
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations Thesis and Dissertation Collection

1976

Implementation of an interactive graphics

display in a multiprogramming environment.

Thorpe, Lloyd Allen

http://hdl.handle.net/10945/17809

Downloaded from NPS Archive: Calhoun

IMPLEMENTATION OF AN

INTERACTIVE GRAPHICS DISPLAY IN A

MULTIPROGRAMMING ENVIRONMENT

Lloyd Al len Thorpe

M
onterey, California

wuugy

1

IMPLEMENTATION OF AN
INTERACTIVE GRAPHICS DISPLAY IN A
MULT I PROGRAMMING ENVI RONMENT

by

Lloyd Allen Thorpe

March 1976

Thesis Advisor : G. A . Rae tz

Approved for public release; distribution unlimited.

T17312+

SECURITY CLASSIFICATION OF THIS F-AGE fW7>e,-. Dcte Entered)

REPORT DOCUMENTATION PAGE
I. REPORT NUMBER i. GOVT ACCESSION NO.

4. TITLE (and Subtitle.)

Implementation of an Interactive
Graphics Display in a Multiprogramming
Environment

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

5. TYPE OF REPORT & PERIOD COVERED
Master's thesis;

March 19 7 6

C. PERFORMING ORG. REPORT NUMBER

7. AUTHO«f«; 8. CONTRACT OR CHANT NUMBERfa;

Lloyd Allen Thorpe

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Postgraduate School
Monterey, California 93940

10. PROGRAM ELEMENT. PROJECT TASK I

AREA 6 WORK UNIT NUMBERS

II. CONTROLLING OFFICE NAME AND ADDRESS

Naval Postgraduate School
Monterey, California 93940

12. REPORT DATE
March 19 76

15. NUMBER OF PAGES
27

i4. MONITORING AGi-'.NCY NAME 6 ADDR ESSf// dtlleicnt (turn Controlling Otlicm)

Naval Postgraduate School
Monterey, California 93940

IS. SECURITY CLASS, (ol thtt report)

Unclassified

15*. DECLASSIFICATION/ DOWNGRADING i

SCHEDULE

16. DISTRIBUTION STATEMENT (ol ti.it kepori)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (ol tho ebetrcct tntoreel In hiock 20, It dliletbnt horn Ueport)

16. SUPPLEMENTARY NOTES

15. KEY WORDS (Continue on rcv«r»* s/rfs It ns>cc***jy end Identity by block nvsr.nur)

graphics
interactive graphics
real-time processing

20. ABSTRACT (Continue on revere* aid* it neceatfiry end Identity by block mmibtr)

This thesis is a summary of the design and implementation
of an operating system interface and a user interface for an
interactive graphics display system. The actual interface
software and documentation are characteristic of the Naval
Postgraduate School environment. Documents describing the
actual software and user interface are published separately.

(cont .

)

DD
t JAN 7J 1473 EDITION OF 1 NOV 65 IS OBSOLETE

(Page 1) S/N 0102-014-6601
|

SECURITY CLASSIFICATION OF THIS PAGE (Vhun Dmtm Enfr*^)

£. 'i:MiTv CL AS1IFIC A Tion OF T m I S e> * <_, f , h >, „ n o-tn Entmrtd

20 . (cont .

)

The general problems and solutions involved in implementing
a real-time interactive graphics process in a multiprogramming
environment are included herein. The problems and solutions
discussed are related to the interface of a Vector General
Graphics Display Unit and a Digital Equipment Corporation
PDP-11/50 computer. Recommendations for possible future
developments are also included.

DD Form 1473
, 1 Jan 73

S/N 0102-014-G601 SECURITY CLASSIFICATION OF THIS PAGEf^'r- Dna FnCfd)

Implementation of an
Toteract i vo Graphics display

i n a

N
1 u 1 t inroorammino E n v i ronment

by

L 1 oyd A . Thorpe
Lieutenant* U n i t e d States Navy
B . S . , University of U t a h # 1

f:
/

1

Submitted in partial fulfillment of the
requirements for the deoree of

4ASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
M a rcn 1 9 7

6

'

A B S T I ACT

This thesis is a summary of the design and

implementation of an operatina system interface and a user

interface for an interactive qraphics display system. The

actual interface software and documentation are

characteristic of the Naval Postgraduate School

environment. Documents describina t h e actual software and

user interface are d u b 1 i s h e d separately.

The oeneral problems and solution? involved in

implementing a real-time interactive graphics process in a

multiprogrammina environment are i ncl urled herein. The

problems and solutions discussed are related to the

interface of a Vector General Graphics D i s n 1 a y Unit and a

Digital E a u i p m e n t Corporation POP -11/50 computer.

Recommendations for possible future developments are also

included.

TABLP OF CONTFNTS

ACKNOWLEDGEMENT

I. INTRODUCTION

II. CHARACTERISTICS OF MULTIPROGRAMMING PROCESSES

III. CHARACTERISTICS OF INTERACTIVE
GRAPHICS PROCESSES

A. CRI REFRESH REQUIREMENTS

B. MEMORY MANAGEMEN1

IV. GRAPHICS INTERFACE DESIGN

A. OPERATING SYSTEM MODIFICATIONS

B. INTERRUP1 INTERFACE TECHNIQUES

C. INTERFACE TECHNIQUES

D. ACCESSING NON-CONTIGUOUS DISPLAY LISTS

VI. RE COMMEND A 1 IONS

A. UNIX MODIFICATIONS

1

.

Process Priority

2

.

Memory Allocation

B. USER INTERFACE MODIFICATIONS

1

.

Picture Potation

2

.

D i s d 1 a y Enable

3

.

I n ere Tent Timing

4

.

Disolny List Generation

VII. CONCLUSION

BIBLIOGRAPHY

INITIAL DISTRIBUTION LIS!

6

7

8

9

9

1 1

1?

12

m

16

17

2

2

2

21

21

21

21

22

2?

23

2.u

26

ACKNO'WLI DGEMENT

I wish to t honk my thesis advisor^ Gary M . Rapt-?; for

his effort and Guidance. His knowledge and assistance has

been a asset in the development of this thrsis.

1 wish to congratulate my wife* Linda/ for enduring

the 1 o n g niahts of study and the discouraoing times of my

frustration. Without her encourages en t and helpful ness»

the task would have been much more difficult. I also

appreciate the tedious hours she spent in proofreading the

initial manuscript and the helpful suggestions that

resu 1 ted.

I. INTRODUCTION

f h c problem a d c i r e s s p d in t hi s thesis is how to

support i in a multiprogramming environment* a process that

does not conform to multiproqram m i n q conventions. Four

basic problems are identified in general and related to a

specific interactive graphics environment in w h i c h they

occur. The four problem areas are:

A. Operation System Modifications

B. Interrupt Interface Techniques

C

.

User Interface techniques

D

.

Accessing N o n - C o n t i o u o u s D i s o 1 a y Lists

The vehicle used for a rob 1 e m identification and solution

de v e 1 op m e n t w <i s the vector General Interactive G r a p hies

Display System [51 and a Digital Equipment Corporation

PDP-11/50 computer [17,181. The UNIX Timesharing System

(?01 provided the multiprogramming environment.

The Vector General Interactive Graphics Display System

(Vector General), as installed at the '.'aval Postaraduate

School, is a highly sophisticated display terminal with

hardware implemented three dimensional rotation,

translation, and scalino [51. An alphanumeric keyboard

[1] , lighted function switches with manual interrupt 1 4] ,

control dials t?l, ano light Pen [1 <? 3 are attached to the

system. A circle- a re generator (51 and a character

generator [6] are included as an integral part of the

system. This graphics display system is interfaced with a

PDP-11 /SO computer having 6 4 K bytes of memory and two

million bytes of d i s < storage. This thesis discusses some

of the problems involved in implementing an interactive

or a p hies interface and includes recommendations for

possible future developments in the area of supporting

non-cenforrr, ino processes in a multiprogramming

environment. A detailed description of the actual

interface design e d and inplemented in the course of this

thesis can be found in separate publications [13rl4],

These' publications include a design manual » users manual >

program listings* and documentation. 1 he interface is a

partial result and extension of an initial interface

desiqn by Howard and Thorpe 1 7 » B] «.

IT. CHARACTERISTICS OF MULTIPROGRAMMING PROCESSES

Multiprogramming is t^e interleaved or concurrent

execution of two or more processes- [1 ^] . Since the

physical memory reauirements of each process nay vary,

each orocess is designed to be relocated within memory.

This enables a process to be reassioned within memory as

necessary to ensure efficient memory utilization.

Processes waiting for a system resource are typically

swaoped onto a rp^ss storage device thereby releasing the

physical memory for another process. In some systems a

process may be divided into segments or panes that are

themselves relocatable and swaooable entities.

A multiprogramming process typically is not given

dedicated use of the central processor. Each process is

executed for a time Quantum arid then set to a wait state.

Processes waiting to be executed are placed in a queue

according to some predefined priority. Ihis is

characteristic of computer systems permitting on-line

communications with multiple users fill.

Since the multiorogramming process is relocatable and

s w ap a b 1 e t the user has no knowledge of physical memory

address during p r o g r a rr execution. Therefore/ the? user

generates his p r o a r a m in an imaginary memory called

virtual memory. Each users virtual memory begins at

address zero and can, depending on the operating system/

extend to the maximum address of the computer. The

operating system maps all virtual addresses into physical

add i- esses when the process is loaded into memory. Some of

these characteristics conflict with characteristics of an

interactive graphics croc ess as will be shown.

III. CHARACTERISTICS OK INTERACTIVE GRAPHICS PROCESSES

A. CRT REFRESH REQUIREMENTS

ivhile various types of graphics plotters have been

invented* the CRT disclay is the only device suitable for

generating interactive graphical output at high speed

[161. The short persi stance of the CRT phosphor permits

information to be ouicU v changed. This is also the

princiole failing of the CRT. If a line is displayed once

it ouickl v fades. The problem can b e remedied by

refreshing the CRT but continual refreshing lirrits the

number of lines that can be drawn. If too many lines are

displayed the intensity variations of the lines will be

noticable. This phenomenon/ called flicker/ is

undesirable a no usually not permitted. A refresh rate of

t h i r t y to forty h e r t ?. will prevent. flicker but does

require the ent i m display to b n displayed every thirty-

three to twentv-five milliseconds. If the computer

processor must be used to directly refresh the CRT

disolay, support ino a graphics process under a

multiprogramming environment would be impractical.

Recent developments in direct view storage tube

displays and d 1 a s m a Displays offer a solution to the

refresh problem but in some respects are l^ss versatile

than the conventional C R [. Another ponular approach to

the problem is to build a separate display processor whose

function is to read the computer's memory arid use the data

to generate the display. Refresh processing is then

handled by the disolay processor leaving the computer

processor free to perform other tasks.

The disolay processor techniaue is employed by the

Vector General using a Direct Memory Access channel (DMA)

[

5

1 6] • Communication with the user is maintained via a

frame clock interrupt signal every 8.33 milliseconds.

10

U s i n q the time between interrupts as a timer/ the

POP- 11/50 computer can determine when to initiate the

Victor General for- refresh. This allows the speed and

versatility of a conventional CRT and removes the refresh

orocessinci from the PDP-11/50 processor. The DMA is not a

panacea^ however. It r e au i r e s the display data to remain

in the computer memory for the entire time the data is

beino usen for disnlay generation. I '. h i 1 e this is not a

limitation on the computer processor; it is a limitation

on the computer resources. This limitation would not be

noticable in a dedicated comnuter environment. However,

in a multiprogramming environment a 1 1 c o m p u t e r resources

are at a premium and and any limitations imposed must be

consi dercd.

B. MEMORY MANAGEMENT

As previously mention e a in section 11, the central

theme in a n u 1 t i p r o a r a m m i n cj environment is that all active

processed may be relocatable within memory. Processes may

also be remove d, or swappea onto a mass storape device.

This permits efficient use of computer processor time end

computer memory. But, this also conflicts with the D M

A

capability of the display processor.

Before the DMA can be used/ some method of ensurino

the entire display list is resident in memory must be

founo. In addition, the display list must not to be

relocated or swapped. These restrictions, while necessary

1 1

to ensure the disnl .iv processor c f\n address the display

1 i s t r must also be time minimized. Only while the display

processor is actually using the display list for display

generation rrust those restrictions apply. Therefore/ some

ret hod of de t e nr i n i iv.: which disci ay list is active must be

found.

IV. GRAPHICS INTERFACE DESIGN!

A. OPERATING SYSTEM MODIFICATIONS

Implementation of the graphics interface r ea u i r e d t h a t

the memory allocation scheme of U M IX be modified to perrrit

the Vector General Graphics Display System to access the

Graphics display list. The modification adopted involved

creation of a unique real-time process. Whenever a user

declares his intention to use the Vector General* the

user's entire process is placed in physical memory and

flapped as non-swaoable and non-relocatable. Followino

the real-time process recommendations of Krai (1] f the

process priority is also increased to ensure the real-time

process is at the head of the process nueue. The process

priority chance has been found to be necessary only if the

computer processor is perforrnina the disolay refresh. It

is not needed with D)'vl A and its action prevents the

computer processor from servicing any other process. The

modifications implemented? while comparatively simpler oo

not consider memory as a limited resource nor is the time

1?

minimization factor considered.

An alternate solution to the one i mo 1 em en ted requires

additional modifications to the operating system but does

treat rremorv as a limited resource. This involves

splitting a user process so that the instruction space and

the data so ace are treated separately. When a user

declares his intention to use the graphics terminal, the

operating s y s t e m c 1 a c e s the restrictions only o n the data

so ace. The instruction so ace remains unchanged. This*

however , still aces not consider the time minimization

factor. T h e user could declare his intentions to use the

graphics terminal a n d then never do so. Y e

t

, the

resources would bp allocated.

If a o r o c e s s were permitted to complete all

calculations and data manipulations involving display list

preparation prior to becoming a real "time process* the

period of time in which memory is allocated to thr> real-

time process would be reduced to the actual display time.

The operation system would then, at display time> locate

the display list reference o by the display request end

make that list a real-time entity.

A t h. i r o solution alternative is directly related to

the capabilities of the Vector General Graphics Display

System and the UNIX operating system. The address

structure of the Vector General's DMA channel is such that

the display processor can dynamically access only 3 2

K

bytes of memory. A display processor command defines

13

which 32K bvte memory block is to op addressed.

The UNIX operating system treats the instruction and

d a t a space of a process as a s i n o 1 e entity with the o a t a

space aooended immediately following the instruction

space. If the virtual addressing scheme of UNIX were

modified so that the first address of the data space was

virtual address zero* the r e a 1 - 1 i m,e process modifications

would be simplified. At display t i m e / the process could

be allocated across a 3 ? K byte memory address boundary

with its data space beginning at the boundary address.

Virtual addresses would then be a physical eaoross offset

from. the address boundary. ft h i 1 e not providing

treTendous asset for memory management* this solution

would greatly enhance the display manipluation

capabilities.

A less appealing but easier implementation of the

virtual addressing modification woulo be to ensure the

entire virtual address space? instruction and data? begins

on a 3?K byte memory block boundary. The data soacc »

while still an adoress offset* would not be virtual

address zero. This implementation would reduce the total

available data space by the size of the instruction s p a c ^

but the additional memory space used is that of the real-

time process. Therefore* any addressing errors within the

Vector General would only affect the instruction and data

space of the real-time process.

14

B, INTERRUPT INTERFACE TECHNIQUES

A nunber of araphics devices have been invented for

the input of graphical information to a computer. When

used with d oraohics disrlay the devices make it possible

to effectively interact with the program. Generally/ the

simplest way to handle inputs from these devices is by

means of interrupt routines which receive the input (lata

and pass it on to user the prograrr in the form of an

interrupt signal 116] . Since the user exists in the

relocatable process space of a virtual machine/ the

oneratina svstem must provide the link between the

interruot service routine and the user interrupt signal

routine. This operation requires some effort and may take

as much as one hundred milliseconds if the process has to

tie ret reived from the d i s k . Considering the frequency of

frame clock interrupts (8.33 milliseconds) plus the

occurance of any device interrupts/ it is likelv that-

multiple interrupts will occur while waiting for the

operating system to process the first interrupt.

The UNIX operating system has no capability of

hand lino multiple interrupts nor of determining the

priority of interrupts received from the same peripheral

device. Because of the nature of some graphics devices/

only one interrupt may occur. Therefore/ it is important

to ensure the preservation of each interrupt. The Vector

General interface employs a technique that eliminates the

15

need to pass all but device interrupts to the user. The

user is required to provide the interrupt service routine

with the desired refresh rate. This determines the number

of frame clock interrupts permitted before

reinitialization of the d i s p 1 a y list. The interrupt

service routine then handles the refresh ti^ino without

requiring any action from the user program.

When a device interrupt occurs i the values of specific

Vector General registers i^-re extracted prior to as kino the

ooerating system to s i a n a 1 the user program. These values

representing the interrupt state of the Vector General ^re

r e t a i n e d by the e v i c e. interrupt service routine until the

user program explicitely asks for the values. Included in

these interrupt values is a Vector General status word

indicating which interrupts have occur e d I

c
">

) . This

feature enables the user to define which device has

priority and any desire d action to he taken.

C. INTERFACE TECHNIQUES

The user interface software has been designed to make

the detailed operation of the Vector General transparent

to the user. The basic concept is to define high level

constructs which the user interface routines convert into

Vector General commands. There are three classes of

constructs defined: objects^ elements/ and the picture.

An object is the lowest level construct which can be

displayed alone. Each object is independently rotatable*

16

scalable/ and translatable into any Portion of a thirty

inch bv thirty inch Dicture soace. An object can be as

large as fifteen inches by fifteen inches ana be rotated

or positioned to the extreme limits of the picture space

without distortion to any of the remaining visible

portion. Each object is composed of one or more

independently light pen h oo k a b 1 e elements. An element is

composed of a series of user drawn images or characters

entirely relative to the untransformed image space of its

object. An object c a n be defined unrotated in such a way

as to fill the entire object soace and then be scaled/

rotated/ and n>oved so that the i^age space is the

appropriate si ?e (is viewed from the a p p r e p r i a t e aspect/

and is in the appropriate area of the picture. The

picture defines the picture scale a no screen coordinates

for all objects.

The user is responsible for the oeneration and content

of each element. Prior to its inclusion within the

display list, the user must fill each element with the

necessary draw and move commands. In addition/ the user

must provide three unused words succeedino the draw-move

commands. These three words are used by the interface

routines to ensure each element is properly terminated.

This prevents the Vector General from accessing memory

outside the a i splay list if the user fails to properly

terminate the display list.

The generation and content of all objects and the

17

picture is t ho responsibility of the interface software.

A set of routines are provided to link el orients to objects

and objects to the picture. Dynamic modification of

objects and picture parameters is also provided. However,

it is the user's responsibility to dynamically modify the

e

1

ement content .

0. ACCESSING NON-CONTIGUOUS DISPLAY LISTS

One of the basic requirements of an interactive

graphics system is that the picture can be changed

dynamically. Iris ea^ be dono hy regenerating the entire

display list or segmenting the display list and

r e g e n e r a t i n a t h » modified segment. Segmenting the display

list also permits sharing of display code in a manner

somewhat analogous to conventional subroutines. This does

require some means of generating the display from non-

contiguous display 1 i s t <~- - A list of the non-continuous

display lists could be created and sent to the display

processor or the non-contiguous display lists could be

linked within the display list itself. The Vector General

is capable of Poth types of operation. The latter method

was used for the interface implementation. This method

requires less communication with the POP- 11/50 computer.

The concept of display subroutine calls implies the

ability to store the present state before performing the

subroutine jump. This usually is implemented by a Last-

In-First-Out stack [91. The Piv A is normally a

IB

bidirectional channel , therefore the display processor has

access to the computer's memory for manipulation of a

stack. With appropriate instructions and addresses

encoded in the d i s n 1 a y list., the display processor can now

access non-contiguous display lists. Reference 1 Q

contains a description of the Vector General subroutine

stack.

Permittina trio display processor to write into memory

creates a data protection problem in a shared memory

environment. The display processor cannot be allowed to

write indiscriminately throughout memory. The integrity

of the operating system a no other user processes must be

maintained. A stack area provided by the user would

enable the display processor to determine where to a oar ess

memory for all write operations. However^ the D '-

bypasses the operating system's underflow and overflow

protection mechanism. Therefore/ an a a dressing error

could cause modification of the operating system or

another user process. Some method must be used to limit

the access range of the display processor. bounds

registers in the display processor is a reasonable

solution. These registers, set by the computer processor,

would limit the area of addressability by the display

processor. If the bounds registers applied to read as

well as write operations, unbounded display lists could

also be easily detected. Ihe Vector General's 3 <? K byte

memory addressinq limitation is analooous to a set of

19

fixed boundary rcsisters. Since the typical display list

dops riot require the full 3?K bytps of memory, the display

rrnc?ssor does have the potential of addressing outside

the real-time process. The Vector General interface

routines rninimi/e the problem in three ways. First, the

user himself does not define the subroutine stack nor does

he use the subroutine stack directly. This is handled by

the interface routines* Second? the stack has a software

underflow mechanism provided by trie interface routines.

An underflow trans to a Vector General halt instruction.

Third , each display list is terminated in such a manner

that the d i s n 1 a v list cannot be accessed beyond its

defined length.

Realistically^ there is no way to share the same 3 ? K

byte memory block with a Vector General process and ensure

one hundred oercent integrity. A user could include

commands in his disnlay list that cause an undetected

stack overflow or a jump to an area outside of the process

limits. The Vector General instructions defining these

actions ?>re not rnake available to the user but a display

error could result in such an instruction.

20

VI . RECOMMENDAT IONS

A. UNIX KODIFICATIO!

1. Process Priority

The current implementation of the interactive

graphics interface requires each process requesting use of

the Vector General to change its priority as part of the

real-time system call. This is a necessary requirement

only for those r e a 1 - 1 i m e processes performing the refresh.

The increased priority ensures the real-time process is

placed at the top of the process run queue. The direct

memory access capability of the Vector General d o e s not

require the process to refresh the display directly.

Therefore/ the increased priority of the real-time process

is not needed for the Vector General. If the UNIX

operating system were modified to allow a process to be

real-time without changing its priority/ the affect of a

real -time process on the multi-user environment would be

reduced.

2

.

Memory Allocation

The memory allocation scheme of UNIX presently

requires both the instruction space and the data space to

be loaded contiquously in memory. The only requirement

for the Vector General real-time process is that the

active display list (data) be locked within a 3 2 K byte

memory block. If a process could be split so only its

data space was real-timer the system memory resources

21

currently allocated *or the rral-t ime process instruction

space would be available for other uses. T h n size of the

Vector General d a t a space couln also bo increased* thereby

permitting -norc complex display lists.

B. USER INTERFACE MODIFICATIONS

1 . Picture Notation

As mentioned earlier* the only display construct

capable of being rotated is an object. At times the u^er

may desire to rotate the entire picture. This cap a b i 1 i t y

should be provided. Implementation of this feature must

ensure the capability of rotating objects is not imoared.

2 . D i

s

p lay Enable

A limitation discovered by personnel us inn the

interface is the inability to t e m p o r a r i 1 y prevent the

display of an element or an object without actually

d e 1 e t i n o it from the display list. The Vector General has

this capability but it is not extended to the user.

3

.

Increment Timing

The proposed cesion interface of Howard and T h o r p e

17,8) included a m o t i e n feature that allowed t h e user to

automatically have an object nnovp across the screen. The

user defined motion vector, usina the frame clock

interrupts as a timer, automatically incremented the

Dosition of specified objects by the values of thp motion

vector. The actual implementation could not include this

feature because of the relationship between th^ user

22

process and the frame clock inter' runts. The orlv timer

I '

rv I X has provided is in increments of one second and that

timer is stooped by any interrupt signal. Ihercforr, it

is entirely u n s u i t e d for a display motion timer.

Implementation of this capability would enhance the use of

the Vector General and s i tn d 1 i f y the user program.

4 . Display List Generation

The importance of p r o q r a m m i n q 1 a n a u a g e s is often

fo root ten when a qraohics system is designed. The

d e s i o n e r becomes involved in the issups of display file

structures and graphical interaction leaving the provision

of a convenient prooramming language until later. This

lack of interest in the development of programming

1 a n a u a q e s has been one of the major obstacles preventing

the widespread use of graphics (lol. Until such a

language is developed/ the unfortunate programmer is

forced to write in machine or assembly language. This

interface design has considered only part: of the problem.

Several interface routines have been provided to simplify

the actual access to the Vector General. The creation of

the display list used to generate pictures must still be

accomplished in the octal machine languaoe described by

Thorpe N 4 , 1 5] . Before the existing interface will be of

use to the qeneral oraohics programmer* a simple methoo of

generating display lists must be found. On this si nolo

capability may hinop the success of the existing interface

structure.

?.l

VII. CONCLUSION

The Vector General interface desicned and implemented

b y Thorpe II

4

, 1 5 J is operational with no known buqs in any

of the interface routines. The hardware suncort and

direct memory access capabilities of the Vector General

Interactive Graphics Display System have been the key to a

successful interface. Without the hardware support it is

questionable whether any multi-'user capabilities would be

available while using the Vector General.

?J\

BIBLIOGRAPHY

1. Alphanumeric Keyboard KRi Option Reference Manual

*

Vector General Inr, r W o o d 1 a n d H i 1 1 s * California M a

v

19 74

2

.

Analog Devices Option R e f e r e n c ^ Manual* Vector General
Inc./ Woodland Mills/ California/ August 19 7 4

3. Circle-Arc Generator Reference Manual* Vector General
Inc./ Canoga Park, California* February 1^74

4. Function Switch Got ion Reference Manual* Vector
General Inc./ C a n o g a Park/ California/ April 1974

b. Graphics Display System Reference Manual* Vector
General Inc./ Woodland Hill, California/ Auoust 1 ° / 'I

6. Graphics Display System lechnical Manual* Vector
General Inc. r W oo d 1 a n d Hills* California* June 1974

7. Howard, J . E. and Thoroe* L. A.* Proposed Design
specification Manual for the Vector General Graphics
Display Unit* paper presented at Naval Postgraduate
School CS4204 Class/ June 197b

8. Howard/ J. E. ana Thorpe/ L. ft.* Prooosed Users Manual
for the Vector General Graphics Display Unit* paper
presented at the Naval Post Graduate School CS4 202
C 1 a s s / June 19 75

9. Knuth, D. E • * The Art of Computer Programming* 2d e d .

*

v . 1 * Addison-Wesley* 1968

10. Krai/ T. C . * A Process Controller for a Heirarchical
Process Structured Doe rati no System* M.S. Thesis*
Naval Post graduate School/ Monterey* California/ 1975

11. Lancaster, F. W. and Fay en, E . G., Information
Retrieval n - L i n e * Melville Publishing Company, 1973

12

.

Lioht Pen LP 3 Option Reference Manual* Canoga Park*
California/ May 1 ° 7 4

13. Madnik* S. E. and Donovan, J. J.# Operating Systems*
McGraw-Hill book Company, 1974

14. Naval Postgraduate School Technical Report
NPS72Rr760302, Design Manual for the Interactive
Graphics Display Unit* by L . A . Thorpe and G . M

.

Raet?* M d rch 1^76

25

lb. haval Postgraduate School Technical Report
NPS72Rr76031/ Users Manual -for the Vector General
Graphics Display Unit/ by I. A. Thorpe a no1

G . M.

R a e t z /

'

A a r c h 19 7 6

16. Newman/ .'.'. M. and Sproullf P. F w Principles of

Interactive Comouter Graphics/ McGraw-Hill Hook
CompanVf 1^68

17. Peri oh era Is Handbook/ PDP-11/ Digital Equipment
Corporation/ 19 7 4.

18. Processor Handbook/ PDP-11/ 4 5, Digital Equipment
Corporation/ 19 7 4,

19. PDP-11 Interface Option (with Sub-Stack) Reference
Manual/ Woodland Hills/ California/ August 197 4

?0. Ritche* D. E. and Thompson* K./ The UNIX Timesharing
System/ Communications of the ACM/ v * 17, no. 7 , p
365-375, July/ 1974

^6

]' I] TIAL DISTRIBU1 ION LI SI

1 . Defense Documentation Center
Cameron Station
A 1 e x a n d e r i a r Virginia 2231 'I

No. Copies

2

2 . Library/ C o o e 0212
N aval P o star a d u a t e School
I'onterey* California 93940

3 . Department Chairman* Code 72
Computer Science Group
Naval Postgraduate School
''lonterevf California c

) •> Qtt

H . Prof e s s o r George A . R a h e > c o ; ; e 7 2 l ^ a

Computer Science Greuo
Naval Postgraduate School
^'ontereyr California 93940

S . L t j g . Gary M . R a e t 2 * U S N , C o d n 7 2 R r

C ci mp u t e r S c i e n c e G r o u

o

Naval P o s t q r a d u a t e School
M ontereyf California 93940

6 . C o thi a n d i n o Officer f
l o v a 1 electronic

Systems Command
Code 32
Washington* D . C „ 2 36
Attn: C D R Miller

7. It. Lloyd A. Thorpe, USN
91 S 24t h Street West
Hillings* Montana S9J02

27

thesT4569

Implementation of an interactive graphic

3 2768 002 03522 2
DUDLEY KNOX LIBRARY

