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ABSTRACT

The purpose of this paper is to examine the problem of

short range communications, in particular, communications

within the area of the high frequency band commonly known

as the skip zone or silent area and to determine the

feasibility and extent to which a horizontally polarized

antenna could be used to alleviate these problems. A

documentation of the problems of short range communications

as they affect U. S. Naval operations will be made,

including ship to shore, shore to ship, and ship to ship

communications. Current methods of communicating within

this region will be examined, and a study of the cost

effectiveness of the solution will be made to determine if

the solution is in fact worth the investment.
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I. INTRODUCTION

Currently, communications between shore stations and U. S.

Naval vessels is conducted using high frequency radio circuits

Present planning indicates a gradual conversion to satellite

communications, with the U. S. Navy using its own Fleet

Satellite Communications System (FLTSATCOM) by 1980 [2]

.

It must be realized, however, that HF radio is still the

primary means of ship/shore communications within the Navy

and will be so until 1980, assuming there are no delays

beyond the many that have already been experienced in the

FLTSATCOM program. Furthermore, beyond 19 80, it is envisioned

that HF radio will continue to play a major role in intra

task force communications. A final area that must be con-

sidered when discussing the future of HF communications, is

that of Naval Inshore Warfare, specifically communications

between the forward operating base and the personnel involved

in a particular task.

In 1969, initial decisions were made to replace HF radio

gradually as the primary means of ship/shore communications.

The U. S. Navy's first communications satellite was launched

shortly thereafter, and used successfully until December 1972,

with certain major combattant ships using it on an interim,

trial basis for ship/ship, ship/shore and ship/air communi-

cations. Since the first successful use of this satellite

13



(TACSAT I) , very limited funding has been available for the

upgrading of HF systems, as the majority of all communications

funding has been directed toward satellites.
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II. THE PROBLEM

A. DEFINITION

The primary method of HF communications within the U. S.

Navy is with vertically polarized antennas. These antennas

permit communications over short ranges via ground wave propa-

gation and for ranges over three hundred miles via sky wave

propagation. The difficulty arises in attempting to communi-

cate within the skip zone. That is, the area from the limit

of the useful ground wave to the distance where the ionospheric

sky wave can be received. Figure 1 illustrates the expected

ship-to-ship ground wave communications range, using a one

kilowatt power output transmitter with an 85% reliability

requirement, in the summer months, during the hours of midnight

to 0400. The chart represents various noise areas of the

world [11] . Several conclusions can be drawn from this

chart. The obvious conclusion is that ranges out to 300

miles (the range considered as the beginning of satisfactory

sky wave propagation) can only be reached in low noise

areas. Were the U. S. Navy to operate primarily in low

noise areas, the problem would be greatly reduced. However,

this is not the case. Areas of high noise that will

result in severe range reduction are typically within 1000

miles of land masses between 20 degree North and 20 degrees

South. The areas within 1000 miles of the East
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coast of the United States and the South China coast are

high noise areas in the summertime. The Mediterranean Sea

and the Indian Ocean are considered moderate noise areas.

B. SHIP/SHORE DIFFICULTIES

Using a typical 8db shipboard antenna (8db nulls less

than 10% of the time) , with transmitter power output of

one KW, in high noise areas performance will be considerably

below the 300 mile range between the hours of 1600 to 2400

and 2400 to 0400. The use of better antennas (those capable

of 4db nulls less than 10% of the time) , coupled with raising

transmitter power to five KW still falls short of the 300

mile mark by 100 miles. In moderate noise areas of the world,

the ships with the superior 4db antennas, using five KW

transmitter power can marginally be expected to reach a 300

mile range when transmitting on a frequency of two MHZ. Even

in low noise areas of the world, using a typical 8db ship-

board antenna, the 300 mile groundwave requirement will not

be met between the hours of 2000 to 2400 [12] . An additional

factor to take into consideration is that numerous smaller

ships such as patrol craft and patrol gunboats are equipped

with transmitters with output power of only 100 watts.

Figure 2 depicts the expected average decrease in the ground

wave communications range using a 100 watt rather than a

one KW transmitter [12]

.

In summarizing the problem as analyzed, those ships with

transmitters capable of one KW output can expect to communicate

16
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via groundwave propagation beyond the 200 mile range only

when operating in low or moderate noise areas of the world.

Ships equipped with transmitters capable of only 100 watt

output cannot expect to transmit further than 100 miles

using groundwave propagation in high noise areas.

C. SHORE STATION DIFFICULTIES

In discussing the problem of transmitting from the shore

station to the ship, it must be remembered that transmitter

power of much greater magnitude is available. For this

reason, most shore stations have a preponderance of vertically

polarized antennas. In reality, the high frequency ground

wave transmitted from the shore station is not much more

effective than that of the ships. In cases where the trans-

mitting antennas are not located directly on the coast line,

but rather are some distance inland, the groundwave becomes

almost useless as it is absorbed by the earth.

The primary operating areas of the U. S. Naval vessels

are generally within the 100 to 300 mile range of the local

Naval Communications Station. (Virginia Capes operating

area and NAVCOMMSTA Norfolk, Northern California operating

area and NAVCOMMSTA San Francisco, Southern California

operating area and NAVCOMMSTA San Diego) . In a study con-

ducted by the Naval Electronics Laboratory Center in 1971,

[13] , the need for the high angle HF antennas to cover short

range was recognized. However, those commercially available

high angle antennas capable of receiving and transmitting

at two MHZ were very large, expensive structures which would

19



cause interaction and distortion of other antennas in a

field the size of a normal Naval Cominuni cat ions Station

20



III. ANTENNA TESTING

A. COMPARISONS

NELC submitted a report on the results of an HF high angle

short range antenna test conducted in 1970 [9] . It was the

conclusion of this report that horizontally polarized

antennas of circular or linear polarization were about

equally effective in providing the required upward directed

power gain for short distance communications. Vertically

polarized antennas were increasingly ineffective as distances

were decreased toward zero. The antenna comparison criterion

was based on signal to noise ratio in that experiment and

was most critical in the first 150 miles of ground distance.

Combinations of antennas were used to determine combinations

of receiving and transmitting polarizations and antenna

design patterns that would be most effective for high angle,

short range, HF communications. The transmitter site and

each of three receiver sites used six different antenna

types: (1) Normal dipole (horizontal), (2) In-line dipole

(horizontal), (3) crossed dipoles (horizontal), (4) Left-

hand circular polarized dipole (horizontal) , (5) Right-hand

circular polarized dipole (horizontal) , (6) Whip (vertical)

.

Measurements were done simultaneously for all receiving

antennas. The transmitting site was located at Curtis Bay,

MD. The receiving sites were located at distances of 54

21



miles south, 150 miles northeast, and 310 miles northeast.

Both day and night transmissions were used, at frequencies

from three MHZ to 6.8 35 MHZ. Results of the test are

summarized as follows:

(1) Normal dipole transmitting.

a. The horizontal receiving antennas have equal

performance

.

b. The receiving whip has a poorer signal to noise

ratio by lldb.

(2) In-line dipole transmitting.

a. The horizontal receiving antennas have about

equal performance.

b. The receiving whip has a poorer ratio by 7db.

(3) Crossed dipoles transmitting.

a. The horizontal receiving antennas have equal

performance.

b. The receiving whip has a poorer ratio by 6db.

(4) Right circular polarized transmitting.

a. Receiving on left circular polarized has a 5db

advantage over the other horizontally polarized antennas.

b. The receiving whip has a poorer ratio than the

left circular polarized by 17db and is poorer than the

other horizontal antennas by 12db.

(5) Left circular polarization transmitting.

a. Equal performance by horizontal antennas except

for the circular polarized which was down by lldb.

b. The receiving whip is down by 17db.
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(6) Vertical whip transmitting.

a. All horizontal receiving antennas about equal.

b. Vertical receiving whip is down by 9db.

All of the above results can be interpreted by reversing the

transmitting and receiving situation (i.e., all horizontal

transmitting antennas give 8 to 9db better performance than

the transmitting vertical whip, when receiving on a vertical

whip.

B. INTERPRETATION OF RESULTS

The results of this experiment bear out the difficulties

that shipboard communicators have faced for years, and con-

tinue to face. The need for a horizontally polarized ship-

board antenna is glaring. Shipboard communicators would

be well advised to improvise, if horizontal dipole antennae

are not to be designed for their needs. A horizontal wire

receiving antenna could be readily installed (many ships

do have horizontal wire antennas used for various purposes)

and used for distances within the skip zone. Some of the

general purpose shipboard receiving antennas capable of

operating throughout the lower end of the HF band should be

redesigned to enhance high angle radiation if they are to

be used for short range communications. The antenna con-

figuration of an aircraft carrier should be reviewed. The

majority of the receive antennas aboard a CVA are located

on the edge of the flight deck, forward of the superstructure

To enable flight operations, the antennas can be readily

23



lowered to the horizontal position, thus removing them as an

obstacle to aircraft being catapulted from the deck. To

preclude continuously raising and lowering the antennas,

most aircraft carrier leave them lowered in the horizontal

position during operational periods. Although not designed

as a horizontally polarized antenna, this placing of the

whips in the horizontal position has the effect of polarizing

the antennas in the horizontal plane. The effect, although

not documented, has been verified by the authors experience

while communications officer aboard a CVA in the Western

Pacific. While operating within the skip zone, receive

signals were noticeably improved with the antennas in the

horizontal position. Reception generally paralleled that

expected by the DD's in company when the antennas were

vertical, with the CVA being of minimal assistance in

relaying missed messages to the DD's during this time.

However, with the antennas horizontally polarized, HF

reception aboard the CVA was considerably superior to that

aboard the DD's with the CVA's task of relaying missed

messages increased as a result. The possibility of providing

other ship types with whip antennas capable of being

lowered to the horizontal plane should be investigated.
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IV. MODEL TESTING

In December of 1975, in conjunction with this thesis,

a series of three horizontally polarized antennas were tested

at the model range of the Naval Electronics Laboratory Center,

San Diego. The model used was that of the USS Belknap.

Antennas used were the two to six MHZ fan antenna, the stern

twin whip in the horizontal position, and a resonant length

horizontal dipole strung between the after mast and the

fantail. Figures 70 and 71 of Appendix A show the models

and antennas actually used in this test. Figure 70 shows

the ship looking from the stern, with a view of the twin

whip in the horizontal position. The wire dipole and the

fan antenna can be seen clearly in figure 71. Two fre-

quencies were measured, corresponding to 3.4 2 MHZ and

10 MHZ. At each frequency, and for each antenna, elevation

measurements were taken at 000 degrees, 045 degrees, and

090 degrees relative bearing, and azimuth patterns at 5,

10, 20, 30, 40, 50 and 60 degrees elevation, for a total

of ten patterns for each antenna at each frequency. Both

vertical and horizontal polarizations were taken. These

antenna radiation patterns are included as figures 10 through

69 of Appendix A.

A series of tables has been constructed to show gain as

a function of elevation angle. These tables are displayed
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as figures 3 through 8. Column one of each table represents

the elevation angle. Column two shows the ideal great circle

distance in kilometers, assuming an ionospheric layer height

of 300 Km [3J. Column three is the approximated average of

the horizontal component in decibels below the zero db ring

on the chart. Column four is the calculated gain relative

to a quarter wave monopole antenna under the same parameters.

An examination of the patterns produced by the horizontal

wire dipole, figures 10 through 29, shows that the horizontal

component has two nulls, one almost directly forward, and

one almost directly aft of the ship's heading. As the

antenna is oriented nearly in line with the ship's heading,

and as the nulls are relatively consistent at both fre-

quencies and at all of the higher angles, this indicates

that an additional antenna would be required, in conjunction

with the dipole, to provide 36 degree coverage. As the

distances of intended transmission are relatively short

for the purpose of these antennas (zero to 300 miles) , and

since the nulls are predictable and within a narrow range

(30 degrees directly ahead and astern) , a dipole antenna

of less than a quarter wave, mounted athwartships , should

suffice. Additionally, figures 50 through 6 9 indicate that

the twin whip experiences nulls in line with its orientation.

If a similar whip was mounted on either side of the ship's

stern, facing onboard and perpendicular to the ship's

centerline, and used in conjunction with either the stern

whip or the dipole, the nulls should be eliminated. The
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fan antenna displays a less predictable pattern than either

the dipole or the whip. This is most likely attributable

to its location amidships between the ship's stack and super-

structure. An examination of figures 38 and 39 reveals a

relatively stable pattern at 50 and 60 degrees elevation on

3.42 MHZ, while figures 48 and 49 display additional nulls

in the pattern of the fan at 10 MHZ.

A few general observations are made at this point/ con-

cerning the gain of the three antennas as calculated relative

to that of a quarter wave monopole. Referring to figures

3 and 4, it can be observed that the gain of the horizontal

dipole, at both frequencies, measured at 50 and 60 degrees

elevation, is superior to that of a monopole. The fact

that a full resonant dipole v/as used for this test, as

opposed to a quarter wave or smaller, must be considered.

However, as previously stated, the transmission distances

in question are low enough to relegate gain to a minor role.

Examining figures 3 through 8, it can be determined that at

the 60 degree elevation point, the worst case is that of

the fan antenna transmitting at 3.42 MHZ and experiencing

a loss of 3.88db below that of the monopole. Even in this

case, discounting the nulls, the signal loss should not

present a problem.

n
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V . THE SHORE STATION

A. PRACTICAL SHORE STATION TRANSMITTING ANTENNAS

1. Criterion

The criteria for selecting a suitable antenna for HF

transmission in the horizontal plane are size, bandwidth,

efficiency, power handling capability, and cost. Following

is a brief summary of some of the commercially available

high angle antennas, including advantages and disadvantages.

Information on the antennas was provided by Mr. J. L. Heritage

of the Naval Electronics Laboratory Center, in discussions

and notes provided by him.

2

.

Down Directed Log Periodic Antenna

The vertically oriented, down firing, log periodic

antenna is one of the best antennas, technically, for short

range transmitting. It has wide bandwidth and high gain

when erected over good earth or a metallic ground screen.

Since its main energy is upward directed by reflection from

the ground, erection over poor ground reduces its power gain.

The major problem comes with interaction with other antennas.

It is a very large antenna, both in height and area occupied.

The TCI model 530 uses a 13 3 foot tower and measures 450

feet between guy anchors. It maintains uniform azimuth

coverage and circular polarization by using essentially two

planar arrays combined at right angles.
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3. Horizontal Log Periodic Antenna

When shore to ship short range coverage is confined

to 180 degrees, such as on the coast line, the horizontal

log periodic antenna can provide a few db greater gain down

to lower elevation angles while retaining good gain directly

overhead. The TCI 501 is an example of this type of antenna.

Once again the problem of size is involved, as well as that

of cost. The TCI 501 requires a 140 foot tower and 3.7 acres

of space.

4

.

Log Spiral Antennas

Log spiral antennas have good bandwidth and direc-

tivity patterns for short range HF transmission, but the two

commercially available models, Granger 789 and Collins 637

require terminating resistors at frequencies down to two

MHZ, thus reducing power output by as much as one-half at

the lower HF frequencies, the range where it is needed the

most.

5

.

Horizontal Dipole

A horizontal dipole meets nearly all requirements of

a shore station transmitting antenna, except it is limited

in bandwidth. The Granger model 1765, designed for use

between two and eight MHZ is an example. The height and

length dimensions chosen by Granger in this antenna probably

reflect an attempt to get maximum overhead gain and a good

impedence match at two MHZ.

A similar dipole was tested by NELC [9] with the

antenna length reduced to 166.5 feet. Good power gain was
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achieved. A broadband dipole of these dimensions could easily

be erected on standard telephone poles at low cost. Two

such dipoles would be required, one to cover the two to six

MHZ range and one for the six to eighteen MHZ range. This

system would require the availability of narrow-band tuned

multicouplers . If these are not readily available, it may

still be cost effective to consider a group of low cost

dipoles, each in a narrower frequency band. Low sited

horizontal dipole antennas have an advantage over large

broadband antennas in lower interaction with neighboring

vertical antennas, causing minimal radiation pattern dis-

tortion to both antennas. Less land space would be required

for two dipoles than for any of the broadband antennas. Two

dipoles in line can share a common pole and less guying is

required. This type of antenna arrangement was successfully

tried by NAVCOMMSTA San Diego on a self-help basis. Many

other communications stations still operate without the use

of a horizontally polarized antenna system.

B. SHORE STATION RECEIVING ANTENNAS

The log periodic and log spiral antennas mentioned in

the transmitting antenna section will make adequate receiving

antennas. Efficiency is not as important in receiving

antennas and one antenna can be easily multicoupled to

several receivers. To provide antenna diversity, at least

two receive antennas should be installed at each shore

station receiver site. Placed at right angles to each
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other, they would provide the directional capability required

Again, the simple dipole antenna, sited low, should be the

most effective receiving antenna for this purpose [9]. it

should be possible to operate successfully over the range

from two to ten MHZ in a single antenna.
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VI. CONCLUSIONS

A. THE SIMPLE DIPOLE

In the 1971 NELC study [13] , it was pointed out that a

simple, crossed dipole receiving antenna would be effective

for receiving on high angle, ionospherically propagated,

ship/shore circuits. Low antenna heights, using telephone

poles would yield satisfactory directional patterns at high

angles over a frequency range of two to ten MHZ. Some mis-

match could be tolerated at the lower frequency, enabling

the dipoles to be kept short. The recommendation was made

that development be undertaken to produce a small, inexpensive,

horizontally polarized dipole antenna that would operate

satisfactorily over the entire HF band.

Recently, design and testing of such an antenna was con-

ducted by Collins Radio Corporation to solve the problems of

short range communications for tactical military ground

forces [1]. A simple dipole and coupler was designed, with

tuning components consisting of a series compacitor, a shunt

capacitor, and a shunt inductor. The antenna operates best

at a height of approximately 20 feet above ground, providing

high angle radiation up to 15 MHZ and tuneable up to 30 MHZ.

A sketch of the Collins design is provided in figure 9.

A problem that must be considered when discussing the

possible use of such an antenna aboard ships is the fact that

3.8
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Collins horizontal quarter-wave dipole antenna design [9]
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horizontal dipoles are directional. The problem is not

insurmountable, however, and could be readily solved by

installing two quarter wave dipole antennas mounted perpen-

dicular to each other in the horizontal plane. By designing

the antenna system for one-quarter wavelength at 10 MHZ, the

length of the the antennas could be kept under twenty-five

feet, enabling it to fit on virtually all Naval vessels.

Installation of such an antenna at the shore stations could

be accomplished with little difficulty and minimum cost.

Due to the relative simplicity of the antenna, a satisfactory

horizontal dipole of the type discussed could be easily built

and installed by station personnel.

B. THE HORIZONTAL CONE ANTENNA

As an interesting additional observation, a study of the

mast structures of Soviet Naval ships reveals the presence

of a cylindrical pair of horizontal antennas mounted at

approximately a 90-degree angle to each other, high on the

mast of many of the larger vessels [7]. These antennas are

obviously designed for the high frequency range, and are

most likely used for high angle, short range communications.

Although it is beyond the scope of this paper, a model

design and test of such an antenna for short range communi-

cations would appear to be a valuable undertaking.

C. COST ANALYSIS

A very brief cost analysis is presented to provide some

idea of costs involved. In the case of many of the shore
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stations, installation of dipoles could be carried out by

station personnel, using available equipment. Shipboard

installations would require shipyard assistance. This could

be carried out during routine shipyard availability periods.

Estimated installation costs of a dipole antenna aboard

a Naval vessel, based on information provided by the elec-

tronics installation estimators at Mare Island Naval Shipyeard,

include fifteen man days at the current price of $19.00 per

hour for an eight-hour day, with total installation cost

estimated at $2280. If available cable runs could be used,

such as could be done if installed whip antennas were con-

verted to horizontal dipoles, the price of installation would

be reduced considerably. Equipment costs would also be

greatly reduced if the cable runs were available.

Commercially available horizontally polarized dipole

transmitting antennas for shore station use are currently

priced at $13,900. Commercial installation cost in the U. S.

is $20,000 while on Guam it would be $40,000.

D. ALTERNATIVES

In conclusion, a final look at the alternatives should

be made. Present planning appears to call for continued

all-out effort to complete the Navy satellite communications

system, with all available funding being channelled in this

direction. This relegates ship/shore communications, and

especially short range communications to remain in their

present unsatisfactory condition until at least 1980.
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Another alternative under discussion consists of

closing down HF entirely as a means of ship/shore communi-

cations after the satellite system is operational. In response

to this alternative, a hard look at the experience of the

CVA's in the Western Pacific in 1971 and 1972 in using

TACSAT should be taken. Based on the writer's experience

during this period, the success of satellite communications

remains unproven.

The final alternative is, of course, the one recommended

throughout this paper. That is, to provide a minimum of

funding for the development of a shipboard horizontally

polarized HF dipole antenna, and to install commercially

available dipoles at Naval Communications Stations around

the world. As an interim measure, these antennas should be

installed by any available means, using designs tested and

proven satisfactory by NELC. Failure to do so is to continue

to ignore a major problem in Naval communications, hoping

that by some change it will go away.
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APPENDIX A:

ANTENNA RADIATION PATTERNS AND ANTENNA PHOTOS

The appendix consists of sixty antenna radiation pat-

terns, taken in December 1975 in conjunction with this thesis,

as well as photographs of the ship model and antennas used

for the test. The individual patterns are numbered as

figures 10 through 69 and the photographs are numbers as

figures 70 and 71.
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Dipole radiation at 60 degrees elevation, 3.42 MHZ
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54



350°

330 e

50V^-;' v-: ",

& ;./V
v

A" .:_!_ '
;:-7^

lit^::i ^Mlk
:>/ ^ .»;.•/.v.- :• s\ \V -•V'" ; r—--*>-»/". " v

- ' '-V v •>
' -A

260=

250°

230

FILE NO.

MODEL AMI ORIENTATION

AZIMUTH PATTERN AT

— 2 .o^^y-/./-..:^--;-.-;-;--------'' -.'--":'\ X sh.pf R e G

2oo o^^-~c.- r /
-':: i+ri-; - ,.i..- -..---rT

DEC ELEV.

j
o aniK r-REQ._J_0_MH;

MODEL ERE0.Jfc£j3 MHz

POL. COMPONENT MEASURED

OdB ON CHART- -H7- d8 REL.

TO X/4 MONOPOLE
ELEVATION PATTERN

. <f" TO C 2^_ PEG

AT *fc£_ DEGREES RELATIVE TO' SHIP HEAD.NG REMARKS H. K<>X+ l/. /?• * L, y-
K)ur pi oi noun

'—

—

^-L-) U-L^ir]JLZ\AK[

ll«D-»tic-33C0/6 (3-75) EN6R DATE
! ?.-/£ ~7r

Figure 21

Dipole radiation at'45 degrees relative to
ship's heading, 10 MHZ
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Dipole radiation at 90 degrees relative to
ship's heading, 10 MHZ
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Dipole radiation at five degrees. elevation , 10 MHZ
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Dipole radiation at 10 degrees elevation, 10 MHZ
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Dipole radiation at 20 degrees elevation, 10 MHZ
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Dipole radiation at 30 degrees elevation, 10 MHZ
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Dipo'le radiation at 40* degrees elevation, 10 MHZ
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Dipole radiation at 50 degrees elevation, 10 MHZ
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Dipole radiation at 60 degrees elevation, 10 MHZ
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Fan radiation at zero degrees relative to
ship's heading, 3.4 2 MHZ
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Fan radiation at 45 degrees relative to

ship's heading, 3.4 2 MHZ
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Fan radiation at 90 degrees relative to
ship's heading, 3.4 2 MHZ
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Fan radiation at five degrees elevation, 3.42 MH!
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Fan radiation at 10 degrees elevation, 3.42 MHZ
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Fan radiation at 20 degrees elevation, 3.42 MHZ
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Fan' radiation at 30 degrees elevation, 3.42 KHZ
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Fan radiation at 40 degrees elevation, 3.42 MHZ
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Fan radiation at 50 degrees elevation, 3.42 MHZ
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Fan radiation at 60 degrees elevation, 3.42 MHZ

73



350°

280'

10

3.o°/x'v\.--:'
.''

:\ ^>

29 0°

20

AZIMUTH PATTERN AT

ELEVATION PATTERN

AT O DEGRE

DEC ELEV.

TO C^ DEG

OdB ON CHART = _+l2r_ cS RE L.

TO X/4 MONOPCLE

.DEGREES RELATIVE TO SHIP HEADING REMARKS VtYY fa f Ktytyfs /-/ t~(± tj-__

Kt*R TLOI CWUM ^
IU0-»£lt-3S60/6 (3-75) ENGR DATE !X-/*-7S"

Figure 40

Fan radiation at zero degrees relative to
ship's heading, 10 MHZ
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Fan radiation at 45 degrees relative to
ship's heading, 10 MHZ
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Fan radiation at 90 degrees relative to
ship's heading, 10 MHZ
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Fan radiation at five degrees elevation, 10 MHZ
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Figure 44

Fan radiation at 10 degrees elevation, 10 MHZ
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Fan radiation at 20 degrees elevation, 10 MHZ
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Figure 46

Fan radiation at 30 degrees elevation, 10 MHZ
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Fan radiation at 40 degrees elevation, 10 MHZ
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Fan radiation at 50 degrees elevation, 10 MHZ
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Fan radiation at 60 degrees elevation, 10 MHZ
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Figure 50

Twin whip radiation at zero degrees relative to
ship's heading, 10 MHZ
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Figure 51

Twin whip radiation at 45 degrees relative to
ship's heading, 10 MHZ
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Figure 52

Twin whip radiation at 90 degrees relative to

ship's heading, 10 MHZ
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Twin whip radiation at five degrees elevation, 10 MHZ
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Twin whip radiation at 10 degrees elevation, 10 MHZ
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Figure 55

Twin whip radiation at 20 degrees elevation, 10 MHZ
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Twin whip radiation at 30 degrees elevation, 10 MHZ
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Twin whip radiation at 40 degrees elevation, 10 MHZ
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Figure 58

Twin whip radiation at 50 degrees elevation, 10 MHZ
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Twin whip radiation at 60 degrees elevation, 10 MHZ
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Figure 60
t

Twin whip radiation at zero degrees relative to
ship's heading, 3.42 MHZ
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Figure 61

Twin whip radiation at 45 degrees relative to
ship's heading, 3.42 MHZ
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Twin whip radiation at 90 degrees relative to
ship's heading, 3.42 MHZ
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Twin whip radiation at five degrees elevation, 3.42 MHZ
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Twin whip radiation at 10 degrees elevation, 3.42 MHZ
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Twin whip radiation at 20 degrees elevation, 3.42 MHZ
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Twin whip radiation at 30 degrees elevation, 3.42 MHZ
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Twin whip radiation at 40 degrees elevation, 3.42 MHZ
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Twin whip radiation at 50 degrees elevation, 3.42 MHZ
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Twin whip radiation at 60 degrees elevation, 3.42 MHZ
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