U.S. DEPARTMENT OF COMMERCE National Technical Information Service

AD-A025 887

A STATISTICAL MODEL OF THE LOWER IONOSPHERE

DEFENSE COMMUNICATIONS AGENCY

JANUARY 1976

DEFENSE COMMUNICATIONS AGENCY WASHINGTON, D.C. 20305

TECHNICAL PUBLICATION C600-TP-76-2

TITLE: A STATISTICAL MODEL OF THE LOWER IONOSPHERE

ABSTRACT: This report analyzes, as a group, measurements of the electron density profile in the lower ionosphere. Approximately 15 years of measurements were analyzed and an effort is made to develop a preliminary time-varying ionospheric model for use in determining VLF and LF propagation predictions.

ł

DISTRIBUTION STATEMENT A Approved for public release; Distribution Unlimited

FOR THE DIRECTOR:

OFFICIAL:

WILLIAM S. KREMIDAS Captain, USN Asst, Deputy Director Systems Directorate Command Control Technical Center

ITIS	White Section	5
00	Butt Section	
#48405M	23	
••••••••••••••••••••••••••••••••••••••		<u> </u>
CISTERIORI DISTERIORI	ITEN/AVAILABILITY	
CISTERIOU Rist.	ITEM/AVAILASILITY ON AVAIL und/or SPEN	

ACKNOWLEDGEMENT

in the second second

This report was prepared by Leslie A. Berry and Robert M. Davis, Jr., of the Institute for Telecommunication Sciences, Office of Telecommunications, U. S. Department of Commerce. Editorial and technical review was provided by Defense Communications Agency, Naval Research Laboratory; Naval Electronics Laboratory Center; Rome Air Development Center; the U. S. Army Electronics Laboratory; and Cambridge Research Laboratories.

TABLE OF CONTENTS

	PAGE
EXECUTIVE SUMMARY	ES-1
ABSTRACT	1
1. THE NEED AND POTENTIAL FOR A MODEL OF THE LOWER IONOSPHERE	1
2. SELECTION AND VALIDATION OF DATA REDUCTION TECHNIQUES	3
2.1 The Exponential Profile 2.2 Scaling Rules 2.3 Validation of Scaling Rules	3 5 7
3. DERVIATION OF THE MODEL	15
3.1 Selection of Regression Variables 3.2 The Regression Model	15 22
4. COMPARISONS OF MODEL VARIATIONS WITH VLF PROPAGATION EXPERIENCE	24
5. CONCLUDING REMARKS AND RECOMMENDATIONS	26
6. REFERENCES	27
APPENDIX: D REGION DATA BASE	29

EXECUTIVE SUMMARY

1. THE NEED AND POTENTIAL FOR A MODEL OF THE LOWER IONOSPHERE

If Activity Methods and the second

In order to estimate the performance of the Minimum Essential Emergency Communications Network (MEECN), it is necessary to determine the time-availability of each individual link. Some links in the system are LF-VLF radio communications systems, whose time availability depends primarily on the temporal statistics of the signal-to-noise ratio (S/N). The variation of LF-VLF S/N is not sufficiently well known for good system design and analysis, so the Office of MEECN System Engineer has organized the Tri-Service Propagation Program to develop the required information.

The main uncontrollable determinant of LF-VLF signal strength is the profile (height variation) of the electron density in the extreme lower ionosphere, because it is here that the VLF radio waves are reflected. Most of the sophisticated computer programs that have been developed for computing LF and VLF field strength require a model of the lower ionosphere as input. The accuracy of the field strength prediction (and through it, the accuracy of the link time-availability calculation) depends on the accuracy of the ionospheric model used.

There is no available model of the lower ionosphere which depicts realistically the variation of the ionosphere with hour, season, latitude, and sunspot number. However, during the past 15 years, many measurements of the elactron density have been made at various locations and times. These measurements have not been analyzed as a group, nor incorporated into a synoptic, statistical model useful for LF-VLF communications link analysis. This report analyzes the available data, assesses its usefulness, and provides a preliminary time-varying ionospheric model.

2. SELECTION AND VALIDATION OF DATA REDUCTION TECHNIQUES

Previous experience has shown that a simple exponential model of the electron density in the lower ionosphere is adequate to describe LF-VLF radio propagation in most cases (see equation (ES-1) in section 3). Rules for scaling the parameters for such a model from measured electron density profiles were developed. They were validated by comparing propagation parameters computed for a sample of ten representative measured profiles with the same parameters computed for the scaled exponential approximation. For these ten

ES-1

profiles, the magnitude of the principle reflection coefficient errors averaged less than 1 dB for the important angles of incidence for LF-VLF propagation. This resulted in an average error of about 1 dB in field strength for a 5000 km path. The error increases with path length. An error of this size from the scaling procedure is acceptable because it is smaller than the random variation of signal strength.

3. DERIVATION OF THE MODEL

Four hundred and seventy measured profiles of electron density in the D-region were retrieved from the report and journal literature, and were scaled to determine the statistical distribution and correlation that could be derived from emperical data. A multi-parameter linear regression of the model parameters on significant geophysical parameters was performed using a standard statistical approach. The resulting model has the form:

$$N(h) = N_0 \exp (\alpha (h - h_w))$$
(ES-1)

where

$$N_0 = 1.43 \ (10^7) \ \exp(-0.15 \ h_W)$$

so that h_w is the standard reference height. The gradient, α and h_w will depend on time (hour and month), latitude, and solar activity.

The α_i and h_i are coefficients determine. by a multidimensional linear regression on the independent variables x_i . These variables are:

The analysis was also done for $x_1 = \cos(\sin's \ zenith \ angle)$ but the residual error in both h and a was greater (slightly) for this set of variables. Table ES-1 gives the resulting values for a_i and h_j .

Table ES-1. Values of Coefficients for Statistical Electron Density Model

i	с	1	2	3	4
h _i	71.8	3.83	6.85	0.085	0.047
۵i	0.210	0.036	0.082	-0.050	0.00045

Statistical tests show that all coefficients except h₃ are significantly different from zero.

4. COMPARISONS OF MODEL VARIATIONS WITH VLF PROPAGATION EXPERIENCE

The model predicts a day-to-night variation in reference height, h_0 , of less than 8 km. Measured VLF propagation data suggests that this variation should be about 15 km. This is the biggest deficiency of the preliminary model. It appears to be caused by too few, or too inaccurate, nighttime profiles.

However, the

- variation of reference height with sunspot number,

- variation of reference height with latitude, and

- the day and night values of the slope parameter, α , are all consistent with LF-VLF propagation experience -- at least qualitatively.

5. CONCLUDING REMARKS AND RECOMMENDATIONS

The dependence of lower ionosphere reflection properties on sunspot number, season, and latitude shown by the analysis in this report will be useful for predicting LF-VLF field strength (and thus VLF link time availability) The apparent poor quality of the measurements of electron density at low altitudes at night resulted in unrealistically small day-to-night change in reflection height. To make a practical model useful for LF-VLF signal-tonoise predictions, the following steps are recommended:

ES-3

- Remove local time from the list of independent variables, and instead put in a fixed variation with time which has the required day-to-night variation, as determined by propagation data.
- Filter the data by making subjective, but careful, judgments about the quality of the data, indicated by the experimental method and controls. Discard the profiles judged to be unreliable.
- 3. Continue to add high quality profiles to the data base as they become available.
- 4. Then recompute the coefficients for the remaining variables, separately for day and night.

A realistic time-varying model of the lower ionosphere is necessary for reliable calculations of the time-availability of LF-VLF links in the MEECN system.

APPENDIX

The profile data, and sources of the profiles used in the report are listed in the Appendix.

A STATISTICAL MODEL OF THE LOWER IONOSPHERE

the second s

ABSTRACT

Four hundred and seventy measured profiles of electron density in the lower ionosphere were retrieved from the literature. Scaling rules were developed for fitting the profiles with an exponential approximation, and were validated by comparing LF-VLF field strengths computed with the approximations and the full measured profiles. The coefficients for a multidimensional linear regression on the parameters of the exponential model were calculated using standard techniques. The seasonal, latitudinal, and sunspot number variations of the reference height are consistent with long-path VLF measurements. The day-to-night variations of reference height and gradient are qualitatively correct, but are not large enough. This discrepancy is traced to the nighttime profiles. Further analysis to improve the model is recommended.

1. THE NEED AND POTENTIAL FOR A MODEL OF THE LOWER IONOSPHERE

In order to estimate the performance of the Minimum Essential Emergency Communications Network (MEECN), it is necessary to determine the time-availability of each individual link. Some links in the system are LF-VLF radio communications systems whose time availability depends primarily on the time distribution of the signal-to-noise ratio (S/N). The main uncontrollable determinant of LF-VLF signal strength is the profile (height variation) of the electron density in the extreme lower ionosphere, because it is here that the VLF radio waves are reflected. So most of the sophisticated computer models that have been developed for computing LF and VLF field strength require specification of a model of the lower ionosphere.

Since the computer field strength is to be compared with the noise, the ionospheric model should vary realistically with the same parameters which affect the noise -- the time (hour, season) and geographic location. No satisfactory time-varying, worldwide model of the lower ionosphere exists. Several attempts have been made to develop "average" profiles for day and night (see, for example, Bain and May, 1967). Berry and Jones (DCA, 1974b, Appendix) made a preliminary attempt at a time-varying model. More recently (DCA, 1974a), Morfitt prepared a table recommending "descriptive electron density profiles" for various latitudes and seasons for day and night. These profiles "describe the limited amount of propagation data to varying degrees

of exactness." However, the table is incomplete, especially at night, and it is clear that the recommended profiles will not reproduce the known seasonal variations in LF-VLF signal strengths.

During the past 15 years, a number of experimenters have attempted to measure the electron density in the lower ionosphere. The measurement methods include direct measurements of electron density by rockets and indirect radio sensing techniques using rockets or ground-based "radar". Two ground-based techniques use HF radio waves: the partial reflection technique (e.g., Gardner and Pawsey, 1953; Belrose, et al., 1967) and the wave interaction or crossmodulation technique (e.g., Smith, 1967). Multi-frequency VLF sounders are used at both steep (e.g., Gossard, 1967) and oblique (e.g., Morfit, 1973) incidence. Finally field strength as a function of distance from the transmitter can be used to deduce the electron density profile (e.g., DCA, 1975). The Appendix lists many more references for each experimental method.

The low values of electron density in the lower ionosphere make its measurement difficult (Booker and Smith, 1970). None-the-less, there have been enough such attempts to make it worthwhile to try to analyze all measurements and integrate them into a synoptic quantitative description.

In this report, all applicable measurements that were found are used. The usual hopeful assumption is made: if the sample is large enough, errors made in individual measurements will "average out" so that the resulting sample mean represents the true mean ionosphere, and the distribution of the data about the mean approximates the true distribution. That assumption should eventually be tested by comparing calculated LF-VLF field strengths with measured values for particular paths.

This appears to be the first attempt to organize all the data into a quantitative model. The usual reasons given for not doing it are that the data are not sufficiently accurate, have not been validated by replication (various experimental methods may give different results), have not been taken in enough different points in space and time, and do not extend low enough in altitude to be useful in long-path Vi.F propagation studies. Most of the reasons except the last can be tested and perhaps circumvented by statistical analysis. The last reason is the most inhibiting -- but can be tested only after the model has been developed -- by comparing theoretical propagation calculations made with the model with actual measurements.

2. SELECTION AND VALIDATION OF DATA REDUCTION TECHNIQUES

Two measured D-region profiles are shown in Figure 1 (Profiles 70 and 167 of Appendix). The fact that measured D-region electron densities are usually shown in this format emphasizes that the most important variation is with height. Given a large number of profiles like those shown in Figure 1, which were measured at various geographic locations and times, how can the average profile and the variation of profiles with important causative geophysical parameters be summarized? That is the problem being addressed.

A brute force approach might be to consider a four dimensional grid (latitude, longitude, altitude, and time) and to fit some function to the data values we have, recognizing the important time cycles (diurnal, annual, and sunspot cycle). Even a cursory examination of this approach shows that it requires orders of magnitude more data than are evailable.

A more refined approach is to choose a mathematical form whose values depend on parameters, determine the values of these parameters for the measured data, and analyze the geophysical dependence of these parameters.

Berry and Jones (DCA, 1974b) used a model which consisted of an exponential function of height, plus a Chapman layer. This model required six parameters, and could be fit quite well to profiles like the one labeled A in Figure 1. Scaling the parameters from profiles is quite difficult, especially if the shape is like that of profile B in Figure 1.

2.1 The Exponential Profile

A much simpler model for theoretical purposes was suggested by Wait and Spies (1964). Calculations show that the parameters which most affect VLF propagation are the height of reflection and gradient of electron density at that height. These two parameters are explicit in the "exponential profile"

$$N(h) = N_{o} exp \left[\alpha(h - h_{o})\right]$$
(1)

where N_0 is the electron density at height h_0 and α is the slope on semi-log paper. The rationale is that the lower edge of most profiles can be approximated by a straight line on the semi-log paper for a height range of several kilometers. Theoretical calculations have shown (Crain, 1970; Gambill and Rutherford, 1971) that most of the contribution to reflection of LF and VLF waves occurs within a height range of perhaps 5 kilometers.

The Naval Electronics Laboratory has had considerable success matching theoretical propagation calculations to measured field strengths by using such exponential profiles. Thus, this simple model, which requires only three parameters for complete specification, was selected for a first attempt. If it does not prove satisfactory, more complicated models can be tried later.

As will be seen, even profiles such as profile A in Figure 1 can be fitted with an exponential. The argument is that, even for these, the oblique reflection often takes place well below the nose of the profile, so that the departure from an exponential higher up is not significant. Of course, there will be times when electron density in the reflection region is considerably non-linear, but if these times are sufficiently rare, they will not invalidate a statistical model.

2.2 Scaling Rules

Having chosen to fit the profiles with a straight line (on a log scale), the choice of the proper height at which to determine the slope of the line becomes critical, because the slope is an important determinant of the reflection coefficient magnitude. For theoretical work, Wait and Spies (1964) chose to fix N_0 so they could deal with only two parameters -- h_0 and α . They chose the height h_{ω} at which

$$\omega_{\rm r}(h_{\rm W}) = 2.5 \ (10^{2}).$$
 (2)
Here, $\omega_{\rm n}(h) = 3.18 \ (10^{9}) \ N(h)/v(h),$ (3)

N is the electron density, and v is the electron neutral collision frequency. It is important to notice that for a truly exponential profile, such a choice is entirely arbitrary: given one set of N₀, h₀, and α , the same profile can be represented at any other height h₁ by finding the corresponding N₁ using formula (1).

However, for determining an exponential electron density profile which adequately represents an experimentally measured profile for propagation calculations, selection of the height at which to determine the slope can be critical, because this slope may change considerably in a distance of 10 or 15 km.

Gambill and Rutherford (1971) have made a number of calculations which show that most of the energy of a VLF or LF wave incident at an angle ϕ on the ionosphere is reflected near the height where

$$\frac{\omega_{\rm r}}{\omega} = \sqrt{2} \cos^2 \phi, \qquad (4)$$

where $\omega = 2\pi$ f is the radio frequency. This was originally suggested by Field and Engle (1965). Unfortunately, this criterion is a function of radio frequency and angle of incidence, and the ionospheric model should not be a function of these parameters. In the next paragraph it is shown that the dependence on f and ϕ is sufficiently weak that average values can adequately represent the range of interest to LF-VLF.

An adequate approximation for the collision frequency is (Wait and Spies, 1964)

$$v = 5 (10^6) \exp \left[-0.15(h-70)\right] = 1.8 (10^{11}) \exp (-0.15h)$$
 (5)

Assume $v = d \exp \left[-.15(h - h_0)\right]$ and that $N(h) = N_0 \exp \left(\alpha (h - h_0)\right)$. The reflection height, h_r , is found by solving (4) using (3):

$$\frac{3.18(10^9) N_0 \exp (\alpha (h - h_0))}{2\pi f d \exp (-0.15 (h - h_0))} = \sqrt{2 \cos^2 \phi}, \text{ or}$$
(6)

exp [(
$$\alpha$$
 + 0.15) (h - h_o)] = 2.8(10⁻⁹) f $\frac{\cos^2 \phi}{N_o}$ d, (7)

Taking the natural logarithm of each side and rearranging yields:

$$h = h_0 + \frac{1}{\alpha + 0.15} \ln \frac{2.8(10^{-9})d}{N_0} + \frac{\ln(f \cos^2 \phi)}{\alpha + 0.15}.$$
 (8)

The radio frequency and angle of incidence affect only the last term on the right. The denominator of the term, α + 0.15, varies from 0.3 to 1.2 (DCA, 1975). Choosing 0.5 as a typical value, the reflection height variation with f and ϕ is 2 ln (f cos² ϕ) km -- a factor of 2 variation in f cos² ϕ changes the reference height only 1.4 km. For example if f = 30 kHz, the height would be within 1.4 km of the correct height for frequencies from 15 kHz to 60 kHz. Similarly, $\phi = 81^{\circ}$ will cover angles from 77° to 84° -- and these are by far the most important angles of incidence for long-path VLF-LF propagation.

Therefore, equation (4) with f = 30 kHz and $\phi = 81^{\circ}$ was used to determine the scaling height. The scaling procedure was as follows:

1. If the lower portion of the profile shows electron density increasing, or constant, as the height decreases, discard the profile.

 Otherwise find the lowest height that satisfies equation (4). If this height exists on the measured profile, use it and go to 3.

If the height is below the measured profile,

a. if there is an established slope to the profile near the bottom, extrapolate it to the height that satisfies equation (4), and proceed to 3.

b. Otherwise, discard the profile.

3. Record the height and N at the required height.

4. Fit (by observation) a straight line tangent to the profile at the selected height. Determine α for this straight line.

2.3 Validation of Scaling Rules

Since the ionospheric model is being developed for use in propagation predictions, the salient test of the adequacy of this procedure is comparison of propagation parameters computed for the entire measured profile and the exponential fit. From some 280 profiles collected at the time of the test, a stratified sample was selected: one night and one day profile from each season (winter, summer, equinox) from each of three latitude zones (high, medium, low). There were not enough profiles from low latitudes to do this, so the test was made with 10 test profiles (numbers 70, 159, 167, 169, 247, 250, 300, 317, 343, and 372 from the Appendix).

The electron density and the parameters for an exponential fit were scaled from each profile using the rules above. Then ionospheric reflection coefficients for both representations of each profile were computed for radio waves with frequencies of 20, 40, and 60 kHz incident on the ionosphere at angles of 50°, 60° , 70° , 75° , 78° , 82° , and 84° . The three larger angles in this list are the most important for long-distance VLF and LF propagation.

The values for the measured profile and its exponential fit were compared to determine the error caused by the exponential approximation. For the amplitude of the reflection coefficient, the error (in dB) is

> 20 log |<u>R (for exponential fit)</u>| |R (for measured profile)|

where R is the computed reflection coefficient for each case. The phase error was defined to be

 $\phi(exponential fit) - \phi(measured profile)$

where ϕ is the computed phase of the reflection coefficients. The errors were computed for each frequency as a function of angle of incidence. To determine if there were any consistent bias in the scaling procedure, the errors were averaged. The results for the most important reflection coefficient ($_{||} R_{||}$) are shown in Figure 2. The fact that the overall average of the error is small indicates that there is no bias in the scaling procedure.

For estimating the effects of the errors on field strength predictions, the average of the absolute value of the errors is more important. This average is shown for each frequency in Figure 3. In general, the errors are larger for smaller angles of incidence. This could be expected from the scaling rules, since the height at which the electron density gradient was scaled was the "correct" one for an angle of 81°. The errors are also larger for the higher frequencies than for the lower frequencies.

The large errors for small angles of incidence are not too disturbing, because the model is to be used for calculation of field strengths at long distances. For these calculations, angles between 80° and 85° are most important, since the limiting grazing angles for wave hop theory are about 81° or 82° and the real part of the eigen angles of the important wave guide modes are greater than 80° also.

The probable error in field strength can be estimated from the error in reflection coefficients using notions from the wave hop theory. In this theory, the reflection coefficient (in dB) is multiplied by the hop number, so the error in a hop would just be the hop number times the error in the reflection coefficient. The first hop is usually the largest for distances from 1000 to about 3000 km, so the error in field strength in this region should be about the same as the error in the grazing reflection coefficient.

From about 3000 km to 5000 km, the second hop predominates, and the error should be twice the error in the reflection coefficient. Between about 5000 km and 7000 km, the error should average about 3 times the error in the reflection coefficient, etc.

Three of the profiles were selected for further testing. One was the profile with the smallest errors in reflection coefficients (profile 167). The second was a profile whose errors most nearly matched the average values (profile 70) and the third was the profile with the largest errors in reflection coefficients (profile 300). The field strength as a function of distance was computed for these three profiles for frequencies of 20, 40, and 60 kHz using the wave hop theory program (Berry and Herman, 1971). The results for 40 kHz are shown in Figures 4, 5, and 6.

Figure 4 is the best case; the field strength curve for the exponential profile can barely be separated from that for the complete profile. The average case is shown in Figure 5. The separation between the two curves gradually increases with distance, but even at 6000 km the difference is acceptable for many practical purposes. The worst case is shown in Figure 6, where the two field strengths are far apart from 5000 km onward.

Notice that in all three cases, even in the worst case, the locations of relative maxima and minima in the two curves are nearly coincident.

The magnitude of errors in field strength can be easily seen in Figure 7, where they are given (in dB) as a function of distance for all three cases. Recall (Figure 3) that the average error in reflection coefficient for grazing incidence was under 1 dB. Thus for the average case (profile 70), the error in field strength from 1000 to 3000 km averages less than 1 dB. From 3000 to 5000 km, the error is between 1 and 2 dB, and so forth. The error in the worst case increases quickly with distance to over 5 dB beyond 5000 km.

The errors in field strength at 20 kHz and 60 kHz are shown in Figures 8 and 9, respectively. These calculations show that the errors in field strength can be estimated accurately from the reflection coefficient errors.

It is interesting to go back and look at the profiles which produced the best, average, and worst results. Profile 167, the best fit, is shown in Figure 10. It is easy to see why the exponential fit (also shown in Figure 10) is an adequate approximation, especially when you note how closely it

Figure 4. 40 kHz field strength as a function of distance for measured profile 167, and for the exponential approximation to it.

Figure 8. The error in computed field strength using an exponential approximation to a measured electron density profile for a trequency of 20 kHz.

AND DIVINI

The error in computed field strength using an exponential approximation to a measured electron density profile for a frequency of 60 kHz.

follows the measured profile for many kilometers on each side of the reflection region (marked by an X on the profile).

The fit which produced average errors is shown in Figure 11. The measured profile departs significantly from the straight line fit above 73 km, which leads to larger errors in reflection coefficients for more sharply incident radio waves.

The worst-fit profile is shown in Figure 12. It is obvious that this profile is very unlike the exponential profile also shown on the figure. If all, or even very many, real profiles had the shape of profile 300, the selected scaling process would clearly be inadequate -- and the model would probably need to be more complicated. However, the statistical test conducted with 10 profiles indicates that profiles like the one in Figure 12 are rare.

These tests showed that the exponential model and the scaling procedure are sufficiently accurate, since the average errors in field strength are less than or comparable to the natural variation of VLF-LF propagation over paths less than 6000 km long.

3. DERIVATION OF THE MODEL

The journal and report literature yielded 470 profiles which could be scaled according to the rules in the previous section. The Appendix contains a list of the sources of the profiles, and lists the parameters scaled from the profiles and other necessary information about them such as location, time, and experimental method.

Standardized computer programs exist for performing sophisticated statistical analyses of data. OMNITAB II, produced by the National Bureau of Standards (Hogben, et al., 1971), was used. The analysis is essentially a multidimensional <u>linear</u> regression. The independent variables must be chosen so that, to the extent possible, their influence on the model parameters is linear. Physical reasoning and previous studies of the D region provide clues to the appropriate variables. A final choice follows experimentation with various combinations using the OMNITAB program.

3.1 Selection of Regression Variables

The daytime D region is produced by direct radiation from the sun. Theoretical analysis (Davies, 1965) and experimental analysis (Reid, 1969) have shown that the electron density correlates well with $\cos x$, where x is

Figure 10. Measured electron density profile 167, and the scaled exponential approximation to it.

Figure 11. Measured electron density profile 70, and the scaled exponential approximation to it.

the zenith angle of the sun. The zenith angle depends on local time, latitude, and season, so it incorporates in one variable many of the things that influence the D region.

An alternative choice for representing the diurnal variation is the local time. In order to keep the variable cyclic, let the independent variable be $\cos (2\pi(t-12)/24)$ where t is the local hour. This choice has the advantage of being independent of season and latitude, other potential independent variables. Tests with OMNITAB showed that the residual error was smaller if local time rather than sun's zenith angle was used to represent the diurnal variation.

LF-VLF propagation also varies with season, which indicates that the lower ionosphere depends on season. Numbering the months from 1 to 12 beginning with January yields a numerical variable which represents the seasons. A complication is that the year is a cycle, but the month numbers have a discontinuity between December and January. That is, in nature, December and January are very much alike, but in the numbering scheme they are as different as possible, being numbered 12 and 1 respectively. This difficulty is avoided by choosing $\pm \cos (2\pi(m - 1/2)/12)$ as the independent variable instead of the month number. The plus sign is used in the northern hemisphere, and the minus sign in the southern hemisphere so that the seasons will be similar in behavior. January 15 is winter in the northern hemisphere and the variable has the value +1. In order that winter in the southern hemisphere sign.

Watt (1967) suggests that VLF phase velocity varies like the cosine of latitude. This also has the advantage of treating north and south latitude the same. So cos (latitude) was chosen as an independent variable.

Following the practice at high frequencies, the 12 month running average of the Zurich sunspot number was used as an independent variable.

It was necessary to choose carefully the height at which the parameters were scaled as discussed in section 2.2. However, once the three parameters, N_0 , h_r , and α , are known, one of them can be discarded by transforming to the standard reference height h_w (the height where $\omega_r/\omega = 2.5 \ (10^5)$). This also makes it easier to compare the results with the literature.

3.2 The Regression Model

The model is therefore to have the form

$$N(h) = N_0 \exp (\alpha (h - h_w))$$
(9)

where

$$N_0 = 1.43 \ (10') \ \exp(-0.15 \ h_W)$$
 (10)

so that h_W is the standard reference height. The gradiant α and h_W will depend on time (hour and month), latitude, and solar activity.

$$\alpha = \alpha_{c} + \alpha_{1} x_{1} + \alpha_{2} x_{2} + \alpha_{3} x_{3} + \alpha_{4} x_{4} \quad \text{and} \quad (11)$$

$$h_{w} = h_{c} + h_{1}x_{1} + h_{2}x_{2} + h_{3}x_{3} + h_{4}x_{4}$$
(12)

The α_i and h_i are coefficients determined by a multidimensional linear regression on the independent variables x_i . These variables are:

 $x_1 = \cos(\frac{t - 12}{24} 2\pi)$, where t is the local time (hour), t = 1, 24.

 $X_2 = \cos(L)$, where L is the latitude (radians).

$$x_3 = \frac{+}{12} \cos\left(\frac{m-1/2}{12} + 2\pi\right)$$
, where m is the month (January = 1, ...December = 12.

(Use + for northern hemisphere, - for southern hemisphere.)

 $x_4 = S$, where S is the sunspot number (12 month running average of Zurich relative sunspot number).

The analysis was also done for $x_1 = \cos(\sin's \ zenith \ angle)$ but the residual error in both h_w and α was greater (slightly) for this set of variables. Table 1 gives the resulting values for α_i and h_i .

Table 1: Values of Coefficients for Statistical Electron Density Model.

i	с]	2	3	4
h _i	71.8	-3.83	6.85	0.085	-0.047
αi	0.210	-0.036	0.082	-0.050	0.00045

What is the significance of α_c and h_c ? They are the values of α and h_w at 0600 and 1800 hours on March 15 and September 15 at <u>+</u> 90° latitude if the sunspot number is 0.

4. COMPARISONS OF MODEL VARIATIONS WITH VLF PROPAGATION EXPERIENCE

The implications of the regression analysis are shown in Tables 2, 3, and 4. The coefficient of the month term for height is small (not significantly different from zero).

Watt (1967, p. 265) estimates that the phase velocity of a 16 kHz signal increases about one part in 10^{-3} as the sunspot number goes from 0 to 100. This corresponds to a 5 to 10 km decrease in reference height (Wait and Spies, 1964). Coefficient h_4 above would cause a reference height decrease of 4.7 km, which is consistent with the propagation data.

Table 2 shows the values of h_W as a function of hour and latitude. The variation from midnight (t = 0) to noon (t = 12) is only about 8 km. The mid-latitude noon values of 70 to 72.5 km are consistent with those determined for long path VLF propagation; namely, 70 km (DCA, 1974a) to 75 km (DCA, 1975). However, the nighttime heights are 7-10 km lower than heights deduced from long-path propagation data (DCA, 1974a, 1975). This may be caused by the much smaller data pool for nighttime profiles, by less accurate measurements at night because of the high noise level, or by smoothing of the data in the statistical analysis.

Figure A3 of the Appendix shows the distribution of scaled heights h_w for the nighttime profiles. The mean value is 77.2 km -- much lower that is suggested by VLF propagation data. Measurement of low-level electron density is notoriously difficult. These difficulties are compounded at night by highnoise levels, and perhaps by a more variable (in space and time) lower ionosphere. It is likely that the lower parts of the nighttime profiles used are inaccurate.

Watt (1967, p. 365) estimates an increase at 10 kHz of about $2(10^{-3})$ in phase velocity relative to the speed of light as latitude increases from 0° to 90°. This corresponds to about 7 to 12 km decrease in reference height (Wait and Spies, 1964). Table 2 shows about 7 km decrease in reference height between 0° to 90° latitude.

The other model parameter, α , is equal to β -0.15, where β is the parameter most often mentioned in the literature. Propagation measurements lead to daytime estimates of β that range from 0.3 to 0.5 (DCA, 1974a, 1975); that is, α is estimated to range from 0.15 to 0.35. The daytime (t = 12) values in Tables 3 and 4 are mostly in this range. The winter

Table 2:	Values of h_w computed using equation (4) and Table 1, assuming
	it is equinox, and that the sunspot number is 30.

		Local Time (hours)													
		0	6	12	13										
	0	81.1	77.2	73.4	77.2										
	30	80.1	76.3	72.5	76.3										
Latitude°	60	77.7	73.8	70.0	73.8										
	90	74.2	70.4	66.6	70.4										

Table 3: Values of α computed using equation (3) and Table 1, and assuming that it is January, and that the sunspot number is 30.

		1 1	ocal Time	(hours)	
		0	6	12	18
	0	0.293	0.257	0.221	0.257
	30	0.282	0.246	0.210	0.246
Latitude °	60	0.252	0.216	0.180	0.216
	90	0.211	0.175	0.139	0.175

Table 4: Values of α computed using equation (3) and Table 1, assuming that it is July, and that the sunspot number is 30.

	L	ocal Time	(hours)	
	0	6	12	18
0	0.376	0.340	0.304	0.340
30	0.365	0.329	0.293	0.329
60	0.335	0.299	0.263	0.299
90	0.294	0.258	0.222	0.258
	0 30 60 90	0 0.376 30 0.365 60 0.335 90 0.294	Local Time 0 6 0 0.376 0.340 30 0.365 0.329 60 0.335 0.299 90 0.294 0.258	Local Time (hours)061200.3760.3650.340300.3650.3290.293600.3350.2940.2580.222

mid-latitude value of α is about 0.2, and the summer noon value is about 0.27.

Nighttime values of β determined from propagation measurements range from 0.3 to 1.2, corresponding to values of α between 0.15 and 1.05 (DCA, 1975). The (t = 0) values in Tables 3 and 4 range from 0.21 to 0.38.

5. CONCLUDING REMARKS AND RECOMMENDATIONS

Summarizing, the multiparameter regression analysis results in variations of the model reference height with latitude and sunspot number that are consistent in direction and magnitude with those deduced from propagation data. However the day-to-night change in reference height is only about half as large as the diurnal change indicated by propagation measurements. The model values for the gradient of electron density, α , are consistent with the most-often-used propagation values, but do not have as large a range.

It is likely that the small number, and/or poor quality of the nighttime profiles caused the day-to-night variation of h_W to be only half as large as is indicated by propagation data. The following recommended steps would probably improve the model:

- Remove local time from the list of independent variables, and, instead, put in a fixed variation with time which has the required day-to-night variation, as determined by propagation data.
- 2. Filter the data by making subjective, but careful, judgements about the quality of the data, indicated by the experimental method and controls. Discard the profiles judged to be unreliable.
- Continue to add high quality profiles to the data base as they become available.
- 4. Then recompute the coefficients for the remaining variables, separately for day and night.

A realistic time-varying model of the lower ionosphere is necessary for reliable calculations of the time-availability of LF-VLF links in the MEECN ystem.

6. REFERENCES

- Bain, W.C., and B.R. May (1967), D region electron density distributions from propagation data, <u>MF, LF, and VLF Radio Propagation</u>, Conference Publication No. 36, IEE, London.
- Belrose, J.S., I.A. Bourne, and L.W. Hewitt, (1967), A critical review of the partial reflection experiment, <u>Ground-based radio wave propagation</u> <u>studies of the lower ionosphere</u>, Conference Proceedings, (Defence Research Board, Canada).
- Berry, L.A., and J.E. Herman, (1971), A wave hop propagation program for an anisotropic ionosphere, OT/ITS RR 11, Office of Telecommunications, Boulder, Colorado.
- Booker, H. G., and E. K. Smith, (1970), A. comparative study of ionospheric measurement techniques, J. Atmos. Terr. Phys., <u>32</u>, No. 4, 467-497.
- Crain, C.M., (1970), Ionospheric probing with long wavelength radio waves, J. Atmos. Terr. Phys., 32, 551-566.
- Davies, K. (1965), <u>Ionospheric Radio Propagation</u>, NBS Monograph 80, (Superintendent of Documents, US Government Printing Office, Washin on, D. C. 20402).
- DCA (1974a), Comparison of predicted VLF/LF signal levels with propagation data, 960-TP-74-5, (Defense Communications Agency).
- DCA (1974b), LF/VLF field strengths and radio noise at high latitudes: Comparisons of measurements and predictions, 960-TP-74-43 (Defense Communications Agency).
- DCA (1975), Determination of effective ionospheric electron density profiles for VLF/LF propagation.960-TP-75-37 (Defense Communications Agency).
- Field, E.C., and R.D. Engel (1965), The detection of daytime nuclear bursts below 150 km by prompt VLF phase anomalies, Proc. IEEE <u>53</u>, No. 12, 2009-2017.
- Gambill, B., and R. Rutherford (1971), WEDCOM propagation model improvements, DASA 2682, (GE-TEMPO, Santa Barbara, California).
- Gardner, F.F., and J.L. Pawsey, (1953), Study of the ionospheric D region using partial reflections, J. Atmos. Terr. Phys. 3, 321.
- Gossard, E.E., (1967), The structure of the atmosphere near 90 km from short path VLF measurements, <u>Ground-based</u> radio wave propagation studies of the lower ionosphere, Conference Proceedings, (Defence Research Board, Canada).
- Hogben, D., S. T. Peavy, and R. N. Varner, (1971), OMNITAB II User's Reference Manual, National Bureau of Standards, Tech. Note 552.

- Morfitt, D.G., (1973) Computer techniques for fitting electron density profiles to oblique-path VLF propagation data, NELC TR 1854, (Naval Electronics Laboratory Center, San Diego, California).
- Reid, G.C., (1969), Review of daytime electron density profiles, University of Illinois Aeronomy Report No. 32.

5

- Smith, R.A., (1967), Small perturbation wave interaction in the lower ionosphere, <u>Ground-based radio wave propagation studies of the</u> <u>lower ionosphere</u>, Conference Proceedings, (Defence Research Board, Canada).
- Wait, J.R. and K.P. Spies, (1964), Characteristics of the earth-ionosphere waveguide for VLF radio waves, NBS Technical Note 300, (National Bureau of Standards, Boulder, Colorado).

Watt, A.D. (1967), VLF Radio Engineering, (Pergamon Press, Inc., New York).

APPENDIX

D-Region Data Base

Table A2 lists the lower ionosphere electron density profiles used in the analysis, along with the parameters N_0 , h_r , and α scaled from the profiles using the scaling rules in Section 2.2. Other relevant data is also listed. (Table A1 defines the column headings of Table A2.) The last column of Table A2 contains a reference to the source of the profile. The full list of references follows Table A2.

Figure Al shows histograms of the scaled parameter α and the reference height h_w (height satisfying equation (2)) for all the data.

Figures A2 and A3 show histograms of the same parameters for day hours only and night hours only. For figures A2 and A3, sunrise and sunset data have been deleted.

Table Al: Definition of column headings in Table A2.

Column

Heading

A	Profile reference number
В	Year of observation
С	Month of observation
D	Day of observation (00 means unknown or irrelevant)
Ε	Reference height for scaling α
F	Electron density (electrons/cc) at reference height
G	Exponential profile slope parameter, α
н	Geographic latitude of observation, degrees (south is negative
I	Local time of observation (hour = 1, 24)
J	Sunspot number for month of observation
к	Methods of observation: 1 = partial reflection 2 = rocket 3 = wave interaction 4 = LF-VLF reflection 5 = other
L	Magnetic disturbance indicator: undisturbed = 1 disturbed = 2
м	Solar eclipse indicator: no eclipse = 1; eclipse = 2
N	Collision frequency profile applicable to observation
0	Geographic longitude of observation (degrees east)
р	Reference to source document

¥,

Figure A1. Distribution of scaled α , and reference height h_W for all 470 profiles used in the study. The number of observations, N, the mean, m, and the standard deviation, σ , are shown on the figure.

Figure A2. Distribution of scaled α , and the reference height h, for daytime profiles used in the study. The number of observations, N, the mean, m, and the standard deviation, σ , are shown on the figure.

Figure A3. Distribution of scaled α , and reference height h, for nighttime profiles used in the study. The number of observations, N, the mean, m, and the standard deviation, σ , are shown on the figure.

TABLE A2: D-Region Profiles: Data and Scaled Parameters

See Table Al for Column Headings

															60)	=	=	z	=	=			_				_			~		_				
		6						_	_						61)							_	961	~			963	_	_	963		963				3
		197	=	=	=	=	=	953	953						ed	=	=	z	=	=	60)	963	C	963	z	=	Ē	963	963	Ē		Ē				196
		-						E	C				_		Ξ.	-				-	(19 (E	ane	Ē		-	ane	Ξ	Ē	ane		ane				U L
	۵.	isol						Sey	Sey	•			967		put	=	z		=	=	ø	11.	Thra		z	×	Thra		-	Thra		Thra				inel
		irr	=	=	=	=	=	aw	aw				Ĉ		ž						ki.		P	<u>ب</u>		-	g	<u>ب</u>	». ب	p	<u> </u>	g	a			Cet
		ΗH						PC PC	P	(99		(9)	lay	20)	Imai	-	_	-	_	_	feil	n et	ar	le l	-	-	a ar	n et	e l	a ar)6(L)	a ar	196	=	=	P
		anc	=	=	=	=	=	, ar	ar	196	96	196	P	196	and	•	-	-	-	-	t p	Itor	Itor	Itor			Itor	tor	tor	Itor	Na (ltor	5			ar
		las						luei	Iner	S	5	S	ar ar	S							/ ar	ing	ing	in,	=		·ing	ing	ing	ing.	veza	.ing	950.	_		056
		Thom	=	=	=	=	=	arc	arc)eel	(ane)eel	3air)eel	101	=	=	=	=	=	(de)	Barr	Jarr	Sarr			Jarr	Jarr	Barr	Jarr	one	Barr	Je Jr	-		Sel r
		3	t	t	\$.t	3	2	2	0	8	0		0	-	0	0	0	0	0	8 4	-	-	H	-	-	4	4	म्म स्म	4	7	ш т	*		-	a.: •••
	0	.6		•6	•6	.6	.6			.0	5.	.01	.0	.0	.6	•6	•6	6	6	6	ŝ		-	++	-	1.		-		-	•0•	1.	54.	• • •	34.	• •
'n		3	S	5	50	35	5		-	Ű	28	0	5	G	44	44		-	-		Ş	-	**		-				-	-	4	4-4	N	2	2	ŝ
	Z	44	3	41	41	41	44	9	Q	ნ	2	σ	60	σ	32	31	31	31	31	31	11	~	~	~	~	~	~	~	~	~	20	~	11	11	11	1
	Σ	-	-1	-1	+4	-	-4	-	-	-1	-	-	-	-	-4	-	-	H		+	+1	-	-	-	-		+1	H	+	H	+1	-1	-1	-		-
		-	+	+	-	+				-	2		++	+		-	+	-			+	**	**		=			1	+1			**	=		-	**
	×	- T	4	8	9	-7	-7	~	2	т т	1	ন	7	4		-			-	**	0 0	2	2	2	N	N N	2	2	N	2		50	5	5	- ი	6
	5	TO	10	10	10	10	10	'n	ភ	17	5	19	19	20	18	5 T	15	5	5	54	44	12	10	12	13	12	13	12	12	10	σ	8	~	~	~	Ó
-		12	5	35	00	0+	30	00	00	00	lé	00	00	00	00	30	30	0+	26	52	37	30	30	30	30	30	00	30	30	00	32	00	00	00	00	00
	H -4	63	50	03	10	53	10	12	12	12	12	12	12	00	21	11	11	12	21	1	12	07	08	60	10	11	12	4	ي الله	12	57	12	12	12	12	12
		5	•	S .	ណ្	ن ه	5	6.	б .	•	•	•	3.	•	1.	~	2.	2.	~	2.	•	••	••	0.	•	0.	• •	•	•	0.	~	د: •	4.	3.	+	4.
	T	51	51	51	15	5	5	33	33	40	58	40	25	40	69	69	69	69	69	69	65	60	60	60	60	60	60	60	60	60	99	6 Û	1 1	4	10 10	4 2
)		σ	t.	2	თ	ი	g	ភ	Ø	æ	ŝ	~	N	~	ыı	თ	-	-	S	м	~	t	8	S	ې	~	м	~		t	N	2	~	N	.o	~
	G	65	47	53	15	53	34	62	60	19	22	10	66	60	5	49	5	35	41	63	5	02	10	07	14	12	11	12	11	11	14	10	. 06	50	95	38
		•	•	•	ľ	•	•	•	•	•	•	•	•	ľ	•	•	•		•	Ī	•	•	Ī	•	•	•	Ī	•	•		•	Ī		Ī	•	•
	LL	0	Š. 8	•• 0	0.1		3.0	0.0	3.6	0.	0.0	3. O	L. 0	•	3.0	ي د د	L. 0	0.1	5. C		5	0.0	0.0	•••	ن • •	0.0	3.0	3.0	5.0	ς. ε] • C	3.0	0.0	L. 0	ن •	
			r	4	2	Ŧ	5	**	4	61	177	6	5	141	10	M	m	5	80	3	3	5	80	8	9	10(10(-	80	121	60	0	142	6	8	m
		2	ų	0	S	t	N	N	0	2	2	S	0	2	÷	6	m	-1	ហ	0	-	5	0	m	0	5	5	-	N	t	0		N	0	3	IJ
	ш	89.	76.	68.	63.	65.	59.	66.	65.	61.	6 9	61.	64.	75.	53.	64.	65.	62	54.	63.	62.	60.	63.	60.	65	59.	60.	63.	60.	58.	56.	60.	51.	54.	52.	62.
	0	0	0	0	0	0	0	90	-	0	t	00	0	00	ŝ	-	25	9	9	31	1	1	2	2	~	2	N	~	2	-	25	1	0	-	25	2
	~	~	~	2	~	~	~	5	ស	3	~	~	~	N	-	60	80	•0	80	-	σ	m	m	m	m	m	m	m	M	80	σ	-	2	2	N	m
	~	9	0	0	0	9 0	0	0	0	0	0	2	20	1	н Ю	0	0	0	0	0 6	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	с –
	ш	4	đ	4	4	4	3	ທີ	iñ.	ທີ	iñ	ທັ	in	ŝ	ŝ	ι.	ม้า	ហ័	ĩ	ŝ	ហ័	õ	6	9	9	9	9	6	Ū	9	9	9	ۍ ف	ġ	ê	ü
		01	m	.+	10	5	~	80	œ	P	<u>6</u> 1	m	.+	5	'n	~		m	C	-	0	m		ŝ	ŝ	~	Ð	đ	0		N	m	t.	In.	50	~
	A			-	- 1	-		-	-	F	-	-	-	-	Ŧ	न	=	-	N	2	N	N	N	2	Ñ	Ñ	Ň	N	M	M	m	M	m	m	m	M

- Contraction

à.
led
Sca.
and
Data
iles:
Prof
D-Region
<pre>(continued):</pre>

FABLE A2

irameters

(1966) Jesperson, Haug & Landmark (1966) Smith (1963) Jesperson, Haug & Landmark | Belrose and Bourne (1967) Belrose (1965) Belrose and Cetiner (1962) Belrose and Bourne (1967) Belrose and Bourne (1957) Belrose and Bourne (1967) Belrose and Bourne (1967) Mechtly and Smith (1968b Smith (1968b 1967 Hall and Builough (1963) (1967 Belrose and Burke (1964) 1954 Hall and Fooks (1965) Belrose and Cetiner Belrose and Cetiner Belrose and Bourne Belrose and Bourne 1970) 1970 ۵ al. (1965) (1965) (3961) (1964) al. Smith (1963) Smith (1963) Smith (1965) Smith (1963) Jesperson et . . Smith (1966) (1972) Mechtly and Holt (1963) Belrose (Belrose Belrose Belrose Belrose Rowe et Rowe et Aikin 16.0 11.1 136.3 264.5 284.5 264.5 16.0 16.0 284.5 284.5 284.5 284.1 294.1 284.1 284.1 284.1 284.1 284.5 136.3 264.1 284.1 284.1 284.1 284.1 284.1 284.1 282.1 282.1 284.1 284.1 284.1 284.1 284.1 284.1 0 See Table Al for Column Headings 36 34 14 20 23 11 32 1 16 16 20 20 11 20 20 202 11 11 Ħ 11 11 10 20 Ţ Ţ 11 11 井 z E ¥ 69 5 5 5 S⁴ 5 38 52 335 31 33 DE 30 30 02 30 30 H S 5 9 5 37 -1145 0809 1200 1210 1239 0525 1200 1700 2152 1430 0360 2206 0435 1260 1260 0500 1200 0557 0011 1200 1200 1200 1230 1200 1200 1200 1450 1200 1200 1200 1200 1040 1351 ----37.9 45.4 37.9 45.4 42.4 45.4 42.4 69.3 5.4 σ 42.4 (Th 45.4 69.3 69.3 60.0 -31+2 42.4 40.5 37.9 45.4 45.4 37.9 45.4 40.8 37.9 45.4 -31.8 37.9 45.4 45.4 45.4 37. T j. J .165 560 .115 .182 . 406 .120 .166 396 . 204 . C60 109 544 369 136 152 162 . 681 197 131 248 422 .050 .284 .284 .132 .115 .061 . 070 107 221 227 .157 .17 G 7.4 4 U • U 43.0 19.0 76.0 126.0 240.6 78.0 27.5 39.0 12.0 9.6 73.0 43.0 8.0 30.0 9.5 39.0 93.0 16.0 52.0 4.9.6 62.0 51.0 62.0 2.1 39.6 200.0 82.0 3.2 5.7 55.0 135. 1. 77.8 71.3 56.6 55.2 62.2 54.0 55.0 63.1 68.5 56.0 56.2 64.2 60.0 69.0 65.6 59.5 52.0 59.5 75.0 61.2 65.0 59.5 57.7 58.4 61.0 64.8 53.4 58.0 56. 55.1 56.8 70.4 51.4 60.1 ш 80 30 30 50 60 00 00 00 00 5 51 21 07 14 20 23 00 00 18 20 00 00 01 11 00 00 11 10 00 ++ 17 0 80 0.8 TO 203 80 12 12 07 07 80 10 11 11 10 M ю Q ø σ ø 2 NNNN 50 207 σ 11 2 N 90 ပ . a 62 62 62 62 63 63 63 62 59 5 29 5 5 61 61 61 61 5 œ 5 61 5 63 66 68 49 M ÷ ŝ Q 53 σ ø 61 62 4 5 67 Φ 5 5 5 40 50 52 0 ささ 0 5 ابب خ 5 ñ 5 0 Ó 9 ø ~

														(99	30	10	1	177	2								19	ā				12)	-			
			2	-										010	100			5 .	DAA	5							(19	-				(196	-	-		
			im (196		(1969)	1							(1969)	andmark	Hewitt	ul lavin	(1969)	Bourn	pwitt ((1960)	66)	100					andmark	-				Hewitt	-	•		
		•	L 2	-	-	1965	=	=			165)		nos		and				H	0	610	=	*	=	H			i 5 =				Due	=			
ŝ			and	196	Man	-		_	9	-	Ĕ,		Mans	aud	LUP	244	Man			Mans	99	=	2	=	#	=	aud					rne	-			
leter			ane	t	and		-	-	796 E	1964	-	1964	and	n. H	Bou		and	ovne ovne	Bod	pue	pue	=	=		=	=	H -U			(99	99	Bou		ŝ	(996	-
aran			- K	ur io	or v	het	=	E	Se (es es	het	Se (Drv	erso	Se.	5	2		Se.	Prv.	2 C						rso		ċ	(19)	61	Se.	1		50	
ed P			Aiki	art	Dar	Smit	=	=	Crou	rou	Smit.	rou	red	lespe	alr.	aga	read	mit	sel ro	rego	erra	=	.	. =	=	*	espe	-	1	Dillo	DNB	elro	=	-	eeks	=
Scal			5.	5	3	er) •	-		-	0		. 8	0.	0.		M	0.	5	-	0		-		-			0.	0	0	E	H	-		Ŧ	0 0	0
put	S	0	284	284	170	265	265	265	265	265	265	265	170	16	265	273	170	151	265	170	282	282	282	282	282	282	10	16	16	19	19	265	265,	265	00	с 0 ,
ta ë	ding	z	29	20	£Ţ	11	11	++	88	38	11	30	13	41	Ŧ	20	ET 3	36	SE	13	16	16	16	16	16	16	14	14	14	14	44	11	11		σ	6
Da	Hea	Ξ	-	-	-	2	2	N	2	N	N	-	-	ਜ	-	-	-	-	-			+	-	÷	-	-	-	-1	-	-	-		-	+		
ŝ	E	_	+	-	+4	-	-		-	-	-	-	-1	N	H	-	-	H		-+	+1	-	-		=	H	2	N	+	-	H	-1	-1	-4	+1	-
e	n lo	×	2	*		2	N	ŝ	N	N	N	2	-	2	-	N	-	M			M	53	m	M	m	M	0	2	2		-		-1		\$	\$
rof	с Г	C	29	29	37	28	28	28	20	28	28	28	28	27	26	26	26	24	21	26	20	19	19	19	19	18	5	15	40	15	15	H L	10	11	10	16
ion P	Al fo		530	030	200	503	513	240	605	605	610	605	0+0	720	000	200	2 00	100	600	200	200	030	130	230	344	200	358	344	000	000	200	500	545	000	000	000
Reg	le		1 6	9 6	10	5	8	1	8 1	1	1 8	8 1	1 0	30	8	1 3	1 0	5	7 0	0 1	1	-	1	8 1	-	H 80	0 8	U E	3 0	T IS	H 10	=	7 01	0	0	5
	e Tab	Ŧ	37.	37.	- 111-	58.	58.	58.	58.	58.	53.	58.	-44-	69.	58.	30.	-440	-30.	74.	-44.	+0+	40.	+ 6.	40.	+0+	40.	69	.69	6 6	69.	69	74.5	74.	74.	40.1	¢ 0 •
i nued	Š	g	. 30 2	.260	.230	.576	£ 0+ •	967	860.	197	. 299	144	213	291	. 261	156	. 272	314	641	204	224	154	37.9	144	154	492	189	224	127	126	129	124	298	376	260	253
ont				-	-	_	_					_		_		_	-	_						•	•	Ī	Ī	Ĭ	•	•	•	•	•	•	•	•
AZ (c		LL.	18.6	M	60.1	10.1	17.	55.(50.0	17.5	70.0	100.0	53.0	147.0	12.5	133.0	40.0	35.0	12.0	70.2	54.0	4 0 . 0	48.5	61.0	56.0	55.0	39.0	13.0	65.6	32.5	42.0	6.4	4.8	1.6	5.8	74.0
BLE			5	•	•	9	-	2	6		2	5		٩	6	Lin.	-	۵,	4	2	0	0	m	0	~	0	٥	4	0	m	ŝ	0	m	2	2	5
I		ш	6.3	5	20	69	65	67	50	62	ŝ	3 S	50	ເດັ ເຄ	67	5	565	61.	17	3	65	67.	65	64	64	65.	57.	64.	22	59.	57.	72.	73.	80.	75.	60.
		0	60	12	00	20	20	20	20	20	20	26	00	12	52	Ŧ	00	10	00	00	00	00	00	00	00	10	12	12	00	00	00	00	00	00	00	00
		J	10	JO	70	10	01	1.0	07	20	20	0 7	07	60	10	10	10	11	12	12	01	10	01	10	10	02	03	20	03	N O M	N D	۲D	n D	2	m (N D
		8	63	63	69	63	63	£9	63	63	59	63	65	63	63	63	65	63	65	65	64	64	64	64	19	64	64	64	64	64	3	3	5	10	19	64
		A	13	14	22	26	11	28	61	90	81	82	83	86	67	88	60	06	91	92	5	46	95	96	26	86	66	100	101	102	103	104	105	106	107	108

						(1068)	& Rourne (1967)		и и и		(1968)		(1968)	Hewitt (1067)	d Hawitt (1067)	ה וובעורר לובחו ל			1066)	(0101) everev	Inter man	& Rourne (1067)	(1001)			=	=	68)		=		=		=		
ed Parameters			eeks (1966)			echtly and Smith	mith. Covne. Loch				echtly and Smith	echt1v (1972)	achtly and Smith	elrose Rourne an	alroca Rourna an	and (1066)		=	nindan ot al (rashushkin and Kn	eeks (1966)	mith Covne Loch	hrane et al (10		и и и		11 11	hrane et al. (19							mith (1966)	mith (1966)
and Scale	gs	0	0.00	0.00	00.0	284.5	151.5	151.5	151.5	151.5	284.5	264.5 N	284.5 N	265.1 P	265.1 P	1 6 6 7	19.3	19.3	284.5 8	50.0 K	00.0	151.5 5	11.1	25.0	25.0	25.3	25.0	25.0 7	25.0	25.6	25.0	25.0	25.0	25.0	284.5 S	284.5 S
Data	eadin	N	1 09	1 9	5	1 20	34	t B T	34	34	1 20	1 20	1 20	11	11	14	14		20	15	Ģ	TE .	+4	1.5	18	18	18	. 16	18	16	1	18	18	18	20	20
	Ť	-	_		_	-	_	_						_									+1							-						
ŝ	E				.+		-	-				-						· •••		Ţ		-		-			-				**	**			**	**
Ë	DIC	-		+		5	-	-	_			-	~			-	_			7	-	-	_		(m) 	-				(m)		5		(m)	N	N
Prof	or C	5	-	H	Ŧ	-	Ŧ	11	1	1	10	Ħ	16	10	1	4	10	Ŧ	T	10	10	10	10	10	10	10	1	7	10	10	10	10	10	10	10	10
egion	e Al f	н	0800	1000	1200	16 65	1420	1440	1540	1235	0300	0770	0525	0000	1260	0600	1200	1700	1200	1200	1200	1715	1200	6493	0810	935	1100	1130	1230	1300	1400	1500	1600	1700	1504	0523
: D-R	e Tabl	H	40.0	40.0	40.0	37.9	-30.5	-30.5	-30.5	-30+5	37.9	37.9	37.9	7 7	74.7	69.5	69.5	69.5	37.9	40.0	40.0	-30.5	60.0	35.2	35.2	35.2	35.2	35.2	35.2	35.2	35.2	35.2	35.2	35.2	37.9	37.9
cinued)	Se	g	• 25 3	. 253	.310	.188	.208	.076	.128	• 419	• 616	. 697	• 38 4	.127	. 16 0	.034	.109	.151	.143	• 095	.282	° 559	.176	.085	• 331	. 297	. 315	• 340	.418	. 38.2	• 354	• 32 3	• 307	060 •	• 236	• 400
A2 (cont		LL.	74.0	74.0	76.0	4 G • ŭ	33.9	3.9.6	37.5	25.0	1.8	2.5	29.6	19.0	26. ů	86.0	66.0	46.0	100.0	55.0	122.0	35.0	13.5	18.0	24.0	29.0	43.0	33°.	30.0	30.0	27.0	23.0	19.5	17.0	17.5	1. €
IABLE		ш	60.0	60.0	60.2	59.5	62. C	61.0	61.0	63.5	79.1	76.5	61.2	64.6	62.9	51.5	59.5	61.5	52.8	59.4	60.4	61.2	63.3	64.8	63.0	61.5	60.7	9.09	61.5	61.5	62.0	63.0	66.2	65.0	64.5	79.5
		0	00	SC	00	16	25	23	23	5	5	n H	2	00	00	00	00	00	0	00	00	1	00	0	0	0			2	2	0	0	2	2		80
		J	M D	20	N 0	10	90	96	90	90		20	20	20	- 20	99	80	80	90	96	0.8	60	0	0	0	0	2	2		10	0	2	0	0	0	0
		æ	64	64	19	64	64	94	64	54	19	64	64	54	64	19	99	64	19	64	64	64	64	64	-	94	10		10	64	64	64	64	94	5	С с
		4	109	116	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	* 1	135	136	137	138	139	140	141	147

N

TABLE A2 (continued): D-Region Profiles: Data and Scaled Parameters

See Table Al for Column Headings

				(22)							967)	=	11			967)				(2)	67)												67)	
				61)							9					6 ()				019	60	•											(19	•
				mith	-	(d/			67)	62)	ourn	=	=			OULL	,			witt	witt	(67)	(8)	62)	-				witt	
		(89)	68)	nd S	1966	961)			(19	61)	-	I	=	1	~					d He	d He	1968	=	=	(69)	(19	(196	61)	1969	=	=	967)	d He	967)
	۵.	(19	(19	11 a	-	ith.			urne	urne	Loch	=	=	(196	(196	loch				e an	e an	le (-		61)	I vn	.[6	al vn	e	-		0	an	5
		al.	5	inhu		5	(9	()	1 Bo	1 80	.e.			-	-		6			ourne	nrno	I III	2	=	a].	Sage	t.	Jov	31 um	=	=	Iran	urne	Irane
		et	et	. Bc	u e	and	1960	1960	and	and	Cov	=		t.	ب	Covr	610	=		BC		nd F	=		et	and	on e	and	nd E	=	=	1 P	. Bc	T P
		ick	ick	htlv	rdea	htly	ks (ks	rose	rose	th.			th e	the	th.	itt	•		rose	rose	ina			htly	ddy	pers	vbb	ina			q an	rose	g an
		MIN	MIN	Mec	Bou	Mec	Dee	Dee	Bel	Bel	Smi	=	=	Smi	Smi	, mS	Hew	=	=	Bel	Bel	Aik	=		Mec	Smi	Jes	Smi	Aik	-	=	Hau	Bel	Hau
	0	5.8	5.8	4.5	4.5	4.5	0.0	6.0	5.8	5.8	1.5	1.5	در ال	1.5	1.5	1.5	5.4	5.1	5.1	5.8	8° 5	1.8	3.1	2.0	2.0	2.1	6.0	2.2	1.6	0.6	1.2	7.7	5.8	7.7
202	Ī	26	26	28	28	28	0	0	. 26	26	15	15	15	15	15	15	. 26	26	26	26	26	28	28	28	28	28	-	28	28	28	.28	-	26	-
	Z		11	20	20	20	ۍ ا	с	11	#	34	34	35	40	3	4 E	11	Ŧ	11	11	11	18	18	18	18	4	14	18	18	18	1.8	64	11	19
2	Σ	- 						-	+					-	-	-	+	-	-		-			-		+-!	+		-	+				
	L X	2	N	N	N	-4	*	4	2	N	m	m	m	m	m	m	-				-	N	N	2	2	2	2	2	N	N	2		-	-
2	с Г	10	10	10	10	10	12	12	12	12	12	12	12	12	12	12	12	12	12	13	54	13	14	24	13	5	13	13	13	13	13	13	13	13
5		00	00	0	17	00	10	00	00	00	32	33	0	5	20	14	00	0	00	00	00	1	ᅻ	88	0	7	6	б	2	m	0	0	0	S
	н	121	121	15	12(10	0.0	12	00	00	19	191	193	19	61	191	121	121	121	000	00	11	016	11	0.83	121	065	034	12(111	200	073	080	60
	н	8.8	8.8	7.9	5.7	7.9	0.0	0.0	8 • 8	8.8	0.5	0.5	0.5	0.5	0.5	0.5	4.7	4 . 7	4.7	8 • 8	8.8	2.8	2.8	2.8	2.9	3.6	9.3	3.0	1.4	0.2	2.2	9° 3	8.8	9.3
2		n.	ŝ	M	M	M	t	t	S	5	m	M	m	ň	m	m	~	~	~	ŝ	S	-	7	7	7	Ť	Ō	-	Ŧ	7	7	T	ŝ	÷1
)	G	267	410	104	245	085	189	112	529	259	205	064	119	172	197	304	137	176	240	253	219	362	254	432	237	242	136	282	303	228	260	720	134	727
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	٤.,	41.	26.1	30.	16.	25.	9	- - -	10.1	15.	-	17.1	16.5	6	1.	1.	.01	28.1	4.	9	23	5	13.	E.	L 8.	52.0	7 2 a (3	°6	12.1	5 G. (8.	33.6	10.
		4	4	m	5		2		2	0	0	3	N	ჾ		ŝ	2 1	0	0	80		ŝ		~	0	m	N	•0	ە	ju ju	N	ß	Э	0
	ш	60.	64.	61.	65.	62.	74.	62.	69.	66.	81.	66.	66.	65.	68.	83.	53.	62.	15.	71.	63.	72.	67.	74.	• 59	57.	5.0	78.	6 9•	67.	. +9	70.	60.	69.
	۵	27	27	1 9	53	00	00	00	00	00	80	08	08	80	00	90	90	08	11	0.8	60	16	18	18	20	20	2	22	54	26	27	00	00	00
	ပ	10	10	11	++	12	21	1 1 2	00	00	01	01	01	01	01	01	20	02	C 2	80	20	20	203	20	20	03	03	203	MO	20	203	203	N) O	03
	ß	64	64	64	64	65	64	64	64	÷9	66	65	65	65	65	69	65	65	65	65	65	65	65	65	65	62	63	65	65	65	65	5	65	65
		rð.	t	5	و	2	eC	6	0		2	m	t	ŝ	ę	~	80	б	0		N	M	ۍ	ß	Q	~	80	Б	0		¢۵	m		Ś
	A	4-	14	14	141	14	14	14	15	15		15	15	15	15	15	15	15	16	16	16	16.	16	16	16	16	16	16	17	17	17	17	17	17

4.

-

		Δ.	(1967)	and Hewitt (1967)	(1967)			2		1968)	ard Bunker (1969)	and Hewitt (1967)	1968)	(1969)	н	=	(1968)		on (1967)	and Hewitt (1967)	and Hewitt (1967)	1967)	h (1963a)	h (1968)		1 (1967)	(1967)	•				and Smith (1972)
led Parameters			Haug and Tnrane	Belrose, Bourne	Haug and Thrane		2 1 1			Thrane et al. (Belrose, Hewitt	Belrose, Bourne	Thrane et al. (Mechtly et al.		-	Gruschwitz (1974		-	=	Thrane et al. (Hall (1973)	Gregory and Mans	Belrose, Bourne	Belrose, Bourne	Kane and Troim (Mechtly and Smit	Nechtly and Smit	Smith (1970)	Belrose and Sega	Heikkila et al.	Thrane (1966)				Mechtly, Bowhill
and Sca	sť	0	17.7	265.8	17.7	17.7	17.7	17.7	17.7	17.7	284.1	265.1	11.1	284.8	282.2	282.0	17.7	17.7	17.7	17.7	11.1	136.3	173.0	265.8	265.8	175.0	284.5	284.5	284.5	264.1	284.5	25.0	25.0	25.0	25+0	284.5
Data	leading	N W	1 19	1111	1 19	1 19	1 19	1 19	1 19	1 19	1 11	1 11	1 2	1 18	1 18	1 18	1 9	1 9	1 9	6 1	12	1 21	1 24	1 11	1 11	1 12	1 20	1 20	1 20	1 11	1 20	1 33	1 33	1 33	1 33	1 20
••	H L	_		+		H	H	-	-	+4	-	-+		+		-	-	-		-+	-	-+		+	-1	-1	-		-				-	-4		we
es	5	¥	H	4	-	4		-1		-	-	-+	-	~	2	~	ŝ	ភ	s	ŝ	-	\$	-1	-1	2	N	2	N	2	4	2		-			N
°ofi]	S S	J	13	13	T M	13	13	13	13	13	13	13	13	14	4	14	14	14	14	4	14	12	15	15	15	15	12	19	15	15	17	17	17	17	17	17
egion Pr	e Al for	H	1100	1200	1350	1435	1525	1500	1650	1827	1510	12.0	1260	0846	1415	1214	0000	0600	1200	1900	1200	1433	1200	1759	1759	1733	0413	1641	2300	1200	0617	1200	1510	1604	1612	1528
): D-R	e Tabl	н	-19.3	58.5	-19.3	-19.3	-19.3	-19.3	-19.3	-19.3	45.4	74.7	60.0	-29.6	-44.6	-58.5	-19.3	-19.3	-19.3	-19.3	60.0	-31.2	-35.0	58.8	58.8	-35.0	37.9	37.9	37.9	40.4	37.9	35.2	35.2	35.2	35.2	37.9
tinued)	Š	9	• 551	.116	• 38 9	. 366	• 361	• 44 9	. 513	.401	.103	• 26 5	•113	•134	.075	• 383	. 318	• 059	.124	.110	. 264	.173	.123	. 158	• 236	• 235	• 627	•119	• 390	.109	.236	• 358	.360	8 0 5 *	.181	• 140
A2 (con		LL.	15.0	3 1 • C	20.0	18.5	17.5	10.0	8.0	3.7	40.0	7.4	20.0	40.0	67.0	11.0	3.8	19.0	62 . C	12.5	8°.	28.0	24.6	35.0	4 6. U	3° 0	0°2	5.9.0	2 6 °C	73.0	7.4	16.0	12.5	11.0	16.5	30.3
TABLE		ш	66. Ö	60.2	64.6	65.0	65.5	69.1	70.1	75.2	59.5	70.9	61.0	59.8	56.5	68.6	77.5	68.8	61.1	71.5	66.4	59.8	61.0	60.5	56.7	75.0	70.6	54.0	76.0	56.0	70.0	66.0	61.9	68.6	65.8	61.2
		0	00	000	00	00	00	00	00	00	00	00	00	02	69	12	00	00	00	00	00	5	5	23	N	30		L C	NN	26	01	11	11	=	11	15
		ပ	203		50	20	203	203	03	20	03	03	03	70	10	10	t 0	70	10	10	10	0	02	50	ດ ເ ອ ເ	50	۵ ر ۵ ر	μ 	90	00	60	60	60	63	60	60
		ß	59	59	6 I 0	62	Ê5	55	92	65	65	65	65	65	69	65	65	65	65	65	62	65	65	50	0	5 Q	3	0,0	5	65	n U	65	65	62	5	65
,		A	177	17.5	671	160	181	162	183	164	185	186	187	188	189	190	191	192	193	194	195	196	197	198	561	002	102		203	107	202	206	207	208	209	210

TABLE A2 (continued): D-Region Profiles: Data and Scaled Parameters

See Table Al for Column Headings

		,							(1967)										()																
									van (3)	<u>8</u>	<u> </u>)197(
		67)	=	=	=	=	=	=	illi	67)	(196	(196I	1968	=	=	=	=	967)	son																
	٩	(19							5	61)	rke	rke	· -	-	=	=	=	Ξ.	eder							970)	=	=	=	=	=	=	=	=	=
		rane	z	=	=	=	=	=	iddy	al.	Shi	Shi	t a	=	=	-	=	a	nd P	()						5	•								
		d Th							ES.	et	and	and	on e					a et	on a	961)	(696	=	=	=	=	al	=	=	=	=	=	1	=	Ξ	=
		a an	=	=	2	=		=	alyn	a l yn	htly	htly	pers	=	=	=	=	kkil	pers	ane	5	•				q et	=	=	=	=	=	=	=	=	=
		Hau	=	=	=	=	=	Ξ	Sag	Sag	Mec	Mec	Jesi					Hei	Jes	Thr	Kan	-		=	=	Haud	=	=	=	=	=	=	=	=	=
	0	5.0	0 · 5	5.0	5.0	5.0	0°0	5.0	3.3	10 10 10	4.5	4.5	6.0	6.0	6.0	6.0	6.0	5	3.6	5.0	1.9	- 1	1.9	1.9	1.9	5.0	5.0	5.0	5.0	3.6	5.0	5.0	5.0	3.6	5.0
1	Ī	~	~	-	~	~	N	. ∾ _	27	27	28	28	-	-		-	-	28	N	2	2	N		N	2	2	~	C)	N	2	2	~	2	Ņ	Ň
	N	+	57	-	5 7	6 	1	5	18	18	20	20	28	28		ດ ປ	2	2.0	23	4	2	18	40	18	18	61	64	H	19	57	19	4	4	1	H
7	Æ						- 				-			-								2	. N	2	N	2	2	N	2	2	2	2	~	_ 	N.
	K K		-			-	+4			~	~	N	2	о П	ເນ ເນ	ເບ ເປ	N	- 				- N		~						-				~	
	с С	17	17	17	17	17	17	17	22	22	54	28	31	31	34	34	34	37		4	14	11		11	4	44				4	4				4
•		10	5	00	35	5	35	ŝ	10	50	00	00	6	5	02	26	7	1	-	20	00	ι. Δ	20	ري ا	0	0	ŝ	15	37	•	ហ	ម្លា	5	65	ŝ
	Η	60	10	12	5	4	15	10	22	23	12	121	19	00	23:	23	00	231	11	15	101	10(121	13(101	10	111	11	114	12	12	12	12	125
	т	5 • 2	5.2	5.0	5.2	5.2	5.2	5.2	0.4	0.4	7.9	7.9	9.3	9.3	9.3	9.3	9 . 3	7.9	8.0	5.2	6.8	6.8	6.3	6.9	6.8	5.2	5.2	5.2	5.2	8.0	5.5	5.0	5.2	8.0	5.2
		M	m	m	M	M	m m	M	M	m m	2	S S	9	9	9	9	9	۳ ۳	n n	м •	M	m T	2	5	M	M	M	m 	m	m	2	m	M	M)	3
	U	• 22	. 346	36	. 25 ;	• 38(. 26 6	. 280	.132	.203	. 69 .	.15	.276	. 337	.234	. 38 4	. 69	20	.278	.274	. 291	356	256	335	. 261	693	* 4 64	.263	223	061	100	387	104	148	.073
		6 0	د.	8		5		- IO	<u>0</u>	63	res.	- -		-	Ť.		•	•	-	5	_			~	_		-	-	-	-	-			Č	_
	LL.	18.	16.1	14.1	21.	10.(12.	11.	7.	5	24.	4 0° (25.	24.		ູ່ທ	~	9	30.(20.1	5°.	17.5	7.5	19.0	30.0	0. 0. 0.	20.0	5.0	15.0	53.6	54.5	24.0	58.0	71.0	n M
			0	a0)	I.S.	ጥ	.0	-	e.	80	60	~	~	10	10	-	.+		•	•	-	~	10					-		<u>.</u> .		~		_	Ä
	ш	• + 9	66.	66.	63.	68.	67.	68.	71.	72.	62.	59.	60.	60.	62.	70.1	67.1	70.	63.	64.	62.	65.1	70.	64.1	61.5	67.5	54.1	62.	66.	57.5	57.6	63.2	57.5	56.	52.1
	٥	00	00	00	00	00	00	00	10	17	15	10	22	54	60	10	22	07	15	16	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
	ပ	6 0	б о	ۍ 0	6 0	50	60	60	11	11	12	01	20	02	£0	53	М 0	3 t	۵ 0	50	50	د 0 ک	05	မာ ဝ	<u>ں</u> ک	0 5°.	<u>د</u>	02	60	02	ц. 0	05	50	05	<u>0</u> 2
	മ	65	ۍ و	65	65	65	65	65	65	é5	ΰS	66	66	99	66	66	66	66	99	66	66	66	66	6 6	66	66	66	99	66	66	66	66	66	66	56
		-	2	5	5	S	Q	~	و	б	0		2	M	t	ۍ ا	Q	~	4 0	ნ	0	T,	2	M	3	ſ	G	~	6 0	ന	0		2	m	•
	A	21	21	21	21	22	5	21	21	21	22	22	22	22	22	20	22	22	22	80	23	23	23	23	23	23	М2	20	23	23	54	24:	24	24	č. N

The second

and Kane (1970) (1969) Krasnushkin and Knyazeva (1970) 1969 1969 Hale, Hoult and Baker (1968) and Smith (1968a) (1969) Mechtly, Seino and Smith Mechtly (1972) Ulwick (1972) Mechtly, Seino and Smith Smith (1969) Jesperson et al. (1968) (1969) 68) 1968) 1967 1969 (0261) (1970) 1966) 1966 968) 968 al. (1970) Mechtly, Seino and Austin and Manson al. al. al. Oya and Obayashi Pederson, Troim Hewitt (1969) a]. Oya and Obayash Sturges (1973) Belrose (1970) **Belrose (1970)** (1973) a, 9 1969) (1791) Folkestad et Ulwick (1972) Jesperson et Jesperson et Von Biel et Von Biel et Sechrist et Prakash et prakash et Ulwick et Ulwick et Sturges Mechtly Riedler et : Austin Hewitt Haug = 25.0 23.6 S 0 c 265.1 284.5 S 0 265.1 0 307.8 307.8 284. 16.1 16.1 172.1 265. 265. 130.5 307.1 307. 50.0 16.(76.9 76.9 16.(284.1 173. 130° 307.1 307.4 16. 253. - 6 284. s, •• 0 See Table Al for Column Headings 202 20 11 σ σ 0 ন 11 Ð ŝ ++ Ø 0 N O 2 11 1 Ø 0 1 Z ŝ 2 N E × 82 50 68 70 73 2 82 82 80 글 5 50 50 ß 69 70 0 c 87 92 5 ы Б С С 5 ŝ 0 1305 0418 1200 1200 0040 1200 1200 1200 1200 1728 1734 6956 1700 1745 0954 1010 1014 0138 1200 0058 1100 1200 2247 1200 1011 0000 1957 1857 1200 1220 200 432 550 0550 58.8 58.8 35.2 38.0 37.9 69.3 69.3 74.7 69.3 32.3 40.04 37.9 69.3 69.3 74.7 -43.6 Ó 0 -32.2 -32.2 Q ۰¢ 3 ŧ -32.2 -32.2 -32.2 -32.2 1 . + + + -31. 40.1 31. -32. -32. 8 8 4 5 1 1 4 5 1 1 +0. ÷69 I 195 .245 .183 567 .108 584 .186 478 156 ù 8 8 197 057 .082 382 786 158 .458 . 357 204 352 .279 141 177 410 . 285 • 469 .515 £43. .061 . 338 170 277 σ **u**n 37 28 9 83.6 51. ŭ 19.0 39.0 148.0 63.0 22.5 67.0 15.0 115.0 125.0 17.5 8. 2 3. 3 5.6 9° Û 8.0 18.0 22.6 7.0 22.0 56.0 98.0 16.0 c 3 0 2.7 137.0 208.6 24.3 C 36.1 31. ~ . . 41. L 2 +7.8 71.8 63.3 63.7 70.0 75.8 M σ Ľ١. 2 0 ဖ 2 ¢ 60 0 Φ ٩ in in 0 5 Ø . M 0 56. 5. 56. -1-5 . 9 52. 52. 60. 67. 68. 75. 56 57. 51. • M8 59. 57. 61. 62. 69. 6 • m ш ڡٓ 14 26 1120 2800 2020 10 101 120110 20 13 00 04 115 203 00 20 202 IE 27 27 07 0 5 0 3 0 3 £ 0 900 00 00 00 10 11 03 10 00 10 ശശ Q ٩D σ σ 11 2 0 10 Ø١ 0 +1 C 66 66 66 66 66 66 66 66 66 ę 66 66 66 66 66 €6 66 66 6 Q éé 66 66 67 66 67 67 67 67 67 67 67 5 57 2 57 265 266 268 269 278 247 248 249 251 252 253 254 273 276 245 246 250 0 2 4 277 σ 27 51 27 27 <

Data and Scaled Parameters

D-Region Profiles:

TABLE A2 (continued):

TABLE A2 (continued): D-Region Profiles: Data and Scaled Parameters

See Table Al for Column Headings

		.(12	(0)		(1791) V	(6)	(8)				(8)	(6)	(6)	•			(6)								_						_	_	-	_
	۹.	and (19	ith (19		krabart	ro (196	1. (196	(1969)	=	2	1. (196	ro (196	ro (196	(ro (196	=	×	T	=	Ŧ	Ŧ	T	=	=	-	-	×	-	-	-	-	
		n and W	and Sm	r (1968	and Cha	d Ferra	e et a	t al.	=		e et a	d Ferra	d Ferra	e (1970	(1972)	(1972)	d Ferra	=	=	=		=	=		I	8	=	=	=	=	Ξ	=	=	=
		Sagaly	Booker	Riedle	Mitro	Lee an	Belros	Rowe e	=		Belros	Lee an	Lee an	Belros	Aikin	Aikin	Lee an	=		=	=	=		-	=	=	1	-	11			=		11 11
c F	0	292.8	292. 8	16.0	81.0	282.1	284.1	282.1	282.1	282.1	294.1	284.1	282.1	284.1	284.5	284.5	282.1	282.1	282.1	282.1	282.1	282.1	282.1	282.1	282.1	282.1	282.1	282.1	282.1	282.1	282.1	282.1	282.1	
	Z	18	18	N	20	50	11	25	25	52	11	11	52	11	20	20	50	5 2	5	22	52	52	25	25	25	5	22	25	5	5	52	52	25	i.
	Σ	Ŧ		-1	-	H		-	-1		-1	-1	-1	-	N	N	-		-1	+1					-	-	-1			+1	-1		4	•
	-					1		**		**	-	+	1 5	+			1	1	+	*1		-		+	1	1	+	1		++			**	
	5	95	3 6	67.6	3.76	101 3	101 1	102 3	102	102	103 1	103 1	103 3	103 1	103 2	103 2	103	103 3	103	103 3	103 3	103 3	103 3	163 3	103 3	103 3	103 3	103	103 3	103 3	103	163 3	103 3	5 × 5 +
	н	1314	1314	0137	1260	1300	1200	0060	0000	1500	1200	1200	1100	1200	1406	1430	0060	1100	1300	1500	1100	1300	1500	1100	1300	1500	0060	1100	1300	1500	0060	1100	1300	
	н	18.5	18.5	69.3	6.9	40.8	45.4	40.8	40.8	40.9	45.4	45.4	40.8	45.4	37.9	37.6	40.8	40.8	40.8	40.8	40.8	40.8	40.8	40.5	40.8	40.5	40.8	40.8	40.8	40.8	40.3	40.8	40.3	0 0 0
5	9	. 271	.228	.183	• 26.9	.247	e 181	.132	.165	.212	. 222	.073	.330	. 500	.230	. 289	.211	.123	• 338	.211	.318	. 381	.194	.188	. 277	.277	• 23 û	.230	.144	. 217	.183	.183	• 54 0	5.0
	LL.	21.0	31.0	20.7	19.5	47.0	59°C	49° G	51.2	51.5	108.0	290.0	55.0	82.C	40.0	25.C	35.0	29.0	45.0	35.0	45.0	50.0	36.0	39.0	4 8.0	4 8. 0	38.0	38.0	67.0	46.6	36.0	36.0	50.0	с ц
	щ	63.7	61.6	59.5	63.2	58.4	57.6	57.3	57.2	57.1	53.9	47.1	57.5	54.8	59.0	62.1	59.2	60.4	58.0	59.2	58.0	57.0	59.2	59.0.	57.7	57.7	59.0	59.0	55.3	55.2	59.2	59.2	57.5	C 7 D
	റ	54	27	20	00	29	30	00	14	08	01	02	05	19	16	16	18	18	18	18	22	22	22	23	23	™ N	30	30	30	30	31	31	31	Ŧ
	ပ	10	10	11	11	12	12	12	12	01	01	01	01	01	61	13	01	01	01	01	01	10	01	01	01	01	01	01	10	01	01	01	61	• •
	۵	67	67	67	67	67	67	67	67	68	68	68	63	69	68	63	63	68	68	68	68	68	68	68	68	68	68	68	68	68	68	68	68	2
	A	280	281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300	301	302	303	304	305	306	307	308	309	310	311	312

10.00

A CONTRACTOR

「「

														(1969)		=			(1960)	10401	lener		(1972a)	(1972c)	z	=	:	I	(0	•						
		•								(090)	(6961			and l pa	=	16 16	1960)	(090)	and loo	and lee	1960)	1960)	Belrose	Belrose	Ξ	=	=		ith (197							(1261)
ers			(02)	5=	=	=	=	(40) [[e	al. (1969)	1969)	raro) Le			raro.) [E		d and	d and	=	=	=	*	nd Sm	=		=	(21	72(10	t'al
aramet			th (19					196	901			9 920.	930.	Fer.	j		to at		Eer.	Lo.	at		brian	brian	r	=	=	=	tlv a	•			n (19	6[) u	(197	ash e
led P			Smit	-	=		=	Kane	Kane	Cole	Cole	Bely	Belr	Cole	=	=	Cole					Cole	Mont	Mont					Mech	-	Ξ	=	Aiki	Aiki	Rowe	Prak
and Sca	sõi	0	284.5	284.5	284.5	284.5	284.5	76.9	76.9	282.1	282.1	284.1	284.1	282.1	282.1	282.1	282.1	282.1	282.1	282.1	282.1	282.1	284.1	284.1	284.1	284.1	284.1	234.1	284.5	284.5	284.5	284.5	284.5	284.5	284.5	76.9
ata	adin	Z	20	202	20	20	20	20	20	5	5	11	11	5	S	S	ŝ	5	5	5	5	5	Ŧ	+	11	11	11	11	20	20	20	20	20	50	50	50
ã	Hei	Σ	-	-		-	-		-	-	H			-	+4	-	H	-	-	F	-	-	-	N	2	N	N	2		-		-	N	N	N	
es :	umu	КГ							-			+	-	**	-+	-		-	-	+		-1	-	-	-	-	-+	-	-		-	-	-		+4	-
fil	Col	2	m	m	m	m	M	5	5	5	5	5	5	ŝ	ŝ	5	5	5	с П П	5	2	1	5	5	5	5	-	н 10	5	en En	0	5	10	N 10	~	10
Pro	or	-	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	1.1	10	10	10	10	101	10	0
egion	e Al f	I	000	0130	0300	9430	0602	1200	1755	1230	1230	5+60	1010	1100	1130	1130	1230	1230	1430	1430	1030	1030	1200	1240	1360	1330	1400	1455	0450	0230	1636	1235	1440	1440	1440	1415
): D-R	se Table	H	37.9	37.9	37.9	37.9	37.9	8.6	8.0	40.8	40.8	45.4	42.4	40.8	40.8	40.8	40.8	40.8	40.8	40.8	40.5	40.8	45.4	45.4	45.4	45.4	45.4	42.4	37.9	37.9	37.9	37.9	37.9	37.9	37.9	8.6
ntinued	Š	9	• 331	.184	. 527	.184	. 367	•134	.216	• 365	. 365	• 21 4	• 148	• 243	.428	.428	.411	. 22 3	.416	• 360	204 *	.316	.478	.168	. 281	. 233	.265	. 213	1.190	.248	• 399	1.308	.101	.105	. 251	.158
A2 (col		LL.	3.0	2•6	2• ¥	6.0	4.0	54.0	9.0	60.0	60.C	32.0	85.0	50.0	52.0	52.0	59.0	39.0	55.0	45.0	5 9. 3	45.0	34.0	175.0	178.0	100.0	60.0	55.0	23.0	29.0	25.0	16.5	125.0	150.0	27.6	61.0
TABLE		ш	76.0	76.5	77.0	72.0	73.7	1.72	68.5	57.0	57.0	61.0	54.2	51.5	57.2	51.2	56.5	59.6	57.6	58.0	57.0	58.0	61.0	\$ 64	49.5	54.0	51.5	56.0	63.0	61.0	62.0	6 ** 9	52.3	50.9	61.5	56.7
		0	22	53	22	22	22	69	80	22	22	52	52	52	52	ŝ	52	52	52	5 S	32	32	50	80	80	60	80	0	t	t	t	t	1	-	1	6
		ပ	02	25	05	02	20	N O	03	50	M	M	M	M	33	N D	M	E E	M	m	3	14	~	1		2			~	~	~	2	•	5	8	
		ß	63	68	68	68	63	63	68	68	6.9	68	68	68	63	68	63	68 (68 (63	58	53	58 5	58 (00	65	0	5.9	53	60	56 0	0	00	55 0	5.9	58 0
		A	314	315	316	317	318	319	320	321	322	323	324	325	326	327	32.6	329	330	331	332	333	334	522	336	337	336	339	340	341	342	34.0	144	345	346	347 (

(1972) Dean (1972) Mechtly, Bowhill and Smith (1972' Rowe (1972) (1972) Krasnushkin and Knyazeva (1970) Bunker (1969) Sellers (1970) = = Mechtly, Bowhill and Smith Bain and Harrison (1972) Mechtly, Bowhill and Smith Mechtly, Bowhill and Smith (1973) (1969) (1969) (1973) (1761) z (1261) 1261) al. (1970) Derblom and Ladell a . . Belrose, Hewitt & = ۵. Ulwick, Baker & al. Derblom et al. Von Biel (1971) a]. (al. Belrose (1970) Belrose (1972) (1972) ÷ = = [hrane (1972) Jesperson et Jesperson et Data and Scaled Parameters = **Dean** (1972) Prakash et legil et legil et Belrose Rowe et = z z = = ŝ = 15.0 15.0 26.4 265.4 265.8 265.8 265.8 265.8 σ 232.1 284.5 282.1 265.8 265.1 56.6 282.1 282.1 265.1 265.1 265.1 265.1 352. 265. 359. 265.1 284. 265. 76.9 173. 265. 16. 284. 204. 284. 265. 0 See Table Al for Column Headings 202 28 53 11 20 11 11 20 20 11 11 11 52 11 11 11 S 10 11 11 11 = 21 11 ø 0 0 11 5 S 2 NN NN Σ -1 el. r s Ĉ. **D-Region Profiles:** -N × 105 108 106 106 106 106 106 105 104 105 105 105 105 105 105 110 110 110 110 105 110 110 110 110 110 110 110 111 111 110 105 110 111 0 5 2136 0220 1006 15+6 1206 00200 2324 1528 2319 C600 0803 0060 1510 1739 2150 1200 1200 1200 1200 1200 1230 0200 1200 1200 1209 1521 2237 1200 1600 415 1710 1901 1260 0000 37.9 40.8 40.4 67.8 40.6 6.04 Ó 9 · 0 51.5 69.3 5.05 0 æ c 0 0 74.7 7.47 14.7 74.7 -44.3 80 σ 0 \$ 74.7 37. 37. 45.4 58. 50. 58. 58. 58. 37. 40. 58. 58. 56. 58. 50. T ŝ in TABLE A2 (continued): 369 .177 .258 .475 318 40 3 548 567 .176 .145 359 220 645 .112 165. . 257 7+6. .270 453 202 227 .763 . 340 . 351 180. . 397 L\$ · 075 .154 544 . 201 . 091 137 Ю 37 11 9 45.0 22.0 58.0 0.0 200.0 32.0 30.0 32.0 5=9 194.0 2.0 4.7 146.0 360.0 0 0 ŝ 0 Þ 3 140.0 345.0 C 9 2 C 0 c 275.0 27.1 -6 12. 59. 135. 71. 60. 65. 122. 142.1 15. 37. 62. 17. 4 8. 86. 1.... 5 m 71.2 67.0 51.5 45.0 64.0 54.6 56.0 52.0 76.5 51.5 55.2 63.4 58.5 51.7 61.0 60.9 58.1 49.1 10 9.09 51.4 56.0 M 2 51.1 Ľ, 0 ÷ 54.3 60.0 61.6 63.1 63. 46. +2+ 56. 73. 56. .0 Ň w 3 9 19 ** 50 00 20 02 03 20 02 26 40 00 13 90 22 22 14 17 10 20 29 24 52 29 31 5 S 31 00 21 21 0 0 -4 10 10 90 08 10 11 m 3 σ 00 10 NN 2 11 11 11 11 10 01 10 101 t t 11 01 11 Ø 1-00 \mathbf{o} 0 0 ø 0 0 o C 0 0 ---69 69 69 69 69 69 69 69 69 69 69 69 69 6.9 68 69 69 69 69 69 69 69 59 3000000000000 69 68 8 369 371 372 373 374 376 377 376 379 380 363 365 367 345 358 359 360 362 364 366 368 349 351 353 **354** 355 356 357 361 872 350 352 4

ż

	d	lwick (1972)	ean (1972)	ean (1972)	lwick (1972)	ean (1972)	elrose (1972)	ean (1972)	ean (1972)	Iwick (1972)	elrose (1972)	ontbriand and Belrose (1972c)			H H H	owe (1972)		11 11	н н	н и	rashushkin and Knvazeva (1970)	omavajulu et al. (1971)	owe (1972)	OWE (1972)	ontbriand and Beirose (1972c)			echtly and Sechrist (1972)	owe et al. (1970)	owe et al. (1970)	echtly. Sechrist & Smith (1972	elrose et al. (1972)	elrose et al. (1972)	owe et al. (1970)	elrose, Ross & McNamaro (1972)
		0 0	8	9	8	0	6	Q. 9	6 D	9	8 8	E e	-	-	+4	1	-		-	+	×	5 6	4	4	ž –		-4	N P	1	-	2	7 B	7	4	7
St	0	265.	265.	265.	265.	265.	265.	265.	265.	265.	265.	264.	284.	264.	264.	282.	282.	282.	282.	282.	50.	76.	282.	282.	26 4.	2840	2840	284.	282.	292.	28 4.	297.	297.	282.	- 262
ding	Z	11	11		11	11	11	11	11	11	11	**	11	11	11	52	52	52	52	25	u) e4	20	25	25	11	11	11	20	11	11	20	11	11	11	11
Hea	Σ	н	-1	-	+1	-	-1	-	w	-	-1	N	N	2	2	-	H	-1	-	-	-	-	~	-1	-	N	N	-	N	~	N	-1	-	N	N
E	-	~	2	~	~	N	2	2	N	2	2	-		-				1	+	7 5	-		-	+	-1	**	+4		**	+ 5				**	
io]u	×	5	5	5	5	ດ ພາ	5	5	5	n n	en en	5	5	5	5	9	9	9	9	9	4	9	9	9	6 1	5	6 1	9	5	9	6 3	5	5 S	9	é,
r C	.,	10	51	10	10	10	10	10	10	10	10	10	10	1C	01	10	10	10	TO	10	9	10	10	10	10	0) +4	10	10	10	10	10	10	10	10	10
Al fo	H	2000	2695	0736	0752	1254	0000	1530	1638	1708	0000	1250	1330	1400	1+30	0060	1036	1200	1430	1560	1200	1212	1200	1200	1003	1009	1017	-045	1309	1328	1339	1340	1340	1413	1504
e Table	Ŧ	58.3	58.8	58.3	56.8	58.3	58.8	58.8	58.8	58.8	58.8	45.4	42.4	45.4	45.4	40.8	40.8	40.8	40.8	40.8	0.04	8.6	40.8	40.8	45.4	42.4	45.4	37.9	40.8	40.8	37.9	44.9	6 * * *	40.8	44.9
Sei	IJ	• 20 6	. 317	151.	- 397	.140	£ +2 + 3	. 266	· 21 ·	.278	- 3T -	.236	.177	.183	.212	. 182	. +21	. 220	+234	.420	.091	.247	.135	.190	• 08 2	. 353	· 273	+ 32 +	.126	.103	. 837	• 37 4	. 471	.240	. 170
	٤.,	130.6	50.0	51.0	85.0	260.C	18.0	150.6	9.06	68.0	15.0	150.0	98.0	82.0	67.5	46.5	40.0	57.0	57.0	56.5	35.0	34.0	77.0	54.0	74.6	145.6	123.0	0.0	38= 2	30°0	5,6	25.0	2 C• C	44.0	12.0
	L	4 * 2 5	57.7	58.9	54.1	42.0	64.7	51.8	51.0	55.8	66.8	51.2	53.7	5.0	56.4	6.13	51.5	66.5	56.6	56.8	61.3	60.4	54.7	57.1	56.0	52.0	52.9	63.6	59.9	61.2	71.3	63.2	64.2	58.8	68.1
	٥	20	53	03	20	50	10	70	+0	10	ŝ	18	1	8C 44	10	00	00	00	00	00	00	02	00	00	01	01	01	01	20	10	20	07	27	20	01
	ပ	11	H					11	11	11	11					21	12	12	24	12	1	01	01	20	n	50	203	n o	2	503	503	n o	03	203	1) C2
	8	0.9	69	69	69	69	69	69	69	69	69	69	69	69	69	69	69	69	69	69	69	10	70	20	20	20	20	10	62	22	20	20	02	0	20
	A	382	383	394	345	386	387	388	389	39.0	162	392	393	394	395	396	397	396	399	100	101	402	504	101	402	406	402	205	601	410	411	412	5 F8	*	412

44

TABLE A2 (continued): D-Region Profiles: Data and Scaled Parameters

5

ŝ

			5	-																																
ed Parameters		٩	Belrose. Ross & McNamaro (1973	Rowe. Ferraro and Lee (1970)	Aikin at al (1972)		H H H H	Covne and Belrose (1972h)	Covne and Beirose (1972)	Covne and Belrose (1972h)	Covne and Belrose (1972)			Ferraro. Lee and Cohen (1972)	Ferraro, Lee and Cohen (1972)	Belrosa and Covne (1972)	Belrose and Covne (1972)	Rowe (1972)	Rowe (1972)	Thrane (1972)	Derhlom et al (1073)	Rowe (1972)	Ferraro et al. (1974)			H H H		Rc.re (1972)					=	=	Ferraro et al. (1974)	Rowe (1972)
and Scal	gs	0	297.7	282.1	76.9	76.9	76.9	284.1	284.1	284.1	284.1	284.1	284.1	282.1	284.1	282.1	284.1	282=1	282.1	16.0	20.4	282.1	282.1	282.1	282.1	282.1	282.1	282.1	282.1	282.1	282.1	282.1	282.1	282.1	282.1	282.1
ata	din	Z		11	20	20	20	=	11	-	11	Ŧ		in	5	3	t	5	52	8	-	5	5	52	25	52	52	52	25	52	25	22	25	52	25	5 S
ð	Hea	Σ	N	-	Ŧ	-	-	-	-	-	-1	+		-	-		-	-	-	-	-	-	-	-		-1	H	-1	-	-4	H	-				-4
· Si	E	-3		1	-				· •+					=	-					+	-		-	+		, ,	-	-	-1	+1		H	-	-		
file	Col	-	9	٩	9	9	9	9	9	9	9	9	e T	5	<u>د ت</u> ه	т 20	5		רי ד	1	4	- -	4	5	r t	2	m +	2	5	2	m t	5	m t	m t	S S	8
Pro	for	-	4 10	0 10	7 10	7 20	9 10		0 1 0	0 10	0 10	0 10	0 10	10	5 10	1 10	1 10	110	0 10	5 10	110	10	10	10	110	10	1 10	σ·	õ	6	ō Ŧ	õ	ō	õ	ę	3
gion	IN a	H	150	131	0.82	101	150	£53	081	102	120	160	12	075	075	111	120	143	120	130	0041	1201	080	0631	1963	100(1231	120(6930	1000	1036	1430	1500	1200	1300	1200
D-R	Table	I	6 * 4 4	46.8	8.6	8.6	8.5	45.4	45.4	45.4	45.4	45.4	42.4	40.8	40.44	40.8	45.4	40.8	40.8	59.3	67.8	40.8	8.04	40.3	40.8	40.8	40.8	40.8	40.8	40.8	40.8	40.8	40.8	+0.8	40.8	46.8
tinued):	See	9	174.	765.	641.	.147	. 223	.115	.155	-191-	• 225	. 209	• 04 8	. 33 7	.208	. 35 0	. 253	.185	• 352	• 32 8	. 295	° 438	• 169	.182	.260	• 192	.286	• 449	+ 324	. 201	• 066	.410	. 201	• 593	.146	.135
A2 (con		LL.	18.0	4 8 ° C	38.3	45.0	34.0	38.5	46.0	69.3	43.0	47.0	70.0	51.5	52.0	60.0	67. C	60.0	57.0	25.0	10.0	58.0	58.0	56.5	50.0	52.0	46.0	52.1	55.0	37.0	55 . G	52.0	40.0	0.64	52.0	5° 10°
TABLE		ω	65.0	58.2	59.3	58.0	60.1	2.65	57.1	55.9	55.0	56.9	50.8	51.2	60.0	56.9	58.2	57.4	56.7	5.+9	70.0	56.5	55.6	56.0	56.7	56.3	57.0	0.16	56.9	59.5	56.9	57.2	58.6	57.5	57.2	57.2
		0	01	11	19	19	19	23	22	22	22	22	23	54	54	20	3 6	00	00	70	10	00	00	00	00	00	00	5	00	00	00	00	00	5	00	00
		ပ	03	8 0	ΣD	03	no	50	50	50	u) O	s O	ŝ	с С	06	90	ge	20	ND	0	80	9 8	24				~	5.	5	0	0	2	0		0	÷t.
		ස	02	20	20	20	02	20	20	20	20	70	20	70	04	20	20	10	20	20	20	20	02	0	2	2			2	2	70	70	20	02		1 02
		A	416	417	418	419	420	421	422	423	424	425	426	427	428	429	430	131	432	433	434	527	924	137	500	5.00				のまま	+++	442	1446	1 3 3	545	449

		P	3.5 Mitchell et al. (1972)	3.5 Mitchell et al. (1972)	5.9 Prakash (1972)	5.9 Prakash (1972)	2.1 Rowe (1972)	3.5 Mitchell et al. (1972)	4.1 Coyne and Belrose (1972)			4.1 Tanenbaum et al. (1973)		4•1 " " "	4.1 Belrose et al. (1972)	<pre>4.1 Belrose ét al. (1972)</pre>	4.5 Mecthly et al. (1973)	4.5 Mechtly et al. (1973)	2.1 Rowe et al. (1969)	2.1 " " "	2.1 " " "	1.1 Barrington et al. (1963)	1.1 " " "	1.1 I I I I	<pre>1.5 Smith, Coyne and Loch (1967)</pre>	1.5	1•5 " " " " "	7.7 Gruschwitz (1974)	7.7 " "	5.8 1 H
	sbu		22	52	~	~	28	25	28	1 28	1 28	28	20	7 28	9 28	3 28	28	28	5 28	5 28	5 28	**	1	1	+ 15	+ 15	+ 15	4	е Н	1 26
3	adi	Z	20	N	20	20	N,	N	Ŧ	4	-	m	M	m	M	m	2	2	2	N	Ň				ē	m	m	Ť.		++
2	Не	E	-	-	-	-1		-		**					-	-	-		-				-		**					**
•	E	انس م	-					44	-		-							-		***										
-	Ju	×	2	N	2	N	10	0		-	-1	-	-	-	-		~	2	5			стр 	сл.		(**)	£.1	141	un	U 3	
5	r CC	ŗ	80	30	80	80	90	78	74	74	74	66	ôɓ	99	99	66	ŝ	51	102	102	102	122	122	122	10	10	10	44	4	E L L
	e Al fo	I	1200	C955	1046	1110	1260	1200	0260	1200	1455	1200	1200	1200	1147	1200	1200	1200	1500	1500	1500	1630	1230	1330	1730	1742	1752	0060	1500	1630
	e Table	H	32.3	32.3	c. 6	8.6	40.8	32.3	45.4	45.4	45.4	45.4	45.4	45.4	45.4	45.4	37.9	37.9	50° 24	40.6	43.8	60.0	60°0	60.0	-30.5	-30.5	-30.5	-19.3	-19.3	53.3
ר וווחבה /	Se	g	+10+	. 037	. 341	.318	.245	.143	.096	.127	.057	.175	• 165	.267	• 544	.136	• 22 3	.191	.132	•165	. 212	• 054	.146	.146	• 559	• 559	• 559	.124	.124	.134
107 70		Ŀ	265. L	177.0	39.0	60.2	41.0	230.0	50.0	58.2	78.0	48.0	62°0	34.5	60.0	29.0	21.0	36.0	49.0	51.2	51.5	80.0	0**6	94.0	35.0	35.0	35.0	62.0	62.0	33.0
		ïس	46.4	49.0	64.0	61.9	58.8	47.0	59.5	58.0	55.3	59.1	57.2	61.2	55.5	60.2	62.9	59.5	57.3	57.2	57.1	60.5	59.8	59.8	61.2	61.2	61.2	61.1	61.1	60.4
		٥	22	26	28	28	00	01	27	27	23	18	20	22	26	53	50	16	00	44	80	27	27	27	01	10	01	00	00	00
		J	H	-	H	-		25	m	M	23	0	0	0	0	0	2	H	21	21	11	n	5	2 M	6	6	5	5	+0	203
		ß	71 (71	11	71 (71 (71 (71 (71 (11	71	71	11	11	11	72	73	67	67	68	60	60	60	19	64	64	65	65	ŝ
		A	450	451	452	453	454	455	456	457	458	459	160	461	462	463	464	465	466	467	468	694	470	+71	472	473	474	475	476	477

TABLE A2 (continued): D-Region Profiles: Data and Scaled Parameters

SOURCES OF PROFILES

- Adey, A.W., and W.J. Heikkila (1961), Rocket electron density measurements at Fort Churchill, Canada, Can. J. Phys., 39, 219-221.
- Aikin, A.C. (1965), Formation of the equatorial ionospheric D-region, Proceedings of the Second International Symposium on Equatorial Aeronomy (ed. F. de Mindonga), 1-13.
- Aikin, A.C. (1972), Ionoization sources of the ionospheric D and E regions Aeron. Report No. 48, (ed. Sechrist and Geller, U. of Ill., Urbana, Ill.), 96-103.
- Aikin, A.C., J.A. Kane, and J. Truim (1964), Some results of rocket experiments on the quiet D-region, J. Geophys. Res., 69, 4621-4628.
- Aikin, A.C. and L.J. Blumle (1968), Rocket measurements of the E-region electron concentration distribution in the vicinity of the geomagnetic equator, J. Geophsy. Res., <u>73</u>, 1617-1626.
- Aikin, A.C., R.A. Goldberg, Y.V. Somayajulu, and M.B. Avadhanulu (1972), Electron and positive ion density altitude distributions in the equatorial D-region, J. Atmosph. Terr. Phys., <u>34</u>, 1483-1494.
- Austin, C.L. (1971), A direct measuring differential phase experiment, J. Atmosph. Terr. Phys., 33, 1667-1674.
- Austin, C.L., and A.H. Manson (1969), On the nature of the irregularities that produce partial reflections of radio waves from the lower ionosphere (70-100 km), Radio Sci., 4, 35-40.
- Bain, W.C., and B.R. Moy (1967), D-region electron density distributions from propagation data, Proc. IEEE, <u>114</u>, 1593-1597.
- Bain, W.C., and M.D. Harrison (1972), Model ionosphere for D-region at summer noon during sunspot maximum, Proc. IEE, 119, 790-796.
- Barrington, R.E., and E. Thrane (1961), The determination of D-region electron densities from observations of cross-modulation., Tech. Note T-67, Norwegion Defence Research Establishment, August 1961.
- Barrington, R.E., E.V. Thrane, and B. Bjelland (1963), Diurnal and seasonal variation in D-region electron densities derived from observations of cross-modulation, Can. J. Phys., <u>41</u>, 271.
- Belrose, J.S. (1963), Present knowledge of the lowest ionosphere, AGARDO graph 74: <u>Propagation of radio waves at frequencies below</u> <u>300 kc</u> (ed. Blackband) Pergamon.

- Belrose, J.S. (1964), Present knowledge of the lowest ionosphere in Propagation of radio waves at frequencies below 300 kc/s, (ed. W.T. Blackband, Macmillon, New York).
- Belrose, J.S. (1965), The lower ionospheric regions, Chap. 3 of <u>Physics of the Earth's Upper Atmosphere</u> (ed. Hines, Poghis, Hartz, Fejer), 46-72.
- Belrose, J.S. (1970), Radio wave probing of the ionosphere by the partial reflection of radio waves (from heights below 100 km), J. Atmos. Terr. Phys., <u>32</u>, 567-596.
- Belrose, J.S. (1972), Ionization changes in the D-region associated with the Solar Cosmic Pay (SCR) event of 2 November 1969, <u>Proceedings</u> of COSPAR Symposium on Solar Particle Event of November 1969, AFCPL Special Report No. 144, 243-255.
- Belrose, J.S., L.R. Bode, and L.W. Hewitt (1964), Physical properties of the polar winter mesosphere obtained from low-frequency propagation and partial reflection studies, Radio Sci. 68D, 1314-1323.
- Belrose, J.S., I.A. Bourne, and L.W. Hewitt (1966), The winter variability of electron desity in the lower ionosphere over Ottawa. A discussion of results and possible cause, <u>Electron Density Profiles in the</u> <u>Ionosphere and Exosphere</u>, (ed. Frihogen), 48-60, (North Holland).
- Belrose, J.S., and I.A. Bourne (1967), The electron density and collision frequency height profile for the lower part of the ionosphere (The D and lower E regions), <u>Ground-Based Radio Wave Propagation</u> <u>Studies of the Lower Ionosphere</u>, Conf. Proc., Defence Research Board, Canada), 79-96.
- Belrose, J.S., I.A. Bourne, and L.W. Hewitt (1967), A prelimanary investigation of diurnal and seasonal changes in electron distribution over Ottawa, Churchill, and Resolute Bay, <u>Ground-Based Radio Wave Propagation Studies</u> of the Lower Ionosphere, Conf. Proc., (Defence Research Board, Canada), 167-188.
- Belrose, J.S., I.A. Bourne, and L.W. Hewitt (1967), A critical review of the partial reflection experiment, <u>Ground-Based Radio Wave Propagation</u> <u>Studies of the Lower Ionosphere</u>, Conf. Proc., (Defence Research Board, Canada), 125-151.
- Belrose, J.S., and M. L. Burke (1964), Study of the lower ionosphere using partial reflections, 1. Experimental technique and method of analysis, J. Geophys. Res., <u>69</u>, 2799-2818.
- Belrose, J.S., M.J. Burke, T.N.R. Coyne, and J.E. Reed (1972), D-region measurements with the differential-absorption, differential-phase partial-reflection experiments, J. Geophys. Res. 77, 4829-4838.

- Belrose, J.S., and E. Cetoner, (1962), Measurement of electron densities in the ionosphere D-region at the time of a 2+ solar flare, Nature, <u>195</u>, 688-690.
- Belrose, J.S., and T.N.R. Coyne (1972), A comparison of two ground-based techniques for measuring D-region electron densities, Aeron. Report No. 48, (ed. Sechrist & Geller, U. of Ill.), 326-330.
- Belrose, J.S., L.W. Hewitt, and R. Bunker (1968), The partial reflection experiment as a tool for synoptic D-region research; and results of recent studies related to winter variability, Conference Digest, Third conference on Meteorological and Chemical Factors in D-region Aeronomy, Univ. of Ill., 322.
- Belrose, J.S., L.W. Hewitt, and R. Bunker (1969), Regular and irregular diurnal variations of electron number density in the lower ionosphere over Resolute Bay, <u>The Polar Ionosphere and Magnetospheric Processes</u>, 285-298, (ed. Shovli).
- Belrose, J.S., D.B. Ross, and A.G. McNamara (1972), Ioniozation changes in the lower ionosphere during the solar eclipse of 7 March 1970, J. Atmosph. Terr. Phys., <u>34</u>, 627-640.
- Belrose, J.S., and B. Segal (1967), Some comments on the determination of D-region electron density distribution from the reflection of long waves, <u>Ground Based Radio Wave Propagation Studies of the Lower</u> <u>Ionosphere</u>, Conf. Proc. (Defence Research Board, Canada), 167-188.
- Berthelier, J.J., and M. Pirre (1972), Rocket measurements of Antarctic D-region electron density during the 28 January 1967 PCA event. <u>Proceedings of COSPAR Symposium on Solar Particle Event of November</u> 1969, AFCRL Special Report No. 144, 277-290.
- Booker, H.G., and E.K. Smith (1970), A comparative study of ionospheric measurement techniques, J. Atmosph. Terr. Phys., 32, 467-497.
- Bourdeou, R.E., A.C. Aikin, and J.L. Donley (1966), Lower ionosphere at sunspot minimum, J. Geophys. Res., 71, 727-740.
- Bowhill, S.A., and C.G. Kleimon (1965), NASA University Program Review Conference, NASA Special Pub. SP-85, (U.S. Govt. Printing Office, Washington, D.C.).
- Cartwright, D.C. (1964), A 10-kilocycle per second Doppler observation of the intermediate layer of the nighttime ionosphere, J. Geophys. Res., <u>69</u>, 4031-4035.
- Cole, A.R., A.J. Ferroro, and W.S. Lee (1969), Comparison of two groundbased D-region experiments, Nature, 222, 761-763.
- Coyne, T.N.R., and J.S. Belrose (1972a), The diurnal and seasonal variation of electron densities in the midlatitude D-region under quiet conditions, Radio Sci., <u>7</u>, 163-174.

- Coyne, T.N.R., and J.S. Belrose (1972b), The diurnal and seasonal variation of electron densities in the midlatitude D-region under quiet conditions, Aeron. Report No. 48, (ed. Sechrist and Geller, Univ. of Ill., Urbana, Ill.), 342-352.
- Crouse, P.E. (1964), Methods for obtaining electron density profiles from capacitive ionospheric rocket probes, Penn State Ionos. Research Lab. Sci. Report No. 208.
- Dean, W.A. (1972), Electron density profiles for the 1969 PCA event, <u>Proceedings</u> of <u>COSPAR Symposium on Solar Particle Event of November 1969</u>, ARCRL Special Report No. 144, 291-305.
- Deeks, D.G. (1966), D-region electron density distributions in middle latitudes deduced from the reflection of long radio waves, Proc. Roy. Soc. A, <u>291</u>, 413-437.
- Derblom, H., and L. Ladell (1973), D-region parameters at high latitudes obtained from rocket experiments, J. Atmosph. Terr. Phys., 35, 2123-2130.
- Ferraro, A.J., and J.S. Lee (1966), Electron density and collision frequency measurements of the D-region with radio wave phase and amplitude interaction, <u>Electron Density Profiles in the Ionosphere and Exosphere</u>, (ed. Frihagen), (North - Holland, Amsterdam), 69-82.
- Ferraro, A.J., H.S. Lee, and D.J. Cohen (1972), A comparison if two groundbased techniques for measuring D-region electron densities, PT-I, Aeron. Report No. 48, (ed. Sechrist and Geller, University of Ill., Urbana, Ill.) 320-325.
- Ferraro, A.J., H.S. Lee, N. Rowe, and A.P. Milva (1974), An experimental and theoretical study of the D-region 1. Mid-latitude D-region electron density profiles from the radio wave interaction experiment, J. Atmosph. Terr. Phys., 36, 741-754.
- Folkestad, K., B. Landmark, C. Skovic, and J. Kane (1969), Results of rocket measurements in the lower auroral ionosphere, J. Atmosph. Terr. Phys., 31, 835-844.
- Friedman, H. (1959), Rocket observations of the ionosphere (summary paper), Proc. IRE, <u>47</u>, 272-280.
- Gardner, F.F., and J.L. Pawsey (1953), Study of the ionospheric D-region using partial reflection, J. Atmosph. Terr. Phys. <u>3</u>, 321-344.
- Gregory, J.B., and A.H. Manson (1967), Mesospheric electron number densities at 35° S latitude, J. Geophys. Res., <u>72</u>, 1073-1080.
- Gregory, J.B., and A.H. Manson (1969), Seasonal variation of electron densities below 100 km at mid-latitudes - II, electron densities and atmospheric circulation, J. Atmos. Terr. Phys. 31, 703-729.

Cruschnitz, E.H. (1974), Model investigations of radio wave propagation in the lower ionosphere to determine electron densities from MF pulse sounding, Radio Sci. 4, 659-667.

- Hale, L.C., D.P Hoult, and D.C. Baker (1968), A summary of blunt probe theory and experimental results in Space research VIII, <u>Proceeding of the Tenth</u> <u>Plenary Meeting of COSPAR</u>, London, 25-28.
- Hall, J.E. (1973), Lower ionosphere electron densities from rocket measurements employing LF radio propagation and dc probe techniques, Planet. Space Sci., 21, 119-131.
- Hall, J.E., and K. Bullough (1963), A rocket-borne low-frequency propagation experiment to determine D-region electron densities, Nature, <u>200</u>, 642-644.
- Hall, J.E., and J. Fooks (1965), The electron distribution in the quiet D-region derived from rocket measurements of low-frequency propagation, Planet. Space Sci., 13, 1013-1030.
- Haug, A. (1966), Electron densities in the auroral zone D-layer during quiet ionospheric conditions, <u>Electron Density Profiles in the Ionosphere and</u> Exosphere, (ed. Frihagen), (North Holland, Amsterdam), 61-65.
- Haug, A., and E.V. Thrane (1967), D-region electron densities deduced from measurements of partial reflections at a middle latitude and at a low latitude station, <u>Ground Based Radio Wave Propagation Studies of the</u> <u>Lower Ionosphere</u>, Conf. Proc. (Defense Research Board, Canada). 189-196.
- Haug, A., M. Jesperson, J.A. Kane, and E.V. Thrane, (1970), Electron densities measured by the partial reflection method compared with simultaneous rocket measurements, J. Atmos. Terr. Phys., <u>32</u>, 1139-1142.
- Heikkile, W.J., J.A. Fejer, J. Hugill, and W. Calvert (1967), Comparison of ionospheric probe techniques, <u>Space Research VII</u>, 395-405.
- Hewitt, L.W. (1969), Ionization increases associated with the small solar proton events of 5 February 1965 and 16 July 1966, Can. J. Phys., <u>47</u>, 131-134.
- Holt, O. (1963), Some experimental studies of the ionospheric D-region at high latitudes, Norwegion Defence Research Establishment, Tech. Note No. 3.
- Holt, O., B. Landmark, and F. Lied (1960), Observations of electron density and collision frequency in the D-region during polar radio blackout conditions, Norwegion Defence Research Establishment, Tech. Note No. 2.
- Hunt, B.G. (1973), A generalized aeronomic model of the mesosphere and lower thermosphere including ionospheric processes, J. Atmosph. Terr. Phys., 35, 1755-1798.

- Jesperson, M., A. Haug, and B. Landmark (1966), Electron density and collision frequency observations in the Arctic D-region, <u>Electron Density Profiles in</u> Ionosphere and Exosphere, (ed. Frehagen), 27-30, (North Holland).
- Jesperson, M., J.A. Kane, and B. Landmark (1968), Electron and positive ion density measurements during conditions of auroral absorption, J. Atmos. Terr. Phys., <u>30</u>, 1955-1963.
- Jesperson, M., and B. Møller Perderson (1970), Ionospheric observations during the annular solar eclipse of 20 May 1966 - III Four D-region electron density profiles measured by rocket techniques, J. Atmos. Terr. Phys., 32, 1859-1863.
- Jesperson, M., J. Troem, and B. Landmark (1969), Electron density observations during the PCA event of 25 February 1969, <u>Intercorrelated Satellite</u> <u>Observations Related to Solar Events</u>, (ed. V. Minno and D.F. Page), (Riedel, Dordreche, Holland), 515-519.
- Jesperson, M., O. Peterson, J. Rybner, B. Bjelland, B. Holt, and B. Landmark (1964), Electron density and collision frequency in the lower D-region during auroral absorption, 1963, Electron Density Distributions in the Ionosphere and Exosphere (ed. Thrane) 22-35, (North Holland).
- Kane, J.A. (1961), Re-evaluation of ionospheric electron densities and collisional frequencies derived from rocket measurements of refractive index and attenuation, J. Atmos. Terr. Phys., <u>23</u>, 338-347.
- Kane, J.A. (1969a), D-region electron density measurements during the solar eclipse of May 20, 1966, Planet. Space Sci., <u>17</u>, 609-616.
- Kane, J.A. (1969b), D-region radio measurements at the magnetic equator, NASA Report X-615-69-499, (N70-14217).
- Kane, J.A., and J. Troim (1967), Rocket measurements of D-region electron number densities at sunrise, J. Geophys. Res., <u>72</u>, 1118-1120.
- Knecht, R.W. (1963), The distribution of electrons in the lower and middle ionosphere, Proc. of XIV URSI General Assembly.
- Krasnushkin, P.E., and N.L. Kolesnikov, (1962), Investigation of the lower ionosphere by means of long radio waves and low frequency probes installed in a rocket. Detection of a new ionospheric layer, Doklady Akademii nauk SSR, <u>146</u>, 596-599, (Trans. Aerospace Infor. Div., Lab. Congress, A.D. Report 16-207).
- Krasnushkin, P.E., and T.A. Knyazeva (1970), Diurnal, seasonal, and ll-year variations of the electron density in the lower ionosphere, Geomap. Geron. 10, 789-796.
- Lee, H.A., and A.J. Ferraro (1969), Winter D-region electron concentration and collision frequency features obtained with high-power interaction measurements, J. Geophys. Res., <u>74</u>, 1184-1194.

- Mechtly, E.A., (1972), Changes of electron density with zenith angle, with sunspot cycle, and during eclipses, Aeron Report No. 48, (ed. Sechrist and Geller, Univ. of Ill. Urbana, Ill.) 353-358.
- Mechtly, E.A., S.A. Bowhill, and L.G. Smith (1972), Changes of lower ionosphere electron concentrations with solar activity, J. Atmos. Terr. Phys., <u>34</u>, 1899-1907.
- Mechtly, E.A., M. Mukunda Rav, D.O. Skaperdos, and L.G. Smith (1969), Latitude variations of the lower ionosphere, Radio Sci., <u>4</u>, 517-120.
- Mechtly, E.A., C.F. Sechrist, Jr., and L. G. Smith (1972), Electron loss coefficients for the D-region of the ionosphere from rocket measurements during the eclipses of March 1970 and November 1966, J. Atmosph. Terr. Phys., <u>34</u>, 641-646.
- Mechtly, E.A., K. Seino, and L.G. Smith (1969), Lower ionosphere electron densities measured during the solar eclipse of November 12, 1966, Radio Sci., <u>4</u>, 371-375.
- Mechtly, E.A., and J.S. Shirke (1968), Rocket electron concentration measurements on winter days of normal and anomalous absorption, J. Geophys. Res., <u>73</u>, 6243-6247.
- Mechtly, E.A., and L.G. Smith (1968a), Growth of the D-region at sunrise, J. Atmosph. Terr. Phys, 30, 363-369.
- Mechtly, E.A., and L.G. Smith (1968b), Seasonal variation of the lower ionosphere at Wallops Island during the IQSY, J. Atmosph. Terr. Phys., <u>30</u>, 1555-1561.
- Mechtly, E.A., and L.G. Smith (1970), Changes of lower ionosphere electron densities with solar zenith angle, Radio Sci., <u>5</u>, 1407-1412.
- Mechtly, E.A., L.G. Smith, and G.W. Henry (1973), Rocket observations of the winter anomaly, Summary of paper presented at COSPAR, Konstanz, F.R.G., Quoted by B.W. Denny and S.A. Bowhill, Partial Reflection Studies of D-Region Winter Variability, Univ. of Ill. Aeronomy Report No. 56.
- Megill, L.R., G.W. Adams, J.C. Haslett, and E.C. Whipple (1971), Measurement of the effective electron loss rates in the D-region during polar cap absorption events, J. Geophys, Res., <u>76</u>, 4589-4595.
- Mitchell, J.D., L.C. Hale, R.V. Olson, J. Randhawa, and R. Rubio (1972), Positive ions and the winter anomaly, Radio Sci., <u>7</u>, 175-179.
- Mitra, A.P., and D.K. Chakrabarty (1971), Models of lower ionosphere electron density profiles, Space Research XI, 1013-1018.
- Montbriand, L.E., and J.S. Belrose (1972a), Effective electron loss rates in the lower D-region during the decay of solar x-ray flare events, Radio Sci., 7, 133-142.

- Montbriand, L.E., and J.S. Belrose (1972b), Effective electron loss rates in the lower D-region during the decay phases of solar x-ray (SXR) flare events, Aeron. Report No. 48, (University of Ill., Urbana, Ill.), 290-297.
- Montbriand, L.E., and J.S. Belrose (1972c), Effective electron loss rates in the lower D-region during the decay of solar x-ray flare events, Radio Sci., 7, 133-142.
- Nertney, R.J. (1953), The lower E and D-region of the ionosphere as deduced from long radio wave measurements, J. Atmos. Terr. Phys., <u>3</u>, 92-107.
- Nicolet, M., and A.C. Aikin (1960), The formation of the D-region of the ionosphere, J. Geophys, Res., 65, 1469-1483.
- Oya, H., and T. Oboyashi (1968), Observation of the microstructure of the ionospheric electron density profile by gyro-plasma probe, Space Research VIII, 332-338.
- Pederson, A., J. Troim, and J.A. Kane (1970), Rocket measurements showing removal of electrons above the mesopause is summer at high latitude, Planet and Space Sci., 18, 945-947.
- Phelps, A.V. (1960), Propagation constants for elecromagnetic waves in weakly ionized, dry air, J. App. Phys, 31, 1723-1729.
- Prakash, S., B.H. Subbaraya, and S.P. Gupta (1968), A study of the equatorial E-region during evening twilight using a longwire probe, J. Atmos. Terr. Phys., 30, 1193-1207.
- Prakash, S., B.H. Subbaraya, and S.P. Gupta (1971), Investigation of the daytime lower ionosphere over the equator using Langmuir probe and plasma noise probe, J. Atmosph. Terr. Phys., 33, 129-135.
- Prakash. S., B.H. Subbaraya, and S.P. Gupta (1972), Electron density profiles in the equatorial lower ionosphere at Thumba, Aeron Report No. 48, (ed. C.F. Sechrist. Jr., and M.A. Geller, Univ. of Ill., Urbana, Ill.) 359-363.
- Riedler, W. (1969), Auroral rocket research in Scandinavia, Small Rocket Instrumentation Techniques, <u>Proceedings of Eleventh Plenary Meeting of</u> the Committee on Space Research, Tokyo.
- Rowe, J.N. (1972), Model studies of the lower ionosphere, Ionospheric Research Sci. Report 406, (Penn. State. Univ.).
- Rowe, J.N., A.J. Ferraro, and H.S. Lee (1969), Changes in electron density and collision frequency at University Park, Pennsylvania during the stratospheric warming of 1967-68, J. Atmos. Terr. Phys. 31, 1077-1084.
- Rowe, J.N., A.J. Ferraro, and H.S. Lee (1970), Variation of electron density in the D-region, Nature, <u>226</u>, 1116-1117.

- Rowe, J.N., A.J. Ferraro, H.S. Lee, R.W. Kreplin, and A.P. Mitra (1970), Observations of electron density during a flare, J. Atmosph. Terr. Phys., <u>32</u>, 1609-1614.
- Sagalyn, R.C., M. Smiddy, and W.P. Sullavin (1967), Experimental investigation of the nighttime E-region, Space Research, Vol. VII, (ed. R.L. Smith-Rose), 448-463.
- Sagalyn, R.C., M. Smiddy, W.P. Sullavin, R. Wand, G. Thome, L.M. Lalonde, and H.C. Carlson (1968), Paper presented at spring URSI meeting, Washington, D.C.
- Sagalyn, R.C., and R.H. Wand (1971), Daytime rocket and Thomson scatter studies of the lower ionosphere, J. Geophys. Res., 76, 3783-3799.
- Sechrist, C.F., E.A. Mechtly, and J.S. Shirke (1969), Coordinated rocket measurements of the D-region winter anomaly -- I. Experimental results, J. Atmos. Terr. Phys., 31, 145-153.
- Smiddy, M., and R.C. Sagalyn (1967), Investigation of electrical phenomena in the equatorial ionosphere, Space Research, Vol. VII, (ed. R.L. Smith-Rose), 428-445.
- Smith, L.C. (1963), A dc probe for rocket measurements in the ionosphere, Geophys. Corp. of America, Tech. Report 63-19-N.
- Smith, L.C. (1965), Rocket observations of sporadic E and related features of the E-region, G.C.A. Tech. Report, 15-22-N.
- Smith, L.C. (1966), Rocket observations of sporadic E and related features of the E-region, Radio Sci., 1, 178-182.
- Smith, L.C. (1970), A sequence of rocket observations of night-time sporadic-E, J. Atmosph. Terr. Phys., 32, 1247-1257.
- Smith, L.C., C.A. Accardo, L.H., Weeks, and P.J. McKinnon (1965), Measurements in the ionosphere during the solar eclipse of 20 July 1963, J. Atmosph. Terr. Phys., 27, 803-809.
- Smith, R.A., T.N.R. Coyne, R.C. Loch, and I.A. Bourne (1967), Small perturbation wave interaction in the lower ionosphere. Pt 3, Measurements of electron densities, <u>Ground Based Radio Wave Propagation Studies of the Lower</u> Ionosphere, Conf. Proc., (Defence Research Board, Canada), 335-358.
- Smith, L.C., L.H. Weeks, and P.J. Mckinnon (1966), Investigation of the D and E regions of the ionosphere during the international quiet sun year, NASA Report No. CR-391.
- Somayajulu, Y.V., and A.C. Aikin, Jr. (1969), Rocket measurements of changes in the ionization in the lower ionosphere and solar x-rays during a solar flare event, Aeron Report No. 32, (ed. C.F. Sechrist, Jr., Univ. of Ill., Urbana, Ill.), 373-375.

- Somayajulu, Y.V., M.B. Avadhanulu, K.S. Zalpure, and S.C. Gary (1971), Some preliminary results of rocket sounding of the D-region at the geomagnetic equator, Space Research XI, Leningrad, USSP, (ed. Kondvatyev, Rycroft, and Sagan), 1131-1137.
- Sturges, D.J. (1973), An evaluation of ionospheric probe performance -- II. The influence of vehicle wake effects on electron density and temperature measurements, Planet Sp. Sci., <u>21</u>, 1049-1071.
- Tanenbaum, B.S., J.H. Shariro, and J.E. Reed (1973), Phase-difference distributions in a D-region partial-reflection experiment, Radio Sci., <u>8</u>, 437-448.
- Thomas. L., and M.D. Harrison (1970), The electron density distributions in the D-region during the night and pre-sunrise period, J. Atmos. Terr. Phys.), 32, 1-14.
- Thomas, L., P.M. Gondhalekar and M.R. Bowman (1973), The negative-ion composition of the daytime D-region, J. Atmosph. Terr. Phys., <u>35</u>, 397-404.
- Thrane, E.V. (1966), Experimental studies of the stucture of the ionospheric D-region, Norwegion Defence Research Establishment, Report No. 54.
- Thrane, E.V. (1972), Information on the D- and E-region electron density profiles, Radio Sci. 1, 143-152.
- Thrane, E.V. and W.R. Piggott (1966), The collision frequency in the E- and D-regions of the ionosphere, J. Atmosph. Terr. Phys. <u>28</u>, 721-737.
- Thrane, E.V., A. Hany, B. Bjelland, M. Anastassiades, and E. Tsagakis (1968), Measurements of D-region electron densities during the International Quiet Sun Year, J. Atmosph. Terr. Phys, <u>30</u>, 135-150.
- Ulwick, J.C. (1972), Highlights of COSPAR Symposium on November 1969 solar particle event, Aeron. Report No. 48 (ed. Sechrist and Geller, Univ. of Ill, Urbana, Ill.) 405-415.
- Ulwick, J.C. (1972), Eclipse rocket measurements of charged particle concentrations, J. Atmosph. Terr. Phys., <u>34</u>, 659-665.
- Ulwick. J.C., K.D. Baker, and B. Sellers (1970), Rocket measurements in a PCA event, Space Research X, Prague, (ed. Donohue, Smith, and Thomas), 25-830.
- Ulwick, J.C., W. Pfister, and K.D. Baker (1968), Rocket measurements of bremstrahlung x-rays and related parameters during auroral absorption events, Space Res., VIII, 171-177.
- Von Biel (1971), Determination of D-region electron densities within the scattering region, J. Geophys. Res., <u>76</u>, 5365-5367.
- Von Biel, H.A., W.A. Flood, and H.G. Camnitz (1970), Differential phase partial-reflection technique for the determination of D-region ionization, J. Geophys. Res., <u>75</u>, 4863-4870.

Yonezawa, T. (1962), Probe measurements of the electron and positive ion densities in the E and R region by rockets, <u>Proc. NATO Advanced Study</u> <u>Inst. on Electron Density Profiles in the Ionosphere and Exosphere</u>, <u>Skeikampen, Norway, (ed. B. Moehlum, Pergamon, London).</u>