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A SOLVING ALGORITHM I'OR SYSTEMS OF
NOWLINEAR ALGEBRAIC EQUATIONS
I. INTRODUCTION
The purpose of this report is to draw the attention of prospective users to
the possiblity ot solving exactly systems of algebraic equations that occur in

various contexts,

The first system to be considered consists c¢f one quadratic equation in
n unknowns (xl, x2. R xn) and n-1 linear equations in the same variables:

n

2_ 9. xx =b

T ¢
L)J—4 J

n
2}2—4 D X = I:)m 5 m=1,...,n-

Though the following results are valid (except where noted otherwise) when q,
a, and b are complex numbers, the results are most useful for the real case.

(1)

The system of equations (1) can be interpreied in several ways. First,
one can look upon it as arising from the purely geome~tric problem of aeter-
mining the set of points of simultaneous intersection of an n-dimensional quadric
suriace with n-1 hyperplanes. It will be seenlaterthat, for arbitrary coefficients,
a solution does not always exist, Moreover, because of the nonlinearity of the
syatem, we can expect the existence of more than one solution. This is clearly
evident for the case n = 2 involving the rzai points of intersection of a conic
section (ellipse, parabola, etc.) with a single straight line.

Second, a system of type (1) with three unknowns arises in a famous
problem of classical mechanics (discussed by Euler and bearing his name)
concerning the motion of a rigid body about a fixed point. Golubev! preseats
a solution for this case by a method attributed to less?Z and later modified by
Shiff, 3
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Third, still ancther geometrical interpretation of system (1) is possible,
Aassume that, in an n-dimensional space endowed with an inner product of the

form
n
(U)V) = ﬁz__‘_ ‘;}'j UV ’ 2)

it is required to find a vector x = (x3, . . ., Xx,) of given norm (re: length) b
and given projections b on n-1 fixed vectors ¢y, = (cpp1, - . .» Cmn), Where
m=1, ..., n-i., The resulting system of equations is then precisely that in
(1), where the vectors a, = (am].’ - « «» 8myp) are related to the vectors cmy by

am =ch'

3)
in which Q represents the matrix (ql ) appearing in the definitior of the inner
product (2), )

Finally, system (1) might be relevant to problems of nonlinear programmlng4
where the quadratic form will represent a cost, or objective, function while the
linear equations will represent constraints, or side conditions.

In section 1I we describe the method of solution for system (1) and discuss
its poseible solutions in detail. In section III applications of this algorithm to
sevural simple examples are presented. In scction IV extensions of the method
to various systems — some of which consist of equations with nonlinearities of
higher degree (possibly trarscendental) — are presented, and the associated
problem of extremizing a given function subject to linear and nonlinear con-
straints is discussed. In the final seciion, the solving algorithm is investigated
from the viewpoint of implementation, and arguments concerning uniqueness of
solutions are presented. In additon, it is shown that the solving algorithm is
relevant to the nonlinear programming problem,

II, METHOD OF SOLUTION
The solutions presented below are obtained by a straightforward method,

in marked contrast to that described by Golubev, = which seems needlessly
complicated by the use of Grammians and partial differentiation.
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We start by writing the equations of system (i) in more compact forrm:

xQX = b

amx —_ bm 3 m= 1,0--,”‘1. (4)

where the tilde ~ denotes the transpose (hence X is a column vector).

To go on, we assume that the vectors ap, m = i, . . ., n-1, are linearly
independent. The opposite case will be discussed later, This linear independ-
ence of the a_'s implies that there exists at least one minor determinant based
on n-1 columns of the rectangular matrix (A m=1, . . ., n-1 k=1, .. ., D)
that does not vanish identically. This being the case, we may assume, without
loss of generality, that the variables x| have been already lwoeled in such a
way that the first n-1 columns of the rectangular matrix yield a nonzero mino-,
Similarly, no generality is lost if the mcatrix Q is assumed to be symmetric,
since this can always be accomplished by a suitable redefinition of the coeffi-
cients,

In view of these assumptions, let A denote the (n-1) x (n-1) matrix con-
sisting of the first n-1 rows and first (n-1) columns of the rectangular matrix.
Then syster= (4) can be put in the form

xQX =b

A)’(\:' =B’""X,.,5* ' (5)

* — . h* = o aq* =
where )x (xl, I xu—l)' b (bl' ey bn-l)"md a (al' o’ a2’ REE

a
n-1,n

By irtue of c .r assumption of linear independence, the matrix A is
invertible, so that it is possible to solve for x* fiom the linear equations in

(5):

X" = /'\-1([5" —xrﬁ"*)' )
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By tranapos.ition, we have also

( B* —Xn a*) /f\\:" . )

If we partition the quadratic form to conform to the definition of x*, we
can write for the first equation 1 (5):

x”Q*Ffz('y*fT')X‘n + 9 X, = L,

nn

where Q* = (qllul—l.. ees D=1;3=1,..., n-1) and @* = (Q;3,,, 921, - - ->
Ap-1pn)- Substitution of expressions (6) and (7) for x* and x* into (8) yields

(E=x, a")A" QA6 - x, a*)+527*ﬂ (b—x.a9)x,

+ —
7 X (9)

In both (8) and (9), the assumed symmetry of Q has been used. Moreover,
since Q* is also symmetric, (9) can be rewritten as the following quadratic
in x :

n

0()(j+’2jexn+xfzo. (10)

where

x =7 —-27""’/4-’07’\’J‘+ 61"“/4-/&* A
nn

P = f*";"r"[:;— a A QA B -
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= L*A’\:: KA g - b (13)

The two possible solutions of (10) are then
a3 o~
B X

From (14), we are led to the following two possible cases:

‘ (14)

1. a#0

At most, two distinct solutions for xp are possible. This implies the ex-
istence of, at most, two distinct sclutions x¥for the original problem (as
dictated by (6) or (7)). Exactly twodigtinct solutions will be obtained if and only
if 2 - aY#0. Inthe opposite case of B2 -aY o, there is only one solution,

2, a=90

From (10), we obtain

This implies that a unique solution will be obtained in th:s case if and only if
B# 0.

The opposite case, B - 0, leads to two possikilities:

a. For Y =0, it ia clear that any x, will satisfy the original
equation (i0). This, in turn, implies that there are an infipite

number of solutions depending on one parameter x _ (or that
there is a « l-manifold of solutions). The geometric inter-

pretation of this result is that the quadric surface and the
hyperplanes intersect in a single 'straight’ line.
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b. For Y# 0, (15) will be inconsistent. Hence, in this subcase no
aolution exists for x,,, and mutatis mutandis, no solution is
possible for the origrnal problem, This result raises no ques-
tion if the rectangula - (n-1)xn matrix of the a-coefficients has
on.y ope nonvanishing (n-1)x(n-1) - minor. On the other hand,
if there are other nonzero minors, one can zsk whether all of
them will yield the same negative result. Though it is difficult
to prove in general that this is indeed the case, we expect, on
intuitive grounds, that the various nonzero minors will produce
identical results.

From the discussion preseanted above, it is clear that the existence of a
reg} solution (when all the entities >ntering the original system are real) re-
quires satisfaction of the condition

fFrexd = 0. (16)

In the opposite case, a real solution does not exist,

III. APPLICATIONS

In this section, the algorithm presented above is applied to several sim-
ple examples to obtain some well known results.

A vectuor x = (xl. e e e Xp) is to be found whose norm (length) is £, In

addition, x must be orthogonal to n-1 fixed real vectors a,,, m=1, ..., o-1,
These constraints imply that, in the terminology of the previous sections,

b = {1) bmzo)ma-t...‘h-f.

a7

For ithe nurm, we assume the Euclidean length

n
2
(X)X)‘:% Xl'r . (18)

This implies that Q and Q* are square unit matrices of n and n-1 dimensions,
respectively, whiie qnn= 1 and 4* =0,

Lk ot S

e
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Substitution of these values in (11), (12), and i13) yields
A1 oA—1 %
<= {1+ ar A 4G
P = 0O (20)

= — 4%, 1)

The form of areveals that it cannot vanish since, to vanish, the quadrzatic
form in a* of (19) must be equal to -1, which is impossible becxuse the deter-
minant of this quadratic is seen by inspection to be positive. This ineans that
the quadratic form has a single minimum at a* = (0, . .., 0) and is positive at
all other points. By agsumption, a* # 0, the form is positive definite, and
a >0,

Use of these results gives the solutiops

xT = + /f/vg

" _ n—1 —4
Xk _ i({/&)mzz; Akh’? amn)‘k;4»“’,0 n-1 . (22)

The existence of these two distinct real solutions, as pointed out above, is a
basic feature of the solution, The following special cases of these results illus--
trate this multiplicity of rolutions.

First, we specialize to the 2-dimensional space, the fixed vector being
a = (u;, ug). Then, assuming u; # 0, we have

A=u, 5 A= 1/u, 5 Ad'=u,
< = 1+ U/}, (23)
xt =24y /ViFur
Xt =24LU/Vyreur . (@4)

h

Then
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The pictorial representation of this result is shown in figure 1, The solu-

tion vectors x* are of lergth £ and are perpendicular to the fixed vector a.

Figure 1

Next, we gpecialize to the 3-dimensional case where there are two fixed

vectors a, = (ul, u2, u3) and az=(v1, 2 v3). Assuming that
A= U ‘-U_,_'UJ%O, (25)
we get
A= 50 ) a= = R -
= 5> A={us ;)
Yy -y 4y,
(26)
and
{0 B SV A A —-u,
=1+ ZL’-(U;,U_;) x 1 * “s
cue W J\TY Y\ o
= [ (4,0 hty) + (U vy-eh,5)"
+ {1t Uy -y, y @7
8
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The two solutions are then

X = LN

3
Xt = + 4(Guy-t4v;)/AVS

1
+r __
xF= xl(y-yu)/ave.
Let . choose £ =AN@ | The solutions of (28) are now
-+ e - .
xT = (LU -uyr ], Tuyv-u257, [U%-00])
X = — X+- (29)

We .ecogn.ze, in the expression for the vector x+. the usual definition of
the cross product of tv » vectors a., a, given by the symbolic formula

T 7 F
a, X ‘a’z =| U U U (L)
v, Y U

where -i., j, k are the unit vectors in a Cartesian system of coordinates.

The geometric representation of this case is shown in figure 2, The two
sulutions are perpendicular to the plrne defined by the two vecturs a, and a,.

It should be noted that the choice of x' as the cross product of 8, and
correspords to a right-handed system of coordinates, while x™ correaponds to

a left-handed aystem,
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Figure 2

We can apply the previous formalism to the problem of finding the extrema
(if existent) of the quadratic form xQx subject to the constraints

Cl,,.X=b,,, ,'m=4,'-~—/n—1. 31)

We substitute the results of section II (with che same 23sumptions) given in (6)
and (7) in the function

Fo,ox)=x@Q% @2

wilich then becomes a function of the single variable X » given by

Flryooyxn)= Fxy) = XXF+2PX, +¥, 3

where aand P are defined in (11) and (12), respectively, and Y is defined by

r~7
* (34)

F= BA'QAE

10
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A discussion similar to that following (14) yields the two results below:

1, a#0

The extremum ox F(xn) is at the point given by F'(xn) =0:

Xn=_{2’/0< (35)

This soluticn will be finite if a #0, which is the case considered here. This value
of x, will yield a minimum if @ >0 and a maximum if @a<0, Therefore, the
unique extremum for f(x;, x5, . .., Xp) in th> present case will occur at

x=( x*, — P/O‘) (36)

X¥=[ B + (Bhx) a*]x?\\: " @7

2, a=90

In this case, F(xn) takes the simpler form

Fi(x,) = 2Bx, +¥%. 38)
if B#0#Y, then (38) is the equation of a straight line, and it is obvious
that no extremum exists in such a case.
If p=0, the function F(x,) has the constant value?throughout the region

of space described by the side conditons (31), and again an extremum does not.
exist.

11
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IV, GENERALIZATI. DNS

In this section, we present generalizations of the previous results in
several directions,

Linear Independence of Vectors ap,

In the first instance, we retain the assumption of linear independence of
the vectors a_ irtroduced in section IIL,

1. We start with an extension of our results to the following system:
o~ ~
19)'( R G = b

=4 39
OmX = bm > m=1,---,n—1 . e

In (39), p= (pl, Pos « = s pn) wheore again the py values are complex numbers.

Under the assumption of linear independence of the ap, vectors, we can
use (6) and (7) in the first equation of system (39). The resulting equation is
a quadratic in X

XX, +R2BX, +¥ = O, (40)

where o, B, and Y are defined below as
g~ I e
=9 —28°A * r AT QAT AT
ﬁ"ﬁ‘?’n*"jA—E—QA TA L —2PHA A" a

¥= BATQAE+ A E - b e

12
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’F,*_=(E)E)“’.)1’n-4)~ (A4)

The existence and uniqueness of solutions to the system (39) follow the
pattern established for system (1} and hence need not be repeated. As a con-
cluding note to this extensi.n, we remark that one might be tempted to try a
reduction of system (39) to system (1) by a transformation of coordinates that
will eliminatc ihe linear term px. This indeed can be accomplished, but or.y
in the special case where Q is invertible (i.e., | Q| # 0). For this special
case, tbe appropriate transformation is the translation

X = 7 - E (45)
where

E=—zpQ" . o)

It should be clear that the approach of (45) and (46) is more restrictive,

2. A second generalization is concerned with the system

flx,,.. x,)=b
a,,.i?’= E,,, 2 m=1, ...,h-1, L

Use of (7) in the first equation of system (47) yields an equation in one variable

X :
n

F.(Xn) = b . 48)

The solutions of systera (47) will depend on he nature of the solutions cf (48).

In particular, if the function ffv.l, 50060 xn) is of the form

i F(x,),..,xn)z g(c+7>?+xQ)<~), 49)

13
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in which ¢ is a constant scalar and p, Q, x have the same significance as in
(39), then the equation for X will be

3(°<’<2 "'ZPX,,+X')= L, 150}

where a, B, and Y car be easily wriden in terms of ¢, p, Q, A, a* and b*,
Moreover, if g(z) has an inverse, then the so.utiors cf (50) will coincide with
the solutions of

X2 +2PXn+¥= 5 7(b). e

In the evaluation of g"l(b), attention must be paid to the branch chosen tor gnl,
since the funct.on g~1(z) can be multivalued. Thus, we see that it is no more
difficult to solve a system such as (49) than to solve system (39). This result
can be of importance in problems for which the function f(x3, . . ., x;) may be
approximated by a function of type (49). A truncated Taylor series for f is a
special case of this form.

3. A third extension deals with the system

ﬁ.(’fo vy Xn) =E
£. (/(4,- .o, Xn) """E

amx — .l’_‘)m j m=41,..., -2 (52)

where B, 52, and b__ are complex numbers and the vectors a,, are again
assumed to be llnearg; independent. This assumption implies that there exists
at least one nonzero (n-2)x(n-2) minor of the a-coefficients, Again assuming a
labeling such that the first n-2 columns yield this minor, we can write

r~
;’* = A-’ (B“ “'XHEJ;*-’Xn E:.‘) ’ =)

14

Y
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where

>

C—{ = \/ai,h-—l = a;z,n-l S /S ,n_])
[ .

C;,; - ./ath s oy o v - Jan-z,n)

(54)
and A is the matrix of the nonzero (n-2) x (n1-2) minor.

Substitution of (53) into the first two equations of system (52) results in

the two simultaneous equations for X 1 X

E(xn——o ;xn) '—'e
E(xn-t,xn) =E : (9)

The pointas of intersection of these two planar curves will yield, thre'gh use of
(53), ali possible solutions of the original system (52). As in the simpler cases
treated previously, the nature of these solutions vill depend on the form of the
functions I, fo s well as on the side conditions. Four instance, if both fl and
fz are quadratic forms, then (55) reduces to a singie equation (in either x,_;
or x,) of the fourta order. Hence, if no pathological cases occur, there are,
at most, four distinct gsolutions to the original problem,

4. The preceding discussion points the way to a more general extension
of the same type. The system to be considered now is of the form

Fk (XU""X")’ﬁk BRI e Y

OmX = JDM ; m=4,...,h-Y, (56)

15

N
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in which Py and b, are complex numbers and the vectors ap, are still assumed
to be linearly independent. Use of the linear equeacdons in (56) to eli ainate, say,
the fivst n-r Xy valunes reduces system (56) to a system of r equations

F'; (xn-vq-ﬂ' A )Xn‘):{ék‘; p:"’a"'y ) (ET)

The points of intersection of these r bypersurfaces will then yield the posstble
solutiors of (56). We remark that conticuous manifolds of solutione will be ob-
tained if tke functions F) are pot linearly independent.

For the above extensiops, one can formulate corresponding problems
where extrema of functions, subject to linear and nonlinear constraints, are
required. Suppose, fur example, that instead of system (55), we must determine
tae extrema of Fl(xn R xn) subject to the single constraint

E(Xn--f,xn)ze : (58)

-1

This can be done either by straightforv,ard elimination of X from (57) or by

the use of Lagrarge multipliers. -1

Lirear Dependence of Vectors am

We shall deal now with the extension of the previous results to the case of
linear dependence of the vectors a,, appeacing in system (1). The linear de-
pendence of these vectors implies that one or more of the linear equstiouns in
system (1) are expressible as linear combinations of the rest, If this is the
case, the redundant equations can be deleted and the remaining, say, s equa-
tions will be linearly irdependent. We hali immediately formulate the problem
80 as to include the more general system

16
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As compaved with system (56), the present system {59) consists of fewer equa-
tions; i.e., the number of unknowns exceeds the number of equations. The
vectors ap, appearing in (59) are again linearly independent, and by a oimilar
procedure the first 8 xj values can be eliminated. The vesulting system will
then be

The original assumption 8 <n-r imglies also that r <n-s. Therefore, the
posaible solutions of (60) will depcad on n-s-r parameters, and the solution
of the original system (§9) may include continucus manitolds of n-s-r dimen-
sions,

The simplest system that can be solved explicitly is
~ ~o
bX +XxQX =b
X = b
me_-: ™ s m=1)"‘)n“2) ®D

where p is as defined in system (39).

Assuming that we already have the correct labeling, we can write

A P o —~1

A _ x* X

X" = (B —x,, cr-x,c2)A", ©2)
where all the entities are as defined in (54).

By substitution of (62) and its transpose into the first equation of (61),
we obtain

17
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A B Xy €% —x. cr) + P KXo b X,
+(B sty G*-x, (A QA -x,.CF -x,C)
Y (R

+ zz*‘/}"’/é*- X, Crx,CE)X,,

+ XY QRQPVX® = b, (65)

All the starred quantities and A are n-2-dimensional, with definitions similar

to those exhibited in (54), while qi. qé and x(2), Q(é) are defined by

A —
1 (?";M ’ 71,”"’ > Z-z,n-f)

4

7:‘:(2/7 a Zn 2 °° 22 Z—z,n)

2

X(z)___ (~xn‘11 X,,) ), Q(2)= ?n‘y?-l %-I)n) .
7/7}7’/ 7»/»

The form of (63) reflects both the special partitioning of the variables into x*
and x(2) and the assumed symmetry of the matrix Q of the quadratic form ir
system (61).

Since Q* is also symmetric, we can write (63) as
2 w2 —
X Xy y— 2PXp_ Ko +¥ Ky + T X, T Xyt U= O, (4

18
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where the coefficients are given by

=L A AT QAT
fr= cf/?' QAT + Z"A"c’;‘? v—Z"‘A"C:;—-Z_“l
Y=g = 29*ATF + G AIQATCH
0= —prATICR —2 g A 2 AT AR
T=p - pPAG 29046 28X Q'
p= pAE BAQAE b

(65)

If we solve for x,,_, from (64) we will get, at most, two distinct solutions
which depend perametrically on xn. The original problem has therefore, at
most, two digtinct one-parametzr manifoids of solutions (if no pathological
cases arise).

The ubove results show us how t proceed in finding the extrema of the
function

~ N
70 X - 2 X i’}: +
( 4 2 2 n ) X X Q X (66)
subject to the constraints
s
C)mx'———Em » l'l7=4, --‘Jn-'Z. (67)
This problem i3 equivalent to finding the extrema of the function

F(Xnﬂ )X")2 0(/\}2,_4 —Z‘Panxn "X.an'f 7-Xn-/+Z-Xr)7.l—-(68)

19
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where | is equal to the p defined in (65) with b = 0.

If we assume that no pathological cases arise, there is a ring/e extremum
at values of X,-1» Xp obtained as a solution to the aystem of the following linear

equations:
oF

X = ANy —2PX T =0
:‘i—E—E —2Bx,_, +R¥x, +T =0 - (69)
oXp, ’ :
namely,
Fa+hT

Xn—q - Z(P:"‘O‘[)

_ xT + Po ) Pogfto.
S R(p-oxX) (70)

Xn

Substitution of these values into (62) gives the value taken by the vector x*,
and thus the solution of the original problem has been found.

V. CONCLUSION

In the precediny sections we have presented exact algorithms of solution
for algebraic systems consisting of mixed linear and nonlinear equations. These
algorithms involve basically the evaluation of various determinants as well as a
finite number of products and summations. This in itself does not constitute an
obstacle to :mplementation because of the widespread availability of computing
facilities. One question that can be raised in th!s context is whether these algo-
rithms are the most ragid possible. The author cannot answer this equestion
since alternative exact treatments of these same problems donotseem to exist,
and therefore there i8 no basis for comparison,

At this point a second question must be raised, Whendiscussing the unique-

ness of the various solut.. ns, we have assumed that a nonzero minor could be found,
Rince such a mipor is notgiven from the start, we mustfirstfind it befrre applying
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the algorithm, For example, to find such a minor for the system (59), we must
examine at most (2) minors. Obviously, the actual number examwed may be con-
siderably smaller, especially if several sucih aonzero minors exist, This brings
into prominence the second question: Does the application of the algorithm lead
to identical solutions when various nonzero minors are used? By '"'identical' we
mean that a change in labeling will bring into coincidence solutions based on
different minors,

The answer to this seems to Le in the affirmative; i, e., no new solutions
are introduced by using different nonzero minors to start the algorithm. This
canbe verified directly for systems with few unknowns, but a proof for agencral
system (in particular for a systein consisting of at lesst one highly aonlinear
equation) is not known to the author,

Finally, we point out that the above results should ve relevant in the con-
text of nonlinear programming, 4 where one deals with systems of the type (59),
ordinarily with r = 1, The variables x = (X35 -« «4 Xp) include the so--called
slack variables, which arise from the transformation of 2 system of inequalities
to a system of equations., The given single functicn f(x3, « . .4 Xp) Must be ex-
tremized subject to the conditions am?'= by, m=1,..., s; and 8 <n-1, Al-
though a variety of methods of attacking this problem have been in use foryears,
it is important to realize that these methods yield only approximate solutions.
By contrast, the direct approach described here will always yield an exact
function of n-s-1 variables tobe extremized,. Ifthe points of maxima and minima
of this function can be found in the entire n-s-i-dimensional spac<, then the
programming problem will be complecely solved if use is made of the residual
corstraints of non-negativity of the xk, where k=1, ..., n

It shouldbe clear from this discussion that, for these nonlineor programming
problems, the actual choice of a method will be dictatedby the capacity of the com-
puting facility available, the computing time required, and the penalties involved
in the use of approximate extremal points.
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