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ABSTRACT

Recently, Mangaoarian 1I8], I19] has discussed the idea of

solving certain classes of linear complementarity problems as linear

programs. The present paper (1) demnonstrates how these complemen-

tarity problems are related to the theory of polyhedral sets having

least elements and (2) discusses the question of whether the linear

programming approach can be recommended for solving them.
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1. I NIRODU CIT I ON

Et is a fair'ly well-known fa(t that if a lineas complemenl•arity

problem has L solution) then it has a solution which it- an e;:,,reme

no.nt of its "feaslble -et." Thi:; meains that ITf %n approorat, linear

form were knoluw, i.e., one whose minjimmu over, t1h(- teas.ible set wiould

necessarily occur at a complemenrtarity solution, then tie linear com-

plementarity problem could be solved as a Linear prop;ram. '•Typical.ly,

one does not knuow an appropriate linear fomn in ad.vance and. can not

rapidly find one. But there are exceptional cases, some of which have

been noted in the literature. (S'ee [1]2, [.0], [ibi, Ii], 12(;J.) It

is our contention that these linear complementailty problems solvable

as linear programs are related to the theory of polyhedral sets with

least elements. Examples of this re- tionship are made explicit by

CoLttl( and Veinott t ] and by Tamir [2 6.] . ome numcri cal experience

based on this observation is reported in Cottle, (,olub and -lacher [7].

More recently, Mangasarian [18 , [IA.] h's oroduced s,?veral

additional exam-ples of linear complementarity problem, whose ,lo].utions

can be obtained. viý;t linear programnI.n.,, (which incideii tally is not.

intended here to imply the use of the simple: method. or .ny of i.ts

de r ivat, ve s. Man'tisariarn's results in this area are not erpl E.citly

based on leatst element arguments, but rather on a key lemma lhavi.np•,,

tfo do with optimal.. dual variables. Our primary pru'po:;e in this- paper

L 'W~1



is to demonstrate that Marg sarian's theory caI be .nt;erpreted in 4

týerms of least elements of polyhedral setE;. For the most part, our

metlhods are matrix-theoretic. In the ccurse of our invcestigatLon,

we uncovered a few re:,.its of this type; they are included here becaulse

we believe them to be new and of independent interest.

r11e] possibility suggested by the linear programiming foiniulation

of a linear complementarity problem raises the question of whether this
approach can be recommended in prv.ct,.ce. Hencu our second.ary purpose

in thits paper is to give at least a tzrntative answer by reporting the

computational experience we have gathered in solving some linear
A

programs--of the type th,..t could arise from linear complementarity

problems--by an iterative (relaxation) procedure rather than by the

osimplex metnod or any of it; variants. Motivation for using an

iterative method can be found in the size and structure of the ma,3.ri.:es

one might expect to encounter in some potential applications of the

linear complementarity problem.

The plan of the paper is the following. In section 2, %re cover

a bit of background material. The section has two parts. T1he first

pa,.r!t fixes outr notation and gives some characterizations of' matric.s

In terms of the linear complementarity problem. The second part is

a synopsis of the main results' Mangasarian obtained in [18] and ]

In section 3, we develop our least-element interpretation of the sub-

ject and present some incidental matrix-theoretic results. In the

fourth and final section, we discuss our somewhat preliminary com-

putational experience with solving linear complementarity problems as

linear programs by relaxation methods.

2
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2. L�Miscellaneous Preliminarie:.;

'Phroughout th I paper, R will ldenote the nonneirc,,ti.ve ortharnt
r pn

of the Euclidean n-space Rn and R'i will denote the cl.ss of

real n X m matriocs. Wv denote t, e i-th colufnin (rowi .: um:-tlrixC' R ri X ni i ~In >" I v-,d tlo b

A C a by A (A. ). A real riatlrix A - . a sid to he ,

:,ý,atrix (P-matrid) if it has non-posLtive off diagona:-l ent.viuc (positive

pr:inelpal minors) We shall call ai matrix A (7 1,11> a, -wa•rx o•a. ari r a K-matrix (or a

Minkowski matrix) if it is both &1 P- and Z-matril.: simultaneou,;ly. 'The

classes of all real Z-, P- and K-matrices will. be d]:.-noted by .1 p and

K respectively. They are treated extensively by' .edle a.nd Ptak [r141.

For a vector q. C, Rn and a matrix M C R11 1, the linear

complementarity problem, denoted by (q,M) is thhat of find.im., x C Rn

such that

(2.1) q + Mx >0, X >0 and x ((I + MX.)

By the feasible set for .q,M) we mean the -olyhedral ,,ct

X~qM) .. x • n:q ,x ,O -.

We say that the problem (q ,M) is feasible if X(q.,M) 1:3 nolemnpty.

A subset S of Rn is said to be bounded below if' ther is a vector
ln

x Rn such that x > x' for all. x (7. The vec t or x C t is

the least element of ,' if x - x for all x C . it is clear that

the least element, if 3tA exists, must be unique.

..... . . . . . ... .



Minkowski matrices as well as P- and 7-matrices play very

important roles in tlhe linear compliementarity problen... Lt is well-

luiown (see Sanielson et al. [.25]) that the problem (q,M) .has a utique

solution for every q C R 1 if and. ,,nly if M PK £. Tamir i'2f(11

characterized Z-matrices in the following way.

Theorem. h'le matrix M C Rn n is a Z-matrix i f and only if for

each vector q C. R n for which the feasible set X(qM) is nonempty,
'1.

there exists a least element x in X(Q.,M) satisfying x (q + Mx) = 0.

Cottle and 'Veinott [$] proved the following characterization

of K-matrices.

Theorem. TMe matrix M E: B is Minkowski if and only if for each

q C. Rn) the feasible set X(q,M) has a least element x which is the

only vector in X(q,M) satisfying x(I + Mx) 0.

Note that the "aaracterizations of Z- and K-matrices are in

tenrs of least elements of the feasible set X(q,M). This feature is

of fundamental importance in the pr'esent work.

Various methods for solving t.he li ne•ar complementarity problem
(q, NO in the important special case, whe!re M. Js a Z'-matrix have i

been considered intensively by a number of authors [.], [7], [P.], [Ll],

[21, ['?4[. While Mangasarian's proposal [18], [1i.] to solve Linear

complementarity problems (q,M) as linear programs is not c:ntirely

new, his results definitely appear to enlarge the cla"s of problems

oo:i
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to which this solut.l.on strategy is applicable. .. e;i"..c:l y, he proved

that for certairi c,.lasses of matrices M, i.t L.' pos;ýýib..e to find a

vctor p ouch that- eaich sol.ution of `he i1i.nea• proarc.n

T
(2.2) minimize p x subject to q + MNx > O, x 0

solves the problei (q,M). We denoue the linear program (12.2) by the

triple (p,q,M). Its dual.. is equivalent to

(9,5):•inl ize t y •ubj e ct; to p -M : Y , > • ýY 0

which is just (q~p,-MoT) We say that a linear -o.M ple¼entarity problem

kq,M) is LP-solwble if we can find a vector p _____ _ that each

solution of th, linear program (p,qM) solves (q,M).

Recognizing that most LP-so.vable linear complementarity problems

arise from the discretization of (partial) differential equations

(,'see F7 ')!]., [11], (25]) and that the properties of tLhe mnatrices, so

obtained (e.g. Z-matrices) are not so conducive to efficient solution 0

of the linear programs by the simplex method, Manga.sr.ran proposed

the use of' relaxation methods ([lj, [,2]., [1.5]y 1.2(.]) fo'r solving1

inequality sys tems. In particular, solving the linear progp'Uin (P).2)

is equivalent in a logical sense to solving the linear inequalities:

• 5
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which consist of primal and clual feasibilities arid the reverse of the

weak duality of the linear program (0,)2. Presumably, the computational

advantage offered by relaxation methods is their capacity for preserving

matrix sparsity.

2.2 Mangasarian's results

Our purpose here .'z to surmnarize the principal results obt:ined

by Mangasarian in the aforementioned papers. The fiudnental theorem

is the following:

Theorem 2.1. Let the feasible seu X(q,Nt) be nonempty, and let M

satisfy \

St )MX .

(.) for some r, ) i;

where X, Y tý Z. 'Innn the l-i~neai eort',Lenient-arity p)robleni ((I'M"

can be solved by solving the linear programn (p,qM) with p: r + M :.

The proof of the theorem depends heavily on the key lemma

below.



Lenina 2.2. Tf x solves the li.near progrwi p J' . :P ther.

exists an optimal solution ' of q ,p,-M' .u h ., ' p - M -" 0;

then x solves the problem (q,M).

SThe following c•crollary identifies some ,D.-sset; of' Pnatrices

satisfying ,oonditions (2.2) and (P.) in Theorem 2.1.

Co__•rollary.,. Let the feasible set X'(q,M) be na.n'.::pty ard let

e C. Rn be any positive vector. Then for each of the case8; wncrn

(a) M = YX-, X C K, Y e Z (p r > 0, rýX o)

(b) M = , X C Z, Y C K (p M s) > 0, s Y'

"(c) MC Z (p e

-l T(d) M (P =M e)

(e) -M C K (p -e or p M~e)

'1  (f) -M E K (p -M-e or p e),

the linear complementarity problem (q,M) has a solution wthi.ch can be

obtained by solving the linear program (p,q,M) with the indicated p.

The results above are drawn from the first of the two paLers.

In the second paper, Mangasarian extends the class of LP-solvable

linear complementarity problems by establishing the following remark-

able theorem.

Theorem 2.1i. Let t! feasible set X(q,M) be nonempty, and suppose

there exist X, Y Rnn, A& Rm, B, H nm GR RXn +

and p0  R such that
7'.'0.+
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(fX Y BG; M .' BA; X, Y, A C X; (J• II

(,; A] ' C)

Then the linear complemenkarity problem (q,M) has a soulution which

oaz, bo obtained by solvini. t;he linear program ýp. (q, M-

By specializing Theorem :., Mangasarian produced the following

table.

II
I



Con* t~ons Ve~ctor r

Matrix M of (1) M ()f (,.) ondtiuJIL3 on p

1777 T
L. m , YX"I X K, Y tiZp X. •C 0

X K y

2. M YX Y K p-MTO 3 , sTY :. 4

5. M M ? 1-

I-, M M ' Z p "1' e e "-O)

P _
.M Y + ab Y>K a 0> , ? )b > 0

b 0

T T
6. M 2X -Y X-Z, Y. K 0 ,0 A.0 O

(component. ,e•-

T. n
IJ e e (~~R

wise) A

In.

M. M > 0 0ii > ?' m .r2 M r 0  , > 0

(component- 
(-M

wise) n/I (-AI,..,n

TAB•TE I

:t. .. .il.,.,:.:... ... .. <. .... .•,. . . . . . . -..-.-.. -,-* •.. .--, , - • .. .. "

=• 1! t [[• y i 3{#• .!- ! ")iJ '3 [=! 2<: £~, '.*:,• --,t;: •![, .: :r • :[ R=•£ ,A ¢ C [[ •il[ , 1• ~ ~~>[• t ]< ,•tih.a.s~l <l'._ .•. .... .1 .....t.%2
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3. CONNECTION WITH LEAST ELEMENT S

In this sect..' *) we develop our least element interpretation

of Mangasarian's th( ,.) The cornerstone of our approach is a

strengthening of Theorem 2.1. The new result (Theorem 3.9) makes it

possible to invoke the theory of polyhedral sets with least elements.

The desired relationship between the two theories is made explicit in

Theorem 3.11. Except for the matrix-theoretic results mentioned

earlier, the rest of the section is concerned with showing how Theorem

2.4 and the special cases enumerated in Table 1 can be related to

Theorem 3.9 and thereby to the least element theory. We begin by

reviewing a few more pertinent facts.

Definition 3.1. Let M be a square matrix. By a principal rearrange-

T
ment of M, we mean a matrix M P TMP where P is a permutation matrix.

The following facts are well-known (see e.g. [41):

(i) The classes of Z-, P- and K-matrices are invariant under

principal rearrangements.

(ii) The inverse of a P-matrix is a P-matrix.

(iii) The property of a matrix belonging to any one of the three classes

Z, P and K is inherited by each of its principal submatrices.

In [14], Fiedler and Pt~k gave a list of thirteen equivalent conditions

for a Z-matrix to be a K-matrix. Here we quote three which this paper

needs latec.

10
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Proposition 3.2. Let A Z. Then the conditions below are equivalent

to each other.

(iv) there exists a vector x > 0 such that Ax > 0;

(v) the inverse A - exists and A-l 0;

(vi) the principal, minors of A are positive.

Definition 3.3. Let A be a nonsingular pr"incipta.l. oul)matrl of a square

matrix M. Let Mi be a principal rearrangement of 1A such that
A B
C D ). Then the Schur complement of A inn M, denoted by

(M/A), is the matrix D - CA'lB.

Properties and applications of rhe Schu complew..nts have been

surveyed in Cottie [5]. A proof of the following; proposition can be

found in Crabtree [10).

Proposition 3.)4. Let A be a nonsingular principal submatrix of the

Minkowski matrix M. Then (M/A) is itself a Minkowski matrix.

Definition T.5. 'he matrix A E Rn'm is said to b(u Leontief if it

has exactly one positive element in each col[umn and there i_7 a vector

P such that x > 0 and Ax > 0.
£)

Proposition '.6. Let A (I. RnXm be a Leontief matrix. Then there

exists a submatrix B * Rnxn such that B i, itseIf Leontief. Further-

more, B exists and 18 nonnegative.

i1



A proof of the preceding proposition is given in Dantzig [121.

It is based on an application of the simplex method of linear programming.

We are now ready to present our results. We first state an

alternative proposition which is an immediate consequence of the well-

known theorem of Kuhn-Fourier (15] on the solvability of a system of

7• linear relations.
Proposition 3.7. Let X, Y C Rn. Then the following two conditions

are equivalent to each other:

(3.1) rT X + ST Y > 0 for some r, s5 Cn

and

YU < 0
•i••(. 1)' YU _< 0 U- 0

The lemma below provides nece ~ary and sufficient conditions for two

Z-matrices X and Y to satisfy condition (3.1).

Lemma 5.8. Let X, Y C. RnXn be Z-matrices. Then (3.:1) holds if and

only if there exist a principal rearrangement with permutation matrix

P and a partitioning of X and Y such that

• x21  xjJY1 2

(X1  X12 )(3.2) PE K

Y21 22 2

I, .



Proof: "Sufficiency". We shaLl show that condition (5. ])' holds. Let

u satisfy Xu < 0, Yu < 0 and t! > 0. We then hai~v,:

x X/11 1.2

u0
Y•7 Y,..•i

whiAih implies u < 0 (ant thus Ui 0) becau.;e

' Y2 Y')2

S.S

"NWr.essity", Condition (3S. i.) ca.n be rewr'itten a~s

(5.14) (x1', yT) (r) >0o with (r•) >0

The matrix A =(XL T Y has at most one positive element in

'2ch column. We ma; assume, without loss of generality, that it has

exactly one In each column: otherwise we can always, delete those

columns of A consisting entirel.y of' nun-poh.it'Ive entries and delete

at the ,same time the corresponding componentsl of the vecstor (rT 'TST

then we are left with a smaller sys-tem satisfyin.g (3. I) in which the

matrix has exr,-tly one positive eleement in each co'lumn and we can work

with this smaller Yatrix. Nsw the matrix A is Leontief; hence by

Pr)position 3.0, there exists a submatrix B R BnXn such that B is

itself Leontief. B exists and :is• nonnegative. Note, that the same
column of X1 and YT cannot both simultaneously appear in B

15
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because B has exactly one positive element in each column. Hence by

permuting the columns of B, if necessary, we may assume that the i.-th

•: column of B is either the i-th column of XT or the i-th column of YT

Then B is a complementary submatrix of (X ). This suggests the

permutation and the partitioning, thus proving (5.2) and (3.3).

Using thi,.; lemma, we give necessary and sufficient conditions

for a matrix M to satisfy conditions (2,5) and (2.6) of Theorem 2.1.

Theorem 3.9. Let M, X and Y be n X n matrices with X, Y in Z.

Then

(3.5) Mx Y

(5.6) rT X + s TY > 0 for some r, s > 0

if ald only if there id a principal rearrangement and partitioning of M,

X and Y such that

M MI2) (X1l X1 ) ( YI YI)

fx X1 2
(3. 11 XC is nonsingular

X21 22

I X

21Y 22/

14~
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Proof: We first note that if P is a permutation matrix, then (3.5)

T T T
hiolds if and only if ('I PMP)(P XP) P YP. Therefore (5.5) holds if

and only if it holds for every principal rearrangement of M, X and Y.
I.

Now, the sufficiency part of the theorem follows immediately from Lemma

Ni 3.8 and the observation above. For the necessity part, it rkmainp to

vcrify condition (5.8). Condition (3.9) impl2les that X is nonsingular.

Solving for M2 1  in the equation

Y M X +M XPY]. =21X11 22X21

we obtain

2
2 1  

Y21  
2 X2 .1 "X

Hence

Y22 21X2 + M2PX22

= 21 22 21 11x 12 + 22 2 2
or,

Y2  ~Y X1X~j, =M (x X-X 1 1.X22 2. 1 r? 22 22) 2111,4.-

Note that the matrix on the left side is Just the Schur complement of

in the Minkowski matrix

By Proposition 3.4, it is nonsingular. Therefore so is the matrix

SX2 - X21 Now (5.8) follows from Schur's deot:.rminental formula [51
2P 21 11 12 A

!M]



li -C.>
detIXlotaion det X det(X,) X 'l• .

X1 X22

This completes the proof of the theorem.

Notation. Let denote the class of square matrices satisfying

conditions (35.5) and(i .)

It is clear that, using Theorem 3.0, we can readily ccnstruct

matrices belonging to the class C, stp.rting with any MLnkowski matrix.

In the sequel, we Ahall focus our discussion on this class o . Our

purpose is to establish a relationship between the class of linear

complamentarity problems (q,M) with M C C, and the theory of poly- 4

hedr&l sets having least elements. In order to achieve this, we state

and prove the following lemma.

Lemma 3.10. Let X, Y 1f Xrn be Z-matrires and let (sq) R R.

Suppose that the polyhedral set.

V = ( v ,. Rn- q + Yv > 0) s + Xv >-_ 0),•

is nonempty and bounded below. Then there exists a least element v V

satisfying (q + yv)T( a4 Xv) := 0. Furthermore thisz least element, can

be obtained by solving the linear program

(3.10) minimize r v subject to q + Yv > 0, s + Xv >, 0 l•

for any positive vector r Rn.

arm6
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Proof: Consider the linear program (3.10) where r i R Is positive.

Since the constraint set V is bounded below arid obviously closed,

problem (3.10) has a solution, say ý. We want to prove that ý is

the least element of V. (This will imply that ý solves the linear

program (3.10) for any other choices of the positive vector r.)

So let v E V and v1 = (vi) be the vector with vi ; min(vi,i)

for each i. Consider index k. We may assume, without loss of

generality, that v- vk. Then we have

k! k .k

n
(d yv't- + 2 YkYV + Y v

k 1 kk k

> 0

Similarly, we can deduce (s + Xv1 )k >- O These inequalities hold for

Sk l,...,n. Therefore v (• V. By the definition of v, it follows

that T

r rT < r Tv < J.,

Hence v v' < v. This shows that is indeed the least ele-en- of

V. It remains to verify that ý satisfies the complementarity

property. Clearly we have (q + y)T (s + Xv) > 0 because I C V.

Suppose (q + Yý) > 0 and (s + x•)i > 0 for some index i. Let
i

- - > 0 and consider the vector v .- -e where e is the i-th

unit vector. We have

i 17
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a.

q + Yv q + Y -.Yei

Therefore

(q +Yv)j >0 for every j • i,

and

(q + Yv)i qi + (Yý)i "-Yii

Similarly, we have

(s + xv)j > 0 for every J / i

and,
(s + xv)i-- (s + Xý)i - CX

Clearly, Yi <0 (Xi <S O) implies (q + Yv) 0 ((s + Xv)i > 1)

if Y-lij > 0 and Xi > 0, then choose E• > 0 such that I

0 < c• < min((q + Yý)i/yii, (s + Xý)i/ii.

With this choice of c, we sen that (q + Yvi > 0 and (s + Xv)i 0 0. I
B'irice it follows that v E V. But r v < r v, contra•dicting the fact

that solves (3.10).

Consider the problem (q,M) with M . Then the inequalities

q +YX' x> , x>0

dpfine the feasible set for (q,M). With x Xv, the inequalities

above can be expressed in the form

X 0(•.u.) (X~)v _> (•
18
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Let V be the set of all solutions of (5.11). Then it is clear that

(q,M) is feasible if and only if V # 9. Partitioning the vector

according to Theorem 3.9, we see that

implies that v

Y _q22

Since the matrix

Ix X\

Y Y2

is Minkowski by condition (3.9) of Theorem 3.9, its inverse is non-

negative by Proposition 3.2. Therefore we have

X0S~-l

411 v cZV implies v l 2
•:Y2 Y2 -q,

i.e., the set V is bounded below. Hence if V - ', it follows

from Lemma 3.10 that V has a least element satisfying
T i

(q + ) Yv) (XV) 0 and • can be obtainedb, •,. b ,.,. the linear

program

minimize rTv. subject to q + Yv > 0, Xv > 0

19



,.,

for any positive vector r Rn Letting x Xv, we see that x

is a solution of (q,M) and it can be obtained by solving the linear

program

-T T(3. 12) minimize (X r) x subject to q + Mx > 0, x > 0

t-T

which is Just (X Tr, q, M). Summing this up, we have proved

Theorem 3.11. Let M C C and suppose that the problem (,,,M) is

feapible. Then there exists a bijective, linear map L: -* such

that the feasible set X(q,:.i) is mapped onto a polyhedral set V

having a least element v whose pre-image x (v L'() solves the

problem (q,M).

It is this theorem which provides tie desired relationship between

the linear complementarity problems with matrices in clais C and the

theory of polyhedral sets having least elements. Together with Lemma

3.10, the theorem also provides an interpretation for the conditions

imposed on the vector p chosen in the objective function of the

corresponding linear programs.

Remark 1. When using the linear program (3.12) to obtain a solution to

the linear complementarity problem (q,M), one must, first of all,

solve the system of linear equations pTx = rT where rT > 0 is

chosen arbitrarily, to get the ve~tor p u-ted in the objective function

of the linear programn. For large ni, this problem of finding p is not

an insignificant task.
; 20
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Remark 2. For M C C, Mangasarian shows in Theorem .14 that the

problem (q,M) can be solved via the linear program (p,q,M) for

any p belonging to the class

T rT+ sTM for some (rs) >0 such that rT T

Our least t&Jement argument .bcve shows that such a vector p can be

chosen arbitrarily in the class

n T rT -
P2 (p C R :p r X for some r > 0)

Here we demonstrate that P = . Note that

<'p> T rT + sTM (rTX + sTy)x-

T T
for some r, s > 0 and r X + s Y > 0. Hence it suffices to show that

n
for any t R, t > O, there exist r, s > 0 such that

(XTyT)( 9 t. We mentioned in the proof of Lemma 5.8 that we may
assume without loss of generality that the matrix (XT)YT) is Leontief.

We also showed that there exists a complementary submatrix B of

(X TY T) which has a nonnegative inverse. Clearly, B' t > 0. Now we

define the vector (rT, sT as follows:

.4 Tý
(B t)i if Bi (xT) i

ri .-

0 otherwise ,

and

!a.i
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(2B't). if B

0 otherwi se

for each i=l,..., . Then it can readily be verified that (rT sT)

is the desired vector.

R(..,aark 5. The Proof of ,J-,orem 3.11 shows that condition (3.6) implies

that the polyhedral set V is bounded below. The converse i2 also

true and is an immediate consequxence of the duality theorem of linear

programming.

Remark 14. For M C C and q K Rn, the solution x of the problem

(q,M) obtained in Theorem 3.11 need not be the least element of the

feasible set X(q,M) under the usual ordering of R as the follow-

ing example shows. Hlowever, it -will be demonstrated AIn P'ang I.

that ; is always the least element under the partial ordering induced

by the polyhedral cone

(q Rn.'-lq >'OX

where M YX with X and Y satisfying conditions (.$i and (5.().

J



Tq - (- ,( ')

-7

M YX ycM=Y ; Y •K.

sol.. of (q,M) as obtained

�2In Theorem . 1.

feasible set

4-

x. -+ x

F IrUR.F, ].

to wO"



V + =0

V, =0 S= 04 .... 3v2 =0 /•

-12 1et X(q,M) under the

v• map x =Xv

( leastI

F IG1'JE 2

2142

I
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Having established the desired. relationship mentioned above,

V we proceed to investigate the classes of matrices introduced by

Mangasarian. I' is clear that all the classes of matrices in

Corollary 2.3 are subclasses of C

i In (19], Mangasarian introduced the "slack linear complementarity

n
-problem" of finding x, y R such that

(u. 1q) ( (M B) x) 0

and

T T
U x--vy=O

in order to extend the class of LP-solvable linear complementarity

T4
problems. It is clear that if A satisfies the condition that xTAx # 0

for all 0 $ x > 0, and if (3.13) has a solution (,•), it necessarily

follows that • 0. So x solves (q,M). Mangasarian then shows that
M B

if M satisfies conditions (2.7) and (2.8), the matrix M0 B] satisfies

conditions (2.5) and (2.6). He then invokes Theorem 2.1 and the above

observation to obtain Theorem 2.4.

Here we intend to derive Theorem 2-.4 using a different approach.

We want to employ the ab ve established relationship. Our eventual

aim is to show that a matrix satisfying conditions (2.7) and (2.8)

belongs to the class C

It has long beer. an open probl.em in the theory of linear com-

plementarity problems to characterize the class )( of matrices for

which the feasibility of the linear complementarity problems implies

25



their solvability. Although this class X is still a mystery, various

subclasses have been explored and studied intensively. (See e.g.

Lemke [17].) Theorem 3.11 shows that the class C is a subclass of K.

The following example shows that it is a proper subclass of X

Example. Let M (i 1). Then it can easily be shown that the problem

(q,M) always has a solution for every q . R2 . We claim that M ' C

Suppose not, then there exist X, Y, E R2 ×2 both Z-matrices satisfying

conditions (5.5) and (3.6). We have

1 l]\x 2 1 x22 Y2 1 Y22

which implies

x +X11 +21 =Yll

and

x + if11 + 21 =Y21"

Thus y11  Y2 1 < 0. Similarly, y2 L Yl 2 < 0. Lemma 3.8 would then

imply X C K. In particular, det X x X1 lX2 2 - 12 x.21 > 0. However,

0- xx.x0 11Xl Y21 - 21 < x21

and

0<x 2 2  Y2 2  X1 2 <X 1 2

Therefore, x1 1x 2 2 <x12 ' 2 1 which is a contradiction. This proves that

Mw.



As the last four subclasses of matrices in Table 1 are all

defined so explicitly in terms of well-known classes of matrices, it

is natural to ask whether any of these will perhaps add to our knowledge

about the class X. In the sequel, we shall study the.e special classes

separately and show they all belong to P which is of course already

well-known in the theory of linear complementarity problems. (See [4),

(6], [25].)

Proposition 3.12. Let Y E K n Rn~n and a, b R+. Then the matrix

Y + ab P.

Proof: The hypothesis is inherited by principal submatrices, hence it

suffices to show det(Y + abT) > 0. Clearly,

det(Y + abT) (det Y) (det(I+ (Y la)bT)

Using the formula

det(xyT - i) (-1)n hn-l - xTy)

which holds for all x, y Rn and \ Z R, we obviously have (sub-

-1
stituting \ =-l, x = Y' a and y b)

det(Y + abT (det Y)(1 + (YlTa)Tb) det Y > 0

because Y > 0 and a, b > 0. Therefore Y + abT P.

k Proposition 3.13. If MI Y + abT where Y E K and a, b > 0, then

there exists a matrix X E K such that M = YX".

27
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Proof, Since Y C K and a > 0, it follows that a Y a > 0. We

tuay write M'= Y(I + 0bT). Let X (I + abT)"I. Then M YXl.

It remains to show that X C K. An easy calculation shows that

X I -- b Z.1 + bT;

It follows from Proposition 3.12 that Xl I + abT hence

X P by fact (ii) mentioned earlier. Therefore X G K. This completes

the proof.

TI
Thus we have shown that the class of matrices

(M RnnM Y + abT, Y C K and a, b Rn)

is a subclass of r. Furthermore, the matrices X and Y in the

factorization M YX are Minkowski.

Remark. In [19], Mangasarian treated the above class of matrices with

the assumption that the vector b ia strictly positive. Here, we have

relaxed this assumption slightly and merely required b to be nonnegative.

We next proceed to another class. The proof of the following

lemma can be found in Fiedler and Pt~k [11].
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Lemma 5.15. Let A G Z, B C K and A > B, then

(vii) A C K

(viii) AlB C K, BA1 C K

(ix) A'lB < 1, BA-1 < I

Lemma 3.16. Let A £ Z, B C K, I > B and A > B. Then the matrix

I+A -BCP.

Proof: The hypothesis are inherited by principal submatrices, hence it

suffices to show det(I + A - B) > 0. Let C = A - B > 0. Then

B A - C belongs to K by assumption. We have

(I + C)(A - C) A - C + CB A - C(I - B) < A

Hence (I + C)(A - C) . Z. Since I + C > I and A - C C K, it

follows readily from condition (iv) in Proposition 3.2 that

(I +C)(A -C) C K. Hence

det(I + A - B) det(I + C,

det(I+ C)(A - C)/det(A - C) > 0 .

This completes the proof.

Lemma 3.17. Let Z , Z2 , Z3  Z. > z and Z K. Then

the matrix Z1 + Z2 - Z3 c P.

Proof: Again, it suffices to show det(Z + Z- Z) > 0. We write

.l +z 2 "z7  z•(i + z - z1 z3 ) 3

29
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Lemma 3.15 implies tue assumptions of Lemma 3.16 are satisfied with

-121A=Z z and B = Z Therefore det(I + ZZ - ZZ) > 0.

Lemma 3.15 also implies that det Z > 0. Hence det(Z1 + Z- Z3 ) > 0.

Corollary 3.18. Let A Z, B C K and A > B. Then the matrix

2A B C P.

'Remark. As a matter of fact, following the proof of Lemma 3.17, we may

deduce that if A, B satisfy the assumptions in Corollary 3.18, then

the matrix ?.A - B C P for all N > 2.

Corollary 3.19. If A C Z8 B C K and A > B, then det(2A - B) > det B.

Proof: According to Theorem 1 of Ostrowski (211, if Y E Z has
positive diagonals and M is a matrix such that ImiI • yii and

Imijl < "YIJ for all i / J, then Idet MI > det Y. So choosing

Y = B, M = 2A - B, we have Idet MI = det M and Imfili = li = 2a1 -b11

>bii and 0 > 2aij > 2bij for all i / J. Hence -bij >_ 2aij-bij

UP i.e., 1C.aij - biI < -bij. Ostrowski's theorem applies and

the proof is complete.

Proposition 3.20. Let M 2A - B where A C'. Z, B C K and A > B.

Then there exist Y C. Z and X C K such that M YX

30
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Proof. Lemma 3.15 implies A exists. We may write

M =2A - B ('B - BA-'B)(H 4'A)

(2B - A'I-B) (A '-B)

Let X A=1 B and Y 2B BA' 1 B. Then Lemma 3.15 implies that

X C K and X< I. We have

Y 2B - BA'B A - (A - B)(I - A-B) < A.

Hence Y G Z and the proof is complete.

Corollary 5.21. Let M =2A -B with A E Z, BCK and A > B.

Then M Z C.

Corollary 3.22. Let M satisfy either of the following conditions:

n
(3.ih) m > n )mij, ' , . ,

n
(3.15) mj > ? imnj , J = i, ... , .

then ME n.

Proof: It suffices to show that M satisfies the assumptions in

iji

oroary ,, Define the matrix A (ai) oows3
511
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i Tfljj if J f

a mij if j/I and mil <0

0 if I i and m > 0,

Let B 2A - M; clearly, M = 2A - B and A > B. We obviously have

A C Z, thus B C Z. It remains to show that B C K. If B (b
ij

then by its definition,

mii if J-i

bij jm ij if J i, mij 0

ij I
1-rn if j. ,mj"

Tn
so that letting eT= (1, ... , 1) C Rn, we have for i 1, ... , n,

n

(Be)i 2 bij

n n
=Mu + mi', 2 4-u

J/i,m <0 J/i,mij >0

Thus, Be > 0 if condition (5.14) is satisfied. Similarly, we may

T
deduce that B e > 0 if condition (5.15) is satisfied. Therefore, in

either case, it follows that B K. This completes the proof,.i

Remark 1. The proof above and Lemma 3.20 show that a matrix satisfying

conditions (3.14) and (5.15) belongs to the class P.
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F.
Remark 2. In (193, Mangasarian treated the classes of matrices M

satisfying conditions (3.14) and (3.15) with the additional assumption

that M is nonnegative. The corollary above enlarges these classes by

omitting the nonnegativity assumption and shows that the corresponding

linear complementarity problems are still related to polyhedral sets

with least elements.

Up to this point, we have shown that all matrices in Mangasarian's

Table 1 belong to the class C . Furthermore, we have established that

the last four subclasses belong to P, thus to the class X mentioned

earlier. Therefore they do not extend our knowledge about the

class X.

Remark. If M belongs to any of these four subclasses, the problem

"(q,M) has a solution for every q E R becauce M must necessarily

be a P-matrix. Thus the feasibility assumption can be removed.

As all matrices in Table 1 are obtained by specializing the

conditions (2.7) and (2.8) in Theorem 2.4, it is natural to ask whether

a matrix satisfying these two conditions alone belongs to C. We answer

this question by establishing the following theorem which summarizes

some of the previous results. t e

Theorem 3.23. Let M E Rn x×n. Suppos-e there exist X, Y Rn X n,

M nx RRm xn n

Ap1B, H Rnd G 7+and satisfying

(3.16) X = Y +BG; MH > BG; X, Y, A C Z; end G, H >0;
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(3.1-7) (pT'po•
G A .•,

Then

(3.18) M has the representation

M

where

Y -YHA'G, ÷X -HA G, and fl MH -BA;

(3.19) furthermore, YC< Z and C + K.

The mtrix X -H-
Proof: The matrix -G A belongs to class Z, thus condition

(3.17) implies that it belongs to K. In particular A' exists.

We have

, - Y - 'AG-Y - (M - BA)A

f + BG - M(HA G)

M(X -HA 1 G) MR.

The matrix X X - HA' G is the Schur complement of A in the

X -H
Minkowski matrix -G A], hence R is itself Minkowski by Proposition

3.4 and in particular, nonsingular. Thus M establishing (3.18).

It remains to verify that ý C Z. We have Y Y - fA'G where

MH - BA > 0 and G > 0 by assumption; moreover, A > 0 because

A E K. Therefore C E Z. This completes the proof of the theorem.

34
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Corollary 3.24. Suppose M C En~n satisfies conditions (3.1.6) and

(3.17). Then M C.

Remark. In the factorization M YX above, the matrix

1A " lG contains the matrix f which is defined in terms of

M, i.e. the factorization involves M itself implicitly. This some-

what awkward situation can be remedied by solving for M using con-

dition (3.16) to obtain M = (Y*+ BG)X". Substituting into the

definition of {, we see that M is no longer involved in the factors.
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h. COH)UTATION.AL EXERhIENCE

Methods for solving linear complementarity problems for various

classes of matrices have been proposed and investigated intensively.

Among these are the prAneipal pivottrng methodci , ['J anol Lemke's almost

complementarity pivoting algorithm [6], 1161. These methods (and some

others) work rather satisfactorily for matrices of reasonable size.

But in many applications of the .inder complementarity problems to partial.

differential equations, the matrices are often large, sparse and

specially structured. See [21] for exwiiple. Methods like those

mentioned above seem to be inefficient when applied to these problems.

For one thing, most of the nice properties (especially the sparsity

which is a very important factor for efficiency) that the matrices

originally possess will be destroyed when the problems are being pro-

cessed. Recognizing, this disadvantage, one would like to use iterative

(relaxation) procedures which, presumably, have the computational

advantage of preserving matrix sparsity.

In 1.18], Mangasarian proposed formulating linear complementarity

problems as linear programs and solving, them by applyinri relaxation

methods to the linear inequality system (:;.di). In this section, we

discuss our somewhat preliminary computational expcrience using this

solution strategy and attempt to answer the question of whether this

approach can be rec -mended in practice.

For the sake cf clarity, we first review part of the theory of

relaxation methods for solving linear inequality systems [1], •2],

[13, [2o0].
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We want to find a vector z Rn satisfying the syste'm of

linear in,:qualities: Az < b where A t5 Rmxn and b n . Let A,= A

be the i-th row of the matrix A. The relaxation method (due to

kEremin 1 131 const•.ucts a sequence (z 1.n the following manner:0 "
(i) Choose z0 C-, Rn arbitrarily. Let k 0.

kS(ii) If Az . b, the procedure terminates.

If not, then some linear inequality is violated. Let i be

the smallest index of the most violated constraints:

A zk bi max (Ajzk - b]

(iii) Define

1k+l k 1k I

Il~ilI
Theorem (Eremin [131).

The sequence (zkI difined by the relaxation method under

the assumptions
Wi xk C: (0,PI k 1 ,;,:", . :

(Ii) inf A > 0

converges to one of the solutions of the linear inequality system

Az < b if the latter is consistent.

We now apply the method to solve the linear program (p,q,M), or

equivalently, to find vectors x, y R n such that the following system

. of linear inequalities is satisfied.

37 ,.
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-M 0 q

T MT

q/ 0

Remark. The vectors x and y are pr.unal and dual variables,

respectively.

We now present an algorithm based on the relaxation method for

solving (4.2). Let c > 0 be some preassigned positive tolerance.

The algorithm starts by choosing

ii arbitrarily. Initially e a .

•.Step 1. Let z~ and le'i t

V/
',fn l n l

(14.5) d(z 2 ) n a~x[ max (- m• x -q9, lmank ( Pj)•

xix

4.'.
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Step 2. If d(z ) < E, stop.

Otherwise, construct z 2 + ( y+ ) according to (4.1) and

return to step i with 2+1 replacing 2.

The main work involved in each iteration cycle of the algorithm

is the computation of the quantity d(z ) and the updating of the new

iterates. When actually programmed, d(z 2 ) is computed as in (1.3).

While in constructing the new approximate solution z , an index is

set to check where the maximi-ing term comes from, in order to avoid

computing the saeie components repeatedly. For instance, if the

maximizing term is in (- 2 J=l mix J qi)i =l' then the vector y

need not be updated; on the other hand, if the mexittizing term comes
An2

from (-xI)in., then only onQ component of x will be changed while

the other components of z2 will remain unchanged in the next iteration.

These features of the system are important in reducing the computational

effort of the algorithm.

There is a variation of the algorithm that one might want to
consider when actually coding it. In (4.2) where the new iterate z•+

is computed, it is necessary uo divide by the 2-norm of the gradient

of the most violated constraint. If the number of iterations is large

compared to 4n+l which is the number of constraints in '4.1), it

would be more economical to reduce these divisions if jissible. A way

to achieve this is to work with the "normalized system" which is obtained

from (4.1) by normalizing each constraint separately. The division

39
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steps in (4.2) are then no longer needed. An obvious disadvantage of

this "normalized system" is the need for mo•'e storage space for the whole

matrix and also for the constant vectors. But if the problem itself

weru of moderate size so that no storage problem would occur, tnen one

might try to use this "no±'me.lized system" instead of the original

system (4.1).

V We performed several experiments to solve the problem (q,M)

where q R was randomly chosen and

2 -21

-1 2 -2

-1 2 -1

M=

-1 2 -i

-i2

We ch (1, ... ,) -Rn The relaxation parameters (Nk)

were chosen to be the same in each iteration. The tolerance c was

generously chosen to be 0 . The algorithm was then applied to the

inequality system (4.1.). All the computation was done on the IBM 370/168

using FORTRAN H with Opt 2. The results are summarized in the follow-

ing tables.
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"Inputs: n 5. q (2, -1, -4, 6, -5);

0 0
starting iterate x y 0; original system.

T
Solution of (q,M): x (0, 2, 3, 0, 2.5).

Value of X No. of Iterations Execution "-ime (sec)

•.7 1737 .58

.8 1380 .50

.9 .L•08 .45

1.1 149 38

1.2 649 .37

1.3 505 .53

1.4 452 .33

1.5 358 .31

1.6 176 .27

1.7 949 .42

1.8 668 .37

TABLE 2
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Inputs: n 5. qT ~(2y -l, -4ý 6, -5)

0 0starting iterate x y 0; normalized system.

T-

Solution of (q,M): X~ (0, 2, 3,0, 2.5)

Value of ?\No. of Iterations Execution time (see)

1.0 669 .8

1.5 150 .28

1.6 88,7.41

1.8 965.4

TABLE 35
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Inputs: n 5. qT -3p 4 -5)

starting iterate: x0 = (3, 5, 5, 3, 3)

0 = (2, ... , ; ,,ormalized syitem.

Solutijcn of (q,M): x T (0, 2, 3, 1, 1 )

Value of ? No. of iterations Execution time (sec)

.9 14263 2.63

1.0 11664 2.19

1.1 9663 1.88

1.2 7926 2..57

1.5 6571 1.36

1.4 5626 1.19

1.5 4381 1.21

1.6 3352 .81

1.7 2353 .65

.8 1490 .50

1.9 664 .37

ti
TABLE 4

,43

i



Inputs: n1 7. qT (,-1, -4, 6, -5, 3, -2)

starting iterate x y 0 ; original system.

T
Solution of problem (q,M): x (0, 2, 3, O, 2.75, .5, 1.25)

Value of X No. of iteraions Execution time (see)

1.95 20o42 .74

1.8 9820 2.63

1 .7 14831 3.87

1.6 19935 4.60

TABLE 5

20000 is the maximum number of iterations that we allow.

4'I
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Inputs: n 7. qT (2, 1, - 4, 6, -5,, -2)
0 ~ T 0

starting iterate: x (2, .. , (1 T )

original system; solution of (q,M) given in Table 5.

t

Value of \ No. of iterations Execution time (see)

1.95 1362 .57

1.85 5910 1.68

1.75 10597 2.67

1.65 14313 3.65

41
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19219 

14.95

'I
TABLE 6
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The problems solved in these experiments are far from the size

and difficulty one wuuld encounter in practice. Nevertheless, they

suggest that the relaxation method described above lacks the efficiency

required for solving more realistic problems. It is conceivable that

by some clever modification the method could be made more attractive.
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