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A SOLVING ALGORITHM TOR SYSTEMS OF 
NONLINEAR ALGEBRAIC EQUATIONS 

I.   INTRODUCTION 

The purjKJse of this report is to draw the attention of prospective users to 
the possiblity of solving exactly systems of algebraic equations that occur In 
various contexts. 

The first systen? to be considered consists cf one quadratic equation in 
n unknowns (x  ,  x   ,   .   .   . ,  x  ) and n-1 linear equations In the same variables: 

i     z n 

n 

.4- % *^i   = 
n 

k=i (1) 

Though the following results are valid (except where noted otherwise) when q, 
a,  and b are complex numbers,  the results are most useful for the real case. 

The system of equations (1) can be interpreled in several ways.  First, 
one can look upon it as arising from the purely geometric problem of oeter- 
mlniiig tb» set of points of simultaneous intersection of an n-dimensional quadrlc 
surface with n-1 hyperplanes.  It will be seen later that,   for arbitrary coefficients, 
a solution does not always exist. Moreover,  because of the nonllnearity of the 
system,  we can expect the existence of more than one solution. This is clearly 
evident for the case n = 2 involving the r^ai points of intersection of a conic 
section (ellipse,  parabola,  etc.) with a single straight line. 

Second,  a system of type (1) with three unknowns arises in a famous 
problem of classical mechanics (discussed by Euler and bearing his name) 
concerning the motion of a rigid body about a fixed point.     Golubev    presents 
a solution for this case by a method attributed to Hess    and later modified by 
Shlff. 3 
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Third,  still another geometrical interpretation of system (1) is possible. 
Assume that,  in an n-dimensional space endowed with an inner product of the 
form 

(2) 

it is required to find a vector x = (xj,   .   .   .,  xn) of given norm (re: length)   b 
and given projections bm on n-1 fliced vectors cm = (cm2,  .  .  ., cnm). where 
m = 1,  .  .  ., n-1.    The resulting system of equations is then precisely that in 
(1),  where the vectors  v^ = (a,^.,   ....  ajj^j) are related to the vectors  cm by 

am   = cm Q . 
(3) 

in which Q represents the matrix (q   ) appearing in the definitior of the inner 
product (2). * 

4 
Finally, system (1) might be relevant to problems of nonlinear programming 

where the quadratic form will represent a cost,  or objective,   function while the 
linear equations will represent constraints,   or side conditions. 

In section II we describe the method of solution for system (1) and discuss 
its possible solutions in detail.    In section III applications of this algorithm to 
several simple examples are presented.    In section IV extensions of the method 
to various systems — some of which consist of equations with nonlinearities of 
higher degree (possibly trarscendental) — are presented,   and the associated 
problem of extremizing a given function subject to linear and nonlinear con- 
straints is discussed.    In the final section, the solving algorithm is investigated 
from the viewpoint of implementation,   and arguments concerning uniqueness of 
solutions are presented.  In additou,   it is shown that the solving algorithm is 
relevant to the nonlinear programming problem. 

II.   METHOD OF SOLUTION 

The solutions presented below are obtained by a straightforward method, 
in marked contrast to that described by Golubev,    which seems needlessly 
complicated by the use of Grammians and partial differentiation. 
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We start by writing the equations of system (1) in more compact form: 

xQx   =  b 

C?rr> X      =    »m     j     m =   ^ ,. . ^ 0-f  . (4) 

where the tilde ~ denotes the transpose (hence  x  is a column vector). 

To go on, we assume that the vectors   a^,   m = 1,   .   .   . ,   n-1,   are linearly 
independent.    The opposite case will be discussed later.    This linear independ- 
ence of the a   's implies that there exists at least one minor determinant baaed 
on n-1 columns of the rectangular matrix (^j^; m = l,   ....  n-1; k=l, . .  ., n) 
that does not vanish identically.    This being the case,  we may assume,  without 
loss of generality,   that the variables x^   have been already 1-jjeled in such  a 
way that the first n-1 columns of the rectangular matrix yield a nonzero mine . 
Similarly,  no generality is lost if the matrix  Q  is assumed to be symmetric, 
since this can always be accomplished by a suitable redefinition of the coeffi- 
cients. 

In view of these assumptions,  let A denote the (n-l) x (n-1) matrix con- 
sisting of the first n-1  rows and first (n-1) columns of the rectangular matrix. 
Then system (4) can be put in the form 

Ax~   = & ~ xna* > (5) 
where x* = ^ . x^); b* ^ b^); and a* = (a a^ n. . . . , 

By virtue of c ir assumption of linear independence,   the matrix A is 
Invertible,   so that it is possible to solve for x* from the linear equations in 
(5): 

= /\"Y& -*r.a*) (6) 
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By tranapof itlon, we have also 

x* = (yr-)(ha')A" (7) 

If we partition the quadratic form to conform to the definition of x*.   we 
can write for the first equation ii   (5): 

(8) 

where Q* = (q^; 1 = 1 n-1; J = 1, . . ., n-1) and q* = (q^, q^,  . . ., 
q^jjj).    Substitution of expressions (6) and (7) for x* and x* into (8) yields 

->-H   xZ   - L. 

In both (8) and (9), the assumed symmetry of Q has been used.    Moreover, 
since Q* is also symmetric,   (9) can be rewritten as the following quadratic 
in x  : n 

where 

/3=  y+A'1!?- o*A-'Q*A-'ß     (12j 
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jr = i*A- a*A'' £ - I? 
(13» 

The two possible solutions of (10) are thee 

*n          j-y (14) 

From (14),   we axe led to the following two t)ossiblt' cases: 

1.    «^0 

At most,   two distinct solutions for  xn  art- possible.   This implies   the ex- 
istence  of,   at most,   two distinct  solutions  x*tor  the  original   problem   (as 
dictated by (6) or (7)).  Exactly two distinct solutions will be obtained if and only 
if ß    - ay / 0.    In the opposite case of ß~ -aY     o,   there is only one solution. 

From (10),   we obtain 

zPxn -t- f= o (15) 

This implies that a unique solution will be obtained in this case if and only if 
ß/0. 

The opposite case,   ß - 0,   leads to two possibilities: 

a.    For y = 0,  it is clear that any  x^ will satisfy the original 
equation (i0).   This,   In turn,   implies that there are an infinite 
number of solutions depending on one parameter   x     (or  that 
there is a •»-^-manifold of solutions).   The geometric inter- 
pretation of this result is that the quadnc surface and the 
hyperplanes intersect in a single   'straight" line. 
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b.   For Y / 0,   (15) will be Incooslsteot.   Hence.  In this subcase DO 

solution exists for xn,  and mutatis mutandis,  no solution is 
possible for the origi aal problem. This result raises no ques- 
tion if the rectangula • (n-l)xn matrix of the a-coefticients has 
only one nonvanishing (n-l)x(n-l) - minor. On the other hand. 
If there are other nonzero minors,  one can ask whether all of 
them will yield the same negative result. Though it is difficult 
to prove in general that this is indeed the case,  we expect,  on 
intuitive grounds,  that the various nonzero minors will produce 
identical results. 

From the discussion presented above,   it is clear that the existence of a 
real solution (when all the entities  entering the original system are real) re- 
quires satisfaction of the condition 

P2— C* f     ^   O ■ (16) 

In the opposite case,   a real solution does not exist. 

III.    APPLICATIONS 

In this section,  the algorithm presented above is applied to several sim- 
ple examples to obtain some well known results. 

A vector  x = (x,, . . . ,   x   i is to be found whose norm (length) is  i .   In 
addition,   x   must be orthogonal to n-1 fixed real vectors   a,^   m= 1, . . ..  n-1. 
These constraints imply that,   in the terminology of the previous sections. 

^   =    €* ;    bm =0, n,~^...,n-1 
(17) 

For the norm,   we assume the Euclidean length 

n 

I 
(18) 

This implies that Q and Q* are square unit matrices of n and n-1 dimensions. 
respectively,   while q     =1 and q* = 0. nn 
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Substitution of these values in (11),   (12),   and 113) yields 

o< = y -y- ^/rvr'a* (19) 

*=-- 4*. <21> 
The form of a reveals that it cannot vanish since,  to vanish,   the quadratic 

form In a* of (19) must be equal to -1,  which is impossible because the deter- 
minant of this quadratic is seen by inspection to be positive. This means that 
the quadratic form has a single minimum at a* = (0, . . ., 0) and is positive at 
all other points.  By assumption,    a* / 0,  the form is positive definite,   and 
a>0. 

Use of these results gives the solutions 

x* = ±itl&)ZZ A^ amni*^-s n-i. (221 

The existence of these two distinct real solutions,  as pointed out above,   is a 
basic feature of the solution.  The following special cases of these results illus- 
trate this multiplicity of solutions. 

First,   we specialize to the 2-dimen8ional space,  the fixed vector being 
a = (u^,  U2).    Then,   assuming u.  ^ 0,  we have 

Then 
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The pictorial representation of this result is shown in figure 1. The solu- 
tion vectors xi are of length 1 and are perpendicular to the fixed vector a. 

Figure 1 

Next,  we specialize to the 3-dimeusional case where there are two fixed 
vectors  a   = (u ,   u , u  ) and a =(v ,  v ,  v ).  Assuming that 

A- UiVz-u^m^O, (25) 

we get 

A- 

and 

' (26) 
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The two solutiotis are then 

Let 'ir, choose I = AV«,   The solutions of (28) are now 

(28) 

(29) 

Wt .ecogn zt>t In the expression for the vector x , the usual definition of 
the cross product of t\ o vectors  a , a    given by the symbolic formula 

^ X ^ = 

4 

I 

*1 

J 

u. 

% 

(30) 

where  1,   j,   k are the unit vectors in a Cartesian system of coordinates. 

The geometric representation of this case is shown in figure 2.    The two 
solutions are perpendicular to the plpne defined by the two vectors  a   and a . 

It saould be noted that the choice of x as the cross product of a, and a2 

corresponds to a right-handed system of coordinates, while x~ correaponds to 
a left-handed system. 
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Figure 2 

We can apply the previous formalism to the problem of finding the extrema 
(if existent) of the quadratic form xQx subject to the constraints 

V n-f (31) 

We substitute the results of section II (with ehe same assumptions) given in (6) 
and (7) in the function 

■Tor,, ..^jfjäPX(2x   . (32) 

wliicb then becomes a function of the single variable x ,  given by 
n 

where a and p are defined in (11) and (12),  respectively,   and  Y   is defined by 

*-=   L'/TQ'/rt?. (34) 

10 
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A discussion similar to that following (14) yields the two results below: 

1.   g^O 

The extremum ox:  F(x ) is at the point given by    F'(x ) = 0: 

X„   = — (Vc*   - (35) 

This solution will be finite if or/o,  which is the case considered here. This value 
of xn will yield a minimum if a > 0 and a maximum if a<0.  Therefore,  the 
unique extremum for  f(Xj, X2, ....  xQ) in th ? present case will occur at 

where 

x=r **"> - P/«). <36) 

**=[£ + ( ß/oc) a*] Aj. (37) 

2.    «= 0 

In this cate,,   F(x ) takes the simpler form n 

^(x») = 2ß>xn -t- r (38) 

Ji  ß^ 0 j^Y,  then (38) is the equation of a straight line,  and it is obvious 
that no extremum exists in such a cade. 

If  P= 0,  the function F(xn) has the constant value Y throughout the region 
of space described by the side conditons (31),  and again an extremum does not. 
exist. 

11 
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IV.    GENERALIZATi JNS 

In this section,   we  present generalizations of the  previous  results in 
several directions. 

Linear Independence of Vectors am 

In the first instance,  we retain the assumption of I* near independence of 
the vectors a      irtroduced in section II. 

m 

1.    We start with an extension of our results to the following system: 

fx -i- x QA  = t> 

In (39),  p = (p ,   p , . . ., p ) whore again the pi. values are complex numbers. 

Under the assumption of linear independence of the am vectors,  we can 
use (6) and (7) in the first equation of system (39).  The  resulting equation is 
a quadratic in x  : 

n 

o^X^ -i-Zfx» -h* = O > (40) 

where  or ,   ß , and  Y  are defined below as 

o^ - 2 fA'W* r a^CTA' 'a*   ,4!, 
fnn ' 

t- b*A-iQ*A',b*+ f>*A-*e - y (43) 

12 
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i 

and 

(44) t,"=(^fe.---.)fM). 
The existence and uniqueness of solutions to the system (39) follow the 

pattern established for system (1) and hence need not be repeated.  As a con- 
cluding note to this extenswn. we remark that one might be tempted to try a 
reduction of system (39) to system (1) by a transformation of coordinates that 
will eliminate the linear term px.    This indeed can be accomplished, but on'^y 
in the special case where  Q is Invertible (i.e., | Q |  / 0).    For this special 
case, the appropriate transformation is the translation 

where 

It should be clear that the approach of (45) and (46) is more restrictive. 

2.    A second generalization is concerned with the system 

arn'x   = \=>n   j  hrr-t ^.jh-l . 
(47) 

Useof (7) in the first equation of system (47) yields an equation in one variable 
x  : 

FYXn) =t> (48) 

The solutions of system (47) will depend on -he nature of the solutions of (48). 

In particular,  if the function f{x x  ) is of the form 

(49) 

13 
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In which c Is a constant scalar and p,  Q, x have the same significance as in 
(39),  then the equation for x    will be 

n 

3(<*** i-2^xntf)^ L. /50) 

where a, ß , »nd V can be easily written In ter.-ns of c,   p,   Q,   A,   a*,   and b*. 
Moreover,  if g(z) has an inverse,   then the so, utiors of (50) will coincide with 
the solutions of 

U*z
n-+-2Px„-rT=   §   YW (51) 

In the evaluation of %    (b),  attention must be paid to the branch chosen tor g    , 
since the function g~JL(z) can be multivalued. Thus, we see that it is no more 
difficult to solve a system such as (49> than to solve system (39).    This result 
can be of Importance in problems for which the function f(xji> ...» XQ) may be 
approximated by a function of type (49).  A truncated Taylor series for f is a 
special case of this form. 

3.    A third extension deals with the system 

£0<    *»)   =£ 
ölm X  = Lm    j    m~1>.. .j n~2 (52) 

where P.,   P2, and b     are complex numbers and the vectors  a^n are again 
assumecTto be linearly independent.  This assumption implies that there exists 
at least one nonzero (n-2)x(n-2) minor of the a-coefficients.   Again assuming a 
labeling such that the first n-2 columns yield this minor,  we can write 

K* = #<{£-*&-*&) 

14 
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where 

y?  ~  i hi,   ■        ,ir>n.x) 

(54) 

and A is the matrix of the nonzero (n-2) x <u-2) minor. 

Substitution of (53) into the first two equations of system (52) results in 
the two simultaneous equations for x    ,, x  : n-1      n 

ff (*„-,, xn) =g 
(55) 

The points of intersection of these two planar curves will yield,  thro'igh use of 
(53),  all possible solutions of the original system (52).   As in the simpler cases 
treated previously,  the nature of these solutions "ill depend on the form of the 
functions  1^,   1%  as well as on the side conditions.    For instance,  if both f^ and 
f« are quadratic forms,  then (55) reduces to a singie equation (in either xn_1 

or XQ) of the fourth order.    Hence, if no pathological cases occur,  there are, 
at most, four distinct solutions to the original problem. 

4.    The preceding discussion points the way to a more general extension 
of the same type.    The system to be considered now is of the form 

^m^   =  ^      j      n^-^...,n-r, (56) 

15 



^ 

TR 5353 

in which  p^ and bm are complex numbers and the vectors  am are eitill assumed 
to be linearly independent.    Use of the linear equp.cions in (56) to eli ainate,   say, 
the first n-r x*  values reduces system (56) to a system of r  equations 

F^ (Xo^^;*  -   ' >Xo)-"/^J    b^," .    j     - -      •, ?  •   * (57) 

The points of intersection of these r hypersurfaces will then yield the possible 
solutions of (56). We remark that continuous manifolds of solutions will be ob- 
tained if the functions   l\ are not linearly independent. 

For the above extensions,  one can formulate corresponding problems 
where extrema of functions,  subject to linear and nonlinear constraints,  are 
required.    Suppose,  fur example,   that instead of system (55),   we must determine 
the extrema of F1(x     ,» x ) subject to the single constraint 

Tf*»-. ,*,)=£ (58) 

This can be done either by straightforward elimination of x from (57) or by 
the use of Lagracge multipliers. 

Linear Dependence of Vectors am 

We shall deal now with the extension of the previous results to the case of 
linear dependence of the vectors am  appearing in system (1).    The linear de- 
pendence of these vc-ctors implies that one or more of the linear equrtions in 
system (1) are expressible as linear combinations of the rest.    If this is the 
case,  the redundant equations can be deleted and the remaining,  say,  s equa- 
tions will be linearly independent.  We ..hall immediately formulate the problem 
so as to include the more general system 

^mX=Jbm    j   m-  ^-.^  s   ^    s^: n-r. (59) 

16 
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As compared with system (56),  the present system (59) consists of fewer equa- 
tions-,  i.e.,  the number of unknowns exceeds the number of equations.    The 
vectors am appearing in (5S) are again linearly independent,   and by a oimilar 
procedure the first e xj values can be eliminated.    The resulting system will 
then be 

f* (X*H ^ ■'^Xn)=t >*=1>-"*r. (60) 

The original assumption s <n-r implies also that r < n-s.    Therefore,  the 
possible solutions of (60) will depend on n-s-r parameters,   and the solution 
of the original system (59) may include continuous manifolds of n-s-r dimen- 
sions. 

The simplest system that can be solved explicitly is 

Or» X ^ bm    j    hn= 1,.. .j n-Z, (61) 

where p is as defined in system (39). 

Assuming that we already have the correct labeling,  we can write 

X'= (i?-x^c*-x„c*)A-\ (62) 

where all the entities are as defined in (54). 

By substitution of (62) and its transpose into the first equation of (61), 
we obtain 

17 
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'7. 

i-   X'" Q'^'X™ = h. (63, 
All the starred quantities and A are n-2-dimensional, with definitions similar 
to those exhibited in (54),  while q*,  q*    and x(2\  Q&t are defined by 

(3.) 
X   = (Xn-'j**) j   ^   = 

SI (*1        I   'n-t/i-t      %-f* 

in/i-l      /r V 

The form of (63) reflects both the special partitioning of the variables into x* 
and x(^) and the assumed symmetry of the matrix Q of the quadratic form in 
system (61). 

Since Q* is also symmetric,   we can write (63) as 

&**-- Z^X^-hftf + <?- x«^ +TAn+^= 0:i  (64) 

18 



! 

I 
TR 5353 

where the coefficients are given by 

0< = « ?^*-A-> 

(65) 

If we solve for xn_2  from (64) we will get,  at most,  two distinct solutions 
which depend pprame trie ally on xn.    The original problem has therefore,  at 
most,  two distinct one-parameter manifolds of solutions (if no pathological 
cases arise). 

The above results show us how to proceed in finding the extrema of the 
function 

ftx, . ■■■ s*„)^yx + \Ci*        (66) 

subject to the constraints 

This problem 13 equivalent to finding the extrema of the function 

F(xn^ jXn)— (XXft-i ~2P*n^Xn *-$*„ + zrXh.f-rjn+M (m 

19 
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where p is equal to the t* defined in (65) with  b = 0. 

If we assume that no pathological cases arise, there is a single extremum 
at values of x ,, xn obtained as a solution to the system of the following linear 
equations: 

^s -2px^ +2txn +-V = 0 - <69> u 

nafnely. 

(70) 

Substitution of these values into (62) gives the value taken by the vector x*, 
and 'hus the solution of the original problem has been found. 

V.    CONCLUSION 

In the preceding sections we have presented exact algorithms of solution 
for algebraic systems consisting of mixed linear and nonlinear equations. These 
algorithms involve basically the evaluation of various determinants as well as a 
finite number of products and summations.   This in itself does not constitute   an 
obstacle to implementation because of the widespread availability of computing 
facilities.   One question that can be raised in th.'s context is whether these algo- 
rithms are the most rapid possible.  The author cannot answer this equestion 
since alternative exact treatments of these same problems do not seem to exist, 
and therefore there is no basis for comparison. 

At this ooint a second question must be raised.  When discussing the unique- 
ness of the various solute ns,  we have assumed that a nonzero minor could be found. 
.Since such a minor is not given from the start,   we must first find it before applying 

20 
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the algorithm.   For example,   to find scch a minor for the system (59),   we must 
examine at most (") minors.  Obviously,   the actual number examined may be con- 
siderably smaller, especially if several such aouzero minors exist. This brings 
into prominence the second question: Does the application of the algorithm lead 
to identical solutions when various nonzero minors are used? By "identical" we 
mean that a change in labeling  will bring into coincidence solutions  based on 
different minors. 

The answer to this seems to be in the affirmative; L e. ,  no new solutions 
are  introduced  by  using different  nonzero  minors to start the algorithm.  This 
can be verified directly for systems with few unknowns,  but a proof for a general 
system   (in  particular  for  a  system  consisting of at least one  highly   nonlinear 
equation) is not known to the author. 

Finally,  we point out that the above results should be relevant in the con- 
text of nonlinear programming,     where one deals with systems of the type (59), 
ordinarily with  r = 1.    The variables   x = (x,, .... xn) include  the  so-called 
slack variables, which arise from the transformation of a system of inequalities 
to a system of equations.    The given single function f(Xi, . . • ■ xn) must be ex- 
tremized subject to the conditions   a.j^c'- b^   m - 1, . . .,  s; and s < n-l.    Al- 
though a variety of methods of attacking this problem have been in use for years, 
it is Important to realize that  these   methods  yield only approximate solutions. 
By  contrast,   the direct approach  described  here  will  always   yield   an exact 
function of n-s-1 variables to be extremlzed.  If the points of maxima and nilnlraa 
of this function can be found in the entire n-8--i-dimensional spac,-,   üben the 
programming problem will be completely solved if use is made of the residual 
coLstraints of non-negativity  of the  x. ,   where   k = 1, . . . ,  n. 

k 

It should be clear from this discussion that, for these nonlinear programming 
problems, the actual choice of a method will be dictated by the capacity of the com- 
puting facility available, the computing time required,  and the penalties Involved 
In the use of approximate extremal points. 
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