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The model is valid for large displacements of the spine and treats
material nonlinearities.

The basic model is modular in format, so that various compon-
ents may be omitted or replaced by simplified representations.
Thus, while the complete model is rather complex and involves sub-
tantial computational effort, various simplified models are
vailable that are quite effective in duplicating the response of
the complete model within a range of conditions. Three methods of
solution z2re available for the analysis: direct integration in time
by either an explicit, central difference method or by an implicit,
trapezoidal method, and a frequency analysis mdthod.

erent rates of onset, ejection at angles, effects of lumbar
curvature, and eccentric head loadings. It is shown that large
initial curvatures and perfectly vertical acceleration loadings re-
sult in substantial flexural response of the spine, which cause
large bending moments. It is further shown that the combination of
Ehe spine s low flexural stiffness, initial curvature, and mass

(F&%ﬁ,ReSUItS are presented for a variety of conditions, such as

eccentricity are such that stability cannot be maintained in a 10 g
jection without restraints or spine-torso-musculature interaction

The complete models were used mainly to study the effects of
the rib cage and viscera on spinal response. The flexural stiffnes
of the torso is increased substantially by a visceral model, even
{fthough it has no inherent flexural stiffness. In addition, the
viscera provide significant reductions in the axial loads,

Modal analyses were performed on several of the models under
various conditions. Numerous flexural natural frequencies under 10
cps were found, but the lowest axial frequency is of the order of

R0 cps. We hypothesized that the peaks in the 5-7 Hz range in
driving point impedances observed experimentally in axial shaker
table measurements result from parametric excitation of the flexural
nodes.,
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Mr. Ints Kaleps of the Mathematics and Analysis Branch, Biodyna-
mics and Bionics Division of the Aerosrace Medical Research Lab-

oratory, Aerospace Medical Division of the Air Force Systems Command at
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CHAPTER 1

INTRODUCTION

1. Objectives

S P e g R T 7 T
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The spine is the primary structural element for transmitting

forces to the upper torso and head in high acceleration environ-

ments such as pilot ejection. Thus in the study of ejection
response, it is common to model the element for force transmission

by a bar or beam and to neglect the torso and rib cage. These bar-

e AR s e T A K A e L

beam models have evolved into two general classes: the so-called

continuum models, in which the bar is considered as homogeneous,

At a1 o B TA

and the discrete models, in which the individual vertebrae are

represented as rigid bodies and are connected in series by deform-

able elements, which represent the intervertebral disc and other

connective tissues. These two types of models are in fact very
similar in character, for if the scale of discretization employed
in the homogeneous models is comparable to the number of vertebral 1
levels, the difference equations of the homogeneous models will be
very similar to that of the discrete models. The primary distinc-
tion between the two types of models lies in the possibility of
directly using disc and ligament properties in the discrete models,

whereas the continuum models require determination of extrapolated

e niihihtiens 7. e

material properties, which represent the composite behavior of

the discs and vertebrae. Both the discrete models and homogeneous
bar-beam models that have been developed so far have been restrict-

ed to one or two dimensional behavior.

The principal objective of this investigation is the develop-

ment of a three dimensional, discrete model of the spine and head.

7




In addition, the model was developed in a manner so that other
aspects of the torso, such as the rib cage and viscera, could be
modelled and their effects on the behavior of the spine investi-
gated. This interaction of the spine with the torso is parti-
cularly important in responses which involve substantial flexure
of the spine, for the flexural stiffness of the spine is very low,
and as shown in results to be presented subsequently, are not
sufficient to insure the stability of the spine in acceleration
environments commonly found in pilot ejection. Significant flexure
may be induced either by initial curvatires of the spine, or by
asymmetric properties, such as asymmetric mass distribution. Thus
the ability to investigate the behavior of the spine in situations
involving substantial bending is of practical importance.

Because the .tr2atment of elements, such as for example, the
rib cage, in sufficient detail to accurately represent its behav~-
ior in a wide variety of situations involves substantial comput-
ational effort, the model has been developed so that portions of'
it may be replaced by simplified representations. These simpli-~
i{ied representations are quite effective in a more limited range
of situations. Thus, the rib cage can be replaced by an equiva-
lent beam model, and a detailed representation of the cervical
vertebrae can be replaced by a single beam element. These simpli-
fications provide significant savings in computer time, and are
therefore quite valuable when parametric studies are undertaken.

A generai description of the characteristics of the model is

given in the third section of this chapter. The details of the

mathematical formulation, material properties, and anatomical repre-

8
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sentation are given in the next three chapters. Some of the more
interesting and significant results obtained during the course

of this study are then described. Finally, the input data formats
for both the dynamic simulation and the graphics package are given

in the Appendices.

2. Literature Review

To put this work in proper prospective, we will first review
previous models of the spine, using the customary classification
of continuous and discrete models. Latham (1957) is usually
cited as the first to develop a mathematical model for describing
the dynamic response of the spine to +Gz acceleration. Latham's
one degree of freedom model consisted of the rigid masses repre-
senting the body and the ejection seat, interconnected by a s»hring.
It was developed to study the dynamic overshoot of the body when
seat cushions of varying resiliency were placed between the pilot
and the ejection seat. Also included in Latham's work is the
first study concerning the natural frequency response of the human
body in the seated positiou.

Payne (1961) also developed a discrete, one degree of free-
dom model of the spine. A rigid mass was used to represent the
head and upper torso, and the spine was modelled as a spring with
a dashpot in parallel. The stiffness of the spring was chosen to

match the lowest axial natural frequency of the human body as

predicted from the lowest peak in the axial driving point impedance

measur :ments. Although this single spring model could not predict

9
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the force distribution in the spine, it was and still is consid-
ered an accurate representation of the dynamic response associated
with the acceleration profile of the ejection seat. Subsequently,
an eight dr~gree of freedom model was developed by Toth (1966).

It corsisted c¢f rigid masses representing vertebrae T1ll through
L5 and the pelvis, interconnected by springs and dampers which
represented the intervertebral discs. This was the first use of
multiple mass, damped spring models and the first discrete model
to idealize individual discs.

Orne and Liu (1970) proposed the first model that included
the shear and bending resistance of the intervertebral disc. The
model employed a small strain, large displacement formulatiom.
Each of the vertebrae, Tl through L5, was represented as a rigid
body in two dimensional space with three degrees of freedom per
vertebra. Spinal curvature and variations of disc stiffness with
vertebral level were treated. A three parameter viscoelastic
force-deflection relation was us:d to represent the material pro-
perties of the intervertebral discs. Orne and Liu were also the
first Lo model Lhe inertial properties by assigning to each motion
segment the total inertia of the associated segment of the torso.
Although this appears somewhat unreasonable in that the motion of
the viscera, because oI its low shear stiffness, is obviously
quite different from the motion of the vertebrae, it was quite
successful in duplicating the characteristics of experimentally ob-
served response and has been used by many other investigators.
The success of this procedure may be explained in terms of added

massas resulting from the stiffness of the viscera: thus, it is

10
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similar to the "added mass" technique used to analyze the vibra-
tion of structures within a fluid. Also included in the model
was the eccentricity of the mass center for each motion segment,
which was assumed to be uniform along the spinal column with
each segment having the same inertial properties. The model did
not include the interactions of the spine with the torso,
ejection seat, or harness apparatus. Failure to represent these
interactions in a large displacement formulation results in un-
realistic deformed configurations of the spinal column and may
invalidate the force distributions predicted py the model.

Prasad and King (1974) extended the Orne and Liu model by
including the articular facet interaction. The motivation for
this extension was to model a secondary load path in the spinal
column which is effected by the articular facets as indicated by
the experimental work of Prasad, et al. (1973). The interaction
of the articular facets was modelled by two springs, one limiting
relative rotations and the other limiting the relative sliding of
adjacent vertebrae.

Stiffness values for the articular facets appear to have been
chosen rather arbitrarily, sincz no reference is made as to how
the axial stiffness was determined and no value for the rotational
stiffness is cited. Of the axial facet stiffness values listed,
the largest values are assigned in the lumbar region and are of
the same order of magnitude as the disc axial stiffness. Such
large stiffness values may be realistic in certain directions,
where the facet effectively imposes a kinematic constraint. How=-

ever, the deformation-resisting character of the facet joint in

11
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other directions should be modelled with a much lower stiffness

value, as pointed out by Schultz, et al. (1973). Also included
in the model is an auxiliary force representation of the ejection

seat and harness interaction, although the details of this aspect

of themodel were not described.

A parallel history can be traced in the homogeneous (or con~
tinuum) models. The first continuum model was proposed by Hess é
(1956), who included only axial response. Subsequently, Moffat,

et al. (1971) included both axial and bending response by using a

bzam type model. However, the analysis was restricted to small
displacements.

Recently, Liu, et al. (1973) developed bar-beam models, in-

cluding large displacements in the analyses. The stiffness pro-
perties of this mocdel were based on that of the isolated, liga-
mentous spine and the responses they exhibited demonstrated very

large deflections.

3. Ceneral Description of Model

The model represents the human body »y a collection of rigid
bodies interconnected by deformable elements. The rigid bodies _ﬂ
are used for the modelling of bones, while the deformable

elements are used to model ligaments, muscles and connective

tissues. The treatment of bones as rigid bodies is preferable

from both the viewpoint uf numerics and modelling, for the stiff-

ness of bones is usually orders of magnitudes greater than that

of connective tissue, so that if both are modelled as deformable,

12
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the resulting numerical problem is poorly conditioned. However,
long slender bones, such as ribs, may be modelled as deformable.
The deformable elements may also be used to model entities exter-
nal to the body, such as restraint systems and harnesses.

For purposes of describing the model, it is worthwhile to
distinguish between the following:
1) The computer-based method of solution, or mathematical model,
which is a rather general system for the treatment of the dyna-
mics of collections of rigid bodies interconnected by deformable
elements, and
2) The sépkific models of the spine, torso and ejection system,
which constitute a data base for the computer system.

We will first describe in general terms the mathematical
model employed in the computer simulation. This is followed by
a general description of the data sets which have been developed

for modelling the spine, head, and torso in ejection problems.

4. Mathematical Model

The computer procedure is basically a matrix structural
analysis technique, which serves as a versatile framework for

constructing, the equations of motion. The program enables these
/"*

P

equations of motion to be integrated in time by either explicit
or implicit techniques, or analyzed by modal procedures, which
give the natural frequencies and modes of the model. The formul-
ation is completely three dimensional and treats arbitrarily

lurge rotations and displacements of the rigid bodies. However,

13
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the deformation of some of the elements is restricted to be moder-

ately small. Material properties may be linear or nonlinear and

linear viscous forces can be included.

Nodes and Coordinate Systems. Two types of nodes are used:

a) primary nodes, each of which has six degrees of freedom
consisting of three translations and three rotations; the cen-
troid of a rigid body must be a primary node;

b) secondary nodes, each of which is connected through a rigid
body to a primary node and which thus has no independent degrees
of freedom.

An arbitrary number of secondary nodes may be associated
with any rigid body, and they serve principally as a means of
connecting deformable elements to a rigid body at a point other
than the centroid.

The configuration of the model is described by the position
and orientation of the primary nodes. The original position of
node I is denoted by x;I {(i=1 to 3 representing the x, y, and z

components); the new position X;p are obtained by adding the dis-

placements Ujqr SO
= 40
Xip = X{p t Uy (1.1)

The orientation of a primary node is described by a triad of
orthogonal unit vectors 311' 321, 331, which rotate with the node.
In order to describe the system, we will define three types

of coordinate systems:

1. a fixed, global set of coordinates (x, y, z), or X1

14
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2. body coordinates (x, §, E)I; a set of body coordinates is !
associated with each primary node, so that x, §, and z coincide

with BlI' 321, and 331, respectively for each node. The origin

of the iiI system must be the centroid of the mass at node I;

3. element coordinates (X, §, z); a set of element coordinates

is associated with each element, and the element coordinates
rotate and translate with the element in a manner to be specified
later. The §, §, and 2 axes are associated with unit vectors El' |
32, and 33, respectively for each element.

Model Elements. The model consists of the following elements:

l. rigid bodies

2. spring elements

3. beam elements

4, hydrodynamic elements

E
|
5. elastic surfaces i
|

Rigid Bodies. Each rigid body may be arbitrarily oriented in

three dimensional space and may undergo arbitrarily large rota-
tions and translations. The centroid of the rigid body is
designated a primary node, (see Fig. 1), its coordinates in
space define the position of the rigid body. Each rigid body has
both translational and rotational inertia. The orientation of

the rigid body is described by the triad of orthogonal unit

vectors gl' 32, and 33. The. e vectors must coincide with the

priicipal axes of the moment of inertia. The moments of inertia

about 31' gz, and 33 are Il' 12, and 13, respectively. In

15
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Figure 1. Rigid body representation and coordinate systems:
global coordinates (x,y,z); body coordinates (x,¥,2)

and element coordinates (X,¥,Z).
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addition to the primary nodes, any number of secondary nodes mayv

be associated with the rigid body.

Spring Elements. Spring elements are deformable elements with

only axial stiffness, which may interconnect any two nodes of the

system. A typical spring element is shown in Fig. 2.

AA
dxT.fxI

Figure 2. Spring Element

The element may be connected to either primary or secondary nodes.
The axial force in the element will be denoted by T, with T
positive in tension; the elongation is designated by 6. The

axial force-elongation law is
- 3
T = kld + k26 (1.2)

where either kl and k2 may be zero. A tension cutoff

17
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may be added to that T = 0 whenever § < 0; this is useful for

ligaments and other elements that become slack whenever the elonga-

tion is negative.

Beam Element. A beam element may interconnect any two nodes,

e .

which may be either secondary or primary nodes. Beam elements
include axial stiffness, torsional stiffness and bending stiff-

ness. The resulting nodal forces are shown in Fig. 3: fo and

fo arise from axial stiffness, and myI’ sz, myJ and sz arise

from the bending stiffness about the two principal coordinates of

A ~ ~
the cross-section, y and z, and m ; arises from torsional stiff-

ness. For all moments, the right hand rule sign convention is

used as shown in Fig. 3.

>
o

The orientation of the § and z axes is given by including a I

B

third node for each beam element, called an orientation node, -l
that lies in the y~X plane of the original orientation of the beam.

There are two available modes for computing the forces and y *
moments in the beam. In the first mode, functional forms are ‘
assumed for the overall response of the beam; these are not con-

sistent with any homogeneous material properties but allow the

introduction of certain nonlinearities. The forms are:

axial force

o _ _ ,a a,s
fo = T = kld + k26

optional T=0 if 6§ < 0 (1.3)

18
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bending in %-¥ plane

m b 4+ 2-¢ 8
AzI - kz z 2z AzI (1.4b) 3
m 1+% 2-9 4+% ) '

zJd Z z Z 2J L

i
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!
For linear homogeneous materials, the bending constants are given {
|

through standard engineering analysis by i

e 1 ~ SO
ky=-——¥)’M +zal(|ely| + |9zy|)
(1.5)
EI
b_ ZZ _:_l-_ ~ A 2
kz Ty 2 a2(|elzl + IBZZl)

where E is Young's modulus, £ the length of the element, and I the
section moduli, which are respectively
= f_[%zd*d“ I = /./:Zd*d* .6
Iyy o ydz . A y4dydz (1.6)

where the integral is over the cross-sectional area of the ele-

ment, A. The shear factor is given by

12EI
o = éigi’ (1.7) ]

where G is the shear mcdulus and As the effective area in shear.

The constants a, and a, ure included to permit an approximation

to a cubic moment-curvature behavior.
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The second method of computing the bending moments and

axial force in the beam requires the cross-section of the beam to

L g ;,-.,.‘a.u_;,.‘f':-— eo
1 o .

be defined as a thin-walled member. The cross-section is defined

1l to NI, and the shape is assumed

R e e e

by the coordinates §i' Ei' b

to be prismatic, so that §i' ﬁi are constant with respect to X.

RN SLE T g

If this mode is used, the moments are computed directly from the

axial stresses ¢ by numerical integration. An arbitrary stress 2

strain law of the form

- s S 3
o - kle + kze {1.8)

may be used, with the option of tension cutoffs. No shear cor-

rections are made. This mode is useful for modelling elements

such as the walls of the torso.

In both modes, the torsional resistance is taken to be a

linear function of fhe tcrsional deformation and independent of the

other stresses in the element, i.e.

A _ t/\
m, k exIJ (1.9)

where ﬁx is the torgque, kt the torsional spring constant and axIJ

the torsional deformation. The shear forces are always obtainable

from equilibrium so no force-deflection law is necessary.

Hydrodynamic Element. This element is illustrated in Fig. 4. The

element is a pentahedron, with the two opposing triangular faces
considered to be rigid. The three nodes of each triangular face

must therefore be associated with the same primary node. There o
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Hydrodynamic element.
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are no restrictions on the geometry of the element, other than
that the initial volume of the element be positive: this is in-
sured by numbering the nodes appropriately.

The force deflection characteristics of this element are ob-
tained from a linear pressure-dilatation relationship. The
pressures are transmitted through the rigid triangular plates to
the associated primary node in an energetically consistent
fashion. In addition to the linear pressure-dilatation stiffness,
a linear viscosity is available.

This element is useful for modelling components of the body
that exert resistance primarily to compressive deformations.
Because of the presence of the rigid plates, the resistance tends
to be directed through a line of action connecting the centroids
of the two triangular surfaces. Thus it is useful for modelling
articular facets, which have very strong directional properties,
and the viscera that effect resistance primarily through a verti-

cal axis.

Elastic Planes. An assemblage of planes may be prescribed in the

model to represent surfaces of the pilot's seat. Each plane is
described by locating three points on the plane, as shown in

Fig. 5. The planes restrain the motion of the nodes so that when
a node penetrates the plane, a force proportional to the extent
and rate of penetration is applied to the node in a direction nor-
mal to the plane.

all planes are considered to be rigidly linked together. The

23
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Figure 5.

Seat model representation.
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moticn of this assemblage of planes is prescribed through either

acceleration, velocity, or displacement histories.

5. General Description of Models

For purposes of illustrating how the mathematical model is
used to represent the pilot's anatomy, we will here describe two
representative models that have been used in these studies. The
first model is restricted to the isolated throacolumbar spine,
the cervical spine, the head, the seatback and restraint system.
The second model, in addition to the preceeding, includes a re-
presentation of the rib cace and viscera.

The first model is graphically depicted in Figs. 6 and 7,
which show a back view and a side view of the model in the seated
position, respectively. 1In all models described in this report,
the standard orientation for the global coordinate system is as
follows: the z-axis is positive vertically upward, the y-axis is
positive towards the back and the x-axis is oriented sideways;
thus the y-z plane corresponds to the sagittal plane, the x-z
plane corresponds to the frontal plane and the x-y plane corres-
ponds to the horizontal plane.

The graphical depiction in Figs. 6 and 7 show only the rigid
bodies employed in the model. Each vertebra and the head is re-
presented as a rigid body. The configuration of these rigid bodies
are prescribed by the initial position of the primary nodes in
X, Y, 2 space: each primary node must coincide with the mass center

of the rigid body. The positions of the primary nodes are
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Back view of isolated ligamentous spine model.
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Side view of isolated ligamentous spine model.
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indicated in Fig. 7 by plus signs. As can be seen from the figure,

the primary nodes in many cases do not lie within the vertebrae
because the Liu, et al (1973) segment data was used to represent
the inertial properties of the body in this model, so that each
vertebra is associated with a segment of the torso.

The conceptualization used in modelling the inertial properties
of the human body differs markedly from that used in modelling the
stiffness properties. The stiffness model considers each vertebra
as a rigid body, with the spring elements and beam elements inter-
connecting these rigid bodies in a manner so as to approximate
force deformation characteristics of the human body. On the other
hand, from an inertial viewpoint, each rigid body represents a seg-
ment of the complete torso, and each vertebrae is considered to be
rigidly embedded in an associated segment of the torso. This
corresponds to the inertial approximation developed by Orne and Liu
(1971) and used by Prasad and King (1974). The more complex models
do not use this approximation, but as a consequence, are based on
less reliable data.

In the thoracolumbar spine, each pair of vertebrae is con-
nected by seven spring elements and one beam element. The inter-
vertebral disc is represented by a beam element, which joins the
geometrical centers of the endplates of each pair of adjacent
vertebrae. The spring elements represent the following ligaments
and connective tissues: the pair of spring elements which connect
the transverse process tips represent the intertransverse liga-
ments; one spring element, which connects the spinous process tips,

represents the intra- and supra-spinous ligaments; a pair of
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elements which connect posterior points on the vertebral bodies,
represent the ligamenta flava; two spring elements are used to
represent the articular facets. The latter are short, stiff ele-
ments and are primarily intended to represent the kinematic con-
straints resulting from the facets. All of these elements inter~
connect secondary nodes on the rigid body. In addition, the pri-
mary nodes are connected by additional beam elements which repre-
sent the stiffness of the torso and rib cage. Cubic moment

curvature relations are used in these elements so that their

bearing on small-displacement response is neglible. Details as to

the locations of the nodal points and the material properties of
the deformable elements may be found in Chapter IV.

In the cervical spine, adjacent vertebras are connected only
by elements representing the disc, the interspinous ligaments,
and the articular facets. The discs are represented by beam ele-
ments, the ligaments by spring elements, the articular facets are
represented by hydrodynamic elements. The triangular endplates
of the hydrodynamic element may be seen in Figs. 6 and 7. Because
these elements have resistance primarily through a line joining
the centroids of the two opposing triangular facets, these ele-
ments are more effective in representing the directional proper-
ties of articular facets than spring elements. The use of these
elements for the representation of the facets would also be
desirable in the lumbar and thoracic spines, but the procurement
of data for the location of the facet planes in these portions of
the spine has not been completed.

The head is a single rigid body joined to C2 by a beam

29
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element (Cl was not included in the model). In all the simulations

studied here, the helmet was assumed to move exactly like the head,

so that if a helmet was included in the study, the moment of in-
ertia and mass of the helmet was simply added to that of the head.
The seatback in this model is a plane surface, which is
vertically aligned and the bottom of the seat is horizontal. The
seat constrains the motion of the rigid bodies onl.ly when they come

in contact. The definition of the seatback is quite arbitrary, as

long as it can be described as a series of planes, so that alterna-

tive seatback designs can be studied by the model by simply
altering the description of these planes.

The restraint system in this model consists of 4 springs, 3
connecting the vertebrae Tl, T2, and T3 with the seatback, the
other connecting a secondary node on the pelvis with another point
on the seatback. The upper restraint belt is represented by three
springs to reduce the shear deformation. Again the positions of
these nodes are indicated in Fig. 7. The orientations and method
of interconnection for these elements is completely arbitrary so
that other harness systems can be modelled. However, important
aspects such as friction and the actual details of the geometry of
the restraint system have not yet been included.

One of the more complex models is represented in Figs. 8 and
9, which show the back and side views, respectively. The major
aims of this model are the separation of the inertial aspects of
the torso from that of the spine, the inclusion of certain

structural aspects of the rib cage, and the addition of an inde-

pendent load path through the viscera. These aims were implemented
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Figure 8. Back view of spine-torso model with rib cage.




Figure 9. Side view of spine-torso model with rib cage.
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as follows.
The rib cage is represented by a system of rigid bodies and
deformable elemer ts which includes separate rigid bodies for each
of the ribs and the sternum. Since each rib ismodelled as a
rigid body, the deformation of the thorax as a whole results from

the rotation of the ribs and the deformation of the costo-sternal

cartilage. Each rib is connected to two vertebrae by means of
three deformable elements, which represent the costo-vertebral
joint. These deformable elements have been chosen so that the
directional properties of the joint are represented and an axis
of great rotational flexibility was included. The ribs are con-

nected to the sternum through the costo-sternal joint by a deform-

able element, which represents the deformability of the costo-
cartilage. This model is thus quite adequate for representing the

additional bending stiffness of the torso that is provided by the

rib cage; on the other hand, it is not suitable for representing a §

frontal impact where significant deformations of the rib itself

may take place. For the latter, it would be necessary to represent
the deformation of the neck of the rib by modelling it by a beam
element.

The viscera are represented by a stack of hydrodynamic
elements, which are illustrated in Fig. 1C. The hydrodynamic %

elements have stiffness only when deformed axially, so that this

column does not have any resist- 1~ to shear. However because

i rigid endplates are included between each vertical layer of hydro- 1

dynamic elements, the system does resist bending and maintains

"', coherence in response to transverse loads. The very bottom plate
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of the viscera is connected to the pelvis, whereas the uppermnst
plate is connected to ribs 10 on the left and right side; this
interconnection represents the transfer f the lovad to the
diaphgram. No hydrodynamic elements are included within the thorax.
The inertial properties of this model were obtained by sub-
dividing the mass of each segment of the torso between the spine
and the ribs and sternum in the thoracic regions, and between the
spine and the viscera in the lumbar region. The distribution in
each segment was chosen so that the total mass of each segment
corresponds to the data of Liu, et al, and so t!} t the moment of
inertia of the masses of the components in each segment have a
moment of inertia equal to that measured by Liu, et al. Because
the mass of each body segment is partitioned into the inertia
associated with the spine and the inertia of the thorax, the
rotation of a body segment may differ from the rotation of an
ambedded vertebral body. The model of the thoracolumnar, cervi-
cal spine, head, seatback, restraints and pelvis are identical

to that of the previous model. Both the details of the geometry

and material properties may be found in Chapter IV.
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CHAPTER II

MATHEMATICAL FORMULATION OF MODEL

l. Nomenclature and Coordinate Transformations

A general description of the modeling techniques has
been given in Chapter 1. In this chapter, the detailed equations
and mathematical procedures for the formulation and solution of the
governing equations will be presented.

The cocrdinate systems have already been described in Chapter 1.
In addition tc a global coordinate system (x,y,2), local coordinates
for each element, (§,§,E)E, and for each node, (§,§,§)I, are used.
The unit vectors for these coordinate systems are (31,32,53)E, for
the coordinate system of element E and (31,32.33)1 for the coordinate
syztem of rigid body I.

The unit vectors giI and EiE immediately define the rotational
transformation of any vector components between the coordinate
systems. Thus, if we consider a vector A with global components
(Ax'Ay'Az)' body coordinate components (ﬁx,ﬂy,iz) and element coordin-

~ ~

ate components (Ax'Ay'Az)' we have the following transtormations

A = [A] {A} (2.1)

A b b b
y ’ ly 2y 3y

1z 22 3z




Similarly,

Ax elx ezx e3x fx
= e = A 2.2
Ay ey Sy 3y éy (u){a} ( )
Az e1z ezz €3z Az
E

where ey’ eiy’ eiz are the global components of the elemeant vectors.
Also

- T

{A} = [ {a} (2.3)

{a} = [u1*{a} (2.4)

The translational motion of the system is described by the displace-

ments u, 1 velocities ﬁiI’ and accelerations ﬁiI of the nodes.

Equations (2.1) to (2.4) can be written in indicial notation as

1
"

A, = A A, X -
i i3 d 3jivy (2.5)

>
|

RS RS
Al ulj ] i ujl j

The coordinate system in which a vector is expressed will hence-
forth be designated by the bars and hats. Thus the components of a

vector A in terms of the body coordinates of rigid body I are denoted

by AiI’ i =1 to 3 denoting AxI’ AyI' AzI’ respectively. Furthermore,

the set of three Cartesian components is often writier as a matrix
as in Eq. (2.3).

The orientation of a node is described by the unit vec:ors
BiI’ while the angular velocities and angular accelerations are

treated in body coordinate components, w,

i1 and o qr respectively.
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The forces and moments at the nodes are similarly denoted by FiI

and ﬁiI’ respectively, and may be subdivided into externally applied

forces and moments,F?ft and ﬁf;t, and the forces and moments due to
RS

the resistance of the deformable elements, Figtand ﬁi?t.
Only two unit vectors for the nodal coordinates, BlI and 531,

are stored per primary node. The third unit vector is then found by

> > >
b21 = b3I x b1I (2.6)

This method thus employs six numbers (three components of two vectors)

to describe the three rotational degrees of freedom. Though this at

first appears somewhat wasteful, it should be noted the alternative,

a description by Euler angles, has serious shortcomings:

1. Euler angle formulations are not linearly independent for all

values of the Euler angles.

2. The generalized moments corresponding to Euler angles are not

easily intrpreted in a physical sense.

3. The equations of motion and the transformations between body and

global coordinates in terms of Euler angles are complex and computa-

tionally demanding because they involve many trigonometric functions.
All six components are stored, Secause if only a total of

three of the six components of the two unit vectors were stored

(with the remaining components computed from the fact that the

two body vectors are orthogonal and unit vectors), then the vre-

maining components would have to be determined from square roots.

The signs of these components could not readily be determined.

Element nodal forces, moments, displacements and rotations are




-
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A e
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denoted by fiI’ miI‘ uiI' and eiI, respectively, where I denotes the

generic node number, which for each element ranges from 1 to the num-
ber of nodes in the element. Sometimes a superscript is used to
indicate the pertinent element, i.e. %{i) are force components at
node I of element e.

The inertial properties are described by the translational masses
of the primary nodes, Pyr and the principal moments of inertia of

the primary nodes,IxxJ, Iny, and Izsz The angular momenta of the

nodes are then given by

LjJ = Iijwa (no sum on J) (2.7)

The element quantities are extracted from the global quantities

in the usual manner by a Boolean connectivity matrix lgi), so that

(e) _ ,(e)
upt = Larougg (2.8)
] where
: j
i
H (e)
lAi = 1 if the Ath generic node of element e corresponds
to the Ith primary node of the system.
1
¢ (
e) _ .
2AI 0 otherwise
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2. Derivation of Equations of Motion

We consider here the development of the equations of motion for
the assemklage of rigid bodies and deformable elements. The
equations are obtained from the principle of virtual work with the
inertial forces included in a d'Alembert sense. The principle of
virtual work, when applied to the system treated here, states that

G(e)*g(e) + ole)r* ﬁ(e)

ia  tia iA iA
s, p€Xt - .« wert
= Mo WE i RO (242)

N
Pr Y51 Yir ~ “irlis

wilere the superscript e is summed over all elements. subscript A over
all nodes of each element, and I over all primary nodes. Superscript
dots denote time derivatives, while asterisks denote virtual quantities

The left hand side of Eq. (2.9) represents the rate of work
expended on the deformable elements, that is, the internal rate of
work, while the first two terms of the right hand side represent the
rate of external work. The rate of work of‘ the inertial forces is
represented by the last two terms of the right hand side.

To obtain the equations of motion, the virtual nodal velocities
of the element on the left hand side of Eq. (2.9) must be expressed in
terms of the global virtual nodal velocities. 1In deriving these
expressions we will separately consider the case whenA is a primary

node and when A is a secondary node.
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When A is a. primary node, the required relationships are obtained

directly from Egq. (2.5), which gives

A(e) _ (e) .

ut o= ujikAI qu (2.10)
~(e) _ {e)~-

Wia = Mjits5ktar %kr (2.11)

When A is a secondary node, the required relationships are
developed as follows. We note that whenever A is a secondary node

associated with a primary node J, then both nodes are points of a

single rigid body, so that

a.lge) = &y, (2.12)

and consequently Egq. (2.11) follows for the angular velocities. To
obtain the counterpart of Egq. (2.10), we first designate the vector
from I to A by iiIA' Because both points are on the same rigid body,

the components of this vector in the body coordinates will not vary with

tixe. The global components of this vector are given by

inA = AijijA . (2.13)
while the global components of the initial vector between I and A

are given by

iIA Aij ijA (2.14)
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where the superscript nought denotes the original (i.e. at time zero)

value of the variable. The displacement of the secondary node is

then given by

%A = Xia T Xia
(2.15)
° °
= Xir Y Xira T Xir T XiIa
By substituting Eqs. (2.13) and (2.14) into Eg. (2.15), we find
A, X A, X
Yia T %1 T A% T ti5%51a (25 16)

Transfcrming the above to the body coordinates of body I and taking

its derivative with respect to time, we find

uiA = uiI + Qij ij (2.17)
where
0 Zra YIa
Qij = “Z1a 0 Xra (2.18)
Yra X O

By again applying the appropriate transformations from Egs. (2.5),

we then find

éi(:) A P S W A 2 (2.19)

= H3i*Aar Y31 T ¥5i%9k ke AT Yer
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Egs. (2.10), (2.11), and (2.19) hold both for the actual

velocities and the virtual velccities., If we subsvitute these equa-
tions into the left hand side (LHS) of Fg. (2.9), using Eq. (2.10)
whenever node A is a primary node and En, (2.19) whenever A is a

secondary node, we obtain

LHS = ﬁ;IF;¥t + G;Iﬂi¥t (2.20)
where

F;Qt = zgi)f;:) (2.21)

ﬁi?t = 2§§)ﬁ£§) (2.22)
and

fpf‘j*) = ujiEigf) (2.23)

for both primary and secondary nodes A; while if A is primary

= (e)_ ~(e)
m = AjkujimiA (2.24)

and if A is secondary

(e) z(e)

- L A(e)
Mk = AucMeiMia * Qgtesug LT (2.25)

Equations (2.23) to (2.25) may be written in matrix form as follows

AL P (2.26)
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"(e)}

{m

(AT [ul (m} (2.27)

(e) }

{m 1T 1n) + 11T A T {E) (2.28)

Thus for primary nodes, the nodal forces and moments aré simply
related by the coordinate transformations, while for secondary nodes
an additional moment is introduced in the transformation because of
the moment arm effected by the vector between the nodes. The total
internal nodal forces are obtained from the terms given in Eqs. (2.23)
to (2.25) by Egs. (2.21) and (2.22). TlLe latter equations just re-
present an appropriate summation of the element forces, for as can
be seen from Eq. (2.8), 2£:) are Boolear matric=s consisting of ones
and zeroes.

The equations of motion are now obtained by substituting Eg.
(2.20) into Eg. (2.9), which gives (after a change of dummy indices

and collection of terms)

. * _int ext =
it Fit Fir + Ppuyqp)
- * =int -ext -
int _ ¥t 4§ ) = .
+ wiI(MlI MlI LlI) 0 (2.29)

Since the virtual velocities are arbitrary, the terms within the
parentheses must vanish. The terms within the first parenthesis

immediately yield the translational equations of motion

ext int (2.30)

SR E T BT (no sum on I)

Prldir
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We note from Eq. (2.7) that

3 = IijakJ + eiszikakalJ (no sum on J) (2.31a)

where eijz is the alternative tensor. By noting that the quantity

in the second parenthesis must vanish because of the arbitrariness of

w;I, we obtain

= = I o o - wext _ =int
Tika®a * C150tikavkaves = 453 Mys

(no sum on J)

coordinates are prinicpal coordinates of Ijk' we can

(2.31b)

Since the ii

write these equations as follows

= = - - —ext ~int
+ - = -
Lxr%r v (T,,1 Tyyr!oyr¥,r = Myp - BJ

(I -I o

= = sext _ =int
+ = -
InyayI xxI 2zI

“x1%21 T Myr T Mg

+ (I - N = = MeXt _ gint

Ioz1%1 yyI L xI 1%t T Mo M1

(2.32)
(no sum on I)

These are the rotational equations of motion, and they correspond

to the Euler equations.
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3. Deformable Elements

The deformable elements are treated by a rigid-convected (or
corotational) formulation previously described by Bely+schko and
Hsieh (1972). In this technique, the displacements of each element
are decomposed intc rigid body displacenents r, and deformation

displacements di

u, =r, + 4, (2.33)

The strains are then given by

. ad, a4,
e, = l(-} + »;1> (2.34)
i3 2004 x4

Belytschko and Hsieh have shown that the matrix gij cor-
responds to the difference between the stretch tensor and the
unit tensor. Hence, this strain corresponds closely to the common
definition of engineering strain.

For purposes of developing element relations, Eq. (2.33) is

expressed in matrix form

{e} = (E]{d} (2.35)

where {d} is the matrix of nodal deformation displacements. It is

also necessary to find a matrix [T] such that

{d} = (1]{n} (2.36)
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It then follows that the nodal element forces {f(e)} are given by
g9 = mTed) (2.37)

g9} = _/[EIT{S) av (2.38)
s |

where V is the volume of the element, {0} the stresses measured in

the corotational coordinates, and {fd} the nodal forces conjugate to

{d}, so that

wint o e Tied (2.39)

where W' is the internal work. Note that both {e} and (G} are
measured in corotational coordinates, so their rates or increments
are frame invariant and may be used directly .n incremental constitu-

tive equations without any corrections for rotations.

Spring Element. Consider a spring element with nodes I and J. The

deformation of the spring is completely defined by its change in length

5. =2-2°

1J (2.40)

where % and 2° are the current and original lengths of the element.
Since direct use of this formula will result in large round-off errors,
an alternative formula was used which is derived as follows. If

the displacement and position of the nodes are cor idered to be vectors,
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{x}; = {xb; = {x}] - {x}]

1t {u}J = {u}I (2.41)

J

Taking the scalar product of each side of this equation with itself,

if follows that

2 _ g°2 T . T \
22 = 2°% 4 2{X}JI {u}JI + {u}JI {u}JI (2.42)
where
= - X
{X}JI {X}J { }I etc.
after rearranging and factoring, it follows that
1-0° = 2 200 Trud o+ {u)l__T{u) (2.43)
° JI JI JI JI *
L+
or in component form
6. = 3-2° = 2 [2(x_.u +y_.u + z_.u
1J 1+2° JI xJI JIyJI J172JI)
2 2 2 Vi
tu gt uyJI + uzJI] (2.42)

The element strain is then given by

£ = (2.45)
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where A is the area of the cross-section.

The stress © may be an arbitrary function of g. In this program,

the stress~strain law is

o= kle + k2° + 28 (k1+3k25 Yp & (2.47)

where kl, k2 and B are constants input b’ the user; k, is the linear

1
spring constant. The last term is a linear viscosity with B the

fraction of critical damping for the vibration of this element.

Eecam Element. Consider a generic beam element with nodes I and J as shown in

¥Fig. 11. The % axis always moves with the beam element so that it
joins the two nodes, while the § arxis is considered to rotate witn
the beam in the sense that its rotation is an average of the rotation
of the two nodes about the x axis. The deformation of the beam is
then defined by its displacements relative to the rigid-convect=d

coordinates (X,y,2) of the element. The deformation displacements

are given by
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Figure 11. Beam element nomenclature.
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xJI’ eyI' O21

{a}" = {6 ) ) } (2.48)

13’ yd' “zJ

where GIJ = elongation, computed by Eq. (2.44)

exIJ = torsional deformation

e 0

A

v’ 621, ézJ = bending deformation rotations

Because of the way the motion of the x-axis is defined, the
rigid bddy motion r, need not be computed explicitly for the de-
composition needed in Egs. (2.33) and (2.34): the quantities de-
fined above define the deformation of the element directly regard-
less of the extent of rigid body rotation.

For the purpose of computing the relative rotations, aYI' ezI'
6yJ' ézJ, xJ1’ the body components of the unit vectors €l° and
32° (superscript noughts denote the vectors in the undeformed con-

and 8

figuration) must be stored for each of the two nodes of the element.

1° and 32°, the rotations

are found as follows. Since the vector El° rotates with the node, it

indicates the direction of the axis of the ele ent if there was no

From a knowledge of the body components of e

deformation; the anqgle between El° and 31 indicates Lhe magnitude of

the deformation, this is illustrated in Fig. 1L Thus

eyéz + 5233 = El x &,° (2.49)

For the purpo: : of this computation, we transform the components of

El° from body to element coordinates using Egs. (2.3) and (2.4) so

that
eix eix
S5, = (1T 2] &, (2.50)
éiz‘ e3,
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4 v Then substituting into Eq. (2.49), we find

’ e e e
é el 2 3 i
i A Sk ry 2 i
= = - + :
eye2 + eze3 det 1 0 0 elze2 elye3 1
ao aa ;o ,
} 1x 1y 1z (2‘51) v
; Thus :
L ‘
1 ~ ~ A "~
¢ = -af = e?
\ ey = -el, ez ely (2.52)

Trhe deformation torsional rotation is found by taking the cross-

q
i
3
A
Est

S o

product of 331 and EEJ and projecting this vector on the current

axis of the beam. This yields

T P VY o A et -

R
By

B
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e e, e3 %€

~ > -» -+ -+ - A A s
Oprg = @1+ (@37 X €35) = e . det tel,y o1 %o gh
o & &

x2J y2J z2J

. A T

N a§21a°zzJ - a;2J8;21 (2L S=)
Egs. (2.52) and (2.53) require the assumption that the deformation
j displacements of an element be small. This implies that the relative
' g rotations are sufficiently small so that the decomposition of the
! rotation vector into Sy and 52 implicit in Eq. (2.49) be valid, How- C
% ever, the overall rotation of the beam element may be arbitrarily
; large.

The deformation displacement field for the beam element is con-

sidered to consist of transverse displacements that are cubic
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functions of ﬁ, while the axial displacement is a linear function of

A

X. This can be written

dy = (1-8) dyr * £d, s (2.54a)
m - BE 2B ol F2:r3\0A
dy = (E~2E%+E )26zI + (-E£°+¢ )SLGzJ (2.54b)
mo_ 2_r3yv,A 2_ A
dz = (=E+2£°-¢ )ZBYI + (& 53)26yJ (2.54¢)
ex = gexJI (2.544)
where
£= % (2.54e)

and X is taken to originate at node I; the superscript m is used
to indicate that these are the displacements of the mid surface,
If we impose the usual Euler-Bernculli beam assumptions that normals

to the midline remain straight and normal, we obtain

. s . BED aag .\ . 0B

d =d -y ¥ -2 _24 944,23 X (2.55a)
x  x T Y3 5% ¥ 9y

a, = a§ - 26, (2.55b)

dz =4, + yex (2.55¢)

where H(y,z) is the warping function.

The strain displacement equations, Eq. (2.34), can now be written
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) , (3 ad

e =z|2 3+ X (2.56b)
xy 2 \sy 3K

) L[4, ad,

€ = = | == 4+ = 2.56¢)
Xz 2\ 32 Py (

These equations are valid as long as (Bay/aﬁ)2 and (982/32)2 are
small compared to (aax/aﬁ)Z. Although this condition is similar in
appearance to that of moderate rotation theories, it is far less
restrictive, because ay and az are the displacements relative to the
corotational coordinate X. By reducing the size of the element, ay
and éz can be made as small as needed, albeit at a rapidly increasing

cost.

For the beam

&Y = @, 2Exy, 2t ) (2.57)
and
i 0 z(6£-4) y(4-6E) 2(6£-2) y(2-6§)
(E] = 5|0 (om/a9)-2 0 0 0 0 (2.58)
0 (3H/3z)-y 0 0 0 0

So, having defined the strain~displacement relations, the stress
617 = {ax, ny, akz} can be computed for any constitutive law, and
then the deformation nodal forces by Eg. (2.38).

Referring to Egs. (2.39) and (2.40), it may be noted that {fd}

for the beam is given by
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xJ'axJ'myI’sz’myJ'ﬁzJ) 2 589
The complete nodal force matrix could be computed from Eq. (2.37)
after [T], as defined by Eq. (2.36), is found. However, it is
simpler to first find {E} by equilikrium and then transform to ‘*e
global components by a simple vector transformation; the two pro-

cedures are equivalent. Equilibrium yields

fe1 = “Eyg Mer = "Myg
. m_ +m . .
f = _ﬂ____ﬂ £ = «f
zJ 3 2l zJ
m . +m
2 = 2k zJd 2 = ap
ny = 1 fyI ny (2.60)

The glohal components can then be found by Eq. (2.1) and (2.2).

As indicated in Chapter I, the program has two methods for
treating the moment stiffness of the beam. For linear beams or beams
with simple nonlineur characteristics where the overall bending
moments can be determined as functions of the deformation rotations,
the bending moments may be determined directly by Egs. (1.4).

The second method for obtaining the nodal moments is by inte-
grating the stresses appropriately through Egs. (2.38), with [E] de-
fined by Eq. (2.58). This integration is done only to obtain the
axial force and moment. The numerical integration for torsion is
included neither in this description nor in the program. If torsion

were included, both the ‘state of ctress and strain would be biaxial,

which increases computations immensely. Since Euler-Bernoulli theory
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does not include the shear stresses that arise from bending, only
the shear strains due to torsion are available. Thus the additional
computations would not appear to be justified.

The integral for the ncdal forces, Eg. (2.38), is evaluated
numerically. Mény investigators have used Gaussian quadlrvature
formulas for this integration. However, these formulas involve far
more computations than trapezoidal integrations, with little
advantage in accuracy. The only drawback of a strict trapezoidal
integration is that the elastic bending stiffness of the element is
not recovered. A modified trapezoidal integration originally
described in Marchertas and Belytschko (1974) is used here. The
beam is subdivided into strips as shown in Fig. 3. In each strip,
as for example the strip indicated by cross-hatching in Fig. 3, the

axial stress o is assumed to vary bilinearly in nand §, so

g(n,t&)

[}

ciI(l—E)(l-n) + chn(l-E)

fir 8 (2615

-+

ciJ(l—n)C 1 ch

Substituting this form into Eq. (2.37) and integrating over n and

] : py A ~ 9
£, we find the expressions for fo and myJ to be
2 _ 1 ;
fo =7 th lo, + ooy + 055 ¥ on] (2.62)
nt = L1th (20, 2, + 20..2. + 0, 7. + 0..2,] (2.63)
yJ 6 ig71 3373 iJ73 JjI~i

L ~%

The formulas for ﬁiI' ﬁzJ and m__ are similar. The total nodal forces

are then found by adding the contributions of all of the layers. The
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major distinction from a trapezoidal integration is in Eq. (2.63),

which is based on a form quadratic in z. This modification preserves
the exact elastic bending stiffness of the element. Moreover, the
assumption of a linear stress variation in X implies a linear moment
field, which is consistent with equilibrium of the element. The
approximation errors therefore lie entirely in the stress-strain law,

which is necessarily satisfied only at the end points of the element

for nonlinear materials.

Hydrodynamic Element. The hydrodynamic element is a pentahedron with

six nodes at its corners, as shown in Fig. 4. The triangular sur-
faces of the pentahedrons are called the top and bottom surfaces,
respectively, and each of these is defined by three nodes. All of
the nodecs on each of these surfaces must be asscciated with the same
primary node, for the top and bottom surfaces are considered rigid.
The generic element is nuiabered counterclockwise and viewed from top
to bottom. The edges of the element arc dcfined by the lines connecl~
ing nodes I - L, nodes J - M, and nodes K - N, respectively. The
deformation of the hydrodynamic element is characterized by the

dilatation, A, which is given by

= (2.64)

where V is the volume of the element, and a superscript nought denotes
the original volume. For the purpose of computing the volume and

change in volume, the pentahedron is subdivided into three tetrahedrons.
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The volume of any tetrahedron with generic node numbers I,J,K and L

is given by

i KJ LK
1
Vigru = § 98t (Y1 Yx3 Ypk
Soi Zry 2Lk
=l[ (xy - X, .Y..) + 2z (xy - %X, ¥..)
6 LKYKJ KIYLK JI¥LK ~ *ki¥or
+ (x )]

k3¥gr ~ *g1¥xg

Xpg = Xp = Xge etc. (2.65)

The volume of the pentahedron is

Vo= Voo * Vo + Vormn (2.66)
To define the matrix [E] of Eq. (2.35), we take the time derivative
of the dilatation as defined in terms of the nodal coordinates in
Egs. (2.66). Noting that the time derivatives of the nodal coordin-
ates are the velocities, we obtain [F], which is given in Table 1.
The pressure in the hydrodynamic element is assumed to be con-
stant, so that the integral expression for the nodal forces given by

Eqg. (2.38) yields that the nodal forces are given by

(£} = -p [E)T (2.67)
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Table 1. The [E] Matrix for Hydrodynamic Elements \

i+

Yya%Lk ~ YrxZ%kg ;
*Lk®k3 T *koZLk ;
*ka¥Lx T *LkYkJ | !
Yik?n1 T Ynr?wk T Yum%n T YinZam é
*n1%uk T *x®ni o Fon®am T XwmZn '

*LkYNI T *N1Vix O *nmYin T *LnYaM

Yo1®Ly T Yoo%s1 t Yno®n T YinZno

*La%3r T *ar%ng t *a®ng T *naZiw |
*31¥L0 T *pa¥or t *noYin T Yin¥ng

Yga%g1 T Ygr%ks * YnmZmz T YmoZam *t YrnZng © YNoZky
¥31%k3 T *ka%ar t *mo%m T *wmZmg t *naZky T *wknZNg
*ka¥a1 T *gr¥rn * *mm¥Mo T *ma¥am t Xka¥ng T *na¥kn
Yin®ng T *noZLN

*NIZLNy T *n®ng

*n¥ng T *noYin

Ymz%im T Yom®mg T YokZky T YkoZLk
- + =
FomPmy T *mo%im T *ko%Lk T *LrZkg
*ma¥rm T *im¥mos T *ox¥xy T *ka¥ix
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The pressure is computed by

p = BA + oBA (2.68)

where a is a linear viscosity coefficient and B is a bulk modulus.
For the nodes that are secondary, the nodal forces are then trans-

formed by Eq. (2.28).

Elastic Planes. The ejection seat geometries are represented

by an assemblage of piecewise linear surfaces, which may be either
elastic or rigid. This assemblage of planes may translate in an
arbitrary direction in space as an arbitrary function of time, which
is prescribed in the input. When any of the rigid bodies contacts
one of the planes, its equations of motion are modified so as to
reflect its interaction with the plane.

Each of the piecewise linear surfaces is defined by three points
Z;, I -1 to 3, in the original configuration. The coordinates of
these points are given in the global system. The three points must
be oriented so that the normal vector as obtained by the right hand
rule points in the direction of the skeletal model. In order to
establish the required equations, the normal to the surface it first
computed by the formula

*q *o
le X x3l

" IR

. . . -+ 1] .
The minimum distance between any node, xp, and the surface is given

(2.69)

by
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where §° is a vector from any point in the surface to X . As the

surface translates, (rotations of the surface are not included), the

unit normal remains unchanged, while the positions of §1 and ;p
become
X, = X% + 1
1 1 1
(2.71)
-+ -> >
X =x°+u
P p P
>
where u

= is the prescribed displacement of the ejection seat. The

distance of point P from the surface can then be computed by

(2.72)

When the distance of the node from the surface is negative or zero,
the node is assumed to be in contact with the surface. It is tuen
necessary to check its acceleration normal to the plane. 1If the
acceleration is into the plane, the node will remain in contact with
the plane, whereas when thc acceleration is away from the plane,
there is no contact and no modifications of the equations of the
node are needed.

If the node is in contact with the plane, a force normal to

the plane is applied to the node vhich is proportional to the

61

0 e ¥
FLWPLRY.




magnitude of the penetration of the point, i.e.

where fn is the force component normal to the surface.

(2.73)

In addition,

if friction is present, tangential forces proportional to fn may

be applied in the form

H
i
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CHAPTER III

MATHEMATICAL ASPECTS OF SOLUTION PROCEDURES

1. Explic.* Time Integration

One of the inethods for solving the equations of motion of this
model is the explicit method. This method is by far the most effici-
ent per time step, but the time step must be quite small if the model
has a high frequency content, that is, low masses connected by stiff
springs. The stability limits are discussed subsequently in this
Section.

The explicit integration employs the Newmark B-formulas (Newmark
(1959) ) with B=0, which are almost identical to the central difference
formulas (see Belytschko (1974)). These formulas predict the
velocities and displacements at a time step in terms of the accelera-

tions at the previous step. For the translational components, these

formulas may be used directly, so

TS R R N S oY |

Bir = U§p + 3 ae(dy, + U3.T) (3.1)
41 _ 3 . J L amd

ui; = uig + At 471 + 5 At ury (3.2)

where the superscripts denote the time step and At the time increment

during a step.
For the rotational degrees of freedom, Eqs. (3.2) cannot be used
directly because the orientations are described by unit vectors

EiI and its rates are not eguivalent to the angular velocities and
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accelerations. The counterpart of Eq. (3.2) is

(3.3}

—* =0 x b, (3.4)

azb,
1= x (0xb.) + (axb.) (3.5)
dt? 1 1

and substituting Egs. (3.4) and (3.5) into Eq. (3.3) yields a formula

for the updated unit vectors

B2 = B & Bt (bxDd;
1 1 1
+ % BE2ID % (@xB)) + (Gxb))] (3.6)

To obtain a formula for the updated components of the unit vectors,
we temporarily £fix the ii coordinates and consider a particular unit
vector Bi in Eq. (3.6); we then dot Eq. (3.6) with the unit vector
corresponding to the component: of gi to be updated. For example, the
updated §-component of 33 is found by letting i=3 in Eq. (3.6) and
taking the scalar product of both sides of the equation with gl'
which yields, after some. simplification
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Similarly

= &3 RPN, RPN R e L P %
b1y = b1 b2 = Ath + > At (wxwy+a ) (3.7¢)

Normality and orthogonality are used tc find the remaining com-

BJ+1 and BJ+1

ponents of 3 1 and it is assumed that the rotations

during a time step are small so that second order terms can be neg-

lected. From the normality of 33, it follows that
1
=il _ [ B o) T S g | | 2]2
b3z = |1 (b3x ) (b ) . (3.8)
while, if it is first assumed that 5{;1 ~ 1, orthogonality yields

EJ+1 = -

=j+1 | =j+1 _j+1, ,=j+1
iz by, b1y b3y )/b (3.9)

3z

The component 5{;1 can then be found by normality

1
=+l o pitly e ozl {]5
it - [1 (B37h) B3h) (3.10)

The comrponents of the gl and 33 vectors given above are in terms
of the ii coordinates of that node at time step j. Using Eq. (2.3)

with the [A] matrix defined in the previous time step, the components
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b7 are transformed to global coordinates; the vector Eg+l is then ;
found by a vector product.

mhe rlowchart for this numerical procedure is shown in Table 2.
Besides the approximations of small rotations implicit in Eqgs. (3.9)
and (3.10), the major source of truncation error lies in the evalua-
tion of the angular accelerations from the equations of angular |

motion, (2.32). These equations involve quadratic combinations of

puy W,

the angular velocities at the same time step as angular accelerations,

. s0 that the new angular velocities must be approximated. This source
of error can be mitigated by an iterative procedure, i.e. finding
the angular accelerations from an approximation to Eq. (2.32), inte-

grating these accelerations tc f£ind the new angular velocities, and ‘

then repeating the computation of the angular accelerations. This

procedure was tried, but it was found to have insignificant effects

B s e = Y vy -

on the solution.

Another consequence of the existence of the quadratic combina- |

et e R

W B
R P R R

- 5
pith A
%

tion of velocities in Eq. (2.32) is that the classical Fourier theories
of numerical stability are not applicable even for linear material

problems., Therefore, it has been necessary to pick time steps with

fa
5 AR SN Y
- .. y N
Nl A, &, W AL i
-

the standard formula in terms of the maximum eigenvalue A of the

-
e e e i A

system

> |
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only serving as a guideline. To insure post facto that the computa-

. R 3
S

tions are stable, energy balance checks were made as follows.

M
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Table 2

Flow Chart of Explicit Integration Procedure

Set initial conditions, t=0
Compute {u(t+At)} by Eq. (3.2)

Update unit vectors BI by Egs. (3.7) to (3.10) and transform
to global components by Eq. (2.3)

Find deformation displacements {d} by Egs. (2.44), (2.49) and
(2.53)

Find the strain in the convected coordinates, {c¢} by Eq. (2.34)
Stress-strain law

Find local nodal forces {fd} by Eq. (2.38)

add (£} into {F'"%}

Compute {u(t+At)} by Egs. (2.30) and (2.31)

Compute {4(t+At)} by Eq. (3.1)

t =t + At; go to 2
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The kinetic energy at each time step j is defined by
i1l
T = 5 P.

where 1 is summed over the primary nodes in the system. The external

work is defined by a trapezoidal integration in time, so

wext,o =0

ext,j-1 ” l(uj _oLJ-1

exe ] 251 T Yir

ext,] + Fext,j—l

2 il il

W ) (F )

The internal work is similarly defined by

w1nt,o 244

int,j

- wints ol Lgled 3 gle) 5oy gle), 5, gle) 3-1,

E(uiA iA
Energy balance then requires that
int

w IJ + TJ - wethJ < E(wlntlj + TJ)

If ¢ is greater than about 0.05, a solution is considered unacceptable.
The source of the energy error may be an arrested or incipient

numerical instability, or excessive truncation error.

68




S - oS A S

o S Sl

P s e TP

- e i (TR S W et S >

e v

e a—— 4 g Mt 2 e ey A

2. Implicit Time Integration

The second method for integrating the equations of motion in
time is the implicit method. This method permits the use of rather
large time steps, particularly if the high frequency aspects of
the responsz are unimportant. However, the method inveclves the solu-
tion of nonlinear equations in each time step. The nonlinear
equations are solved by a Newton-Raphson procedure, so that a sequence
of solutions to linear algebraic equations are used to obtain the
solution to the nonlinear equations. The linear equations are solved
by a Cholesky decomposition technique; hence the solution time is
bandwidth dependent. Therefore the method becomes quite uneconomical
for the complex models, where the bandwidth is usually quite large,
for in spite of the possibility of taking large time steps, the
computational effort required per time step is so great as to pre-
clude its use. More specific figures for solution times are given
subsequently.

The implicit integration employs the trapezcidal integratic:
formulas, which corrz2spond to the Newmark B-formulas with B=1/4

{(Newmark (1959)). These formulas are

LJ+l _ o] 1 =) . j+1

a3 uiI + > At(uiI + i3y ) (3.16)
j+l - 3 j l 2 4227 »j+1

uig uiI + At ﬁiI + 2 At (uiI + uiI ) (3.17)

From the above, it immediately follows that
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(3.19)

(3.20)

(3.21)

The above eguations must hold both for increments in rotations and

translations, provided that the increments in rotations are small, so

T =l 20 N

UST At Vil it

(3.22)

The increment A6 has no precise meaning, for it is neither referred

to the E% or the B%+l coordinate systems, but to some intermediate

coordinates.

are ultimately' described by the body coordinate system EI so this

ambiguity is not important.

However A6 is not a basic variable, for orientations

The equations for implicit integration are best developed in

matrix form, so we define the nodal matrices {D}, {D}, and {F}I.

uxI

uyI

Va1 .
{p}; = 3 {D}
xI

D

BYI

-1

r
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{F}

FxI

yI
FzI

=t

xI

=1

yI

=

(3.23)
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The complete matrix of nodal displacements is {D}, which consists

of {D}I, with I from the number of nodes stacked vertically in order

in the column matrix.

The implicit solution procedure requires a linearized estimate
of the internal forces at the end of the time step in terms of the

incremental forces. This is provided by the tangential stiffness

matrix (i.] which gives

gpitleinty _ opdedney e (3.24)

The tangential stiffness here contains the damping terms; details

are given in Appendix 2.

The basis of the implicit method is to solve the equations of

motion at time step j+1 directly in terms of the displacements. For

this purpose, the equations of motion are expressed at j+l1 in terms

of the solution at the previous step. The right hand sides of the

equations of motion, Egs. (2.30) and (2.31) are expressed in terms of

increments of displacements by means of Egs. (3.24), which gives

- «J  _ At% .3
pI(AuiI At 43 ; 2 uiI)

) (3.25)

At? ,_9j+1,ext j+1,int
= —— ( ’ I~ ’
7 ‘Fir Fi1

T aE = el el
IrsI(AesI At“')E.I 4 asI)
: (At =3-3 % 34T 4 aF A%
+ ertsIsu( T + At “’tAeu + At “’ﬁAet+A9th)

_ At? =j+l,ext  =3j+1,int :
= =7 My - M ) (3°26)
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We now (1) use Eq. (3.24) to estimate the internal forces at j+1,
(2) neglect the quadratic terms AéuAat and (3) neglect any anti- !
symmetric terms arising from the rate of change of angular momentum.

Eg. (3.25) and (3.26) can then be written

2
(1] + 55 w21 + 25 (x1) (8D}

"?,
» 1 2 3
= at[m1] (D7} + 25~ (M1 (p?} !
¢ (pIYLeexty _ pdeinty pdy, (3.27)
where
i} ﬁi
o 0 0 0 0 0 ; R
0 0 0 0 5 0
may, =% ¢ ¢ 0 0 0 (3.28)
0 0 0 Ixx 0 0 ’
0 0 0 0 I
Yy 0
0 0 3 0 o I A
¥ n
[9-3x3] [23"3] P
( xx-Iyy)wz (Ixx- zz)wj
[MZ]II = = = P (3.29)
[93x3] 0 T2z Ty O
i L sym 0 i
ol i ¢ {
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Egs. (3.27) are solved in each time step. The error is then computed

by

err _ Fj+l,ext _ F3+1,1nt - pﬁ?+l

1
Fir = Fir i i (o)
~err _ =j+l,ext _ z=j+l,int _ $Jj+l
MiI MiI MiI Lig (3.32)
The error must satisfy the criterion
{aDIT{FETTY < e(wl APt 4 pd) (3.33)

where € is a tolerance, and Wj'int and Tj are the internal and kinetic
energies, as defined by Egs. (3.12) and (3.14). This criterion re-
quires that the energy transfer to the system arising from error be
bounded. If Fq. (3.33) is not met, Eqs. (3.27) are resolved with

{FEEE) adied to (B Ci

. This does not require much extra time, for
the coefficient matrix is triangulated, at most, onl; once per “ime step.
Belytschko and Schoeberle (1975) have shown that this

procedure leads to a stable algorithm regardless of the size of the
time step as long as Eq. (3.33) is met. The cited proof was only for
nonlinear materials, but so far no unstable computations have been
reported, when Eq. (3.33) was satisfied for a reasonable tolerance.

The unit vectors are updated as follows. The vector counterpart

of Egqs. (3.16) and (3.17) are
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Multiplying Eq. (3.34) by - = and adding to Eq. (3.35), we obtain

AL N R ¢ (3.36)

2
At Bt

and rearranging and using Eg. (3.4) yields

BJ+1 - QZE (-(Sj+l % b

+1) -, bt 23, g
. ) = by + 5 (@) x by) (3.37)

%
To obtain a formula for the updated componente of the unit

vectors, we temporarily fix the EI coordinates and consider a parti-

cular unit vector Biin Eg. (3.37). We then take the scalar product

of Eq. (3.37) with the unit vector corresponding to the component of

BI to be updated. For example, the updated X-component of §3 is

found by letting I=3 in Eq. (3.37) and taking the scalar product of

both sides of the equation with Bl' which yields, after some simplifi-

cation

341 _ 23 . 23+l _ At 23 . +5+1 #>j+1 At -3
b3x b1 b3 = = b1 (w X b3 ) + 3 wy (3.38)

Similarly, the y-components of 33 is given by

¥l _

b3y

x BJ*h) - &8 o (3.39)
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The evaluation of triple scalar products in Eqs. (3.38) and (3.39)

yields

+3+1  +j4l, =341 j+1 =3+l G+l
w p b3 ) = my b3z w, b3y (3.40)

Hence Egs. (3.38) and (3.39) can be written as

pItl _ At =3+l 541 =3+l

_ @ = J41, . At =3
3x 2 y 3z z 3y

) + W (2.41)

J4l _ At =3+l G+l =341 3+l At =
by, = F (wy = byy » b3) ® (3.42)

i+l
3z

solved simultaneously to yield

Now if it is assumed that b ~ 1, Egs. (3.41) and (3.42) can be

(ai + 53+1) + (Gi + 6§+1)]/

3x 2

pI*l . At [%; -3+l
z

2 _- _-
At? =341 =341

i - 3 ) (3.43)

{w

j+1 _ At At =341 -] =j+1, _ =3, =j+l
b3y = w,, G + wy ) (wx+ Wy Y1/

2 e el
1+ A%— wg+lwg+l) (3.44)
In a similar manner the §-component of Ei+l'is found to be
4 o - - i e
SHER L A R R R
t? -3+ §+
1+ &= 5 I (3.45)
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Equations (3.37), when substituted into the above, yield

'
{
i
i
i

J+1 _ At =j+1 = = At? —3+1-3+1

b3x = 5 Wy b8, + Aey)/(l T, uy ) (3.46)
j+l _ At F+l,= = At? =j+1-j+1

b3y = 5 W, Aey Aex)/(l + ks ) (3.47)
j+l _ At §+1 = = At? =3+1-=3+1

bly = 5 Wy Aey + Aez)/(l + 7 Wy Wy ) (3.48)

The remaining components are then updated as described in the previous

section. B

Tae major computational effort in this procedure is in triang-

ulating Eq. (3.27). If the number of degrees of freedom is N and
the semibandwidth is B, triangulation requires NB2 multiplications.

The semibandwidth is given by

B = max(I-J) (3.49)

where T and J are the node numbers of any primary nodes connected by
a deformable element, either directlv or through secondary nodes.

It is thus of advantage to number nodes so that B is minimized.

‘The equations are triangulized at most once in each time step.
The iterative procedure is performed using the triangularized mat-
rix with direct backsubstitution. This only requires 2NB muliipli-
cations. If the system is only midly nonlinear, the equations are
solved with the triangular decomposition obtained from a previous

time step. The computational procedure is shown in Table 3.
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Table 3

Flow Chart of Iterative, Implicit Integration Pro-.edure

Set initial conditions: t=0; {{i(0)} must be computed if initial

conditions are nonzero

Compute coefficient of {AD}and R.H.S. of Eq. (3.27) with {R} = 0

Solve Eq. (3.27) fcr tentative increment in displacement

Compute tentative displacement, acceleration and velocity by
Egs. (3.21), (3.19) and (3.20), respectively

Update unit vectors BI by Egs. (3.46) to (3.48) and transform to

global components by Eq.

(2.3)

Find tentative strain by Eq. (2.34)

Stress~-strain law

Find tentative nodal forces by Eq.

force array

Compute error force by Egs. (3.31) and (3,32)

If energy error criteria, Egq. (3.33) in not met, set
(FE*%) = (F®*%) 4 (F®TT) and go to 3

Solution for step complete; update dependent variables

t =t + At; go to 2

717

(2.38) and add into internal
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3. Modal Analysis

The modes of the system are obtained by a linear eigenvalue
technique. The use of this technique thus requires that the material

properties be linearized in the domain of interest, so that

(FA%) - (k] (D) (3.50)

The use of a linear eigenvalue analysis also requires that the pro-

w w_ in Egs. (2.32) be neglected: thus the modal

duct terms w 0
X 2z Yy 2

analysis requires that the motion be restricted to two dimensions
or that the rigid bodies have equal moments of inertia about all axes.
In this study, the first assumption was usually made. In addition,
for purposes of simplicity, the effect of damping on the modal
behavior was neglected. Provided that the damping is proportional
to the stiffness, which is the case here, the effect of damping on
the frequencies could then be asscertained after the completion of
the analysis as described subsequently.

The modal equaticns are obtained in the usual manner (see

Przemieniecki (1968)) by assuming harmonic response of the form

D(t)} = (x}ei®t (3.51)

Substituting Eqs. (3.50) and (3.51) into (2.30) and (2.32) and in-

voking the above assumptions, yields

([K] - w?[M1]){X} =0 (3.52)
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which is linear eigenvalue problems, with the eigenvalues w? cor-

responding to the natural frequencies, and the eigenvectors {X}
corresponding to the natural modes of vibration.

The eigenvalue problem of Eq. (3.52) is put into staadard eigen-

value form as follows. Since the products of angular velocities
appearing in the i1otational equations of motion are not treated,

[M1] is diagonal and a matrix [Ml]-l/z can be constructed by taking

the reciprocal of the square root of each diagonal term of the

matrix. Defining

xy = Y% (3.53)

we obtain from (3.52) and (3.53) that

(M1 "2 k) 7Y 2- w2 1) (X3 = 0 (3.54)

The eigenvalues and eigenvectors are found by either of two methods:

i. & Jacobian iterat: .n proce’ire as implemented in subrcutine

EIGEN in the IEBM Scientific Subroutine Package (1967} ;

ii. a power method iteration procedure.

The first method is relatively time consum.ng and cannot take

advantage of the bandedness of the stiffness matrix. Hence it can

be used only for relatively small models. However, it provides all

frequencies and modzs of the system.

The second method can take advantage of bandedress and herce is

applicable to larger models. Howeve., in the present version only th.

lowest mode can be found. The determination of subsequent modes
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would entail the implementation of shift and sweeping procedures

into the algorithm; see Gourlay and Watson (1973) or Belytschko
(1974) .

If the system is damped by a stiffness proportional damping of
magnitude o as used herein, then the frequencies of the damped system
may be determined directly from the undamped modes. Standard har-
monic analysis then shows (see for example, Hurty and Rubinstein

(1974)), that the frequency of the damped vibration is given by

2. 2
Ldame _ Yy i (3.55)
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CHAPTER IV

MATERIAL PROPERTIES AND GEOMETRY

This chapter describes the geometrical and material property
data used in the models and the sources and basis for this data. For
purposes of convenience, the description of this data is subdivided
into sections dealing with the spine, the head and pelvis, and the
rib cage. The inertial properties are described in a separate Section.

Finally, the combinations of these data used in models of various

complexity are summarized by describing Models I, II, and III.

1. Thoracolumbar and Cervical Spine

Each vertebra of the thoracolumbar spine ismodelled as a rigic
body. The geometry of each vertebra is described by the locations
of the secondary nodes, which serve to connect the var‘-us deformable
elements to the ‘ertebra. An inertial segment usually does not
coincide with a vertebral body. Instead, each vertebra is embedded
in an inertial segment, and the primary node of the segment is its
centroid. Therefore, it is worthwhile in describing the geometry of
the vertebrae to define a base point which is independent of the loca-~
tion of the primary node of the inertial segment. This base point is
chosen to be the center of the lower end plate of the vertebral
body. The geometry of each vertebra is then characterized by the
positions in ithe vertebra's body coordinates of twelve additional
points: (1) the spinovus process tip; (2) left and right transverse
process tips;

(3) the left and right/inferior-superior articular facet

points; and (4) the left and right/inferior-superior ligamenta flava
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points. A set of coordinates for vertebra L3 is given in Table 4.
This data was obtained from a skeletal model by measurement and was
then scaled to conform to the measurement of the measured averages
of Lanier (1939) by Schultz and Galante (1970).

The second aspect of the geometry is the positioning and orienta-
tion of the vertebrae in space. 1In all of these studies, it was
assumed that there is no curvature in the frontal plane, so only the
curvature in the sagittal plane was included. The first sets of
data were gerierated by taking the previous model of Schultz, et al.
(1974), which was for a standing position, and reducing the curvature
so as to correspond more closely with a seated position. Subsequently,
several radiographs of seated pilots were obtained and digitized
so that the configuration could be determined. The base point
coordinates in the y-z plane for the ad hoc conliguration and one of
the radiograph configurations is given in Table 5. The overall
lenath of the thoracolumbar columns for this data corresponds closely
to tha. of an averaye male. Clauser (19G68) reported that in a cample
of 13 male cadavers, the mearn distance from omph=lian to cervicale
is 43.5 cm and cited an earlier unpublished Air Force study in which
the same figure was reported. The nearest :ﬂrfesponding dimension in
this model, the distance from L4 to Tl, is 43.3 cm., which is in good
agreement.

The vertebral body heights and the disc heights along the ~erntral
axis are based on the data of Lanier and Todd and Pyle (1928), in
the thoracolumbar spine. In the cervical spine, che dimensions are

based on data provided by AMRL and the orientations were measured from

radiographs.
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Table 5 Geometry of Spine

Coordinates of

Vertebral Body Intervertebral

T T S W R

Vertebral Inferior End Plate Center Height Disc Height*
Level y (cm) = lem) (cm) (cm)
L5 1.800 2.020 2.392 1.859 .
L4 1.100 5.700 2.636 1.354
L3 1.000 9.550 2. 751 1.223
L2 1.331 13.450 2.792 . 173
Ll 2.142 17.150 2.726 0.996
T12 3.003 20.590 2.567 0.822
T1l1l 3.882 23.680 2.433 0.645
T10 4.594 26.500 2.298 0.477
T9 4.849 29.240 2.146 C.460
T8 4.638 31.830 2.073 0.459
T7 4.580 34.300 2.019 0.404
T6 4.250 36.610 1,990 0.314
TS5 3.990 38.850 1.957 0.266
T4 3.690 41.000 1.902 0.214
T3 3.350 43.150 1.850 0.274
T2 2.920 45.260 1.790 0.306
Tl 2.410 47.440 1.648 0.448
c7 1.909 49.420 1.612 0.394
Cé 1.760 51.448 1.516 0.434
C5 1.460 53.516 1.515 0.576
C4 1.290 55.439 1.513 0.417
C3 1.484 5] »332 L. 511 0.398
c2 1.636 59.239 1.500 0.408

* Indicates disc below vertebral level.
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The secondary nodes of the vertebrae are interconnected by
deformable elements which represent the connective tissues, ligaments
and the intervertebral disc. The center line of eaclh intervertebral
disc element connects the centers of the endplates of adjacent
vertebra. Each intervertebral disc has stiffness in bending due to
both flexion-extension and lateral bending, in torsion, and in the
axial mode,

The stiffnesses are based primarily on the experimental work of
Markolf (1970), Brown, Hansen and Yorra (1957), Rolander (1966) and
Kazarian (1972). These experimental measurements were augmented by
model studies of the intervertebral disc under axial load performed
by Kulak (1974). A large part of the procedure of assigning these
stiffnesses has been summarized in Schultz, Belytschko, etal (1973).
That paper also lists 12 other sources of intervertebral disc data
which have been considered in developing the daca used in the model.

In spite of the wealth of literature available on this topic,
the experimental data is inadequate for assigning stiffnesses at each
vertebral level. However, geometrical dimensions at every level have
been provided by Lanier (1939). In order to estimate stiffnesses
at each level, it was assumed that stiffnesses vary in relation to
the geometry. This is equivalent to assuming that intrinsic material
properties do not vary significantly with vertebral level. Thus, by
using the experimental values at the levels atwhich they are available
and by using the geometrical ratios for other levels, stiffnesses
were assigned tc every level of the sgpine.

The procedure by which this was done follows. First, each disc

was idealized as an elliptical ring of linear, elastic material
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corresponding to the annulus fibrosis. The outside ellipse is

defined by major and minor diameters a, and bo’ respectively, and
the inner eilipse by major and minor axes a; and bi’ respectively.
These two ellipses were assumed o be concentric. Lanier's mean
values of the transverse and sagittal diameters of each vertebral
body were assigned to a, and bo, respectively, and to the height h.
The interior diameters were assumed to ke 0.75 of the outer diameters,
based on Farfan et al. (1970). It was assumed that this elliptical
ring, representing the annulus fibrosis and longitudinal ligaments,
provides the major resistance to bending, torsion and shear. This
assumption is realistic in view of the hydrostatic behavior of the
nucleus pulposus reported by Nachemson (1960), for a hydrostatic
material does not contribute tc shear or torsional resistance, and
contributes to bending resistance only if it is located asymmetrically
with respect to the neutral bendir.g plane. The axial stiffness was
assumed to be proportional to the total cross-sectional area of the
disc.

It follows then from strength of materials that the stiffnesses
vary from level to level in proportion to the following geometric

factors: for tension, compression, and shear

b =

A (aobO - aibi) (4.1)

O b

for bending about the minor diameter

3 3
(aobO aibi) (4.2)

o
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for bending about the major diameter

_1 3 3
r =¢ (ab> - a.by) (4.3)

for torsion

3.3 3.3
.- l( aob0 ) aibi ) 4. 4)
S 1V oes Bl

o "o i i

Extensive data is available on the stiffnesses at the L3/L4 and
T8/T9 levels from cadaver material measurements. There is also some
data on the upper thoracic spine. From the data the disc stiffnesses
at other levels were calculated by using the geometrical ratios
listed above. Finally, measured stiffnesses at several other levels
were used to check on the consistency of the data, which was found
tc be quite good.

Becaﬁse the discs are very short, shear action is quite strong.
To account for this, shear factors ¢ which appear in Eq. (1.4) were
added to account for the shear behavior.

Another aspect which had to be considered in this study is the
nonlinearity of the force deflection characteristic of the disc. Very
little data is available from which the nonlinearity could be pre-
cisely established, except for perhaps the axial force-deflection
behavior of the disc. The nonlinearity in the axial mode is distinctly
different in the lumbar and throacic regions. As can be seen from
Fig. 12, the axial beghavior of the disc is gquite nonlinear, parti-
cularly if one considers both the tensile and compressive regimes.

However, if the preloaded state resulting from body weight is
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considered as a point of reference, then the behavior of the disc

for compressive loads above that point is rather linear. In addition, ?

it can be seen that a linear approximation to the behavior above that
point requires a greater stiffness coefficient than from the unloaded
state, by a factor of about 1.33. However, the data used in the

model does not include this factor. Although the model could ; I%
handle a cubic force deflection curve which would approximate .%
the behavior shown in Fig. 1Z quite closely, it was not used because
of the difficulties of introducing the preloaded state into the cubic i .J

curve.

Th axial force deflection characteristics in a thoracic spine §
are illustrated in Fig. 13. It can be seen that both experimental
reasurements and computer model results based on the nonlinear stress-

i
strain curve as reported by Kulak, et al. exhibit very linear behavier. §
Therefore in the thoracic and cervical regions, a linear curve is |
adequate and no further modifications are contemplated. It may be

mentioned that the increased linearity of the axial behavior of the

thoracic and cervical discs is related to the reduced relative height
of these discs, where the relative height is defined as the ratio of
height to average diameter. This relative height is considerably
smaller in the thuracic and cervical regions. For discs with small
relative height, the application of axial load does not result pri-

marily in hoop stress in the annulus, but a combination of compressive

and tensile stresses, so that the nonlinearities of the material tends

to cancel. The damping coefficients were based on the work of §
Payne (1971) and Kazarian (1972). A summary of allmaterial properties

for the discs is given in Table 6.
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The ligaments are represented by spring elements which connect
the secondary nodes representing the spinous process tips (inter
and intra spinous ligaments), spring elemerts connecting the transverse
process tips (inter-transverse ligaments) and springs connecting
points on the vertebral body, which represent mainly the ligamenta
flava. All of these elements are rionli~ear in that they have no resistance
in compression, i.e., when thay are slack. In the thoracolumbar spine,
the articular facets are also represented by spring elements. The
locations of the secondary nodes to which these spring elements are
connected were adjusted so that the line of action of the facet forces
corresponds to the normal to the facet planes. Typical lines of
action for articular facets in the lumbar and thoracic spine are given
in Table 7.

The model of the cervical spine is similar to that of the thoraco-
lumbar spine, except that no ligaments were included at this time
and that each articular facet plane was represented by three points,
so that the hydrodynamic element could be used to model the facet
joint. The intervertebral disc heights in the cervical spine were
obtained fromdata provided by AMRL. The data included both an anterior
and posterior disc height, so these were averaged for use in the model.
The vertebrali geometry was obtained from direct measurement of a
cadaver spine. These measurements included vertebral body height,
endplate areas, spinous process location and three points on each
superior articular facet plane. Bocth right and left superior articular
facet planes were measured and these were then averaged to obtain a
symmetric configuration. The inferior articular facet planes were

obtained by placing the cervical vertebrae in a standard configuration
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Table 7.

pipepm R

B o

Lines of Action of Articular Facets

Vertebral Level

X-component

y=component

z-component

L5-L4
L4-L3
L3-L2

: L2-Ll

' L1-T12
T12-T11
T11-T10
T10-T9
T9-T8
T8-T7
T7-T6
T6-T5
T5-T4
T4-T3
T3-T2
T2-T1

-0.96
-0.87
-0.85
-0.99
-0.71
-1.00
0.13
0.13
0.16
0.14
0.39
0.
0.
0.44
0.22
0.31

0.2
0.48
0.42
0.09
0.54
0.
0.97
0.89
G.92
0.93
0.76
0.99
0.99
0.69
0.81
0.69

0.18
0.

0.31
0.08
0.43
0.

0.14
0.44
0.33
0.31
0.51
0.13
0.07
0.56
0.53
0.65
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obtained from a radiograph and then defining the points of the

inferior articular facet planes so that they are parallel and

a prescribed distance from the superior facet planes; this dis-
tance was measured in a direction normal to the facet plane. The
resulting configuration is illustrated in Fig. 14. The facet
planes in these figures appear as triangles. The force deflection
characteristics of the facet joint waé then modélled with the

hydrodvynamic element described in Chapter II.

2. Rib Cage

The model of the rib cage consists of rib pairs 1 - 10 and the
sternum. Each rib is modelled as a rigid body, with the deformability
of the rib cage represented by deformable elements which represent
the costo-transverse and costo-vertebral articulations. The location
of the superior and inferior costo-vertebral CV articulations and
the costo~transverse CT articulations were based on those reported in
Schultz, Benson and Hirsch (1974). The diagram from Andriacchi, et al.
{1974) indicates the nature of these data. The geometry of each rib
is characterized by 8 points placed as follows: two coincident
points in the costo-tuberco defining the position of the costo~trans-
verse articulation, a pair of inferior and superior points placed at
the rib head at the positions of the costo-vertebral articulations,
two points placed along the inferior and superior borders of the rib
shaft at themid axillary line to provide points of attachment for
deformable elements :representing the elastic behavior of soft tissues
occupying the intercostal spaces,and a pair of points at the interior

end of the calcified portion of the rib providing points of attachment
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Cervical spine geometry.

Figure 14.
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for deformable elements which represent the costo-cartilages. Rib

geometry data were obtained from measurements reported in Schultz,
Benson and Hirsch, (1974a). Data describing the rib shaft geometry
are reported in Table 9, taken from Andriacchi, et al., The rib cage
geometry is illustrated in Figs. 8 and 9. The stiffness properties
of the deformable elements used in the rib cage are summarized in

Table 10.

3. Viscera and Abdominal Cavity

The abdominal cavity and viscera are represented Ly hydrodynamic
elements stacked in series with rigid bodies between each layer as
shown in Fig. 10. The compressibility of the model from an analytical
viewpoint is thus entirely axial. In the actual viscera, the wave
motion is mainly governed by the interaction of the walls of the
torso and its contents. Thus, in response to a compressive load, the
vigcera would move vertically and laterally, with the latter compon-
ent stretching the abdominal walls.

The mechanism of wave propagation through the viscera by an
interaction of the membrane lining and the hydrodynamic contents has
been studied by Torvik (197/0). He derived relationships for hoth
large deformations of the membrane and nonlinear membrane response.
For small deflaction, linear membrane response, he gives the

standard water hammer formula for wave speed

« Et
¢ 2rp

where E is Young's modulus for the membrane wall, t the thickness of

(4.5)

the wall, r its radius and p the density of the fluid, which in this
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case are the viscera. This formula neglects the compressibility of

the viscera. 1If we let E, the modulus of skin (although the

passive resistance of muscles is also included) be 60 x 106

and let t=1 cm, r=10 cm we obtain ¢ = 1700 c¢m/sec. This corresponds

very well with the values measured by Weis and Mohr (1967), which

are 1980 cm/sec.

The bulk modulus is then computed by the standard formula

for acoustic wave speed.

B = pc? (4.6)

This gives an effective value for B of 3.92 x 106 dynes/cmz.
This bulk modulus should not be interpreted as a bulk modulus of
the viscera; it represents a constant that reflects the combined

action of the membrane walls and the abdomen.

The visceral elements are connected through rigid bodies to ribs

T10. This implies that all axial load in the abdominal cavity is

transferred to the rib cage; no axial load transfer to the interior

of the thoracic cavity is assumed. The bottom visceral elements are

connected to the pelvis.

4. Head

The head is modalled as a rigid body. 1In the examples studied,

any helmet or helmet mounted devices were assumed rigidly attached
to the head, so the mass and mass moments of inertia of these were

simply added to the head. However, it is possible to separate the

inertias of the head and helmet and interconnect the two by springs

102
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as shown in Fig. 15.

The mass of the head was chosen to be 4.6 kg, the mass moments
of inertia about 400 kg-cm2 based on the anthropometric dummy mea-
surements of Bartz (1972). The helmet masses were based on the
average of 3 helmets measured by the investigators. These had an

average mass of 1.4 kg and mass moments of 100 kg—cmz.

5. Pelvis

The pelvis was represented as a rigid body with a mass and mass
moments of inertia given in Table 11. The data is taken from Bartz
(1972). The geometrical aspects of the pelvic representation are

shown in Figs. 8 and 9.

6. Preliminary Evaluation of Injury Potential

In order to obtain a qualitative estimate of the injury potential
of various combinctions of sagittal plane moments and axial force
for the vertebra=, a method of calculating the maximum stress in the
vertebrae based c:. the combined axial force and moment predicted by
the model was developed. This is only a simplified model, but it is
indicative of the effects of moments on stress levels in the vertebral
bodies. Since injury is probably related to stress levels, this
method gives a means for evaluating the effects of the moments. We
idealize the vertebral body as alcylindrical shell of radius r, and
height h. The shell is considered to be cortical bone with a Young's

11

modulus of 1.5 x 10 dynes/cmz. The interior of the shell (vertebral
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core) is trabecular bone (soft bone), with a mean modulus of elast-
icity Ei = 7.35 X 108 dynes/cmzﬁ“ These moduli were obtained from
Evans (1970). The following aspucts of the vertebra's geometry have
been neglected:
1. The variation of cross section with z, the cross section of the
vertebral body as shown in Fig. 16 is simplified as shown.
2. The ellipticity of the endplates is neglected and a circular
cross section is assumed.
The maximum stress for any combination of moment M and axial
force P occurs in the cortical bone and is obtained by superimposing

the stress due to bending Oy and the axial stress Ope The bending

stress is computed from

E(r) ' (4.7)

Q
]
oK

where p is the radius of curvature, E is Young's modulus, which is

given by

[T

o Ei <
E() =3z, s (4.8)
9

=
]
x
o2
o
s
]

Yo /2
44/. J/' EESEQ E(r) rcosf rdrd6
(o) o} e

(4.9)
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Figure 16. Idealization of vertebral body for preliminary

evaluation of injury criteria
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P 4 4_. 4
o n{airi + E_(r %-r; )}

and

- 4Mrccsd E(r)
= (' 31
B n{Eiri + E_(r %-r; M7

The axial stress due to axial force is given by

UA = E(r)eo

where € is constant, and

N g
P = J/; dA = 21¢e J[ o E(r)r dr
o °Jo

_ 2 2 2
= neo{Eiri + Eo(r0 r, )}

or

P
S 3 PA P ———
o) n{Eiri + Eo(ro r, )}

and

- P El(r)
PA b 4
A n{Eiri + B (r r, )}

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

Next, we superimpose the two stresses and aote the maximum occurs

at r = T, and 6 = 0. This gives




AR 3

4Mx E
Y = 7 22 | 3
max n{Eiri + Eo(r0 -, )}

(4.16)
PEq

+
m{E.x.<¢ + 2oy 4
{ =i Eo(r0 r, )}

An equivalent circular radius r, for the vertebral bodies was
determined so that the area of the two geometries was the same. The
thickness of the cortical bone was assumed to be a constant 0.3 mm
for all the vertebrae, i.e. r,=r - 0.3 mm. The maximum axial force
for each vertebrae were obtained from Payne (1971), who summarized
the results of several experiments ccacerned with the compressive
breaking load of individual vertebrae. From this data, the maximum
breaking stress under only axial load and the pure moment without
axial force were determined. The results of these calculations are
summarized in Table 12. As can be seen, the breaking strength as
computed by this formula is fairly constant over the entire spine,
except for moderate deviations in the iumbar and upper thoracic verte-
brae. Figure 25 depicts the moment-axial force interaction line of
several vertebral levels (alternating levels weir omitted for clarity).
Each point on a line represents the combination of moment and axial
force which corresponds to the maximum stress for that vertebral

level.
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7. Inertial Properties

Inertial properties for the motion segments of the isolated
thoracolumbar spine were taken from Liu, et al (1973) and are given
in Table 11. 1Inertial pruperties for the rib cage model were
assigned by attributing 10% of the thoracic mass to this portion
of skeletal structure. For the viscera model the lumbar mass was
equally distributed among the five vertebrae and two rigid bodies
used in the model. The sagittal plane rotational inertia of the
lumbar vertebrae were reduced based on measurements and calcula-
tions obtained from anatomical cross sectional geomevries. A
summary of the inertial propertics of the spine torso model with
rib cage is given in Table 13. Inertial properties for the cer-
vical motion segments were obtained by distributing the mass uni-

formily at each vertebral level; see Table 13.
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Table 13. Inertial Properties for Complete Model

Motion 2 P1 Ixx% Iyy] IzzI

Segment Grams x 103 Gram-cm® x 104 Gram-cm? x 105 Gram-cm? x 105

Pelvis 16.200 128. 000 20.000 © 19,300 .

L5 1.500 2.783 1.795 2,382 |

L4 1.500 2.748 1.704 2.291 :

L3 1.500 2.809 1.682 2.280 g

L2 1.500 2.840 1.695 2,291 f
L1 1.500 2.740 1.569 2,212 |
T12 1.556 7.002 1.309 1.919 !
T11 1.453 7.056 1.230 1.941 |
T10 1.202 6.028 1.129 1.648 |
T9 1.267 6.164 1.230 1.716 |
T8 1.176 5 543 1.208 1.670 }
T7 1.158 5.347 1.219 - 1.659 |

6 1.043 4.425 1.162 1.546 ]
"5 1.025 3.383 1.151 1.490 1
T4 0.964 3.138 1.060 1.354 |

T3 1.010 2.278 1.174 1.422 l“
T2 0.974 2.007 1.029 1.230 |

Tl 1.209 0.745 0.518 1.716 2

C7-C2 1.000 0.700 0.500 1.500 |

Head 5.612 44,786 4.044 3.585 ?
:ibilgl 0.074 0.573 0.074 0.074 |

il 1.500 10.700 0.550 1.000 %
o 1.500 10.700 0.550 1.000 |
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8. Summary of Models

Model I, shown in Figure 17, consists of
i. thoracolumbar spine
ii. a single beam element which represents the
cervical spine
iii. pelvis
iv. head
Model II, shown in Figure 18, consists of
i. thoracolumbar spine

ii. a single beam element for cervical spine

iii. rib cage

iv. viscera represented by hydrodynamic elements ;4 o
; v. pelvis |
% vi. head A
i :
g Model III, shown in Figure 19, consists of é%
ﬁ i. thoracolumbar spine }
g ii. cervical spine modelled as individual vertebrae n

iii. pelvis

iv. head
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Side view of Model 1I.
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Figure 18. Side view of Model II.
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CHAPTER V

STUDIES OF SPINAL RESPONSE

1. Isolated Ligamentous Spine Model

The first group of studies reported here were conducted with
the 'model of the isolated ligamentous spine described as Model I
in the previous chapter. All of these problems were studied as
three dimensional problems, even though in most cases a two dim-
ensional model would have been adequate. 1In all cases, explicit
4

integration was used with a time increment of 10 ~ seconds, re-

quiring 800 time steps for a solution at 80 msec.

Response of unrestrained spine under 10 G,. The first study was

made to evaluate the response of the isolated ligamentous spine

under a perfectly vertical lOGz acceleration. A rate of onset of
714 g/sec was used; the acceleration was then maintained at a con-
stant level of 10g for 66 msec. Unlike other studies described in
this section, no seatback or restraints were included in this
solution.

The deformed configurations at 40, 60 and 80 msec are shown
in Figs. 20, 21, and 22. As can be seen, particularly at 80 msec,
severe curvatures of the spine have develonped, and the spinal
column can be considered to have buckled. Once the column has
buckled, the computed response is quite unrealistic. For example,
moments on the order of 3000 N-cm are developed in the lumbar
spine.

Liu, et al (1973) have observed a similar response in a homo-
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Response of unrestrained spine at 40 nsec.

Figure 20.
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Response of unrestrained spine at 60 msec.
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Figure 22,

Response of unrestrained spine at 80 msec.
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geneous bar model of the spine, but were inconclusive as to
whether this response is correct. However, if one considers that
Lucas and Bressler (1961) have shown a static frontal plane
buckling load of 20 to 100 Newtons for the thoracolumbar spine
constrained against sagittal plane buckling, then this response

is not unexpected. The bending stiffness of the isolated spine in
the sagittal plane is of the same order as the bending stiftness
in the frontal plane, and the initial sagittal plane curvature

of the spine reduces its sagittal mode buckling even further. The
10Gz environment results in axial loads of 4500 Newtons, and the
duration is on the order of 200 msec, which, as shown subsequently,
is of the order of the lowest flexural periods and 4 times the
axial period of the spinal column, so inertial effects cannot pre-
clude buckling. Hence it is not unexpected that the unrestrained
spine will buckle in this environment.

There are essentially two mechanisms that preven£ buckling
in the actual spine:

i. the action of the restraint system, seau;'ack and
musculature;

ii. the interaction with the torso and rib cage, which may
significantly increase the bending stiffness of the composite
spine/torso.

The results ir subsequent Sections reflect some attempts to
study the effects of the second mechanism. In all studies describe
in the remainder of this section, the seatback, restraint system,
and a simplified torso representation were included. These were

sufficient to eliminate buckling.
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An alternative to including constraints in the model would be
to use a small displacement method of analysis. However, small
displacement analyses are valid only as long as the actual displace-
ments of the spine are small. 1In problems such as that of
eccentric head loading, large displacements are undnubtedly encount-
ered and would invalidate a small displacement analysis.

Another point of interest in the response of this model is
that the effects of the ligaments are minimal. Because of the
large compression of the discs, the ligaments as modelled here all
become slack and provide no stiffness. This situationr continues
even as buckling is initiated: the ligaments do ..ot prevent
buckling. This is also true of the spring models of the articular

facet joint.

Effect of sagittal plane curvature. Two distinct curves

characterize the sagittal plane curvature; the lumbar curve formed
by the vertebrae L5 through L1, and the thoracic curve consisting
of T12 through Tl. Sagittal plane curvature changes from concave
., convex (when viewed postcriorly) in the region between L2 and
T1l. In this study three magnitudes of sagittal curvature were
simulated. The first, shown in Fig. 23, represents a seated con-

figuration in which the lumbar curvature averages 0.045 cm_l

the thoracic curvature 0,017 cm-l. This configuration was chosen

and

to illustrate an occupant with large lumbar curvature. The

second, shown in *ig. 24, is an erect configuration in which the

average lumbar curvature is 0.025 cmil. This configuration is

based on severel radiographs of pilots in ejection seats. The
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Seated Configuration with Large Lumbar Curvature.
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Erect seated configuration.
124

pZiul
Pl

Figure 24,




A vt 5 DOt O TR 05 A ety

e ——

third, shown in Fig. 25, represents a hypothetical configuratioﬂ
in which all sagittal plane curvature has been eliminated. In
this "straight spine" model all of the intervertebral disc ele-
ments are along the vertical axis as are the mass centers.

The maximum axial forces, Fig. 26, for the three configura-
tions decrease smoothly from bottom to top, particularly in the
"straight spine" model, and the curvature has little effect on the
values. On the other hand, a comparison of maximum sagittal plane
moments for the three models, Fig. 27, shows large differences
among the models. The maximum sagittal plane moment in both
curved spines occurs at L1-T12, the point where spinal curvature
changes from concave to convex. In general, the sagittal plane
moments for the erect configuration are smaller than for the
curved configuration at all levels, while in the straight spine,
the moments are smallest. These results indicate that the pre-
ejection configuration of the pilot is an important factor.

While the compressive forces in the vertebrae are not effected by
configuration changes, the additional stress due to the large
bending moments acting on the vertebrae may increase the possibil-
ity of injury.

Figures 28 and 29 show the maximum moment and axial force
predicted by the model for both of the curved configurations in
the vertebral bodies, to illustrate the simplified injury poten-
tial model developed in Chapter IV. The axial force and moment
values shown represent the average of the axial forces and moments
for each vertebrae in the discs immediately above and below it.

These values, in all cases, are the maximum that were observed
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Straight spine configuration.

Figure 25.
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during the 80 msec simulation (the maximum axial forces and
moments do not necessarily occur at the same time). The length of
the line segment with the arrow, relative to the distance of the
limit load from the origin, is one indication of the probability
0% no irjury at a level (if the point falls inside the limit line).
Thus, the probability of injury is somewhat greater for the more
curved spine, particularly in the T1-T5 region, where the distance
to the injury line is almost 20% less for the more curved spine.
Particularly if we consider the possibility that the moments may
serve as a triggering factor for failures, then the curved spine,
with its greater moments appears to have a greater injury poten-

tial.

Rate of Onset. One of the parameters of interest in the ejection

problem is the effect of changes in the rate of onset for the
acceleration. Rapid rates of onset result in dynamic magnifica-
tion of force and acceleration magnitudes. Hess and Lombard (1957)
reported that onsets of about 60 msec produced considerably higher
acceleration levels in the body than the maximum acceleration of
.he ejection seat. Alternatively, slower onset rates, (100 msec)
do not magnify acceleration levels, but may not provide adeguate
displacement of the pilot to clear the aircraft in the required
time. Two ramp acceleration profiles were simulated here. In both
the maximum acceleration is 10g; the slower onset profile reached
the maximum acceleration at 40 msec with an onset rate of 250g/sec,

the other profile reached maxi.”'m acceleration at 14 msec with an

onset rate of 7l4g/sec.
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Comparison of the maximum acceleration of the head showed a
19.07g peak at 60 msec for the rapid onset of 18.03g peak at 72
msec for the slow onset, which is a 5% reduction in the accelera-
tion level. Similarily, a comparison of maximum forces in the
lumbar region showed the axial disc forces were reducad by about
8%. Also the sagittal plane moments and facei forces were re-
duced by 10% to 15%. Thus the mcdel predicts, as expected, that
slower rates on onset reduce the dynamic magnification of axial
loads and accelerations and reduce the overall bending response
of the spine. Time histories of the head acceleration and forces

are shown in Figs. 30 to 33.

Angled Pulse (slanted seat). The »rientation of the ejection seat

with respect to the direction of the acceleration vector is an-
other consideration in the ejection problem. By reclining the
seat so that the acceleration vector has a slight anterior compon-
ent with respect to the axis of the spine, two beneficial effe- ts
arc introduced: (1) the acceleration component along the axis of
the spine is reduced, ard (2) the resulting anterior component of
acceleration provides support for the spine by forcing the seat-
back against the torso. Two orientations of the accelt«cation
vector were studied, one in which the axis of the spine and accel-
eration vector were aligned vertically with a peak acceleration
magnitude of 10g, and the other with a 30° included angla and a
10g peak acceleration magnitude resulting in 8.66g component along

the axis of the spine and a 5g anterior component.

Table 14 compares the maximum lumbar forces for three simula-
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tions of 80 msec duration: rapid onset with 30° included angle,
slow onset with no angle, and rapid onset with no included angle.
These results show a similarity in response for the rapid onset

at a 30° angle and the slow onset at a 0° angle, while the rapid
onset at 0° exhibits generally higher force levels, The similarity
in results for the rapid onset at 30° and the slow onset at 0°

can be attributed to a reduction in the effective inertial forces
in both simulations. In the slow onset simulation, the effective
inertial force is reduced by the decrease in dynamic magnification.
In the rapid onset at 300, a similar reduction in inertial force
results from the action of the seatback, which supports part of
the inertial load.

These results appear to indicate that within the constraints
of maximum possible seat angle and the required displacement of the
ejection seat for clearance of the aircraft, an optimum combination
of seat angle and rate of onset could be determined. This optimum

sclution should reduce force levels in the spine.

Eccentric Head Loading. An eccentric head mass, which represents

a helmet mounted device, was chosen to illustrate the behavier and
applicability of the model to this class of problems. 1In this
study, the head, in addition to its own mass, included a rigidly
connected 0.9 kg mass located 0.102 meters from the sagittal plane.
Because of the positioning of the added mass, the problem is not
symmetric about the sagittal plane, and a three dimensional
analysis is needed.

Figure 34 shows the axial force time histories at three levels
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Figure 34. Response of spine to eccentric mass distribution

of head.
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P of the spine. As can be seen frcm Fig. 34 the axial behavior

clearly demonstrates tlie progression of a compressive wave up the

spine at about 30m/sec. This value of axial wave speed in the

spine is in good agreement with the values reported by Hess and

i Lombard (1957) and Li, et al (1970). The peak compressive forces

Y occur earlicr in the upper levels of the spine, due to the
reflected expansion wave which moves down from the head cancelling,

' in parc, the upward moving compressive wave. Figure 34 shows the

3 i cervical moment in the frontal plane due to the eccentric loading.

Y

o This moment vanishes until the compressive wave has reflected from

'% the head; after reflection, a frontal plane moment is generated

in the cervical spine. This moment attains its maximum at about
65 msec, which is considerably later than when the peaks in com-
pressive forres are reached.

In the cervical spine, the intervertabral discs have very

- e S v gt e s

e : 0
R ok -6 B -

little bending stiffness, whereas the articular facets have large
moment arms about the sagittal plane. Hence, the forces in the
facets can be estimated neglecting the intervertebral disc moments
by assribing the moment to a difference of the vertical forces in
a facet pair. This calculation indicates that the peak, compres-
sive facet force is on the same side as the eccentric mass and

that its magnitude is about 103 Newtons, which is on the order of

two to three times the facet force without an eccentric head mass.

W, v i i
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2. Complete Spine Model

The studies reported in this Section were conducted with the
more complex model of the spine described as Model II in the pre-
vious chapter. With the exception of the last study, the seat-
back and restraints were included in all studies and the models
were driven by prescribing the acceleration of the ejection seat
to be lOGZ, with a rate of onset of 714g/sec over the first 14
msec to the maximum acceleration. The large bandwidth of this
model requires that the explicit integration technique be used. A

time increment of 10'“4 was sufficient for stability in energy.

Response of Rib Cage Model Under 10G,. In the first study, the

response of the rib cage model without any viscera was studied
under a vertical lOGz acceleration. Deformed configurations at

20, 49, 60, and 80 msec are shown in Fig. 35. As can be seen, the

entire rib cage collapses around the spinal column. There are
essentially two mechanisms that prevent the collapse of the rib

cage:

i the action of the musculature;

ii. the interaction of the viscera and rib cage; as the
viscera are compressed they subject vertical forces on the dia-
phragm which supports the rib cage.

Although no attempt was made to represent the complex inter-
actions of the musculature, consideration of the second mechanism
led to the development of the previously described multi-elemant

viscera model. As the results in the following section show, by
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including a representation of the viscera the collapse of the rib

cage was prevented.

Response of Complete Model Under 10G_. This study was made to

determine the response of the combined rib cage and viscera models

under +Gz acceleration. Figure 36 depicts the deformed configura-
tions of the model at 20, 40, 60, and 80 msec. This figure also
illustrates that the collapse of the rib cage described previously
is prevented by incorporating the viscera into the model.

More importantly, spinal response is altered by the inclusion
of the rib cage and viscera. A comparison of maximum lumbar forces
for the complete model and the isolated spine (Table 15), shows
an overall reduction in force levels. Experiments by Tennyson and
King (1974), in which eviscerated cadavers were subjected to +GZ
acceleration both with and without the abdominal cavity pressurized,
show a reduction in axial force lev~ls in the disc and articular
facets for the lumbar r=gion when the abdominal cavity was pres-
surized. 1In particular, the axial force levels are reduced by
about 12% to 23% which compares with the 10% to 25% reduction re-
ported in the experiments. The sensitivity of the axial force
reductions to the value of the bulk modulus of the viscera elements
was also considered; decreasing the modulus by a factor of four
(lxlo6 dynes/cmz) resulted in a 5% to 12% reduvction in force levels,
while increasing the modulus by a factor of four (1.6x107dynes/cm2)
reduced the axial forces by 20% to 35%.

The maximum internal pressures of the viscera model ranged

from 5.8x105 dyne/cm2 in the lower elements to 2.5x105dyne/cm2 for
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the upper visceral elements. These values of internal pressure

are substantially higher than the 1.4x105 dyne/cm2 value.used for

pressurization in the Tennyson and King experiments, or the prees-
sures of 2x105 dyne/cm2 reported by Morris, et al (1961) in

static measurements during weight lifting experiments. However,

it is felt that this range of visceral pressure is not unrealistic.
Using the counterpar= of Eq. (4.5) and the data employed to obtain
this wave speed, the maximum stressez in the abdominal wall are
computed to be 5.8x106 dyne/cm2 (84 psi). These stresses could be
confined by the musculature and the tissues alone, for the strength
of these tissues is on the order of 108 dyne/cmz. The resulting
expansion of the cavity would be 0.1 cm, which is probably unde-
tectable.

The addition of tha torso to the model reduced the bending
moments in the thoracic spine. Thus, although the abdominal
cavity-viscera model has almost no inherent bending stiffness,
the overall effect of this additional ¢»>lumn is to stiffen the
model in bending. This behavior is alsc reflected in the accelera-
tion of the head. The maximum acceleration is 19.6g, which is
slightly higher than that of the isolated column for the same con-

ditions.

Response of the Rib Cage Model During Frontal Impact. To illus-

trate another application for the dynamic response spine model, a
simulation of frontal impact, as would occur in an automobile
impacting a barrier, was conducted. The spinal model including

head, pelvis, legs and rib cage was given an initial velocity of
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l.34x103 cm/sec (30 mph) in the anterior direction, with the pelvis

subjected to a 6.7x104 cm/'sec2 (68.3g) posterior deceleration for
20 msec. The deceleration pulse was a step function with a de~
creasing ramp at the end of the pulse, the magnitude of the decel-
eration corresponds to an experimental measurement of a 30 mph
crash.

Displacement of the pelvis was prescribed to be consistent

w7ith the initial velocity and deceleration, such that the displace-

ment from the initiation of the deceleration to 20 msec was 13.42

cm. The pelvis was constrained from rotation in the sagittal

plane to simulate the effect of a lap belt restraint, although the

elasticity of the restraint belt was not included in this simula-
tion.
The head displaced 52.85 cm anteriorly at 40 msec and was

subjected to 1.63x104

cm/sec2 (16.65g) peak acceleration, also at
40 msec. An axial expansion wave travels up the spine at about
30 m/sec which is the same wave speed calculated for the com=-
pressive wave in the ejection simulations. FPeak tensile axial
forces in the intervertebral disc ranged from b.84x108 dynes at
the sacrum L5 level to 7.82x108 dynes at T11-T1l0 to 4.165x108
dynes at the T3-T2 level. Figure 37 shows the spinal configura-
tions irnitially and at 20 and 40 msec. The exaggerated position
of the upper torso at 40 msec is due to the fact that no shoulder
harness restraint was included in the simulation and the possible
interaction of the thoracic cavity with the steering column was

not considered. It also appears that the stiffness of the ribs

against rotation is too low.
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3. Modal Analyses

In order t¢ gain a better understanding of the dynamic
response properties of the spine, modal analyses were performed
on the ligamentous isolated column. The first set of results in
Table 16 gives the lowest 7 natural frequencies of the isolated
ligamentous spine,_Model I. In the modal analyses, neither the
seat nor the harness restraints are included. The spine was con-
strained from motion in the frontal plane; only motions in the
sagittal plane were considered. Material properties that do not
account for the preload of the body were used.

As can be seen from the results, the model is characterized
by a large number of very low natural frequencies. All of the
natural modes associated with these frequencies involve primarily
bending deformations of the spine. The lowest natural mode of
the system with significant axial deformation is the 7th mode,
which has a frequency of 17 cps.

When the harness was included, the natural [requencies shifted
as shown. Adding the harness introduces additional frequencies
which correspond to the motion of the pilo£ relative to the seat.
The lowest such mode is vertical, for the harness exerts little
vertical constraint. The fourth frequency, 5.62 cps, agrees rea-
sonably with resonance peaks found in the driving seat impedance
measurements by Vogt, et al (1968). However, the bending frequen-
cies seem to be sensitive to the nature of the model, so it is not

clear that this correlation is definitive.

In order to investigate these results further, the following

149

S




Al o STRIAE S S e o

Table 16. Natural Frequencies of Spine Models

i
i
i
!
5
i
i
t
H

Sagittal plane Freguencies

Model I Prasad-King Model

Without With Without
Harness Harness Head or Hips

1 1.28 0.31 3.66 1.38
2 3.14 1.78 8.17 4.48
3  5.99 2.35 13.01 7.70
‘ 4 9,94 5.62 17.70 11.74
" 5 13.31 10.25 22 .22 14.69
! 6 16.71 13.08 26.92 23.30
7  18.45 14.73 30.90 26.45

Axial Freguencies

o - A

Model 1 prasad-King Model

With Iead without
and Hips Head or Hips

1 17.09 30.12 19.41

2 32.31 61.02 39.29
| 3 51.29 87.08 80.61
| 4 77.22 114.87 113.18
E 5 100.74 142.42 148.81
1 6 124.89 167.41 179.48
!

= w4, Y R A

o o
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additional modal analyses were made

i. axial analyses in which the model was constrained from
all displacements other than axial;

Il analyses of the spine without head or hips;

iii. corresponding analyses on '. . rasad-King (1974) model.

The last analyses was performed to insure that the low
frequency response was not an idiosyncracy of our model. The
Prasad-King model is somewhat stiffer, for evidently the preload
is included in the material properties. However, the differences
are quantitative rather than qualitative: the Prasad-King model
low frequency content is also entirely flexural, and the axial
mode frequency is even higher. It becomes clear from these results
that contrary to widespread notions, the axial mode 1s never near
10 cps, and in fact hand calculations show that such axial
frequencies are almost impnssible. Evidently, the peaks in the
impedance curves found in axial harmonic oscillations of the human

body are due to the parametric excitation of bending modes .n the

spine. This hypothesis will be explored further.

4. Cervical Spine Model

The simulations report=d in this section were conducted with
the detailed model of the cervical spine described in Chapter IV.
Additional beam elements which act only in bending and interconnect
the primary nodes were included in the cervical spine. These were
added to represent the stiffness of the cervical musculature;

~vithout them it was found impossible to maintain stability of the
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cervical spine.

Because of the high stiffness of the facet models, including
the cervical region in the model reduces the stability limit of
the explicit integration procedure by an order of magnitude.
Explicit integration would therefore require 8000 time steps for
an 80 msec simulation. Because of the small bandwidth of this
model, implicit integration was quite suitable. A time step of
leo—4 seconds was used, and 160 time steps were needed for a 80
msec simulation. Although the implicit procedure increases the
stability limit, it is not well-suited for contact problems, such
as the seatback interaction. Thus a modified seatback, which
restricted both posterior and anterior sagittal plane motion was
used. In all cases ejection acceleration was prescribed as 10GZ,
with an onset rate of 714 g/sec cver the first 14 msec to the

maximum acceleration.

Symmetric Head Loading

Comparison of Detailed and Simple Cervical Spine Models. The

simple model of the cervical spine consists of a single beam
element which connects the top of Tl to the head mass. In both
the detailed and simple models the head mass is the same but the
detailed model includes the inertia of the cervical spine at each
vertebral level. A comparison of maximum force levels in the
upper thoracic region predicted by the two models shows an in-
crease in axial forces and a reduction in sagittal moments of the
intervertebral disc for the detailed model. The increase in

axial loads can be attributed to the additional inertia load of
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the cervical vertebrae, however the change in sagittal moments
could not be expiained. This reduction in bending response also
results in an overall reduction of articular facet forces in the
detailed model.

Compressive axial forces in the cervical rggion ranged from
1900 Newtons at C7 to 1000 Newtons at C2 whereas the single beam
element in the simple model has a maximum of 1000 Newtons since
only the inertia of the head was included. Sagittal plane moments
in the cervical region are distributed between the intervertebral
discs and the added keams which model the musculature with the
added beams c¢enerally having twice the disc moment. Both the
disc a:d adced beams have comparatively large moments at the
bottom and top of the cervical region, while the largest facet

forces occur in the center.

Increased Head Loading. This study was made to evaluate the

response of the cervical spine when a 0.9 kg mass is added to the
center of gravity of the head mass. The cervical force levels
with the added mass are significantly greater. Axial disc forces
increased 14% at C2 to 6.7% at Tl and sagittal plane moments
averaged a 6% increase with a corresponding average increase of
10% in articular facet forces. Hence increasing the inertial
load of the head by 14% results in an almost equal redistribution
of the added load in the axial component of the disc and the
articular facets.

In both of these simulations the head mass displaced about

0.5 cm in the posterior direction as a result of locating the
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center of mass slightly posterior to the line of action of the
cervical elements. This position of the head mass was chosen to
insure that the head would contact the seatback. An anterior
motion of the head can bhe simulated by shifting the location of
the head mass forward. However this would require a provision for

possible chin-chest contact.

Eccaitric Head Loading. In this study, the 0.9 kg mass was placed

10.16 m directly to the left of the head mass center of gravity.
This results in a 1.41 cm shift in the center of gravity of the
entire head mass to the left of the sagittal plane. Comparing
the results for eccentric and symmetric added mass shows almost
no change in the intervertebral disc forces with the exception of
frontal plane moments. However, as expected significant frontal
plane moments appear when the head mass is eccentric.

Of particular interest are the changes in the articular
facet load distributions. The largest changes occur in the upper
three facet levels, C3-C2, C4-C3, and C5-C4, where the facet
forces on the same side as the eccentric mass are increased an aver-
age of 37%, while the right side facet forces are decreased by
about 20%. The lower two facet pairs, C6-C5 and C7-C6, exhibit
a reversal in load distribution with the left side facet loads
decreasing by 11% and the right side facet loads increasing by
about 5%. This redistribution of facet loads combined with the
frontal plane moments in the intervertebral disc enable the cervi-

cal spine to carry almost all of the moment due tc the eccentric

head mass. Time histories comparing the eccventric and symmetric
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case are shown in Figs. 38 to 42.

In the above results, the added beams had no frontal plane
stiffness. When frontal plane bending stiffness is included in
these beams, part of the frontal plane moment due to the eccentric
head mass is carried in these elements. In this case all of the
facet loads on the side of the eccentric mass are increased by
about 20%. The right side facet loads were decreased from 24% at
C3-C2 to no change at C7-C6. Generally by including the frontal
plane bending in the additional beams both the disc moments and
facet loads are decreased.

A comparison of the simple cervical spine model with the
detailed model shows the lateral displacement of the head is
0.44 cm for the simple model and 0.52 cm for the detailed model
at 80 msec. Also the frontal plane moment in the simple model is
an order of magnitude greater than frontal plane moments predicted
by the detailed model. Thus ascribing all of the frontal plane
moment to the articular facets, as was done in the first section

of results for eccentric head loading, leads to an exaggerated

estimate of the facet loads. Maximum head accelerations were 18.9

for the simple model and 20.4G for the detailed model which are
similar to the results for the symmetric head loading. Frontal
and lateral views of the eccentrically loaded detailed model at

80 msec are shown in Figs. 43 and 44.
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Figure 39. Comparison of C5/C4 axial force for symmetric and
eccentric head mass.
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Figure 40. Comparison of C5/C4 sagittal plane moment for
symmetric and eccentric head mass.
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Figure 43.
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Figure 44. Side view of 80 msec configuration for crcentric
head mass.

163




[T, X~

T o, . AN S & Y e -

e
E N

REFERENCES

Andriacchi, T., Schultz, A., Belytschko, T. and Galante, J. "A Model
for Studies of Mechanical Interactions Between the Human Spine
and Rib Cage," J. of Biomechanics 7, 497-507, 1974.

Bartz, J.A., "Validation of a Three Dimensional Mathematical Model
of the Crash Victim," Proc. Symposium on Human Impact Response,
Warren, Michigan, 1973.

Belytschko, T., "Transient Analysis," Structural Mechanics Computer
Programs, ed. W. Pilkey, et al., University Press of Virginia,
255-276, 1974.

Belytschko, T. and Hsieh, B.J., "Nonlinear Transient Finite Element
Analysis with Convected Coordinates," Intl. J. of Num. Methods

in Eng. 7, 255-271, 1973.

Belytschko, T. and Schoeberle, D., "On The Unconditional Stability of
an Implicit Algorithm for Nonlinear Structural Dynamics," to
be published, J. Appl. Mech.

Brown, T., Hansen, R. and Yorra, A., "Some Mechanical Tests on the
Lumbosacral Spine with Particular Reference to the Intervertebral
Discs," J. of Bone and Joint Surg. 39A, 1135-1164, 1970.

Clauser, C., McConville, J. and Young, J., "Weight, Volume and Center
of Mass Segments of the Human Body," AMRL=TR-69-70, Wright-
Patterscn A.F.B., Ohico, 1969.

Evans, F.G., "Mechanical Properties and Histological Structure of
Human Cortical Bone," ASME Paper No. 70-WA/BHF-7, 1970.

Farfan, H., Cossette, J., Robertson, G., Well, R. and Kraus, H., "The
Effects of Torsion on the Lumbar Intervertebral Joints: The
Role of Torsion in the Production of Disc Degeneration,"” J. of
Bone and Joint Surg., 49A, 468-497, 1970.

Gourlay, A.R. and Watson, G.A., Computational Methods for Matrix
Equations, John Wiley ana Sons, 1973.

Hess, J.L. and Lombard, C.F., "Theoretical Investigations of Dynamic
Response of Man to High Vertical Accelerations," Aviation
Medicine, 66-75, 1958.

164




Tkl et

e s b s e, TR 5 ,"(_‘.3 S J:._:"ﬁ X
AR T T IR X A ;W b gy s el

Hurty, W.C. and Rubinstein, M.F., Dynamics of Structures,

Prentice-

Hall, Englewood Cliff, New Jersey, 1964.

IBM Scientific Subroutine Package, IBM Technical Publications
Department, White Plains, New York, 1967.

Kazarian, L., "Dvnamic Response Characteristics of the Human Vertebral
Column, An Experimental Study on Human Autopsy Specimens," Acta
Orthop. Scand. 146, 1972,

Kulak, R.F., "A Study of Intervertebral Disc Mechanics by the Finite
Element Method," Ph.D. Thesis, University of Illinois at Chicago,
1974.

Lanier, R., "The Presacral Vertebrae of American White and Negro
Males," Amer. J. Physical Anthro. XXV, 341-420, 1939,

Latham, F., "A Study in Body Ballistics: Seat Ejection," Proc. of
Royal Society 147, Series B, 121, 1957.

Li, T.F., Advani, S.H. and Lee. Y.C., "The Effect of Initial Curvature
on the Dynamic Response of the Spine to Axial Accelerations,”
Symposium on Biomechanical Models and Their Applications, published
by Aerospace Medical Research Lab, Wright-Patterson A.F.B.,
No. AMRL-TR-71-29, 621~-648, 1971.

Liu, Y.K. and Ray, G., "A Finite Element Analysis of Wave Propagation
in the Human Spine," Tinal Report for Contract F33615-72-C-1212,

Aerospace Medical Research Laboratory, Wright-Patterson A.F.B.,
Ohio, 1973.

Liu, Y.K. and Wickstrom, J.K., "Estimation of the Inertial Property
Distribution of the Human Torso from Segmented Cadaveric Data,"
Perspectives in Biomedical Eng., 1973.

Lucas, D. and Bresler, B., 'Stability of the Ligamentous Spine,"
Biomechancis Laboratory Report 40, University of California at
San Francisco, 1961.

Marchertas, A.H. and Belytschko, T., "Nonlinear Finite Element Formu-
lation for Transient Analysis of Thin Structures," Argonne
National Laboratory Report ANL-8104, Argonne, Illinois, Juna 1974.

Markolf, K., "Stiffness and Damping Characteristics of the ihoraco-
lumbar Spine," Bioengineering Approaches to Problems of the Spine,
National Institutes of Health, Bethesda, Maryland, 87-143, 1970.

165




LA

ERE R G iy b
B s
[ ™

2

T V. 2 e o

T it * it DI A SR . W et .

R T s s e

Moffatt, C.A., Advani, S.H. and Lin, C., "Analytical and Experimental
Investigations of Human Spine Flexure," American Society of
Mechanical Engineers, Division of Biomechanical and Human Factors,
71-WA/BHF~7, November 1971.

Morris, J.M., Lucas, D.B. and Bressler, B., "Roles of The Trunk in
Stability of the Spine," J. of Bone and Joint Surg., 43a, 1961.

Nachemson, A., "Lumbar Intradiscal Pressure, Experimental Studies on
Post Mortem Material," Acta Orthop. Scand. Suppl. 43, 15%60.

Newmark, N., "A Method of Computation for Structural Dynamics," J.
Eng. Mech. Div., Proc. of ASCE, 67-94, 1959.

Orne, D. and Liu, Y., "A Mathematical Mndel of Spinal Response to
Impact," J. of Biomechanics 4, 49-71, 1970.

Payne, P.R., "The Dynamics of Human Restraint Systems, Impact Accel-
eration Stress," National Academy of Sciences, National Research
Coun~zil, Publication No. 977, Washington, D.C. 1961.

Payne, ™.R., "Some Aspects of Biodynamic Modelling for Aircraft
Escape Systems," Proc. Symposium on Biodynamic Models and Appl.,
Wright-Patterson A.F.B., Ohio, 1972.

Prasad, P., King, A.I., and Ewing, C.L., "The Role of the Articular
Facets buring +Gz Acceleration," Bioengineering Division of the
American Society of Mechanical Engineers, 73-WAM/Bio-31,
November 1973.

Prasad, P. and King, A.I., "An Experimentally Validated Dynamic Model
of the Spine," Trans. ASME, 546-550, 1974.

Przemieniecki, J.S., Theory of Matrix Structural Analysis, McGraw-
Hill, New York, 1968.

Rolander, S., "Mctlon of the Lumbar Spine with Special Reference to
the Stabilizing Effect of Posterior Fusion," Acta Orthop. Scand.

Suppl. 90, 1966.

Schultz, A., Benson, D. and Hirsch, C., "Force-Deformation Properties
of Human Ribs," J. of Biomechanics 7, 303-309, 1974.

Schultz, A., Benson, D., and Hirsch, C., "Force-Deformation Properties
of Human Costo-Sternal and Costo-Vertebral Articulations," J. of
Biomechanics 7, 311-318, 1974.

Schultz, A., Belytschko, T., Andriacchi, T. and Galante, J., "Analog
Studies of Forces in the Human Spine: Mechanical Properties and
Motion Segment Behavior," J. of Biomechanics 6, 373-383, 1973.

166




B it St

Schultz, A., Belytschko, T., Andriacchi, T. and Galante, J., "Analog
Studies of Forces in the Human Spine: Computational Techniques,"
J. of Biomechanics 6, 361~371, 1973.

Tennyson, S.A. and King. A.I., "Effect of Intra-Abdominal Pressure on
the Spinal Column During +G, Accelerations," Advances in Bio-
engineering, ASME, November 1974.

Todd, T. and Pyle, S., "A Quantitative Study of the Vertebral Column
by Direct and Roentgenoscopic Methods," Amer. J. Physical
Anthro. XII, 321~-338, 1928.

Torvik, P.J., "An Analysis of Pressure Wave Generated in Seated Spinal
Impact," Symp. on Biodvnamic Models and Their Applications,
Dayton, Ohio Oct. 19:0.

Toth, R., "Multiplying Degree of Freedom, Nonlinear Spinal Model,"
Proc of 19th Annual Conference on Engineering in Medicine and
Biology 8, 1966.

Voyt, H., Coermann, R. and Fust, H., "Mechanical Impedance cf the
Sitting Human Under Sustained Acceleration," Aerospace Medicine 39,
675-679, 1968.

Weis, E.B. and Mohr, G.C., "Cin. .adiographic Analysis of Human
Visceral Response to Short Duration Impact," Aerospace Medicine
38, 10, 1967.

167




APPENDIX I

COMPUTER PROGRAM DESTRIPTION

1. Introduction

The program package developed here consists of “wo distinct
programs: an analysis program for predicting the dynamic response
of the human body under prescribed loads or accelerations and a
graphics package for depicting deformed and undeformed anatomical
configurations.

The techniques employed in the analysis program have been
described in Chapters 2 and 3. In the following Sections, the in-
put formats for this program and other information needed for its
use are given. The program, in addition to standard printer out-
put, has provisions for Calcomp and printer plot graphical output
of time histories of responses such as displacements, velocities,
accelerations, forces, stresses and strains.

However, the graphical depictions of the anatomy, such as
Figures 6, 7, 8, and 9 are obtained by a separate program, which
is described in Sections 12 and 13. The input for this graphics
package can be automatically generated by the analysis program in
punched card form. 1In addition, the graphics program can be used
independently for other studies.

Both programs were developed on an IBM 370/158 computer sys-
tem. They are completely written in FORTRAN IV, and with small
changes can be run on CDC and UNIVAC computers. For the analysis
program, both the running time and required core storage are

strongly problem dependent. A minimum of about 320 k bytes (80,000

words) is needed for small problems, while models which include
the rib cage and certain implicit models require about 520 k bytes
(140,000 words). Running time is 3 to 5 minutes for the simple

models, 10 to 20 minutes for the complex models on the IBM 370/158.

For the graphics package, about 320 k bytes (80,000 words) of core
storage are needed; rurning time is about 1 to 2 minutes.

The programs were developed as a research tool. An effort
has been made to maintain modularity of subroutine functions so
that additional features may be added. Care has been taken to in-
sure maximum versatility and usability, but because of the
evolutionary character of the development, these programs do not
have the ease of input, extensive internal error checks, general-
ized applicability of user-oriented, general purpose programs.
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2, Input Data

Card 1: TITLFE CARD (20A4)

Cols. FORTRAN Name Description |
1-80 TITLE Any 80 alphanumeric characters to identify }*
the problem; these characters will be ®

printed as a heading to the output.

Card 2: PARAMETER CARD (8I5,E10.6,I5)

1-5 NNODE Number of nodes in the model (includes §
primary and secondary nodes, but does not :
include orientation nodes).

6-10 NPRI Number of primary nodes in the model.

11-15 NAXOR Number of axis orientation nodes in the
model; these are used to determine the
orientation of the local § axis of the
beam elements (see Section 5).

16-20 NELE Number of elements in the model.

21-25 NUMMAT Number of different element section and
material types; each group of Card 4 con-
stitutes a section-material type.

26-30 NUMDIS Number of nodes at which any displacement
components are specified either a zero or
nonzero value.

31-35 MXSTEP Numnber of time steps to be taken.

36-40 NDGREE Number of degrees of freedom per node
(should pe six).

41-50 DELT Time increment.

51-55 NODMAX Largest node number in model (default
value: NODMAX = NNCDE + NAXOR).

Card 3: PROGRAM CONTROL CARD (16I5)

1-5 KONTRL (1) Global or local coordinate option (see
Section 9).

KONTRL (1) = 0: All nodes are input in
global coordinates. '
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Cols.

6-10

11-15

16-20

21-25

26-30

31-35

36-40

41-45

46-50

FORTRAN Namq

KONTRL (2)

KONTRL (3)

KONTRL (4)

KONTRL (5)

KONTRL (6)

KONTRL(7)

KONTRL (8)

KONTRL (9)

KONTRL (10)

Description

KONTRL (1) = 1: Secondary nodes are input
in the local coordinates of the associated
primary node {rigid linkage).

Print option.

KONTRL (2) = 0: Print time h gstories of
stress, displacement, etc.

KONTRL(2) = 1: Omit printing of time
histories.

Control parameter for initial bhody axes.

KONTRL{3) = 0: Initial orientations (time = 0)
of body coordinates bj of nodal masses are
taken to be the principal axes as found by
an eigenvalue routine.

KONTRL(3) = 1l: Initial orientations of body
coordinates bj are coincident with the
glubal coordinates.

Number of sliding intecface planes (see
Section 3)}.

KONTRL (5) /1000 is the beta parameter in

the Newmark B integration (should be zero
for explicit intejration and 250 for im-
plicit integration).

‘IMPLICIT ONLY; If the number of iterations
for the last step iz 2 KONTRL(6) then a
new stiffness matrix is formulated for the
next step, otherwise the previous stiff-
ness matrix is used.

({IMPLICIT ONLY) Maximum number of itera*ions
per step.

(IMPLICIT ONLY) EPSLON*1000, energy error
criteria.

(IMPLICIT ONLY) Rotational equations of
motion.

KONTRL (9} = 0: Angular velocity product
terms omitted.

KONTRL(9) = 1: Angular velocity product
terms included.

(IMPLICIT ONLY) Geometric stiffness matrix.
KONTRI. (10) 0: Omitted.
KONTRL(10) 1l: Included.

it
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Cols.

51-55

56-60

61-65

6670
71-75

76-80

FORTRAN Name

KONTRL (11)

KONTRL (12)

KONTRL (13)

KONTRL {14)
KONTRL (15)

KONTRL (16)

Description

Secondary~-Primary node identifier (see
Card 5 NOLAL DATA CARD).

KONTRL(11) = 0: Default node type is
secondary node.

KONTRL{11l) = 1: Default node type is
primary node.

{IMPLICIT ONLY) Modal analysis option.
KONTRL(12) = 0: No rmodal analysis.
KONTRL (12)

KONTRL(12) 2: Modal analysis with punched
card output for plotting mode shapes of
spine.

1

1: Modal analysis.

[

Damping option.

KONTRL (13) = 0: Critical damping
KONTRL{13) = 1l: Viscous damping
Not used.

Program restart option.

KONTRL (15) = 0: No action.

KONTRL(15) > 0: Step at which all informa-
tinn is written on unit 13 for later re-
start of problem.

KONTRL (15) < 0: Number of seconds left in
job when all information is written on
unit 13.

Debugging print option.
KONTRL (16} = 0: No action.

KONTRL(16) > 0: Step at which current values
in all arrays are printed out and execution
continues.

Card 4: MATERIAJ. PROPERTY CARDS (15,/,6El10.4,/,6E10.4)

Three cards are required per material section. The input format
depends on the element for which the data is needed, so choose
appropriately from A, B, C, or D.

card 4A. Material-section property cards for 3-D AXIAL SPRING ELEMENTS.

Card 4A.1
1-5

MTYP

Material type number; the following material
properties apply to all elements, JE, with
NODE(9,JE) = MTYP. {(See Card 6: Element
cards.)
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Cols.

FORTRAN Name

Card 4A.2

1-10

11-20

21-30
31-40

41-50
51-60

1-10

11-20
21-30
31-40
41~-50

51-60

E(1,MTYP)

E(2,MTYP)

E(3,MTYP)
E (4 ,MTYP)

E(5,MTYP)
E(6,MTYP)

Card 4A.3

E(7,MTYP)

E (8,MTYP)
E(9,MTYP)
E(10,MTYP)
E(11,MTYP)

E(12,MTYP)

Card 4B: Material-section

Description

Tension or compression cutoff option.

E(1,MTYP) < 0: Element has stiffness only
in compression.

E(1,MTYP) = 0: Element has stiffness in
both tension and compressio.

E(1,MTYP) > 0: Element has stiffness only
in tension.

Either Young's Modulus or axial stiffness
can be spacified, see E(7,MTYP) for
implementing this option. (See Section

8 for consistent units.)

Not used.

Slack in spring, expressed as a strain
offset (set equal to zero if no slack is
desired).

Not used.
Not used.

Cross sectional area. Note: If area is

specified as negative, then E(2,MTYP) is
the axial stiffness of the spring, i.e.

E(2,MTYP) = AE/L.

Not used.
Not used.
Not used.

Damping factor in fraction of critical
damping or fraction of viscous damping for
these elements. (see KONTRL(13))

Not used.

property cards for 3-D LINEAR, ELASTIC

1-5

RECTANGULAR BEAM

ELEMENT

Card 4B.1

MTYP

Material type number; the following
material properties apply to all elements,
JE, with NODE(9,JE) = MTYP (see Card 6,
Element Cards).
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Cols.

FORTRAN Name

Card 4B.2

1-10

11-20
21-30
31-40
41-50

51-60

E(1,MTYP)

E(2,MTYP)
E(3,MTYP)
E (4,MTYP)
E (5,MTYP)

E(6,MTYP)

Card 4B.2

1-10
11-20

21-30

31-40

1-50

51-60

Card AC: Material-section

E(7,MTYP)
E(8,MTVP)

E(9,MTYP)

E(10,MTYP)

E(11,MTYP)

E(12,MTYP)

Description

Density (see Section 8 for consistent
units) .

Elastic modulus.
Not used.
Not used.

Local z cross sectional dimension.

Poisson's ratio.

Cross sectional area.

o~ . (3 .
Local y cross sectional dimension.

Shear deformation parameter in the local
¢y direction; set to zero for no shear
effects (see Chapter I).

Shear deformation parameter in the local
z direction; set to zero for no shear
effects (see Chapter I).

Axial damping factor in fraction of
critical damping or fraction of viscous
damping for these elements. (see KONTRL(13)).

Bending damping factor in fraction of
critical damping or fraction of viscous
damping for these elements. {see KONTRL(13)).

mroperty cards for 3-D SPINAL DISK BEAM

ELEMENT

Card 4C.1

1-5

MTYP

Card 4C.2

B(1,MTYP)

E(2,MTYP)

Material type number, the following
material properties apply to all elements,
JE, with NODE(9,JE) = MTYP (see Card 6
Element Cards).

Axial stiffness (see Section 8 for con-
sistent units).

Torsional stiffness.
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Cols.

21-30
31-40
41-50
51-60

Card 4C.3

1-10
11-20
21-30

31-40

41-50

51-60

FORTRAM Name

E(3,MTYP)
E (4,MTYP)
E (5,MTYP)
E (6,MTYP)

E(7,MTYP)
E(8,MTYP)
E(9,MTYP)

E(10,MTYP)

E(11,MTYP)

E(12,MTYP)

Description
Bending stiffness about the local § axis.
Bending stiffness about the local Z axis.
Cubic bending stiffness about local y axis.

Cubic bending stiffness about local z axis.

Not used.
Not used.

Shear deformation parameter in the local
¢ direction: set to zero for no shear
effects (see Chapter I).

Shear deformation parameter ir the local
Z direction; set to zero for nu shear
effects (see Chapter I).

Axial damping factor in fraction of
critical damping or fraction of viscous
damping for these elements (se= KONTRL(13)).

Bending damping factor in fraction of
critical or fraction of viscous damping
for these elements (see KONTRL(13)).

Card 4D: Material-section prow»erty cards for PRESSURE VOLUME

PENTAHEDRON ELEMENT

Card 4D.1

=5

Card 4D.2

1-10

11-20
21-30
31-40
41-50
51-60

i

>

MT?

o=

E (1,MTYP)

E (2,MTYP)
E (3,MTYP)
E{4,MTYP)
E (5,MTYP)
E (6,MTYP)

Ma'ericl type number, the follcwing

mater 1 properties apply tc all elements,
JE, with NODE(9,JE) = MTYP (see Card 6,
Element Cards).

Bulk modulus (see Section § for consis-
tent unita).

Not used.
Not used.
Not used.
Nct used.

Nut used.
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Cols. FORTRAN Name Description
Card 4D.3

E 1-10 E(7,MTYP) Not used.

‘ 11-20 E(8,MTYP) Not used.

3 21-30 L (9,MTYP) Not used.

E- 31-40 E(10,MTYP) Not used.

é 41-50 E(11,MTYP) Not used.

1 51-60 E(12,MTYP) Damping factor in fraction of viscous

. damping for these elements. I

2

et gard 5: NODAL DATA CARDS (I5,4x,Al,7E10.4) 4

3

3 NNODE ar.d NAXOR cards are required; the orientation nodes must

follow all regular nodes.

é 1-5 N Node number.

( 6-10 NODTYP Secondary-Primary node identifier.

] NODTYP = S: specifies this node is

_ secondary.

A NODTYP = P: Specifies this node is pri- ; .

. mary.

3 (NOTE: This method of node type identifica- % ~

3 tion is used elong with KONTRL(1ll) to i
identify primary nodes whose mass is cal- Chdal |

culated by the program, i.e. for 3-D
rectangular beams.)

gy 11-20 XC (N) X - coordiante S
] 21-30 YC (H) Y - coordinate
? 31-40 ZC(N) Z - coordinate
’ 41-50 TMASS (1) Translational mass.
51-60 TMASS (2) Global X moment of inertia, Ixx
61-70 TMASS (3) Global g moment of inertia, Iyy
71-80 TMASS (4) Global 72 moment of inertia, Izz

(S2e Section 6 for description of mass lumping at the nodes.)

Card 6: ELEMENT DATA CARDS (15I15)

k NELF cards are required.

Card 6A: Element Data Card for 3-D AXIAL SPRING; 3-~-D LINEAR, ELASTIC
RECTANGULAR BEAM; and 3~D SPINAL DISK BEAM ELEMENTS

1-5 M Element number.

TR O R O
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Cols.
6-10
11-15

16-20

21-25

26-30
31-35
36-40
41-45

46-50

51-55

56-60
c1=65
66-70
71-75

FORTRAN Name

NODE (1, M)
NODE (2, M)

NODE (3,M)

NODE (4, M)

NODE (5, M)
NODE (6,M)
NODE (7 ,M)
NODE (8, M)

NODE (9, M)

NODE (10, M)

NODE (11, M)

Les

NODE (13,M)
NODE (14, M)

nDE('l') MY

P ALY

pescrigtion

Node I

Node J (The local X axis is directed from
Node I to Node ).

If node I is not a primary node, the pri-
mary node associated with node I (see
Section 5).

If node J is not a primary node, the pri-
mary node associated with node J.

MNot used.
Not used.
Not used.

Node K, axis orientation node number to
be used in orienting the element local %
axis; the y axis lies in the plane of
nodes i, J, and K (see Section 5).

Material type number; for each material
type, a set of material cards must be pro-

vided (see Cards 4, Material Property Cards).

Element type number; indicates whether
element M is a spring, elastic beam or
disc beam, or pressure volume element.

NODE (10,M) =
NODE (10,M) =

NODE (10,M)
NODE (10, M)

Not used.

3-D axial spring.

3-D linear elastic beam.

3-D spinal disk .eam.

Ii

=W -

Mat uzed.
Not used.
Not used.

‘axrd 6B: Element Data Cards for PRESSURE VOLUME PENTRAHEDRON ELEMENT

3-D pressu-e volume element.

1-5
6-10
11-15
16-290
21-25
26-30
31-35

M

NODE (1,M)
NODE (2 .M’
NODE (3, M)
NODE ' 4, M)
NODE (5, M)
NODE (6, M)

Element number
Generic node
Generic node
Generic node
Generic ncde

Generic node

Z 2 )4y

Generic node
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Cols. FORTRAN liame Description

36-40 NODE (7 ,M) Primary node associated with geneiric’
nodes I-K.

41-45 NODE (8 ,M) Primary node associated with generic
nodes L-N.

46-50 NODE (9,M) Material type number; for each material

type, a set of material cards must be
provided (see Cards 4, Material Property

Cards).

51~-55 NODE (10, M) Element+ type number.
NODE(JO,M) = 4: Pressure volume pentra-
hedron.

56-60 NODE (11,M) Not used.

61-65 NODE (12, M) Not used.

66-70 NODE (13, M) Not used.

71-75 NODE (14,M) Not used.

Card 7: PRESCRIBED DISPLACEMENT CARDS (I4,6I1,E10.4)

NUMDIS cards; include only if NUMDIS > 0.

1-4 N Node number at which one or more degrees
of freedom are specified.

For each degree of freedom of ncde N a value of I is specified, where

indicates no constraint on that degree of frezsdom.

indicates that the displacement or rotation compon-
1= ent is always zero.

»

indicates thal Lhe displacewment or rotation compon-
ert is prescribed in SUBROUTINE FREEFD

For each component, a column is provided as follows
5 I Refers to translational global x degree of

freedom of node N.

6 I Refers to translational global y degree of
freedom of node N. ’

7 I Refers to translational global z degree of
freedom of node N.

8 1 Refers to rotation about body X axis
degree of freedom.

9 §os Refers to rotation about body y axis
degree of freedom.
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= Cols. FORTRAN Name Description
i% : 10 I Refers to rotation about body z axis
N degree of freedom.
: 11-20 ANGLE Not usad.

Card 7A: MODAL ANALYSIS CARD (I4,6I1)

Include only if KONTRL(12) > 0.

1-4 NAXISP Coordinate axis for printer plots of pri-
mary node mode shapes.

NAXISP = 1l: Mode shapes plotted vs. global

X axis.
NAXISP = 2: Global y axis.
NAXISP = 3: Global z axis.

For each of the six deagrees of freedom in the entire model a value
of I is specified, where

0 indicates this D.0O.F. is to be included in the
modal analysis.

I = 1 indicates this D.0.F. is to be omitted from the
modal analysis.

I

In addition, individual nodal degrees of freedom may be omitted from
che modal analysis by prescribing that D.O.F. to be zero via the
prescribed displacement cards (.ee Card 7).

5 I Refers to translational global x.

6 I Refers to translational global y.

7 I Refers to translational global z.

8 1 Refers to rotation about body ¥.

9 I Refers to rotation about body .

10 i Refers to rotation about body z.
Card 8: OUTPUT CONTROL CARD (4I10)

1-10 NPFREQ Frequency of output; whatever cutput is

desired will be printed every NPFREQ steps.

11-20 NPRU Number of motion output records.

21-30 NPRS Number of stress output records.

31-40 NPIC Number of complete (all motion and stress

values at one time step) output pictures.




Cols.

FORTRAN Name

$ ceay

Description

Card 9: MOTION OUTPUT CARDS (I10,10x,102a4)

1-7
9
10
%
21-60

uouT
J

GLABEL

(NPRU cards; only included if NPRU > 0.)

Node number.

Component number of kinematic variable
(displacment, velocity or acceleration)
to be output.

J = 1: Translation in global x direction.
J = 2: Translation in global y direction.
J = 2: Translation of global z direction.
J = 4: Rotation about body x axis.
J = 5: Rotation about body y axis.

6

: Rotation about body Z axis.

Indicates whether record is displacement,
velocity, or acceleraticn.

K
K

K = 2: Acceleration time history.

0: Displacement time history.

l: Velccity time histo.y.

Plot control.

L = 0: Yo plot of time history.

L = 1: Calcomp plot of time history.
L = 2: Printer plot of time history.

L = 3: Both calcomp and printer plot of
time history.
L = 4; Printer plol and punched cards of
time history.

Alpnanumeric information to be printed
identifying time history plot.

Card 10: STRESS OUTPUT CARDS (I10,10x,10A4)

8-9

io

SouT
M

N

(NPRS cards; only included if NPRS > 0.)

Element number

Component number (see Section 11 for
organization of STRS array).

N = 0: No plot.
N = 1: Calcomp plot of time history.
N = 2: Printer plot of time history.
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Cols. FORTRAN Name Description

N = 3: Both Calcomp and printer plot of
time history.

N = 4: Printer plot and punched cards of
time history.

21-60 GLABEL Alphanumeric information to be printed
for identifying time history plot.

Card 11: COMPLETE OUTPUT PICTURE CARDS (2I10)

(NPIC cards; only included if NPIC >0.)

1-10 NPOUT Time step at which complete output picture
is desired.
11-20 KON KON = 1: Output displacements and unit

vectors at all nodes having mass (see
Section 5).

KON = 2: Output above plus coordinates of
deforma2d model (note: output for rotational
degrees of freedom is nonsense for this
case).

KON = 3: vutput above plus velocities and
accelerations at all nodes having mass.

KON = 4: Output above plus all local element
forces.

KON = 6: Output above plus punched card out-
put of all deformed nodes having mass and
associated unit vectors. (Used as input for
3-D plotting program.)

KON < 0: Punched card output only.

3. Eijection Seat Geometry Subroutine

The program provides the capability of modelling arbitrary
ejection seat geometries. Seat geometry is represented as a col-
lection ¢of piecewise linear planes. Each plane is defined by
three points (X,, X,, X,) whose coordinates are given in the global
system. The po;itiGe ndrmal of the plane is then defined by the
right hand rule applied to the sequencing of the points (Xl, X2, X3).
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In order to prescribe the motion of the plane and incorporate
the restraint system, each plane is designecel by a primary node.
The motion of the primary node is characterized by an acceleration
vector. The magnitude of the acceleration vector is given by an
acceleration time history which is input through subroutine ICIF
(see Section 4). The direction is given by specifying the direc-
tion cosines of the acceleration vector. Each primary node which
designates a plane may be associated with an arbitrary number qf
secondary nodes. These secondary nodes can then be used as points
of attachment for representing the restraint system with any of the
deformable elements available in the program. NOTE: The primary
and secondary nodes for this system are input through the Nodal
Data Cards (see Card 5), also each primary node must have a Pre-
scribed Displacement Card (see Card 7) with the translat%onal
degrees of freedom indicated as prescribed and the rotational de-
grees of freedom indicated as zero. The deformable elaements re-
presenting the restraint system are input through the Element Data
Cards (see Card 6).

The technique used in the subroutine is to modify the equations
of motion for those primary nodes of the model that are in contact
with the ejection seat, primary nodes not in contact are not effected.
The criteria for contact between a plane and a primary node of the
model is that both the relative displacement and acceleration in
the normal direction of the plane be decreasing, i.e. the primary
node is moving towards the plane.

Input data for subroutine SLIDER; this data is placed after
Card 11 of READIN input (Note: data for subroutine ICIF to specify
the motion of the planes must follow this data). For each plane

(I = 1 to number of planes) the following sequence of five input
cards are required:

Card Al: Plane Identification Card (215,6E10.0)

Cols. FORTRAN Name Description

1-5 NPNO(1) Primary noude number designating the plane.

6-10 NASN(I) Total number of primary nodes of the
model which may contact plane I.

11-20 DICOS (1, 1) Direction cosine of acceleration vector
with respect to the global x-axis.

21-30 DICOS(2,1) Direction cosine of acceleration vector
with respect to the global y-axis.

31-40 DICOS(3,1I) Direction cosine of acceleration vector
with respect to the global z-axis.

41-50 SEATK(1,1I) Linear stiffness of elastic plane 1I.
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Cols. FORTRAN Name Description

51-60 SEATK(2,I) Cubic stiffness of elastic plane I.
61-72 VDAMP (I) Fraction of viscous damping for plane I.

Card A2: Contacting Primary Node Numbers Card (10I5)

1-5 NCP (J,I) Node number of primary node J which may
contact plane I; where J=1 to NASN(I).

NOTE: If a consecutive sequence of primary node numbers are associated
with a plane, the subroutine will generate the intermediate primary
node numbers. The option to generate intermediate primary node num~
bers is indiczted by specifying NASN(I) = 0 on Card Al and specifying
the first and last primary node numbers, NCP(l,I) and NCP{(2,I), on
Card A2. This sequence must be ascending NCP(1l,I) < NCP(2,I).

Card A3: Plane Location Cards (3E10.0)

(3 cards) - for each of the three points (Xl, Xz, X3) specify

1-10 XI(1l) Global X coordinate of point I.
11-20 XI(2) Global Y coordinate of point I.
21-39 XI(3) Global 2 coordinate of point I.

4. Subroutine ICIF; Cubic Interpolation Motion Record Subroutine

The program in its present form can treat arbitrary vertical
motion input of the hips and seat. The motion input can be speci-
fied as either a displacement, velocity or acceleration vs. time
curve. For the latter two, the program automatically integrates
the record once or twice, respectively, to obtain a displacement
history, which is then used to drive the model.

The motion record is specified by an arbitrarily spaced set

of points (ti, fi' fi'), i =1 to n, where

3

t
[/ ]

is the uumber of points specified for the motion record.

i are the times at which the motion function (displacement,
velocity, or acceleration) is specified.
fi = value of the motion function (displacement, velocity, or

acceleration) at time ti.
f.'= value of the derivative of the motion function with respect
to time at time t.

A cubic, continuously differentiable interpolation function is
used to approximate the motion reccrd between prescribed points.
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SUBROUTINE ICIF (TIME, VALUE, iI)
TIME - Time at which displacement is to be evaluated.
VALUE - Upon return contains value of displacement.
NI - Number of integrations to be performed,
NI = 0, no integration, displacement data was input.
NI = 1, one integration, velocity data was input.
NI = 2, two integrations, acceleration data was input.

Input data for subroutine IC1I'; this data is placed after Card 11
of K&ADIN input.

Card Al: Initial Parameter Card (I5,5X,2E10.0)

Cols. FORTRAN Name Description

1-5 NPTS Number of points where the motion functions
value and derivative are specified, n.

11-20 FI Integration constant for first integration.

21-30 F2 Integration constant for second integration.

Card A2: Function Specification Cards (3E10.0)

(NPTS cards) - for each point i specify

1-10 T Time ti
11-20 F Motion function value at time ti' f(ti).
21-30 FP Derivative of function at time t., f{(ti).
NOTE: The motion function must start at time zero, tl = 0.
An example of this data is given below.
Example: 10g Acceleration Record
f
10g i
o
| |
i |
|
L
o
|4
h t2t3 TIME (millisec)
0 13 15
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1 0.0 0.0 7.006x10°
-3 3 5
2 13x10 9.108x10 7.006x10
3 1510”3 9.809x10° 0.0
4. 1.0 9.809x10° 0.0

5. Primary, Secondary and Axis Orientation Nodes

This program permits the user to construct models with or
without rigid linkages between nodes. For this purpose, two
types of nodes are used:

Primary nodes - All degrees of freedom are associated with
primary nodes. If a primary node is associated with a
rigid linkage, it must be at the mass center of the rigid
linkage. At most one primary node is allowed per rigid
linkage.

Secondary nodes - These nodes connect the ends of deformable
elements with rigid linkages; more than one secondary
node may be associated with each rigid linkage. A second-
ary node has no independent degrees of freedom.

If there is no rigid linkage at the endpoint of an element,
the endpoint is a primary node.

A third type of node, an axis orientation node, is used to
orient the local y axis for bsam elements.

Axis Orientation node - The two nodes associated with the
endpoints of a beam elcment define the local x axis for
the beam element. In order to define the local y axis for
the beam element, a third node is used to define a plane
containing both the local % ard ¥ axes. The normal to
this plane is the local % axis.

6. Mass Lumping

All masses are associated with primary nodes. The mass of a
primary node may either (1) be input directly through Cards 5, (2)
be generated within the nrogram through lumping the masses of
elements or (3) by a combination of these methods (1) and (2).
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If method (1) is desired exclusively, the density of all
elements on cards 4.1 should be input as zero.

Method (2) can be used by omitting the input of lumped masses
and moments of inertia on Cards 4 and inputting mass densities for |
the elements; the program then lumps half the mass and moments of ?
inertia of each element at the associated nodes.

j = Method (3) calls for care on the part of the user when rigid
o linkages are used. The program sums translational masses of each
rigid linkage as input through Cards 4 and the lumped masses of

2 1) elements connected to the primary nodes. It also simply sums the
moments of inertia of the primary node and the elements connected
¢ to it. It does not shift the canter of mass or transform moments
to inertia by the parallel axis theorem.

o il e Bt T

The analyst should also be usre that all independent degrees
of freedom are associated with some mass. Any degree of freedom
not associated with a mass will automatically be omitted from the

equations of motion and so remain fixed throughout the temporal
integration.

ey SRNEES

7. Unit Vectors Bl, B2, and B3

> - —

The rotational equations of motion for each node (Euler

: equations) are formulated in » coordinate system that rotates with
1 the node. This coordinate uystem is initially choosen to cc:.n~ide

nE with the principal axes of rne moment of inertia tensor and re-
%
4

e v LA A A

i mains so throughout the defcrmation, since it rotates with the
{ mass.

- -

;s St -\‘,.I. et
B : g s

If the prinicpal moments of inertia at a node are about the
global ®, y, and z cocrdinates, then initially thc unit vectors
of the rotational coordinate system coincide with the global co-
ordinates, i.e. Bl is a unit vector in the global x direction, B2
is & unit vector in the global y direction, and B3 is a unit
vector in the global z directicr. Only the components of two of
the unit vectors need be known at any time, i.e. Bl and B3. The
third is then given by the cross product B2 = E3 x Bl.

. ..
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8. Consistent Units

It is recommended that the program be used with the following
system of units (i.e. all input data should be in these units):

Time 3 Second (sec.)
Length : Centimeter (cm.)

Mass H Gram (g.)

Force :  Dyne (g-cm/sec?)

For the convenience of the user the local element forces and
moments are internally converted and also output in the english
units:

Length : Inch (in.)
Force . Pound force(lbf.)

However, any consistent system of units may be used for the
input data. The resulting output will then be in the same system
(and the identifyirgy units will not be germaine) with the excep-
tion of the english units for forces and moments, which are inter-
nally converted.

9. Global or Local Courdinales for Becondary Nodes

Two options are available for the input of the coordinates
of secondary nodes:

Global (KONTRL (1) = 0)

All nodal coordinates (primary, secondary, and axis orientation)

are input in the global x, y, and z coordinates system.

Local (KONTRL(1l) = 1)

The nodal coordinates of the secondary nodes associated with
a rigid linkage (primary node) are input in local x, y, and z
components of the associated rigid linkage. The local axis
origin is the primary ncde for that rigid linkage.
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10. Dynamic Allocation

Core storage among the arrays is allocated internally within
the program. This procedure which is called dynamic allocation,
requires the user to specify only the dimension of a single array.
All vectors and matrices needed for the solution of the problem
are then packed sequentially into this array. The size of the
array is problem dependent, so that for small problems little core
storage is needed. If the dimension specified by the user is not
sufficiently large for the problem, an error message is printed
along with the total amount of storage needed.

The following are the problem dependent scalar values used
to allocate core storage:

Values Obtained Directly from the Input Data

FORTRAN Name Description
IMODAL Modal analysis option
MXSTEP Maximum number of time steps.
NAXOR Number of axis orientation nodes.
NDGREE Maximum number of degrees of freedom
per node.
NELE Number of elements
NNODE Number of primary and secondary nodes =
in the dataset.
NODMAX Maximum node number used in the dataset.
NOPT Number of sliding planes. '
NDPDIS Number of deyrees of {reedom whose motion
is prescribed as nonzero.
NPFREQ Frequency of output; whatever output is
desired will be printed every NPFREQ steps.
NPIC Number of complete output pictures. *
NPRI Number of primary nodes.
NPRS Number of stress output records.
NPRU Number of motion cutput records.
NUMDIS Number of nodes at which any displacement
components are specified either zero or
nonzero.
NUMMAT Number of different element section and

material types.
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Values Calculated Internally from the Input Data
FORTRAN Name Description

LBKE=NBE* (MUDE+1)

- ( (MUDE+1) *MUDE) /2 Required storage of the stiffness matrix

MEQ=NDGREE *NNODE

MUD= (MAX (I-J)+1)
*NDGREE~1

MUDE=NBE-1

for modal analysis.

Maximum number of degrees of freedom in
the mesh.

Number of nonzero upper codiagonals in
banded stiffness matrix.

Number of nonzero upper codiagonals in

banded stiffness matrix for modal analysis.

NBE=NDE*NPRI Number of degrees of freedom in the mesh |

for modal analysis.

NDE Number of degrees of freedom per node for
modal analysis (See Card 7A).

NODET=NNODE+NAXOR Total number of nodes in the mesh (primary

and secondary and axis orientation).
NPLOT=NPRU+NPRS Number of time histories to be plotted.

NPTS=MXSTEP/
NPFREQ+2

N1=NDGREE*NPRI

Number of points to be plotted for each
time history.

Number of independent degrees of freedom
in the mesh.

The following is a list of the array names and their storage
requirements which are dynamically allocated:
FORTRAN Name Size Description
A NPTS Temporary storage of ordinate values
for plotted output.
AL NELE Element lengths.
AO N1l 0ld nodal accelerations.
AUX N1 Deformed nodal coordinates.
Al N1 Current nodal accelerations.
BIGK N1* (MUD+1l) Total global stiffness.
- ( (MUD+1) *
MUD) /2
BLAMB 9*NPRI Nodal body vector transformations.
DICOS 9*NELE Element vector transformations.
DICOSP 9*NOPT Sliding plane acceleration vector

direction cosines.
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FORTRAN Name
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E
EFFLAS
EFFORC
EVAL
EVEC

FERROR
FEXOLD
FINOLD
FINT
FORCD
GLABEL
INDEX
INMESH
IX
MESHIN
NASN

NCP

NODDIS
NPNO
NPOUT
NTYPE
PSU
SEATK

SMASS
sSouT
SQMASS
STFLAS

STOREK

STROLD

Size

Description

12*NUMMAT Material and section properties.

N1
N1l

NBE*IMODAL Eigenvalues from modal analysis.

NBE*NBE*
IMODAL

N1l

N1
2*N1
2*N1

N1
10*NPLOT
NELE+1
NODMAX
7*NELE
NODET
NOPT

10*NOPT

NUMDIS+1
NOPT
2*NPIC
2*NPLOT

NPTS*NPLOT Output values for time histories.

2*NOPT

N1
NPRS

NBE*IMODAL Square root of nodal masses.

LBKE

2*MUD*
NPDIS

(Size is

determined
in sub-
routine ASSBLE)
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0ld effective force.

Current effective force.

Eigenvectors from modal analysis.

Z2rror force.

0l1d external force.

0ld nodal internal force.
Nodal internal force.
Current external force.
Labels for plotted output.
Index to the STRS array.
Internal node number locator.
Element connectivity.

Mesh node number locator.

Number of primary nodes which may
contact the sliding plane.

Node numbers of primary nodes which
may contact the sliding plane.

Nodal fixities.

Primary node number of sliding plane.
Picture output.
Plot type identifier.

Stiffness coefficients for elastic
sliding plane.

Nodal masses.
Element output code.

Total global stiffness for modal
analysis.

Storage of stiffness for prescribed
displacements.

0ld element information.
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FORTRAN Name

STRS

SS
T
TBLAM

UuouT
UP
UPOLD
UPl
upP2
ou
VDAMP

VO
vl
XC
p (&
X1
YC
ZC

Size
(same as
STROLD)
NPRS
NPTS
9*NPR1

NPRU
3*NOPT
3*NOPT
3*NOPT
3*NOPT
NPRU
NOPT

N1

N1l
NODET
MEQ
MEQ
NODET
NODET

Description

Current element information.

Output force values.
Time values for plotted output.

Temporary storage of body vector
transformations.

Nodal output code.

Displacement of sliding plane.

0ld displacements of sliding plane.
Velocity of sliding plane.
Acceleration of sliding plane.
Output kinematic values.

Viscous damping coefficient fcr
sliding plane.

0ld nodal velocities.
(Current nodal velocties.

X coordinate of node points.
01d nodal displacements.
Current nodal displacements.
Y coordinate of node points.
Z coordinate of node points.
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1l. Organization of STRS Array

3-D Axial Spring Elements

Component Number

1-3

~ b
| }
w0 G

10-12
13
14
15
16

Quantity

Original local coordinates of second-

ary node I with respect to its associat-
0

ed primary node, r' = secondary-pri-
mary.
Body components of r° (£°=\Tr .

Original local coordinates of secondary
node J with respect to its associated
primary node.

Body components of r°.
Element st:ain
Element stress
Element axial force

Length change in element

3-D Linear, Elastic Rectangular Beam Element

Component Number

1-6

7-9

10-12

13-24
25
26
27
28
29
30
31
32

Quantity
Body components of origiral ﬁlement
unit vectors e and e) (e’=X pe")

Original local coordinates of secondary
node with respect to its associated
primary node, r® = secondary-primary.

Body components of r® (r°= ety

The above components 1-12 apply to
element node I.

Same as above for element node J.
Element strain

Element stress

Axial force

Local v shear force v

Local z shear force v,

Torsional moment Mx

Moment about locak y axis at node I Mly

Moment about local y axis at node J MJy

191




33
34
35
36
37
38
39
40
41
42-46

Moment about local z axis at node IZMIz
Moment about local z axis at nodeJMJz
Empty

Change in length
Rotation about local axis ex
Rotation about local axis at nodeI 6I
axis at node J 6J
axis atnodeI 6I

axis at node J 6J

Rotation about local
Rotation about local

N N M

Rotation about local

N N

Empty

3-D Spinal Disk Beam Element

Component Number

1-6

7-9

Quantity
Body components of original element unit
vectors e{ and e) (e’ = ATpe?),

Original local coordinates of secondary
node with respect to its associated pri-
mary node, r’ = secondary-primary.

Body components of r°(r® = ATr?).
The above components 1-12 pertain to
element node I.

Same as above for element node J.
Axial force

Local y shear force V

Local z shear force Vz

Torsional moment M
Moment about local axis at nodeiIMI

axis a npde IM

Yy

Moment about local y axis at node JM
Moment about local 2
z

Moment about local axis at node JM
Empty

Strain at previous t:me step

Change in length

Rotation about local x axis ex
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38 Rotation about local y axis at node I er
39 Rotation about local y axis at node J eJY
4 40 Rotation about local z axis at node I eIz
& 41 Rotation about local z axis at node J 6,
5 42-45 Empty
Pressure Volume Penetration Element
Component Number Quantity
1-3 Orignial local coordinates of secondary

node with respect to its associated pri-
mary node r® = secondary - primary.

4-6 Body components of ro(x° = ATrO). The
above components 1-6 pertain to the
generic node 1 of the element.

7-36 Same as above for the other five generic
nodes of the element.
37 Element internal pressure. =Q
38 Element volume.
39 Element area. =
40 Element axial force.

12. Graphics Program for Anatomical Analysis

This program was developed to aid the researcher in analyzing
the simulated behavior of the human spine. The vertebrae, rib,
sternum, head and pelvis can be plotted with symbols that are re-
presentative of these anatomical elements so that the configura-
tion of the skeletal system can be visualized. In addition,
options are available for cylinders and additional geometrical
figures. These bodies can be rotated and displaced to any orient-
ation in three dimensional space and this space can then be
rotated relative to the viewing points. The back and right side
projections are then plotted. Hidden portions of certain figures
are removed so that resulting projections are not ambiguous due
to a large number of hidden lines.

In order to facilitate use of the program, an overview of its
procedure is given in the following paragraphs. Further details
on the algorithms and procedures are given in subsequent Sections.
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The elements, as represented by the program, are described
by a combination of points connected by lines and by geometric
solids, such as spheres or cylinders. The location of the points
of an element are given in an element coordinate system (%,v,2) .
The origin of this coordinate system is the base point of the
element. This data is called element point data. In addition,

elements which include geometric solids require element dimension
data, such as the radius and the length of the cylinder.

The location and orientation of each element is described by
the coordinates of the base point in the global system (x,y,z)
and the orientation of the element's local coordinate system. The
latter is specified by giving the global components of the element
coordinate unit vectors, that is e xr €1 €157 ©3xs e3ys and e3,,
these are equivalent to the direction co 1nes.

The plotting program thus requires two types of data:

1. position and orientation data of each element;

2. element description data consisting of element point data
and/or element dimension data for each element.

The first type of data must be input in each run of the pro-
gram by means of card input (Cards 5 in Section 13). For many
anatomical elements, the element description data is permanently
stored in a data bank and 1s an essentilal part of this program's
capabilities. These elements are called standard elements and
data for these elements have been obtained by measurements of
skeletal segments and is reasonably representative of a typical
anatomy; this data must be stored on units 20 and 27, If for any
reason the user desired to modify this element description data,
he must input his own description point data on these data banks.
In addition, the user has a set of commands available that enable
him to plot simple elements such as lines, cylinders and spheres:
these are called user-defined elements.

To aid in the visualization, the depiction may be plotted
from any angle relative to the global (x,y,z) coordinates. This
option is effected by the command SHFT (cards 5), which implicitly
constructs an (x',y',z') system, so that the (x,y,z) system is
shifted relative to (x',y',2') by the Euler angles ¢, 6, and y.
The command VIEW (Cards 5) then given the option of plotting the
(x',2°) or the (y',z') views, or both. If only a lateral view
and an antero-posterior view are desired, a SHFT command is not
necessary. The coordinates of the physical plot are always de-~
noted by X and 2, where X can correspond to either x' or y', and
Z always corresponds to z'. The X axis is placed along the bottom
of the plot, and the Z axis is placed vertically.

The dimensions of the cube in the (x',y'z') system which en-
closes all elements in the plot must be specified; anything out~
side this cube is not plotted. The physical dimensions of the plot
and location of the origin of the (x',y',z') coordinate system on
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the plot are given by Card 4. The plot is then automatically
scaled so that the specified space cube in the (x',y',z') system
fits on the specified size of the physical plot, with the origin
of the (x',y',z') system at the point that is specified. Note
that the physical dimensions of the plot are specified in inches,
whereas all data for the depiction is given in cm.

13. 1Input

All data except plot dimensions are in cm. Plot dimensions
are in inches.

Card 1: Heading (20a4)

Cols. 1-80 TITLE: 80 alphanumeric characters to be used as a
heading on output.

Card 2: Type of input (4X,A4)

Cols. 5-10 "VECTCR"

Card 3: Space in (x',y'z') coordinates to be plotted (6F10.0)

Cols. 1-10 x' .

min
- []
11-20 x e
- ]
21-30 vy HAR
.y [
31-40 vy B
41-50 =z' .
min
51-60 z'
max

Card 4: Size of plots and location of origin (6F10.0)

Cols. 1-10 TOTALX width of plot (inches) for plots of (x',z')
view.

11-20 TOTALY width of plot (inches) for plots of (y',z')
view. (Only needed is IDN >1 in VIEW
command, see Cards 5).

21-30 TOTALZ height of plot (inches); will be the same
for (x',z') and (y',2z') views.

31-40 XNEG distance of the origin of the (x',y',2')
system from left hand side of the plot
(inches) in (x',z') plot.
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41-50 YNEG distance of origin of (x',y',z') system from
left hand side of the plot (inches) in
(y',2') plot.

51-60 2ZNEG distance of origin from bottom of plot
{(inches).

COMMAND cards: Each group of COMMAND cards plots a certain type
of element or executes a specific operation in the graphics pro-
cedure. For each command, Cards 5A, 5B, and 5C must be in
sequence. In some commands, Cards 5A and/or 5C are not needed
and should be omitted; this varies with the command and the user
should refer to COMMAND descriptions.

Cards S5A: Command cards - choose any of the commands listed under
COMMAND DESCRIPTIONS, (2I2,A4,9F8.0)

Cols. 1-2 IDN Body number (only needed for certain
standard elements, see 5-1).

3-4 NP Number of element data points; if body is on
data bank (see Table 18), set NP = 0 and the
element description data need not be input.
If an element is not a standard element, set
NP = number of data points required as
specified by the element command (see COM-
MAND description for specific instructions
for each element).

5-8 ID Command (four alphanumeric characters from
the list given in 5-1).

9-16 P(1l) Global x coordinate of base point.
17-24 P(2) Global y coordinate of base point.

25-32 P(3) Global z coordinate of base point.

33-40 X1 Global x component of local X unit vector,e;{x
41-48 X2 Global y component of local % unit vector,e;y
49-56 X3 Global z component of local x unit vector, eg,
57-64 2zl Global x component of local z unit vector,e;x
65-72 22 Global y component of local f unit vector, eay
73-80 23 Global z component of local z unit vector, es,

Cards 5B: Follows Cards SA for certain commands as specified in
COMMAND descriptions.
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Cols.

Cards 5C:

follows Card 5B;

(NP/2 cards) Element point coordinate data.
for certain commands as specified in COMMAND description;
if there is no Card 5B for that

COMMAND, cCard 5C follows 5A.

1-10 X coordinate of point I
11-20 § coordinate of point I
21-30 z coordinate of point I
31-40 X coordinate of point I+l
41-50 § coordinate of point I+l
51-60 z coordinate of point I+l

Needed only

COMMAND Descriptions

5.1 STANDARD ELEMENT PLOT COMMANDS

HEAD
RIBL
RIBR
STER
VERT
VERL
BODY

5.2 USER~

None of these commands require a Card 5B cr Card 5C.

Plot the head. The body number IDN is ignored.
Plot the IDNth left rib.

Plot the IDNth right rib.

Plot the sternum. The body number IDN is ignored.
Plot the INDth thoracic vertebra.

Plot the IDNth lumbar vertebra.

The body with optional number IDN (see last column in
Table 18) will determine which of the above elements is
to be plotted. This option is used only for old data
sets which do not include the above names. BODY com-
mands must precede all other commands.

DEFINED PLOT COMMANDS

LINC

LINO

Cards 5B and 5C are only needed as noted.

The (NP) points on Cards 5C will be plotted to form a
closed curve by connecting point (i) to point (i+l),
i=l to NP, and then connecting point (NP) to point (1).

The (NP) points on Cards 5C will be plotted to form an

‘open curve by connecting point (i) to point (i+l),

i=l to NP.
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LINS The NP points on Cards 5C must Lave positive X coordinates.
For each point, an additional point is generated by
mirror image in the y-z plane. The resulting set of
points are then plotted as in LINC.

SPHR Plot a sphere with optional line segment superimposed.

Card 5B .~ o~ A

Cols. 1-10 x,y,z coordinates of center of sphere,
11-20 respectively, relative to base point,
21-30 usually 0,0,0.

31-40 X,y,z cocrdinates of a point on the sphere,
41-50 respectively, which is used to determine
51-60 the radius.

Cards Scﬁagerptional and can be used to input coor- :
dinates X,y,2z or NP/2 pairs of points. Each pair of
points is connected by a line segment.

CONE A truncated conic section is to be plotted with
optional line segments superimposed. The base point
is the center of the bottom ellipse.

Card 5B (6F10.0 Format)

Cl - major half axis of the bottom base
C2 - minor half axis of the bottom base
C3 - the height of the body

C4 - The major half axis of the top plane
C5 - the minor half axis of the top plane

Cards 5C are optional and are used to input line seg-
ments just as for SPHR, but only visible line segments
are plotted.

CYLN An elliptical cylinder is to be plotted with optional
line segments superimposed. The base point is the i
center of the bottom ellipse. ]

Card 5B (3F10.0 Format)

Cl - the major half axis of the base
C2 - the minor half axis of the base
C3 - the length of the cylinder

Cards 5C are optional line segments as in CONE.
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5.3 COMMANDS FOR PROGRAM EXECUTION AND OPTIONS

(*only commands denoted by asterisks must be included for the pro-
gram to run; all others may be omitted if the user wishes to run
with the default options.)

GRTID
SHFT

VIEW

DBUG

MARK

WEDG

SCAL

NRES

GO*

This command will add a frame around the plot.

This command will rotate all bodies by Euler angles
(in radians) (4, 6, V) which are the X1, X2, X3 values
on Cards 5A respectively.

This command determines the views to be plotted.

If IDN = 1, x',z' plane is plotted.

If IDN = 2, y',2' plane is plotted.

If IDN = 3, both views are plotted.

If no VIEW card is included, both views will be plotted.

This command will trace the flow of the program so error
conditions can be traccd. This is done by printing the
object definition and tests performad by the ID/3D sub-
routines. This command will also print the transformed
body point coordinates.

This command will place a string of alphanumeric
characters on the plot. The string is taken from Card
5B. The orientation of the message is determined from
the data on Card 5A.

P(1) =z coordinate of the left side of string.

P(2) x' or y' coordinate of the left side of string.
P(3) height of letters in inches.

X1 angle at which the message is plotted from mea-
sured vertical axis in degrees.

X2 number of characters in message.

X3 view that message is to be plotted on
X3 1 x',2' view

X3

This command adds wedging to the vertebrae, according
to the following:

IDN = 1 AP wedging only {AP: antercu-posterior)

IDN = 2 AP and lateral wedging

If no WEDG command is read, only EP wedging is included.

2 y',z2' view

This command will plot a 5 cm line on the plot for in-
dicating the scale of the plot.

Each line segment is divided into NRES equal subdivisions
to check for hidden lines. This card may be omitted, in
this case the value of NRES is 5.

This card is used as a delimiter of the data for each
problem, and must be the last card if more than one

set of data is to be plotted in one run. A set of cards
for another plot may follow this card. The word GO
must be left oriented.
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The limits on the number of bodies in the stanciard version

of the program

maximum number
maximum number
maximum number

are:

of bodies MNB = 60
of element description data MWBP =

of vertebrae MNV = 25
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Table 18

Standard Elements

o e AT N,

10N
(for command
in left-hand
column)

Body type

VERT
VERT
VERT
VERT
VERT
VERT
VERT
VERT
VERT
VERT
VERT

=~ W 0 <3 0 0t W

(S
N

s
£

RIBR
RIBL
RIBR
RIBL
RIBR
RIBL
RIBR
RIBL

e

- - SR VS R VS I SR S I

Description

facrum (not plotted) 1
1st thoracic vertebrae 2
2nd thoracic vertebrae 3
3rd thoracic vertebrae 4
4th thoracic vertebrae 5
5th thoracic vertebrae 6
6th thoracic vertebrae 7
7th thoracic vertebrae 8
8th thoracic vertebrae 9
9th thoracic vertebrae 10 i
10th thoracic vertebrae 11
11th thoracic vertebrae 12 .
12th thoracic vertebrae 13
1st lumbar vertebrae 14
2nd lumbar vertebrae 15
3rd lumbar vertebrae 16
4th lumbar vertebrae 17
5th lumbar vertebrae 18
lst right rib 19
lst left rib 20
2nd right rib 21
2nd left rib 22
2rd right rib 23
3rd left rib 24
4th right rib 25
4th right rib 26
201

(Optional IDN for
use only when BODY
command is used.)




Table 18 (continued)

Body type IDN Description

{for command
in left-hand

column)
RIBR 5 Sth right rib
RIBL 5 5th left rib
RIBR 6 6th right rib
RIBL 6 6th left rib
RIBR 7 7th right rib
RIBL 7 7th left rib
RIBR 8 8th right rib
RIBL 8 8th left rib
RIBR 9 9th right rib
RIBL 9 9th left rib
RIBR 10 10th right rib
RIBL 10 10th left rib
STER x sternum
HEAD iJ head

*IDN not needed for HEAD or STERN commands.
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(Optional IDN for
use only when BODY
command is used)

27
28
29
30
31
32
33
34
35
36
37
38

39

40
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APPENDIX II. ELEMENT STIFFNESS MATRICES

In this Appendix the local element stiffness matrices and
corresponding global transformation matrices are presented. The

elements are standard in structural analysis so no derivations oare

given. The local element stiffness consists of a tangential stiff-

ness plus a geometric stiffness

(k1 = k1 + [k (I11.1)

which relate nodal deformations to nodal forces in the corotational

element coordinates. The global element stiffness matrix is then

obtained by transforming the local stiffness by

(k] = [T17[k][T] (11.2)

where [T] is the matrix defined by Eq. (2.36). The total global

stiffness is found by adding together the global stiffnesses of all

elements,

E
k1 = ¥ Ty ale) (II.3)
e=1

where [Z(e)] is the Boolean connectivity matrix for the element. As
is standard in finite element programs, the matrix operations in-

dicated in Eq. (II.3) are not performed as matrix multiplications,

but simply as additions. Thus the total global stiffness matrix is

obtained by adding the element global stiffnesses into the appropriate
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locations of the total matrix, which of course depends on the node
numbers of the elements, i.e. connectivity.

The local element stiffness of spring elements is

1
0 g sym.
N 0o 0 0
= 2
[kpl = k +3k,8 B (I1.4)

0
g 1 SYm.
n f 0 0 1
k] = 9% (I1.5)

0 0o -1 0o o0 1

Here EJx is the current axial force in the element and % is the
element length.

In the beam element, for the purpose of saving space, it is con-
venient to express the tangent stiffness matrix as a product of two

matrices. Hence

k) = 1017 [k*] [Q] (I1.6)
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where

ky
12kg,
22(1+9
( y)
12k
0 0 By
22(1+% )
z
[k*] = | o 0 0 x* (11.7)
6k (4+9 )k
0 0 By 0 z_ By
2(1+¢z) (1+<I>z)
-6k (4+9 )k
0o —-BZ 0 0 0 -y Bz .
L(1+0 ) (1+2% ) >
E o Yy | iy

The order of the degrees of freedom for this stiffness is given by

Eq. (2.48).
E
-1 o 0 0 0 0 1 0 6 0 0 o0
1 1

o 0 0o 3 0 0 0 0 0 3 0 0
0 0 -+ 0o 1 o o o L o o o

) T

Q1 = 1|0 % 0 0 o0 1 o -% 0o 0 0 o0 (I1.3)

il 1
Q 0 ) 0 0 0 0 0 T 0 1 0
L? % 0o 0 0 0 0 -2 0 0 0 1
, _

Only the part of the geometric stiffness corresponding to the rota~-
tion of the axial force is used, so the geometric stiffness of the

beam is identical to that of the spring. The hydrodynamic element
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stiffness is

[ky] = B {EHE}" (II.9)

where B is the tangent bulk modulus and {E} is given in Table 1.

The geometric stiffness is not included for the hydrodynamic element.
The transformation matvices are written as partitioned matrices,

consisting of 3 x 3 submatrices defined by Egs. (2.1) through (2.4)

and Eq. (2.18). The spring transformation is

R o1
CIHPV M (o]
(T = (I1.10)
ol [u]J
T,..T
L [0] [Q]J[A]J[u]J_
The beam transformation is
[u]I [0] [0} [0]
T, .,T T
T [9]I[A]I[u]I [A]I[u]I o] [0]
[T}" =
[0] (0] [u]J [0]
T, .T T
B [0] [0] [QJJ[A]J[ulJ [A]J[u]J—
(Ir.11)

The hydrodynamic element transformation is given by

206

|




207

e FOVERNMENT PRINTING OFE 1T 1906 e 0 7o %0/ 11)

o




