose - To verify unit is capable of withstanding proof pressure load.
4.2.2	<u>Test Description</u> - The item, exclusive of the three CFE pressure transduce shall be slowly pressurized to $375 + 15$ psig for a minimum of five (5) minutes. Pressurization of the item shall be applied at the inlet, with both REA 10-16's energized in the open position, and depressurization shall be effected by slowly venting downstream of the catalyst bed.
	Subsequent to this test, the item shall be examined for damage or defor- mation.
4.2.3	Data Requirements - Pressure applied, time at pressure, fluid medium, and visual findings shall be recorded.
4.3	External Leakage
4.3.1	<u>Furpose</u> - To verify external leakage of item does not exceed 10^{-6} scc GH _e , sec at 50 psia.
4.3.2	<u>Test Description</u> - The item shall be slowly pressurized to $50 + 10$ psia wigaseous helium at the inlet of the item, with both REA 10-16's energized in the open position. Using a mass spectrometer, external helium leakage shall be measured. Depressurization shall be effected by slowly venting downstream of the catalyst bed.
4.3.3	Data Requirements - Applied pressure, fluid medium, and leakage readings shall be recorded.
4.4	Random Vibration
4.4.1	<u>Purpose</u> - To demonstrate units ability to withstand structural vibratory loads.
4.4.2	Test Description - The test item shall be hard mounted to a rigid fixture and subjected for two (2) minutes in each of three orthogonal axes, to random vibration levels, as defined below.

 1

50

1814

/

and the second

Р,

ļ

.1

1

1

	dard A.	DENT NO. SPÉCIFICATION NO. R				
	S, CONNECTICUT 06096	PAGE 4				
4.4.2	continued					
		ower Spectral Density				
	<u>(Hz)</u>	(g ² /Hz)				
	20 - 200	0.1				
	200 - 2000	-6 db/octave				
4.4.3	Data Requirements - A curve of frequer accelerometer and response accelerometer cable axis shall be obtained. The unit following this test, with observations	er (input to thruster) for each app t shall be visually examined for da				
4.5	Functional Checkout					
4.5.1	<u>Purpose</u> - To ensure unit is ready for I More specifically:	erformance Demonstration testing.				
	- to familiarize user with controls					
	 to verify data acquisition adequation to demonstrate basic operational 					
4.5.2	Test Description - With the item instal to a base plate, the item shall be oper positions with high and low Gas Generat tests shall be defined at time of tests	rated at various control select for supply pressures. The specific				
4.5.3	Data Requirements - The following data shall be analog recorded with each test:					
	Parameter	Range				
		· · ·				
	Pressure, Inlet, REA Model 10-16	0-500 psia 0-100 psia				
	Pressure, Inlet, REA Model 10-16 Pressure, Chamber, REA Model 10-16 (2)	0-100 psia				
	Pressure, Inlet, REA Model 10-16					
	Pressure, Inlet, REA Model 10-16 Pressure, Chamber, REA Model 10-16 (2) Pressure, Plenum Outlet Temperature, Base Plate Temperature, Throat, REA Model 10-16	0-100 psia 0-150 psia 0-200 or 0-2000°F				
	Pressure, Inlet, REA Model 10-16 Pressure, Chamber, REA Model 10-16 (2) Pressure, Plenum Outlet Temperature, Base Plate Temperature, Throat, REA Model 10-16 Temperature, Inlet, Milli/Micro Thruste	0-100 psia 0-150 psia 0-200 or 0-2000or 0-2000or or 0-500 or				
	Pressure, Inlet, REA Model 10-16 Pressure, Chamber, REA Model 10-16 (2) Pressure, Plenum Outlet Temperature, Base Plate Temperature, Throat, REA Model 10-16 Temperature, Inlet, Milli/Micro Thruste Temperature, kEA 10-16, Inlet	0-100 psia 0-150 psia 0-200 or 0-2000or or 0-500 or 0-500 or				
	Pressure, Inlet, REA Model 10-16 Pressure, Chamber, REA Model 10-16 (2) Pressure, Plenum Outlet Temperature, Base Plate Temperature, Throat, REA Model 10-16 Temperature, Inlet, Milli/Micro Thruste Temperature, REA 10-16, Inlet Temperature, Heat Exchanger	0-100 psia 0-150 psia 0-200 oF 0-2000 oF 0-500 oF 0-500 oF 0-500 oF				
	Pressure, Inlet, REA Model 10-16 Pressure, Chamber, REA Model 10-16 (2) Pressure, Plenum Outlet Temperature, Base Plate Temperature, Throat, REA Model 10-16 Temperature, Inlet, Milli/Micro Thruste Temperature, KEA 10-16, Inlet Temperature, Heat Exchanger Temperature, Plenum	0-100 psia 0-150 psia 0-200 oF 0-2000 oF 0-500 oF 0-500 oF 0-500 oF 0-500 oF				
	Pressure, Inlet, REA Model 10-16 Pressure, Chamber, REA Model 10-16 (2) Pressure, Plenum Outlet Temperature, Base Plate Temperature, Throat, REA Model 10-16 Temperature, Inlet, Milli/Micro Thruste Temperature, REA 10-16, Inlet Temperature, Heat Exchanger	0-100 psia 0-150 psia 0-200 oF 0-2000 oF 0-500 oF 0-500 oF 0-500 oF				
	Pressure, Inlet, REA Model 10-16 Pressure, Chamber, REA Model 10-16 (2) Pressure, Plenum Outlet Temperature, Base Plate Temperature, Throat, REA Model 10-16 Temperature, Inlet, Milli/Micro Thruste Temperature, REA 10-16, Inlet Temperature, Heat Exchanger Temperature, Plenum Temperature, Mount Flange Current, Valve, REA Model 10-16 Current, Valve, Milli/Micro Thruster	0-100 psia 0-150 psia 0-200 oF 0-2000°F 0-500 °F 0-500 °F 0-500 °F 0-500 °F 0-500 °F 0-500 °F				
	Pressure, Inlet, REA Model 10-16 Pressure, Chamber, REA Model 10-16 (2) Pressure, Plenum Outlet Temperature, Base Plate Temperature, Throat, REA Model 10-16 Temperature, Inlet, Milli/Micro Thruste Temperature, KEA 10-16, Inlet Temperature, Heat Exchanger Temperature, Plenum Temperature, Mount Flange Current, Valve, REA Model 10-16	0-100 psia 0-150 psia 0-200 oF 0-2000°F 0-500 °F 0-500 °F 0-500 °F 0-500 °F 0-500 °F 0-500 °F 0-500 °F 0-1 aup				

-

4

A. A. 4.5.3 continued In addition to analog data above, ambient pressure and fuel temperatidata at start and end of test shall be recorded in the test log. The paper speed for analog data shall be per Engineering instruction time of test. 4.6 Performance Demonstration 4.6.1 Purpose - To demonstrate the unit's capability under the conditions in Specification SVHS 6969, and to meet the plenum outlet temperatur ments specified in SVHS 6969. 4.6.2 Test Description - The item shall be installed in a test chamber and to a plate capable of being conditioned to levels specified in Table heat sink grease shall be apriled to the surface between the item ar ing plate per Drawing SVHS 764130. Initial pressurization shall be actieved by activation of the pressur regulation controls, with a hydrari supply pressure of 250 ± 10 perfecting shall be conducted per Table I. 4.6.3 Data Requirements - The following data shall be analog recorded with test: Pressure, Inlet, REA Model 10-16 0-500 psia Pressure, Inlet, REA Model 10-16 0-200 OF Temperature, Base Plate 0-200 OF Temperature, REA Iole, Iole Iole 0-500 OF Temperature, REA Model 10-16 0-500 OF<	nstructions a conditions spec	rded in the test log	۹			
In addition to analog data above, ambient pressure and fuel temperative data at start and end of test shall be recorded in the test log. The paper speed for analog data shall be per Engineering instruction time of test. 4.6 Performance Demonstration 4.6.1 Purpose - To demonstrate the unit's capability under the conditions in Specification SVHS 6969, and to meet the plenum outlet temperature ments specified in SVHS 6969. 4.6.2 Test Description - The item shall be installed in a test chamber and to a plate capable of being conditioned to levels specified in Table heat sink grease shall be applied to the surface between the item aring plate per Drawing SVHS 764130. Initial pressurization shall be achieved by activation of the pressure regulation controls, with a hydrazi supply pressure of 250 ± 10 ps Testing shall be conducted per Table I. 4.6.3 Data Requirements - The following data shall be analog recorded with test: Yressure, Chamber, REA Model 10-16 0-500 op ia Pressure, Chamber, REA Model 10-16 0-2000°F Temperature, Base Plate 0-200 op ia Temperature, REA 10-16, Inlet 0-500 op ia Temperature, REA Model 10-16 0-500 op ia Temperature, REA Model 10-16 0-500 op ia Temperature, REA 10-16, Inlet 0-500 op ia Temperature, REA Model 10-16 0-	nstructions a conditions spec	rded in the test log	3		يسي مشارك مشر المركمة الكريب	
In addition to analog data above, ambient pressure and fuel temperative data at start and end of test shall be recorded in the test log. The paper speed for analog data shall be per Engineering instruction time of test. 4.6 Performance Demonstration 4.6.1 Purpose - To demonstrate the unit's capability under the conditions in Specification SVHS 6969, and to meet the plenum outlet temperature ments specified in SVHS 6969. 4.6.2 Test Description - The item shall be installed in a test chamber and to a plate capable of being conditioned to levels specified in Table heat sink grease shall be applied to the surface between the item aring plate per Drawing SVHS 764130. Initial pressurization shall be achieved by activation of the pressure regulation controls, with a hydrari 2 supply pressure of 250 ± 10 ps Testing shall be conducted per Table I. 4.6.3 Data Requirements - The following data shall be analog recorded with test: Yressure, Chamber, REA Model 10-16 0-500 psia Pressure, Chamber, REA Model 10-16 0-2000°F Temperature, Theore, REA Model 10-16 0-2000°F Temperature, Inlet, NEI Model 10-16 0-2000°F Temperature, Inlet, NILI/Micro Thruster 0-500 °F Temperature, REA Model 10-16 0-500 °F Temperature, REA Model 10-16 0-10 amp Temperature, REA Model 10-16 0-10 °F Temperature, REA Model 10-16 0-2000°F Temperature, REA Model 10-16 0-500 °F Temperature, REA Model 10-16 0-10 °F Temperature, REA Model 10-16 0-10 °F Temperature, REA Model 10-16 0-10 °F Temperature, REA Model 10-16 0-2000°F Temperature, REA Model 10-16 0-300 °F Temperature, REA Model 10-16 0-1 amp </td <td>nstructions a conditions spec</td> <td>rded in the test log</td> <td></td> <td></td> <td>•</td>	nstructions a conditions spec	rded in the test log			•	
data at start and end of test shall be recorded in the test log. The paper speed for analog data shall be per Engineering instruction time of test. 4.6 Performance Demonstration 4.6.1 Purpose - To demonstrate the unit's capability under the conditions in Specification SVHS 6969, and to meet the plenum outlet temperatur ments specified in SVHS 6969. 4.6.2 Test Description - The item shall be installed in a test chamber and to a plate capable of being conditioned to levels specified in Table heat sink grease shall be applied to the surface between the item aring plate per Drawing SVHS 764130. Initial pressurization shall be achieved by activation of the pressur regulation controls, with a hydrari - supply pressure of 250 ± 10 ps Testing shall be conducted per Table I. 4.6.3 Data Requirements - The following data shall be enalog recorded with test: Pressure, Inlet, REA Model 10-16 0-500 psia Pressure, Inlet, REA Model 10-16 0-500 opsia Pressure, Inlet, REA Model 10-16 0-2000°F Temperature, Intest, REA Model 10-16 0-200°F Temperature, Intest, REA Model 10-16 0-500 °F Temperature, REA 10-16, Inlet 0-500 °F Temperature, Plenum 0-500 °F Temperature, REA Model 10-16 0-1 amp Current, Valve, REA Model 10-16 0-36 VDC	nstructions a conditions spec	rded in the test log		4.5.3 continued	4.5.3	
 time of test. 4.6 <u>Performance Demonstration</u> 4.6.1 <u>Purpose</u> - To demonstrate the unit's capability under the conditions in Specification SVHS 6969, and to meet the plenum outlet temperatur ments specified in SVHS 6969. 4.6.2 <u>Test Description</u> - The item shall be installed in a test chamber and to a plate capable of being conditioned to levels specified in Table heat sink grease shall be applied to the surface between the item arring plate per Drawing SVHS 764130. Initial pressurization shall be achieved by activation of the pressur regulation controls, with a hydrazi - supply pressure of 250 ± 10 ps Testing shall be conducted per Table I. 4.6.3 <u>Data Requirements</u> - The following data shall be analog recorded with test: <u>Parameter</u> <u>Range</u> Pressure, Inlet, REA Model 10-16 0-500 psia Pressure, Chamber, REA Model 10-16 0-2000°F Temperature, Base Plate 0-200 °F Temperature, Inlet, Nilli/Micro Thruster 0-500 °F Temperature, Neat Exchanger 0-500 °F Temperature, Nulli/Micro Thruster 0-500 °F Current, Valva, Milli/Micro Thruster 0-36 VDC 	onditions spe	r Engineering instru				
 4.6.1 <u>Purpose</u> - To demonstrate the unit's capability under the conditions in Specification SVHS 6969, and to meet the plenum outlet temperature ments specified in SVHS 6969. 4.6.2 <u>Test Description</u> - The item shall be installed in a test chamber and to a plate capable of being conditioned to levels specified in Table heat sink grease shall be applied to the surface between the item aring plate per Drawing SVHS 764130. Initial pressurization shall be achieved by activation of the pressuregulation controls, with a hydrazi 2 supply pressure of 250 ± 10 ps Testing shall be conducted per Table I. 4.6.3 <u>Data Requirements</u> - The following data shall be enalog recorded with test: <u>Parameter</u> <u>Range</u> Pressure, Inlet, REA Model 10-16 0-500 psia Pressure, Inlet, REA Model 10-16 0-100 psia Pressure, Inher, REA Model 10-16 0-2000°F Temperature, Base Plate 0-200 °F Temperature, REA 10-16, Inlet 0-500 °F Temperature, REA Model 10-16 0-500 °F Temperature, REA Model 10-16 0-100 °F Temperature, REA Model 10-16 0-500 °F Temperature, REA Model 10-16 0-36 VDC 			d for analog data shall be			
 in Specification SVHS 6969, and to maet the plenum outlet temperatur ments specified in SVHS 6969. 4.6.2 Test Description - The item shall be installed in a test chamber and to a plate capable of being conditioned to levels specified in Table heat sink grease shall be applied to the surface between the item aring plate per Drawing SVHS 764130. Initial pressurization shall be achieved by activation of the pressur regulation controls, with a hydrazi : supply pressure of 250 ± 10 ps Testing shall be conducted per Table I. 4.6.3 Data Requirements - The following data shall be analog recorded with test: Pressure, Inlet, REA Model 10-16 0-500 psia Pressure, Chamber, REA Model 10-16 0-2000°F Temperature, Base Plate 0-200 °F Temperature, Throat, REA Model 10-16 0-2000°F Temperature, Inlet, Milli/Micro Thruster 0-500 °F Temperature, REA Exchanger 0-500 °F Temperature, Plenum 00-150 °F Temperature, Plenum 0-500 °F Temperature, Neat Exchanger 0-500 °F VOC 			monstration	4.6 Performance	4.6	
to a plate capable of being conditioned to levels specified in Table heat sink grease shall be applied to the surface between the item ar ing plate per Drawing SVHS 764130.Initial pressurization shall be achieved by activation of the pressur regulation controls, with a hydrari 2 supply pressure of 250 ± 10 ps Testing shall be conducted per Table I.4.6.3 Data Requirements - The following data shall be analog recorded with test:Pressure, Inlet, REA Model 10-160.500 psia Pressure, Chamber, REA Model 10-16 (2) Pressure, Plenum Outlet Temperature, Base Plate0.500 °FTemperature, Inlet, Ni11/Nicro Thruster O-500 °FTemperature, REA 10-16, Inlet O-500 °FTemperature, Nount Flange O-500 °FO-500 °FTemperature, Nount Flange O-500 °FO °FTemperature, REA 10-16O °FTemperature, REA Model 10-16O °FTemperature, Nount Flange O-500 °FO °FTemperature, Nount Flange O-500 °FO °FTemperature, REA Model 10-16O °F <td colspan<="" td=""><td>•</td><td></td><td>on SVHS 6969, and to meet t</td><td>in Specific</td><td>4.6.1</td></td>	<td>•</td> <td></td> <td>on SVHS 6969, and to meet t</td> <td>in Specific</td> <td>4.6.1</td>	•		on SVHS 6969, and to meet t	in Specific	4.6.1
regulation controls, with a hydrazi 2 supply pressure of 250 ± 10 ps Testing shall be conducted per Table I. 4.6.3 Data Requirements - The following data shall be analog recorded with test: Parameter Range Pressure, Inlet, REA Model 10-16 0-500 psia Pressure, Chamber, REA Model 10-16 (2) 0-100 psia Pressure, Plenum Outlet 0-150 psia Pressure, Plenum Outlet 0-150 psia Temperature, Base Plate 0-200 °F Temperature, Inlet, Nilli/Micro Thruster 0-500 °F Temperature, REA 10-16, Inlet 0-500 °F Temperature, Heat Exchanger 0-500 °F Temperature, Mount Flange 0-500 °F Current, Valve, REA Model 10-16 0-1 amp Current, Valve, REA Model 10-16 0-36 VDC	d in Table I.	levels specified in	able of being conditioned t se shall be applied to the	to a plate heat sink g	4.6.2	
Itest:ParameterRangePressure, Inlet, REA Model 10-160-500 psiaPressure, Chamber, REA Model 10-16 (2)0-100 psiaPressure, Plenum Outlet0-150 psiaTemperature, Base Plate0-200 °FTemperature, Throat, REA Model 10-160-2000°FTemperature, Inlet, Nilli/Micro Thruster0-500 °FTemperature, REA 10-16, Inlet0-500 °FTemperature, Heat Exchanger0-500 °FTemperature, Plenum0-500 °FTemperature, Mount Flange0-500 °FCurrent, Valve, REA Model 10-160-1 ampCurrent, Valve, REA Model 10-160-36 VDC			trols, with a hydrazi 🤤 sup	regulation		
Pressure, Inlet, REA Model 10-160-500 psiaPressure, Chamber, REA Model 10-16 (2)0-100 psiaPressure, Plenum Outlet0-150 psiaTemperature, Base Plate0-200 °FTemperature, Throat, REA Model 10-160-2000°FTemperature, Inlet, Nilli/Micro Thruster0-500 °FTemperature, REA 10-16, Inlet0-500 °FTemperature, Heat Exchanger0-500 °FTemperature, Mount Flange0-500 °FCurrent, Valve, REA Model 10-160-1 ampCurrent, Valve, REA Model 10-160-1 on vVoltage, Valve, REA Model 10-160-36 VDC	orded with eac	1 be analog recorded	<u>nts</u> - The following data sh		4.6.3	
Pressure, Chamber, REA Model 10-16 (2)0-100 psiaPressure, Plenum Outlet0-150 psiaTemperature, Base Plate0-200 °FTemperature, Throat, REA Model 10-160-2000°FTemperature, Inlet, Nilli/Micro Thruster0-500 °FTemperature, REA 10-16, Inlet0-500 °FTemperature, Heat Exchanger0-500 °FTemperature, Plenum0-500 °FTemperature, Mount Flange0-500 °FCurrent, Valve, REA Model 10-160-1 ampCurrapt, Valve, Mill//Micro Thruster0-1 on vVoltage, Valve, REA Model 10-160-36 VDC		Range	arameter			
Pressure, Plenum Outlet0-150 psiaTemperature, Base Plate0-200 °FTemperature, Throat, REA Model 10-160-2000°FTemperature, Inlet, Milli/Micro Thruster0-500 °FTemperature, REA 10-16, Inlet0-500 °FTemperature, Heat Exchanger0-500 °FTemperature, Plenum0-500 °FTemperature, Mount Flange0-500 °FCurrent, Valve, REA Model 10-160-1 ampCurrent, Valve, Mill//Micro Thruster0-1 on vVoltage, Valve, REA Model 10-160-36 VDC		0-5 00 psia	t, REA Model 19-16	Pressure, In		
Temperature, Base Plate0-200 °FTemperature, Throat, REA Model 10-160-2000°FTemperature, Inlet, Milli/Micro Thruster0-500 °FTemperature, REA 10-16, Inlet0-500 °FTemperature, Heat Exchanger0-500 °FTemperature, Plenum0-500 °FTemperature, Mount Flange0-500 °FCurrent, Valve, REA Model 10-160-1 ampCurrent, Valve, Milli/Micro Thruster0-1 on vVoltage, Valve, REA Model 10-160-36 VDC						
Temperature, Throat, REA Model 10-160-2000°FTemperature, Inlet, Milli/Micro Thruster0-500 °FTemperature, REA 10-16, Inlet0-500 °FTemperature, Heat Exchanger0-500 °FTemperature, Plenum0-500 °FTemperature, Mount Flange0-500 °FCurrent, Valve, REA Model 10-160-1 ampCurrent, Valve, Milli/Micro Thruster0-1 on vVoltage, Valve, REA Model 10-160-36 VDC		-				
Temperature, Inlet, Nilli/Micro Thruster0-500 °FTemperature, REA 10-16, Inlet0-500 °FTemperature, Heat Exchanger0-500 °FTemperature, Plenum0-500 °FTemperature, Mount Flange0-500 °FCurrent, Valve, REA Model 10-160-1 ampCurrent, Valve, Milli/Micro Thruster0-1 on yVoltage, Valve, REA Model 10-160-36 VDC				-		
Temperature, REA 10-16, Inlet0-500 °FTemperature, Heat Exchanger0-500 °FTemperature, Plenum0-500 °FTemperature, Mount Flange0-500 °FCurrent, Valve, REA Model 10-160-1 ampCurrent, Valve, Mill//Micro Thruster0-1 on yVoltage, Valve, REA Model 10-160-36 VDC						
Temperature, Heat Exchanger0-500 °FTemperature, Plenum0-500 °FTemperature, Mount Flange0-500 °FCurrent, Valve, REA Model 10-160-1 ampCurrent, Valve, Mill//Micro Thruster0-1 on vVoltage, Valve, REA Model 10-160-36 VDC						
Temperature, Plenum0-500 °FTemperature, Mount Flange0-500 °FCurrent, Valve, REA Model 10-160-1 ampCurrent, Valve, Mill//Micro Thruster0-1 on NVoltage, Valve, REA Model 10-160-36 VDC					1	
Current, Valve, REA Model 10-160-1ampCurrent, Valve, Mill//Micro Thruster0-1on yVoltage, Valve, REA Model 10-160-36VDC		0-500 °F				
Current, Valva, Mill/Micro Thrunter 0-1 and Voltage, Valve, REA Model 10-16 0-36 VDC	•					
Voltage, Valve, REA Model 10-16 0-36 VDC		•			1	
In addition to analog data above, ambient pressure and fuel temperat		0-35 VDC	, KEA Model 10-16	voltage, Val		
data at start and end of test shall be recorded in the test log.						
The paper speed for analog data shall be per Engineering Instruction at time of test.	nstructions	r Engineering Instruc				

HSF-735.10 4/6/

	S, CONNECTICUT 06096 PAGE 6
4.6.4	General Remarks
	(1) The test setup shall include provisions to protect the system in the event of a high pressure overshoot due to excessive ignition delay. A suggested protective method is to effect an automatic shutdown of REA 10-16 if the REA 10-16 chamber pressure does not attain 75 + 10 psia within 0.100 sees of thrust chamber valve energization. In the event a malfunction secure, the test shall be terminated and Project Engineering notified.
	(2) Plenum pressure shall be monitored during each test. If the plenum pressure exceeds 70 psia, the test shall be terminated.
4.7	Internal Leakage
4.7.1	Purpose - To verify REA 10-16's value stat leakage meets specified re- quirements following functional festing of the GC/Plenum assembly and prior to shipment.
4.7.2	<u>Test Description</u> - The inlet of each REA, with the value de-energized, shall be pressurized one-at-a-time to 250 ± 10 usin with gaseous helium. Leakage shall be measured downstream of the value seat with gaseous helium using a mass spectrometer. Leakage shall not exceed 1 x 10 ⁻⁶ scc GHe/sec.
4.7.3	Data Requirements - Applied pressure, fluid used, and obtained leakage da
4.8	Post-Test Flush
4.8.1	Purge test unit with $10 - 15$ psig CN ₂ .
	(a) Set REA inlet pressure to 10 - 15 psig Glass
	 (b) Set controls to R/T-1 and CV/T-1. (c) Enable Reactor A and CVI-0 Systematic The releange control levels to R/T-4 and CV/T-4. (Monitor PT and FC pressures to ensure control valves have actuated).
	(d) Actuate milli-thruster and micro-thruster for 15 minutes. (Adjust inlet pressure, if necessary, to ensure 10 - 15 psig supply. PT pressure will be 25 - 30 psin while PC pressure will be 10 - 15 psid)
	(c) After 1 - 2 minutes, switch to be over F. Then alter between Reactor and Reactor a every Deep Decide and Reactor Marchaeler.
	(f) Disable Reactor A and AVI-3 systems. Dimensize milli and micro- thrusters.
•	

Stand		CODE IDENT NO. 73030	SPECIFICATION NO SV HS 7029	REV
	CONNECTICUT 06096		- PA(GE 7
4.8.2	Mater flush test unit with 10 -	15 paig high pur	ity water.	
	(a) Separate Gas Generator/Flem	num assembly from	milli-thruster and	micro-
	 thruster subasserbly. (b) Flush Gas Generator/Plenum. each REA valve open/close a 	assumbly with 10 at approximately	- 15 psig water, ac 20 to 60 cycles per	tuating minute
	 for minimum of two minutes. (c) Flush milli and micro thrus by energizing small plenum valves 20 to 60 cycles per 	ster subassembly control valve op	with 10 - 15 psig wa en and cycling thrus	ter,
4.8.3	Isopropyl alcohol (IFA) flush te	est unit with 10	- 15 psig IPA.	
	(a) Repeat 4.8.2 above, except	with IPA.		
4.8.4	Purge unit with gaseous nitrogen	1.		
	(a) Repeat 4.8.1 above.			
4.8.5	Vacuum dry unit as 1.5 mmHg or 1 80 - 120°F.	less for four (4)	hours minimum at	
4.9	Post-Test Inspection		·	
4.9.1	<u>Purpose</u> - To verify prior testir	ng has not physic	ally damaged the ite	m .
4.9.2	Test Description - The item shal and/or damage.	ll be visually ex	amined for discrepan	cies
4.9.3	Data Requirements - The visual f	findings shall be	recorded in the log	; book.
			•	
	•			
				•

Star	nilton U ndard Fa	~ 7.030 SV HS	
NDSOR L	DCKS, CONNECTICUT 06096		PAGE 8
	TABLE 1. CG/PI VEN	MUSSINERIN FUNCTIONAL TESTS	
Test No.	Test Objective	Test Conditions	Operation
1	Nominal Performance Evaluation of varied R/T Select positions - at hi P _{in}	P _{in} = 250 psia Room Temp, (hdw-fuel)	Vary R/T - 1 - 2 - - 4; operate mills thruster for 10 cy minimum at each se position.
2	Same, except at low P _{in}	P _{in} = 130 pula Room Temp. (hdw-fuel)	Same.
3	Nominal Performance Evaluation of varied • V/T Select positions	P _{in} = 250 psia Rovom Temp. (hdw-fuel)	With $R/T - 4$, vary $\triangle V/T 4 - 3 - 2 - 0$ operate micro thru for three PT cycle minimum at each position.
4	Max. Gas Temp. Determination	P _{jn} = 250 psia Nderfnel Temp . = 95-105°F	With R/T - 4, ope milli thruster un 105°F gas outlet erature is attain
5	Long Duration 2 V Operation Evaluation	P _{jer} = 250 psia Ndv-fuel temp 95-105°F	With R/T - 4, 스 V operate micro thr for not less than
6	Evaluate worst case REA operation (max. off time) at low inlet pressure	P ₁₀ = 130 psia BC-fuel temp. = 40-50°F	With $R/T - 4, \Delta V/'$ operate micro-thre for a 'inimum of cycles.
7	Same as #6, except at high inlet pressure	P _{fn} = 250 psia Hdv-fual Temp. = 40-50°F	Same as #6 above. ,
8	Long hold period effect evacuation	Pro-Lest Conditions: Proven Lodied up with 1. J. for tininum of 7 days.	With R/T - 4, open milli-thruster

ne m

55

_ -

	nilton <u>U</u> ndard A.	CODE IDENT NO. 73030	SUECIFICATION SUHS 7029	CN NO.
	LOCKS, CONNECTICUT 06096	· •	• •	PAGE
<u>TABL</u>	E I. GG/PLENUM ASSEMBLY FUNCTION	AL TESTS - continued		
Test No.	Test Objective	Test Conditions	07	eration
8	(continued)	<u>Test Conditions</u> : P _{in} = 250 psia Ambient Fuel-Hdw. T	-	
9	Nominal Performance Evaluation of Redundant REA	Ambient Fuel-Hdw. 1 P _{in} = 250 psia Room Temp. (lldw-Fuel	same a	ns #1 al
GENE	RAL NOTES			
(1)	Milli-thruster operation is pre- operation is preceded by "enabl:			
	· · ·	-		•
(2)	Paper speed of instrumentation	shall be per Engineeri	ng instruction	ю.
(2) (3)	Paper speed of instrumentation a Ambient or room temperature is			
		defined as 70°F to 95° iately following each	F.	
(3)	Ambient or room temperature is a Immediately preceding and immed	defined as 70°F to 95° iately following each	F.	
(3) (4)	Ambient or room temperature is Immediately preceding and immed and ambient pressure shall be en	defined as 70°F to 95° iately following each	F.	
(3) (4)	Ambient or room temperature is Immediately preceding and immed and ambient pressure shall be en	defined as 70°F to 95° iately following each	F.	
(3) (4)	Ambient or room temperature is Immediately preceding and immed and ambient pressure shall be en	defined as 70°F to 95° iately following each	F.	
(3) (4)	Ambient or room temperature is Immediately preceding and immed and ambient pressure shall be en	defined as 70°F to 95° iately following each	F.	
(3) (4)	Ambient or room temperature is Immediately preceding and immed and ambient pressure shall be en	defined as 70°F to 95° iately following each	F.	
(3) (4)	Ambient or room temperature is Immediately preceding and immed and ambient pressure shall be en	defined as 70°F to 95° iately following each	F.	
(3) (4)	Ambient or room temperature is Immediately preceding and immed and ambient pressure shall be en	defined as 70°F to 95° iately following each	F.	
(3) (4)	Ambient or room temperature is Immediately preceding and immed and ambient pressure shall be en	defined as 70°F to 95° iately following each	F.	
(3) (4)	Ambient or room temperature is Immediately preceding and immed and ambient pressure shall be en	defined as 70°F to 95° iately following each	F.	
(3) (4)	Ambient or room temperature is Immediately preceding and immed and ambient pressure shall be en	defined as 70°F to 95° iately following each	F.	
(3) (4)	Ambient or room temperature is Immediately preceding and immed and ambient pressure shall be en	defined as 70°F to 95° iately following each	F.	

SVHSER 6786

1. C.

APPENDIX D

VIBRATION TEST LOG DATA

412

٢.

Constant and the second sec

											1								
amiltor.	tor Sta acs. Nue	Standard		ן⊃יִם	0		TYPE OF TEST DELIONS TEST ENGINEER	PEALOLI STR ATAU		TEST		BHEET TEAT P MOOEL	NO.	NRL SU			19/1	J	
	SPACE &	SPACE & LIFE SYSTEMS LABORATORY	INS LABOI	RATOR	>	2	NAME OF RIG	UIB VIB						50764130 B8801	130			\prod	
a sabela		LOG OF TEST	TEST			2	AB2-	ENG. ORDER	- 200A		·	ð	OPERATORS	Ň	HEDRUCE				
, Ni	Avs	- MOR		LEVEU		DUR.	PARA	6										T	
0	42	RAND		6.1 GRAS		2.	44	4	·	·	7	Mul	J	3	52-9				
	X	000V		٤.)		2.	4.4				2	N H C	1	5			0		
-	7	REND		6.1		2.	7 7				Ż	N THU		÷	21-2				
- -											·					+		Τ	
- <u></u>																	-+		
- 																			
																	•		
						<u>.</u>				 									
			 											Ċ					
		 		<u> </u>									-				+		
			 	 															• •••
																	4		
- 1-20		 												 					
																	-+		
																	{	Τ	
MARKS																	111	11477	

and the second se

NRL PLENUM

13

ý

P/N SV764132 S/N BEEZI

HARSITON STANDARD

SVHSER 6786

PERFORMANCE DEMONSTRATION TEST SUMMARY

Run No. 1

<u>Test Objective</u> - To evaluate nominal performance of PT plenum chamber at high inlet pressure while varying R/T select positions.

<u>Test Conditions</u> - P_{in} = 250 psia; fuel and hardware temperature at room ambient; ambient pressure at less than 8 mmHg (0.16 psia).

<u>Base Operation</u> - With milli-thruster energized to active mode, vary R/T select positions 1 thru 4 - obtaining a minimum of ten on-off cycles of the REA at each R/T select position.

<u>Test Results</u> - The unit performed satisfactorily, with plenum operating characteristics given below.

R/T Select Position	PT Pressure Cycle <u>Hi-Lo</u>	Cycle Duration
1	20 – 8 psia	7.1 seconds
2	28 – 16 psia	4.5 seconds
3	44 - 31 psia	2.4 seconds
4	53 - 40 psia	1.9 seconds

Run No. 2

Test Objective - To evaluate nominal performance of PT plenum chamber at low inlet pressure while varying R/T select positions.

Test Conditions - P_{in} = 130 psia; fuel and hardware temperature at room ambient; ambient pressure at less than 8 mmlg (0.16 psia).

<u>Basic Operation</u> - With milli-thruster energized to active mode, vary R/T select poisitions 1 thru 4 - obtaining a minimum of ten on-off cycles of the REA at each R/T select position.

<u>Test Results</u> - The unit performed satisfactorily, with plenum operating characteristics given below.

R/T Select Position	PT Pressure Cycle Hi-Lo	Cycle Duration
1	18 - 6 psia	6.8 seconds
2	25 - 12 psia	4.5 seconds
3.	40 - 28 psia	2.1 seconds
4	50 - 36 psia	1.6 seconds

SVHSER 5786

Run No. 3

<u>Test Objective</u> - To evaluate nominal performance of PC plenum chamber, while varying $\Delta V/T$ select positions.

<u>Test Conditions</u> - P_{in} = 250 psia; fuel and hardware temperature at room ambient; ambient pressure at less than 8 mmHg (0.16 psia).

<u>Basic Operation</u> - With R/T in Select 4 position and the micro-thruster energized to active mode, vary $\Delta V/T$ select positions 1 thru 4.

<u>Test Results</u> - The unit performed satisfactorily, with plenum operating characteristics given below.

∆V/T Select Position	PC Pressure Cycle <u>Hi-Lo</u>	Typical Duration
1	5 - 4.5 psia	28 seconds
2	11 - 9 psia	60 seconds
3	21 - 18 psia	25 seconds
4	44 - 37 psia	45 seconds

Run No. 4

<u>Test Objective</u> - To determine milli-thruster duration to attain 150°F gas outlet temperature.

<u>Test Committions</u> - P_{in} = 250 psia; fuel and hardware conditioned to 95-105°F; ambient item takes than 8 mmHg (0.16 psia).

<u>Test Results</u> - The unit performed satisfactorily, attaining 150°F in 737 seconds (12.3 minutes). Other pertinent data are presented below.

(a) Temperature Data:

0of
0°F
8°F
9°F
l ^o F
4°F

(b) Pressure Cycle: 38 to 52 psia

(c) Cycle Duration: 2 seconds at beginning of run, 1.7 seconds at end of run.

SVHSER 6786

Final

Run No. 5

<u>Test Objective</u> - To evaluate Gas Generator/Plenum performance during ong duration micro-thruster operation at maximum ambient temperature conditions.

<u>Test Conditions</u> - $P_{in} = 250$ psia; fuel and hardware conditioned to 95-105^oF; ambient pressure at less than 8 mmHg (0.16 psia).

<u>Basic Operation</u> - With R/T in Select 4 position and $\triangle V/T$ in Select 2 position, operate micro-thruster for 8 hours, minimum.

THE REAL

<u>Test Results</u> - The unit performed satisfactorily over the 8 hour test with pertinent test data presented below.

(a) Temperature Data:

97°F	94°F
103 ⁰ F	94 ⁰ F
100°F	94 ⁰ F
105 ⁰ f	93°F
	97°F 103°F 100°F

- (b) PT Plenum Operation:
 - pressure increased from 36 psia to 52 psia with each refill from Gas Generator.

Initial

- pressure decreased approximately 2 psi with each refill of PC plenum chamber.
- PC plenum cycles between PT plenum replenishings were 8, with 7 cycles occasionally occurring early in the test and 9 cycles occasionally occurring at end of test.
- duration between PT plenum refills varied between 423 to 490 seconds.

(c) PC Plenum Operation:

Ç

4

- pressure decreased from 11 psid to 9 psid during PC plenum cycle.
- time between PC plenum cycles varied from approximately 53 seconds to 70 seconds, exclusive of first cycle which was frequently influenced by electrical noise.
- (d) Remarks: Frequently, the data exhibited electrical noise in PT plenum pressure, PC plenum pressure, and REA current data. Its occurrence

SVHSER 6786

would always coincide with the activation of the REA during refill of the PT plenum. The noise would remain present beyond the REA valve on-off phase and for the length of the first PC plenum cycle, with the data of subsequent cycles being "clean".

It is also noteworthy that the duration of the PC plenum cycle is apparently impacted by the electrical disturbance. With noise present in the data, the duration of the cycle would be 28 to 42 seconds, whereas with the absence of noise the duration would be 54 to 60 seconds. The latter is more typical of the second and subsequent cycles in the series of PC plenum cycling which occurs between refills of the PT plenum.

Run No. 6

Brank Street

ことの言葉をきたちたということの

<u>Test Objective</u> - To evaluate low temperature, long REA firing off-time impact on Gas Generator/Plenum performance - at low inlet pressure.

<u>Test Conditions</u> - P_{in} = 130 psia; fuel and hardware temperature conditioned to 40-50°F; ambient pressure at less than 8 mmHg (0.16 psia).

<u>Basic Operation</u> - With R/T in Select 4 position and $\Delta V/T$ in Select 1 position, operate micro-thruster for a few PT plenum refill cycles.

<u>Test Results</u> - The unit performed satisfactorily, with PT plenum refills (including REA firings) occurring 18 minutes apart.

Run No. 7

<u>Test Objective</u> - To evaluate low temperature, long REA off-time impact on Gas Generator/Plenum performance - at high inlet pressure.

<u>Test Conditions</u> - P_{in} = 250 psia; fuel and hardware temperature conditioned to 40-50°F; ambient pressure at less than 8 mmHg (0.16 psia).

<u>Basic Operation</u> - With R/T in Select 4 position and $\triangle V/T$ in Select 1 position, operate micro-thruster for a few PT plenum refill cycles.

Test Results - The unit performed satisfactorily.

Run No. 8

<u>Test Objective</u> - To evaluate impact of long hold period between unit operations.

<u>Test Conditions</u> - De-activate unit, locking up plenum in R/T Select 4 condition. Hold in this condition for minimum of one week, and then

and the belief of the local

SVHSER 6786

reactivate system ($P_{in} = 250$ psia); fuel and hardware temperature at room ambient; ambient pressure at less than 8 mmHg (0.16 psia).

Basic Operation - With R/T in Select 4 position, repeat Run #4 (operating milli-thruster until gas outlet temperature attains 150°F).

<u>Test Results</u> - The unit remained inactive (with decomposed hydrazine gases contained in PT plenum) for a period of eleven (11) days. The millithruster was then operated, with R/T controls in Select 4 position, for a period of 12.8 minutes. The unit performed satisfactorily during this duration, and the test was terminated since the 150°F gas outlet shutdown condition was attained at this time. Other pertinent test data are presented below.

(a) Temperature Data:

•	Initial	Final
Gas Outlet	870F	150°F
Fuel	88°F	88°F

- (b) Pressure Cycle: 39 to 52 psia
- (c) Cycle Duration: 2 seconds at beginning of run; 1.7 seconds at end of run.

Run No. 9

<u>Test Objective</u> - To verify operational adequacy of redundant Rocket Engine Assembly.

Test Conditions - Pin = 250 psia; fuel and hardware at room ambient.

<u>Basic Operation</u> - With R/T in Select 4 position and the control switch moved to Reactor B, operate milli-thruster for a minimum of 10 PT plenum cycles.

<u>Test Results</u> - The unit operated satisfactorily. The PT plenum cycled between 38 and 52 psia, at the rate of 2 seconds per cycle for 10 cycles.