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.1. ABSTRACT

The kinetic theory of cluster formation in a condensing

qas proposed by Buckle( 1 ) attempts to calculate the course of

homogeneous condensation from molecular rather than thermo-

dynamic precepts. Here it is applied to the rapid non-

equilibrium expansion of atmospheric water vapor in air. A

method is established for demonstrating the validity of this

theory, originally proposed for a mono-molecular gas, in

the case of a complicated species such as water -;•poz. Cluster

conditions in the temperature range 210-2950K and the vY;[or

Spressure are calculated throughout the collapse of a super-

saturated metastable vapor.

An effective v•olecular pair interaction energy and nearest

neighbor coordir.s i,-n number is found based on the classical

Szero-po>±i. enthalpy of sublimation and by iteration to satisfy

inhiial equilibrium limit~nq copatraints at 273*K. The internal

energy redistribution freq.e-,cy iesults from close matching

Sof the experimental pi sure distribution. A method of deter-

mining the cluster size at which macroscopic properties become

relevant is described; the size is found to be a cluster of

about 122 molecules at 273*K based on a hard sphere model

collision cross section. For the water vapor dimer an

-oilibrium constant of 4.QxlO-21 (cm- 3) is found at 273 0K

compared to 3.1x10-2 1 (- 3 ) obtained( 2 ) from Keyes data.

Two models for water vapor clusters result (from satis-

fying all constraints imposed on the theory) which
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are given in terms of number of nearest neighbors, pair inter-

action energy per molecule (2 . 9 kcal/mo1 at 2730 K) and possible

structure on a cluster by cluster basis for a classical harS

I sphere model and for a model approximating a Pauling type

clathrate.
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II. FOREWARD

The work described here is an attempt at developing a

method of applying the kinetic theory of cluster formation

of E. R. Buckle( 1 ) to experiments in supersonic nozzles. The

patient support of the Power Branch and the Atmospheric

Sciences Program, Office of Naval Research over many years and

the recent support of the Naval Air Systems Command is acknow-

ledged with many thanks. This effort has necessarily been an

iterative one between theoretical development and numerical

evaluation over more than ten years of investigation. Mathe-

matical approximations were avoided from the start by relying

on the dioital compxiter from the start of development. Time-

shared computer facilities were provided by the Naval Weapons

Lab, Dahlgren, Virginia, as early a3 1965 and since 1967 by the

Naval Academy. The importtnee of interactive time-shared faci-

lities which allow the investigator to treat the computer

directly as a laboratory simulator is not to be underestimated,

for without easy access to such a system this work could not

have been completed.

The cluster theory( 1 ) was developed for a binary mixture

of monatomic gases and it seems a bit presumptuous to apply it

to as complicated a system as water vapor in air. However,

the best data and most clearly understood nozzle behavior was

for such a mixture and at least a useful first approximation

was hoped for. Moreover, the phenomenon of condensation is

3



universal and it was hoped that the solution could be worked

out in terms of some such general manner, largely independent

of the exact form of inter-molecular potentials. The end

result is far better than expected and it appears that

an average pair interaction energy can be used to describe as

complicated a non-equilibrium interaction as that bonding a

water molecule in a cluster.

The objective of this study is the development of a

technique of applying the cluster theory to the condensation

of atmospheric water vapor in air while expanding in a super-

sonic nozzle (wind tunnel). Overall behavior of such flows

is well understood 7 "8 '9 now and accurate measurement of

experimental properties provides a means of comparison with

theoretical results. It is attempted here to describe the

course of the homogeneous condensation in a nozzle from

molecular rather than thermodynamic parameters. Parametric

studies of the influence of the adopted molecular parameters

are given demonstrating the sensitivity of their influence

on thermodynamic properties.

The general schene is to establish a valid equilibrium

initial value for the calculations, then by calculation follow

the course of the expansion in a nozzle through the region

of condensation '8'. Two models of water clusters evolve,

one a hard spheze collision model and the other a clathrate

type model more akin to water vapor. After establishing what

4
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appears to be a valid initial equilibrium condition, the non-

equilibrium expansion follows with a close matching of the

experimental pressure to that calculated from the theory.

One finds that the non-equilibrium cluster behavior is dominated

by the behavior of the internal enerfy redistribution frequency.

The calculations described here were performed on a H-635

computer using the Dartmouth Time-Shared System (DTSS) with

the long non-equilibrium calculations being performed on a

Digital Equipment Corporation PDP-15/40 medium scale computer.

The equilibrium solution requires about one minute while the

non-equilibrium solution requires in excess of one hour.

The discussions over many years with Dr. W. Dunning,

University of Bristol and with Dx. P. P. Wegener, Dr. B. T.

Chu and other Yale University Researchers working on conden-

sation, as well as Dr.'s B. N. Hale and P. L. 14. Pluzrm'er at

the University of Missouri-Rolla, were helpful and are

acknowledged.

This work could not have been completed without the

continuing advise and encouragement of E. R. Buckle, Sheffield

University whose help was sincerely appreciated.

The author givos thanks to the Power above for allowing

a glimpse into his very nature as seen in the dynamic beauty

of these calculations.I I
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III. CLUSTER DISTRIBUTIONS AT EQUILIBRIUM

1. Limiting Constraints

The cluster theory (1) is formul~ted such that non-stationary
growth and decay rates of clusters of every size follo¶ from

phase integral specification of unimolecular and bimolecular

reaction probabilities. Conceptually, each cluster was

originally proposed as an assembly of atoms bound together

by isotropic London forces. Consequently in extending this

monomolecular theory to the polyatomic water molecule, one

must accept an average value of the pair interaction energy

complementing the isotropic London forces. As will be seen

later this does yield meaningful results, even in the highly

dynamic non-equilibrium situation considered later.

Furthermore, each molecule in a cluster can act as an

oscillator with the number of vibrational degrees of freedom

per cluster Xg determined by

Xg = 3g - 5, for the dimer;

Xg = 3g - 6, for all larger sizes;

g, being the number of molecules in a cluster. The vibrational

energy of these oscillators circulates within a cluster at

frequency 7. As in any assembly of loosely coupled oscillators

(with nearly similar vibrational characteristics), at any time

a single oscillator may possess no energy or alternatively

all of the energy. Before the latter condition could be

realized, however, the unimolecular decay criterion(1) would

cause the loss of that particular oscillator. That is, when

6



the energy of a single surface oscillator exceeds the

"coupling" energy to its nearest neighbors it is lost from

the cluster; this energy amounts to X ul where X is the

nearest neighbor coordination number and u"1. is the pair

interaction energy.

This decay energy or energy increment per loss (or gain)

should not be confused with the cluster potential energy as

in addition to the vibrational energy circulating from

oscillator to oscillator, the cluster possesses energy binding

it together; this is discussed further in 111-8 and V-2.

Another parameter to be specified is {(a * which apportions
g

some fraction of the X overall vibrational modes to be those
of surface sites eligible for decay. The limiting constraints

selected to obtain this parameter as well as those above are

now considered.

The cluster theory independent parameters to be specified

or determined are:

,,oii -pair interaction energy

V -cluster internal energy circulation frequency

{efa - surface site to internal site parameter9 g>l

{Xg},> - nearest neighbor coordination numbers

C1  - monomer concentration

gý - cluster size of effective numerical infinity

{ These brackets denote the set over all g.

7



where C is the stationary concentration (f is used for non-

stationary states). It is the determination of these quantities

from the limitinq constraints that makes the solution unique to

water. (In addition the collision cross sections, molecular

' masses involved, and some knowledge of the structure is

required, see 111-8). This is in marked contrast to a nucle-

(3)ation theory developed for a specific vapor (water) where

the vibrational characteristics of the particular molecule

involved are included as parameters vithin the theory.

The limiting constraints to be i'atisfied here for saturated

vapor equilibrium at any temperature far removed from the

critical point are:
I • = lim u

(1) Equilibrium constant; gWg. g

(2) Zero temperature sublimation enthalpy; AO = 1ull

(3) Saturated vapor pressure; p = E C kT

g>o g

(4) Molecular number balance; C,0 = £ gCg
0 g>o

(5) Incremental surface free energy change; b4 = 0
g19,

(6) *Static pressure profile; {Pk} = {pk}

theor. exp.

(calculated by starting from initial stationary {Cg1)
g

The computational procedure described next is iterative

in nature; iterative within the equilibrium solution as well

as between resulting equilibrium and non-equilibrium solutions.

*Non-equilibrium condition satisfied later.

8



As will be seen later in V-2, even if satisfactory

molecular descriptions of either the latent heat or surface

tension were known, they would not be used instead of limiting

constraint (6) to yield a complete evaluation of the theory

because of the nature of ý. Approximate means of calculating

these two parameters are proposed here but they are not used

as limiting constraints.

The first of the variables discussed is Ug, the surface

site to internal site parameter. Recall from the cluster

theory(1) that this parameter apportions the fraction of total

vibrational degrees of freedom that are decay vibrations, i.e.,

associated with surface sites. In the absence of a theoretical

interpretation of this parameter in terms of the equations of

molecular motion within the cluster, one must choose a model

for the cluster structure. The very nature of the unimolecular

decay mechanism in Uie theory obscures the precise effect of

the internal structure of clusters, thus detail of this nature

must come from other considerations.

The first approach is to envision a water vapor cluster

as an assembly of hard spheres with collision cross sections

defined in the classical sense(l). For small size clusters

all molecules would appear to be on the surface (See Figure

VI-3.1) and paralleling the Pauling type clathrate cage where

the first cage closes at size g = 20 we define

= 1, 2Zg720 III-1.1

9



The cluster theory") yields a limiting value of a for clusters

having macroscopic properties in the equation preceding 8.14(1)

i.e.

36w 1/3a. = lim a = (-11-) 11-1.2

As will be seen later, the structure based on hard sphere col-

lision diameters yields a value of g. near 120. When g. Z 120,

a. -- 0.98 so the parameter ag remains near unity. The behavior

imposed here for what might be called the hard sphere collision

(HSC) is:

ag = 1, 2 < g < 20

= 1-0.1 (A1, g > 20 111-1.3

The 'ariation of ag, g > 20 does not have a great overall effect

on the cluster distribution. Calculations were performed with

various forms of the expression for a g and gave only minor

differences in the final result, the same cannot be said for

the parameter Ag, however (see below).

In the interest of closer approximating the structure of
water clusters a second structure was considered (see following

discussion on collision diameters and Section V-2). Implicit

in this second model is the departure from Van der Waal type

forces but with a structure and bonding more akin to water.

Calculations with the model now designated as the water

clathrate model (WCM) show a shift of g. to about g 200

s . becomes about 0.83. For this case we have

10



ag = - 0.2 (.1), 20 < g < 200 111-1.4
gg

It will be seen that both models yield good results in pre-

dicting the dynamic behavior of non-stationary states (Section

v-2).

For the hard sphere collision (ISC) corresponding to

A cosr aprxi ato to i~.0l,g = r.(i~gi) 111-1.5

A closer approximation to actual dimensions taken from a scale

water clathrate model - WCM would be

Ulg = rI(f+2(g)i/ 3 }, 111-1.6

which is used with ag described by equation 111-1.4. The value

of rI used is 1.4.10-8cm for all calculations. A summary on

all aspects of both models is given in Section V-3.

2. Iteration Schehte

Having specified the independent parameters of the theory

and the limiLing constraints which must be satisfied, it is now

shown how these conditions are met. Referring to the iteration

scheme of Table 111-2.1, one initiates the problem by selecting

values of temperature T, pair interaction energy u01 1 and

vibrational energy circulation frequency v. A starting value

of u011 was obtained by subtracting 3kT (for rotation and

translation modes and ignoring expansion work) from the latent

heat per moZecuZe at 273 0 K and equating the result to A•u*ll.

*I Selecting, arbitrarily, . = 3.0 gives a starting value of

U = 2.98 k cal/mole.

!!1
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TABLE 111-2.1

ITERP.TION SCHEME

K choose T *K.

choose U 1l (limiting constraint 2)

(A) choose v 3

caic. C (perfect gas at saturation pressure
for p ZC kT)

(B) choose C (since p C kT)

calc. X .

Scalc. Fe from t, (a, (Limiting case -gg•
W(V, U*l)

calc. F(g,G) from w•. (_), (w. = MLF(g,e)

W(uII •,)

(go to A)Lcompare FM) & Fg,e) if 'Na) I Fib) within c
modify ;Y ;Iixiting constraint 1)

choose g. (Section 111-3)
(C) choose m1 (slope of X vs g)

calc. (C i

, calc. p

(go to B) Lcalc. C if (4) and Cl i C

tmodify C 1 (liniting constraints 3 & 4)

(go to C} tplot c,if &c 31 o at g = g., modify mA

(limiting constraint 5)

Use (C )as initial condition for non-

equilibrium nozzle calculation. Follow

expansion down to onset of condensation I
at pressure p. , if (p1th.... $ {(p1}..

modify • (limiting constraint 6)



Choice of the vibrational energy circulation frequency

raises questions on its relation to that of vibration spectra

of water observed experimentally. For water vapor(4) there

are frequencies associated with shifts in mean molecular

position as well as with individual molecular vibrational

modes; the former range from about l0iI to 1012 sec while

-1-11
! the latter range upwards from 101 sec- to well above 101

sec 1.(1

The cluster theory ()assumes random distribution of the

vibrational energy xgkT circulating at frequency v over Xg

vibrational modes. In the classical approximation .. , I
S<< kT/h 111-2.1

(where h is Planks constant) such that the circulation fre-
quency cannot exceed the frequency of any one vibration. It K:

is assumed that the vibrational energy circulation frequency

here is more closely related to water spectral frequencies

associated with intermolecular vibrations (shifts in molecular

position); this assumption is supported by later results

(Section V-2). At the initial temperature of interest, 273*K,

equality in equation 111-2.1 gives

•= .7x10 1 2 sec-1 .

2Next, the approximate manomer concentration C1 is calcu-

lated from the perfect gas law (p = CkT) first taking C- C1

and a linear least squares fit of vapor pressure data for the

liquid state 5 . It is assumed then that

13
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p E 1 C kT, 111-2.2

g>o g

such that all clusters behave as a gas. The value of C1 Il
calculated above from the perfect gas law must be reduced to

account for the partial pressure of the clusters and at the

same time maintain conservation of mass by -- lecular number

balance in limiting ccnqtraint (4); this latter condition

requires that the number of molecules of water in any dis-

tribution does not exceed the number calculated originally from
the vapor pressure and the ideal gas law.

Once the initial value of u 1 1 is chosen at the start of

this iteration process, the value of A is fixed by limiting

constraint (2). The next step follows from the thcary (1) as

the equilibrium constant at saturation for the limiting case

(g.go) is , =1 /C 1 . This result comes from the definition

of the parameter J,

J E 3 n CI/W.' 111-2.3

which differs slightly from in of the saturation ratio because

equation 111-2.2. At saturation J = 0 and C = l/c C so

an alternate expression for J is
'I J = in CI/C 1 s. III-2.4

Perhaps the most indirect of all the limiting constraints

specified is condition (1) but this gives a means of selecting

a value for the internal energy circulation frequency 7 that

satisfies other conditions of the theo.v. Consider first the

equilibrium constant which results from detailed balance for

114
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each g size (see {8), reference 1 for complete details)

S - C CIg_ = MLgF(g,0), 111-2.5

"where M, F, G are convenient groupings defined by

ii = (87ru* 1/ml) 1/2r12/;, 111-2.6

L(g>3,o) = ( ,/a Xg -1 )n 111-2.7

g \ng 11 (a 21/2

K -(0,g/rl)
2 /(1lg/ml)I

2  111-2.8

F(g,e) = (ee/I /2) G(g,O), 111-2.9

G(g>3,8) = {exp1O(-l)]-exp[e/(Xg- A_l-

1/(l+XgG + x 2g 2/2)', is1-2.10

where 0 O 11 U AlT, m I is molecular mass of water, pJ is the

reduced mass and X is the nearest neighbor coordination number.

(1)2/In the ther---dynamic li-mit of size(1 (g--), Kg-l=g/,

a =(361r/g) 1/3 and X =A. giving the asymptotic values independent

of size g.

L= ( 1/367) 1/3, 111-2.11

AA
F(g,6) = F(e) = [exp(X G)-I/

01/2 21+ 2+
(1+X= =+ 2e /2), 111-2.12

O= MLF6 111-2.13

Now, making use of the thermodynamic limit of size (g--) at

the condition of a saturated vapor (J=0) gives, by equation

111-2.3, 111-2.11 and 111-2.13

F(e) = /ML = . 111-2.14
1 5



allowing equality here with equation 111-2.12. Having already

" I defined values of u0
1 and X. in this iteration sequence some

value of V will satisfy both 111-2.12 and 111-2.14.

At this point some implicit conditions of the theory

must be satisfied. The surface free energy in terms of the

equilibrium constants is

S=-kT Eg In (wi/c).3 111-2.15

i=2

As w tends to w. (g-) and the clusters take on bulk properties

(at saturated equilibrium), by equation 111-2.15 the increment

of surface free energy A4 = ý - Cg-, must approach zero; this

requirement becomes limiting constraint (5). Also, by equation
111-2.5 the value of A; is positive when G(G)/G(g,e)>L /L.

This important condition begins to limit the range of

u U11 and v. In general, high values of u 1 1 require high

values of 7 in order that AC be positive over all g; too low

a value of 7 causes a hump in the distribution fC I with

A;<o. At the upper bound on ;7- 5.7-1012 sec-I, UO1 1 must

be reduced to about 2.91kcal/mole to satisfy the condition

AC>o, g- as well as equations 111-2.12 and 111-2.14.

3. Numerical Infinity

In any numerical iteration technique an upper bound on

the calculations must be specified. Selecting the value of

cluster size corresponding to numerical infinity is considered

next although this in reality is a separate iteration and an

independent method of determining the size at which clusters

16



take on bulk properties. A first approximation at the value

g. is arrived at by the method described next, further refine-

ment is a result of iteration to satisfy limiting constraint (5).

We must borrow from the following section the description

used for surface coordination nurber for nearest neighbors,

X .* The simplest behavior of this paraumeter would be a linear

variation with cluster size. The slope of such a variation

is taken as mV, which is, in fact, the incremental change in

surface coordination number per unit increase of cluster size

(above the trimer). The equilibrium computer program (See

VIX1-2) is now run with all variables held constant except for

m i. An arbitrary value of this parameter yields a minimum

(artificial) in a plot of the resulting saturated equilibrium

cluster concentration versus size g. Defining the cluster

size at the minimum in concentration as g=g* and plotting this

against the assumed value of m. gives the result in Figure

111-3.1. The difference in the quantity x,-. is also

plotted; Xg* being the value of AX corresponding to the

minimum in {C ).

As the value of slope mX is decreased the bluster size

g* at the minimum in {C g tends upward in size, the difference

X -Xg. approaches zero and as is shown next the increment in

AC approaches zero. Below a slope of m. = 0.01, the minimum

in g* rapidly exceeds 103 (HSC). Once this approximate value

of mA is determined it is further refined by iteration to

satisfy limiting constraint (5).

17
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In Figure 111-3.1 the effect of determining g* at several

values of circulation frequency v and X. is evident with no

great change occurring with small variations in either parameter.

The effect of slight changes of slope mx on surface free energy

are shown in Figure III-3.2 indicating its sensitivity to

structural variation. At a cluster size of about g=123, Aý

is effectively zero (to three figure accuracy) for the hard

sphere collision for the conditions shown.

4. Nearest Neighbor Coordination Nunber

With regard to the variation of nearest neighbor coordina-

tion number Ag, only the behavior with linear variation is

present here; numerous other descriptions ware attempted but

satisfaction of the limiting constraints was not achieved.

Considering the previous discussion on a we see that no

matter what model is considered (HSC or WCM) the first 20

molecules are prescribed as surface molecules; the iresediate

consequence is that Xg is a surface coordination number for

g 5 20. Since we use equation 111-1.3 to describe ag (HSC),

g>20 nearly all of the other sites are surface sites and A
g

must be essentially a surface coordination number throughout.

It will be seen later (V-2), that the principal contribution

to the reaction dynamics is from small cluster sizes (g<10)

so the distinction between surface and bulk coordination is

unimportant for either the HSC or WCM case. In the absence

of any further theoretical relation between Xg and a g we

assume the following. The upper limit of the set {X 9 is X-

19



2.0 , , ' i

I i0.013F

0.0153

)A 0.0160

1.2 I-HARD SPHERE COLLISION

U'Ip-2.9 KCAL /MOLE
U -I

if aUt,/k•1460oK

0.8 102 -a5.35-1 SEC--

T 273" K

f 0.4-

0 40 so 120 160 200

CLUSTER SIZE g , HSC

Figure 111-3.2
Surface Free Energy

I20



whose value is known from the asymptotic approximation dis-

cussed earlier (equation 111-2.11 & 111-2.13). A lower bound

is also known since for the dimer, X2 = 1 and for the trimer

A = 2. Thus for g>3 X can vary only between the limits 2
3 g

and X_. For water (or ice) it is reasonable to suppose A1

cannot be far removed from a value of 4.0 representative of

tetrahedral coordination( 4 ).

Of the many variations of Xg considered the following two

linear models were most successful in satisfying the

constraint:

Xg )3 + m (g-3); mI = const.,3<gzgm,

ag = ; g>g,, 111-4.1and
g= )'3 +9 (X.-A3); 3<g~g -

X = A g>g, 111-4.2

g

The second linear case, equation 111-4.2, yields results quite

similar to those of equation 111-4.1 except that fine adjust-

ment in mI allows attaining the zero change in incremental

surface free energy required by limiting constraint (5), (See

Figures 111-3.2, and 111-4.1 to 3) while adjusting g. in

equation 111-4.2 does not. The behavior adopted henceforth

is according to equation 111-4.1.

The final limiting constraint, (6), which requires agreement

between theoretical and experimental supersonic nozzle static

pressure distribution is satisfied in section V-2.
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Solution of the equations for saturated equilibrium

(8.1 to 8.16, ref. 1) for the case of water vapor in air is A

given in a FORTRAN interactive computer program in Appendix 2

with the nomenclature given in Appendix 1. Corrections to

reference 1 are given in Appendix 4. A summary of HSC results

for several values of pair interaction energy is given in

Table 111-5.1. Results are also given for the dimer equilibrium

constant for comparison with that obtained( 2 1 from Keyes (6)

data.
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5. Results at Saturated Equilibrium

"When one succeeds in satisfying limiting constraints (1)

through (5), the results appear (HSC) as in Figures 111-4.1

to.I1-4.3. At conditions of saturated equilibrium, satis-

fying boundary condition (5) also implies that ACg = 0 as

g-gg. This is evident from the equilibrium distribution(1)
Cg = C1 exp[(g-l)J-C /kT], 111-5.1

1 9

which at saturation (J=O) is

Cg 9 C1 exp[-Cg/kT]. 111-5.2

i.e., at a given temperature the variation in {C9 ) at saturation

is entirely dependent on the incremental change in surface free

energy AC with cluster size. The use of the concept of an a

effective numerical infinity is tantamount to the assumption

that clusters of size g Z g. exhibit bulk properties.

In Figure 11i-3.2 it is evident that the distribution

{Cg) is quite sensitive to the variation in {A 1. A zero

value of the slope mA in equation 111-4.1 yields a nearly

linear decreasing distribution {C g with, of course, no
9

minimum appearing. A finite value of m\ causes a minimum in

the distribution (C I with limiting constraint (5) requiring
9

that this minimum occuar at effective numerical infinity. In

the WCM case, Figure 111-5.1 shows that the minimum in (C I
g

or alternatively A,-0 has shifted outward to the neighborhood

of gz--200.
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6. Variations with Temperature

The compurer program of Appendix 2 gives results at

saturated equilibrium at any temperature by varying the input

temperature. Having satisfied boundary condition (1) through

(5) at 273*K, the parameters listed in Table III-5.1(c) were

used at the other temperatures given. The monomer concen-

tration satisfying boundary conditions (3) and (4) was the

only iteration performed with the end result that condition

(3) was satisfied at the temperatures given. The HSC con-

centrations obtained are given in Figure III-6.1 with the

net result that boundary condition (5) was satisfied over the

range 290*K-230k. (See later discussion on V, however, in

Section V-2 with regard to condition (1)).

7. Surface Tension of Clusters

Theory(1) gives for the small cluster property corresponding

to the specific tension in the vapor-liquid interface

fr = (g/gs) (P/m 1 )2 / 3 , 111-7.1

which differs from the classical result obtained by equating

the product of surface area and surface tension equal to

surface free energy, i.e.:

'I2/3 2/ 1/3,
w i = ( Hg2) (P/i}2) / (36r)/, III-7.2

where in effect a = (36w/g! 1 / 3 , but note that this is a for a

flat surface (cf. line 3, pg. 1280, Ref. 1). Early attempts

at evaluating the theory included satisfying equation 111-7.1

as a boundary condition. Examination of results in Figure

29



_______ -______..______.----,

10

L-1

T, K

290

-2 273
250
230

CASE (C TABLE M -5.1

-3 - T,*K CI(CM-3)

290 4.80-1017'

0 273 1.60.10''-- , '
250 2.75-10

230 4.54-10 s

50 40 80 120 160 200

CLUSTER SIEG, 1:C
Figure III-6.1

Concentrations at Saturation, 2900 to 2300 K

30



iA

Eq M -1T

Uj2.0-•:.

N.'0 Eq. •X- 7. 2 .'

01.0-

O.n, ' I , I ,"r
"0 40 so 120 160 200

CLUSTER SIZE G, HSC

Figure 111-7.1
Surface Tension Variation, Saturation 2730 K

31..



1''

3.0 ' '

Eq.II-71
v 2.0 -•. -

LU

I<• Eq. MI -7.2 1..4<

0 40 so 120 160 200

CLUSTER SIZE G, WCM

Figure 111-7.2
Surface Tension Variation, Saturation 2730 K

32



111-7.1, however, shows thpt for the Hard Sphere Collison,

macroscopic levels (1- 75 dynes/cm at 273
0 K) are not reached

until the cluster size approaches g = 200 using equation

111-7.1, or much larger sizes by equation 111-7.2. To conform

with conditions specified thus far, for g<g_ Z 124 equation

111-7.1 is appropriate and for larger size, equation 111-7.2
i ~would seem more appropriate. Results in Figure 111-7.2 for

WCM indicate that macroscopic levels of surface tension would

not be attained in either case until sizes in excess of about

250 were reached.

The net result is that the use of surface tension as a

limiting constraint precludes the possibility of satisfying

all other limiting conditions imposed. It appears that the

simple molecular viewpoint used to interpret the equilibrium

theory here requires that the property F corresponding to small

clusters be considered higher than the macroscopic, even at

the cluster size satisfying other limiting constraint for

g'g=.

8. Latent Heat

As a possible alternative limiting constraint the thermo-

dynamic property known as latent heat was considered. In the

absence of a molecular description of this property the following

crude model is proposed.

Consider the energy added to a system in going from the

liquid to vapor state (at constant pressure, temperature) as

the energy used in breaking bonds in the liquid to establish
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and energize an equilibrium population of monomer, dimer,

trimer, etc. in the vapor plus the work in moving the system

boundaries. In the liquid state some of the nearest neigh-

. (4)bors may be hydrogen bonded in tetrahydral coordinationi others may not be involved in hydrogen bonds. The fraction

not involved in such bonding may be as high as about 0.6 at

273*K with most results predicting a value near 0.5. A

I crude attempt is made below to allow for the overall effect

of such unbonded water molecules in the liquid state.

In proposing this crude model of latent heat some

knowledge of the structure of water clusters is required. .

ICluster structure which evolved in the course of the iterations

to satisfy limiting condition (6) is discussed in section V-4

and the resulting number of bonds ng per cluster is given9L
in Table 111-8.1 for both the HSC and WCM. The bonding

scheme is important because the energy stored in these bonds

must be considered as cluster internal potential energy in

addition to its vibrational energy.

TABLE 111-8.1
BONDING ARRANGEMB•T

Liquid Vapor n,HSC n,WCM

n = X. 4, bonded monomar j 0 0

dimer 1 1
n < 4, unbonded trimer 2 2

g-mer gX /2 g-l
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For hydrogen bonded molecules in the liquid state with

tetrahydral coordination, removal of a single molecule is

taken here as the breaking of X = 4 bonds; in the non-hydrogen

bonded case the number is lower and is discussed below.

Using these concepts, for each dimer formed two molecules
5' have their bonding changed from n=X.(liquid) to n2(vapor).

Assuming pairwise additive interactions for nearest neighbors

(at absolute zero in temperature) the energy required to

separate infinitely a single molecule from the liquid is

A ul In forming the dimer, two such actions are required

and the energy regained on bringing two infinitely separated

molecules to form a dimer is n2 u*,,. Hence, the energy

required to produce a dimer from the liquid (at T=0) is

(2 -n 2 )u 11. By similar reasoning, we have a g-mer:

(g)AL-ng)UW iio There does not appear to be any reliable

method of predicting what fraction of the liquid seate

molecules are hydrogen bonded in tetrahydral coordination,

so simple reduction of Xm(liquid) from 4.0 to a lower value

determined by iteration is introduced to give an overall or

effective X in the liquid state. Thus a resulting value of

X.A= 4.0 would imply 100% bonding in tetra-hydral coordination;

a lesser value implies the presence of unbonded molecules in

the liquid state. Next, to adjust for temperature above zero

we must add an amount of energy equal to the difference in

thermal energies of the g molecules in the gaseous and liquid

"states as well as the work of moving the system boundary

S_ _ 35



outward from the liquid state to that encompassing both

liquid and vapor. This additional volume is that required

to allow full thermal energy for each cluster in the vapor.

We can now express the T=O energy difference from liquid

* to vapor, say for the diner as (in ergs Per cc of diner):

bonds broken (net) dimers formed
1- diner formed X C2

x Ul -8.1

For any other size, including the monomer we have (gAX-ng)
or in establishing the entire equilibrium population:

Cg u* orisalsig h nieeuliru ouain

L' = E (g). -ng) U , 1- Uj

g>0 g g>o g g11-8.2ll

where ng = g'i 2 HSC, g-l WCM.

In addition to this, energy added to a system to vaporize

it must do work against its boundaries and increase the kinetic

energy from that in the liquid state to that of the vapor;

here the kinetic energy of the liquid state is neglected.

As in the theory(1) the clusters have vibrational, rotational

and translational energy with the rotational and translational

degrees of freedom for the water taken as 6, the dimer as 5

and all others are taken as 6. The vibrational energy is

described by

Cv = Xg kT 111-8.3

where Xg = 3g-5 for the difrer and 3g-6 for g>2. At constant

pressure and temperature, the -!xpansion work per molecule is
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pv or considering the clusters as a perfect gas pv=kT.

Thus:

L' = L* + Energy~trans, rotat.,vib.) + Work

L' = Lo + - kT(C kT(C2 0 k( 2)
g. g.

+ %r E C + kT E XgC
g"3 9  g=-2 9

+ kT E C.

g>o g

To compare this result with accepted data in the literature,

such as L = 595.5 cal/g at 273*K(5), the total mass u T in grams

for the population {C ) is required. Here

;IT = mV g g C 111-8.5g>o g 9•

where m1 is the mass of a single molecule and V is the total

volume occupied. Consequently the density is given by

PT/V g/cm4. Thus tabular values of latent heat L are
T3

converted to cal/cm3 by

L' = (L cal/gram) (m1  E g Cg g/cm13)1. 11-8.6

Now, ecpqating the results in equations 111-8.4 and 111-8.6

gives
SC1

9>0 ~ >

gog,

E CkT C2 E IT aj

2 m E g C 2 m E g C
g>0 g>o

+ .tT g=2 9g g kT c~o 9, 111-8.7
:•-_~ ~ -, •gg C - Z g% C,,-=..:-
-> _ 9 ... 9>0 9



which allows direct comparison with known values of latent

heat in units of cal/g.

Iteration for X0 (effective) in equation 111-8.7 for the

liquid state at 273*K yields a value of 3.04 with L = 595.7

cal/g (HSC) and the term by term contribution to C is given

in Table 111-6.2.

TABLE 111-6.2

Results of equation 111-8.7 at 273*K, L = 595.7 cal/g, HSC and WM4C

Term 1 2 3 4 5 6
Magnitude, cal/g 478 88.2 0.0047 0.002 0.02 29.4

% contribution 80.2 14.8 nil nil nil 4.9

with the monomer accounting for nearly all the energy. The

solution of case (c) Table 1II-5.1 was employed here with

identical results for both WCM and HSC because of the dominance

of the monomer.

It does not appear fruitful to 3peculate further on the

possible fraction of unbonded molecules in the liquid state.

Reduction of X. from 4.0 to 3.04 with the nearest neighbor L
concept employed here does imply unbonded molecules in the

liquid but the fraction is still unknown. The majority still

could be in tetrahydral coordination with an appreciable

fraction involved in fewer bonds.

Due to the uncertainties involvede the latent heat was

not used as a limiting constraint in this work.
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IV. CLUSTER DISTRIBUTIONS FOR SUPERSATURATED
A14D UNDERSATURATED CONDITIONS

1. Experimental Realizaticn

iThe system considered is that of a dilute solution of
water vapor in a carrier gas of air. To examine the states

traversed by this mixture while it expands adiabatically in

a nozzle it is convenient to refer to Figure IV-l.l in coordi-

nates of log _ and log T. For the adiabatic expansion of the

mixture p = cpyi where yi = cpCv and is to a close approxi-

nation equal to the ratio of specific heats of air, and

p = pRt. The slope of the adiabat (ABC) is only a function

of the specific heat ratio (yi) of the carrier gas

Z1. 2lg) = 71
TigT = - IV-.I

while for the vapor the saturation line (A'C') is obtained from

data(5) or the Clausis-Clapeyron relation and p = ort:

log p. = 9.3286 - 2367.713/T, 300 < T < 250 IV-l.2

The vapor and carrier gas temperature are assumed identical

at all tires For a mixture initially at point A, the vapor

state is undersaturated and J<O( . Adiabatic cooling of the
mixture occurs on expansion, with saturation at point B.

Beyond point (B) the vapor is supersaturated with apparent

collapse of supersaturation beginning at, say, C. Cluster

distributions corresponding to thermodynamic equilibrium

from point A to C are now considered with those beyond examined

later.
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Point A is typical of the initial condition encountered

in the experiments described later. The undersaturated con-

dition at point (A) where J<0 follows from equation 111-5.1.
Since J=In C1/= = in C/CIs, the monomer concentration CIs

at saturation (A') (at the temperature of point (A) must be

calculated to define JA" Conditions at (A') are known from

the solution of Appendix (a) with iterations satisfying the

saturation pressure equation IV-l.2, other parameters are

retained from the results at 273*K. Once C1 s is known, the

calculation is rerun yielding the stable undersaturated (J<0)

distribution (a), (296*K), given in Figure IV-1.2.

For the svpersaturated condition (J>0) again as in the

undersaturated case the equilbrium equations must first be

solved for Cls. Once CIs is known the solution proceeds as

before with limiting constraints (3) replaced by the iteration

for the isentropic pressure Yi

pi 0.452 (-Z.Yil IV-I.3

Typical results for temperatures encountered in later experi-

ments are given in Figure IV-l.2. As noted in the theory(I)

the mirnimum present in {Cg} wh6n J>0 corresponds to Volmer's

critical size at g-g*. For further discussion of this point

see Section VII.

"I 4
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J-r
V. NON-EQUILIBRIUM AND RELAXATION CONSIDERATIONS

•" 1. Constant Vol-me Quenching

in order to begin to compare the results of numerical

analysis with experimental data, initial equilibrium conditions

for the calculation must be known. Once the basic predictions

of the theory of equilibrium are in hand it is possible to

employ these results as initial conditions and begin the

calculations involving a gradual departure from equilibrium;

such is the case in the rapid expansion of a condensable

vapor in an inert carrier gas. However, inasmuch as an

adiabatic expansion is difficult to interpret on the molecular

scale, it is useful to examine first the constant volume

quenching process and then to proceed to the case of a steady

expansion.

Consider a mixture of saturated vapor with a cluster

population {C } and inert gas initially in thermal equilibrium

subjected to infinitely rapid cooling to a supersaturated

state and maintained thereafter at constant volume. The

clusters present initially at equilibrium are thus subjected

to quenching with the rates of cluster growth exceeding the

rates of cluster decay tending, in effect, towards condensation

with an exothermal rate of heat production.

To calculate this heat production consider the gas phase

reaction by collision of an Ag_! cluster and a A1 monomer to

give an A cluster

A + A1 = Ag, V-1.1
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in the interval during which the temperature T is constant

and the total volume is unchanged. The kinetic theory of

cluster formation(1) specifies the energy release associated

41 with this reaction as AgUOll, the product of the nearest

neighbor surface coordination number and the Van der Waals

pair interaction energy. The objective here is to specify

the net exothermal heat of reaction associated with all

reactions, Eq. V-l.l for a cluster population {Cg~g>l sub-

jected to a rapid quench (or heat bath).

Several approaches to this problem were considered

over the years with the most promising result given here.

To describe the energy of reaction of V-1.1 an energy

balance is first taken on the bimolecular mechanism z ,e

Acl + A1 Ag "9[
and then followed with the unimolecular process I"

Ag .A g -l + A1lI

within a fluid element of constant volume, temperature and

concentration.

Consider first the bimolecular reaction

Ag-1 + A1 -A g

proceeding forward at rate R+e. For every A cluster formed
g g

at rate R+ from an A cluster, 1 monomer is 'consumed' and

I gUll energy of reaction is involved per Amer formed. A

general energy balance on the element is (where f de/dt)

f 44



0

*in + liberated out + /tored

with bimolecular input equal to

•ib CO R+ +cT R+ + + + cR R+ V-1.2ib,bi g g-l g 1 g glib, •

per cluster. The reaction rate expressions from the theory

are summarized in Table V-l.l. Energy c0 is the zero point

cluster energy equal to the sum of all pair interaction

energies within a cluster at zero temperature. This energy

can be viewed as cluster internal or potential energy involving

all molecules, both bulk and surface, of each cluster. Energy -

T.c is the thermal energy corrections for temperatures above

absolute zero contributed by the thermally-excited degrees of

freedom previously defined (Section II-8). Thus, for the

particles involved in this reaction we have:

Particle Energy

:g £g int. g,rot. g transl

Xg kT + 1 C kT + I Sg kT

A =g kT + kT + S kTi g-l: 9- Xg-I •g-I 2Sg-1

A1  : £IT =x + kT 1 kT V-1.3

gFinally, we have cR = gUll as the energy liberated in the

bimolecular reaction( 1 ). It is important to focus attention

on the individual particles involved as it is the (g-l) size

cluster and the monomer which enter the fluid element while

"the reaction "within" the element is written for the (g) size
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TABLE V-1.1

A SUMMARY OF NON-EQUILIBRIUM RATE EQUATIONS

dt g R kg+1 R g+1 g 7

where: 0 =u 0
1 1/kT, and y= o/~l

R+ 2 =Z;, 1 f0 fl 1 0 1 fl yo(1-e)/V0 -

R-2 Z;, fOZý,1 f 7y')Pe( (1-e-0 :

i~~1 01

ii +~R 3> = 6 f3 e f (1+20)/(X2)X r2

g>1,g-1 1 1 -1 g/X (x~-)(g-i-

R- =2 aTf e-g (1+A 0+A02/(Mx2
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cluster. In essence we make an energy balance (bimolecular

part of reaction) only on the new particles dfg,bi =+ Rdt

entering the element as f remains constant with the element.a
The energy out of the fluid element associated with the

bimolecular reaction is

0 0+ T + bout,bi Rg g +g R - dqb/dt, V-1.4

where a positive value of heat input is in accord with the

first law of thermodynamics for the total energy of the gas:

dp dt dw 1.
-t= P --

Next we consider the unimolecular reaction

A -A A.
g g-l 1

within the element proceeding at rate R and involving the decey
g

of df = R dt g size clusters. The initial energy before

reaction is
. 0 e+ CT R+ V-l.6
in,u g g g g

Rwith reaction energy cg = gU*ll we have

9g -g

So

0i T + R-i = c R +c R + e R,in~u g g g g g g
lib.,

The energy--after the unimolecular event--leaving the fluid

element is

_. = 0  R + T R; + c Rg - dqU/dt V-1.8"final,u g-1 g-l _ 1 g

*having taken heat liberated within the element as positive

for bimolecular reaction
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Rewriting the general energy balance on the fluid element

as

~* + 0 V-.
[out,bi - in,hi final,u - Einitial,u = 0 V-l.9

and substituting Eqs. V-l.2, V-1.4, V-l.7 and V-1.8 gives

0co+ T,, €R; + cc, R+ _ dqb/dt)

bi.
0 R+ + C T+ + R )

c- gg-_ g Rg g g R

+(c•_ R- + c g- Rg + EIT Rg dqU/dt,
SUni__.

0 + T+ R--(c R + gc R g g)

So

-dq b/dt - c0g-1 (R + - R ) - c T - (R + -R ) - c T (R + - R ) E1

-dqU/dt - cgR -R) ,

Defining dq =dqb + dqu gives

CO-e (Rg -P.)-c £ C Rg Rdt g-l g g l g 1 g

- R + )Vllg -Rg - Rg) V-1.10

Further, if CR+- R,) -B, or net flux on the element, Eq.

V-1.10 can be written as
-(c E~g-I + c g-I + ec + c) n V-l.ll

where - = ;••U (HSC) or (g-2)u0 ll (WCM). Conceptually,

the balance on the fluid element now appears as in Figure V-l.l.
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This non-stationary result for dq/dt is not related to

the latent heat, an ecuilibrium constant pressure, temperature

concept. It does define the reaction energy on net growth

or decay of clusters which behave as a perfect gas and is

the heat addition term in the first law, Eq. V-1.5. In a

binary system such as water vapor in air, care must be taken

in precisely defining the overall system described by equation

v-1.5 since the heat production described by equation V-1.5

is considered as originating in an external source.

If Cvo is the specific heat per cc of the carrier gas,

the specific heat of the mixture is

cv = Cvo + k {Xg + (S + C )/ I fg, V-1.12
g=l g 9 g 2

where f denotes a non-stationary concentration.

Combining Eqs. V-LS and V-1.11 for the constant volume

cases gives for the mixture:

dT -1 0 T T R *n
at- =v- c g-+ C + E + ci 9 * V-1.13•' =c~v[ g-l g •-Il 1 gg

If p* and T0 are the pressure and temperature before quenching

the perfect gas law is

I|
F d dTV-1.14

and p = kT (f0 + E f) V-1.15
- g1 g

Equations V-l.13 and V-1.14 are non-integrable so that p

and T must be solved for numerically from an initial equilibrium

cluster distribution {C at p0 and T'. The pressure may be

arrived at either by V-!.l1 =r V-1.15 whereC1) (see also Table

-V-l-I. 50



A

9' R_ +R k - R V-1. 16
dt g g+l g+l -V

With this set of equations one may evaluate in a step-wise

manner the changes in state that occur in a constant volume

-' containing moist air as it is quenched or heated. The tem-

perature change produced by the entire population {f ) shift

is applied after calculating equation V-1.16 for all g with

The non-equilibrium behavior of the initial stationary

cluster distribution {C I described by case c, Table 111-5.1
g

and subjected to an instantaneous temperature drop of 0.00010K

(the approximate average temperature drop per collision

interval in later experiments) is given in Figure V-1.2,

Details of performing this calculation are given in the

following section and in Appendix (3); all expansion terms

are simply nulled out for this constant volume case and the

output is examined each calculating interval of 0.4a0 n sec.

In order to gain some insight into the system behavior in

the simplest case, the temperature changes indicated by

equation V-l.13 (practically nil) are also suppressed after

the initial quench of 0.00010K.

The ordinite of Figure V-1.2 is obtained by dividing each

rate dfg by the final positive value calculated for that size

g (defined dfT) while the abscissa is the number n of time

increments At a 0.480 n sec. The dimer behavior is not shown

because of relative magnitude; at n-l, df 2 = -. 22xiC8 ; at
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n=40, df 2 = -0.708xi0 8 . The diner, therefore, behaves here

much like a monomer since its rate is negative throughout;

larger size clusters all have rates which are first positive,

then negative. It will be seen later that with expansion the

dimer rate is positive until departure from the adiabat occurs.

On changing LT to a positive increment of +0.00010 K, or

a heat bath, the opposite behavior is observed (though not

symumetric) with the diner increasing throughout. The dimer

literally receives a "shower" of fractured trimer leading to

positive rates. If AT is increased slightly to say 0.001 or

0.01, then a negative rate with the typical type of behavior

for the larger cluster sizes shown in Figure V-1.2. The time

to the first reversal of sign, i.e.. at df , is given for

each cluster size in Figure V-1.3 as a matter of reference.

The behavior of the cluster is evident in Figure V-1.2

with a wave-like disturbance oscillating in the medium until

damped by the growth and decay processes. Interpreting the

results of Figure V-1.3 as relaxation times (in attaining

equilibrium) would be incorrect since gradients would still

exist in the medium, at the times shown.

A reassuring check on the theory and computer analysis

is available at this point. Since the equilibrium solution

was obtained by detailed balance involving non-equilibrium

rates, the use of an equilibrium distribution [C ) at tern-
g

perature T in a non-equilibrium calculation for (fg) at
temperature T should yield stationary rates with =g . R

g5
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all g. The use of hard sphere collision diameters gives a

check to three digit accuracy. It was found, however, that

a check to greater accuracy was possible by modifying the

monomer, dimer collision cross sections, calculating the

equilibrium distribution {C 1, then checking for stationarity.
g

For the hard sphere clathrate, the use of a1,2 = 1.95 r

(vice 2.0 rI) and 01,1 2.05 r1 (vice 2.0 rI) gave equality

in Rg = R- from three to five digits, all g, with the results

at 2730 K given in Table V-1.2.

For the constant volume quench (or heat bath) it would be

possible to follow the behavior of individual clusters in

attaining a new equilibrium by continuing the calculation of

Figure V-l.2. If, however, a new temperature lower (or higher)

by another increment of AT is imposed at time t + At, it

becomes impossible to interpret what is happening on an

individual cluster versus time basis. This is the process

occurring in a rapid expansion where the rate processes of

each time increment modify those of the succeeding one. It

appears fruitless to try to relate such results ".o relaxation

times, rather, investigation of the behavior of the cluster

population on the whole is more rewarding.
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TABLE V-1.2

STATIONARY GROWTH AND DECAY RATES AT 2730K

Si R+ (cm-3 seo-I) R - (cm -3 seq -1 _

0.40966 • 10 0.40958 102V

R3 0.26336 10)22 0.26337- 10 22

Y 4 0.47028 •10 20 0.47020 -10 20

5 0.12430 1018 0.12429 •1018

1 6 0.25205 10 15  0.25201 1015

7 0.43719 1012 0.43711 -1012I I

8 0.68725 109 0.68712 10 9

I 9 0.10143" 10 0.10142 7

110 0.14395 104 0.14392 41 4

Adiabatic Expansion; Comparison with Experiment

The remaining limiting constraLnt, No. 6, is now considered.

In the expansion of moist air in a supersonic nozzle pressure

"humps" which are steady in time develop in the regions of

condensation. The pressure distribution selected here for

comparison is free of shock wave pressure disturbances which
7,8,9 -

could be within a zone of condensation7 . Consequently

the entire difference in static pressure from that encountered

in a moisture-free noz7le flow is due to the effects of heat

addition from condensation. We know therefore that a matching
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of calculated pressure with the experimentally measured

pressure should be a meaningful test of the parameters involved

in the theory. One further test (which is the subject of

future investigation) is the prediction of other experimental

results based on the parameters determined here.

Having gained some insight into possible modes of cluster

behavior it is worthwhile referring to Figure IV-l.I to define

the approach used in comparing numerical calculations with

experiment. For a given set of molecular parameters it is

possible now to calculate conditions at saturation, 1Cg1 =0,

point A', then calculate the undersaturated initial cluster

distribution {Cglj<o, both at initial temperature T0 1 . Using

(C ) J< as an initial distribution it will now be possible to

calculate the change in cluster concentration dfg for all g,

by rate expression V-1.16 modified to include the effects of

expansion. The partial pressure of the entire population

{f I is then simply

f f kT
PV = g>O g V-2.1

The objective here, therefore, is to calculate this pressure,

add to it the local pressure of the carrier gas and compare

the result with the static pressure obtained from experiment

along the equivalent path A-B-C, Pigure IV-l.l. To do this

Swe must add to the results of the previous section the effect

of expansion occurring in the flow.

For the steady inviscid expansion experiencing no body
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forces the net rate of internal energy change per cc is given

by V-l.5 where

Lw = P v. V-2.2

Considering one dimensional steady flow at velocity u in a

nozzle of cross sectional area A, density p, the mass flow

rate obeys

dd (pAu) = 0, V-2.3

and the volumetric flow rate is simply Au. The quantity

d(Li v)/dt is thus given by

S(In v) = (In Au). V-2.4

Since d in y/dr 1 /y dy/dt, hence •]

d 1 Au du dA d
AuA=+u- - I nA V-2.5

Now, rewriting equations V-1.5, V-2.2 and V-2.4 and defining
de = cv dT gives c

d !T- =d d (In Au) i•

ev d dt p ------ ' V-2.6

and having dq/dt by equation V-l.6, cv by equation V-l.12 and
v

p by equation V-1.15 allows expressing the temperature in

equation V-2.6 by

dT 1 0 TO~ +T+ R n1
v gl gTl g1 g

kT (f + Z fg d(n Au) V-2.7
g>0 g dt

The pressure follows from the ideal gas law since
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it d ( pd (In T-ln v), V-2.8

so by equation V-2.4

SI dp d(In T) (n Au) Vdt = pt - d • ,V-2.9
dt dt dt

or combining equations V-2.9 and V-2.7 allows

d_ •_ C0 + T +T + -n

-A C g -1 _I~ g± 9 99g>l (gl gi+€ )C

[I + L (fo + Z fg) d(l. Au). V-2.10g>o

Here again equation V-2.7 and V-2.10 are non-integrable

and numerical solution is necessary. As in the constant volume

case the pressure may be found from equation V-l.15 rather than

from V-1.14.

4i One further consideration is needed to complete the des-

cription of the expanding medium. Since the volume of the

system varies with time, a term
- f (d/dt) In V V-2.ll

must be added to eq. V-1.16, while for the diluent gas we have

-f 0 (d/dt) In V, V-2.12

noting that the volume change is already specified in terms

of the area and local flow velocity in eq. V-2.5. The change

in concentration of any cluster size during expansion is thus

*, written as the sum of Eqs. V-l.16 and V-2.11

(R+ - + R - R g- f• (in V). V-2.13 F
at 9 g+l Rg+ 1 9
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For the monomer rate equation, we have (constant volume)

dfI E g( ) dt, V-2.14
g=2 d

or with expansion

Sdf E t - f (InV) v-.1
[,g=2 dt

Adiabatic expansion of moist air in a supersonic nozzle

can now be examined. The case considered here (Exp. 405,

Ref. 8) is free of pressure discontinuities from shock waves

so the only deviation of static pressure from that of a dry
S adiabatic expansion is that caused by the heat input of con-

densing vapor. The information required of the experimental

conditions for input to the numerical calculations is the

initial pressure, temperature, the nozzle profile, i.e., the

area A and slope dA/dx. In order to know the time per data

interval the flow velocity u x) in the nozzle is required;

this follows from solution of the equations of motion

Inputs from the equilibrium theory are the initial cluster

distribution {C g and the accompanying parameters (Say case c,

Table 111-5.1). The objective is to match the pressure

deviation in the nozzle observed at onset of condensation--

thus satisfying limiting constraint (6):

The FORTRAN computer program for calculating the non-

equilibrium rates of change of cluster concentration, the

temperature, pressure and other parameters is described and

given in Appendix 3; the general flow chart is also given.
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In essence the program calculates the rates of growth and

decay for each cluster size from the dimer upwards in each

calculating interval thus giving the concentration of each
species with respect to rime (or location). The static pressure

reported is thus the sum of the partial pressures of all species

present, from the monomer upwards and the carrier gas.
The calculating interval used requires further consideration.

The earlier discussion on cluster behavior under constant volume-

quench conditions showed that time increments on the order of

the collision interval were required in that case. With the

complication of expansion the interval to be used was uncertain;

the minimum was still the collision interval but perhaps a

longer one could be used to conserve computer time.

1Collision time corresponding to the mean free path is

calculable from the collision numbers of the theory(1), i.e.:

gg og + Z' - T>() V-2.11

where

4 = Z" f
og og o

Z' =Z f
Ig lg 1

and 

I12 = (8•k__•)i/2 c2 , ,
x'g 'P x,g,x'g

Using concentrations from typical calculations we find, for

example, that at 270*K, -iO " 4nsec. This dictates a scheme 2

of variable step size which is described further in Appendix 3.
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- There appears to be no significant difference in results,

however, between a constant step size and a variable step

size. It is possible by this method of variable step size,

though, to reduce computer time from about 16 hours per

solution to about 1.5 hours. A step size twice the largest

collision interval will lead to an unstable numerical solution.

A further area requiring clarification is the experi-

mental input data. For the case considered here d3ta on Area,

Velocity, etc. were for 0.1 cm intervals. This z too coarse

and must be refined; simple linear relations were used between

data intervals.

A final point of clarification concerns the initial cluster

distribution. Referring back to Figure IV-l.l, moist atmos-

pheric air entered the experimental apparatus in condition A.

Some expansion already occurred at the point where experimental

pressure was first measured. The temperature had already

dropped to 273*K at this point from 295.8*k. To account for

the change in cluster concentration from point A to B, two

approaches were tried.

First, the undersaturated distribution at A was calculated

and expanded adiabatically to 273*K considering the absolute

number of each species to remain unchanged (frozen equilibrium).

Second, the equilibrium distribution at 273*K was calculated.

Inasmuch as the first method gave vapor pressures slightly

lower than those on the adiabat, Figure IV-l.l, the second

condition was used as the initial condition in the results
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reported here. There was very little difference in the two

distributions and both would give nearly similar final results

except that the first case would follow a path just under the

adiabat.

A bit of historical development is injected at this point

to show how the final solution was attained. In evaluating

numerical results, initially, the greatest confidence was

placed in the results of tne rate equation, V-l.12. The

argument stemming from the fact that {C g and {f g are closely

related throt'gh detailed balance at equilibrium; with most of

tIhe experience gained in the many variations of [C g. From9i
this the mass fraction of "condensate" is defined by considering

the evolution oZ all clusters from the dimer upwards. The mass

fraction of water clusters per kg of air is c¢tained by A
• 1 0 - 3_i

X :- mi 3. E gf V-2.12 J

mo g>l fo

where ml and m are the mass per monomer and mass per air
0

molecule (avg) respectively; the initial value of X S O.0C6

being neglscted. If this expr.ssion is summed to intclude

the monomer, the mixing ratio 'sometimis called the spe.cific

humidity) is obtained,

X1 = mi .10- 3 E g f V-2.13
m g~o

X should remain constant throughout equal to the initial value,

here equal to 4.86 g/kg. This is in effect an.other intarnal I
boundary condition to be satisfied.
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The basis of comparison for X is the result of solution

of the equations of mtion for the flow and given elsewhere 7 "8

Although this earlier solution relies on the use of macroscopic

latent heat and therefore has limited validity with respect

to the condensate mass fraction, it does appear to be a useful

first approximation and is plottad for experiment f405 in

Figure V-2.1. Some early results for X are given ih Figure

V-2.1.

An interesting problem is encotmtered at this point,

namely, the strong dependence of X on v. if case c, HSC,

Table 111-5.1 is used, curve (c) results which is quite dis-

appointing in that little or no condensate appears; the small

amount appearing is late in time or downstream of experimentally

observing results. If a temperature dependence is imposed on

v,say

log - log 5.35 1012, V-2.14
0

with TO = 273, still satisfying case (c) Table 111-5.1, then

curve tB) results which is premature or upstream of observed

results.

this point an intense investigation was made on the

influence of other parameters in the theory as well as different

initial condition (Table II t-5.1). Referring to the rate

expression in Table V-l.l one finds that for curve (c) the

decay rates are too large and the system evolution is incomplete

by the tiime the nozzle exit at 1 = 9 cm is reached. Parametric
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studies showed there was little possibility that variation

of U 1 1 , Y, Vol, etc. could substantially affect the system

evolution so attention was turned to v.

It appeared now that the frequency v was the dominant

parameter involved. Examination of Figure V-2.2 shows some

of the variations of 7 that were considered, with curve (c)

and (b) corresponding to those in Figure V-2.1. Since the

experimental results appeared to be bracketed by curves (C)

and (B), intermediate variations for ; were considered with

the following yielding the most promising results (curve D)

log ;7= logV - exp[(To-Ti)/ 1 0 " V-2.15

Having gained some insight into the nature of the behavior

of the theory's parameters a-tention was shifted to comparison

of numerical results with the actual experimental pressure

distribution. Figure V-2.3 shows the degree of comparison

in static pressure (dimensionless p/p 0 1 ) when n = 5/4 and

TR = 213*K, keeping in mind that the calculations were initiated
IR

at T = 273*K at X = 1.5 cm. The isentrope is followed numeric-

ally as is the experimentally observed pressure deviation.

The result in Figura V-2.3 for X was expected to differ from

the earlier result as pointed out previously because of the

earlier use of latent heat.

Once the close match in pressure was achieved reexamination

of parameters in the theory showed nearly direct proportionality

67



between v and collision number Z for the monomer-monomer

interaction. if fact allowing

= k Z V-2.16

gave a match in static pressures within a few percent. A

small variation in k (from 2.05xlO-12 to 1.21xlO0-2) with

temperature and sdturation according to

k=-7.431 - 0.0789 s + 9.54 To, V-2.17

yielded a pressure distribution nearly identical with experiment.

(See Figure V2.3).
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VI. COMPLETE EQUILIBRIUM AND NON-EQUILIBRIUM SOLUTIONS

1. Cluster Behavior

We summarize here the results obtained for both the HSC

and WCM, case (C) and (e) Table 111-5.1 as modified by ; in

equation V-2.15. A complete equilibrium iteration to satisfy

all limiting constraints requires less than an hour at an inter-

active computer terminal (GE-H635) while a single non-equilibrium

solution on a fixed collision interval basis requires about

15 hours of actual computer time (CPU) on a medium scale

computer (PDP 15/40). This is reduced to about 1.5 hours by

using variable collision interval basis described earlier

and in more detail in Appendix 3. As any computed parameter

is observable on an individual cluster size basis at any

time, calculations were limited to size g=10 after observing

virtually no numerical contribution to the results (i.e. p, T,

X) above a cluster size of g=8.
I1L

Initial conditions for both the HSC and WCM case at 273*K

(saturated equilibrium condition) are given in Table VI-l.1.

The evolution of the cluster populations from the initial

condition {C ) of Fig. IV-l.2 is given in Fig. VI-l.1 through
go0

VI-l.4. Recalling that the principal differences between both

the classical HSC and the water model lie in the structure, n

the collision cross section al,g and the nearest neighbor

parameter m1 one finds identical results for static pressure

and close agreement for temperature and condensate X. Also

the larger WCM cross section tends to shift the hump in the
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TABLE VI-l.1

INITIAL CONDITIONS, SATURATED EQUILIBRIUM, 273-K

Size HSC WCM
g C C

1 0.16000000E+18 0.16000000E+18

2 0.10299099E+15 0.10299099E+15
3 0.37137217E+13 0.37137317E+13

4 0.60239349E+lI 0.14863239E+12

5 0.47734832E+09 0.29168346E+10

6 0.20353456E+07 0.30693876E+08

7 0.62537311E+04 0.23091140E+06

8 0.15731362E+02 0.14066905E+04

9 0.34735999E-01 0.74236071E+01

10 0.70293203E-04 0.35375547E-01

11 0.13420118E-06 0.15648930E-03

12 0.24676055E-09 0.65534307E-06

13 0.44375285E-12 0.26360155E-08

14 0.78974221E-15 0.10297684E-10

15 0.14039987E-17 0.39412301E-13

distribution outward from g=4, HSC to g=6 WCM; the concentra-

tion of larger sizes being higher in the latter case. If,

fcr example, n,,, is used with cHSC, the static pressure and

temperature calculated is about 5% lower than experimental.

The disappearance of the smaller sizes, akin to Ostwald

ripening is also accentuated in the WCM case. Once the zone

of observed condensation (here x 7.0 cm) is reached the

smaller sizes (g=2,3, HSC) begin disappearing, i.e. df <0;

gfor the W-7 this applies to sizes through g=5.
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2. Gas Phase Metastable Equilibrium

In Figure IV-i.1 the general expected path of the adia-

batic expansion up to onset was described. Now, having

satisfied all limiting constraints (1,6) a final check on

the solution is to observe whether the adiabatic path up to

onset is calculated and mass balance maintained.

Figure VI-2.1 gives the path calculated for both the

HSC and WCM with calculated results falling on the adiabat

for the carrier gas (C /C = 1.4); the flow Mach no. is also
p v

plotted. The vapor pressure given is calculated from

Pv= g>O kTf VI-2.1

Although the calculated pressure for 4.5<x<6.7 indicates

that equilibrium pressures are attained, the expanding mixture

is not in true thermodynamic equilibrium since the gradients

indicated, for example in Fig. VI-l.1, preclude equilibrium.

Were sufficient time available for the system to evolve to

equilibrium for 4.5<x<6.7, metastable cluster distribution

as in Fig. IV-l.2 would exist (or conversely, if the rates

were sufficiently rapid).

The results of this calculation indicate that metastable

equilibrium is not attained in the course of the moist air
expansion considered here (exp. 405) (8) in spite of the

presence of equilibrium vapor pressure. The vapor pressure

up to onset is a result of the monomer partial pressure which

follows the expansion hardly affected by cluster growth until

onset as is evident in Figs. VI-l.2 and VI-l.4. ?ig. VI-2.1
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I

II
indicates the vapoT pressure from experimental inlet condition

to x = 8.0 cm. t(nile interpreting the results after onset

(x=6.7), it should be noted that the temperature increases due

to the heat of reaction by about 24*K over the dry isentropic

temperature. Over the course of the entire calculation the

Smixing ratio or specific humidity remains constant at x

4.864 g/kg indicating conservation of mass throughout. The

path beyond x=8.0 is then again dominated by the continuing

expansion of the carrier gap along another adiabat (GFE, Fig.

IV-1.1; the process could be interpreted as an expansion with

modified initial conditions. That other nozzle expansions

behave in thi manner is evident by the pressure curve envelope

after onset 7,8

It has generally been assumed in the past that oaset of

condensation is associated with collapse of -etastable equili-

brium; this would mean transition from a metastable super-

saturated cluster distribution, Fic IV-1.2 to a saturated

cluster distribution, •11-6.1. The condensate would then be

the differen-oe in the quantity m1 gI;gCg with the latter
d~stributln falling me-low the former.

Were tle react~ens in our expansion sufficiently fast,

the metastable supersaturated distributions of Fig. IV-1.2

would be obtained. It is seen, howev.,r, in the non-eqaiili-

bri;= ovoivtic~n in Figures VI,-! through 4 that the meta-

stable Gistribution of Fig. IV--i.2 are not attained - - -ri

but since the calculated vapor pressure eqfuals that predicted



by the equilibrium isentrope up to onset point in Pig. VI-2.1

the vapor would be assumed to be in metastable equilibrium.

We see therefore that the metastable concept applies to vapor

pressure and supersaturation but not to cluster distribution.

By the results of Figs. VI-l.2 and VI-l.4 we can inter-

pret onset of condensation either in terms of monomer and

associate departure from metastable vapor pressure with

disappearance of the monomer or alternatively in terms of

.the entire cluster population upwards from the dimer. In

-• terms of the monomer-onset is the 'collapse' of the metastable

'1l vapcr pressure, in terms of the rest of the cluster population--

onset is not collapse of the metastable cluster distribution

(it ne-ver having been attained) but sudden growth caused by

decrease in the cluster decay rates. This decrease is a

direct result of the decrease in internal circvlation frequency

It appears from these calculations that the existance

of the gas phase metastable vapor pressure, i.e. when J>0,

is directly related to both the rates of growth and decay R+,

R_ on one hand, and to ; an the other. It also appears that

-j may be related to the relative abundance of monomer by

LEqu-aton V-2.16. When sufficient time has elapsed in an

expansion for tho cluster concentrations to have grown due

to the continual 'quench' and consequently the increased rates

R- have begun to affect the monomsr concentration, then

the decrease in ronomer concentration causes the frequency v
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to decrease which further accelerates the process as R7 is

proportional to ; and P.<<+. The net effect is the release

of an enormous amount of energy in a short time with the

temperature gradient of the flow changing to about 5 x 105

*K/sec. from about -5 x 105 0 K/sec.

3. Possible Water Cluster Structures

The very nature of the cluster theory (1) originally

developed for monomolecular vapors allows little detail or

descripzion of molecular structure. This attempt in

applying th., t ieory to a more complicated species like H20

is encouraging especially since only an average or effective

value of pair interaction energy u*1 1 is required but it

Z raises the question of the behavior of the circulation

frequency ;. Assuming that the ; question is resolved then

it appears that the limiting constraints developed here allow

extension of the theory to other than monomolecular vapors.

A composite summary of both the hard sphere collision

and the water clathrate model is given in Table VI-3.1 and

Figs. VI-3.1 and VI-3.2. It should be recalled that ag = I

for g 1 20 for both HSC and WC-4 which implies that all mole-

cules in this size range of clusters are surface sites.

7.nasmuch as the theory(I) is based cn classical inter-

pretation of intermolecular forces, the HSC case is in keeping

with this concept. A conceptual view of HSC clusters, up to

g-7 is given in Fig. VI-3.1 with an attempt to represent ng,

the number of bonds and Ig, the number of nearest neighbors

"'taken here as the average).

so
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g: 2 , X 1 g- 3 , Xa2
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Figure VI-3.1
Interlretation of Structure, HSC
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The WCM requires some imagination as the linear

variation of A is still allowed but ng is based on the

structural model of Fig. VI-3.2. Recall that Ag A. as g-(g.);

here A = 3.9 at g Z 195. Although, as pointed out earlier

in !11-4, numerous assumed variations of Ag were allowed,

none other than the present linear case of X = 2 at g = 3 to

AX satisfied limiting constraint (1-6). In the absence of

theoretical prediction of X, little more can be said.

Although ng*, WCM differs from n g, HSC only by approxi-

mately unity, this difference is significant as appreciable

energy is associated with the bonding (or potential energy)

term in the reaction described by equation V-l.ll.

It is gratifying to find that the parameters determined

by the series of iterations required to satisfy limiting

constraints (I-6) do, in fact, resemble those of water,

especially since the value of pair interaction energy u 1 1 ,

HSC and Wc., agrees with recent results for an average value

of 2.9 kcal/mol-bond.( 1 0) This average result is deduced from

molecular dynamics calculations where the detailed structure

of H2 0 was realistically defined. The point is also made in

the molecular dynamics study( 1 0 ) that it is legitimate, to use

the concept of a pairwise additive potential in lieu of an

$exact' potential for water, provided the pair functions are

effecrive pair potentials.
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VII. COMPARISON WITH CLASSICAL THEORY

1. Nzucleation Rates with Present Surface Tension

Earlier attempts(8) to compare the predictions of

classical nucleation theory with rapid nozzle experimental
ii

results were partially successful with later studies reviewed

more recently.(9) These studies have in comon first, the

application of isothermal equilibrium nucleation theory for

'birth' rates of critical size nuclei in highly dynamic

supersonic expansions (4T/bt=-105.Ksec- 1 , or more). Second,

one is always faced with assigning the surface tensions of

i clusters of extremely small size of undetermined state

(liquid, solid). And, thirdly, one must choose a growth law

for clusters after their 'birth' together with an attendant Z

condensation or 'sticking' coefficient.

As is evident(8,9) some degree of success is possible

using the classical approach, however, little progress can

be made in interpreting the dynamical aspects of phase change,

in understdnding the metastable state or, in fact, predicting

Spriori the outcome of a new physical situation.

Keeping in mind the earlier arguments of Sections V-2

and VI-2 with regard to attainment of metastable equilibrium,

the earlier calculations(8) are repeated here using the surface

tension corresponding to the minimum in {C } found in Fig.
g

IV-1.2. Plotting that value of g B g* at the minimum in

(C ) and the corresponding surface tension r(g*), gives the
g

result in Fig. Vfl-l.l with
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r -=64.2 + 1.143(T-200) (dynes/cm) VII-l.l

An approximate relation for g* derivable from the theory (I)

is

g* =34 (A -A J

which is plotted in Fig. VII-l.l. The approximation diverges

from exact values with incredsing supersaturation or decreasing

temperature. At saturation, however, the parameter J = ln clI/

CIs = 0 and the approximation converges to the value required

by limiting constraint (5), g = 0 this is true for both the

1uSC and WCM!

Again, recall that our present calculations indicate

metastable cluster distributions are not attained during rapid

expansion yet classical nucleation theories predict the rates

for metastable equilibrium corresponding to the minimum at

Cg *. Thus it is not surprising that repeating the earlier

calculations (7) with the value of surface tension given by

equation VII-l.l gives little if any improvement over

S previous results.

In Fig. VXI-l.2 typical results are given for predictions

of onset of earlier experiments. It is possible to

iterate and converge numerically on experimental onset by

parametric variation for, say, experiment 405. Using the

iterated parameters in predicting the location of onset for

experiments 416 and 295 with considerably different super-

saturation yields disappointing results.
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NOTATION
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Figure VII-l.2
Location of Condensation Onset by Classical Nucleation

Rates with Metastable Values of Surface Tension
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The conclusion one can draw is that classical nucleation

theory should not be invoked unless the time scale of the

experimental situation is long with respect to time of evolu-

tion of the metastable state. Further investigation of relax-

ation aspect of the present theory( 1 } may yield criteria on

the time of evolution of the metastable state.

2. Future Work

In order to apply the experience gained with water vapor

to predicting other water vapor experiments, further investi-

gation of the circulation frequency v is required. If, in

fact, v = (Z11) then other experiments should be predictable

from the parameters given here.

Reflection on the results presented raises a :ueztion

needing further investigation of the net effect on the heat

of reaction of the distinct approach used in Ref. (1) in

arriving at the dimerization rate in contrast to that for

larger sizes. The partition function is used in the first

case, consequently accounting for the zero point energy while

in the latter case it is not included. If the enthalpy change

of reaction were calculated it would be comIcated by this

fact.

An obvious extension of this work should be to nozzle

expansions of a monomolecular gas such as argon as well as

to other species with molecular properties susceptible to

forming clathrate structures, i.e. H2 S, H2 0, CO2. SO2 , etc.

although argon itself might form clathrates.
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APPFNDIX 1, NOMENCLATURE

SYMBOL VARIABLE REMARKS

A *Eq. 8.8+1, Ref 1
2nd term

ALPHA ag Surface to volume
parameter

ALPHA G *Surface to volume

ALPP1 
aparameter

ALPP1 g+l

AREA A Nozzle cross sec-
tional area

AREA-MG A Sub-interval area

BIGG G *Eq.8.9, Ref 1,
also Appendix 4

BIGM M *Eq. 8.4, Ref 1

BIGM2 U

BK k *Boltzman constant

BRCFG E(3g - (S + 9))fg

C Cg *Equil. concentration

CF *Conversion Factor

CHTG X Vibrational degrees
of freedom

a CHI Xg * U

CHIG4M1 Xg_1.

CHIGPl Xg+l

CHI1 X1

*Symbols for equilibrium solution that differ from nonequili-
brium solution.
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CKP *Pressure conversion
factor

COND X Condensate massfraction in g/kg
i CPO CP, Specific heat -

CUS C *Under-saturated

g equilibrium concen-
'S tration

CV0 Cv Specific heat

ClINF CIs Saturated equil. C 9

C10 C (frozen equil.,
sle Appendix 2)

Cl C1  *Equil. monomer conc.

C1 C1 (initial) *Initial monomer conc.

Cli Ci *Eq. 8.2, Ref (1)

C12 C1 2  *Eq. 8.4, Ref (1)

CIG Cig *Eq. 8.4, Ref (1)

CIKE *Eq. 111-8.7, 2nd
term

CC2KE *Eq. 111-8.7, 3rd

term
CGKE *Eq. 111-8.7, 4th

term

Z CGVIB *Eq. 111-8.7, 5th
term

cGW *Eq. 111-8.8, 6th•

DADX dA/dx Slope, nozzle area

DADXMG Sub-interval dA/dx

DAMG Sub-interval dA

DDADX d(Dadx)
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DDU d u

DELEP 6C See Eq. V-1.4
g

DELEP0 AC* Eq. V-1.2g
DELTAP Pstatic -Pisentropic

DELTAT Tstatic - T.

reacion isentropicreaction

DELTALX Exjerimental data
interval

DELZI

DELZET *

DENOM Denominator, Eq.
V-2.7

SDENOMI First term, DENOM

DENOM2 Second term, DENOM

DENIS DENOM, no reaction
(isentropic case)

DFG df Eq. V-1.13 (total)

DFGA df Eq. V-1.12 (reaction)

DFGEX Eq. V-2.11 (expansion)

SDFCZ41 dfg-l Eq. V-1.13

DFGPl dfg+1 Eq. V-1.13

DF0 df Eq. V-2.12

DFl0D df1 Initial Initial value, no

reaction

DFGI2 Eq. V-2.15

] DFGlEX dfI Eq. V-2.11

DFG2 df 2  Eq. V-2.13, g=2
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DFG2M1 DFG2, previous time
increment

DLDG m7 Eq. 111-4.1

D DPISEN dpi Eq. V-2.10, noS~ reaction

DPSTAT dp Eq. V-2.10 or V-2.9

DQ dq (dq/dt)dt

DOWT dq/dt Eq VIII-3 7

1 DQDX dq/dx (dq/dt)/u

4 DTISEN dti Eq. V- 2 . 7 , no reaction

F term

DTM dt in seconds

DTSTAT dT Eq. V-2.7

DU du Experimental velocity
I increment

DUDXMG du, calculating

DXCM dx Increment of length
along nozzle axis

Dl Eq. VIII-3

D2

D3

EPSIF *Iteration limit,
statement 240

ETAG T g Eq. I11-8.2

FGTM f g Non-stationary -3
concentration (cm -

F !*Eq. (8.8)+l, Ref (1),
3rd term

FIRST Eq. VI-2.l, st-. term

FIRST *Eq. !II-8. 7 , 1st term
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FOTM f Carrier gas _oncen-

0 tration (cm)

FOT?4 f 0o, initial

FTHETA F(8) *From Eq. 8.6, Ref
! (1)

FRT F(O) *Eq. 8.15, Ref (1)

FTHETG F(g,0) *Eq. 8.6, Ref (1)

Fl0D f , no reaction,
ijitial

FITM f iNon-stationary
1 monomer concentration

FlTMO fl, initial

FICIR fl/Cls, same temp.

Eq. VI-2.1

FITERM Eq. V-2.7, 2nd term

F2TM f Non-stationary diner
concentration (cm 3 )

GAMA Y Numerical constant,
see App 3

GAMAS r Surface tension,
dyne/cm

GAMAD Yd (u•O/UI.)
1
"

2 for

diner

GBAR g Average cluster size

GGPLG X Eq. V-2.12 I
GLMDA X Coordination number I

GMAX* = MAXG, below

GINF g numerical infinity 1'
for cluster size

GRATIO G(8)/G(g,) 1>L /L pg 1282, Ref
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GTHETA G(g,O) *Eq. 8.9, Ref 1

LG g-l

g+1

MAXG Upper limit on actual
calculation

MAXGPl MAXG plus 1

MG subinterval index

NG Calculating limit

NGAMA Experimental interval
divisor

i NSTEP Stepping index

NO Index locating start
of calculation

PAIR Initial partial
of an Isentropic
pressure, cm Hg

PCOEF Conversion factor

PI 3.14159

PIN? P5  Equilibrium saturaticA
vapor pressure

PISEN pi Isentropic static
pressure (no reaction)

Partial pressure of?PAR Pvvapor

PPAR0 (pv)=initial

PRES *Calc. pressure, cm.

Eg.

PSTAT p Static pressure of
carrier gas vapor

PVAP Partial pressure at
initiation of program,
ref. only

96



I.1
POI Static pressure

at inlet conditions

QOFX Qw Z dq, See DQ

RDTM dt Time increment
(corrected)

REF Eq. V-2.15

P-MATG2 dfgldt Eq. V-1.12

PMATO Eq. V-2.12

RMAT22 Eq. V-l.12, g=2

SPMATID Eq. V-2.11, F,
isentropic

FM:'iJ R•_ Table V-1.1

RMIUPl R Table V-1.1

RM12B Table V-l.l

R%113 3R Table V-1.1

R•14U 4 Table V-l.1

RPLUS Rg Table V-1.1.

RPLGP1 Table V-l.l
RPLGPI g+l

RTAA Eq. V-2.5 (see
comment in program)

RTUU Eq. V-2.5 (See
comment in program)

Mean molecular radius
carrier gas

Ri r1  Mean molecular radius
vapor

S s Saturation ratio

SIGMA1 0l,9 Eq. 111-1.5, collision
cross section
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- SIG •.-•--*lm, G .. o,• 1  sect-ion crIer

SIG0 Collision cross-Q section, carrier-g
gas - monomer

S 0,2 Collision cross-section, 
carrier

gas - dimer

SIGIl a Collision cross-1,1 section, monomer-
monomer

SIG12 a1,2 Collision cross-
section, monomer-
dimer

SIGIG a *See SIGN"A
1,g

SIGIGI a1 , g-l *See SIGMAl

Collision crossSIG101 al'Ol sect'?, mixed
pair 

- -.

,

SLDADX d 2 A/dx2  Slope of DADX

SLDU d 2 u

SLU du

SLUM du at x-1
SMGDFG Egdf Alternate expression

g for Eq. V-l.5

SNNGRG Eq. V-1.6, 1st term

SRDTM t Z dt

sum log • Eq. VI-2.1

SUMCHI EX C See Eq. 111-8.7

SUMCG zg
SUMGCG zgc Eq. 8.17, Ref (1)

Sum=DAX ZA(DADX) See App 3, multipoint
"derivatives
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II
- SUMDDU ZA(DU) See App 3, multi-

point derivatives

SUMDU 2DU

SUMBRC Eq. V-1.8, Z{ I

SUMGFG Ef

SUMGG ZSfg

SUMLCG See 1st term, Eq.
111-8.7

SUMLNW Z(c'./w ) See eq. 8.13, Ref (1)

SXER d/dx (XER) Appendix VIII-4

TDK T Temperature OK

TDKIS Ti Temperature,isentropic *K

TDK ToTemperature atinitiation 
of

calculations
TDK.0 T0 O Temperature at

inlet conditions

THETA 8 8= u0 ll/kT

U u Flow velocity
UFAC U 0

1 = UFACxUll

UMG Flow velocity, sub-
interval

WG U Eq. 8.3, Ref 1

WG3 W for g=3

WI? Ca " for g- -"

UM Uo0  Pair interaction

energy carrier gas-
carrier gas
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U00, uO01 Pair interaction
energy carrier
gas - monomer

UI011 u Pair interaction11 energy monomer
monomer

XCI( distance on nozzle
centerline

XER multiplier, see
program

Initial XER'U Computer index

XKG Kg *Eq. 8.5, Ref (1)

XKGL1 Ig-l

X22 K 2

XIIF A.a-X *70-
g

XLCGCl *See eq. 8.10, Ref
(l)

LL *Eq. 8.9, Ref (1)

K1  Eq. V-2.14

TL *Eq. 111-8.7

XLOGCG *See eq. 8.10, Ref

XLOGC1 *See eq. 8.10, Ref
(l)

XY-,GC 3

XLOGNU log Eq. V-2.14

SXLPINF log P. Sq. IV-l.2

x zo ,Lg/L* *Pg. 1282, Ref (1)
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XMABAL X1  Specific humidity

X1.10 mo Molecular mass,
carrier gas

XMI mI Molecular mass,
, ~vapor -

YjIU0 Porg Reduced mass,
carriar gas - cluster

xMU1 Reduced mass,
monomer - cluster

XMUIG "lg

XMUlGI 1I, g-i |

XMU12 U1 ,2  Reduced mass,
monomer - dimer ii

XMU02 U ,2  Reduced mass,
carrier gas - dimer

XNOWDA NONDAT Input data file

XNOW2 NOJ2 Input data file

XNU v Circulation frequency

XNUMER Eq. V-2.7, numerator

XNUM1 Eq. V-2.7, 1st & 2nd
terms of numerator

XNLr42 Eq. V-2.7, 3rd term
of numerator

XNUMIS Eq. V-2.7, no
reaction

* XOUTFI output file

ZETAG *Eq. 8.13, Ref (1)

Zl i Monomer rotational:• ~~mode ",

ZIGDD Z" Eq. V-2.11,
lg' collision number

101



,i. -"

ZIMIDD Z Eq. V-2. 11

Z•PDD Z. ,1 Eq. V-2.11

Z02DD Z0,2 Eq. V-2.11

Z11DD zli Eq. V-2.11

Z12DD Z! Eq. V-2.11

ZPIlDD Z Eq. V-2.11
4 1,01

iis

Siu2

,II

,,:

ii1



APPENDIX 2

FORTRAN PROGRAM FOR CLUSTER DISTRIBUTIONS AT SATURATED EQUILIBRIUM

The solution given is for water vapor in air but it can be

applied to any mixture of a vapor and a carrier gas. Inputs

required are: T, g., c, gmax' rl# rot Ulli mi, Mon Oil, Pv'

CI, AX and mi, the nomenclature used being given in Appendix 1.

The iteration involved is given in Table 111-2.1 and Flow Chart

VIII-2.1.

A term in thr, program but not yet described is UFAC. This

is a multiplier which facilitates the alteration of UO11 from

the value of u° 1 1 = 1500K (erg/°K)(or 2.98 K cal/mole assumed

initially).

A further remark concerns all. According to the cluster

theory(1), hard sphere collision diameters are to be used.

The value 6.ed here, however, is not 011 = 2.O0r- but rather

011 = 2.05r1 . This value was obtained by cross iteration

between the present equilbrium solution and the non-equilibrium

solution of Appendix 3. The value of a11 was adjusted until the

cluster reaction rates became stationary to about 5 digits when

the eqailibrium distribution of cluster sizes was fed into the

non-equilibrium program. Vapor pressure data(5 ) for liquid

water when fitted by least squares approximation yields p. =

9.3286 - 2367./T while the expression for adiabatic expansion

of moist air from an initial temperature of 295°K and specific

humidity of about Sg/kg is P = 0.425 (T/273) 35. The pressure

conversion factor cm Hg to dynes/cm2 is 1.33 x 103.



Once initial conditions have been selected, the iteration

in Table 111-2.1 may proceed with the objective of satisfying

limiting constraints (1) through (5); condition (6) is dealt1I with later in Appendix 3. For each cluster size from g = 2

upwards to an arbitrary upper limit gmax<g. equation 111-5.1

must be solved for the concentation C (cm-3). Also calculated
g

is . The approach of AC to zero as g approaches numerical

infinity can be checked numerically in file F2 or plotted

separately for inspection.

To calculate a super or undersaturated cluster distribution

one must first calculate the saturated distribution at the same

temperature to obtain the value of C1 in statement 915 for ClINF.

Statement 800, P = Pv must be deleted and statement 1010 deleted.

All other parameters remain the same as for the saturated solu-

tion at that temperature.
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[Establish I. 0. files

Calculate parameters
SIs~l ~ •required for iterativeII solution

ST, gm= C
Ufac (for u011)

4i
l I ~Initilize -
! variables

l& initializel variablesl 1

Flow Chart for Computation of

Stationary Distributions

Figure VIII-2.1
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Caic p, Pv, C1

Print C1

go to

II

1.€

L n o isF(e) -F(goe)

(or restart
with new -iUP'A•) yes

Input X.

Snput m. ,

Do I-4tmzLzg
() (1)

c x
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II

Write, iff I derired

Do, Ig=2, maxg --g

Calculate Cg9ysi

I,

SWrite Cgfile (rdelete 1930,

1940 and write ys 9g etc)

go to B

no umber balance yes

yes Plot from File g,I
check on AE, if
_AgO modify z at
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Copy AYMABUIE TO DOG DOE' "TI

1.0 .01

12U ~ .jIl LE fAG( 300) ,XLOCI (300) ,GA. .AS( 300) ,DELZET( 3C()O
13() L)IIIElliSI0OI GRAT(300),XLiIAT(300)',CiiI(300)
140C- PR?0iLEI! r4A'E IS H0..U)
, 60C- CLUSTER~ 1HSTRIBUTIO.JS AT EOUILIBRIUA

190 iFILEiIAi.!E F3

210 PILENA:.ME I3

230 FILENA:AE OJT
240 )U'f=" I
250 tiRITE(OUT,150)

260 ARITE (OUT,90000)
270 ~ INPUT,TDK(

280 iRITE(OUT,240)
290eiiITE (OUf,90000)
300 I~lPUT.G'AAX
310 lRIfE (0UT,201)
320 dR2IfE (OUI,90)000)

330 IIAPUT,EPSIW
3s40 GAA=.

j350 FK= I .383E-16

1370 P1=3. 141:9
380 AAXG=UiAA
390 R I=I .4L-*03
400 AG( )=1.O
410 U01Il=I50G.owH
420 .OlITE (OUT,202-)

* 430 '1..'ITli C: ,.~ 0
440 1 .uui, UFAC

t 450 Jý'll=LJ0I~xJFAC
* 460 )0=Y)-tA

4 10 u00)I =!bUR M() H*U 000)
4%0 flIETA=U0 1 /(3K*TLz))

510) -iL..A(2)=l .0
520 ~ jL,&DA(3)=2.0
!)30 i3IG0Cl)=O..:)
540
550 ;IýFj(3)=2.-)*(EXV (Thit:TA)-I.0)/(1.0+2.0*TtIETA)
552 CHI (2)=l .0

* 560 X 1 1=3. 061:-'3
570 X*'=.3-)
5ns0 X:WI2=2.O4zi-23
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-2-t

PMTFRUY LEGIBL.E RODCTION

~33) Z. I I u=l. 33t:-. i SoRT(TV1K/X,41 )*S IG 11-
63:i ~Z I X)=Z 11 A/2. 1

680 .0 'IT : (011 7234) IG (2)
690C-, th .Ia?,E IS :Oil LIIUIP
700 111( i t: WUT, 233)

.iaRIF (1JUT,9000)()

730 ' .Li.~.J-(3. I/.)
140 jrI.*((II)

7.));- .; M ~E bA1IVIATI~dI V~o0U .'8ESSUd L C-z -10

ii) P'x~.'25.(f9X/273.0)-~3.5
C1,t I. 3.3H403

p1C ~ili.: iijil.% 1.) SIT. ?RES. I I !DY,.ES/C',.**2

C I /=C I

1.1 Ia Ci.01 I ..

9311t- Ffff O'iti:FI-!?S TO %.SY,. VALUE
* 940i I.-; =( I.0/(36.OwPD)-)**.333

9:;. jW 5.~lI,~2*0j 01/AI)X.MUBAnd
',;6., itC : . /(uIU2,rXL1;F)
1;97u 24-% t:i- 0/S)T7lT~

I ley)i (dUf.,ýwl) FllV.TAFRT,vELF

loW (Ijt..;I -i* S 1! 2sd 60 260,' 2 4

IOV) I )Al I--
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COPY AVAILABLE TO DoC DOE NOT
PEMIT Fully LEGIBLE PRODUCTON

110,40l (continued)

I~~ ~ ')50t0 O2-40
I o) 2!ut ;!?IT[- (oJ,99;0 F11h*:T..,FRT,DELF
1 062 UL..;LIQ=3.04
106D XLAC IM=JtACw2. 9a8'ULM.DA I

11)00 P414fJ,XLATEA
1011) AJ=AL)J (C Iw.J1.IF)

I 0d0 I.Wr=122
1 ?090 01 h=l

1C)Q4 '.?I E(.uJf,910'm)
1096 L.1PUT, uLlh
I I (Y) -LD ,3
III. fju 280 !=4, %AA(ti

I I1130 L=1-1

* 140 i-(I-I`,;~) 2v- 275.275

1!.2 CHiI(1) =%;! 1 .)+3.0
I 1P) 21*) UL-M ( I ) =(L .0)A(L)

I I 'u V) 0 Co. If iiIk
1I,;: :90 Cu ffI fu"jI 1210
1220 SUiLCOI1;.O{ 1230 0.
1240n CM=I)C

I.A i 1.\ff,A=T, aYA-SoRTOTFiT A) /EXP (THETA)

127P 6 TO1 .1 4)0

j2 12JO 3,, (00T C,33 m ~C 1

1 .32.1 ..-'1 f, (.)r,314 6'AC )XJTIW A',ULAIAIU

1 I330 iaI-jtE0UT,3I .)Uf) I I,0Urf ,iUOOO
1340 .. I7.. ;U~f,999o) E~J

13o0
1370 W= IL- I
13-30 JL I =U-lI
13y') S 1,.;= j( I1 .0+(;**0. 333)

1410) W(0 )10,410,415
1420 AI 0 AL,'0IA%;1.0
14.30 '0) At) 420
1440 415 AUMi'i1 u-n. 1-0I(U/Gihzý)
1450 420 C0!1TINiJE
146- X10J=(SIUW0/Rl )**2/3fQlT(X.,UIG/XJ4I I



- .tOp AYMIJIE TO Ducc 00E 101
;h) )I (cocinx.F pRIT f ULY LEGIBLE PRODU~r0~

e i l-c
43) ).=i EA~lFjA G.IJ(I)-I.0

-ITA (I4'.,L (, I )CUJ (u I.J
10 TIA) - GAD o*1A-f)*2

t) to XL0;=(Xf:L I /AxLP:I. AW --F
I . 1M0=~i(.~f /1f rrcITA))*BIlt3( 10)

16 1 'tF~EUi.EG(.0/3.0)
162(', t30 f,) 47t)

1630 *1U iTJlooP(II L /0?Cd( )t I ((1)

1646 X ,J12=A1 I*(ULI/(I .0+J3Ll)
I6~Y)~ I2=(~sIU2)**2/SoRT(XAU1 2) '*sRT(THEMA

1 6').)=(S1312R )*w.2/SURT( XM'U1I2/X. 5I)

1 6,0 11) 1,0 491.

lio-,,,) G0N2/0-lAAJI 6) )-,SRT(THjErA)

IS J... *I;2CI/(.L!iUO+AL X(3)GG / 3.

7I!.') .1% S. r=5)- L.0.+LG %* 1)a :j

IJ.i .~,x(1;)=10.2216','l4*CZETlA;( IG)/G)
I~ ~ Abo; l-I~ CIxi0-I.O UML~'Iv

~L0I IG)=XLcG3C 1/2. 30258

I 71 ~ MJC=XLGCI(1Gj)+AL0G(CC )/2.302:5-
l~ CCIt3)).0*(.XL05CG)I

t I *A-fA -.,.vL-j)A( MW/2.

& 1 CCOSLC

I ~6) ~ -'. .C~,=1!I~G~c 10x(J)
I %.l' -ýJ.Ci:~~H+III*(

I i;'lJ 1 I)=,';qxCIA MG( l

i ~ A I" I il I( 1U) =XLtTI



COPY AVADLAU TO Uri int ME
11)1 (iiti~u~) POMIT fULLy LEGIBLE PRODUCTIONI

I 9.j 90 Czil .ji~I L'31) IG,C( IC,), 1,3=1 lAG

I9", 1;= UI , AX 3)

1970, 1 M r.(3, 212 1) (13, XLO;C I ( IG) ,IG= IMA XG)

1 19.' U3) 'IO 940

V I 99I F4 .. ,A,1-2 )J920I10, 30

- , 203'; GO TO 940

-12053 :?2=SJ..,cL;-C(2)
20t),$L1'~ +zitJ4,LCC

20o0 904) Cf:=7.:ii-O5
2065 U!3r= I. -3:)+C I .')/2'Jo.0)w(273.-TD0Z
2070 rt.odS=(!U0I I /fli LA)c.11I !*CF
2072 ;].,,i=(6./2. )x( 3.2965E-24/Xfi )*TD1C*Cl /CIO S

"2074 C2..E=5.2)'(3.2965E-24/XAI )wxiX*C(2)/CIO

2CiI, C3.0,w(3.20)65_-24/XMI )*TD&rR,42/CIO
,N)11 7 ~ 1=(.2o~-4~ )*TDK*SU.iCH I/Cl 0

204'r; -.:::,Sf=(2.383E-Or3*U0I I/XPI )*(R.43/ClO)

2dv%.) 9u.) .-.?I MOUT, 31 1)P ISEII, PV, PRES
21'k)3 ..diITE( OUJT 320)(UA..VS( 123)
2110 ?1 r: (2JUT, 33')).diT
2130 01) ) TO) 225

)150 00000 10,.Af(2!i ?)
2160 1 :) F0.?.v~f(29i' iW~'ii 1.1 I.JITIAL VAxLUE of TDK)
21 If) 200 i-,)xAr( 13 1 TYPE~ III GADX
21-if) 201 rzo .iAr( 14ri TYP'E IN EPSIF;)
2190 202 F0d0AATIll T~YPE II UFAC)
22;Y) 210 1-U.K( 3drPE III DLDO)
2210 230 fYU.AT2. PHY III VALUE OF XN1UBAR)
22,!') 23" tFJ:?Af( I hi CALCJLATED IU0(2))
2230 234 F,~A(I G2~55
a24'-) ,,Jn Iu ?'A S -1.1 f YPE I -. dai()
~22D 237 rtb, A f( I -W CALCULATEJ C I
2260) 239 F~.A1( 11. 1 TYP~E 1.1 Cl)

m2' 238 FO0.!.AT(-4i (.=105.6)
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tCOPY A EA.I TO OOES 0O0BO
.I. :. ,..,. PERIT fULLY LEGIBLE PRODUCTIO"
4., Y[) I VALJU h: OL o,,k!)

:" '1 , ,,(.'J "Ui'A A\ H 'IT[AL. VA.j''.,:-S

ZD'.I t! .3.3, 1 IH'()=liI0..J

3;A t. . I=EI ) 3)
.. v 10.3)

3, r. t (31 1=0. ., 10fd OH u~ l £0 . 3,

•37:) ~ •I,. .-. £.d) 1-: 0. j3 X,)033,iO.,.,~)

13713

•3@'. Ji -",I '( I.) K() uO II -10. 3, 1 0HI ~ =Eq 3

21,"' 1, -';H 3 .'1" ( ý C I}i:l I t-( ) =•i 0. 3, 1 OH G:.R=E 10. J,

2.;6"11=: 1 3,. 1 oi" i "£G(1).

•.;:3 I / ro• ".(I e'n IS ,I:=EIO.3,'/I! PV=E 13.6.
•-;•,,••1 P .:•! J. 0)

/.,:+)'N f• 1. . 1+ "Nsl2 ,.; \S I " ) =il13. 6)

Il : • ,1 , ,(31!,) ,) IC-:., f:?A fI),, U=] r{ -W•A )

If ' 1i) L I i+: (1 )..3)

•. )+ .'gP i-..,-/( >, ! ,;I).5,43 0E 5.,5,2.• ,E S 6 2 EI5.6.

ho( - t,I t/ rL-II ],.: .i
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APPENDIX 3

FORTRAN PROGRAM FOR NON-EQUILIBRIUM CLUSTER DISTRIBUTION DURING

¶ AN ADIABATIC EXPANSION

The calculation given here is for the expansion of water

vapor in air in a supersonic nozzle of known geometric profile.

Solution of the one dimensional equations of motion (7,8) yields

the flow velocity u which is required as an input datum. The

same solution gives the cross sectional area A and its rate

of change along the flow axis dA/dx. Also required are the

initial equilibrium cluster distribution from Appendix 2 and

the cluster properties such as radius r, pair interaction

energy u° l

The computational scheme or flow chart is given in Figure

VIII-3.1 and the relation of the iteration time interval to

data increments given in Figure VIII-3.2. The method is to

divide the data interval (hx = 1 mm) into sub intervals (Ctx/y)

small enough to allow a non-oscillating solution by Eulerian

numerical integration:

f(x + Ax/y)= f(x) + d f/dx(Ax/y) VIII-3.1

However, the fewer the subdivisions the shorter the computation

time. The smallest value of y giving stability was found to

be about 5000 and this value already brings the calculation

interval down to the order of the molecular collision time.

An extensive effort was necessary to find a method to reduce

the amount of computer time involved. Additional complications

in that the collision time increases during the expansion process
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and the numerical interval in Equation VIII-3.1 must be

significantly longer than the collision interval to be con-

*1 ! sistant with equilibration of translational energies. An

approximation technique yielding stable numerical results

was developed after many trials. After dividing a data interval:
SAXIEX/y, with a value of y around 5000, a multiplier, XER for

example, XER=2.0 is selected arbitrarily. This multiplier

has the effect of lengthening the calculation interval because

the second term in Equation VIII-3.1 becomes

Ax/y (XER) d F/dx VIII-3.2

To reduce the number of calculation intervals within the

original data interval Ax, an end condition NSTOP is introduced

where NSTOP = y/XER. If XER is 2.0, the derivative d F/dx is

thus applied over a length -t-- for each y interval, but the

calculation for a given data interval is terminated after y/2

sub intervals. To take account of the increase in collision

time due to expansion, the collision time for the g = 10

cluster is calculated at the beginning and end point of the

overall calculation (an increase from about .5 nsec to 4nsec)

and a linear fit to XER is determined. An increment SXER is

added to XER and NSTOP recalculated before calculating over

the next data interval. Thus, a crude correspondence between

the collision interval and the calculation interval is main-

tained and the amount of computer time is reduced since 14STOP

is decreasing continually.

In as much as the calculation proceeds at near the molecular
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collision interval, interpolation of the experimental input

data and the calculated flow velocity u is required. Multi-

point (seven) derivatives are taken over the original numerical

data and velocity then applied each y subinterval. Thus, the

original data for nozzle slope, DADX(J) (INDEX J increments

each m.m.) becomes DADXNG for each y interval. The expansion

terms, Equation V-2.11 and V-2.12 are then corrected each Y

ji interval.

Additionally, after calculating all rates up through gma

at any subinterval, the rates for cluster size (gmax+l) must-

be calculated to include the influence of fg+l on fg. In this

calculation the influence of is ignored so that
mx+ 2

df
= R - f d (In v)

dt g+l g+1 g + 1 M

rather than Equation V-2.13. This result is correct within

a few percent as long as f,+2<<fg+l. *'he calculation appearb

after statement 525 in the program.

An exact calculation over all y subintervals and data V
intervals involves about 16 hours on the PDP 15/40. With

XER=2.0, the time is reduced to about 4 hours while on using

the SXER technique the time is about 1.5 hours. This is a

valuable saving in computer time. No significant difference

in the results is obtained between these three methods.

The initial debugging and program development of this

program and the equilibrium program was done in an interactive

mode over several years on a H-635 and DTSS (Dartmouth Time
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Sharing System). The results described would have been

impossible to achieve without this computer service where 50

or more short runs could be accomplished in one's own office

in two hours. Once debugged the programs were shifted to the

PDP 15/40 for the long runs. The accuracy could also be checked

as 7-8 digits are significant on the H-635 while only 5-6 digits

are significant on the PDP 15/40. Using double precision on

certain quantities, closely similar results were obtained with

the two computers.

Another feature that should be mentioned is the restart

capability. If for some reason a run is terminated before

completion, it can be restarted with loss of, at most, less

than one data intertal of computation. The restart is not

precise since only average values of the nozzle geometry are

used (see RESTART PATCH), however, if for some reason long

runs become infeasible, the restart information could be fed

into the initial file (OUTFIL SRC) each time NSTOP is reached

(Statement 514 + 1).

When NSTOP is reached the value of all cluster reaction
R+ -q + -

terms (R , Rg+l Rg 1 , dfg, etc.) and flow properties

(PoP1' T/T 0 1 , TOK, etc.) are written out. Isentropic properties

calculated by suppressing the reaction term of the expression

for dT. (Equation V-2.7) are also reported. The partial

pressure of the vapor obtained by summing the partial pressures

of each cluster size is reported as PPAR. I'
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---oma
Assign Arrays

Data F~iles]

Initial
Variables, Cons:tant

Do, I = 4, MAGPI

IInitiate ••

GIMDA Array

Set more
initial conditions

FLOW CHART FOR COMPUTATION OF
EVOLVING DISTRIBUTIONS

Figure VIII-3.1
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Initialize variable
for calculating

linearized properties
between data steps
SLUM1, etc.

Calculate initial
carrier gas conc.
from input pressure
and temperature.

M -
Restart Patch
delete (go to 230)
for restart of pro-

gram (Average values
entered)-

This index is over --
original DX data inter-
vals. I

I

Do 600 MGC-l, NGAMA
This indexes is over
subintervals Ax/yI

calculate ;,, etc.

Do 520 -g=l, NG
This calculates df
for each sub- g
interval
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Clculate R+, R7,

file and write at

end of each data

=Lt

Calculate f (maxg)

df, dP,.T, P
X, (grams/kg) pvap,

F etc. for each sub-
interval. I

'1 Write at end of each |
data interval

et sus to zeroI
calculate corrections I
to input nozzle data

etween data intervals..

Walculate slopes of
input nozzle data
for next correction

700

120



: / IN DATA INCREMENT)
4 0 NSTOP

3 0
2 - (DF CLCALCULATINGO

Uj I 4 Y INTERVAL!-icll t[
S• XaEXPEIMENTAL DATA INCREMENT A N CMN)

X - INITIAL CONDITION FOR CALCULATION

Figure VIII-3.2
Calculation Scheme for Each Data Interval
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APPENDIX 4

CORRIGENDA TO RE. (1)

TRANS. FAR. SOC. 65, 1267, 1969

Equation 3.4 vo,g = g ml mon/(g ml + too)

2/3
Equation 7.1+1 (yu)g (e/3g) 3g

Equation 8.5 Kg = (0l,g/rl 2/(lig/ml)
1 / 2

Equation 8.8 G(3,0)=2.0(e
8 - 1)/(! + 28)

Equation 8.9 G (g>3, ) = exp [6()4-1) ]-x[ ( 9-Xg•)]

(+ )ge + 1 2 82)

Equation 9.1 R 1  (Rg -R) +2 - R2 2 )

>2 1g4
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