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The anatomy is modelled by a collection of rigid bodies, which 

represent skeletal segments such as the vertebrae, pelvis, head, 
and ribs, interconnected by deformable elements, which represent 
ligaments, cartilageneous joints, viscera, and connective tissues. 
—hniques for representing other aspects of the ejection environ- 

ment, such as harnesses and the seat geometry, are also included. 
The model is valid for large displacements of the spine and treats 
material nonlinearities. 

The basic model is modular in format, so that various compon- 
ents may be omitted or replaced by simplified representations. 
Thus, while the complete model is rather complex and involves sub- 
Etantial computational effort, various simplified models are 
vailable that are quite effective in duplicating the response of 
the complete model within a range of conditions.  Three methods of 
solution are available for the analysis: direct integration in time 
by either an explicit, central difference method or by an implicit, 
/trapezoidal method, and a frequency analysis mdthod. 

j  -»Results are presented for a variety of conditions, such as 
\d£fferent rates of onset, ejection at angles, effects of lumbar 
curvature, and eccentric head loadings.  It is shown that large 
initial curvatures and perfectly vertical acceleration loadings re- 
sult in substantial flexural response of the spine, which cause 
large bending moments.  It is further shown that the combination of 
the spine s low flexural stiffness, initial curvature, and mass 
eccentricity are such that stability cannot be maintained in a 10 g 
ejection without restraints or spine-torso-musculature interaction/ 

The complete models were used mainly to study the effects of 
the rib cage and viscera on spinal response. The flexural stiffness 
of the torso is increased substantially by a visceral model, even 
though it has no inherent flexural stiffness.  In addition, the 
viscera provide significant reductions in the axial loads. 

Modal analyses were performed on several of the models under 
various conditions.  Numerous flexural natural frequencies under 10 
cps were found, but the lowest axial frequency is of the order of 
20 cps.  We hypothesized that the peaks in the 5-7 Hz range in 
äriving point impedances observed experimentally in axial shaker 
table measurements result from parametric excitation of the flexural 
nodes. 
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CHAPTER I 

INTRODUCTION 

1. Objectives 

The spine is the primary structural element for transmitting 

forces to the upper torso and head in high acceleration environ- 

ments such as pilot ejection.  Thus in the study of ejection 

response, it is common to model the element for force transmission 

by a bar or beam and to neglect the torso and rib cage.  These bar- 

beam models have evolved into two general classes: the so-called 

continuum models, in which the bar is considered as homogeneous, 

and the discrete models, in which the individual vertebrae are 

represented as rigid bodies and are connected in series by deform- 

able elements, which represent the intervertebral disc and other 

connective tissues.  These two types of models are in fact very 

similar in character, for if the scale of discretization employed 

in the homogeneous models is comparable to the number of vertebral 

levels, the difference equations of the homogeneous models will be 

very similar to that of the discrete models.  The primary distinc- 

tion between the two types of models lies in the possibility of 

directly using disc and ligament properties in the discrete models, 

whereas the continuum models require determination of extrapolated 

material properties, which represent the composite behavior of 

the discs and vertebrae.  Both the discrete models and homogeneous 

bar-beam models that have been developed so far have been restrict- 

ed to one or two dimensional behavior. 

The principal objective of this investigation is the develop- 

ment of a three dimensional, discrete model of the spine and head. 

7 
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In addition, the model was developed in a manner so that other 

aspects of the torso, such as the rib cage and viscera, could be 

modelled and their effects on the behavior of the opine investi- 

gated.  This interaction of the spine with the torso is parti- 

cularly important in responses which involve substantial flexure 

of the spine, for the flexural stiffness of the spine is very low, 

and as shown in results to be presented subsequently, are not 

sufficient to insure the stability of the spine in acceleration 

environments commonly found in pilot ejection.  Significant flexure 

may be induced either by initial curvatures of the spine, or by 

asymmetric properties, such as asymmetric mass distribution. Thus 

the ability to investigate the behavior of the spine in situations 

involving substantial bending is of practical importance. 

Because the .treatment of elements, such as for example, the 

rib cage, in sufficient detail to accurately represent its behav- 

ior in a wide variety of situations involves substantial comput- 

ational effort, the model has been developed so that portions of 

it may be replaced by simplified representations.  These simpli- 

fied representations are quite effective in a more limited range 

of situations.  Thus, the rib cage can be replaced by an equiva- 

lent beam model, and a detailed representation of the cervical 

vertebrae can be replaced by a single beam element. These simpli- 

fications provide significant savings in computer time, and are 

therefore quite valuable when parametric studies are undertaken. 

A general description of the characteristics of the model is 

given in the third section of this chapter.  The details of the 

mathematical formulation, material properties, and anatomical repre- 

8 
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sentation are given in the next three chapters.  Some of the more 

interesting and significant results obtained during the course 

of this study are then described.  Finally, the input data formats 

for both the dynamic simulation and the graphics package are given 

in the Appendices. 

2. Literature Review 

To put this work in proper prospective, we will first review 

previous models of the spine, using the customary classification 

of continuous and discrete models.  Latham (1957) is usually 

cited as the first to develop a mathematical model for describing 

the dynamic response of the spine to +G acceleration.  Latham's z 

one degree of freedom model consisted of the rigid masses repre- 

senting the body and the ejection seat, interconnected by a spring. 

It was developed to study the dynamic overshoot of the body when 

seat cushions of varying resiliency were placed between the pilot 

and the ejection seat.  Also included in Latham's work is the 

first study concerning the natural frequency response of the human 

body in the seated position. 

Payne (1961) also developed a discrete, one degree of free- 

dom model of the spine.  A rigid mass was used to represent the 

head and upper torso, and the spine was modelled as a spring with 

a dashpot in parallel. The stiffness of the spring was chosen to 

match the lowest axial natural frequency of the human body as 

predicted from the lowest peak in the axial driving point impedance 

measurements. Although this single spring model could not predict 

9 
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the force distribution in the spine, it was and still is consid- 

ered an accurate representation of the dynamic response associated 

with the acceleration profile of the ejection seat.  Subsequently, 

an eight c^gree of freedom model was developed by Toth (1966). 

It consisted of rigid masses representing vertebrae Til through 

L5 and the pelvis, interconnected by springs and dampers which 

represented the intervertebral discs.  This was the first use of 

multiple mass, damped spring models and the first discrete model 

to idealize individual discs. 

Orne and Liu (1970) proposed the first model that included 

the shear and bending resistance of the intervertebral disc. The 

model employed a small strain, large displacement formulation. 

Each of the vertebrae, Tl through L5, was represented as a rigid 

body in two dimensional space with three degrees of freedom per 

vertebra.   Spinal curvature and variations of disc stiffness with 

vertebral level were treated.  A three parameter viscoelastic 

force-deflection relation was us^d to represent the material pro- 

perties of the intervertebral discs.  Orne and Liu were also the 

first Lü model the inertial properties by assiyning to each motion 

segment the total inertia of the associated segment of the torso. 

Although this appears somewhat unreasonable in that the motion of 

the viscera, because of its low shear stiffness, is obviously 

quite different from the motion of the vertebrae, it was quite 

successful in duplicating the characteristics of experimentally ob- 

served response and has been used by many other investigators. 

The success of this procedure may be explained in terms of added 

masses resulting from the stiffness of the viscera: thus, it is 

10 
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similar to the "added mass" technique used to analyze the vibra- 

tion of structures within a fluid.  Also included in the model 

was the eccentricity of the mass center for each motion segment, 

which was assumed to be uniform along the spinal column with 

each segment having the same inertial properties.  The model did 

not include the interactions of the spine with the torso, 

ejection seat, or harness apparatus. Failure to represent these 

interactions in a large displacement formulation results in un- 

realistic deformed configurations of the spinal column and may 

invalidate the force distributions predicted by the model. 

Prasad and King (1974) extended the Orne and Liu model by 

including the articular facet interaction.  The motivation for 

this extension was to model a secondary load path in the spinal 

column which is effected by the articular facets as indicated by 

the experimental work of Prasad, et al. (1973).  The interaction 

of the articular facets was modelled by two springs, one limiting 

relative rotations and the other limiting the relative sliding of 

adjacent vertebrae. 

Stiffness values for the articular facets appear to have been 

chosen rather arbitrarily, since no reference is made as to how 

the axial stiffness was determined and no value for the rotational 

stiffness is cited.  Of the axial facet stiffness values listed, 

the largest values are assigned in the lumbar region and are of 

the same order of magnitude as the disc axial stiffness.  Such 

large stiffness values may be realistic in certain directions, 

where the facet effectively imposes a kinematic constraint.  How- 

ever, the deformation-resisting character of the facet joint in 

11 
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other directions should be modelled with a much lower stiffness 

value, as pointed out by Schultz, et al. (1973). Also included 

in the model is an auxiliary force representation of the ejection 

seat and harness interaction, although the details of this aspect 

of the model were not described. 

A parallel history can be traced in the homogeneous (or con- 

tinuum) models. The first continuum model was proposed by Hess 

(1956), who included only axial response.  Subsequently, Moffat, 

et al. (1971) included both axial and bending response by using a 

beam type model.  However, the analysis was restricted to small 

displacements. 

Recently, Liu, et al. (1973) developed bar-beam models, in- 

cluding large displacements in the analyses.  The stiffness pro- 

perties of this model were based on that of the isolated, liga- 

mentous spine and the responses they exhibited demonstrated very 

large deflections. 

3. General Description of Model 

The model represents the human body ^y a collection of rigid 

bodies interconnected by deformable elements. The rigid bodies 

are used for the modelling of bones, while the deformable 

elements are used to model ligaments, muscles and connective 

tissues. The treatment of bones as rigid bodies is preferable 

from both the viewpoint of numerics and modelling, for the stiff- 

ness of bones is usually orders of magnitudes greater than that 

of connective tissue, so that if both are modelled as deformable, 

12 
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the resulting numerical problem is poorly conditioned. However, 

long slender bones, such as ribs, may be modelled as deformable. 

The deformable elements may also be used to model entities exter- 

nal to the body, such as restraint systems and harnesses. 

For purposes of describing the model, it is worthwhile to 

distinguish between the following: 

1) The computer-based method of solution, or mathematical model, 

which is a rather general system for tiie treatment of the dyna- 

mics of collections of rigid bodies interconnected by deformable 

elements, and 

2) The se^pjcific models of the spine, torso and ejection system, 
C 

which constitute a data base for the computer system. 

We will first describe in general terms the mathematical 

model employed in the computer simulation. This is followed by 

a general description of the data sets which have been developed 

for modelling the spine, head, and torso in ejection problems. 

4. Mathematical Model 

The computer procedure is basically a matrix structural 

analysis technique, which serves as a versatile framework for 

constructing^the equations of motion. The program enables these 

equations of motion to be integrated in time by either explicit 

or implicit techniques, or analyzed by modal procedures, which 

give the natural frequencies and modes of the model. The formul- 

ation is completely three dimensional and treats arbitrarily 

lurge rotations and displacements of the rigid bodies. However, 

13 
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the deformation of some of the elements is restricted to be moder- 

ately small. Material properties may be linear or nonlinear and 

linear viscous forces can be included. 

Nodes and Coordinate Systems.  Two types of nodes are used: 

a) primary nodes, each of which has six degrees of freedom 

consisting of three translations and three rotations; the cen- 

troid of a rigid body must be a primary node; 

b) secondary nodes, each of which is connected through a rigid 

body to a primary node and which thus has no independent degrees 

of freedom. 

An arbitrary number of secondary nodes may be associated 

with any rigid body, and they serve principally as a means of 

connecting deformable elements to a rigid body at a point other 

than the centroid. 

The configuration of the model is described by the position 

and orientation of the primary nodes.  The original position of 

node I is denoted by x?_ (i=l to 3 representing the x, y, and z 

components); the new position x.T are obtained by adding the dis- 

placements u.-, so 

il = x?_ + u il il (1.1) 

The orientation of a primary node is described by a triad of 

orthogonal unit vectors b,-f b-_, b__, which rotate with the node. 

In order to describe the system, we will define three types 

of coordinate systems: 

1. a fixed, global set of coordinates (x, y, z) , or x.j 

14 
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2. body coordinates (x, y, z) ; a set of body coordinates is 

associated with each primary node, so that x, y, and z coincide 

with b._, *>2i' an(* 31' resPecfcively for each node. The origin 

of the x.j system must be the centroid of the mass at node I; 

3. element coordinates (x, y, z); a set of element coordinates 

is associated with each element, and the element coordinates 

rotate and translate with the element in a manner to be specified 
A     A A ^ 

later. The x, y, and z axes are associated with unit vectors e., 
-►     -*■ 
e», and e3, respectively for each element. 

Model Elements. The model consists of the following elements: 

1. rigid bodies 

2. spring elements 

3. beam elements 

4. hydrodynamic elements 

5. elastic surfaces 

Rigid Bodies.  Each rigid body may be arbitrarily oriented in 

three dimensional space and may undergo arbitrarily large rota- 

tions and translations. The centroid of the rigid body is 

designated a primary node, (see Fig. 1), its coordinates in 

space define the position of the rigid body. Each rigid body has 

both translational and rotational inertia. The orientation of 

the rigid body is described by the triad of orthogonal unit 

vectors b,, b_, and b-. The. e vectors must coincide with the 

principal axes of the moment of inertia. The moments of inertia 

about b.,, b2, and b3 are I,, I-, and I., respectively. In 

15 
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Figure 1.  Rigid body representation and coordinate systems^ 
global coordinates (x,y,z\;Abody coordinates (x,y,z) 
and element coordinates (x,y,z). 
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addition to the primary nodes, any number of secondary nodes may 

be associated with the rigid body. 

Spring Elements. Spring elements are deformable elements with 

only axial stiffness, which may interconnect any two nodes of the 

system. A typical spring element is shown in Fig. 2. 

<*xl »f xl 

A  A 
dxJ*fxJ 

( 

Figure 2.  Spring Element 

The element may be connected to either primary or secondary nodes. 

The axial force in the element will be denoted by T, with T 

positive in tension; the elongation is designated by 6. The 

axial force-elongation law is 

m   : 

M i I 
f.    i 

T = k±&  + k26
3 (1.2) 

where either k and k2 may be zero. A tension cutoff 

I -J 
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may be added to that T ■ 0 whenever 6 < 0; this is useful for 

ligaments and other elements that become slack whenever the elonga- 

tion is negative. 

II 

Beam Element. A beam element may interconnect any two nodes, 

which may be either secondary or primary nodes.  Beam elements 

include axial stiffness, torsional stiffness and bending stiff- 
A 

ness. The resulting nodal forces are shown in Fig. 3: f _ and 
/V A A. A /v 

f , arise from axial stiffness, and m ,, m _, m  and m  arise 

from the bending stiffness about the two principal coordinates of 
A A A 

the cross-section, y and z, and m  arises from torsional stiff- 

ness. For all moments, the right hand rule sign convention is 

used as shown in Fig. 3. 

The orientation of the y and z axes is given by including a 

third node for each beam element, called an orientation node, 

that lies in the y-x plane of the original orientation of the beam. 

There are two available modes for computing the forces and 

moments in the beam.  In the first mode, functional forms are 

assumed for the overall response of the beam; these are not con- 

sistent with any homogeneous material properties but allow the 

introduction of certain nonlinearities. The forms are: 

. * 

axial force 
A 

f XJ - T - *?6 + k263 

optional T = 0 if 6 < 0 (1.3) 

18 
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Figure 3.  Beam Element 

ORIENTATION   NODE 
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bending in x-z plane 

m 

m 
yj 1+*. 

4+$ 

2-$ 

2-$ 

4+$ 
yJ 

yi (1.4a) 

bending in x-y plane 

m zV 

m zJ 

2 
T+F 

4+$ 

2-*. 

2-* 

4+$ 

zl 

zJ 

(1.4b) 

n 

For linear homogeneous materials, the bending constants are given 

through standard engineering analysis by 

E I 
7y.i i a rlf,  , 

^"V+TVI'ITI 
+ lS2yl>' 

(1.5) 

kz-^+?a2
(l5lzl + I82ll> 

\n 

where E is Young's modulus, I  the length of the element, and I the 

section moduli, which are respectively 

xyy = V z^dydz zz = /i yzdydz (1.6) 

where the integral is over the cross-sectional area of the ele- 

ment, A.  The shear factor is given by 

$ = 12EI (1.7) 

where G is the shear modulus and A the effective area in shear. s 

The constants a, and a» are included to permit an approximation 

to a cubic moment-curvature behavior. 

£ 
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The second method of computing the bending moments and 

axial force in the beam requires the cross-section of the beam to 

be defined as a thin-walled member. The cross-section is defined 

by the coordinates y., z., i * 1 to NI, and the shape is assumed 

to be prismatic, so that y., z. are constant with respect to x. 

If this mode is used, the moments are computed directly from the 

axial stresses o by numerical integration. An arbitrary stress 

strain law of the form 

k^e + k^e3 (1.8) 

may be used, with the option of tension cutoffs. No shear cor- 

rections are made. This mode is useful for modelling elements 

such as the walls of the torso. 

In both modes, the torsional resistance is taken to be a 

linear function of the torsional deformation and independent of the 

other stresses in the element, i.e. 

mx " k 6xIJ (1.9) 

where m is the torque, k the torsional spring constant and 8 TT X XXJ 

the torsional deformation. The shear forces are always obtainable 

from equilibrium so no force-deflection law is necessary. 

Hydrodynamic Element. This element is illustrated in Fig. 4. The 

element is a pentahedron, with the two opposing triangular faces 

considered to be rigid. The three nodes of each triangular face 

must therefore be associated with the same primary node.  There 

21 
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Figare 4. Hydrodynamic element. 
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are no restrictions on the geometry of the element, other than 

that the initial volume of the element be positive: this is in- 

sured by numbering the nodes appropriately. 

The force deflection characteristics of this element are ob- 

tained from a linear pressure-dilatation relationship.  The 

pressures are transmitted through the rigid triangular plates to 

the associated primary node in an energetically consistent 

fashion.  In addition to the linear pressure-dilatation stiffness, 

a linear viscosity is available. 

This element is useful for modelling components of the body 

that exert resistance primarily to compressive deformations. 

Because of the presence of the rigid plates, the resistance tends 

to be directed through a line of action connecting the centroids 

of the two triangular surfaces.  Thus it is useful for modelling 

articular facets, which have very strong directional properties, 

and the viscera that effect resistance primarily through a verti- 

cal axis. 

Elastic Planes.  An assemblage of planes may be prescribed in the 

model to represent surfaces of the pilot's seat.  Each plane is 

described by locating three points on the plane, as shown in 

Fig. 5.  The planes restrain the motion of the nodes so that when 

a node penetrates the plane, a force proportional to the extent 

and rate of penetration is applied to the node in a direction nor- 

mal to the plane. 

All planes are considered to be rigidly linked together. The 
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Figure 5.  Seat model representation. 
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motion of this assemblage of planes is prescribed through either 

acceleration, velocity, or displacement histories. 

5. General Description of Models 

I 

.fi 

For purposes of illustrating how the mathematical model is 

used to represent the pilot's anatomy, we will here describe two 

representative models that have been used in these studies. The 

first model is restricted to the isolated throacolumbar spine, 

the cervical spine, the head, the seatback and restraint system. 

The second model, in addition to the preceeding, includes a re- 

presentation of the rib cage and viscera. 

The first model is graphically depicted in Figs. 6 and 7, 

which show a back view and a side view of the model in the seated 

position, respectively.  In all models described in this report, 

the standard orientation for the global coordinate system is as 

follows: the z-axis is positive vertically upward, the y-axis is 

positive towards the back and the x-axis is oriented sideways; 

thus the y-z plane corresponds to th«=> sagittal plane, the x-z 

plane corresponds to the frontal plane and the x-y plane corres- 

ponds to the horizontal plane. 

The graphical depiction in Figs. 6 and 7 show only the rigid 

bodies employed in the model.  Each vertebra and the head is re- 

presented as a rigid body.  The configuration of these rigid bodies 

are prescribed by the initial position of the primary nodes in 

x, y, z space: each primary node must coincide with the mass center 

of the rigid body. The positions of the primary nodes are 
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Figure 6.  Back view of isolated ligamentous spine model, 
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indicated in Fig. 7 by plus signs. As can be seen from the figure, 

the primary nodes in many cases do not lie within the vertebrae 

because the Liu, et ai (1973) segment data was used to represent 

the inertial properties of the body in this model, so that each 

vertebra is associated with a segment of the torso. 

The conceptualization used in modelling the inertial properties 

of the human body differs markedly from that used in modelling the 

stiffness properties. The stiffness model considers each vertebra 

as a rigid body, with the spring elements and beam elements inter- 

connecting these rigid bodies in a manner so as to approximate 

force deformation characteristics of the human body.  On the other 

hand, from an inertial viewpoint, each rigid body represents a seg- 

ment of the complete torso, and each vertebrae is considered to be 

rigidly embedded in an associated segment of the torso.  This 

corresponds to the inertial approximation developed by Orne and Liu 

(1971) and used by Prasad and King (1974).  The more complex models 

do not use this approximation, but as a consequence, are based on 

less reliable data. 

In the thoracolumbar spine, each pair of vertebrae is con- 

nected by seven spring elements and one beam element. The inter- 

vertebral disc is represented by a beam element, which joins the 

geometrical centers of the endplates of each pair of adjacent 

vertebrae. The spring elements represent the following ligaments 

and connective tissues: the pair of spring elements which connect 

the transverse process tips represent the intertransverse liga- 

ments; one spring element, which connects the spinous process tips, 

represents the intra- and supra-spinous ligaments; a pair of 
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elements which connect posterior points on the vertebral bodies, 

represent the ligamenta flava; two spring elements are used to 

represent the articular facets. The latter are short, stiff ele- 

ments and are primarily intended to represent the kinematic con- 

straints resulting from the facets.  All of these elements inter- 

connect secondary nodes on the rigid body.  In addition, the pri- 

mary nodes are connected by additional beam elements which repre- 

sent the stiffness of the torso and rib cage. Cubic moment 

curvature relations are used in these elements so that their 

bearing on small-displacement response is neglible.  Details as to 

the locations of the nodal points and the material properties of 

the deformable elements may be found in Chapter IV. 

In the cervical spine, adjacent vertebrae are connected only 

by elements representing the disc, the interspinous ligaments, 

and the articular facets.  The discs are represented by beam ele- 

ments, the ligaments by spring elements, the articular facets are 

represented by hydrodynamic elements.  The triangular endplates 

of the hydrodynamic element may be seen in Figs. 6 and 7. Because 

these elements have resistance primarily through a line joining 

the centroids of the two opposing triangular facets, these ele- 

ments are more effective in representing the directional proper- 

ties of articular facets than spring elements. The use of these 

elements for the representation of the facets would also be 

desirable in the lumbar and thoracic spines, but the procurement 

of data for the location of the facet planes in these portions of 

the spine has not been completed. 

The head is a single rigid body joined to C2 by a beam 
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element (Cl was not included in the model).  In all the simulations 

studied here, the helmet was assumed to move exactly like the head, 

so that if a helmet was included in the study, the moment of in- 

ertia and mass of the helmet was simply added to that of the head. 

The seatback in this model is a plane surface, which is 

vertically aligned and the bottom of the seat is horizontal.  The 

seat constrains the motion of the rigid bodies only when they come 

in contact. The definition of the seatback is quite arbitrary, as 

long as it can be described as a series of planes, so that alterna- 

tive seatback designs can be studied by the model by simply 

altering the description of these planes. 

The restraint system in this model consists of 4 springs, 3 

connecting the vertebrae Tl, T2, and T3 with the seatback, the 

other connecting a secondary node on the pelvis with another point 

on the seatback.  The upper restraint belt is represented by three 

springs to reduce the shear deformation.  Again the positions of 

these nodes are indicated in Fig. 7.  The orientations and method 

of interconnection for these elements is completely arbitrary so 

that other harness systems can be modelled.  However, important 

aspects such as friction and the actual details of the geometry of 

the restraint system have not yet been included. 

One of the more complex models is represented in Figs. 8 and 

9, which show the back and side views, respectively. The major 

aims of this model are the separation of the inertial aspects of 

the torso from that of the spine, the inclusion of certain 

structural aspects of the rib cage, and the addition of an inde- 

pendent load path through the viscera. These aims were implemented 
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Figure 8. Back view of spine-torso model with rib cage. 
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Figure 9.  Side view of spine-torso model with rib cage. 
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as follows. 

The rib cage is represented by a system of rigid bodies and 

deformable elemevts which includes separate rigid bodies for each 

of the ribs and the sternum.  Since each rib is modelled as a 

rigid body, the deformation of the thorax as a whole results from 

the rotation of the ribs and the deformation of the costo-sternal 

cartilage.  Each rib is connected to two vertebrae by means of 

three deformable elements, which represent the costo-vertebral 

joint. These deformable elements have been chosen so that the 

directional properties of the joint are represented and an axis 

of great rotational flexibility was included.  The ribs are con- 

nected to the sternum through the costo-sternal joint by a deform- 

able element, which represents the deformability of the costo- 

cartilage.  This model is thus quite adequate for representing the 

additional bending stiffness of the torso that is provided by the 

rib cage; on the other hand, it is not suitable for representing 

frontal impact where significant deformations of the rib itself 

may take place.  For the latter, it would be necessary to represent 

the deformation of the neck of the rib by modelling it by a beam 

element. 

The viscera are represented by a stack of hydrodynamic 

elements, which are illustrated in Fig. 1C.  The hydrodynamic 

elements have stiffness only when deformed axially, so that this 

column does not have any resist." \r*>  to shear.  However because 

rigid endplates are included between each vertical layer of hydro- 

dynamic elements, the system does resist bending and maintains 

coherence in response to transverse loads.  The very bottom plate 
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Figure 10. Viscera as modelled by hydrodynamic elements. 
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of the viscera is connected to the pelvis, whereas the uppermost 

plate is connected to ribs 10 on the left and right side; this 

interconnection represents the transfer f the load to the 

diaphgram. No hydrodynamic elements are included within the thorax. 

The inertial properties of this model were obtained by sub- 

dividing the mass of each segment of the torso between the spine 

and the ribs and sternum in the thoracic regions, and between the 

spine and the viscera in the lumbar region.  The distribution in 

each segment was chosen so that the total mass of each segment 

corresponds to the data of Liu, et al, and so tl t the moment of 

inertia of the masses of the components in each segment have a 

moment of inertia equal to that measured by Liu, et al.  Because 

the mass of each body segment is partitioned into the inertia 

associated with the spine and the inertia of the thorax, the 

rotation of a body segment may differ from the rotation of an 

embedded vertebral body.  The model of the thoracolumnar, cervi- 

cal spine, head, seatback, restraints and pelvis are identical 

to that of the previous model.  Both the details of the geometry 

and material properties may be found in Chapter IV. 

•A 
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CHAPTER II 

MATHEMATICAL FORMULATION OF MODEL 

1. Nomenclature and Coordinate Transformations 

)• 

1 
1 

' I 

•1 

A general description of the modeling techniques has 

been given in Chapter 1.  In this chapter, the detailed equations 

and mathematical procedures for the formulation and solution of the 

governing equations will be presented. 

The coordinate systems have already been described in Chapter 1. 

In addition to a global coordinate system (x,y,z), local coordinates 
A  A y\ 

for each element, (x,y,z) , and for each node, (x,y,z)_, are used. 

The unit vectors for these coordinate systems are (e.,e_,e-)„, for 
1  Z       $   r. 

the coordinate system of element E and (b.,b2,b->  for tha coordinate 

system of rigid body I. 

The unit vectors b, _ and e.  immediately define the rotational 

transformation of any vector components between the coordinate 

systems.  Thus, if we consider a vector A with global components 

(A ,A ,A ), body coordinate components (Ä ,K  ,Ä ) and element coordin- 
x y z     ■* r       x y st 

A,     A      A 

ate components (A ,A ,A ), we have the following transformations 

lx 

iy 

lz 

b2x b, " 3x 

b2y N 
b2z 

b3zj 

= tX]{A} (2.1) 

J I 

-A % where b. , b. , b.  are the global components of the body vectors. 

36 



Similarly, 

Slx  e2x  e3x 

ely  e2y  e3y 

elz       S2z       e3z JE 

=    [yHA} 

z / 

(2.2) 

where e. , e. , e. are the global components of the element vectors, xx  ^-y  iz 

Also 

(A) = [xriA) 

{A} =   [y]r{A} 

(2.3) 

(2.4) 

The translational motion of the system is described by the displace- 

ments u..f velocities u. , and accelerations ü.t of the nodes. 

Equations (2.1) to (2.4) can be written in indicial notation as 

A. = A. .A, 
i   13 3 

A. = v.  .A. 
i   13 j 

A. = A..A. 
l    31 3 

A. = y ..A. 
i    31 3 

(2.5) 

The coordinate system in which a vector is expressed will hence- 

forth be designated by the bars and hats.  Thus the components of a 

vector K  in terms of the body coordinates of rigid body I are denoted 

by X.j, i = 1 to 3 denoting Ä _, Ä  , Ä , respectively.  Furthermore, 

the set of three Cartesian components is often written as a matrix 

as in Eq. (2.3). 

The orientation of a node is described by the unit vectors 

b.j, while the angular velocities and angular accelerations are 

treated in body coordinate components, u.  and ex.-, respectively. 
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The forces and moments at the nodes are similarly denoted by F. 

and M. , respectively, and may be subdivided into externally applied 

forces and moments,F.T and M.T , and the forces and moments due to 
.11 IX 

the resistance of the deformable elements, F^!? and M^" . 

Only two unit vectors for the nodal coordinates, b,T and b-T, 

are stored per primary node. The third unit vector is then found by 

S2I = S3I X S1I (2.6) 

)  ! 

,^\ 

■€ > 

1 
!j 

This method thus employs six numbers (three components of two vectors) 

to describe the three rotational degrees of freedom.  Though this at 

first appears somewhat wasteful, it should be noted the alternative, 

a description by Euler angles, has serious shortcomings: 

1. Euler angle formulations are not linearly independent for all 

values of the Euler angles. 

2. The generalized moments corresponding to Euler angles are not 

easily interpreted in a physical sense. 

3. The equations of motion and the transformations between body and 

global coordinates in terms of Euler angles are complex and computa- 

tionally demanding because they involve many trigonometric functions. 

All six components are stored, because if only a total of 

three of the six components of the two unit vectors were stored 

(with the remaining components computed from the fact that the 

two body vectors are orthogonal and unit vectors), then the re- 

maining components would have to be determined from square roots. 

The signs of these components could not readily be determined. 

Element nodal forces, moments, displacements and rotations are 
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denoted by f^j» mjT< uiT' an(* 9-T' respectively, where I denotes the 

generic node number, which for each element ranges from 1 to the num- 

ber of nodes in the element.  Sometimes a superscript is used to 

indicate the pertinent element, i.e. I._ are force components at 

node I of element e. 

The inertial properties are described by the translational masses 

of the primary nodes, p , and the principal moments of inertia of 

the primary nodes, IxxJ# *yvJ' 
and *zzj;  

Tne angular momenta of the 

nodes are then given by 

jJ        jkJ kJ 
(no sum on J) (2.7) 

i ii The element quantities are extracted from the global quantities 

(e) 
in the usual manner by a Boolean connectivity matrix I*  ', so that 

u(e) = *(e) u UiA    *AI  Uil (2.8) 

es r where 

1 

,(e) 

,(e) 
*AI 

= 1 if the Ath generic node of element e corresponds 

to the Ith primary node of the system. 

= 0 otherwise 
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2.    Derivation of Equations of Motion 

We consider here the development of the equations of motion for 

the assemblage of rigid bodies and deformable elements.  The 

equations are obtained from the principle of virtual work with the 

inertial forces included in a d'Alembert sense.  The principle of 

virtual work, when applied to the system treated here, states that 

*(e)*J(e) . Me)* -(e) 
UiA  fiA + uiA  miA 

U. * F?*fc + w. *S??t 
ll   Xl       ll  ll 

(2.9) 

" PI 4±I* Üil " »iIEiI 

j 

where the superscript e is summed over all elements, subscript A over 

all nodes of each element, and I over all primary nodes. Superscript 

dots denote time derivatives, while asterisks denote virtual quantities 

The left hand side of Eq. (2.9) represents the rate of work 

expended on the deformable elements, that is, the internal rate of 

work, while the first two terms of the right hand side represent the 

rate of external work. The rate of work of the inertial forces is 

represented by the last two terms of the right hand side. 

To obtain the equations of motion, the virtual nodal velocities 

of the element on the lef<; hand side of Eq. (2.9) must be expressed in 

terms of the global virtual nodal velocities.  In deriving these 

expressions we will separately consider the case when A is a primary 

node and when A is a secondary node. 
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When A is a primary node, the required relationships are obtained 

directly from Eq. (2.5), which gives 

iff Kji AI   Ij (2.10) 

lA 
(e)- 

H]i ]k AI kl (2.11) 

When A is a secondary node, the required relationships are 

developed as follows. We note that whenever A is a secondary node 

associated with a primary node J, then both nodes are points of a 

single rigid body, so that 

: (e) 
uiA 

= 0) 
?I 

(2.12) 

w* 

and consequently Eq. (2.11) follows for the angular velocities. To 

obtain the counterpart of Eq. (2.10), we first designate the vector 

from I to A by X.  . Because both points are on the same rigid body, 

the components of this vector in the body coordinates will not vary with 

tiffic. The global components of this vector are given by 

114 A > _ _ ~ A. ••&•_,. 
llA   X] ]IA (2.13) 

whil^ the global components of the initial vector between I and A 

are given by 

o o   _ 
At«.. ~" A . . A , _. - 
llA    13  3IA (2.14) 
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where the superscript nought denotes the original (i.e. at time zero) 

value of the variable. The displacement of the secondary node is 

then given by 

u.A = X.R - X._ xA   lA   xA 

= X._ + X._. xl    llA 

(2.15) 

- X il XiIA 

By substituting Eqs. (2.13) and (2.14) into Eq. (2.15), we find 

u,, = u.T + A. .X.T- - A..X.... lA   il   13 xIA   13 ]JLA 
(2.16) 

Transforming the above to the body coordinates of body I and taking 

its derivative with respect to time, we find 

u.. = u.T + Ü. .   U)._ lA   xl   X]  3I (2.17) 

where 

Q. . = 
ij 

:IA "ylA 

-z 
IA 

0 

IA   "IA 

IA 

0 

(2.18) 

By again applying the appropriate transformations from Eqs. (2.5), 

we then find 

uf?1 - v .. £.(?}.fi . _ + y.,A..Q1.i*i?
,w.T xA   *]X AI U]I   H3x jk kl  AI  Jll (2.19) 
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Eqs. (2.10), (2.11), and (2.19) hold both for the actual 

velocities and the virtual velocities.  If we substitute these equa- 

tions into the left hand side (LHS) of F,q. (2.9), using Eq. (2.10) 

whenever node A is a primary node and En. (2.19) whenever A is a 

secondary node, we obtain 

Ms - »iVS*+ w (2.20) 

where 

Fjl 
«(e). (e) 
*AI fJA (2.21) 

§m 

and 

Mint o (e)-(e) 
*AI mkA (2.22) 

1 
1 », 

fa
(e) -p4.f 

(e) 

AD   yjiXiA 

for both primary and secondary nodes A; while if A i 

™(e)  i    Me) 
mkA * VjimiA 

s primary 

and if A is secondary 

«(e). £<«> 

(2.23) 

(2.24) 

mkT= hkWlV + «vthjvJu (2-25) 

Equations (2.23) to (2.25) may be written in matrix form as follows 

<f<e)}= lp]{£) 
(2.26) 
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{m(e)} =   [A]T[y]{m} (2.27) 

{m(e)} =   U]T[y]{m} +   [n]T[ A]T[y ] {f} (2.28) 

m 

■• i 

Thus for primary nodes, the nodal forces and moments are simply 

related by the coordinate transformations, while for secondary nodes 

an additional moment is introduced in the transformation because of 

the moment arm effected by the vector between the nodes.  The total 

internal nodal forces are obtained from the terms given in Eqs. (2.23) 

to (2.25) by Eqs. (2.21) and (2.22).  The latter equations just re- 

present an appropriate summation of the element forces, for as can 

(e) be seen from Eq. (2.8),  «,* ' are Boolean matrices consisting of ones 

and zeroes. 

The equations of motion are now obtained by substituting Eq. 

(2.20) into Eq. (2.9), which gives (after a change of dummy indices 

and collection of terms) 

Ü .Wf 
JLI  il 

„ext ,   ■•  . 
Fil + pIUiI) 

, - * ,;:int  Mext * f \ + «11(MiI - M.j + L.x) = 0 (2.29) 

4 
Since the virtual velocities are arbitrary, the terms within the 

parentheses must vanish. The terms within the first parenthesis 

immediately yield the translational equations of motion 

.,    „ext  „int 
pIüiI = Fil " Fil (no sum on I) (2.30) 
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We note from Eq. (2.7) that 

Ejj= !jkAj+ •ijAkAAu (no sum on J) (2-31a) 

where e,.  is the alternative tensor.  By noting that the quantity 

in the second parenthesis must vanish because of the arbitrariness of 

u)*_, we obtain ll 

I-ik.Tav.T + e^.^vAÄ, = MT = Sext _ -int 
;jkJ kJ   ijÄ lkJ kJ ZJ ]J    ]J 

(no sum on J) 
Since the x. coordinates are prinicpal coordinates of I.k» we can 

write these equations as follows 

(2.31b) 

M i 
J
..XI

S
XI 

+ <*Z2I - Vv°*i - i?? - auf 

1 

i 

. Gext      -int Lyyiayi      (Ixxi " W"xi"«i ' M
yi" " Myi 

W.I  +   <*yyl  "   W\lV  = fi? " Szint (2.32) 

N 1 I 

^ i 

(no sum on I) 

These are the rotational equations of motion, and they correspond 

to the Euler equations. 

« 
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3.  Defortnable Elements 

The deformable elements are treated by a rigid-convected (or 

corotational) formulation previously described by Belytschko and 

Hsieh (1972).  In this technique, the displacements of each element 

are decomposed into rigid body displacements r.. and deformation 

displacements d. 

u. = r. + d. 
111 

(2.33) 

The strains are then given by 

l/3di 
13   2\8x-i 9xi 

(2.34) 

ail 

Belytschko and Hsieh have shown that the matrix e^. cor- 

responds to the difference between the stretch tensor and the 

unit tensor.  Hence, this strain corresponds closely to the common 

definition of engineering strain. 

For purposes of developing element relations, Eq. (2.33) is 

expressed in matrix form 

1 
{e} - [E]{d} (2.35) 

where {d} is the matrix of nodal deformation displacements.  It is 

also necessary to find a matrix [T] such that 

{d} = tT]{u} (2.36) 
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(e) It then follows that the nodal element forces {f  } are given by 

{f(e)} = [T]T{fd} 

{fd} = /[E]T 

V 
{o} dv 

(2.37) 

(2.38) 

where V is the volume of the element, {0} the stresses measured in 

the corotational coordinates, and {f } the nodal forces conjugate to 

{d}, so that 

,5'  », 

u 

wint m  {4}I{fd} (2.39) 

,int 
where W" " is the internal work. Note that both {e} and {a} are 

measured in corotational coordinates, so their rates or increments 

are frame invariant and may be used directly m incremental constitu- 

tive equations without any corrections for rotations. 

Spring Element. Consider a spring element with nodes I and J.  The 

deformation of the spring is completely defined by its change in length 

«„ = I-*' (2.40) 

where %  and I    are the current and original lengths of the element. 

Since direct use of this formula will result in large round-off errors, 

an alternative formula was used which is derived as follows. If 

the displacement and position of the nodes are cor idered to be vectors, 
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then 

{xJj -   {x}.£ =  {x}°  -   {x}°  +  {u}j -   {xx)I (2.41) 

Taking the scalar product of each side of this equation with itself, 

if follows that 

- - r2 + 2{X}JI
T

{U}JI + («}JI
T{u)J1 (2.42) 

where 

!; 
{X}JI   =    {X}J   -    {X}I etC' 

| 

i 
m'. >■ 

after rearranging and factoring, it follows that 

*_*° . J±   [2{X}JI
T
{U}JI + {«>„*<«>„] 

or in component form 

(2.43) 

6T_ =  i-l    =    [2(xTTu   TT + yTTu   TT  + zu   __. 

+ u2       + u2       + u2     ] xJI yJI ZJIJ (2.40 

The element strain is then given by 

e = IJ (2.45) 

The nodal force conjugate to 6TT is the tension T = f _, hence by 
XJ xj 
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Eq.    (2.38) 

*XJ '/, 
a dV 

V 

= ha 

(2.45) 

(2.46) 

where A is the area of the cross-section. 

The stress a may be an arbitrary function of e.  In this program, 

the stress-strain law is 

= *xl +  k2e
3 + 2ß V(k1+3k2e')p t (2.47) 

where kw k and ß are constants input b/ the user; k1 is the linear 

spring constant.  The last term is a linear viscosity with ß the 

fraction of critical damping for the vibration of this element. 

Beam Element. Consider a generic beam element with nodes I and J as shown in 

Fig. 11. The A  axis always moves with the beam element so that it 

joins the two nodes, while the y axis is considered to rotate with 

the beam in the sense that its rotation is an average of the rotation 

of the two nodes about the x axis.  The deformation of the beam is 

then defined by its displacements relative to the rigid-convectad 

coordinates (x,y,z) of the element.  The deformation displacements 

are given by 
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Figure 11. Beam element nomenclature. 
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{d}T - {6u' W V' hi' V §
ZJ

} (2.48) 

where 6_T = elongation, computed by Eq. (2.44) 

9   = torsional deformation 
*        "       ^        /v 

6_, 0_, 9T, 0T= bending deformation rotations yl  yJ  zl  zJ 

Because of the way the motion of the x-axis is defined, the 

rigid body motion r. need not be computed explicitly for the de- 

composition needed in Eqs. (2.33) and (2.34): the quantities de- 

fined above define the deformation of the element directly regard- 

less of the extent of rigid body rotation. 

For the purpose of computing the relative rotations, 0  , 9 _, 

9  , 9  , and 9 _, the body components of the unit vectors e,° and 

e-0 (superscript noughts denote the vectors in the undeformed con- 

figuration) must be stored for each of the two nodes of the element. 

From a knowledge of the body components of e.. ° and e_°, the rotations 

are found as follows.  Since the vector e-° rotates with the node, it 

indicates the direction of the axis of the ele »ent if there was no 

deformation; the angle between e° and e. indicales the magnitude of 

the deformation, this is illustrated in Fig. 1L  Thus 

M2+ 8A = six V (2.49) 

For the purpo J of this computation, we transform the components of 

e.° from body to element coordinates using Eqs. (2.3) and (2.4) so 

that 

lx 

ly 0 
= hi]1 [A]  i 

lx 
o 

iy 
(2.50) 

'lz 
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Then substituting into Eq. (2.49), we find 

3 e_ + 6 e. = det y 2   z 3 
p°    e°    e° elx  ely   lz, 

'  -elze2 + eiye3 

(2.51) 

Thus 

) = -e? y    lz iy 
(2.52) 

The deformation torsional rotation is found by taking the cross- 

product of e° and e° and projecting this vector on the current 

axis of the beam.  This yields 

xIJ e. (e° x e°) = e.. det 
21 "2J 

r ■* 
el 62 

■*■ 

e 
3 

*x2I e° 
y2i 

A 

"z2I 

_x2J 
A 

e° y2J 
A 

e° z2J 

y2I z2J   y2J z2I 
(2.53) 

i! 

• 

Eqs. (2.52) and (2.53) require the assumption that the deformation 

displacements of an element be small.  This implies that the relative 

rotations are sufficiently small so that the decomposition of the 

rotation vector into 6  and 6  implicit in Eq. (2.49) be valid.  How- 
y     z  r 

ever, the overall rotation of the beam element may be arbitrarily 

large. 

The deformation displacement field for the beam element is con- 

sidered to consist of transverse displacements that are cubic 
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functions of x, while the axial displacement is a linear function of 

x. This can be written 

S ! 

If 

dx - I1-« *„ ♦ MxJ 

3m 
d™ - <5-252+SJ)A0 + <-e*+c3>* zl zj 

m 
z  (-5+2C2-53)£eyI + (52-53)*e 

3x " ?exJI 

where 

5- - 

(2.54a) 

(2.54b) 

(2.54c) 

(2.54d) 

(2.54e) 

and x is taken to originate at node I; the superscript m is used 

to indicate that these are the displacements of the mid surface. 

If we impose the usual Euler-Bernculli beam assumptions that normals 

to the midline remain straight and normal, we obtain 

A 

d 
X 

= dm 

X 
- 

A 

y 
3dm 

3x 

A 

d 
y 

= am 
y 

- 
A A 

ze 
X 

A 

d z 
= ~m a z 

+ 
A A 

ye 
X 

^ m ?§. 
i^ ♦«<?.«> ^ (2.55a) 

(2.55b) 

(2.55c) 

where H(y,z) is the warping function. 

The strain displacement equations, Eq. (2.34), can now be written 
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3d  x 
3x 

(2.56a) 

xy 

'3a      sa \ 
 2i +  Z 
v3y    3x ) 

(2.56b) 

xz 
i /3d 

2 \rt 

3d 
2 

3x~ 
(2.56c) 

1 

These equations are valid as long as (3d /3x)2 and (3d /3x) 2 are 

small compared to (3d /3x) Although this condition is similar in 

appearance to that of moderate rotation theories, it is far less 

restrictive, because d and d are the displacements relative to the 

corotational coordinate x.  By reducing the size of the element, d 

and d can be made as small as needed, albeit at a rapidly increasing 

cost. 

For the beam 

and 

{e} = (e , 2e  , 2e  ) v x   xy   xz 

[E] = T 

1     0     z(6£-4)  y(4-60  z(6£-2)  y(2-6U 

0  (3H/3y)-z    0       0       0       0 

0  (3H/3z)-y    0       0       0       0 

(2.57) 

(2.58) 

So, having defined the strain-displacement relations, the stress 

{o} ={o,3,cr } can be computed for any constitutive law, and 

then the deformation nodal forces by Eq. (2.38). 
ja 

Referring to Eqs. (2.39) and (2.40), it may be noted that {f } 

for the beam is given by 
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li / = it ._,m ,,m _,m _,m ,,m ,./ xJ xJ' yl' zl' yJ zJ (2.59) 

: i 
?■:■ 

i I 

The complete nodal force matrix could be computed from Eq. (2.37) 

after [T], as defined by Eg. (2.36), is found.  However, it is 

simpler to first find {f} by equilibrium and then transform to ' ^e 

global components by a simple vector transformation; the two pro- 

cedures are equivalent.  Equilibrium yields 

xl = -f xJ m  = -m , xl    xJ 

1 
:. IS 
d\ 

I 
1 
f 

7,1 
t 

'zJ 

yJ 

m  + m , 

m ,. + m _ zl   zJ 

f T = ~f T zl    zJ 

yl    yJ (2.60) 

The global components can then be found by Eq. (2.1) and (2.2). 

As indicated in Chapter I, the program has two methods for 

treating the moment stiffness of the beam.  For linear beams or beams 

with simple nonlinear characteristics where the overall bending 

moments can be determined as functions of the deformation rotations, 

the bending moments may be determined directly by Eqs. (1.4). 

The second method for obtaining the nodal moments is by inte- 

grating the stresses appropriately through Eqs. (2.38), with [Ej de- 

fined by Eq. (2.58). This integration is done only to obtain the 

axial force and moment.  The numerical integration for torsion is 

included neither in this description nor in the program.  If torsion 

were included, both the state of stress and strain would be biaxial, 

which increases computations immensely.  Since Euler-Bernoulli theory 
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does not include the shear stresses that arise from bending, only 

the shear strains due to torsion are available.  Thus the additional 

computations would not appear to be justified. 

The integral for the nodal forces, Eq. (2.38), is evaluated 

numerically. Many investigators have used Gaussian quadrature 

formulas for this integration.  However, these formulas involve far 

more computations than trapezoidal integrations, with little 

advantage in accuracy. The only drawback of a strict trapezoidal 

integration is that the elastic bending stiffness of the element is 

not recovered. A modified trapezoidal integration originally 

described in Marchertas and Belytschko (1974) is used here.  The 

beam is subdivided into strips as shown in Fig. 3.  In each strip, 

as for example the strip indicated by cross-hatching in Fig. 3, the 

axial stress a  is assumed to vary bilinearly in n and £, so 

o(n,5) = o^lHKl-nl + o.jnd-5) 

a.jd-nK i o.j  U (2.61)« 

Substituting this form into Eq. (2.37) and integrating over n and 

5, we find the expressions for f _ and m T to be Xu     yo 

f^, = T th [a.T + a._ + t?., + o._] xJ  4     ll   jl   lJ   }J 
(2.62) 

in _ = y th [2 a. z. + 2o._z. + a. z. + a._z.] 
yJ  6      IJ l    ]J ]   U ]   ]J l 

(2.63) 

The formulas for m _f m , and m , are similar. The total nodal forces yl  zJ     zl 

are then found by adding the contributions of all of the layers. The 
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major distinction from a trapezoidal integration is in Eq. (2.63), 
/s, 

which is based on a form quadratic :'.n z.  This modification preserves 

the exact elastic bending stiffness of the element. Moreover, the 

assumption of a linear stress variation in x implies a linear moment 

field, which is consistent with equilibrium of the element. The 

approximation errors therefore lie entirely in the stress-strain law, 

which is necessarily satisfied only at the end points of the element 

for nonlinear materials. 

! 

1* X 

\ 

Hydrodynamic Element.  The hydrodynamic element is a pentahedron with 

six nodes at its corners, as shown in Fig. 4.  The triangular sur- 

faces of the pentahedrons are called the top and bottom surfaces, 

respectively, and each of these is defined by three nodes. All of 

the nodes on each of these surfaces must be associated with the same 

primary node, for the top and bottom surfaces are considered rigid. 

The generic element is numbered counterclockwise and viewed from top 

to bottom.  The edges of the element arc defined by the lines connect- 

ing nodes I - L, nodes J - M, and nodes K - N, respectively.  The 

deformation of the hydrodynamic element is characterized by the 

dilatation, A, which is given by 

A * V -V
c 

v° (2.64) 

J ! 

where V is the volume of the element, and a superscript nought denotes 

the original volume.  For the purpose of computing the volume and 

change in volume, the pentahedron is subdivided into three tetrahedrons. 
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The volume of any tetrahedron with generic node numbers I,J,K and L 

is given by 

VIJKL = 6 d6t 

XJI    XKJ 

ZJI    ZKJ 

LK 

YJI    YKJ    YLK 

LK 

~ 6 [ZJI(XLKYKJ " XKJYLK) + ZKJ(XJIYLK " XKLYJI) 

+ ZLK(XKJYJI ' XJIYKJ)] 

XIJ " XI " XJ'  etC' (2.65) 

The volume of the pentahedron is 

V = v    + V    + V IJKL   JLMN    JKLN (2.66) 

To define the matrix [E] of Eq. (2.35), we take the time derivative 

of the dilatation as defined in terms of the nodal coordinates in 

Eqs. (2.66).  Noting that the time derivatives of the nodal coordin- 

ates are the velocities, we obtain [E], which is given in Table 1. 

The pressure in the hydrodynamic element is assumed to be con- 

stant, so that the integral expression for the nodal forces given by 

Eq. (2.38) yields that the nodal forces are given by 

{f} = -P  [EJ (2.67) 
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Table 1.  The [E] Matrix for Hydrodynamic Elements 

[E]A = # 

YKJZLK 

XLKZKJ 

XKJYLK 

V  z *LK NI 

XNIZLK 

XLKyNI 

yjIZLJ 

XLJZJI 

1  XJiyLJ 
6 

yKJZJI 

XJIZKJ 

XKJyJI 

YLNZNJ 

V LN 
XLNyNJ 

YMJZLM 

XLMZMJ 

XMJyLM 

" yLKZKJ 

" XKJZLK 

XLKyKJ 

" YNIZLK + 

" XLKZNI + 

" VLK 
+ 

" yLJZJl + 

" XJIZLJ + 

" XLJyjI + 

" yJIZKJ + 

" XKJZJI + 

" XJiyKN + 

" XNJZLN 

" XLNZNJ 

XNJYLN 

" yLMZMJ + 

" XMJZLM + 

" XLMyMJ + 

V z 

XLNZNM 

XNMYLN 

V z yNJ LN 

XLNZNJ 

VLN 
YNMZMJ 

XMJZNM 

XNMyMJ 

V z yLN NM 

XNMZLN 

XLNyNM 

yLNZNJ 

XNJZLN 

YLNyNJ 

V Z   + V  z yMJ NM  *KN NJ 

XNMZMJ + XNJZKN 

XMJyNM + XKNYNJ 

yNJZKN 

XKNZNJ 

XNJyKN 

yLKZKJ 

XKJZLK 

XLKYKJ 

yKJZLK 

XLKZKJ 

XKjyLK 
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The pressure is computed by 

p = BA + aBA (2.68) 

where a is a linear viscosity coefficient and B is a bulk modulus. 

For the nodes that are secondary, the nodal forces are then trans- 

formed by Eq. (2.^8). 

ki 

Elastic Planes.   The ejection seat geometries are represented 

by an assemblage of piecewise linear surfaces, which may be either 

elastic or rigid.  This assemblage of planes may translate in an 

arbitrary direction in space as an arbitrary function of time, which 

is prescribed in the input. When any of the rigid bodies contacts 

one of the planes, its equations of motion are modified so as to 

reflect its interaction with the plane. 

Each of the piecewise linear surfaces is defined by three points 

x°, I - 1 to 3, in the original configuration.  The coordinates of 

these points are given in the global system. The three points must 

be oriented so that the normal vector as obtained by the right hand 

rule points in the direction of the skeletal model.  In order to 

establish the required equations, the normal to the surface it first 

computed by the formula 

.i r 

v21 x x 31 
|X2l||23l| 

(2.69) 

The minimum distance between any node, x , and the surface is given 

by 
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D° = p< 

(2.70) 

jO _ „o _ yo 

where p° is a vector from any point in the surface to x . As the 
P 

surface translates, (rotations of the surface are not included), the 

unit normal remains unchanged, while the positions of x1 and x 

become 

f \ 

i J x = x° + u 
p  p 

(2.71) 

i 
l I 

where u is the prescribed displacement of the ejection seat.  The 

distance of point P from the surface can then be computed by 

D = p (2.72) 

?   ■* 
When the distance of the node from the surface is negative or zero, 

the node is assumed to be in contact with the surface.  It is tuen 

necessary to check its acceleration normal to the plane.  If the 

acceleration is into the plane, the node will remain in contact with 

the plane, whereas when the acceleration is away from the plane, 

there is no contact and no modifications of the equations of the 

node ?re needed. 

If the node is in contact with the plane, a force normal to 

the plane is applied to the node which is proportional to the 

r 
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V magnitude of the penetration of the point, i.e. 

fn = kD (2,73) 

where f is the force component normal to the surface.  In addition, 

if friction is present, tangential forces proportional to f may 

be applied in the form 

f =y f t    n (2.74) 
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CHAPTER III 

MATHEMATICAL ASPECTS OF SOLUTION PROCEDURES 

1. Explicit Time Integration 

I 

> 
t 

.1 

H 

One of the methods for solving the equations of motion of this 

model is the explicit method.  This method is by far the most effici- 

ent per time step, but the time step must be quite small if the model 

has a high frequency content, that is, low masses connected by stiff 

springs.  The stability limits are discussed subsequently in this 

Section. 

The explicit integration employs the Newmark 8-formulas (Newmark 

(1959)) with 3=0, which are almost identical to the central difference 

formulas (see Belytschko (1974)). These formulas predict the 

velocities and displacements at a time step in terms of the accelera- 

tions at the previous step.  For the translational components, these 

formulas may be used directly, so 

•S1 ■ *ii ♦ I 't(Uii+ a^> 

"ii1 - 4i+" 4i+1"! »L 

(3.1) 

(3.2) 

where the superscripts denote the time step and At the time increment 

during a step. 

For the rotational degrees of freedom, Eqs. (3.2) cannot be used 

directly because the orientations are described by unit vectors 

bi:r and its rates are not equivalent to the angular velocities and 
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accelerations.  The counterpart of Eq. (3.2) is 

db- 
;?+1 = bj +At--i + i A 

»w d'b 

dt dt' 
(3.3; 

From vector analysis 

db. 
— = u) x b. 
dt 

(3.4) 

  = (i) x (wxb.) + (axb.) 
dt2 x       x 

(3.5) 

and substituting Eqs. (3.4) and (3.5) into Eq. (3.3) yields a formula 

for the updated unit vectors 

:J+i ♦1 ."*■ -M 
bl  + At (uxbl) 

x 1 

+ | At2[u> x {ZxP.)   +   (axb?)] (3.6) 

To obtain a formula for the updated components of the unit vectors, 

we temporarily fix the x. coordinates and consider a particular unit 

vector b. in Eq. (3.6); we then dot Eq. (3.6) with the unit vector 

corresponding to the component of b. to be updated.  For example, the 

updated x-component of b3 is found by letting i-3 in Eq. (3.6) and 

taking the scalar product of both sides of the equation with b.., 

which yields, after some, simplification 
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3x 1 3 AtüP   + k Lt2(üJüi+äi) 
y  2 x z  y (3.7a) 

Similarly 

3y 
» bl >T nitwj + 2 At^SjSj-Sj) (3.7b) 

b^-ej-E^.A^.iAtMJ^) (3.7c) 

Normality and orthogonality are used to find the remaining com- 

ponents of b^  and b?  , and it is assumed that the rotations 

during a time step are small so that second order terms can be neg- 

lected.  From the normality of b,, it follows that 

II s£1-[i-<B£l>,-<Bä1>'] (3.8) 

1 

while, if it is first assumed that b^  ~ 1, orthogonality yields 

bj+1--(b5+1
+b?+1b?+1)/b?+1 

lz 3x ly       3y 3z 

The component bV       can then be found by normality 

(3.9) 

K1 - [' lB£V (b ?M (3.10) 

The components of the b. and b vectors given above are in terms 

of the x. coordinates of that node at tiire step j.  Using Eq. (2.3) 

with the [A] matrix defined in the previous time step, the components 
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■►i+1 are transformed to global coordinates; the vector b-i  * is then 

found by a vector product. 

The tlowchart for this numerical procedure is shown in Table 2. 

Besides the approximations of small rotations implicit in Eqs. (3.9) 

and (3.10), the major source of truncation error lies in the evalua- 

tion of the angular accelerations from the equations of angular 

motion, (2.32). These equations involve quadratic combinations of 

the angular velocities at the same time step as angular accelerations, 

so that the new angular velocities must be approximated. This source 

of error can be mitigated by an iterative procedure, i.e. finding 

the angular accelerations from an approximation to Eq. (2.32), inte- 

grating these accelerations to find the new angular velocities, and 

then repeating the computation of the angular accelerations. This 

procedure was tried, but it was found to have insignificant effects 

on the solution. 

Another consequence of the existence of the quadratic combina- 

tion of velocities in Eq. (2.32) is that the classical Fourier theories 

of numerical stability are not applicable even for linear material 

problems. Therefore, it has been necessary to pick time steps with 

the standard formula in terms of the maximum eigenvalue A of the 

system 

only serving as a guideline. To insure post facto that the computa- 

tions are stable, energy balance checks were made as follows. 

66 



! I 

i 

Table 2 

Flow Chart of Explicit Integration Procedure 

1. Set initial conditions, t=0 

2. Compute {u(t+At)} by Eq. (3.2) 

3. Update unit vectors bj by Eqs. (3.7) to (3.10) and transform 

to global components by Eq. (2.3) 

4. Find deformation displacements {d} by Eqs. (2.44), (2.49) and 

(2.53) 

5. Find the strain in the convected coordinates, {e} by Eq. (2.34) 

6. Stress-strain law 

7. Find local nodal forces {f } by Eq. (2.38) 

8. Add {fd} into {Flnt} 

9. Compute {u(t+At)} by Eqs. (2.30) and (2.31) 

10. Compute {ü(t+At)} by Eq. (3.1) 

11. t ■ t + At; go to 2 

m 
m 
4 

i 
l! 

L, 
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The kinetic energy at each time step j is defined by 

™J  1  -J2 , 1 -j Z       -j 
T = 2 PiUiI + 2 "iIIl«M*I 

where I is summed over the primary nodes in the system.  The external 

work is defined by a trapezoidal integration in time, so 

wext'° = 0 

ext,j   ext,j-1  1, j _ j-1. , ext,j   ext,j-1 
2y  il   il ' iril      il    ' 

The internal work is similarly defined by 

W int,o 

Mint,j _ int,j-l  l,-(e),j_ -(e),j-1. ,s(e),j  -(e),j-1, 
2K   iA     iA    ' v iA   "  iA    ' 

* « 

Energy balance then requires that 

„int,j + Tj _ wext,j < £(wint,j + TJ) 

If e is greater than about 0.05, a solution is considered unacceptable. 

The source of the energy error may be an arrested or incipient 

numerical instability, or excessive truncation error. 
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2.  Implicit Time Integration 

The second method for integrating the equations of motion in 

time is the implicit method. This method permits the use of rather 

large time steps, particularly if the high frequency aspects of 

the response are unimportant.  However, the method involves the solu- 

tion of nonlinear equations in each time step. The nonlinear 

equations are solved by a Newton-Raphson procedure, so that a sequence 

of solutions to linear algebraic equations are used to obtain the 

solution to the nonlinear equations.  The linear equations are solved 

by a Cholesky decomposition technique; hence the solution time is 

bandwidth dependent.  Therefore the method becomes quite uneconomical 

for the complex models, where the bandwidth is usually quite large, 

for in spite of the possibility of taking large time steps, the 

computational effort required per time step is so great as to pre- 

clude its use. More specific figures for solution times are given 

subsequently. 

The implicit integration employs the trapezoidal integration 

formulas, which corraspond to the Newmark ß-formulas with (3=1/4 

(Newmark (1959)). These formulas are 

u j*1 = u\  + i At(ü?T  + ü^1) il ll       2 il xl 

u?!1  = u?T  + At ü?_  + iAt2(ü^T  + ü^1) 
il il il       4 il il 

From the above, it immediately follows that 

(3.16) 

(3.17) 
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ü3 + l = JL (&U.T) -üjT - -lüj. 
il   At2    xI    xI  At  ll 

fij+l -J.AU.. - ft? Uil At  il il 

(3.19) 

(3.20) 

where 

Au.T = u^
1 - u?T il   il    il 

(3.21) 

The above equations must hold both for increments in rotations and 

translations, provided that the increments in rotations are small, so 

"j+l = _?_ AS.  - Z? wil At il 
01 
il 

(3.22) 

The increment A6 has no precise meaning, for it is neither referred 

to the bj or the br_  coordinate systems, but to some intermediate 

coordinates.  However A 9 is not a basic variable, for orientations 

are ultimately described by the body coordinate system b so this 

ambiguity is not important. 

The equations for implicit integration are best developed in 

matrix form, so we define the nodal matrices {D}, {£>} r and {.F}^. 

u „. ft 

<D}I= 6 

xl 

azl 

xl 

yi 

xl 

zl 

XI <*>!= 5 Xl 
{F}  =  - 1 JI M, 

zl 
(3.23) 

xl 

r 

r 

yi 

zl 

yi 

til 
Zl 

M 
yi 

M 
zl 
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The complete matrix of nodal displacements is {D}, which consists 

of {D} , with I from the number of nodes stacked vertically in order 

in the column matrix. 

The implicit solution procedure requires a linearized estimate 

of thtj internal forces at the end of the time step in terms of the 

incremental forces. This is provided by the tangential stiffness 

matrix Ll4 which gives 

l I 

{FJ+l,int} m  {pj,int} + [K]{AD} (3.24) 

1.1 I 

• I * 1 
I f 

•I 1 I 
■3L 

'■i 

The tangential stiffness here contains the damping terms; details 

are given in Appendix 2. 

The basis of the implicit method is to solve the equations of 

motion at time step j+1 directly in terms of the displacements.  For 

this purpose, the equations of motion are expressed at j+1 in terms 

of the solution at the previous step.  The right hand sides of the 

equations of motion, Eqs. (2.30) and (2.31) are expressed in terms of 

increments of displacements by means of Eqs. (3.24), which gives 

Pj(Auiz - At tflu 
At* Ü? ) 

il1 

i 
! 

^rslKl " At»sl 

At2 , j+l,ext 
4  (FiI 

At2 -i 

j+1,int. 
Fil    ' 

4 =2i> 

,At2 

(3.25) 

' ^S^u't »i»t + At "tA5u + ^ ^ A9t + A0uA9t) 

At2 ,5j+l,ext  -j+1, int. 
" T~ (Mn     - Mn    ) (3.26) 
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We now (1) use Eq. (3.24) to estimate the internal forces at j+1, 

(2) neglect the quadratic terms A0 A6. and (3) neglect any anti- 

symmetric terms arising from the rate of change of angular momentum. 

Eq. (3.25) and (3.26) can then be written 

where 

([Ml]   + ^4-   [M2]   + ^-   [K]){AD} 

=  At[Ml]{Dj}  + ^-   ([Ml]{Dj} 

+  {FJ+l,ext}  _  {pj,int}  _  {Rj}) (2.21) 

r 
[Ml] II 

p 0 0 0 0 0 

0 p 0 0 \J 0 

0 0 p 0 0 0 

0 0 0 Ixx 0 0 

0 0 0 0 I 
yy 

0 

0 0 0 0 0 I zz U I 

(3.28) 

[M2] II 

i 

[°-3x3] [23.3] 

JO     (I    -I     )w       (I     -I     )öj xx    yy     z xx    zz    v 

sym 

(I    -I     )u> zz    yy    x 

(3.29) 
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R-?T - e ist SU u t (3.30) 

Eqs. (3.27) are solved in each time step.  The error is then computed 

by 

„err  _j+l,ext  ,,i+l,int   ..n+1 F.T = F.T     - F.T     - purT il    il        il il 
(3.31) 

j! 

Merr = MJ+1'ext - M3+1'int 
il    il       il 

The error must satisfy the criterion 

^ (3.32) 

' f ■ 
' i' i 

{AD}T{Ferr} < E(W
jfint + Tj) (3.33) 

II 
j 

where e is a tolerance, and W-1'   and T] are the internal and kinetic 

energies, as defined by Eqs. (3.12) and (3.14). This criterion re- 

quires that the energy transfer to the system arising from error be 

bounded.  If Eq. (3.33) is not met, Eqs. (3.27) are resolved with 

{F  } added to {F  }. This does not require much extra time, for 

the coefficient matrix is triangulated, at most, onl^ once per time step. 

Belytschko and Schoeberle (1975)  have shown that this 

procedure leads to a stable algorithm regardless of the size of the 

time step as long as Eq. (3.33) is met.  The cited proof was only for 

nonlinear materials, but so far no unstable computations have been 

reported, when Eq. (3.33) was satisfied for a reasonable tolerance. 

The unit vectors are updated as follows.  The vector counterpart 

of Eqs. (3.16) and (3.17) are 
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Sj+1 = %l + AtSJ + A|i (gj + Jj+i, (3.34) 

Sj+1 - q + f (SJ + Sj
+1) (3.35) 

Multiplying Eq. (3.34) by - jr and adding to Eq. (3.35), we obtain 

A EJ+1 ♦ *J+1 - * s? - «i (3.36) 

fi-,? 

and rearranging and using Eq. (3.4) yields 

ßj+l - f  {p
+l  x j^1) . gj + At (3j x gj, (3.37) 

i !) 

.-1 i 

To obtain a formula for the updated components of the unit 

vectors, we temporarily fix the x coordinates and consider a parti- 

cular unit vector b in Eq. (3.37). We then take the scalar product 

of Eq. (3.37) with the unit vector corresponding to the component of 

ßj to be updated. For example, the updated x-component of b3 is 

found by letting 1=3 in Eq. (3.37) and taking the scalar product of 

both sides of the equation with b., which yields, after some simplifi- 

cation 

«it 
i ; O+l _ £J • £3+1  At £j . ,-*j+l „ SJ+lv . At -j     ,, ,Q, 

3x    1   3    T 1   (w   x b3  '  ~2     v     (3.38) 

Similarly, the y-components of b, is given by 

>J+1 _ A3 • irj+l _ At £j . ,+j+l „ ij+l»   At -j 
b3y = b2  b3  = T b2   (w   X D3  > ~ T ux (3.39) 
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The evaluation of triple scalar products in Eqs. (3.38) and (3.39) 

yields 

+j . ,+j+l ti+1\       -}+l u3+l  ~J+1 vJ+1 bI   <"   x b3  ) = »J  bJ
32    - BJ  b^y (3.40) 

' f 

Hence Eqs. (3.38) and (3.39) can be written as 

.j+1       At   ,-j+l .j+1       -j+1 , j+1 At    -j 
bi       = -=-  \ui        bt       -  ü) b^     )   + -=-    tu 3x 2       y 3z z 3y  '        2       y (2.41) 

.j+1   At ,-j+l .j+1  -j+1 .j+1.   At  -j b3y = T K  b3x " wx  b3z > '  T tti (3.42) 

i+1 Now if it is assumed that b-  ^ 1, Eqs. (3.41) and (3.42) can be 
J z 

solved simultaneously to yield 

53x 
At   rAt -j+lz-j   ,   -j+1, /-j   .   -j+lii/ 

/?    ,   At2   -j+1  -j+1. (1 + -— UJ       „J     > (3.43) 

J+1       At   .At -j + 1 .-j   ,  -j+1.        ,-j .   -j+lvw 
>3y    = T [Twz     (a)y + uy     >   - (wx+ wx    )]/ 

,. . At2 -j+l-j+1. 
(1 + TU; wz > (3.44) 

A 

/ ■ 

In a similar manner the y-component of S^  is found to be 

.j+1  At rAt -j+1 .-j , -j+1. , ,-j . -j+l.w 

iy 2 l 2 ™x 

/i L. At2 -j + " j+1.       ,, ... (1 + -j-  u>*  ,,JX )      (3.45) 

75 



mzmmm*mmmmAM9wym jgg^sCTg ^pwwstgy-wg1^ 

'V 

Equations (3.37), when substituted into the above, yield 

.j+1   .At -j+1 - u  AT  . ,,. ^ At2 -j+l-j+lv 
b3x = (T uz  A6x + A9y)/(1 + "A" <    <     ) (3.46) 

.j+1   .At ji-1.«    .7 » /,, L At
2 -j+l-j+1* 

b3y " (T "z A9y " A6x)/U + ~ «z    <    J (3.47) 

,j+l        .At     j + lA7      ,   AS   WM   J.  
&t2   -j + l-j + 1, bly    =   (T ux    A6y + AV/(1 + -4- »J    <    } (3.48) 

is 
•V. 

The remaining components are then updated as described in the previous 

section. 

Tiie major computational effort in this procedure is in triang- 

ulating Eq. (3.27).  If the number of degrees of freedom is N and 

2 
the semibandwidth is B, triangulation requires NB multiplications. 

The semibandwidth is given by 

B = max(I-J) (3.49) 

> 

J 

•i i 
■4 ■ 
;! 

where J and J are the node numbers of any primary nodes connected by 

a deformable element, either directlv or through secondary nodes. 

It is thus of advantage to number nodes so that B is minimized. 

The equations are triangulised at most once in each time step. 

The iterative procedure is performed using the triangularized mat- 

rix with direct backsubstitution. This only requires 2NB multipli- 

cations.  If the system is only midly nonlinear, the equations are 

solved with the triangular decomposition obtained from a previous 

time step. The computational procedure is shown in Table 3. 
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Table 3 

Flow Chart of Iterative, Implicit Integration Procedure 

1 . 

1 

1. Set initial conditions: t=0; {ii(0)} must be computed if initial 

conditions are nonzero 

2. Compute coefficient of {AD} end R.H.S. of Eq. (3.27) with {R} = 0 

3. Solve Eq. (3.27) for tentative increment in displacement 

4. Compute tentative displacement, acceleration and velocity by 

Eqs. (3.21), (3.19) and (3.20), respectively 

5. Update unit vectors b by Eqs. (3.46) to (3.48) and transform to 

global components by Eq. (2.3) 

6. Find tentative strain by Eq. (2.34) 

7. Stress-strain law 

8. Find tentative nodal forces by Eq. (2.38) and add into internal 

force array 

9. Compute error force by Eqs. (3.31) and (3,32) 

10. If energy error criteria, Eq. (3.33) in not met, set 

{FeXt} =  {Fext} + {Ferr} and go to 3 

11. Solution for step complete; update dependent variables 

12. t = t + At; go to 2 
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3.  Modal Analysis 

The modes of the system are obtained by a linear eigenvalue 

technique.  The use of this technique thus requires that the material 

properties be linearized in the domain of interest, so that 

{Fint} - [K]{D} (3.50) 

i l 

The use of a linear eigenvalue analysis also requires that the pro- 

duct terms u u , u u> in Eqs. (2.32) be neglected: thus the modal 
x z  y z 

analysis requires that the motion be restricted to two dimensions 

or that the rigid bodies have equal moments of inertia about all axes. 

In this study, the first assumption was usually made.  In addition, 

for purposes of simplicity, the effect of damping on the modal 

behavior was neglected.  Provided that the damping is proportional 

to the stiffness, which is the case here, the effect of damping on 

the frequencies could then be asscertained after the completion of 

the analysis as described subsequently. 

The modal equations are obtained in the usual manner (see 

Przemieniecki (1968)) by assuming harmonic response of the form 

{D(t)> = {X}e ildt (3.51) 

Substituting Eqs. (3.50) and (3.51) into (2.30) and (2.32) and in- 

voking the above assumptions, yields 

(IK] - wa[Ml]){X} = 0 (3.52) 

LA 
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which is linear eigenvalue problems, with the eigenvalues oi2 cor- 

responding to the natural frequencies, and the eigenvectors {X} 

corresponding to the natural modes of vibration. 

The eigenvalue problem of Eq. (3.52) is put into standard eigen- 

value form as follows.  Since the products of angular velocities 

appearing in the lotational equations of motion are not treated, 

-1/2 [Ml] is diagonal and a matrix [Ml]  '  can be constructed by taking 

the reciprocal of the square root of each diagonal term of the 

matrix.  Defining 

{X} - [M1]1/2{X} 

we obtain from (3.52) and (3.53) that 

(3.53) 

([M]"1/2[K][M]'1/2-w2[l]){X}   =  0 (3.54) 

'■■I 

] 

The eigenvalues and eigenvectors are found by either of two methods: 

i. a Jacobian iterat: ,n  proce^tre as implemented in subroutine 

EIGEN in the IBM Scientific Subroutine Package (1967); 

ii. a power method iteration procedure. 

The first method is relatively time consuming and cannot take 

advantage of the bandedness of the stiffness matrix.  Hence it can 

be used only for relatively small models.  However, it provides all 

frequencies and modes of the system. 

The second method can take advantage of bandedress and hence is 

applicable to larger models.  However, in the present version only th. 

lowest mode can be found.  The determination of subsequent modes 
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would entail the implementation of shift and sweeping procedures 

into the algorithm; see Gourlay and Watson (1973) or Belytschko 

(1974). 

If the system is damped by a stiffness proportional damping of 

magnitude a as used herein, then the frequencies of the damped system 

may be determined directly from the undamped modes.  Standard har- 

monic analysis then shows (see for example, Hurty and Rubinstein 

(1974)), that the frequency of the damped vibration is given by 

damp    Vn 
0    r = li) f 1 

2  2 a m (3.55) 

■   i-1 

w» 

'"I 
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CHAPTER IV 

MATERIAL PROPERTIES AND GEOMETRY 

"4    > 

This chapter describes the geometrical and material property 

data used in the models and the sources and basis for this data. For 

purposes of convenience, the description of this data is subdivided 

into sections dealing with the spine, the head and pelvis, and the 

rib cage.  The inertial properties ar<=> described in a separate Section. 

Finally, the combinations of these data used in models of various 

complexity are summarized by describing Models I, II, and III. 

Ill 

-I 

1. Thoracolumbar and Cervical Spine 

Each vertebra of the thoracolumbar spine is modelled as a rigid 

body. The geometry of each vertebra is described by the locations 

of the secondary nodes, v/hich serve to connect the var' ->us deformable 

elements to the ertebra.  An inertial segment usually does not 

coincide with a vertebral body.  Instead, each vertebra is embedded 

in an inertial segment, and the primary node of the segment is its 

centroid. Therefore, it is worthwhile in describing the geometry of 

the vertebrae to define a base point which is independent of the loca- 

tion of the primary node of the inertial segment. This base point is 

chosen to be the center of the lower end plate of the vertebral 

body. The geometry of each vertebra is then characterized by the 

positions in vhe vertebra's body coordinates of twelve additional 

points: (1) the spinous process tip; (2) left and right transverse 

process tips; (3) the left and right/inferior-superior articular facet 

points; and (4) the left and right/inferior-superior ligamenta flava 
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points.  A set of coordinates for vertebra L3 is given in Table 4. 

This data was obtained from a skeletal model by measurement and was 

then scaled to conform to the measurement of the measured averages 

of Lanier (1939) by Schultz and Galante (1970). 

The second aspect of the geometry is the positioning and orienta- 

tion of the vertebrae in space.  In all of these studies, it was 

assumed that there is no curvature in the frontal plane, so only the 

curvature in tfc« sagittal plane was included.  The first sets of 

data were generated by taking the previous model of Schultz, et al. 

(1974), which was for a standing position, and reducing the curvature 

so as to correspond more closely with a seated position. Subsequently, 

several radiographs of seated pilots were obtained and digitized 

so that the configuration could be determined. The base point 

coordinates in the y-z plane for the ad hoc coniiguration and one of 

the radiograph configurations is given in Table 5. The overall 

length of the thoracolumbar columns for this data corresponds closely 

to thai, of an avexeiye male.  Clauser (1968) reported that in a sample 

of 13 male cadavers, the mean distance from omph?lian to cervicale 

is 43.5 cm and cited an earlier unpublished Air Force study in which 

the same figure was reported.  The nearest corresponding dimension in 

this model, the distance from L4 to Tl, is 43.3 cm., which is in good 

agreement. 

The vertebral body heights and the disc heights along the zentral 

axis are based on the data of Lanier and Todd and Pyle (1928), in 

the thoracolumbar spine. In the cervical spine, ehe dimensions are 

based on data provided by AMRL and the orientations were measured from 

radiographs. 
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Table 5 Geometry of Spine 

Vertebral 
Level 

Coordinates of        Vertebral Body Intervertebral 
Inferior End Plate Center     Height      Disc Height* 

(cm) (cm) y (cm) z (cm) 

L5 

L4 

L3 

L2 

LI 

T12 

Til 

T10 

T9 

T8 

T7 

T6 

T5 

T4 

T3 

T2 

Tl 

C7 

C6 

C5 

C4 

C3 

C2 

1.800 

1.100 

1.000 

1.331 

2.142 

3.003 

3.882 

4.594 

4.849 

4.638 

4.580 

4.250 

3.990 

3.690 

3.350 

2.920 

2.410 

1.909 

1.760 

1.460 

1.290 

1.484 

1.636 

2.020 

5.700 

9.550 

13.450 

17.150 

20.590 

23.680 

26.500 

29.240 

31.830 

34.300 

36.610 

38.850 

41.000 

43.150 

45.260 

47.440 

49.420 

51.448 

53.516 

55.439 

57.332 

59.239 

2.392 

2.636 

2.751 

2.792 

2.726 

2.567 

2.433 

2.298 

2.146 

2.073 

2.019 

1.990 

1.957 

1.902 

1.850 

1.790 

1.648 

1.612 

1.516 

1.515 

1.513 

1.511 

1.500 

1.859 

1.354 

1.223 

1.173 

0.996 

0.822 

0.645 

0.477 

C.460 

0.459 

0.404 

0.314 

0.266 

0.214 

0.274 

0.306 

0.448 

0.394 

0.434 

0.576 

0.417 

0.398 

0.408 

I  i 

Indicates disc below vertebral level. 
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The secondary nodes of the vertebrae are interconnected by 

deformable elements which represent the connective tissues, ligaments 

and the intervertebral disc.  The center line of each intervertebral 

disc element connects the centers of the endplates of adjacent 

vertebra.  Each intervertebral disc has stiffness in bending due to 

j both flexion-extension and lateral bending, in torsion, and in the 
I I 
j ; axial mode. 

The stiffnesses are based primarily on the experimental work of 

Markolf (1970), Brown, Hansen and Yorra (1957), Rolander (1966) and 

t Kazarian (1972) . These experimental measurements were augmented by 

model studies of the intervertebral disc under axial load performed 
I 

} by Kulak (1974).  A large part of the procedure of assigning these 
\ 
i stiffnesses has been summarized in Schultz, Belytschko, et al (1973). 

i That paper also lists 12 other sources of intervertebral disc data 

] which have been considered in developing the daca used in the model. 

In spite of the wealth of literature available on this topic, 

the experimental data is inadequate for assigning stiffnesses at each 

vertebral level.  However, geometrical dimensions at every level have 

j        been provided by Lanier (1939).  In order to estimate stiffnesses 

I        at each level, it was assumed that stiffnesses vary in relation to 

J        the geometry. This is equivalent to assuming that intrinsic material 

1        properties do not vary significantly with vertebral level. Thus, by 

jf        using the experimental values at the levels at which they are available 

i :        and by using the geometrical ratios for other levels, stiffnesses 

! |        were assigned tc every level of the spine. 

v. * 

IM y 

The procedure by which this was done follows. First, each disc 
1 
t        was idealized as an elliptical ring of linear, elastic material 
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corresponding to the annulus fibrosis.  The outside ellipse is 

defined by major and minor diameters a and b , respectively, and 

the inner ellipse by major and minor axes a. and b., respectively. 

These two ellipses were assumed to be concentric.  Lanier's mean 

values of the transverse and sagittal diameters of each vertebral 

body were assigned to a and b , respectively, and to the height h. 

The interior diameters were assumed to be 0.75 of the outer diameters, 

based on Farfan et al. (1970). It was assumed that this elliptical 

ring, representing the annulus fibrosis and longitudinal ligaments, 

provides the major resistance to bending, torsion and shear.  This 

assumption is realistic  in view of the hydrostatic behavior of the 

nucleus pulposus reported by Nachemson (1960), for a hydrostatic 

material does not contribute to shear or torsional resistance, and 

contributes to bending resistance only if it is located asymmetrically 

with respect to the neutral bending plane.  The axial stiffness was 

assumed to be proportional to the total cross-sectional area of the 

disc. 

It follows then from strength of materials that the stiffnesses 

vary from level to level in proportion to the following geometric 

factors: for tension, compression, and shear 

h 

r, = - (a b - a.b.) 
A  h  o o   li 

(4.1) 

for bending about the minor diameter 

r - h  (a3b - a3b.) m  n  o o   ii (4.2) 
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for bending about the major diameter 

r™ = ü  (a~b - a.b.) m  h  o o   11 
(4.3) 

for torsion 

rt = h' 

a3b3 
o o 

a +b o o 

a3b3' 
l l (4.4) 

Extensive data is available on the stiffnesses at the L3/L4 and 

T8/T9 levels from cadaver material measurements. There is also some 

data on the upper thoracic spine. From the data the disc stiffnesses 

at other levels were calculated by using the geometrical ratios 

listed above.  Finally, measured stiffnesses at several other levels 

were used to check on the consistency of the data, which was found 

to be quite good. 

Because the discs are very short, shear action is quite strong. 

To account for this, shear factors <j> which appear in Eq. (1.4) were 

added to account for the shear behavior. 

Another aspect which had to be considered in this study is the 

nonlinearity of the force deflection characteristic of the disc. Very 

little data is available from which the nonlinearity could be pre- 

cisely established, except for perhaps the axial force-deflection 

behavior of the disc. The nonlinearity in the axial mode is distinctly 

different in the lumbar and throacic regions. As can be seen from 

Fig. 12, the axial behavior of the disc is quite nonlinear, parti- 

cularly if one considers both the tensile and compressive regimes. 

However, if the preloaded state resulting from body weight is 
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Figure 12. Response of L3 to axial load. 
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considered as a point of reference, then the behavior of the disc 

for compressive loads above that point is rather linear. In addition, 

it can be seen that a linear approximation to the behavior above that 

point requires a greater stiffness coefficient than from the unloaded 

state, by a factor of about 1.33.   However, the d^ita used in the 

model does not include this factor.   Although the model could 

handle u  cubic force deflection curve which would approximate 

the behavior shown in Fig. 12 quite closely,  it was not used because 

of the difficulties of introducing the preloaded state into the cubic 

curve. 

Thi* axial force deflection characteristics in a thoracic spine 

are illustrated in Fig. 13.  It can be seen that both experimental 

measurements and computer model results based on the nonlinear stress- 

strain curve as reported by Kulak, etal. exhibit very linear behavior. 

Therefore in the thoracic and cervical regions, a linear curve is 

adequate and no further modifications are contemplated.  It may be 

mentioned that the increased linearity of the axial behavior of the 

thoracic and cervical discs is related to the reduced relative height 

of these disos, where the relative height is defined as the ratio of 

height to average diameter.  This relative height is considerably 

smaller in the thoracic and cervical regions.  For discs with small 

relative height, the application of axial load does not result pri- 

marily in hoop stress in the annulus, but a combination of compressive 

and tensile stresses, so that the nonlinearities of the material tends 

to cancel.  The damping coefficients were based on the work of 

Payne (1971) and Kazarian (1972). A summary of all material properties 

for the discs is given in Table 6. 
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The ligaments are represented by spring elements which connect 

the secondary nodes representing the spinous process tips (inter 

and intra spinous ligaments) , spring elements connecting the transverse 

process tips (inter-transverse ligaments) and springs connecting 

points on the vertebral body, which represent mainly the ligamenta 

f lava. All of these elements are nonlinear in that they have no resistance 

in compression, i.e., when thsy are slack. In the thoracolumbar spine, 

the articular facets are also represented by spring elements.  The 

locations of the secondary nodes to which these spring elements are 

connected were adjusted so that the line of action of the facet forces 

corresponds to the normal to the facet planes.  Typical lines of 

action for articular facets in the lumbar and thoracic spine are given 

in Table 7. 

The model of the cervical spine is similar to that of the thoraco- 

lumbar spine, except that no ligaments were included at this time 

and that each articular facet plane was represented by three points, 

so that the hydrodynamic element could be used to model the facet 

joint. The intervertebral disc heights in the cervical spine were 

obtained from data provided by AMRL.  The data included both an anterior 

and posterior disc height, so these were averaged for use in the model. 

The vertebral geometry was obtained from direct measurement of a 

cadaver spine. These measurements included vertebral body height, 

endplate areas, spinous process location and three points on each 

superior articular facet plane.  Both right and left superior articular 

facet planes were measured and these were then averaged to obtain a 

symmetric configuration. The inferior articular facet planes were 

obtained by placing the cervical vertebrae in a standard configuration 
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Table 7.  Lines of Action of Articular Facets 

Vertebral Level 

L5-L4 

L4-L3 

L3-L2 

L2-L1 

L1-T12 

T12-T11 

T11-T10 

T10-T9 

T9-T8 

T8-T7 

T7-T6 

T6-T5 

T5-T4 

T4-T3 

T3-T2 

T2-T1 

x-component y-component z-component 

-0.96 0.2 0.18 

-0.87 0.48 0. 

-0.85 0.42 0.31 

-0.99 0.09 0.08 

-0.71 0.54 0.43 

-1.00 0. 0. 

0.13 0.97 0.14 

0.13 0.89 0.44 

0.16 0.92 0.33 

0.14 0.93 0.31 

0.39 0.76 0.51 

0. 0.99 0.13 

0. 0.99 0.07 

0.44 0.69 0.56 

0.22 0.81 0.53 

0.31 0.69 0.65 
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obtained from a radiograph and then defining the points of the 

inferior articular facet planes so that they are parallel and 

a prescribed distance from the superior facet planes;  this dis- 

tance was measured in a direction normal to the facet plane.  The 

resulting configuration is illustrated in Fig. 14.  The facet 

planes in these figures appear as triangles.  The force deflection 

characteristics of the facet ioint was then modelled with the 

hydrodynamic element described in Chapter II. 

;' i 

BÜ-* 

2. Rib Cage 

The model of the rib cage consists of rib pairs 1-10 and the 

sternum.  Each rib is modelled as a rigid body, with the deformability 

of the rib cage represented by deformable elements which represent 

the costo-transverse and costo-vertebral articulations.  The location 

of the superior and inferior costo-vertebral CV articulations and 

the costo-transverse CT articulations were based on those reported in 

Schultz, Benson and Hirsch (1974).  The diagram from Andriacchi, etal. 

(1974) indicates the nature of these data. The geometry of each rib 

is characterized by 8 points placed as follows:  two coincident 

points in the costo-tuberco defining the position of the costo-trans- 

verse articulation, a pair of inferior and superior points placed at 

the rib head at the positions of the costo-vertebral articulations, 

two points placed along the inferior and superior borders of the rib 

shaft at the mid axillary line to provide points of attachment for 

deformable elements representing the elastic behavior of soft tissues 

occupying the intercostal spaces, and a pair of points at the interior 

end of the calcified portion of the rib providing points of attachment 
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for deformable elements which represent the costo-cartilages. Rib 

geometry data were obtained from measurements reported in Schultz, 

Benson and Hirsch, (1974a).  Data describing the rib shaft geometry 

are reported in Table 9, taken from Andriacchi, et al. The rib cage 

geometry is illustrated in Figs. 8 and 9. The stiffness properties 

of the deformable elements used in the rib cage are summarized in 

Table 10. 

3.  Viscera and Abdominal Cavity 

The abdominal cavity and viscera are represented by hydrodynamic 

elements stacked in series with rigid bodies between each layer as 

shown in Pig. 10. The compressibility of the model from an analytical 

viewpoint is thus entirely axial.  In the actual viscera, the wave 

motion is mainly governed by the interaction of the walls of the 

torso and its contents. Thus, in response to a compressive load, the 

viscera would move vertically and laterally, with the latter compon- 

ent stretching the abdominal walls. 

The mechanism of wave propagation through the viscera by an 

interaction of the membrane lining and the hydrodynamic contents has 

been studied by Torvik (1970). He derived relationships for both 

large deformations of the membrane and nonlinear membrane response. 

For small deflection, linear membrane response, he gives the 

standard water hammer formula for wave speed 

c w JJÖL 
» 2rp 

(4.5) 

where E is Young's modulus for the membrane wall, t the thickness of 

the wall, r its radius and p the density of the fluid, which in this 
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case are the viscera. This formula neglects the compressibility of 

the viscera.  If we let E, the modulus of skin (although the 

6        2 passive resistance of muscles is also included) be60 x 10 dynes/cm , 

and let t=l cm, r=10 cm, we obtain c = 1700 cm/sec.  This corresponds 

very well with the values measured by Weis and Mohr (1967), which 

are 1980 cm/sec. 

The bulk modulus is then computed by the standard formula 

for acoustic wave speed. 

B - pc (4.6) 

6        2 This gives an effective value for B of 3.92 x 10 dynes/cm . 

This bulk modulus should not be interpreted as a bulk modulus of 

the viscera; it represents a constant that reflects the combined 

action of the membrane walls and the abdomen. 

The visceral elements are connected through rigid bodies to ribs 

T10.  This implies that all axial load in the abdominal cavity is 

transferred to the rib cage; no axial load transfer to the interior 

of the thoracic cavity is assumed. The bottom visceral elements are 

connected to the pelvis. 

Head 

The head is modelled as a rigid body.  Tn the examples studied, 

any helmet or helmet mounted devices were assumed rigidly attached 

to the head, so the mass and mass moments of inertia of these were 

simply added to the head.  However, it is possible to separate the 

inertias of the head and helmet and interconnect the two by springs 

102 



iW2^2S22S2SE3 psüSRssm WäHÄSS '^§WW^"^I^'^^> 

'■    Nl 

M 

i 

as shown in Fig.   15. 

The mass of the head was chosen to be 4.6 kg,   the mass moments 
2 

of inertia about 400 kg-cm based on the anthropometric dummy mea- 

surements of Bartz (1972). The helmet masses were based on the 

average of 3 helmets measured by the investigators. These had an 
2 

average mass of 1.4 kg and mass moments of 100 kg-cm . 

5. Pelvis 

The pelvis was represented as a rigid body with a mass and mass 

moments of inertia given in Table 11.  The data is taken from Bartz 

(1972).  The geometrical aspects of the pelvic representation are 

shown in Figs. 8 and 9. 

6. Preliminary Evaluation of Injury Potential 

In order to obtain a qualitative estimate of the injury potential 

of various combinr.tions of sagittal plane moments and axial force 

for the vertebraa, a method of calculating the maximum stress in the 

vertebrae based or. the combined axial force and moment predicted by 

the model was developed.  This is only a simplified model, but it is 

indicative of the effects of moments on stress levels in the vertebral 

bodies.  Since injury is probably related to stress levels, this 

method gives a means for evaluating the effects of the moments. We 

idealize the vertebral body as a cylindrical shell of radius r and 

height h. The shell is considered to be cortical bone with a Young's 

11       2 modulus of 1.5 x 10  dynes/cm .  The interior of the shell (vertebral 
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core) is trabecular bone (soft bone), with a mean modulus of elast- 

8       2 icity E. = 7.35 x 10 dynes/cm .• These moduli were obtained from 

Evans (1970). The following aspects of the vertebra's geometry have 

been neglected: 

1. The variation of cross section with z,   the cross section of the 

vertebral body as shown in Fig. 16 is simplified as shown. 

2. The ellipticity of the endplates is neglected and a circular 

cross section is assumed. 

The maximum stress for any combination of moment M and axial 

force P occurs in the cortical bone and is obtained by superimposing 

the stress due to bending a„ and the axial stress a   . The bending 

stress is computed from 

°B = p E(r) (4.7) 

where p is the radius of curvature, E is Young's modulus, which is 

given by 

E(r) •I E.       r < r. 
Eo      r  > ri 

(4.8) 

M •4     B J     Jn P 
E(r)   rcosö  rdrde 

d 
47rVi4+Eo(ro-^> 

(4.9) 
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Figure 16.  Idealization of vertebral body for preliminary 
evaluation of injury criteria. 
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a  ' 

or 
x 4M 

p = l{F..ri4 + Eo(ro
4-r.4)} 

(4.10) 

and 

4Mrcos6 E(r) 
°B  TT{E.r.4 + Eo(ro4_ri'»)} (4.11) 

The axial stress due to axial force is given by 

aA=E(r)eo (4.12) 

ill 1  1 

.'•a 
);i 

m.i 

where e    is constant,  and 

or 

P =  J°*clA = 2Tre      f ° E(r) r dr 
a   A °  ^ A 

- ire   {E.r.2  + E   (r  2-r.2) } 
oil o    o       i 

(4.13) 

eo       iriE.r.2 + E   (r  2-r. 2) } 
11 o     o        1 

(4.14) 

and 

P E(r) 
j    _    ______ 
A "  Tt{E.r.2  + E   (r  ^-r.^) } 

11 o      o        1 
(4.15) 

Next, we  superimpose the two stresses and note the maximum occurs 

at r - r    and 6=0.    This gives 
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4MroEo 
Jmax "  ^TlTrv5 + E^r^  - i^4) } 

PEr 

(4.16) 

+  TT{E.r.^  + E   (r  z-r.2)) 
11 O      O 1 

An equivalent circular radius rQ for the vertebral bodies was 

determined so that the area of the two geometries was the same.  The 

thickness of the cortical bone was assumed to be a constant 0.3 mm 

for all the vertebrae, i.e. r. = rQ • 0.3 m.  The maximum axial force 

for each vertebrae were obtained from Payne (1971), who summarized 

the results of several experiments concerned with the compressive 

breaking load of individual vertebrae. From this data, the maximum 

breaking stress under only axial load and the pure moment without 

axial force were determined. The results of these calculations are 

summarized in Table 12. As can be seen, the breaking strength as 

computed by this formula is fairly constant over the entire spine, 

except for moderate deviations in the lumbar and upper thoracic verte- 

brae. Figure 25 depicts the moment-axial force interaction line of 

several vertebral levels (alternating levels wet >. omitted for clarity). 

Each point on a line represents the combination of moment and axial 

force which corresponds to the maximum stress for that vertebral 

level. 
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7.  Inertial Properties 

Inertial properties for the motion segments of the isolated 

thoracolumbar spine were taken from Liu, et al (1973) and are given 

in Table 11.  Inertial properties for the rib cage model were 

assigned by attributing 10% of the thoracic mass to this portion 

of skeletal structure. For the viscera model the lumbar mass was 

equally distributed among the five vertebrae and two rigid bodies 

used in the model.  The sagittal plane rotational inertia of the 

lumbar vertebrae were reduced based on measurements and calcula- 

tions obtained from anatomical cross sectional geometries.  A 

summary of the inertial properties of the spine torso model with 

rib cage is given in Table 13.  Inertial properties for the cer- 

vical motion segments were obtained by distributing the mass uni- 

formily at each vertebral level; see Table 13. 
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Table 13.    Inertial Properties for Complete Model 

Motion 
Mass pT I  _ 

"l        5 
Gram-cnr x 10 

I . 
zzl 

Segment Grams x 103 Gram-cm x10 Gram-cm2 x10s 

Pelvis 16.200 128.000 20.000 19.300 

L5 1.500 2.783 1.795 2.332 

L4 1.500 2.748 1.704 2.291 

L3 1.500 2.809 1.682 2.280 

L2 1.500 2.840 1.695 2.291 

Ll 1.500 2.740 1.569 2.212 

T12 1.556 7.002 1.309 1.919 

TU 1.453 7.056 1.230 1.941 

TIO 1.202 6.028 1.129 1.648 

T9 1.267 6.164 1.230 1.716 

T8 1.176 5 543 1.208 1.670 

T7 1.158 5.347 1.219 1.659 

T6 1.043 4.425 1.162 1.546 

'i5 1.025 3.383 1.151 1.490 

T4 0.964 3.138 1.060 1.354 

T3 1.010 2.878 1.174 1.422 

T2 0.974 2.007 1.029 1.230 

Tl 1.209 0.745 0.518 1.716 

C7-C2 1.000 0.700 0.500 1.500 

Head 5.612 44.786 4.044 3.585 

Ribs Tl 
to TIO 

0.074 0.573 0.074 0.074 

Lower 
Viscera 

1.500 10.700 0.550 1.000 

Upper 
Viscera 

1.500 10.700 0.550 1.000 
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8. Summary of Models 

Model I, shown in Figure 17, consists of 

i.  thoracolumbar spine 

ii. a single beam element which represents the 

cervical spine 

iii. pelvis 

iv. head 

Model II, shown in Figure 18, consists of 

i.  thoracolumbar spine 

ii.  a single beam element for cervical spine 

iii. rib cage 

iv.  viscera represented by hydrodynamic elements 

v.   pelvis 

vi.  head 

Model III, shown in Figure 19, consists of 

i.  thoracolumbar spine 

ii.  cervical spine modelled as individual vertebrae 

iii.. pelvis 

iv.  head 
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Figure 17.  Side view of Model I. 
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Figure 18. Side view of Model II. 
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Figure 19.  Side view of Model III. 
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CHAPTER V 

STUDIES OF SPINAL RESPONSE 

1. Isolated Ligamentous Spine Model 

The first group of studies reported here were conducted with 

the model of the isolated ligamentous spine described as Model I 

in the previous chapter. All of these problems were studied as 

three dimensional problems, even though in most cases a two dim- 

ensional model would have been adequate.  In all cases, explicit 

-4 
integration was used with a time increment of 10  seconds, re- 

quiring 800 time steps for a solution at 80 msec. 

Response of unrestrained spine under 10 G^..  The first study was 

made to evaluate the response of the isolated ligamentous spine 

under a perfectly vertical 10G acceleration.  A rate of onset of 

714 g/sec was used; the acceleration was then maintained at a con- 

stant level of 10g for 66 msec.  Unlike other studies described in 

this section, no seatback or restraints were included in this 

solution. 

The deformed configurations at 40, 60 and 80 msec are shown 

in Figs. 20, 21, and 22.  As can be seen, particularly at 80 msec, 

severe curvatures of the spine have developed, and the spinal 

column can be considered to have buckled.  Once the column has 

buckled, the computed response is quite unrealistic.  For example, 

moments on the order of 3000 N-cm are developed in the lumbar 

spine. 

Liu, et al (1973) have observed a similar response in a homo- 
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Figure 20. Response of unrestrained spine at 40 msec, 
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Figure 21.  Response of unrestrained spine at 60 msec. 
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Figure 22. Response of unrestrained spine at 80 msec. 
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geneous bar model of the spine, but were inconclusive as to 

whether this response is correct.  However, if one considers that 

Lucas and Bressler (1961) have shown a static frontal plane 

buckling load of 20 to 100 Newtons for the thoracolumbar spine 

constrained against sagittal plane buckling, then this response 

is not unexpected. The bending stiffness of the isolated spine in 

the sagittal plane is of the same order as the bending stiffness 

in the frontal plane, and the initial sagittal plane curvature 

of the spine reduces its sagittal mode buckling even further. The 

10G environment results in axial loads of 4500 Newtons, and the 

duration is on the order of 200 msec, which, as shown subsequently, 

is of the order of the lowest flexural periods and 4 times the 

axial period of the spinal column, so inertial effects cannot pre- 

clude buckling.  Hence it is not unexpected that the unrestrained 

spine will buckle in this environment. 

There are essentially two mechanisms that prevent buckling 

in the actual spine: 

i.  the action of the restraint system, sea<-;>ack and 

musculature; 

ii. the interaction with the torso and rib cage, which may 

significantly increase the bending stiffness of the composite 

spine/torso. 

The results ir. subsequent Sections reflect rome attempts to 

study the effects of the second mechanism.  In all studies describe' 

in the remainder of this section, the seatback, restraint system, 

and a simplified torso representation were included.  These were 

sufficient to eliminate buckling. 
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An alternative to including constraints in the model would be 

to use a small displacement method of analysis.  However, small 

displacement analyses are valid only as long as the actual displace- 

ments of the spine are small.  In problems such as that of 

eccentric head loading, large displacements are undoubtedly encount- 

ered and would invalidate a small displacement analysis. 

Another point of interest in the response of this model is 

that the effects of the ligaments are minimal. Because of the 

large compression of the discs, the ligaments as modelled here all 

become slack and provide no stiffness.  This situation continues 

even as buckling is initiated: the ligaments do «ot prevent 

buckling.  This is also true of the spring models of the articular 

facet joint. 

H 

Effect of sagittal plane curvature.  Two distinct curves 

characterize the sagittal plane curvature; the lumbar curve formed 

by the vertebrae L5 through LI, and the thoracic curve consisting 

of T12 through Tl.  Sagittal plane curvature changes from concave 

Li  convex (when viewed posteriorly) in the region between L2 and 

Til.  In this study three magnitudes of sagittal curvature were 

simulated.  The first, shown in Fig- 23, represents a seated con- 

figuration in which the lumbar curvature averages 0.045 cm  and 

the thoracic curvature 0.017 cm .  This configuration was chosen 

to illustrate an occupant with large lumbar curvature.  The 

second, shown in l<"ig. 24, is an erect configuration in which the 

average lumbar curvature is 0.025 cm .  This configuration is 

based on several radiographs of pilots in ejection seats.  The 
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Figure 23. 
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Seated Configuration with Large Lumbar Curvature. 
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third, shown in Fig. 25, represents a hypothetical configuration 

in which all sagittal plane curvature has been eliminated.  In 

this "straight spine" model all of the intervertebral disc ele- 

ments are along the vertical axis as are the mass centers. 

The maximum axial forces, Fig. 26, for the three configura- 

tions decrease smoothly from bottom to top, particularly in the 

"straight spine" model, and the curvature has little effect on the 

values. On the other hand, a comparison of maximum sagittal plane 

moments for the three models, Fig. 27, shows large differences 

among the models.  The maximum sagittal plane moment in both 

curved spines occurs at L1-T12,  the point where spinal curvature 

changes from concave to convex.  In general, the sagittal plane 

moments for the erect configuration are smaller than for the 

curved configuration at all levels, while in the straight spine, 

the moments are smallest.  These results indicate that the pre- 

ejection configuration of the pilot is an important factor. 

While the compressive forces in the vertebrae are not effected by 

configuration changes, the additional stress due to the large 

bending moments acting on the vertebrae may increase the possibil- 

ity of injury. 

Figures 28 and 29 show the maximum moment and axial force 

predicted by the model for both of the curved configurations in 

the vertebral bodies, to illustrate the simplified injury poten- 

tial model developed in Chapter IV.  The axial force and moment 

values shown represent the average of the axial forces and moments 

for each vertebrae in the discs immediately above and below it. 

These values, in all cases, are the maximum that were observed 
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during the 80 msec simulation (the maximum axial forces and 

moments do not necessarily occur at the same time). The length of 

the line segment with the arrow, relative to the distance of the 

limit load from the origin, is one indication of the probability 

o': no injury at a level (if the point falls inside the limit line) . 

Thus, the probability of injury is somewhat greater for the more 

curved spine, particularly in the T1-T5 region, where the distance 

to the injury line is almost 20% less for the more curved spine. 

Particularly if we consider the possibility that the moments may 

serve as a triggering factor for failures, then the curved spine, 

with its greater moments appears to have a greater injury poten- 

tial. 

m 

-i 
;.*! 
^ 

Rate of Onset.  One of the parameters of interest in the ejection 

problem is the effect of changes in the rate of onset for the 

acceleration.  Rapid rates of onset result in dynamic magnifica- 

tion of force and acceleration magnitudes. Hess and Lombard (1957) 

reported that onsets of about 60 msec produced considerably higher 

acceleration levels in the body than the maximum acceleration of 

he ejection seat. Alternatively, slower onset rates, (100 msec) 

do not magnify acceleration levels, but may not provide adequate 

displacement of the pilot to clear the aircraft in the required 

time. Two ramp acceleration profiles were simulated here.  In both 

the maximum acceleration is 10g; the slower onset profile reached 

the maximum acceleration at 40 msec with an onset rate of 250g/sec, 

the other profile reached maxwm acceleration at 14 msec with an 

onset rate of 714g/sec. 
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Comparison of the maximum acceleration of the head showed a 

19.07g peak at 60 msec for the rapid onset of 18.03g peak at 72 

msec for the slow onset, which is a 5% reduction in the accelera- 

tion level.  Similarily, a comparison of maximum forces in the 

lumbar region showed the axial disc forces were reducöü by about 

8%.  Also the sagittal plane moments and facet forces were re- 

duced by 10% to 15%.  Thus the model predicts, as expected, that 

slower rates on onset reduce the dynamic magnification of axial 

loads and accelerations and reduce the overall bending response 

of the spine.  Time histories of the head acceleration and forces 

are shown in Figs. 30 to 33. 

\ > 

Angled Pulse (slanted seat).  The orientation of the ejection seat 

with respect to the direction of the acceleration vector is an- 

other consideration in the ejection problem.  By reclining the 

seat so that the acceleration vector has a slight anterior compon- 

ent with respect to the axis of the spine, two beneficial effects 

arc introduced: (1) the acceleration component along -t-hp axis of 

the spine is reduced, and (2) the resulting anterior component of 

acceleration provides support for the spine by forcing the seat- 

back against the torso.  Two orientations of the acceleration 

vector were studied, one in which the axis of the spine and accel- 

eration vector were aligned vertically with a peak acceleration 

magnitude of 10g, and the other with a 30  included angla and a 

10g peak acceleration magnitude resulting in 8.66g component along 

the axis of the spine and a 5g anterior component. 

Table 14 compares the maximum lumbar forces for three simula- 
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Figure 30.  Comparison of head acceleration for fast and slow 
rate of onset. 

133 



L4-L3  AXIAL   FCFCE 

S\4 

m i  | 

•   i 

i g 

z 
o 
H 

u: z 
K) 
o 

UJ o 
o 

000        0 01 0 02 0.03 0.04 0.05 
TIME,  SECONDS 

0 06 0.07    0 08 

Figure 31.  Comparison of axial force in L4/L3 for fast and 
slow rate of onset. 

134 



^»»?W^5^S'W^FB^fs"w^«fTSra^iW 

T.  i 
i 

L3-L2   FACET    FORCE 

li. 
u 

1 
°0Ö OÖi O02 OÖ3 O04 OOb 0*06 o" 

TIME ,   SECONOS 
07   008 

Figure 32.  Comparison of facet force in L3/L2 for fast and 
slow rate of onset. 

135 



wmmmvmmtw'^'www1®*1 

ir 
* 
^ 

T4-T3 MOMENT 

ill 

':*! '2 

W 

UJ 

f  2 
z o 

5 O 
s 

-4 

JL X .1 
0 00   0 01    0 02    0 03   0 04    0 05   0.06    0 07    0 08 

TIME, SECONDS 

Figure 33.  Comparison of moment in T4/T3 for fast and slow rate 
of onset. 

136 



Ff lagw^' 
.   ;TB#*irf*»*»>tÄ.«».       ■ IMBPJWWlHrafflWgikl1' .^mm^rm. 

I ! 

;i 

I 

s 
H 
Di 

o 
ro 

0 
4-1 

Q) 
(0 
ß 
0 a 
w 
0) « 

4H 
0 

C 
o 
U) 

-H 
U 
rd a 
E 
0 
u 

ro 
EH 

"O P r^ CN t~- o> o\ 
o   -H a» • , • • 
o ö, w ro ro ■V o vo 

(0 ß rs vo t~ 00 ro a o 
(U 
ü 10 
u c s p 00 o> CM r» o 
o 0 0   o <u • • • * • 

CM 4J OHO) in r> VO r- -* s W  ß H in VO vo ro -u <D o 
<u 2 
u 
rfl •O +J r- CO o> er. 'S1 

tw O    -H  <U ■ • • ■ • 
O   ftlO fM o C* H vo 
ro (ö ß 

(2 O 
ro 

  

in in VO rN 

-O +J o Cfi H VO 
H 

•H (ü «* H H in H 
0     ih 10 « • * • ■ 

U] O   (0   ß er. H H <Ti 
H 

■p 

PS O H H H 
1 

+) a> g-P 00 I-» ro 'S1 VO 
c s O     0 <D H »» o r^ O 
Q) 1 OHM ft • • » 
E ß W   ß oo O o r~ Cft 
0 0 o H H 1 s 

<U -a P ro CN VO a\ <N 

z 0    -H <D ro *r N (N 
in 

O  cu 03 • • • • 
M   (0  ß CTl <T> CTi i— o 

« o H 
1 

■ä p r- •<f ro 00 (M 
-H   d) OJ (N o vo ro o   a to • • ■ ■ 

O   (0   ß ■"sf *r T ro ro 
<1) tn « o 1 i 1 1 1 
o ß 
M 0 
0 +j s P VO H (XI o H fc 5 O     0 vV 0> OA VO ro O 

(U OH   81 • • * • • 
H 
(0 

•H  ( 

SS W   ß o ro ro ro ro ro 

o 
1 1 1 l 1 

X o 
< H -0 P O CM vo ro CTl 

0    -H  0) in ro CN o 00 o o, w • • • • ■ 
ro (0 ß ro ro C ro <N o; O 1 1 ! 1 1 

CN H H <* ro vN H       j H 
U Q) ►3 1-3 M- M &H 
to > i 1 | 1 

•H   0) in *• ro OJ H 
D »J H) ►J J a H 

137 



H 

tions of 80 msec duration: rapid onset with 30 included angle, 

slow onset with no angle, and rapid onset with no included angle. 

These results show a similarity in response for the rapid onset 

o o at a 30 angle and the slow onset at a 0 angle, while the rapid 

onset at 0 exhibits generally higher force levels.  The similarity 

in results for the rapid onset at 30 and the slow onset at 0 

can be attributed to a reduction in the effective inertial forces 

in both simulations.  In the slow onset simulation, the effective 

inertial force is reduced by the decrease in dynamic magnification. 

In the rapid onset at 30 , a similar reduction in inertial force 

results from the action of the seatback, which supports part of 

the inertial load. 

These results appear to indicate that within the constraints 

of maximum possible seat angle and the required displacement of the 

ejection seat for clearance of the aircraft, an optimum combination 

of seat angle and rate of onset could be determined.  This optimum 

sclution should reduce force levels in the spine. 

Eccentric Head Loading. An eccentric head mass, which represents 

a helmet mounted device, was chosen to illustrate the behavior and 

applicability of the model to this class of problems.  In this 

study, the head, in addition to its own mass, included a rigidly 

connected 0.9 kg mass located 0.102 meters from the sagittal plane. 

Because of the positioning of the added mass, the problem is not 

symmetric about the sagittal plane, and a three dimensional 

analysis is needed. 

Figure 34 shows the axial force time histories at three levels 
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of the spine.  As can be seen from Fig. 34 the axial behavior 

clearly demonstrates the progression of a compressive wave up the 

spine at about 30m/'&ec. This value of axial wave speed in the 

spine is in good agreement with the values reported by Hess and 

Lombard (1957) and Li, et al (1970).  The peak compressive forces 

occur earlior in the upper levels of the spine, due to the 

reflected expansion wave which moves down from the head cancelling, 

in pare, the upward moving compressive wave.  Figure 34 shows the 

cervical moment in the frontal plane due to the eccentric loading. 

This moment vanishes until the compressive wave has reflected from 

the head; after reflection, a frontal plane moment is generated 

in the cervical spine.  This moment attains its maximum at about 

65 msec, which is considerably later than when the peaks in com- 

pressive forces are reached. 

In the cervical spine, the intervertebrai discs have very 

little bending stiffness, whereas the articular facets have large 

moment arms about the sagittal plane.  Hence, the forces in the 

facets can be estimated neglecting the intervertebrai disc moments 

by ascribing the moment to a difference of the vertical forces in 

a facet pair.  This calculation indicates that the peak, compres- 

sive facet force is on the same side as the eccentric mass and 

3 
that its magnitude is about 10 Newtons, which is on the order of 

two to three times the facet force without an eccentric head mass. 
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2. Complete Spine Model 

The studies reported in this Section were conducted with the 

more complex model of the spine described as Model II in the pre- 

vious chapter. With the exception of the last study, the seat- 

back and restraints were included in all studies and the models 

were driven by prescribing the acceleration of the ejection seat 

to be 10G , with a rate of onset of 714g/sec over the first 14 

msec to the maximum acceleration.  The large bandwidth of this 

model requires that the explicit integration technique be used. A 

-4 time increment of 10  was sufficient for stability in energy. 

Response of Rib Cage Model Under lOG^.   In the first study, the 

response of the rib cage model without any viscera was studied 

under a vertical 10G acceleration.  Deformed configurations at 

20, 40, 60, and 80 msec are shown in Fig. 35. As can be seen, the 

entire rib cage collapses around the spinal column.  There are 

essentially two mechanisms that prevent the collapse of the rib 

cage: 

i.   the action of the musculature; 

ii.  the interaction of the viscera and rib cage; as the 

viscera are compressed the^ subject vertical forces on the dia- 

phragm which supports the rib cage. 

Although no attempt was made to represent the complex inter- 

actions of the musculature, consideration of the second mechanism 

led to the development of the previously described multi-elemsnt 

viscera model.  As the results in the following section show, by 
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including a representation of the viscera the collapse of the rib 

cage was prevented. 

Response of Complete Model Under 10G .  This study was made to z 

determine the response of the combined rib cage and viscera models 

under +G acceleration.  Figure 36 depicts the deformed configura- 

tions of the model at 20, 40, 60, and 80 msec.  This figure also 

illustrates that the collapse of the rib cage described previously 

is prevented by incorporating the viscera into the model. 

More importantly, spinal response is altered by the inclusion 

of the rib cage and viscera.  A comparison of maximum lumbar forces 

for the complete model and the isolated spine (Table 15), shows 

an overall reduction in force levels.  Experiments by Tennyson and 

King (1974), in which eviscerated cadavers were subjected to +G z 

acceleration both with and without the abdominal cavity pressurized, 

show a reduction in axial force levels in the disc and articular 

facets for the lumbar region when tie abdominal cavity was pres- 

surized.  In particular, the axial force levels are reduced by 

about 12% to 23% which compares with the 10% to 25% reduction re- 

ported in the experiments.  The sensitivity of the axial force 

reductions to the value of the bulk modulus of the viscera elements 

was also considered; decreasing the modulus by a factor of four 
6 2 

(1x10 dynes/cm ) resulted in a 5% to 12% reduction in force levels, 

7       2 while increasing the modulus by a factor of four (1.6x10 dynes/cm ) 

reduced the axial forces by 20% to 35%. 

The maximum internal pressures of the viscera model ranged 

5       2 5      2 from 5.8x10 dyne/cm in the lower elements to 2.5x10 dyne/cm for 
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the upper visceral elements.  These values of internal pressure 

5       2 are substantially higher than the 1.4x10 dyne/cm value.used for 

pressurization in the Tennyson and King experiments, or the prp«?- 

5       2 
sures of 2x10 dyne/cm reported by Morris, et al (1961) in 

static measurements during weight lifting experiments.  However, 

it is felt that this range of visceral pressure is not unrealistic. 

Using the counterpart of Eq. (4.5) and the data employed to obtain 

this wave speed, the maximum stresses in the abdominal wall are 

6        2 
computed to be 5.8x10 dyne/cm  (84 psi).  These stresses could be 

confined by the musculature and the tissues alone, for the strength 

8       2 of these tissues is on the order of 10 dyne/cm .  The resulting 

expansion of the cavity would be 0.1 cm, which is probably unde- 

tectable. 

The addition of the torso to the model reduced the bending 

moments in the thoracic spine.  Thus, although the abdominal 

cavity-viscera model has almost no inherent bending stiffness, 

the overall effect of this additional c ilumn is to stiffen the 

model in bending.  This behavior is also reflected in the accelera- 

tion of the head.  The maximum acceleration is 19.6g, which is 

slightly higher than that of the isolated column for the same con- 

ditions. 

Response of the Rib Cage Model During Frontal Impact.  To illus- 

trate another application for the dynamic response spine model, a 

simulation of frontal impact, as would occur in an automobile 

impacting a barrier, was conducted.  The spinal model including 

head, pelvis, legs and rib cage was given an initial velocity of 
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1.34x10  cm/sec (30 mph) in the anterior direction, with the pelvis 

4      2 subjected to a 6.7x10 cm/sec  (68.3g) posterior deceleration for 

20 msec.  The deceleration pulse was a step function with a de- 

creasing ramp at the end of the pulse, the magnitude of the decel- 

eration corresponds to an experimental measurement of a 30 mph 

crash. 

Displacement of the pelvis was prescribed to be consistent 

v/ith the initial velocity and deceleration, such that the displace- 

ment from the initiation of the deceleration to 20 msec was 13.42 

cm.  The pelvis was constrained from rotation in the sagittal 

plane to simulate the effect of a lap belt restraint, although the 

elasticity of the restraint belt was not included in this simula- 

tion. 

The head displaced 52.85 cm anteriorly at £0  msec and was 

4      2 subjected to 1.63x10  cm/sec  (16.65g) peak acceleration, also at 

40 msec.  An axial expansion wave travels up the spine at about 

30 m/sec which is the same wave speed calculated for the com- 

pressive wave in the ejection simulations.  Peak tensile axial 
Q 

forces in the intervertebral disc ranged from b.84x10 dynes at 

8 8 
the sacrum L5 level to 7.82x10 dynes at T11-T10 to 4.165x10 

dynes at the T3-T2 level.  Figure 37 shows the spinal configura- 

tions initially and at 20 and 40 msec.  The exaggerated position 

of the upper torso at 40 msec is due to the fact that no shoulder 

harness restraint was included in the simulation and the possible 

interaction of the thoracic cavity with the steering column was 

not considered.  It also appears that the stiffness of the ribs 

against rotation is too low. 
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3. Modal Analyses 

In order to gain a better understanding of the dynamic 

response properties of the spine, modal analyses were performed 

on the ligamentous isolated column.  The first set of results in 

Table 16 gives the lowest 7 natural frequencies of the isolated 

ligamentous spine, Model I.  In the modal analyses, neither the 

seat nor the harness restraints are included.  The spine was con- 

strained from motion in the frontal plane; only motions in the 

sagittal plane were considered.  Material properties that do not 

account for the preload of the body were used. 

As can be seen from the results, the model is characterized 

by a large number of very low natural frequencies.  All of the 

natural modes associated with these frequencies involve primarily 

bending deformations of the spine.  The lowest natural mode of 

the system with significant axial deformation is the 7th mode, 

which has a frequency of 17 cps. 

When the harness was included, the natural frequencies shifted 

as shown.  Adding the harness introduces additional frequencies 

which correspond to the motion of the pilot relative to the seat. 

The lowest such mode is vertical, for the harness exerts little 

vertical constraint.  The fourth frequency, 5.62 cps, agrees rea- 

sonably with resonance peaks found in the driving seat impedance 

measurements by Vogt, et al (1968).  However, the bending frequen- 

cies seem to be sensitive to the nature of the model, so it is not 

clear that this correlation is definitive. 

In order to investigate these results further, the following 
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Tab-!** 16.     Natura 
! E^e3uencies_o^S£ineJtod^ 

Sa^ittaJ^Pj^neJle^uencies 

Model I 

Without 
Harness 

With 
Harness 

1 1.28 0.31 

2 3.14 1.78 

3 5.99 2.35 

4 9.94 5.62 

5 13.31 10.25 

6 16.71 13.08 

7 18.45 14.73 

Prasad-King Model 

Without 
Head or Hips 

3.66 1.38 

8.17 4.48 

13.01 7.70 

17.70 11.74 

22.21 14.69 

26.92 23.30 

o n Q(\ 26.45 

a i 

i! 

With Head 
and Hips 

1 17.09 

2 32.31 

3 51.29 

4 77.22 

5 100.74 

6 124.89 

AxialJ^eguencies 

Model I 
Without 

Head or Hips 

30.12 

61.02 

87.08 

114.87 

142.42 

167.41 

Prasad-King Model 

19. 41 

39. 29 

80. ,61 

113, ,18 

148 .81 

179 .48 
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additional modal analyses were made 

i.   axial analyses in which the model was constrained from 

all displacements other than axial; 

ii.   analyses of the spine without head or hips; 

iii.  corresponding analyses on '...>■■.  rasad-King (1974) model. 

The last analyses was performed to insure that the low 

frequency response was not an idiosyncracy of our model.  The 

Prasad-King model is somewhat stiffer, for evidently the preload 

is included in the material properties.  However, the differences 

are quantitative rather than qualitative: the Prasad-King model 

low frequency content is also entirely flexural, and the axial 

mode frequency is even higher.  It becomes clear from these results 

that contrary to widespread notions, the axial mode is never near 

10 cps, and in fact hand calculations show that such axial 

frequencies are almost impossible.  Evidently, the peaks in the 

impedance curves found in axial harmonic oscillations of the human 

body are due to the parametric excitation of bending modes ^.n the 

spine.  This hypothesis will be explored further. 

4. Cervical Spine Model 

I 

The simulations reported in this section were conducted with 

the detailed model of the cervical spine described in Chapter IV. 

Additional beam elements which act only in bending and interconnect 

the primary nodes were included in the cervical spine.  These were 

added to represent the stiffness of the cervical musculature; 

without them it was found impossible to maintain stability of the 
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cervical spine. 

Because of the high stiffness of the facet models, including 

the cervical region in the model reduces  the stability limit of 

the explicit integration procedure by an order of magnitude. 

Explicit integration would therefore require 8000 time steps for 

an 80 msec simulation.  Because of the small bandwidth of this 

model, implicit integration was quite suitable.  A time step of 

-4 5x10  seconds was used, and 160 time steps were needed for a 80 

msec simulation.  Although the implicit procedure increases the 

stability limit, it is not well-suited for contact problems, such 

as the seatback interaction.  Thus a modified seatback, which 

restricted both posterior and anterior sagittal plane motion was 

used.  In all cases ejection acceleration was prescribed as 10G , 

with an onset rate of 714 g/sec ever the first 14 msec to the 

maximum acceleration. 

Symmetric Head Loading 

Comparison of Detailed and Simple Cervical Spine Models.  The 

simple model of the cervical spine consists of a single beam 

element which connects the top of Tl to the head mass.  In both 

the detailed and simple models the head mass is the same but the 

detailed model includes the inertia of the cervical spine at each 

vertebral level.  A comparison of maximum force levels in the 

upper thoracic region predicted by the two models shows an in- 

crease in axial forces and a reduction in sagittal moments of the 

intervertebral disc for the detailed model.  The increase in 

axial loads can be attributed to the additional inertia load of 
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the cervical vertebrae, however the change in sagittal moments 

could not be explained.  This reduction in bending response also 

results in an overall reduction of articular facet forces in the 

detailed model. 

Compressive axial forces in the cervical region ranged from 

1900 Newtons at C7 to 1000 Newtons at C2 whereas the single beam 

element in the simple model has a maximum of 1000 Newtons since 

only the inertia of the head was included.  Sagittal plane moments 

in the cervical region are distributed between the intervertebral 

discs and the added beans which model the musculature with the 

added beams cenerally having twice the disc moment.  Both the 

disc Qi.d adred beams have comparatively large moments at the 

bottom and top of the cervical region, while the largest facet 

forces occur in the center. 

IT s'i 
»•| 

I! 
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Increased Head Loading.  This study was made to evaluate the 

response of the cervical spine when a 0.9 kg mass is added to the 

center of gravity of the head mass.  The cervical force levels 

with the added mass are significantly greater.  Axial disc forces 

increased 14% at C2 to 6.7% at Tl and sagittal plane moments 

averaged a 6% increase with a corresponding average increase of 

10% in articular facet forces.  Hence increasing the inertial 

load of the head by 14% results in an almost equal redistribution 

of the added load in the axial component of the disc and the 

articular facets. 

In both of these simulations the head mass displaced about 

0.5 cm in the posterior direction as a result of locating the 
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center of mass slightly posterior to the line of action of the 

cervical elements.  This position of the head mass was chosen to 

insure that the head would contact the seatback.  An anterior 

motion of the head can be simulated by shifting the location of 

the head mass forward.  However this would require a provision for 

possible chin-chest contact. 

Eccentric Head Loading.  In this study, the 0.9 kg mass was placed 

10.16 cru directly to the left of the head mass center of gravity. 

This results in a 1.41 cm shift in the center of gravity of the 

entire head mass to the left of the sagittal plane.  Comparing 

the results for eccentric and symmetric added mass shows almost 

no change in the intervertebral disc forces with the exception of 

frontal plane moments.  However, as expected significant frontal 

plane moments appear when the head mass is eccentric. 

Of particular interest are the changes in the articular 

facet load distributions.  The largest changes occur in the upper 

three facet levels, C3-C2, C4-C3, and C5-C4, where the facet 

forces on the same side as the eccentric mass are increased an aver- 

age of 37%, while the right side facet forces are decreased by 

about 20%.  The lower two facet pairs, C6-C5 and C7-C6, exhibit 

a reversal in load distribution with the left side facet loads 

decreasing by 11% and the right side facet loads increasing by 

about 5%.  This redistribution of facet loads combined with the 

frontal plane moments in the intervertebral disc enable the cervi- 

cal spine to carry almost all of the moment due tc the eccentric 

head mass.  Time histories comparing the eccentric and symmetric 
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case are shown in Figs. 38 to 42. 

In the above results, the added beams had no frontal plane 

stiffness.  When frontal plane bending stiffness is included in 

these beams, part of the frontal plane moment due to the eccentric 

head mass is carried in these elements.  In this case all of the 

facet loads on the side of the eccentric mass are increased by 

about 20%.  The right side facet loads were decreased from 24% at 

C3-C2 to no change at C7-C6.  Generally by including the frontal 

plane bending in the additional beams both the disc moments and 

facet loads are decreased. 

A comparison of the simple cervical spine model with the 

detailed model shows the lateral displacement of the head is 

0.44 cm for the simple model and 0.52 cm for the detailed model 

at 80 msec.  Also the frontal plane moment in the simple model is 

an order of magnitude greater than frontal plane moments predicted 

by the detailed model.  Thus ascribing all of the frontal plane 

moment to the articular facets, as was done in the first section 

of results for eccentric head loading, leads to an exaggerated 

estimate of the facet loads.  Maximum head accelerations were 18.9 

for the simple model and 20.4G for the detailed model which are 

similar to the results for the symmetric head loading.  Frontal 

and lateral views of the eccentrically loaded detailed model at 

80 msec are shown in Figs. 43 and 44. 
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Figure 38.  Comparison of head acce1 oration for symmetric and 
eccentric head mass. 
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Figure 39.  Comparison of C5/C4 axial force for symmetric and 
eccentric head mass. 
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Figure 40. Comparison of C5/C4 sagittal plane moment for 
symmetric and eccentric head mass. 
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Figure 41.  Comparison of C5/C4 left facet force for symmetric 

and eccentric head mass. 
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Figure 42.  Comparison of C5/C4 right facet force for symmetric 
and eccentric head mass. 
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COMPUTER PROGRAM  DESCRIPTION 
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1. Introduction 

The program package developed here consists of two distinct 
programs: an analysis program for predicting the dynamic response 
of the human body under prescribed loads or accelerations and a 
graphics package for depicting deformed and undeformed anatomical 
configurations. 

The techniques employed in the analysis program have been 
described in Chapters 2 and 3. In the following Sections, the in- 
put formats for this program and other information needed for its 
use are given. The program, in addition to standard printer out- 
put, has provisions for Calcomp and printer plot graphical output 
of time histories of responses such as displacements, velocities, 
accelerations, forces, stresses and strains. 

However, the graphical depictions of the anatomy, such as 
Figures 6, 7, 8, and 9 are obtained by a separate program, which 
is described in Sections 12 and 13.  The input for this graphics 
package can be automatically generated by the analysis program in 
punched card form.  In addition, the graphics program can be used 
independently for other studies. 

Both programs were developed on an IBM 370/158 computer sys- 
tem.  They are completely written in FORTRAN IV, and with small 
changes can be run on CDC and UNIVAC computers.  For the analysis 
program, both the running time and required core storage are 
strongly problem dependent.  A minimum of about 320 k bytes (80,000 
words) is nppdpd for small problems, while models which include 
the rib cage and certain implicit models require about 520 k bytes 
(140,000 words).  Running time is 3 to 5 minutes for the simple 
models, 10 to 20 minutes for the complex models on the IBM 370/158. 
For the graphics package, about 320 k bytes (80,000 words) of core 
storage are needed; running time is about 1 to 2 minutes. 

The programs were developed as a research tool.  An effort 
has been made to maintain modularity of subroutine functions so 
that additional features may be added.  Care has been taken to in- 
sure maximum versatility and usability, but because of the 
evolutionary character of the development, these programs do not 
have the ease of input, extensive internal error checks, general- 
ized applicability of user-oriented, general purpose programs. 
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2, Input Data 

Card 1: TITLE CARD (20A4) 

Cols. 

1-80 

Card 2: 

1-5 

6-10 

11-15 

16-20 

21-25 

26-30 

31-35 

36-40 

41-50 

51-55 

Card 3; 

1-5 

FORTRAN Name 

TITLE 

Description 

Any 80 alphanumeric characters to identify 
the problem; these characters will be 
printed as a heading to the output. 

PARAMETER CARD (815 ,E10.6,15) 

NNODE 

NPRI 

NAXOR 

NELE 

NUMMAT 

NUMDIS 

MXSTEP 

NDGREE 

DELT 

NODMAX 

Number of nodes in the model (includes 
primary and secondary nodes, but does not 
include orientation nodes). 

Number of primary nodes in the model. 

Number of axis orientation nodes in the 
model; these are used to determine the 
orientation of the local y axis of the 
beam elements (see Section 5). 

Number of elements in the model. 

Number of different element section and 
material types; each group of Card 4 con- 
stitutes a section-material type. 

Number of nodes at which any displacement 
components are specified either a zero or 
nonzero value. 

Number of time steps to be taken. 

Number of degrees of freedom per node 
(should oe six). 

Time increment. 

Largest node number in model (default 
value: NODMAX « NNODE + NAXOR). 

PROGRAM CONTROL CARD (1615) 

KONTRL(l)    Global or local coordinate option (see 
Section 9). 

KONTRL(l) = 0: All nodes are input in 
global coordinates. 
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! ;: Cols. FORTRAN Name 

6-10 

11-15 

16-20 

21-25 

26-30 

46-50 

K0NTRM2) 

KONTRL(3) 

KONTRL(4) 

KONTRL(5) 

KONTRL(6) 

31-35 KONTRL(7) 

36-40 KONTRL(8) 

41-45 KONTRL(9) 

KONTRL(10) 

Description 

KONTRL(1) =   1: Secondary nodes are input 
in the local coordinates of the associated 
primary node (rigid linkage). 

Print option. 

KONTRL(2) = 0: Print time h. atories of 
stress, displacement, etc. 

KONTRL(2) = 1: Omit printing of time 
histories. 

Control parameter for initial body axes. 

KONTRL(3) = 0: Initial orientations (time - 0) 
of body coordinates b^ of nodal masses are 
taken to be the principal axes as found by 
an eigenvalue routine. 

KONTRL(3) = 1: Initial orientations of body 
coordinates bi are coincident with the 
global coordinates. 

Number of sliding interface p.lanes (see 
Section 3). 

KONTRL(5)/1000 is the beta parameter in 
the Newmark ß integration (should be zero 
for explicit integration and 250 for im- 
plicit integration). 

'IMPLICIT ONLY) If the number of iterations 
for the last step is - KONTRL(6) then a 
new stiffness matrix is formulated for the 
next sbep, otherwise the previous stiff- 
ness matrix is used. 

(IMPLICIT ONLY) Maximum number of iterations 
per step. 

(IMPLICIT ONLY) EPSLON*1000, energy error 
criteria. 

(IMPLICIT ONLY) Rotational equations of 
motion. 

KONTRL(9) = 0: Angular velocity product 
terms omitted. 

KONTRL(9) = 1: Angular velocity product 
terms included. 

(IMPLICIT ONLY) Geome.tric stiffness matrix. 

KONTRL(10) = 0: Omitted. 

KONTRL(10) ■ 1: Included. 
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Cols. 

51-55 

56-60 

61-65 

66-70 

71-75 

76-80 

FORTRAN  Name 

KONTRL(ll) 

KONTRLU2) 

Description 

Secondary-Primary node identifier (see 
Card 5 NODAL DATA CARD). 

KONTRL(ll) = 0: Default node type is 
secondary node. 

KONTRL(ll) = 1: Default node type is 
primary node. 

(IMPLICIT ONLY) Modal analysis option. 

KONTRL(12) = 0: No nodal analysis. 

KONTRL(12) = 1: Modal analysis. 

KONTRLU2) = 2: Modal analysis with punched 
card output for plotting mode shapes of 
spine. 

Damping option. 

KONTRL(13) = 0: Critical damping 

KONTRL(13) = 1: Viscous damping 

Not used. 

Program restart option. 

KONTRL(15) = 0: No action. 

KONTRL(15) > 0: Step at which all informa- 
tion is written on unit 13 for later re- 
start of problem. 

KONTRL(15) < 0: Number of seconds left in 
job when all information is written on 
unit 13. 

Debugging print option. 

KONTRL(16) = 0: No action. 

KONTRL(16) > 0: Step at which current values 
in all arrays are printed out and execution 
continues. 

Card 4: MATERIAL PROPERTY CARDS (15,/,6E10.4,/,6E10.4) 

Three cards are required per material section.  The input format 
depends on the element for which the data is needed, so choose 
appropriately from A, B, C, or D. 

Card 4A. Material-section property cards for 3-D AXIAL SPRING ELEMENTS. 

KONTRLU3) 

KONTRL(14) 

KONTRL(15) 

KONTRL(16) 

Card 4A.1 

1-5       MTYP Material type number; the following material 
properties apply to all elements, JE, with 
NODE(9,JE) = MTYP. (See Card 6: Element 
cards.) 
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Cols, FORTRAN Name 
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Card  4A.2 

1-10 E(1,MTYP) 

11-20 

21-30 

31-40 

41-50 

51-60 

Card  4A.3 

1-10 

11-20 

21-30 

31-40 

41-50 

51-60 

E(2,MTYP) 

E(3,MTYP) 

E(4,MTYP) 

E(5,MTYP) 

E(6,MTYP) 

E(7,MTYP) 

E(8,MTYP) 

E(9,MTYP) 

E(10,MTYP) 

E(11,MTYP) 

E(12,MTYP) 

Description 

Tension or compression cutoff option. 

E(1,MTYP) < 0: Element has stiffness only 
in compression. 

E(1,MTYP) = 0: Element has Ftiffness in 
both tension and compression. 

E(1,MTYP) > 0: Element has stiffness only 
in tension. 

Either Young's Modulus or axial stiffness 
can be specified, see E(7,MTYP) for 
implementing this option.  (See Section 
8 for consistent units.) 

Not used. 

Slack in spring, expressed as a strain 
offset (set equal to zero if no slack is 
desired). 

Not used. 

Not used. 

Cross sectional area.  Note: If area is 
specified as negative, then E(2,MTYP) is 
the axial stiffness of the spring, i.e. 
E(2,MTYP) = AE/L. 

Not used. 

Not used. 

Not used. 

Damping factor in fraction of critical 
damping or fraction of viscous damping for 
these elements, (see KONTRL(13)) 

Not used. 

Card 4B: Material-section property cards for 3-D LINEAR, ELASTIC 
RECTANGULAR BEAM ELEMENT 

Card 4B.1 

1-5 MTYP Material type number; the following 
material properties apply to all elements, 
JE, with NODE(9,JE) = MTYP (see Card 6, 
Element Cards). 
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Cols. FORTRAN Name 

Card 4B.2 

1-10 E{1,MTYP) 

11-20 E(2,MTYP) 

21-30 E(3,MTYP) 

31-40 E(4,MTYP) 

41-50 E(5,MTYP) 

51-60 E(6,MTYP) 

Card 4B.3 

1-10 E(7,MTYP) 

11-20 E(8,MTYP) 

21-30 E(9,MTYP) 

31-40 E(10,MTYP) 

'1-50 E(11,MTYP) 

51-60 E(12,MTYP) 

Description 

Density (see Section 8 for consistent 
uniti). 

Elastic modulus. 

Not used. 

Not used. 

Local z cross sectional dimension. 

Poisson's ratio. 

Cross sectional area. 

Local y cross sectional dimension. 

Shear deformation parameter in the local 
y direction; set to zero for no shear 
effects (see Chapter I). 

Shear deformation parameter in the local 
z direction; set to zero for no shear 
effects (see Chapter I). 

Axial damping factor in fraction of 
critical damping or fraction of viscous 
damping for these elements, (see KONTRL(13)) 

Bending damping factor in fraction of 
critical damping or fraction of viscous 
damping for these elements, (see K0NTRL(13)) 

Card 4C: Material-section Property cards for 3-D SPINAL DISK BEAM 
ELEMENT 

Card 4C.1 

1-5 MTYP Material type number, the following 
material properties apply to all elements, 
JE, with NODE(9,JE) « MTYP (see Card 6 
Element Cards). 

Card 4C.2 

1-10 

11-20 

Ed,MTYP) 

E(2,MTYP) 

Axial stiffness (see Section 8 for con- 
sistent units). 

Torsional stiffness. 
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Cols. 

21-30 

31-40 

41-50 

51-60 

Card 4C.3 

1-10 

11-20 

21-30 

31-40 

41-50 

51-60 

FORTRAN Name 

E(3,MTYP) 

E(4,MTYP) 

E(5,MTYP) 

E(6,MTYP) 

E(7,MTYP) 

E(8,MTYP) 

E(9,MTYP) 

E(10,MTYP) 

E(11,MTYP) 

E(12,MTYP) 

Description 

Bending stiffness about the local y axis. 

Bending stiffness about the local z axis. 

Cubic bending stiffness about local y axis. 

Cubic bending stiffness about local z axis. 

Not used. 

Not used. 

Shear deformation parameter in the local 
y direction: set to zero for no shear 
effects (see Chapter I). 

Shear deformation parameter in the local 
z direction; set to zero for no shear 
effects (see Chapter I). 

Axial damping factor in fraction of 
critical damping or fraction of viscous 
damping for these elements (see KONTRL(13)) 

Bending damping factor in fraction of 
critical or fraction of viscous damping 
for these elements (see KONTRL(13)). 

Card 4P; Material-section property cards for PRESSURE VOLUME 
PENTAHEDRON ELEMENT 

Card 4D.1 

1-5 

Card 4P.2 

1-10 

11-20 

21-30 

31-40 
41-50 
51-60 

MTYP 

E(1,MTYP) 

E(2,MTYP) 

E(3,MTYP) 

E(4,MTYP) 

E(5,MTYP) 

E(6,MTYP) 

Md'.exicjl type number, the following 
mater  1 properties apply tc all elements, 
JE, with NODE(9,JE) = MTYP (see Card 6, 
Element Cards). 

Bulk modulus (see Section 8 for consis- 
tent unit:") . 

Not used. 

Not used. 

Not used. 

Net used. 

Not used. 
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Cols. FORTRAN Name Description 

Card 4D.3 

1-10 E(7,MTYP) Not used. 

11-20 E(8,MTYP) Not used. 

21-30 L(9,MTYP) Not used. 

31-40 E(10fMTYP) Not used. 

41-50 E(11,MT¥P) Not used. 

51-60 E(12,MTYP) Damping factor in fracti< 
damping for these elements. 

Card 5; NODAL DATA CARDS (15,4x,Al,7E10.4) 

NNODE and NAXOR cards are required; the orientation nodes must 
follow all regular nodes. 

1-5 

6-10 

N 

NODTYP 

11-20 XC(N) 

21-30 YC(N) 

31-40 ZC(N) 

41-50 TMASS(l) 

51-60 TMASS(2) 

61-70 TMASS(3) 

71-90 TMASS(4) 

Node number. 

Secondary-Primary node identifier. 

NODTYP - S: specifies this node is 
secondary. 

NODTYP = P: Specifies this node is pri- 
mary . 

(NOTE: This method of node type identifica- 
tion is used elong with KONTRL(ll) to 
identify primary nodes whose mass is cal- 
culated by the program, i.e. for 3-D 
rectangular beams.) 

X - coordiante 

Y - coordinate 

Z - coordinate 

Translational mass. 

Global X moment of inertia, 

Global Y moment of inertia, 

Global 7,  moment of inertia, 

xx 

yy 
[ zz 

(See Section 6 for description of mass lumping at the nodes.) 

Card 6; ELEMENT DATA CARDS (1515) 

NELF cards are required. 

Card 6A: Element Data Card for 3-D AXIAL SPRING; 3-D LINEAR, ELASTIC 
RECTANGULAR BEAM; and 3-D SPINAL DISK BEAM ELEMENTS 

1-5      M Element number. 
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Cols. 

6-10 

11-15 

16-20 

21-25 

26-30 

31-35 

36-40 

41-45 

46-50 

51-55 

56-60 

61-65 

66-70 

71-75 

FORTRAN Name 

NODE(l,M) 

NODE(2,M) 

NODE(3,M) 

NODE(4,M) 

NODE(5,M) 

NODE(6,M) 

NODE(7,M) 

NODE(8,M) 

NODE(9,M) 

NODE(10,M) 

NODE(ll,M) 

NODE(13,M) 

NODE(14,M) 

Description 

Node I 

Node J (The local x axis is directed from 
Node I to Node J). 

If node I is not a primary node, the pri- 
mary node associated with node I (see 
Section 5). 

If node J is not a primary node, the pri- 
mary node associated with node J. 

Not used. 

Not used. 

Not used. 

Node K, axis orientation node number to^ 
be used in orienting the element local y 
axis; the y axis lies in the plane of 
nodes I, J, and K (see Section 5). 

Material type number; for each material 
type, a set of material cards must be pro- 
vided (see Cards 4, Material Property Cards) 

Element type number; indicates whether 
element M is a spring, elastic beam or 
disc beam, or pressure volume element. 

NODE (10,M) == 1: 3-D axial spring. 

NODE(10,M) = 2: 3-D linear elastic beam. 

NODE(10,M) = 3: 3-D spinal disk ,eam. 

NODE(10,M) 

Not used. 

XT r\ 4*  iif»n^ 

Not used. 

Not used. 

4: j-D pressure volume element. 

:ard 6B: Element Data Cards for PRESSURE VOLUME PENTRAHEDRON ELEMENT 

1-5 

6-10 

11-15 

16-20 

21-25 

26-30 

31-35 

M 

N0DE(1,M) 

NODE(2.M' 

NODE',3,M) 

NODEi4,M) 

NODE(5,M) 

NODE(6,M) 

Element 

Generic 

Generic 

Generic 

Generic 

Generic 

Generic 

number 

node I 

node J 

node K 

node L 

node M 

node N 
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Cols. FORTRAN Käme 

36-40 NODE(7,M) 

41-45 NODE(8,M) 

46-50 NODE(9,M) 

51-55 NODE(10,M) 

56-60 NODE(11,M) 

61-65 NODE(12,M) 

66-70 NODE(13,M) 

71-75 NODE(14,M) 

Description 

Primary node associated with gtneiic 
nodes I-K. 

Primary node associated with generic 
nodes L-N. 

Material type number; for each material 
type, a set of material cards must be 
provided (see Cards 4, Material Property 
Cards). 

Element type number. 

NODE(JO.M) = 4: Pressure volume pentra- 
hedron. 

Not used. 

Not used. 

Not used. 

Not used. 

V- 

I' 
IS 

Card 7; PRESCRIBED DISPLACEMENT CARDS (14,611,E10.4) 

NUMDIS cards; include only if NUMDIS > 0. 

1-4       N Node number at which one or more degrees 
of freedom are specified. 

For each degree of freedom of node N a value of I is specified, where 

0 indicates no constraint on that degree of freedom. 

1 indicates that the displacement or rotation compon- 
I =      ent is always 2ero. 

2 indicates thaL the displacement or rotation compon- 
ent is prescribed in SUBROUTINE FREEFD 

For each component, a column is provided as follows 

I 5 

6 

7 

8 

9 

I 

I 

I 

I 

Refers to txanslational global x degree of 
freedom of node N. 

Refers to translational global y degree of 
freedom of node N. 

Refers to translational global z degree of 
freedom of node N. 

Refers to rotation about body x axis 
degree of freedom. 

Refers to rotation about body y axis 
degree of freedom. 
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Cols. 

10 

11-20 

FORTRAN Name 

ANGLE 

Description 

Refers to rotation about body z axis 
degree of freedom. 

Not U33d. 

A 
i 

i i 

A. 
- * 

r.'-i 1 
f ... ■■■'.; 
16 » 

i 

Card 7A: MODAL ANALYSIS CARD (14,611) 

Include only if KONTRL(12) > 0. 

1-4       NAXISP       Coordinate axis for printer plots of pri- 
mary node mode shapes. 

NAXISP = 1: Mode shapes plotted vs. global 
x axis. 

NAXISP = 2: Global y axis. 

NAXISP = 3: Global z axis. 

For each of the six degrees of freedom in the entire model a value 
of I is specified, where 

1=0 indicates this D.O.F. is to be included in the 
modal analysis. 

1=1 indicates this D.O.F. is to be omitted from the 
modal analysis. 

In addition, individual nodal degrees of freedom may be omitted from 
ehe modal analysis by prescribing that D.O.F. to be zero via the 
prescribed displacement cards (^ee Card 7). 

5 

6 

7 

8 

9 

10 

Card 8; 

1-10 

11-20 

21-30 

31-40 

I 

I 

I 

I 

I 

I 

Refers to translational global x. 

Refers to translational global y. 

Refers to translational global z. 

Refers to rotation about body x. 

Refers to rotation about body y. 

Refers to rotation about body z. 

OUTPUT CONTROL CARD (4110) 

NPFREQ 

NPRU 

NPRS 

NPIC 

Frequency of output; whatever output is 
desired will be printed every NPFREQ steps. 

Number of motion output records. 

Number of stress output records. 

Number of complete (all motion and stress 
values at one time step) output pictures. 
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Cols. FORTRAN Name Description 

Card 9; MOTION OUTPUT CARDS (110,lOx,10A4) 

(NPRU cards; only included if NPRU > 0.) 

1-7 

8 

UOUT 

J 

10 

21-60 GLABEL 

Node number. 

Component number of kinematic variable 
(displacment, velocity or acceleration) 
to be output. 

J = 1: Translation in global x direction. 

J = 2: Translation in global y direction. 

J = 3: Translation of global z direction. 

J = 4: Rotation about body x axis. 

J = 5: Rotation about body y axis. 

J = 6: Rotation about body z axis. 

Indicates whethei record is displacement, 
velocity, or acceleration. 

K = 0: Displacement time history. 

K = 1: Velocity time history. 

K = 2:  Acceleration time history. 

Plot control. 

L = 0: No plot of time history. 

L = 1: Calcomp plot of time history. 

L = 2: Printer plot of time history. 

L = 3: Both calcomp and printer plot of 
time history. 

L = 4: Printer ploL and punched cards of 
time history. 

Alpnanumeric information to be printed 
identifying time history plot. 

Card 10; STRESS OUTPUT CARDS (110,lOx,10A4) 

(NPRS cards; only included if NPRS > 0.) 

1-7      SOUT        Element number 

8-9 

10 

M 

N 

Component number (see Section 11 for 
organization of STRS array). 

N = 0: No plot. 

N = 1; Calcomp plot of time history. 

N = 2: Printer plot of time history. 
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Cols. FORTRAN Name 

21-60 GLABEL 

Description 

N = 3: Both Calcomp and printer plot of 
time history. 

N = 4: Printer plot and punched cards of 
time history. 

Alphanumeric information to be printed 
for identifying time history plot. 

Card 11: COMPLETE OUTPUT PICTURE CARDS (2110) 

(NPIC cards; only included if NPIC >0.) 

i ! 
•i I 
! I 
> i 

VI 

V, 

1-10 

11-20 

NPOUT 

KON 

Time step at which complete output picture 
is desired. 

KON = 1: Output displacements and unit 
vectors at all nodes having mass (see 
Section 5). 

KON = 2: Output above plus coordinates of 
deformed model (note: output for rotational 
degrees of freedom is nonsense for this 
case). 

KON = 3: Output above plus velocities and 
accelerations at all nodes having mass. 

KON = 4: Output above plus all local element 
forces. 

KON - 6: Output above plus punched card out- 
put of all deformed nodes having mass and 
associated unit vectors.  (Used as input for 
3-D plotting program.) 

KON < 0: Punched card output only. 

i «I 

i ! i 
3.  Ejection Seat Geometry Subroutine 

The program provides the capability of modelling arbitrary 
ejection seat geometries.  Seat geometry is represented as a col- 
lection of piecewise linear planes.  Each plane is defined by 
three points (X -i i X, X.) whose coordinates are given in the global 
system.  The positive normal of the plane is then defined by the 
right hand rule applied to the sequencing of the points (X., X-, X.J 
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In order to prescribe the motion of the plane and incorporate 
the restraint system, each plane is designaceC by a primary node. 
The motion of the primary node is characterized by an acceleration 
vector.  The magnitude of the acceleration vector is given by an 
acceleration time history which is input through subroutine ICIF 
(see Section 4).  The direction is given by specifying the direc- 
tion cosines of the acceleration vector.  Each primary node which 
designates a plane may be associated with an arbitrary number of 
secondary nodes.  These secondary nodes can then be used as points 
of attachment for representing the restraint system with any of the 
deformable elements available in the program.  NOTE:  The primary 
and secondary nodes for this system are input through the Nodal 
Data Cards (see Card 5), also each primary node must have a Pre- 
scribed Displacement Card (see Card 7) with the translational 
degrees of freedom indicated as prescribed and the rotational de- 
grees of freedom indicated as zero.  The deformable elements re- 
presenting the restraint system are input through the Element Data 
Cards (see Card 6). 

The technique used in the subroutine is to modify the equations 
of motion for those primary nodes of the model that are in contact 
with the ejection seat, primary nodes not in contact are not effected. 
The criteria for contact between a plane and a primary node of the 
model is that both the relative displacement and acceleration in 
the normal direction of the plane be decreasing, i.e. the primary 
node is moving towards the plane. 

Input data for subroutine SLIDER; this data is placed after 
Card 11 of READIN input (Note: data for subroutine ICIF to specify 
the motion of the planes must follow this data).  For each plane 
(I = 1 to number of planes) the following sequence of five input 
cards are required: 

Card Al: Plane Identification Card (2I5,6E10.0) 

Cols. FORTRAN Name 

1-5 NPNO(l) 

6-10 NASN(I) 

11-20 DICOS(l,I) 

21-30 DIC0S(2,I) 

31-40 DICOS(3,I) 

41-50 SEATK(1,I) 

Description 

Primary nude number designating the plane. 

Total number of primary nodes of the 
model which may contact plane I. 

Direction cosine of acceleration vector 
with respect to the qlobal x-axi<?: 

Direction cosine of acceleration vector 
with respect to the global y-axis. 

Direction cosine of acceleration vector 
with respect to the global z-axis. 

Linear stiffness of elastic plane I. 
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Cols.     FORTRAN Name 

51-60     SEATK(2,I) 

61-7?      VDAMP(I) 

Description 

Cubic stiffness of elastic plane I. 

Fraction of viscous damping for plane I. 

Card A2: Contacting Primary Node Numbers Card (1015) 

!! 

PM 

1-5 NCP(J,I)     Node number of primary node J which may 
contact plane I; where J=l to NASN(I). 

NOTE: If a consecutive sequence of primary node numbers are associated 
with a plane, the subroutine will generate the intermediate primary 
node numbers.  The option to generate intermediate primary node num- 
bers is indicated by specifying NASN(I) = 0 on Card Al and specifying 
the first and last primary node numbers, NCP(1,I) and NCP(2,I), on 
Card A2.  This sequence must be ascending NCP(1,I) < NCP(2,I). 

Card A3: Plane Location Cards (3E10.0) 

(3 cards) - for each of the three points (X,, X-, X,) specify 

1-10 XI(1) Global X coordinate of point I. 

11-20 XI(2) Global Y coordinate of point I. 

21-30     XI(3)        Global Z coordinate of point I. 

4.  Subroutine ICIF; Cubic Interpolation Motion Record Subroutine 

The program in its present form can treat arbitrary vertical 
motion input of the hips and seat.  The motion input can be speci- 
fied as either a displacement, velocity or acceleration vs. time 
curve.  For the latter two, the program automatically integrates 
the record once or twice, respectively, to obtain a displacement 
history, which is then used to drive the model. 

The motion record is specified by an arbitrarily spaced set 
of points (t,, f., f.')» i = 1 to n, where 

n - is the number of points specified for the motion record, 
t. = are the times at which the motion function (displacement, 

velocity, or acceleration) is specified. 
f. = value of the motion function (displacement, velocity, or 

acceleration) at time t.. 
f.' = value of the derivative of the motion function with respect 

to time at time t.. 

A cubic, continuously differentiable interpolation function is 
used to approximate the motion record between prescribed points. 
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SUBROUTINE ICIF (TIME, VALUE, til) 

TIME - Time at which displacement is to be evaluated. 
VALUE - Upon return contains value of displacement. 
MI   - Number of integrations to be performed, 

NI = 0, no integration, displacement data was input. 
NI = 1, one integration, velocity data was input. 
NI = 2, two integrations, acceleration data was input. 

Input data for subroutine ICIF; this data is placed after Card 11 
of KEADIN input. 

Card Al; Initial Parameter Card (I5,5X,2E10.0) 

Cols. 

1-5 

11-20 

21-30 

FORTRAN Name 

NPTS 

FI 

F2 

Description 

Number of points where the motion functions 
value and derivative are specified, n. 

Integration constant for first integration. 

Integration constant for second integration. 

Card A2; Function Specification Cards (3E10.0) 

(NPTS Cards) - for each point i specify 

1-10      T Time t. 

11-20 

21-30 

F 

FP 

Motion function value at time t., f(t). 
l    l 

Derivative of function at time t., f.' (t.). 
ii  l 

NOTE: The motion function must start at time zero, t, - 0. 

An example of this data is given below. 

Example: 10g Acceleration Record 

TIME (millisec) 

183 



\*J*lji»**läM^A«i»»V«*i?^ mmm^mfm^mmmmmmr^^ 

i t. 
i 

f. 
i 

f. ■ 
i 

1 0.0 0.0 7.006xl05 

2 13xl0~3 9.108xl03 7.006xl05 

3 15xl0-3 9.809xl03 0.0 

4. 1.0 9.809xl03 0.0 

5.  Primary, Secondary and Axis Orientation Nodes 

i:4 
j 

■ & 

t 

i 

This program permits the user to construct models with or 
without rigid linkages between nodes.  For this purpose, two 
types of nodes are used: 

Primary nodes - All degrees of freedom are associated with 
primary nodes.  If a primary node is associated with a 
rigid linkage, it must be at the mass center of the rigid 
linkage.  At most one primary node is allowed per rigid 
linkage. 

Secondary nodes - These nodes connect the ends of deformable 
elements with rigid linkages; more than one secondary 
node may be associated with each rigid linkage.  A second- 
ary node has no independent degrees of freedom. 

If there is no rigid linkage at the endpoint of an element, 
the endpoint is a primary node. 

A third typeAof node, an axis orientation node, is used to 
orient the local y axis for beam elements. 

Axis Orientation node - The two nodes associated with the 
endpoints of a beam element define the local x axis for 
the beam element.  In order to define the local y axis for 
the beam element, a third node is used to define a plane 
containing both the local x and y axes.  The normal to 
this plane is the local z axis. 

6.  Mass Lumping 

All masses are associated with primary nodes.  The mass of a 
primary node may either (1) be input directly through Cards 5, (2) 
be generated within the program through lumping the masses of 
elements or (3) by a combination of these methods (1) and (2). 
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If method (1) is desired exclusively, the density of all 
elements on cards 4.1 should be input as zero. 

Method (2) can be used by omitting the input of lumped masses 
and moments of inertia on Cards 4 and inputting mass densities for 
the elements; the program then lumps half the mass and moments of 
inertia of each element at the associated nodes. 

Method (3) calls for care on the part of the user when rigid 
linkages are used. The program sums translational masses of each 
rigid linkage as input through Cards 4 and the lumped masses of 
elements connected to the primary nodes. It also simply sums the 
moments of inertia of the primary node and the elements connected 
to it. It does not shift the canter of mass or transform moments 
to inertia by the parallel axis theorem. 

The analyst should also be usre that all independent degrees 
of freedom are associated with some mass.  Any aegree of freedom 
not associated with a mass will automatically be omitted from the 
equations of motion and so remain fixed throughout the temporal 
integration. 

\i i 7. Unit Vectors Bl, B2, and B3 

The rotational equations of motion for each node (Euler 
equations) are formulated in »  coordinate system that rotates with 
the node.  This coordinate system is initially choosen to ccv.mide 
with the principal axes of r.ne moment of inertia tensor and re- 
mains so throughout the deformation, since it rotates with the 
mass. 

IM 

i 

If the prinicpal moments of inertia at a node are about the 
global x, y, and z coordinates, then initially the unit vectors 
of the rotational coordinate system coincide with the global co- 
ordinates, i.e. Bl is a unit vector in the global x direction, B2 
is a unit vector in the global y direction, and B3 is a unit 
vector in the global z direction.  Only the components of two of 
the unit vectors need be known at any time, i.e. Bl and B3.  The 
third is then given by the cross product B2 = B3 x Bl. 

i 
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i \ 

\   i 
185 



I^ilia»'""* 
?y;v'iH SMBlW»i&SS&^ÄlÄ*ää»-V5V^^^ 

8.  Consistent Units 

It is recommended that the program be used with the following 
system of units (i.e. all input data should be in these units): 

Time 

Length 

Mass 

Force 

Second (sec.) 

Centimeter (cm.) 

Gram (g.) 

Dyne (g-cm/sec2) 

For the convenience of the user the local element forces and 
moments are internally converted and also output in the english 
units: 

Length 

Force 

Inch      (in.) 

Pound force(lbf. 

However, any consistent system of units may be used for the 
input data.   The resulting output will then be in the same system 
(and the identifying units will not be germaine) with the excep- 
tion of the english units for forces and moments, which are inter- 
nally converted. 

Global or Local CouiuiiiaLeS for Secon 

Two options are available for the input of the coordinates 
of secondary nodes: 

Global (KONTRL(l) = 0) 

All nodal coordinates (primary, secondary, and axis orientation) 
are input in the global x, y, and z coordinates system. 

Local (KONTRL(l) = 1) 

The nodal coordinates of the secondary nodes associated with 
a rigid linkage (primary node) are input in local x, y, and z 
components of the associated rigid linkage.  The local axis 
origin is the primary node for that rigid linkage. 
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10.  Dynamic Allocation 

Core storage among the arrays is allocated internally within 
the program.  This procedure which is called dynamic allocation, 
requires the user to specify only the dimension of a single array. 
All vectors and matrices needed for the solution of the problem 
are then packed sequentially into this array.  The size of the 
array is problem dependent, so that for small problems little core 
storage is needed.  If the dimension specified by the user is not 
sufficiently large for the problem, an error message is printed 
along with the total amount of storage needed. 

The following are the problem dependent scalar values used 
to allocate core storage: 

Values Obtained Directly from the Input Data 

' 

■■$ 

FORTRAN Name 

IMODAL 

MXSTEP 

NAXOR 

NDGREE 

NELE 

NNODE 

NODMAX 

NOPT 

NPD IS 

NPFREQ 

NPIC 

NPRI 

NPRS 

NPRU 

NUMDIS 

NUMMAT 

Description 

Modal analysis option 

Maximum number of time steps. 

Number of axis orientation nodes. 

Maximum number of degrees of freedom 
per node. 

Number of elements 

Number of primary and secondary nodes 
in the dataset. 

Maximum node number used in the dataset. 

Number of sliding planes. 

Number of ueyieets of freedom whose motion 
is prescribed as nonzero. 

Frequency of output; whatever output is 
desired will be printed every NPFREQ steps. 

Number of complete output pictures. 

Number of primary nodes. 

Number of stress output records. 

Number of motion output records. 

Number of nodes at which any displacement 
components are specified either zero or 
nonzero. 

Number of different element section and 
material types. 

1 
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Values Calculated Internally from the Input Data 

FORTRAN Name 

LBKE=NBE*(MUDE+1) 
-((MUDE+l)*MUDE}/2 

MEQ=NDGREE *NNODE 

MUD=(MAX(I-J)+1) 
*NDGREE-1 

MUDE=NBE-1 

NBE=NDE*NPRI 

NDE 

NODET=NNODE+NAXOR 

NPLOT=NPRU+NPRS 

NPTS=MXSTEP/ 
NPFREQ+2 

N1=NDGREE*NPRI 

Description 

Required storage of the stiffness matrix 
for modal analysis. 

Maximum number of degrees of freedom in 
the mesh. 

Number of nonzero upper codiagonals in 
banded stiffness matrix. 

Number of nonzero upper codiagonals in 
banded stiffness matrix for modal analysis. 

Number of degrees of freedom in the mesh 
for modal analysis. 

Number of degrees of freedom per node for 
modal analysis (See Card 7A). 

Total number of nodes in the mesh (primary 
and secondary and axis orientation). 

Number of time histories to be plotted. 

Number of points to be plotted for each 
time history. 

Number of independent degrees of freedom 
in the mesh. 

| 
..T - 

'I 
i 

1 

The following is a list of the array names and their storage 
requirements which are dynamically allocated: 

FORTRAN Name Size 

NPTS 

AL NELE 

AO Nl 

AUX Nl 

Al Nl 

BIGK Nl*(MUD+l) 
-((MUD+l) * 
MUD)/2 

BLAMB 9*NPRI 

DICOS 9*NELE 

DICOSP 9*N0PT 

Description 

Temporary storage of Ordinate values 
for plotted output. 

Element lengths. 

Old nodal accelerations. 

Deformed nodal coordinates. 

Current nodal accelerations. 

Total global stiffness. 

Nodal body vector transformations. 

Element vector transformations. 

Sliding plane acceleration vector 
direction cosines. 
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FORTRAN Name 

E 

EFFLAS 

EFFORC 

EVAL 

EVEC 

FERROR 

FEXOLD 

FINOLD 

FINT 

FORCD 

GLABEL 

INDEX 

INMESH 

IX 

MESHIN 

NASN 

NCP 

NODDIS 

NPNO 

NPOUT 

NTYPE 

PSU 

SEATK 

SMASS 

SOUT 

SQMASS 

STFLAS 

STOREK 

STROLD 

Size Description 

12*NUMMAT Material and section properties. 

Nl      Old effective force. 

Nl      Current effective force. 

NBE*IMODAL Eigenvalues from modal analysis. 

NBE*NBE* 
IMODAL 

Nl 

Nl 

2*N1 

2*N1 

Nl 

10*NPLOT 

NELE+1 

NODMAX 

7*NELE 

NODET 

NOPT 

10*NOPT 

Eigenvectors from modal analysis. 

Error force. 

Old external force. 

Old nodal internal force. 

Nodal internal force. 

Current external force. 

Labels for plotted output. 

Index to the STRS array. 

Internal node number locator. 

Element connectivity. 

Mesh node number locator. 

Number of primary nodes which may 
contact the sliding plane. 

Njde numbers of primary nodes which 
may contact the sliding plane. 

NUMDIS+1  Nodal fixities. 

NOPT      Primary node number of sliding plane. 

2*NPIC    Picture output. 

2*NPL0T   Plot type identifier. 

NPTS*NPLOT Output values for time histories. 

2*N0PT    Stiffness coefficients for elastic 
sliding plane. 

Nl      Nodal masses. 

NPRS      Element output code. 

NBE*IMODAL Square root of nodal masses. 

LBKE      Total global stiffness for modal 
analysis. 

2*MUD*    Storage of stiffness for prescribed 
NPDIS     displacements. 

(Size is 
determined 
in sub- 
routine ASSBLE) 

Old element information. 
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1       FORTRAN Name Size 
■ I, 

1            STRS (same as 
'4- STROLD) 

' I' '        ss NPRS 

•            TBLAM 
I 

NPTS 

9*NPRI 

V                             UOUT NPRU 

%                             UP 3*NOPT 

UPOLD 3*NOPT 

UP1 3*NOPT 

'            UP2 3*NOPT 
1         UU 

VDAMP 

NPRU 

NOPT 

ß *'. vo Nl 

? ■» VI Nl 
j J   : 

i«        xc NODET 
15 

■■-. 

xc MEQ 
■■ I         XI MEQ 

i          YC 
*| j      zc 

NODET 

NODET 

1! 
4-* 1 1 

Description 

Current element information. 

Output force values. 

Time values for plotted output. 

Temporary storage of body vector 
trans formations. 

Nodal output code. 

Displacement of sliding plane. 

Old displacements of sliding plane. 

Velocity of sliding plane. 

Acceleration of sliding plane. 

Output kinematic values. 

Viscous damping coefficient for 
sliding plane. 

Old nodal velocities. 

Current nodal velocties. 

X coordinate of node points. 

Old nodal displacements. 

Current nodal displacements. 

Y coordinate of node points. 

Z coordinate of node points. 

■i.| 

I 
I 

i 
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Organization of STRS Array 

3-D Axial Spring Elements 

Component Number 

1-3 

4-S 

7-9 

10-12 

13 

14 

15 

16 

Quantity 

Original local coordinates of second- 
ary node I with respect to its associat- 
ed primary node, r° = secondary-pri- 
mary. 

—   T 
Body components of r° (r°=A r °) . 

Original local coordinates of secondary 
node J with respect to its associated 
primary node. 

Body components of r°. 

Element st.vain 

Element stress 

Element axial force 

Length change in element 

3-D Linear, Elastic Rectangular Beam Element 

Component Number Quantity 

1-6 

7-9 

10-12 

13-24 

25 

26 

27 

28 

29 

30 

31 

32 

Body components of original element 
unit vectors ej and e° (e°=XTye0) 

Original local coordinates of secondary 
node with respect to its associated 
primary node, r° = secondary-primary. 

Body components of r" (r° = A r°) . 
The above components 1-12 apply to 
element node I. 
Same as above for element node J. 

Element strain 

Element stress 

Axial force 

Local y shear force v 

Local z shear force v 

Torsional moment M 

Moment about local y axis at node I M 

Moment about local y axis at node J M 
iy 
Jy 

—m 
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33 

34 

35 

36 

37 

38 

39 

40 

41 

42-46 

Moment about local z axis at node I M_ Iz 
Moment about local z axis at node J M_„ Jz 
Empty 

Change in length 

Rotation about local x axis 0 

Rotation about local y axis at node 161 
i 

Rotation about local y axis at node J 9J 
1 

Rotation about local z axis at node 161 

Rotation about local z axis at node J 9J 
2 

Empty 

1 

\l 

I 

3-D Spinal Disk Beam Element 

Component Number 

1-6 

Quantity 

'i 

7-9 

10-12 

13-24 

25 

26 

27 

28 

29 

30 

31 

32 

33-34 

35 

36 

37 

Body components of original element unit 
vectors e? and e° (e° = XTye°). 

Original local coordinates of secondary 
node with respect to its associated pri- 
mary node, r° = secondary-primary. 

Body components of r°(r° ~  XTr°). 
The above components 1-12 pertain to 
element node I. 

Same as above for element node J. 

Axial force 

Local y shear force V 

Local z shear force V 

Torsional moment M. 

y 

y 
z 

z 

axis at node IM 

axis at node J M 

axis at node IM 

axis at node J M 

Moment about local 

Moment about local 

Moment about local 

Moment about local 

Empty 

Strain at previous time step 

Change in length 

Rotation about local x axis 6 

ly 
Jy 

Iz 

Jz 
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38 

39 

40 

41 

42-46 

Rotation about local y axis at node I 6 

Rotation about local y axis at node J 6 

Rotation about local z axis at node I 0 

Rotation about local z axis at node J 8 

Empty 

iy 
Jy 

Iz 

Jz 

Pressure Volume Penetration Element 

Component Number 

1-3 

4-6 

7-36 

37 

38 

39 

40 

Quantity 

Orignial local coordinates of secondary 
node with respect to its associated pri- 
mary node r° = secondary - primary. 

Body components of r°(r° -  A r°).  The 
above components 1-6 pertain to the 
generic node 1 of the element. 

Same as above for the other five generic 
nodes of the element. 

Element internal pressure. 

Element volume. 

Element area. 

Element axial force. 

12.  Graphics Program for Anatomical Analysis 

This program was developed to aid the researcher in analyzing 
the simulated behavior of the human spine.  The vertebrae, rib, 
sternum, head and pelvis can be plotted with symbols that are re- 
presentative of these anatomical elements so that the configura- 
tion of the skeletal system can be visualized.  In addition, 
options are available for cylinders and additional geometrical 
figures. These bodies can be rotated and displaced to any orient- 
ation in three dimensional space and this space can then be 
rotated relative to the viewing points. The back and right side 
projections are then plotted.  Hidden portions of certain figures 
are removed so that resulting projections are not ambiguous due 
to a large number of hidden lines. 

In order to facilitate use of the program, an overview of its 
procedure is given in the following paragraphs.  Further details 
on the algorithms and procedures are given in subsequent Sections. 
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The elements, as represented by the program, are described 
by a combination of points connected by lines and by geometric 
solids, such as spheres or cylinders.  The location of the points 
of an element are given in an element coordinate system (x,y,z). 
The origin of this coordinate system is the base point of the 
element.  This data is called element point data.  In addition, 
elements which include geometric solids require element dimension 
data, such as the radius and the length of the cylinder. 

The location and orientation of each element is described by 
the coordinates of the base point in the global system (x,y,z) 
and the orientation of the element's local coordinate system. The 
latter is specified by giving the global components of the element 
coordinate unit vectors, that is e-^x, e^y, e-jz, e3X, e3y, and &2z> 
these are equivalent to the direction cosines. 

The plotting program thus requires two types of data: 

1. position and orientation data of each element; 

2. element description data consisting of element point data 
and/or element dimension data for each element. 

The first type of data must be input in each run of the pro- 
gram by means of card input (Cards 5 in Section 13).  For many 
anatomical elements, the element description data is permanently 
stored in a data bank and is an essential part of this program's 
capabilities.  These elements are called standard elements and 
data for these elements have been obtained by measurements of 
skeletal segments and is reasonably representative of a typical 
anatomy; this data must be stored on units 20 and 27.  If for any 
reason the user desired to modify this element description data, 
he must input his own description point data on these data banks. 
In addition, the user has a set of commands available that enable 
him to plot simple elements such as lines, cylinders and spheres: 
these are called user-defined elements. 

To aid in the visualization, the depiction may be plotted 
from any angle relative to the global (x,y,z) coordinates.  This 
option is effected by the command SHFT (cards 5), which implicitly 
constructs an (x',y',z') system, so that the (x,y,z) system is 
shifted relative to (x*,y',z') by the Euler angles <J>, 6, and \\>. 
The command VIEW (Cards 5) then given the option of plotting the 
(x',z") or the (y',z') views, or both.  If only a lateral view 
and an antero-posterior view are desired, a SHFT command is not 
necessary.  The coordinates of the physical plot are always de- 
noted by X and Z, where X can correspond to either x' or y', and 
Z always corresponds to z'.  The X axis is placed along the bottom 
of the plot, and the Z axis is placed vertically. 

The dimensions of the cube in the (x',y'z') system which en- 
closes all elements in the plot must be specified; anything out- 
side this cube is not plotted.  The physical dimensions of the plot 
and location of the origin of the (x',y',z') coordinate system on 
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the plot are given by Card 4.  The plot is then automatically 
scaled so that the specified space cube in the (x*,y',z') system 
fits on the specified size of the physical plot, with the origin 
of the (x^y'fZ1) system at the point that is specified. Note 
that the physical dimensions of the plot are specified in inches, 
whereas all data for the depiction is given in cm. 

13.  Input 

All data except plot dimensions are in cm. Plot dimensions 
are in inches. 

Card 1: Heading (20A4) 

Cols.   1-80 TITLE: 80 alphanumeric characters to be used as a 
heading on output. 

II  1 

.;! 

"A 

Card 2: Type of input (4X,A4) 

Cols.   5-10  "VECTOR" 

Card 3: Space in (x',y'z') coordinates to be plotted (6F10.0) 

Cols. 1-10 

11-20 

21-30 

31-40 

41-50 

51-60 

. 1 

y' 

y' 

min 
i 

max 

min 

max 

min 

max 

Card 4: Size of plots and location of origin (6F10.0) 

Cols.  1-10 TOTALX width of plot (inches) for plots of"(x',z') 
view. 

11-20 TOTALY width of plot (inches) for plots of (y',z') 
view.  (Only needed is IDN >1 in VIEW 
command, see Cards 5). 

21-30 TOTALZ height of plot (inches); will be the same 
for (x*,z') and (y*,z') views. 

31-40 XNEG   distance of the origin of the (x1,y'' ,z') 
system from left hand side of the plot 
(inches) in (x',z') plot. 

f>, 
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41-50    YNEG 

51-60     ZNEG 

distance of origin of   (x',y',z')   system from 
left hand side of the plot   (inches)   in 
(y'(z')  plot. 

distance of origin from bottom of plot 
(inches). 

f 

If ?. 

Hi 

COMMAND cards; Each group of COMMAND cards plots a certain type 
of element or executes a specific operation in the graphics pro- 
cedure.  For each command, Cards 5A, 5B, and 5C must be in 
sequence.  In some commands, Cards 5A and/or 5C are not needed 
and should be omitted; this varies with the command and the user 
should refer to COMMAND descriptions. 

Cards 5A; Command cards - choose any of the commands listed under 
COMMAND DESCRIPTIONS, (212,A4,9F8.0) 

Cols.   1-2   IDN 

3-4  NP 

5-8   ID 

9-16 P(l) 

17-24 P(2) 

25-32 P(3) 

33-40 XI 

41-48 X2 

49-56 X3 

57-64 Zl 

65-72 Z2 

73-80 Z3 

Body number (only needed for certain 
standard elements, see 5-1) . 

Number of element data points; if body is on 
data bank (see Table 18), set NP = 0 and the 
element description data need not be input. 
If an element is not a standard element, set 
NP = number of data points required as 
specified by the element command (see COM- 
MAND description for specific instructions 
for each element). 

Command (four alphanumeric characters from 
the list given in 5-1). 

Global x coordinate of base point. 

Global y coordinate of base point. 

Global z coordinate of base point. 

Global x component of local x unit vector, e 

Global y component of local x unit vector, e 

Global z component of local x unit vector, e 

Global x component of local z unit vector, e 

Global y component of local z unit vector, e 

Global z component of local z unit vector, e 

XX 

zx 

zy 
A 
zz 

Cards 5B; Follows Cards 5A for certain commands as specified in 
COMMAND descriptions. 
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Cards 5C:  (NP/2 cards) Element point coordinate data.  Needed only 
for certain commands as specified in COMMAND description; 
follows Card 5B; if there is no Card 5B for that 
COMMAND, Card 5C follows 5A. 

Cols. 1-10 

11-20 

21-30 

31-40 

41-50 

51-60 

x coordinate of point I 

y coordinate of point I 

z coordinate of point I 

x coordinate of point 1+1 

y coordinate of point 1+1 

z coordinate of point 1+1 

COMMAND Descriptions 

5.1  STANDARD ELEMENT PLOT COMMANDS 

None of these commands require a Card 5B or Card 5C. 

I 

ME 
\'\m 

HEAD Plot the head.  The body number IDN is ignored. 

RIBL Plot the IDNth left rib. 

RIBR Plot the IDNth right rib. 

STER Plot the sternum.  The body number IDN is ignored. 

VERT Plot the INDth thoracic vertebra. 

VERL Plot the IDNth lumbar vertebra. 

BODY     The body with optional number IDN (see last column in 
Table 18) will determine which of the above elements is 
to be plotted. This option is used only for old data 
sets which do not include the above names. BODY com- 
mands must precede all other commands. 

5.2  USEP-DEFINED PLOT COMMANDS 

Cards 5B and 5C are only needed as noted. 

LINC     The (NP) points on Cards 5C will be plotted to form a 
closed curve by connecting point (i) to point (i+1), 
i=l to NP, and then connecting point (NP) to point (1). 

LINO     The (NP) points on Cards 5C will be plotted to form an 
open curve by connecting point (i) to point (i+1), 
i=l to NP. 
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LINS 

SPHR 

CONE 

CYLN 

The NP points on Cards 5C must have positive x coordinates. 
For each point, an additional point is generated by 
mirror image in the y-z plane.  The resulting set of 
points are then plotted as in LINC. 

Plot a sphere with optional line segment superimposed. 

Card 5B ä 

Cols.   1-10 x,y,z coordinates of center of sphere, 
11-20 respectively, relative to base point, 
21-30 usually 0,0,0. 

31-40 x,y,z coordinates of a point on the sphere, 
41-50 respectively, which is used to determine 
51-60 the radius. 

Cards SC^are^optional and can be used to input coor- 
dinates x,y,z or NP/2 pairs of points. Each pair of 
points is connected by a line segment. 

A truncated conic section is to be plotted with 
optional line segments superimposed.  The base point 
is the center of the bottom ellipse. 

Card 5B (6F10.0 Format) 

Cl - major half axis of the bottom base 
C2 - minor half axis of the bottom base 
C3 - the height of the body 
C4 - The major half axis of the top plane 
C5 - the minor half axis of the top plane 

Cards 5C are optional and are used to input line seg- 
ments just as for SPHR, but only visible line segments 
are plotted. 

An elliptical cylinder is to be plotted with optional 
line segments superimposed.  The base point is the 
center of the bottom ellipse. 

Card 5B (3F10.0 Format) 

Cl - the major half axis of the base 
C2 - the minor half axis of the base 
C3 - the length of the cylinder 

Cards 5C are optional line segments as in CONE. 
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5.3  COMMANDS FOR PROGRAM EXECUTION AND OPTIONS 

(*only commands denoted by asterisks must be included for the pro- 
gram to run;  all others may be omitted if the user wishes to run 
with the default options.) 

GRID 

SHFT 

VIEW 

DBUG 

MARK 

WEDG 

SCAL 

NRES 

GO* 

This command will add a frame around the plot. 

This command will rotate all bodies by Euler angles 
(in radians) (<j>, 8, if)) which are the XI, X2, X3 values 
on Cards 5A respectively. 

This command determines the views to be plotted. 
If IDN = 1, x*,z' plane is plotted. 
If IDN = 2, y*,z' plane is plotted. 
If IDN = 3, both views are plotted. 
If no VIEW card is included, both views will be plotted. 

This command will trace the flow of the program so error 
conditions can be traced. This is done by printing the 
object definition and tests performed by the ID/3D sub- 
routines.  This command will also print the transformed 
body point coordinates. 

This command will place a string of alphanumeric 
characters on the plot.  The string is taken from Card 
5B.  The orientation of the message is determined from 
the data on Card 5A. 
P(l)  z coordinate of the left side of string. 
P(2)  x' or y' coordinate of the left side of string. 
P(3)  height of letters in inches. 
XI   angle at which the message is plotted from mea- 

sured vertical axis in degrees. 
X2   number of characters in message. 
X3   view that message is to be plotted on 

X3 = 1 x1,2' view 
X3 = 2 y',z' view 

This command adds wedging to the vertebrae, according 
to the following: 
IDN ■ 1 AP wedging only (AP: antero-posterior) 
IDN -  2 AP and lateral wedging 
If no WEDG command is read, only £.P wedging is included. 

This command will plot a 5 cm line on the plot for in- 
dicating the scale of the plot. 

Each line segment is divided into NRES equal subdivisions 
to check for hidden lines.  This card may be omitted, in 
this case the value of NRES is 5. 

This card is used as a delimiter of the data for each 
problem, and must be the last card if more than one 
set of data is to be plotted in one run.  A set of cards 
for another plot may follow this card.  The word GO 
must be left oriented. 
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The limits on the number of bodies in the standard version 
of the program are: 

maximum number of bodies  MNB = 60 

maximum number of element description data MWBP = 1500 x 3 

maximum number of vertebrae MNV = 25 
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Table 18 

Standard Elements 

l.f 
ft 

Body type IDN 
(for command 
in left-hand 

column) 

VERT 1 

VERT 2 

VERT 3 

VERT 4 

VERT 5 

VERT 6 

VERT 7 

VERT 8 

VERT 9 

VERT 10 

VERT 11 

VERT 12 

VERL 1 

VERL 2 

VERL 3 

VERL 4 

VERL 5 

RIBR \ 

RIBL 1 

RIBR 2 

RIBL 2 

RIBR 3 

RIBL 3 

RIBR 4 

RIBL 4 

Description (Optional IDN for 
use only when BODY 
command is used.) 

?acrum (not plotted) 

1st thoracic vertebrae 

2nd thoracic vertebrae 

3rd thoracic vertebrae 

4th thoracic vertebrae 

5th thoracic vertebrae 

6th thoracic vertebrae 

7th thoracic vertebrae 

8th thoracic vertebrae 

9th thoracic vertebrae 

10th thoracic vertebrae 

11th thoracic vertebrae 

12th thoracic vertebrae 

1st lumbar vertebrae 

2nd lumbar vertebrae 

3rd lumbar vertebrae 

4th lumbar vertebrae 

5th lumbar vertebrae 

1st right rib 

1st left rib 

2nd right rib 

2nd left rib 

3rd right rib 

3rd left rib 

4th right rib 

4th right rib 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 
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Table  18   (continued) 

I 

i 

Body type IDN 

(for command 
in left-hand 
column) 

Description 

RIBR 5 5 th right rib 

RIBL 5 5th left rib 

RIBR 6 6th right rib 

RIBL 6 6th left rib 

RIBR 7 7th right rib 

RIBL 7 7th left rib 

RIBR 8 8 th right rib 

RIBL 8 8 th left rib 

RIBR 9 9 th right rib 

RIBL 9 9 th left rib 

RIBR 10 10th right rib 

RIBL 10 10th left rib 

(Optional IDN for 
use only when BODY 
command is used) 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 t . 

STER sternum 39 

HEAD head 40 

- , < *IDN not needed for HEAD or STERN commands. 
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APPENDIX II. ELEMENT STIFFNESS MATRICES 

In this Appendix the local element stiffness matrices and 

corresponding global transformation matrices are presented. The 

elements are standard in structural analysis so no derivations are 

given.  The local element stiffness consists of a tangential stiff- 

ness plus a geometric stiffness 

HPI 

;   i 

Bp£] 

^v 

h    ! 

1   I 

II 
I \ 

m. 

Hi 
1 

V 

[£]   =   tkTl   +   [kGJ (II.1) 

which relate nodal deformations to nodal forces in the corotational 

element coordinates.  The global element stiffness matrix is then 

obtained by transforming the local stiffness by 

[k] = [TK[k] [T] (II.2) 

where [T] is the matrix defined by Eq. (2.36). The total global 

stiffness is found by adding together the global stiffnesses of all 

elements, 

E 
[k] - £ 

e=l 
[£(e)]T[k(e,][l(e)] (II.3) 

(e) 
where [l      3 is the Boolean connectivity matrix for the element. As 

is standard in finite element programs, the matrix operations in- 

dicated in Eq. (II.3) are not performed as matrix multiplications, 

but simply as additions.  Thus the total global stiffness matrix is 

obtained by adding the element global stiffnesses into the appropriate 
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locations of the total matrix, which of course depends on the node 

numbers of the elements, i.e. connectivity. 

The local element stiffness of spring elements is 

Iß t 

tkTl k1+3k262 

1 

0       0 

0 

-1 

0 

0 

0 

0 

0 

0 

sym. 

0 

1 

0       0 

0       0 

0 

0       0 

(II.4) 

Vi ! 
ES* 

tkG] 
Jx 
i, 

sym. 1 

0      1 

0       0       0 

-10       0       1 

0-100 

(II.5) 

Here f  is the current axial force in the element and i  is the 

element length. 

In the beam element, for the purpose of saving space, it is con- 

venient to express the tangent stiffness matrix as a product of two 

matrices.  Hence 

!kTJ = [QK[k*][Q] (II.6) 
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where 

[k*] = 

12kBZ 
I2 (1+$ ) 

y 
12k 

iy_ 
£2(1+* ) z 

0 
6k 

By 0 <4+W 
Ä. (l+<Dz) (l+*z) 

~6kBz 0 0 0 
«,(1+$   ) 

(4+* )k 
y Bz 

(1+$ ) 

(II.7) 

M 
il M 

ff 

The order of the degrees of freedom for this stiffness is given by 

Eq. (2.48). 

[Q] - 

-1 0 0 0 0 0 1 0 0 0 0 Ü 

0 0 0 
1 
2 0 0 0 0 0 1 

2 0 0 

0 0 1 
"I 0 1 0 0 0 1 

I 0 0 0 

0 1 
I 0 0 0 1 0 1 

0 0 0 0 

0 0 1 0 0 0 0 0 1 
0 1 0 

0 1 
I 0 0 0 0 0 1 0 0 0 1 

(II.3) 

Only the part of the geometric stiffness corresponding to the rota- 

tion of the axial force is used, so the geometric stiffness of the 

beam is identical to that of the spring.  The hydrodynamic element 
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k 
stiffness is 

[kT]   = B   {EHE}' (II.9) 

■i 
ri 

where B is the tangent bulk modulus and {E} is given in Table 1. 

The geometric stiffness is not included for the hydrodynamic element. 

The transformation matrices are written as partitioned matrices, 

consisting of 3 x 3 submatrices defined by Eqs. (2.1) through (2.4) 

and Eq. (2.18).  The spring transformation is 

[Ml. 

T 

[0] 

The beam transformation is 

[0] 

[nijUljlulj [0] 

[y] 

[0] [filjuijlvlj 

(11.10) 

I 

I 

I 

T 

[y] 

[0] 

to] 

to] 

[Mjttljlulj.      [Xl^Iulj 

[0] 

[0] 

[0] 

[0] 

[Ml, 

[0] 

[0] 

[0] 

wijuijiuij    UJjlyJj 

(ii.ii) 

1 
¥■':■ 

The hydrodynamic element transformation is given by 
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'4 
H 

Ei « 

C3 

H 

M 

Ei t-j 

<-< 

EH b 

es 

n 

EH a 

H 55 

es 

fN 

H 

EH S 

EH J 

.-< 
*—i 

EH A 

es 

EH H 

*< 

EH H 
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