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] ABGSTRACT
f Recently, Mangasarian [18], [19] has discussed the idea of
2_ | golving certain classes of linear complementarity problems as linear
) programs. The present paper (1) demonstrates how these complemen-
tarity problems are related to the theory of polyhedral sets having
G
4
least elements and (2) discusses the question of whether the linear
]
programming approach can be recommended for solving them.
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E 1o INTRODYCTION
S
; It is a faivly well-known fact thatv if a linear complementarity

problem has o solution, then it hags a solution which is an eitreme

4 point of its "feasible cet." This means that if an appropriate linear
J form were knowr, l.e¢., one whose minimum over the feasible set would

3 nocessarily occur at a complementarity solution, then thie linear com=-
4 plementarity problem could be solved us a linear program. 'Typically,
b | one does not know an appropriate linear form in advance and can not

;

. |

rapidly find one. But there are exceptional cases, gome of which have

been noted in the literature. (See (7], (9], [1&), (1v], (26).) 1%
iz our contention that these linear complementarity problems solvable
as linear programs are related to the theory of polyhedral sets with

least elemants. lixamples of this re. tionship are made explicit by

A : Cottle and Veinott (v] and by Tamir [20]. Some numerical experience
'X based on this observation is reported in Cotile, Golub nnd Sacher [7].
1 More recently, Mangasarian [1%], [1Y] hus produced several ]
| additional examples of linear ¢omplementarity problems whose solulions /
\' 1
Y 1
3 can be oblained via linear programming (which incidentally is not %
1 — s .
3 . ; . . ; - i
3 . intended here to imply the use of the simplex method or wny of its g
‘ . I N
] ' derivatives). Mangusarian's results in this area are nol explicitly i
3 ki
3 1
. hased on least element arguments, but rather on a koy lenmn having, ﬁ
E Pl }
} ! Lo do with optimal ual variables, Our primary purpose in this paper !
':: | |
i o
i- | 1 ;
: :
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is Lo demonstrate that Mangasarian's theory caa be interpreted in
terms of least elements of polyhedral sets. For the most part, our

methods are matrix-theoretic. In the ccurse of our investigation,

we uncovered a few rerults of this type; they are included here because
we belleve them to be new and of independent interest.

The possibility suggested by the linear programming formuwlatbtion
ol n linear complementarity problem ralses the questin of whether this
approach can be recommended in prectice. Hence our secondary purpose
in this peper is to give at leact a tantatlve answer by reporting the
computatlonal experience we have gathered in solving some linear
programs=--of the type th..t could arise from linear complementarity
problems--by an iterative (relaxstion) procedure rather than by the

simplex meinod or any or it variants. Motivation for using an

iterative method can be found in the slze and structure of the matrices

one mlght expect to encounter in some potential applications of the

lipear complementarity problem. g

The plan of the paper is the following. In section 2, ve cover ?
a bit of background material. The section has two parts. The first ?
port. fixes our notation and gives some characterizations of matrices ;
in terms of the linear complementarity problem. The second part is %
a synopsis of the main results Mangasarian obtained in (18] and [19]. ?

In sectlion %, we develop our least-element interpretation of the sub-

ject and present some incidental matrix-theoretic results, In the

fourth and final section, we discuss our somewhat preliminary com- :
putational experience with solving linear complementarity problems as

linear programs by relaxation methods.
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2. BACKGROUND

2.1 Miscellaneous preliminaric: ;
R
. ! . . ;
Trroughout this paper, R, will denote the nouncenli~o orthant 1
" . n nXom . ) . !

of the Fuclidean n-space R and R will denote bthe class of
real n X m matrices. We denote the i-th column (row' of u mabrix 3
. LnXm : . Lo . 1
ACR by A i (A. ). A real watrix A ¢ K 18 geid bo bhe 4 !
o L j

Gemntrix (P-matrix) 1f it has non-positive ¢ff diagonal entries (positive

. . . .o onrxon . .
principal minors). We shall call a matrix A ¢ @ a K-malrix (or a

Minkowski matrix) if 1t is both & P- and Z-matrin simultaneously. 'The

classed of all real Z-, P- and K-matrices will be denoted by ', I’ and

K respectively. They are treated extensively by IFiedler and ttdk [L4].

" _ .0 I e S Y .
For a vector ¢ ¢ R and a matrix M€ R ; the linear

complemenbarity problem, denoted by (g,M) is that of findins x C R"

such that
(2.1) g+ Mx>0, x>0 and xl(q + Mx) = 0.

By the feasible sel for \q,M) we mean the yolyhedral sct

X(q,M) = (x ¢ R%q * Mx > 0, x = 0) .

We say that the problem (q,M) is feasible if X(q,M) s nonemply.

A subset 8 of K i

«n

gaid to be bounded below il there is a veclor

. oD : \ - S e
x' € R such that x > x' for all x ¢ 4. The vecbor x C 6 is

the least element of & if x < x for all x ¢ S, Tt is clear that

the least clement, 11 1% oxists, must be nnique.

AN




Minkowskl matrices as well as P~ and Z-matrices play very
lmportant roles in the linear complementarity problem. 1t is well-
known (sce Semelson eb al. [25]) that the froblem (q,M) has a unigue
golution for every q ¢ R?  if and only if M€ Po Tamir {26]
characterized Z-matrices in the following way.

Theorem. The matrix M & Rnx " 4{s a Z-matrix if and only if for
each vector g € k' for which the feasible set ¥(q,M) is nonempty,

there exists a least element X in X(g,M) satisfying xl(q + Mx) = O.

AT I >

l
!
i Cottle and Veinott [Y] proved the following characterization

; : of K-matrices.
i |
.
% Theorem., The matrix M€ Rnﬁln 18 Minkowski if and only if for each %
§ q € R, the feasible set X(q,M) has a least clement X which is the ?
% only vector in X(q,M) satisfying xT(q + Mx) = O. %
%' Note that the¢ rclaracterizations of 7- and K-matrices are in §
g terms of least elements of the feasible set X(q,M). This fealure is j
é of fundamental irmportance in the present work. ;
Various methods for solving the linear complementarity problem 3
{ (q,M) in the important special case where M is a Y-matrix have %
: been considered intensively by a number of authors (3], (7], (&}, [1r], g
[23), [24]. While Mangasarian's proposal [18], [1Y] to solve linear g
i complementarity problems (q,M) as linear programs is nolt entirely ‘
} rnew, his results definitely appear to enlarge the class of problems
|
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to which this solutlon strategy is applicable. Specifically, he proved
that for certain classes of matrices M, it 13 posuible Lo find a
veetor P such that ench solution of “he linear progrom

T
(2.2) minimize p'x subjech to q + Mx >0, x > 0
solves the problem (q,M). We denote the linear program (2.2) by the
triple (p,q,M). Its dual is equivalen’ to

m

(2.3) minimize qu subject to ;)-MTy B0, oy 0,

which is Just (q,p,—MT). We say that o linear complementarity problem
‘ {1,M) 1s LP-solvuble if we can find a vector p ¢ R such thet each

solution of th: linear program (p,q,M) solves (q,M).

Recognizing that most LP-solvable linear complementarity problems

arigse from the discretization of (partial) differential equations

(see (71, (81, [11], [#3)) and that the properties of the matrices so

obtained (e.g. “4-matrices) are not so conducive to efficient solution

of the linear programs by the simplex method, Mangasariun proposed

the use of relaxatlon methods ([11, (2], [13], [20)) for solvirg

inequality sysbems. In particular, solving the linear program (2.2)

is equivalent in a loglcal sense to solving the linear inequalities:
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(2.4) I 0 . G

which consist of primal and dual feasibilities and the reverse of the
weak duality of the lLlinear program (2.2). Presumably, the compututional

advantage offered by relaxation methods is their capacity for preserving

matrix sparsity.

2.2 Mangagsarian's results

Our purpose here i to summarize the principal results obtalned
by Mangasarian in the aforementioned papers. The fundamental theorem

is the following:

Theorem 2.1. TLet the feasible sev XK(q,M) be nonempiy, and let M
satisfy
(2.9) MK - Y

lL ll\ Yl

1
(n.00) r'X +sY0 forsome r,s¢ R,

(¥

where X, Y € 7, ‘nen the linear complementarity problem (q,M!

can be solved by solving the linear program (p,q,M) with P+ Mls.

The proof of the thecrem depends heavily on the key lemms

below.
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Lenma 2.2. Tf x solves the lineer program  .p,q,h nad there
. . - , 1 L - 1-
exists an optimal solution y »f {(q,p,=M"! such that y + p ~ My 0,

then x solves the problem (q,M).

The following courollary identifies some clegses ot matrices

satisfying conditions (2.5) and (2.6) in Theorem 2. 1.

Corollary 7.3, Lebt the feasible sel. X{q,M) be nonsuply and let

—lm

n A
e ¢ R be any positive veclor. Then for each of the cases wnen

- , m
(a)M=-‘{xl,xeK,Y€zap::rzzo,rx:»o)
o - m m
¢ ‘ (b) M Lxen, ver (p=ts,s>0, 8¢ 0l
fr
| (c) Mgy (p = e)

i

i
-<
>
P
o

H

MTe)
IJ ‘I
-e or p = Me)

]

Lo (@) Mteu (p
[

() -MeK (p

- m
? (f) -M 1 € K (p=-M¢e or p=e),
¥
8 the linear complementarity problem (g,M) has a solution which can be
o ]
- i obtained by solving the Llinear program (p,q,M) with the indicated p.
] 1

The results above are drawn from the first of the two papers.

In the gsecond paper, Mangasarian extends the cless of LP-solvable

e

linear complementarity problems by establishing the following remarks

able theorem,

LR g
o

! i
; Eﬁggggm_géﬂ. Let t' . feascible set X(q,M) be nonempty, and suppose

| R

L there exist X, ¥ - R*7%, A¢ X" B, me &7 ¢ B0, pe RY

and p, € R, such that J
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(2.7Y MK = Y 4+ BG; M- BAj

(».8) (pT

Then the linear complementarity problem

can bo obtained by solving the linear program

(q,™)

hoa

(pag, MY,

a4 solution which

By speclalizing Theorem .k, Mangasarian produced the following

table.

R %
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Con ttions Vector p
{ ' () Sonditions on p
Matrix M of (1) o M of () 4 ¥

>, pX =0

=

S
'

H

=
=
v
~
g

4 L,
é 1. ~ e \ n = M 5 g > 0 )'L'Y PO
2, M =YX X y Y K B S

Mo <Y pwMe e "~ 0

IR
—
=

5, M=Y + ab'v Y K a >0, p b b0

mn T )
w M7 p . e 0, Y =0
) M o Py 0, Yo

6. M =X - Y X .2, Y- K
X =y

( component. sise)

\{l i\ T ( ] N ) c R
‘ woMoe - Ly l) b
7. M2>20 m, ., > 7 mij pow Me e T wnny

TR

(component -
wise)

ARt
s
O

S
<
[
"
—
.
-
=

A
=

> QO

A L T
—
=

; n Wl
! )7,. M 2 0 >, mi j SR 1)0 ‘_)(-)

T \ .
; M+ diag M) > O
; (component- Jed po( M+ odiag M) >
) wise) Vi=1l,...,n
4 |
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5. CONNECTION WITH LEAST ELEMENTS

In this sect’ . we develup our least element interpretation
of Mangasarian's the. .y The cornerstone of our approach is &
strengthening of Theorem 2.1. The new result (Theorem 3.9) makes it
possible to invoke the theory of polyhedral sets with least elements,
The desired relationship between the two theories is made explicit in
Theorem 3,11, Except for the matrix-theoretic results mentioned
earlier, the rest of the section is concerned with showing how Theorem
2.4 and the special cases enumerated in Table 1 can be related to
Theorem 3.9 and thereby %o the least element theory. We begin by

reviewing a few more pertinent facts.

Definition 3.1. Let M Dbe a square matrix. By = principal rearrange-

ment of M, we mean a matrix M = PTMP where P 1s a permutation natrix.

The following facts are well-known (see e.g. [L4]):

(i) The classes of %~, P- and K-matrices are invariant under

principal rearrangements,
(11) The inverse of a P-matrix is a P-matrix,
(iii) The property of a matrix belonging to any one of the three classes

Z, P and K 1is inherited by each of its principal submatrices.

In [1L], Fiedler and Ptk gave a list of thirteen equivalent conditions

for a Z-matrix to be a K-matrix. Here we quote three which this paper

needs later.

10
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Proposition 5.2, Let A % Z. Then the conditions below are equivalent

to each other:
(iv) there exists a vector x > 0 such that Ax > 0,
(v) the inverse A™Y exists ana AT w04

(vi) the principal minors of A are positive,

Definition 3.3, Let A be & nonsingular principal submatrt . of a square

matrix M. Tet M be a principal rearrangement of I such that

c D'

(M/A), is the matrix D - oAz,

M= ( Then the Schur complement of A in M, denoted by

Properties and applications of cthe Schu compleirents have been
surveyed in Cottie [5]. A proof of the following proposition can be

found in Crabtree [10].

Proposition 3.4, Let A be a nonsingular principal submatrix of the

Minkowski matrix M, Then (M/A) 1is itself a Minkowski matrix.

Definition 3.5. The matrix A € B° ™ {g said to be Leontief if it

has exactly one positive element in each column and there is a vector

: Rm such that x >0 and Ax > 0.

Proposition .6. Let A € R**™® be g Leontief metrix. Then there

(n
exists a submatrix B« Rn)‘ such that B is itself Leontief, TFurther-

more, B™> exists and is nonnegative.

o T e

11




A proof of the preceding proposition is given in Dantzig (12].
It is based on an application of the simplex method of linear programming.
We are now ready to present our regults. We first state an
alternative proposition which is an immedlate consequence of the well-

known theorem of Kuhn-Fourier [15] on the solvability of a system of

; linear relations.

? Proposition 3.7. Let X, Y & Rn><n' Then the following two conditions

9

% are equivalent to each other:

" .

.

h i (3,1) X+ sTY >0 for some r, s€ R$

é )' and

? ; Xu < 0

oo (3.1) Yu<O )= u=0,

h: >

;‘ The lemma below provides neceussary and sufficient conditions for two

3

I

. Z-matrices X and Y to satisfy condition (3.1).

A

§ Lemma 3.8, Let X, Y G RP X" be Zemstrices. Then (3.1) holds if and 4

é only if there exist a principal rearrangement with permutation matrix ,%

% P and & partitioning of X and Y guch that %

L : T X % T Y, :

; ; 3.2) PUKP = , PP = y

X X1 X Yo Yoo 4

f X1 %o !

b (3.3) € X |
Y21 Yooi

i

2
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Proof: "Sufficiency". We shall show that condition (5.1} holds, Let

T S A R e B A S T T T W T ST, -
<
=
o
~
(e

t

u satisfy Xu<0, Yu <0 and u> 0, We then have 4
X0 A o
‘ L TR 4
! which implies u < O (and thus u = 0) because i)
: ] -1
é | Xy X zz\
x 1 >0, A
. Loy Yool p
ko z
3 A
Lo 9
2 [ "“Necessity'", Condition (3.1) cen be rewritten as E.
: ) . o ' o X
! (3.1) ) Cyro owitn (N zo o
; ; 4
9 ' . bt
é ; The matrix A = (XT, YT) € R* %P yeg at mont ona positive element in %
A - 3

?’ 2uch column., We may assume, without loass of generality, that it hag |
: exactly one in each column: otherwise we can always delete thoge 3
; 3
' columng of A consisting entirely of nun-positive entries and delete 3§

+ . . 11 et ot b ppt T _T.7 !

at the same time the corresponding compoucnts of the vector (r7,s” ) ., ¥

then we are left with a smaller system satisfying (4,4) in which the ;

:

matrix has exe-~tly one pogitive element In each column and we can work

ey et

with this smsller natrix., Now the matrix A is Leontlef'; hence by

Proposition 3.6, there exicts a submatrix B &€ BPXP cuch that B is :
i itself Leontief, E-l exists and is nonnegntive. Note that the same é
i L4 i
i column of X~ and YT cannot both simultaneously appear in B
%
'
4

FEIE PO SONUY P Yo% TV PR R PP SR Y NI PR 'i-bi\:-;um.u',;i




because B has exactly one poaitive element in each column. Hence by ﬁ

permuting the columns of B, if necessury, we may assume that the i-th 3

column of B 1is either the i-th column of XT or the i-th eolumn of YT. :

A Then B 1is a complementary submatrix of (XT,YT). This suggests the f

1 é permutation and the partitioning, thus proving (3.2) and (3.5). ;{

] .

? | Using this lemma, we give necessary and sufficient condltions ?

E , for a matrix M to satisfy conditions (2,5) and (2.6) of Theorem 2.,1. f

- Theorem 5.9. Let M, X and Y be n X n metrices with X, ¥ in 2, ;

i | 4

l{ l (j-b) M =Y ¥

S ¢

5 3

I . T T g

3 (3.0) r'’X+sY>0 forsome r, s >0 4

’ - y

ﬁ if and only if there i4 a principal rearrangement and partitioning of M, f

§

: X and Y such that 3

4

; :

] (5.7) My M (X ) [ Y Vi) i

& - = E

‘ ¥o1 Moo \Xp1 %ep Y1 Ya} _‘.

s

|

L X X ~ ’,3

! (3.8) 1 e is nonsingular , g

% x'al x22
}

X X
| (5.9) ( o2 e,

]
]
%
3
)
{
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We first note that if P i3 a permutation matrix, then (3.%)

Proof':
Lolds if and omly if (PTMP)(PYXP) = PLYP. Therefore (5.5) holds if

and only i€ it holds for every principal rearrangement of M, X and Y.
Now, the sufficiency purt of the theorem follows immediately from Lemma

5,8 end the observation above. For the necessity part, it remaine to

verify condition (3.8), Condition (3.9) implies that Xll is nonsingular,

Solving for MOl in the equation

Yoy = MapXyy + M X,

we obtain
\-.-"‘1-

Moy = (Yo = MpoKs 0%y

Hence
Yoo = MyXyp + My X0
= (Y - MQEXQl)XlinQ * MoKy s

or,

Yoo = Yelxlixlﬁ = My, Xy, - x21xlixlﬁ) .

Note that the matrix on the left side 1s just the Schur complement of

Y in the Minkowskl matrix

o2
X1 %
You Yoo

By Proposition 3.4, it is nonsingular. Therefore so is the matrix

- K P 44 e det>rm
ng - xglxlixlg. Now (%.8) follows from Schur's det2rminental formula [5]

Coladnet L e
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R

X.. X..
det ey o det X
X X

2L en

Xy

det(x'{}ﬁ B S DR

11
This completes the proof of the theorem,

Notation., Let ¢ denote the class of square matrices satisfying
conditions (3.5) and (2.6),

It is clear that, using Theorem 3.4, we can readily ccnstruct
matrices belongling to the class 1 sterting with any Minkowski matrix,
In the sequel, we shall focus our discussion on this class o . Our
purpose 1ls to establish a relationship between the class of linear
complementarity problems (g,M) with M ¢ ¢ and the theory of poly=-

hedrel sets having leart elemerts, In order to achieve thiz, we gtate

and prove the following lemma,

Lemma 3.10. Let X, Y < R°°" be Z-matrices and et (s,q) ¢ R® x ®%,

Suppoge that ihe polvhedral set

Ve (viRhg+Yv>0, s+ Xv>0)

i MmO Sl 2

is nonempty and bounded below., Then there exists a least clement v .V

satiafying (q + Yv)T(s + Xv) = 0, Furthermore this least element can

 dittados

be obtained by solving the linear progranm

(3.10) minimize rTv subject to q + Yv >0, s + Xv >

\‘/
o
i e ases viae e,

[

for any positive vector r I R,

PR
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Proof: Consider tie Linear program (5.10) where r = R© 1s positive.

Since the constraint set V 1is bounded below and obviously closed,
problem (3.10) has a solution, say V. We want to prove that v ig
the least element of V., (This will imply that Vv solves the linear
program (%,10) for any other cholces of the positive vector r.)
Solet v&V and V' = (vi) be the vector with v, = min(vi,ﬁi)
for each 1, Consider index k. We may assume, witnout losgs of
gencrality, that vk = Vi Then we have

n

+ 00 Y v+ Y !
gy ke Tk'k

ﬂ%k

(q + ¥v')

1]

x © %

1Y)
Noy
3
*.
Mz
<
<
+
=
<

ke'2 kik'k

IV
(e

Similarly, we can deduce (s + Xv’)k > 0. These inequalities hold Yor
k = 1,...,n, Therefore v' ¢ V, By the definition of v, it follows
that

Ty < rly:

iA
1

Hence v = v' < v. This shows that v is indeed the leas* element of
V. It remains to verify that v satisfies the ccmplementarity
property. Clearly we have (q + YG)T (s + XV) >0 because V<V,
Suppose (q + YG)i >0 and (s + X\'r)i > 0 for some index i. Let

~ >0 and consider the vector v = v = cei where ei is the i-th

unit vector. We have

St 8 Seh . ko e
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qQ+ Yv=q+ YV - Yel
Therefore

(q + Yv).j >0 for every J # i,

and

qi + (YV)i - Y

(q + Yv)i T

Similarly, we have

(s + Xv)y 20  for every | £ 1

and,

- ¢X

(s + XV)i (s + Xv)

i it °

Glearly, Y,, <0 (X i < 0) dimplies (q + Yv)i >0 ({8 +Xv), >0),

ii = 1
If ¥4 >0 end xii > 0, then chnose ¢ > 0 such that

1

0 < ¢ < min{(q + YG)i/Yii, (s + XG)i/Xii}

With this cholce of ¢, we see that (q + Yv)j >0 and (s + Xv)i > 0.
Hance 1t follows that v € V. But rTv < rQG, contradicting the fact

that v solves (3.10).

Consider the problem (q,M) with M€ ¢ . Then the inequalities

q+ x>0, x

v
o

1

define the feasible set for (gq,M). With x = Xv, the inequalities

above can be expressed in the form

(3.11) (y)v

O N LN R R
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Let V be the set of all solutions of (5.11). Then it is clear that

(q,M) 1is feasible if and only if V # ¢, Partitioning the vector

9
q =

] %L
E' a.ccordin{; to Theorem 3.9, we see that
; X1 % 0 \
¥ ' v &£V implies that v 2 l
oy Top “4n
o
} Since the matrix
1
X1 X

To1 Yo

is Minkowski by condition (3,9) of Theorem 3.9, its inverse is non-

] A negative by Proposition 3.2, Therefore we have

A -1

; RSTRRST © :

- viE Vo implies v > ( 3
Tor Yool "% :
:

i.e., the set V is bounded below, Hence if V # ¢, it follows

rom Lemma 3,10 that V has & least element . satisfying

(]
)

e’ (g + YV)P(XV) = 0 and v 1.4 the linear

can be obtained by «..

program

<,

e ool o S e b e e PR

qa+Y¥v >0, Xv >0

minimize rTv subject to

IBRUN it s g
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for any positive vector r o R". Letting X = XV, we see that X

is a golution of (g,M) and it can be obtained by rolving the linear

program

(3.12) minimize (X'Tr)$x subject to g + Mx >0, x>0

which is just (X'Tr, g, M). Summing this up, we have proved

Theorem 3.11, Let M ¢ C and suppose that the problem (,M) is
fearible, Then there exists a bijective, linear map L:R® 5 R® such

that the feaslble set X(q,l) 1is mapped onto a polyhedral set V

B S S S S TN P ~

having a least element v whose pre-image X = L'I(G) solves the

Sograthd

TR

problem (q,M),

It is thils theorem which provides the desired relationship between
‘ the linzar complementarity problems with matrices in claass ¢ and the
theory of polyhedral sets having least elements. Together with Lemma

3,10, the theorem also provides an interpretation for the conditions

A R T ST,

imposed on the vector p chosen in the objective function oL the

£ corresponding linear programs,

Remark 1. When using the linear program (3.12) to obtain a solution to

1 the linear complementarity problem (q,M), one must, first of all,

solve the system of linear equations pTX = rT where rT >0 is

A 3 2 i s S

chosen arbitrarily, to get the vector p v-ed in the objective function

i i i

of the linear program. For large n, this problem of finding p is not

o e Lt

an insignificent task. 50
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Remark 2, For M C C, Mangasarian shows in Theorem 2,4 that the
problem (g,M) can be solved via the linear program (p,q,M) for

any p YPelonging to the class

? Pqi= {p: RX':pT =rT + sTM for some (r,s) >0 such that rTX+ sTY >0},
g Our least olement argument abcve shows that such & vector p can be %
f chosen arbitrarily in the class 4
f : P, = {p¢€ RMpT = r'X"1 for some r > 0) . i
. |
! .
& ! Here we demonstrate that ) =p,. Note that
¢ ) ;
: p P, <a=> pr o= 4 sTM = (r0X + sTy)X"F §
& T 3
g for some r, 8 >0 and rX+ sTY > 0, Hence it suffices to show that 3
] ' %
4 for any t °: Rn, t > 0, there exist r, s >0 such that ;
g E (XT,YT)(z) = t, We mentioned in the proof of Lemma 3,8 that we may i
b/ ;
é assume without loss of generality that the matrix (XT,YT) is Leontief,
wWe also showed thet there exists a complementary submatrix B of ;
(XT,Yr) whizh has a nonnegative inverse. Clearly, Bl > 0. Now we ;
i ) ‘
g define the vector (rT,sqﬁ us follows: g
4
: . -1 T 3
: . (B™7%) if By o= (X7) 4 J
: j r, =
b : 0 otherwise , ¢
- ; and
K
2l ;
E
E.
3
3
-&

. o e . 1o
itz AR L ettt oL e S s o it ira
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(B t)i if B, (Y )i
Si =
0 otherwise ,

for each 1 = 1,...,n. Then it can rendily be verified that (rm,sT)

is the desired vector,

The proof »f "itaorem %,11l shows that condition (%.6) implies

Re.aurk é.

that the polyhedral set V is bounded below. The converse iz also

true and is an immediate consequence of the duality theorem of linear

programming.
Remark 4, For MU C and q < R, the solution % of the problem

(q,M) obtained in Theorem 3,11 need not be the least element of the

feasible set X(q,M) under the usual ordering of R?, as the follow-

ing example shows. However, it will be demonstrated in Pang [90]

that x 1is always the least element under the partial ordering induced

by the polyhedral cone

with X and Y

where M = YK~ &

b
(A
Lo . "
PO B - . ,. e ot '..‘";-Q—"
258, SNt ¥ o i AN . o . N
e, 2 R o LT W PN P

satisfying conditions (%.50 and (5.6),
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Example, :

1
“Ae=

,_
[}
v S

x, =0

Sol., of (q,M) as obtained
in Theorem 3.1

N feaslble set

\
N .
Xy X, T 1 \\

™\

N
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v

‘
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l+ 3v2 ~6=0
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image of the feasible )
v, = =12 e set X(q,M) under the :

El .] . By
3 ' 3 ..

; v, ==L / map X = Xv 3
b ‘ |

(ieast
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Having established the desired relationship mentioned above,
we proceed to investigate the classes of matrices introduced by
Mangasarian, I% is clear that all the classes of matrices in

Corollary 2.3 are subclasses of (.

In [19], Mangasarian in%roduced the "slack linear complementarity

problem" of finding x, y € R, such that

(5.13) =@+ o

and

in order to extend the class of LP-solvable linear complementarity

problems, It is clear that if A satisfies the condition that xTAx £0

for all O # x >0, and if (%,13) has a solution (x,¥), it necessarily
follows that ¥ = 0, So x solves (q,M). Mangasarian then shows that

1f M satisfies conditions (2.7) and (2.8), the matrix [g ?] satisfies

conditions (2.5) and (2.6). He then invokes Theorem 2.1 and the above

observation to obtain Theorem 2.4,

Here we intend to derive Theorem 2.4 using & different approach,

We want to employ the abc ve established relationship. Our eventual

aim is to show that a matrix satisfying conditions (2.7) and (2.8)

belongs to the class C .
It has long beer an open problem in the theory of linear com-

plementarity preblems to characterize the class K of matrices fer

which the feasibility of the linear complementarity problems implies

o
o Lot R M A o L R e, S
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their solvability. Although this class ¥ 1s still a mystery, various
subclasses have been explored and studied intensively., (See e.g.
Lemke {17].) Theorem 3,1l shows that the clags (¢ 1is a subclass of X.

The following example shows that it is a proper subclass of ¥ .

11
Example, Let M = (l l).

(q,M) alweys has o solution for every q < R°. We claim that M gdc.

Suppose not, then there exist X, Y, < R° <2, both Z-metrices satisfying

Then it can easily be shown that the problem

conditions (3.5) and (%3.6). We have

12 11 Y12
o1 *op Yo1 Yoo

which implies

and

+ X =

X o1 7 Vo1

11

Thus < 0, Similarly, y.. = Yo £ 0. Lemma 3.8 would then

Yim " Va1 2 22
imply X € K. In particular, det X = Xy1%pp = Xys¥nq > 0, However,

0 < X1 =Vpy = Xy S ~Xpq

and

Therefore, X11%50 < X10%01 tvthich is a contradiction. This proves that

Mé e .
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As the last four subclasses of matrices in Table 1 are all
defined so explicitly in terms of well-known classes of matrices, it

is natural to ask whether any of these will perhaps add to our knowledge

about the class X . In the sequel, we shall study the.e special classes
separately and show they all belong to P which is of course already
well-known in the theory of linear complementarity problems., (See [4],

(61, [25].)

X

Rn Then the matrix

Proposition 3.12. Let Y& K NR* " and a, b 2 B

(23]

Y + abT z P,

Proof: The hypothesis 1s inherited by principal submatrices, hence it
T
)

g suffices to show det(Y + ab~) > 0, Clearly,

3 det(Y + ab’) = (det Y) (det(I + (Y™ a)bl)).

Using the formula

’ det(xyT - AL) = (-1)P %n-l(K - xTy)

which holds for all x, y € R® and A I R, we obviously have (sub-

stituting A =-1, x = v and y = b)

det(Y + ab’) = (det ¥)(1 + (¥"a)Tb) > det ¥ > 0

IR R R NP Z IR, SRR 9

% L because Y >0 and &, b>0. Therefore Y + ab® < P,

T

Proposition 3.13, If M =Y + ab™ where YC K and a, b >0, then .

T IR LA

there exists & matrix X € K such that M = YX™T.

ST

27




Proof, Since Y€ K and & >0, it follows that &= Y 'a > 0, We
way write M = Y(I + 8b°)., Let X = (I + ab')"Y, Then M = ¥x~1.

It remains to show that X € K, An easy calculation shows that

:: .

X

v i
-y '
g

2
J

'.l .

- {
.
o

- t

F. !

& i
: i

; X %I - =t & T 2,
' 1+ b7a
ﬁ. , It follows from Proposition 3.12 that X_l = I + EbT € P; hence
" X 2P by fact (ii) mentioned earlier. Therefore X € K, This completes
K !
L o the proof.
L
; f Corollary 3,14, If M =Y + abT where Y € K and a, b >0, then
< [
’ ME €,
b
!I .
2
%
E i Thus we have shown that the class of matrices

T

C (M€ R XXMM =Y+ ad’, YEK and &, be R

ls a subelass of ., Furthermore, the matrices X and Y in the 3

factorization M = YX"! are Minkowski. i

i ' Remark. In [19], Mangasarian treated the above class of matrices with

the assumption that the vector b i1s strictly positive. Here, we have

y o relaxed this assumption slightly and merely required b to be nonnegative,

"
s D neni s

We next proceed to another cluass. The proof of the followling

P

lemma can be found in Fiedler and Ptk [1h],
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Lemms 3,15. Let AC Z BCK and A>B, then
(vii) A€ K |
(viti) A™lBe K, BA™ € K
(1x) A<, Bt <,

Lemma 3,16, Let AS%Z, BEK, I>B and A >B, Then the matrix

I+A"BCP¢

Proof: The hypothesis are inherited by principal submatrices, hence it

suffices to show det(I + A - B) >0, Let C=4A-B >0, Then

B =A~-C belongs to K by assumption. We have

T P s e

(I+C)(A-C)=A-C+CB=A-C(I~B)<A,

ol Rl o> 3 o

Hence (I +C)(A -C) S Z. SBince I +C>TI and A -CEK, it

é ; follows readily from condition (iv) in Proposition 3.2 that
% | (I+C)(A-C)EK, Hence §
f \ |
% det(I + A ~ B) = det(I + C) ;
= det(I+ C)(A - C)/det(A -~ C) >0 . ¥/
i
This completes the proof. 1
- ]
3 Lema 3.17. Let 2., 2,, Z3 22 7y 20,2 25 and Z5 : K. Then 3
“ : the matrix 2, + 2, =« 2, = P,
9 v 1 2 3 f
2 g Proof: Again, it suffices to show det(Zl + 2, - Z5) > 0, We write é
-1 -1 ]
5 = 2, (1 + 2,72, = 2, Zy) i
)
29
:
;
4
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Lemma %,15 implies tune assumptlions of Lemma 3,16 are satisfied with

1 1, ‘ -1 -1
Zsge Therefore det(I + 2,77, = 2, 23) > 0,

A= Zl Z2 and B = Z1

Lemma 3.15 also implies that det 2, > 0. Hence det(Zl + 2, - 23) > 0,

Corollery 3.18, Let A = Z, BEZ K and A > B, Then the matrix

2A - B C P,

Remaxk. As a matter of fact, following the proof of Lemme 3,17, we may

deduce that if A, B satisfy the assumptlons in Corollary 3.18, then

the matrix M - B¢ P for all N > 2,

Corollary 3.19, If AC Z, BE K and A > B, then det(2A - B) > det B,

Proof: According to Theorem L of Ostrowski (21], if Y € Z has

positive diagonals and M is a matrix such that Imii' Z yyy ond
]midl < -yyy forell 1 # 5, then |det M| > det Y. So choosing

Y =B, M=2A - B, we have |det M| = det M and |m,| =m, =28, ~b,
2b;; end 0 >2a,, >2b,, forall i # J. Hence “byy 2 2ayy =Dy,

> by i.e., I’é!a.i.j - bij‘ < by Ostrowski's theorem applies and

the proof is complete.

Proposition 3,20, Let M =2A -« B where AC Z, BS K and A > B,

Then there exist Y € 2 snd X ¢ K such that M = YX“l.

T RO T T T SO N NI g e e g e e e o
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Proof, Lemma 3.15 implies A”Y exists. We may write
M=2A-B= (2B - BA"IB)(B™*A)

= (2B - BA™IB) (a"1m) "t

Let X=A"'B and Y= 2B - BA"'B. Then Lemma 3.15 implies that

XEK and X< I. We have

1

Y =28 -BAB=A- (A-B)(I-A"B) <A,

Hence Y € Z and the proot is complete,
1 Gorollary 3,21, Let M =24 -B with A€2% B<K and A > B,

Then Mg C .

£ S e e

Corollary %.,22. Let M satisfy either of the following conditions:

R A

e
(]

: n
\ ' (3.14) Msg > !mij| ’ L, «vv, 1
g=1 '

B e T I W,

' n
. (3~15) m.j.j > E' ImJ‘.JI ’ 3= l) ves gy L
#

s et R

then Mc ¢,
’ Proof: It suffices to show that M satisfies the assumptions in ]
Corollary 3,21, Define the matrix A = (a.ij) ag follows:
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= 4
My if 3

if §#1 and m , <O

a = m 14

13 i3

0 if 3} #41 and m, >0 .

Let B =2A - M; clearly, M= 2A «B and A > B, We obviously have
A€ ?Z, thus BE Z., It remalns to show that B < K, If B = (bii)

then by its definition,

fmy g if 3 =1
b, . = my g if %i,mujgo

if 3§ £ 14, m g >0,

NG b
3 L
=m,, + ¥ m, , + (o, L)
11 o1 13 j=1 13
j%LmUSO j%LmU>O

Thus, Be > O Lf condition (3.14) is satisfied, Similarly, we may
deduce that Bue >0 if condition (3.15) is satisfied, Therefore, in

either case, it follows that B < K. This completes thc proof,

Remark 1. The proof above and Lemma 3,20 show that a matrix satisfying

conditions (3.1L) and (5.15) belongs to the class P.

o




TH Y AT g R
L N Lo R N A A o el rdntiandcAd £ 0o o %
e e P

Remark 2, In (19), Mangasarian treated the classes of matrices M

satisfying conditions (3.1h4) and (3.15) with the additional assumption
that M 1s nonnegative. The corollury above enlarges these classes by
omitting the nonnegativity assumption and shows that the corresponding

linear complementarity problems are still related to polyhedral sets

with least elements,

Up to this point, we have shown that all matrices in Mangasarian's

DR N

’ Table 1 belong to the class € . Furthermore, we have established that

the last four subclasses belong to P, thus to the class ¥ mentioned

earlier, Therefore they do not extend our knowledge albout the

class K.

‘f _ Remark. If M Dbelongs to any of these four subclasses, the problem

(q,M) has a solution for every g € R becaure M must necessarily

A A R e b At B i ks

4 V be a P-matrix, Thus the feasibility assumption can be removed,

e

As all matrices in Table 1 are obtained by specializing the

conditions (2.7) and (2,8) in Theorem 2.4, 1t is natural to ask whether

a matrix satisfying these two conditions alone belongs to C. We answer

AR AL gl T o e N A i

this question by establishing the following theorem which summarizes

oo gsome of the previous results.

EaC R A

Theorem 3.2%, Let M€ Rnxn' Suppose there exist X, Y < Rnxn, ;

- Az Rm».tm, B, H=Z RnXm, G & Rmxn’ p < Rﬁ and Pq Z RT satisfying )

MH >BG; X, ¥, Ac¢ Z; end G, H 2 03
33

(3.16) MX =Y + BG;

il B i A et s =)
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HO

X =H
T T .
(3.17) (p™spg) [ ] 20,
-G A
b
Then
(3.18) M has the representation
M= L
where
- - =] s -] B
¥=y-fA""6, X»X-HA"G, and H=M{-BA;
(3.19) furthermore, ¥ ¢ Z and X% € K,

X
[-G
(3.17) implies that it belongs to K. In particuler AL exists.

Proof: The matrix 'X] belongs to class Z, thus condition

We have

f=yv-fato =y - (W - BA)A" G

f

Y + BG - M(HA™YG)

"

M(X - HATYG) = MR .

The matrix X = X - HA™YG is the Schur complement of A in the
Minkowski matrix [_é -ﬁ], hence ¥ i3 itself Minkowski by Proposition
3,4 and in particular, nonsingular, Thus M = Yﬂ'l, establishing (3.18).
It remains to verify that ¥ ¢ Z. We have ¥= Y - BA"YG  where
ff=Mi-BA>O0 and G >0 by assumption; moreover, A"* > 0 because

A € K. Therefore ¥ € 2. This completes the proof of the theorem.
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Corollary 3.24, Suppose M C pRXn satisfies conditions (3.16) and

(3.17). Then M¢ e,

Remark, In the factorization M = Yo dts above, the matrix
$=v-fr"Yc contains the matrix f  which is defined in terms of
M, i.e, the factorization involves M itself implicitly. This some-
what awkward gituation can be remedied by solving for M using con-
dition (3.16) to obtain M = (Y + BG)X™*. Substituting into the

definition of H, we see that M is no longer involved in the factors.
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i,  COMPUTATIONAL EXPRRIENCE

Methods for solving linear complementarity problems for various
clagses of matrices have been proposed and investigated intensively,
Among these are the principal pivoting method | 4], { 5] and Lemke's almost
complementarity pivoting algorithm (6], [16]. These methods (and some
others) work rather satisfactorily for matrices of reasonable size.

But in many applications of the linear complementarity problems to partial
differential equations, the matrices are often large, sparse and

specially structured, BSee [21] for exuuple, Methods like those
mentioned above seem to be inefficient when applied to these problems,

For one thing, most of the nice properties (especially the sparsity

which is a very lmportant factor for efficiency) thut the matrices
origlnally possess will be destroyed when the problems are being pro-
cessed, Recognizing this disadvantage, one would lilke to use iterative
(relaxation) procedures which, presumably, have the ccmputational
advantage of preserving matrix sparalty.

Tn (18], Mangasarian proposed formulating linear complementarity
problems as linear programs and solving them by applying relaxation
methods to the linear inequality system (.4). In this section, we
discuss our somewhat preliminary computatlional expcrience using this
solution strategy and attempt to answer the question of whether this
approach can be rect mended in practice,

For the sake cf clarity, we first review part of the theory of

”

relaxation methods for solving linear inequality systems (1], (2],

(13], [20].

56
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We want to find a vector 2 . " satisfylng the systeﬁ of
linear incqualities: Az < b where A ¢ R* " and b - R", Let Az A

be the i-th row of the matrix A. The relaxation method (due to

Eremin [1% ]} constructs a sequence [zk] in the following manner:

(1) Choose zo ¢ R arbitrarily, Let k = 0,

(11) 1f Azk + b, the procedure terminates,
If not, then some linear inequality 1s violated, Let i be
the smallest index of the most violated constraints;

A,z27 - b, = max {Ajzk - bj] .
1<ygn ‘

(111) Define

A 7k - b
(1) AL LKLk *i--¢?~;£ A% .
TG

Theorem (Eremin [17]).

The sequence {zkl d:fined by the relaxation method under

the assumptions
k .
(1) » ¢ (0,2), k = L1,2,...

(i1) inf Ak >0,

converges to one of the solutions of the linear inequality system

Az < b if the latter is conslatent,

We now apply the method to solve the linear program (p,q,M), or
equivalently, to find vectors x, y : R” such that the following system

of linear inequalities is satisfied,
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M0 q

0 M? X p

(b.2) -I 0 <| o
0 -I Yy 0

pt qT 0

Remark. The vectors

respectively.

x and y are prumal and dual variables,

We now present an algorithm based on the relaxation method for

solving (4.2), Let
The algorithm starts by choosing

0
0 X
2 =
0
y
arbvitrarily. Initially £ =0,
L
£ X .
Step 1, Let 2z = ) and define

) £ i
) 2 = .S .
(4.3)  d(2”) = nax( Tix ( Lomy X

n

max ( 2.
1< j<n k=l mk
p n

¢ >» 0 be some preassigned poslitive tolerance.

 BE ST A g  rama e G g e
e N O IR P SN 1

RS S SR e Hg S Ea T I -;:"r"

I W P Rt

ar

<225 el




PRIV A PIF TWT T TRSRTITNTT PV 6 T T W WS Ty T

Step 2. If d(z%) < ¢, stop.
AL
£+1 X

Otherwlse, construct =z = 1 according to (4,1) and
Yy

return to step L with £+l replacing £.

The main work involved in each iteration cycle of the algorithm
is the computation of the quantity d(zz) and the updating of the new
g | iterates. When actually programmed, d(zﬂ) is computed as in (4.3),
While in constructing the new approximate solution z£+l, an index is
set to check where the maximi.ilng term comes from, in order to avoid

computing the same components repeatedly. For instance, if the

n y/ n . £
meximizing term is in (= Zﬁml my Xy - Q)41+ then the vector y

3 need not be updated; on the other hand, if the meximizing term comes
A ‘ from {-xf}?wl, then only one component of xX will ve changed while
! £

i

the other components of 2” will remain unchanged in the next iteration.

These features of the system are important in reducing the computational

%A : effort of the algorithm,

3 i ;

§ ; There is a variation of the algorithm that onz might want to ;
consider when actually coding it. In (L4.2) where the new iterate ZZ+1 j

1s computed, it is necessary vo divide by the 2-norm of the gradient
é _ of the most violated constraint. If the number of iterations is large
i compared to Untl which is the number of constraints in (L,1), it !

would be more economizal tc reduce these divislons if possible. A way

to achieve this is to work with the "normalized sys®“em" which is obtained

from (4,1) by normalizing each constraint separately. The division

P T
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steps in (4.2) are then no longer needed. An obvious disadventage of
this "normalized system'" is the need for more storage space for the whole
matrix and also for the constant vectors., But if the problem itselt
werc of moderate size so that no storage problem would ccour, tnen one

might try to use this "noumelized system" instead of the »riginal

system (4.1).

We performed several experlments to solve the problem (g,M)

where q R® was randomly chosen and
§ !
g i 2 -l
1 I -1 2 -1
b
A " : "l 2 -l
| C
ol M e
s/' l "‘l 2 "‘l
-
: -1 2
-
H i T . Wi k
X , We choge p = (1, ..., L) € R'. The relaxation parameters (A"}
b : iy
; : were chosen to be the same in each iteration. The tolerance « was g
i ‘ K
} ' _l i
3 : generously chosen tn be 10 ‘. The algorithm was then applied to the §
¢ ; inequality system (4,1). All the computation was done on the IBM 370/168 é
".. . ".1
' using FORTRAN H with Opt = 2. The results are summarized in the follow- ?
ing tebles. ;
!
ko ]
i
!
f
:a' ;nl's;",'.l .‘i‘ LR )
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Inputs: n=>5, qT = (2, =1, =, 6, =5);

starting iterate xo = yo = 0; original system.

Solution of (q,M): xT = (0, 2, 3, 0, 2.5).

Value of A No. of Iterations Execution sime (sec)

7 1737 .58
.8 1580 . 50
.9 1108 U5
1.1 149 .38

1,2 649 V37

1.% 505 .35
: 1.k L3z .33

1.5 , 358 31
1.6 176 27 J

R T T

L 1.7 9kg Lo
(' 3

S 1.8 668 V37

|
Lo - e

1
Bt
-
\ B
1 o

L
k ' ;
5
TABLE 2 1
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ns=>5, qT = (21 -1, 'h? 6’ -5)

starting iterate xo = yo = Q; normalized system,

Solution of (q,M): x* = (0, 2, 3, 0, 2.5)

Value of X\ No. of Iteratiuns Execution time (sec)

1.0 669 .58

| 1.5 150 .2
1.6 887 )

R R L=

' 1.8 965 43

TS
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; TABLE 3 ;

i
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i
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: !
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H
K
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u
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Inputs: n =5, qT = (2, =1, -3, k4, -5);

starting iterate; O = (3, 3, 3, 3, §)T,

yo = (2, v, , Q)T; cormalized systen,

' Soluticn of (q,M): X = (0, 2, 3, 1, 3)

b

£ Value of A No. of iterations Execution time (sec)
L .8 L7364 3,12

L .9 11263 2,63

“a” ' 1.0 11664 2.19
L 11 9663 1.88

; 7926 1.57

1.5 6571 1,36
1.b 5626 1.19
4381 1.21

1.6 3350 | .81

[
-
P

SEFITEEIT B

273

AR
[
-
U

1.7 2353 .65
_: 1.8 1490 . 50 ‘
F ;
; 1.9 664 V37 X
':. ‘]
é
S TABLE 4 ;
)

| 5 7‘

o fuiiode A Y et N W o
St il d S5 i e s

AV ey Lt Xt s et Doah it s ot R it 0L



T T T T T T G e <
S v R R T — Lo
’ o T Y T T R T M W o e

Inputs: n="T7, qT = (2; -1, =4, 6, -5, 3, =2)

starting iterate xo = yo = 03 origlinal system,
: Solution of problem (q,M): xT = (0, 2, 3, 0, 2.75, .5, 1.25)
Value of A No. of iteraiions Execution time (sec)
f 1.95 2042 e

.87

SR
: : 1.7 14831

1.6 19955 i, €0

TABLE 5

allow,

P o S T Wy .

*20000 is the maximum number of iterations that we
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;[ Inputs: ne=717, qT = (2; '1) -h, 6) "5) 5) "‘2)
T
' starting iterate: xo = (2, ..., a)T, yo = (1, ..., 1)

¥
3 original system; solution of (q,M) given in Table 5.

L
: Value of A No. of iterations Execution time (sec)

1,95 1362 7

v | 1.85 5910 1.68
b 1,75 10597 2.67

b :
; 1.65 14313 5.65 #
L 1.55 19219 4,95 ¢
o |
! I
i '{‘i'

e

TABLE 6
s

4
i
I
b
i
;
j:
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The problems solved in these experiments are far from the sgize
and difficulty one would encounter in practice, Nevertheless, they
suggest that the relaxatlon method deascribed above lacks the efficiency
required for solving more realistic problems. 1t is conceivable that

by some clever modification the method could be made more attractive,
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