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INTRODUCTION

Hydrazine is used in combination with monomethylhydrazine

(MIH) and unsymmetrical dimethylhydrazine (UDMH) as fuels in

several Air Force missile systems. Because of its extensive

deoxygenation properties, the environmental impact of an

accidental spill of these materials is of great concern to the

Air Force. Previous work from our laboratory (Gormley and Ford,

1973) included a mathematical model describing the degradation

of hydrazine-type fuels by the catalytic action of copper. The

use of this deoxygenating property of hydrazine in boiler

feedwater systems is now a standard commercial method to

eliminate corrosion. This deoxygenation phenomenon was studied

(Gaunt and Wetton, 1966) at low temperatures (250 to 700 F) in

alkaline solutions. Their evidence revealed that the observed

degradation rate was due to catalysis by traces of impurities.

Their report proposed that the copper (II) - catalyzed reaction

appeared to be homogeneous. However, only in the earlier stages

did their reaction data fit the simple first order kinetic

equations assumed by Gormley and Ford (1973).

Ellis and Moreland (1957) reported that this reaction was

heterogeneous catalysis of the surface finely dispersed precipitate,

formed when traces of the metal salts are added to the hydrazine

solution. Ellis, Jeffreys, and Hill (1960) reported that there

is more than one rate controlling stage which varies with the

hydrazine concentration.

Audrieth and Ogg (1951) warned of discordant results when



studying the reaction of the oxidation of hydrazine in alkaline

solution by oxygen. They cautioned about the requirement to

prevent access of oxygen in the atmosphere to a hydrazine solution.

In environmental waters, once the dissolved oxygen is depleted by

the reacting hydrazine, the only means of continuing the reaction

is by diffusion of the atmospheric oxygen across the air-water

interface. Work reported in this paper as well as previously did

not consider this diffusional source of oxygen. It is readily

apparent that future work is required with the need to consider

this diffusional oxygen rate in order to provide a more valid

environmental model. The work presented in this report concerns

the effects of other catalysts besides copper at environmental

water concentrations to determine the possibility of hydrazine

degradation in an actual hydrazine spill. This report also

presents preliminary experimental work on the thermal effects of

the kinetic rate and how to incorporate this data into a predictive

model.

THEORY

As reported by Gaunt and Wetton (1966), the copper (II) -

catalyzed reaction has been shown to be complex,'but as the reaction

approached 25% completion their data indicated a simple rate-

determining step, which was most likely:

Cu (II) + N2 H4 ÷- Cu(I) + N21 3  (I)

The stoichiometry of the copper (II) - catalyzed reaction has been
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determined and corresponded to the equation:

N2H4 + 02 - N2 + 2H2 0 (2)

The mathematical model, as reported in Gormley and Ford

(1973) assumed the following relationship:

-Vd DO -V dP = K DON (3)d-V = -Vdt

where V is the volume, DO is the dissolved oxygen concentration, P

is the propellant concentration, K is the kinetic rate constant and

N is the order of the reaction. Equation 3 can be integrated for

n=1 and nil:

N=l

ln DO - t + ln DO (4)
v 0

NfI

D1 -k (DO) 1IN
-- (t) + 15NI- v W + I-N_ 5

where DO is the initial dissolved oxygen concentration. The0

experimental data of dissolved oxygen concentration versus time

was evaluated with a Hewlett-Packard Model 9810 calculator system

to yield a kinetic rate constant. A searching technique evaluated

the rate constant for any order and the best fit was tested by the

correlation coefficient. Gormley and Ford (1973) already

established first order kinetic degradation for the deoxygenation

of hydrazine at 250C by copper.
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MATERIALS AND METHODS

Each experimental run was repeated four times and the average

kinetic rate compared with a control without any catalyst present.

The control and samples began with glass-distilled water (2-4

pmho/cm conductivity), which was aerated to at least 90% of the

saturated dissolved oxygen level. An Erlenmeyer flask containing

two-liters of aerated and distilled water was set-up on a magnetic

stirrer. The top of the flask was sealed with paraffin film and

slitted to allow a pH electrode and DO/temperature probe to be

submerged in the water. After a five minute stirring time with

the catalyst present, the hydrazine was added to the reaction flask

and the paraffin film top sealed with tape to prevent atmospheric

oxygen diffusion. The pH probe was attached to a Corning Model 12

pH meter and the pH readings were read prior to hydrazine addition

and immediately afterward. The pH change was a step function from

pre-addition to addition and remained constant throughout the

experiment. The DO/temperature probe was an attachment of a

Model 54 BP YSI oxygen meter. Its sensing element is a Clark-type

membrane covered polarographic probe. This oxygen meter was attached

to a Varian 20 strip chart recorder and the DO changes with time

were recorded.

The reaction rate for the glass-distilled water without

catalysts was found to be measurable. Gaunt and Wetton (1966)

reported that this reaction rate could be increased by soaking the

glass flask in "chromic acid mixture," then rinsed with cold water

followed by a 15 minute period when water was boiled in the flask.

Our experiments were involved with rinsing the flask with cold
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distilled water after each experimental run and using the chromic

acid washing technique only when changing catalysts. No boiling

water treatment was used. Atomic absorption spectrophotometric

analysis of the glass-distilled water for trace levels of copper

indicated a 0.005 mg/l level in the control water. This glass-

distilled water was from a tap distilled water system which

contained a copper-lined pot.

Slonim (1975) conducted hydrazine degradation studies with

hard and soft water for a 96 hour period. His studies revealed

that below a hydrazine concentration of 100 mg/l there was no

degradation of hydrazine or deoxygenation. Below this 100 mg/l

hydrazine concentration level corresponding to a pH of 8.6 in

soft water, the hydrazine is too low in concentration to increase

the pH sufficiently to allow the hydrazine - oxygen interaction.

This reaction will not occur in acidic to neutral solution. The

hydrazine compounds used were the same as described by Slonim

(1975) and were obtained from Matheson, Coleman, and Bell. The

purity was reported as at least a 97% minimum with the remainder

primarily consisting of water.

Reported maximum concentration levels of metallic ions within

environmental waters were found in a summary of trace elements in

waters of the United States by Kapp and Kroner (1967) and the

Public Health Drinking Water Standards (1962). To stimulate the

worst environmental conditions, double-distilled water was prepared

with the environmental maximum concentration level of the metallic

ions. The metallic ions were tested separately to isolate their

catalytic effect on the hydrazine - oxygen reaction.
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If the maximum concentration as reported in the above sources

differed, the higher value was tested. Table 1 presents the ion

concentration levels tested for Fe (III), Fe (II), Zn (II), Co (II),

Ni (II), and Cu (II).

A second series of experiments was conducted with cobalt (II).

A correlation was developed from experimental data of the kinetic

rate constant as a function of the cobalt ion concentration. The

DO degradation data of four experimental runs at each cobalt

concentration level were averaged and a kinetic rate constant

evaluated with the searching technique of the computer program.

Kinetic studies of hydrazine, MMH and UDMH were conducted

at 37°C to establish the thermal effect on the rate of degradation.

The only catalyst present was copper. The observed kinetic rate

constant at 370C was compared with the constant at 240C to yield

a ratio parameter R (See Table 3 a-c). A prediction for the kinetic

rate constant at 37°C was developed by combining this ratio parameter

and the predictive model of Gormley and Ford (1973) at 240C, which

is as follows:

k/v at 24C Vm PC (6)
Kc Kp + Kc P + KpC + PC

k/v at 37 0C = k/v at 240C x R (7)

where k/v is the rate constant, min.-I, Vm, kc, kp are correlation

parameters, P is the propellant concentration in mg/l, and C is the

copper concentration in mg/l.
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RESULTS AND DISCUSSION

Table 1 presents the maximum environmental concentration

levels of metallic ions which were tested as sources of catalysts

for the hydrazine - oxygen interaction. To discuss the significance

of the data, it is helpful to hypothesize a natural body of water

which has the worst possible conditions. If this water is assumed

to contain all the ions tested in Table 1 at the concentrations

studied experimentally, then the copper (II) alone would account

for 95.8% of the hydrazine degradation associated with a spill.

Audrieth and Ogg (1951) discussed three methods of retardation of

this copper catalytic effect (interference with Cu (II) reduction

by hydrazine and oxidation of Cu (I) by oxygen). The first involved

reagents which form insoluble or very slightly soluble copper salts

to preclude the availability of Cu (II) or Cu (I) ions in solution.

The second method was addition of complexing agents for both Cu(II)

and Cu (I). It is assumed that the active agent was a hydrated or

hydrazinated metal ion. Their final proposed method was colloidal

materials which act as absorbents for cupric or cuprous ions.

They reported that sulfides, xanthates, thiocyanates and cyanides

were very effective inhibitors on the auto oxidation of hydrazine.

It is assumed that none of these tested metallic ions will interfere

with the catalytic action of copper in the hydrazine - oxygen reac-

tion. A preliminary experimental study with ferric Fe (III) ion

and Cu (II) ion revealed no inhibition effect by the iron ion on

the copper catalysis.
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Data in Table 2 consider the catalytic effect of Co (II) in

the aqueous deoxygenation by hydrazine. The first order rate

constants were correlated by the following equation:

k/v = 2.62 x 10-5 [Co (II)] IN 2 H4 ] + 17.23 x 10-5 1N2 H4] (8)

The k/v is in min."l units and the concentrations of cobalt [Co (II)]

and hydrazine IN2 H4] are in mg/l. For cobalt concentration level

of 1 mg/l, only 13% of the decomposition was due to the cobalt.

The remaining decomposition was probably due to the contaminants

in the glass-distilled water. Since the maximum concentration of

cobalt reported in United States ground water is only 0.048 mg/l

(Kapp and Kroner, 1967), we can expect a negligible cobalt effect

on the degradation of hydrazine in environmental waters.

The kinetic data for 37 0C and 250C for hydrazine, MMH and

UDMH can be found in Table 3. The ratio parameter R, is the

observed first order kinetic rate constant at 370C divided by the

one at 250C. Table 4 describes the parameters developed by Gormley

and Ford (1973) for their predictive model at 250C. Table 5

presents the predicted values of the kinetic rate constants

evaluated by use of Equation 7. The chi-square value of 0.795 for

MMH indicates these results will occur by chance 2.5% of the time.

The model as developed by Gormley and Ford in combination with the

R factor worked quite well in predicting the kinetic rate constants.

The kinetic degradation experiments were repeated for hydrazine at

60C. However, the ratio of the kinetic rate (first order) at

24°C versus 60C (first order) did not yield any consistency, as

shown in Table 6. This inconsistent ratio was most likely due to

the use of a larger reaction flask and stirring rod in the last
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four runs at 60C (502.6 mg/l hydrazine and 0.25 and 0.125 mg/l

copper, 251.3 and 1005.3 mg/l hydrazine and 0.5 mg/l copper).

It is important to point out the data will remain inconsistent

without a uniform stirring speed within the reaction vessel.

These runs at 60C must be repeated with the same vessel size and

stirrer conditions as the 240C runs. It was observed when the

stirrer was inadvertently turned off that the measured dissolved

oxygen concentration was severely reduced. This is probably due

to the formation of a stagnant pool of water around the oxygen

probe.

CONCLUSIONS

This study has shown that ferrous Fe (II), ferric Fe (III),

Zinc Zn (II), cobalt Co (II), and nickel Ni (II) metallic ions at

their reported maximum environmental concentration levels did not

produce a significant catalytic effect in the deoxygenatioI of

water by hydrazine. The catalytic effect of copper was studied

at 370C to determine the thermal effect on the kinetic reaction.

A consistent predictive model was developed for this reaction at

37%C by combining the model established at 240C with a ratio

parameter, R.

Data at 60C did not confirm this approach. Consistent

stirring conditions were not maintained because of non-uniform

vessel size. A change in vessel size will affect the convection

conditions present, even if the stirring speed is maintained as a

constant throughout each experimental run. In fact, future work
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is required to consider convection as an independent variable

to determine its effect on the kinetic rate of degradation of

hydrazine and dissolved oxygen within an aqueous system.

Experimental design is required to relate stirring speed to

natural convection conditions within environmental waters.
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TABLE 2 - FIRST ORDER RATE CONSTANTS

FOR COBALT Co (II)

Co(II) Hydrazine Ist OrderIRate

Series mg/l mg/l Min.

1 1.0 502.6 0.0835

2 0.5 502.6 0.1079

3 2.0 502.6 0.4666

4 5.0 502.6 0.6060

5 2.0 251.3 0.1112

6 2.0 1005.2 1.0424

control 0 251.3 0.0351

control 0 502.6 0.2104

control 0 1005.2 0.5977
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TABLE 4 - PARAMETERS FOR EQUATIONS 7 AND 8

Hydrazine MMH U DMH

Vm 6.79 13.63 12.56

R 1.89 _ 0.20 2.38 + 0.21 2.26 ± 0.26

RVm 12.83 32.44 28.39

Kc 0.22 1.19 1.12

Kp 24.43 44.09 411.08

KcKp 16.37 52.47 460.41
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