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EVALUATION

This study was performed in support of the overall program of the
Solid State Applications Section direcced toward developing adequate
reliability screening and qualification testing sequences for micro-
electronic devices in accordance with the Reliability Technical Program
Objective No. 13, Tt successfully met its objective which was to provide
a means for predicting the stress on the 1id seal of a hermetic package
under various levels of pressure and constant acceleration. These levels
are included in the screening procedures imposed by MIL~M-38510 and
MIL-STD-883. The results of the study will be used by the Air Force to
establish effective test levels as a function of package size and
material and also by part manufacturers as design guidelines. The
equations which have been developed will first be verified by experi-~
mentation and then used for formulating revised screening requirements
in MIL-STD-883A, "Test Methods and Procedures for Microelectronics,"
in the preparation of proposed Method 5008, 'Test Procedures for Hybrid
and Multichip Microcircuits" to MIL-STD-883A and in support of the JLC
Joint Technical Coordinating Group Subtask on Hybrid Microcircuit

Technology Base.

Y g 4 )
Al 7/ 7/%‘1%/”-6‘

PETER F. MANNO

Solid State Applications Section
Reliability Branch
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SUMMARY

)
-4
An analysis 1is made of the tensile stresses in the 1id seal and

the 11d deflections for a rectangular flat-pack under external pressure,

On the basis of this analysis, formulss and charts are presented to
: facilitate (a) the proper design of the package so that it will retain
its hermeticity under a given screening pressure and (b) the selection
of the proper pressure to use in the hermeticity screening of an already
designed package.

Information 1s also given on the approximate equivalence of external

pressure and centrifuge acceleration in regard to the seal stresses and

V/
\\\\\\\\\\“\\\\

INTRODUCTION ™~
~
™~

.,
\

1id deflections of a rectangular flai-pack,

External pressure, per Method 1014 of reference 1, is generally

accepted as a means of screening out non-hermetic or potentially non-

il hermetic microelectronic packages. Knowing that this is the screening

device to be employed, the designer and the user of such packages are
then faced with the following two important questions, respectively:
; (a) Given the screening pressure to which the package will be
subjected, what should the design features of the package
he in order that a seal cf good quality wlll retain its

hermeticity under that pressure?

(b) Giver a package that 1is already designed and available,
what screening pressure should be used in order to weed out
(i.e., destroy the hermeticity or aggravate the non-hermeti-

city of) those seals at the low end of the quality spectrum?

-1-
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This report is iatended as an aid in answering these two questions,

i with particular reference to flat-pack configuration showmn in Figure 1.
Al The following two hypotheses form the mair basls of the present
work:

f (a) Under external pressure the 1lid of the package may be

%ﬁ regarded as a uniformly loaded rectangular plate with

F’ edges elastically restrained against rotation, this

restraint being furnished by the walls of the package.

(b) The external pressure weeds out un:atisfactory seals by
creating tensile stresses in the sealing material that
exceed the tensilc strength of that material. (In poor
quality seals (for example, those containing volds or
inclusions of foreign matter) this tensile strength will

presumably be lower than in good quality seals.)

SYMBOLS

The following symbols will be used for the geometric parameters
and elastic constants. Other symbols will be introduced as needed.

= width of 1id (in.)

= length of 1id (in.) (b>a)

= -hickness of 1id (in.)

= thickness of walls (in.)

inside height of walls (in.)

= Young's modulus of 1id mateirial (psi)

n

= Young's modulus of wall material (psi)

< MW &®# I £ e OB
£
i

= Poigson's ratio of 1id material

0

Poisson's ratio of wall material
Ect3/[12(1—vc2)] = plate flexural stiffness of 1id
= Eww3/[12(1—vw2)] = plate flexural stiffness of walls

<
£
L}

(]
(e
[

]
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ELASTIC RESTRAINT FURNISHED BY WALLS

The walls will be regarded as wide vertical beams of height h,

with the local rotation 6 (in radians) at the upper end proportional
to the local intensity M of the bending moment per unit width exerted
upon the wall by the edge of the 1id. This relationship can be
expressed as

M= ko (1)
where k 18 a proportionality constant. The value of k depends upun the
restraint which the bare of the package furnishes to the lower edge of
the wall. 1Two bracketing cases can be envisioned and are illustrated
in Figure 2, In one of these (Fig. 2(a)) the base is so stiff in bending
(perhaps because of a thick substrsate boaded to its entire surface) that
it prevents essentlally any rotation of the lower edge of the wall, In

this case beam theory gives

k =4 Dw/h (2)

In the second case (Fig. 2(b)) the base of the package has the same
flexural stiffness as the 1lid and, therefore, with the package under
hydrostatic pressure, the lower edge of the wall will be subjected to
bending momente uf the rame magnitude as the upper edge. In that case

it can be shown that

k= 20D /h 3

The actual state of affairs will lie somewhere between these two, and,
therefore, k will be given the following representation:

k = q Dw/h 4)

LM T D AL et 2 £ D el Pt B 23 e St L

R St T RN YT R e T e ey o

o a ded e n g g



P b

S R TR N AT TR ISR TR S e T ST T T

where o lies between 4 and 2, with its actual value depending on the
flexural stiffness of the base of the package. In the absence of better
information a value of o equal to 3 is suggested. It will be seen later
that this uncertainty regarding the exact value of o will usually be of

very little consequence.

For later use the following non~dimensional measure of k will now

be introduced:

D
hak b va
Kz—5 z(a 5 h) (5)
™ e c
This definition can be rewritten as follows:
K = -% Kl (5a)
n
where
1 Dw a
K :CIB-E (6)
c
If the Poisson's ratios of the 1id and wall materials are the same,
the last equation reduces to
E
1 w w3 a
K _aEc (t) T (6a)

In the graphs to be presented it will be advantageous to show various
quantities as ftunctions of arctan K, rather than as functions of K.
Therefore, Figure 3 is presented to permit an easy conversion from K to

arctan K. In Figure 3 there is also a graph to facilitate the conversion

from Kl to arctan K.

; it L A kol sl
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BASIC DATA FROM PLATE THEORY

Under the action of a uniform gage pressure p {psi), reactions
will develop along the edges and at the corners of the flat-pack 14d,
as depicted in Figure 4, These will include bending moments of varying
intensity M (in.~-1b. per in.) due to the restraint against rotation
furnished by the walls, vertical forces of varying intensity V(lb. per in.),

and concentrated downward forces of magnitude R(1lb.), due to the tendency

of the corners to rise. The maximum values of M and V occur at the P

middle of the long side. These, together with R, can be expressed as

2
Mmax =npc°pa o)) )
|
b = 8 ® i:
” /
R =n, * pa (9 ;

where ny, o, and n, are functions of the elastic restraint parameter K /
b
and the aspect ratio b/a of the 1id. The values of n,, n, and n,

associated with any given configuration can be obtained from Figures 5, y

6 and 7, respectively.*

*In Figure 5 the data for a clamped plate (K==, arctan K = w/2) are taken i’
from Table 35 of reference 2. All other data in this figure are based on i
the analysis in appendix A. ]

In Figure 6 the data for a simply supported plate (arctan K = 0) are from ,
Table 8 of reference 2. The data for a clamped plate (arctan K = m/2) :
are based on the analysis in appendix B. The curves for elastically
restrained plates (arctan K = .4, .8 and 1.2) were inserted by interpolation
assuming a linear variation of n, with respect to arctan X, which 1is approx-
imately the variation obtained f6r n, and n,. In view of the small change
in n, in going from simple support to clamp;ng (around 6% at the most) and
the small role that n, will play in the subsequent development, this linear
interpolation employeg in Figure 6 is considered quite accentable.

oo

Y e e
2

In Figure 7 the data for a simply supported plate (arctan K = 0) are from
Table 8 of reference 2. The remaining data are based on the analysis in

appendix A,

e el b sy et e rart e 5 oae o s bt st e vn Vet as v




The maximum deflection 6max of the 1id under the lateral pressure
p will occur at the center of the 1lid., The analysis of appendix A, which

is based on small-deflection plate theory, gives

4
- BB v 2y B &3,
$ n Dc 12(1 Ve ) 5 (t) a +mn,

where n, is a function of K and b/a to be obtained from Figure 8.* With
Ve approximated as 0.3, this becomes

- P (33,
5max 10,92 n, Ec (t) a

It 1s well known, however, that small-deflection theory tends to over=-
estimate the deflection. Figure 9, therefore, presents a correction factor
Ngs based on large~deflection theory, to be applied to the right-hand sides
of the above equatlons.** With this correction incorporated, the formula

for maximum deflection now reads

- ‘La— .
Smax ™ M4 D, s (10

or, with Vo taken as 0.3,

- --P-—-a—3l . hY
Gmax 10.92 n Ec(t) as'n (10a}

4 5

For most packages K 1s likely to be very large,on the order of 100
or more, corregsponding to nearly clamped conditions for the edges of the

1id. In this range large changes in K, by a factor of 1/2 to 2, produce

*The data in Figure 8 for the cases arctan K = 0 and 7/2 are taken from
Tables 8 and 35, respectively, of reference 2. The remalning data are
based on the analysis in appendix A.

**Figure 9 applies rigorously only to the case K = 0, v_= 0,3, but ia
probably sufficiently accurate for practical purposes for other values
of K and v_ as well. The solid curves of this figure are based on the
table on pgge 181 of reference 3. The dashed curves are estimated
interpolations or extrapolations due to the writer.

-6-
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only small changes in arctan K (see Fig. 3) and, therefore, only small
changes in nl, n,, ng and n,. This supports the assertion made earlier
that the uncertainty regarding the exact value of a to be used in

equation (4) will generally not have serious consequences,
FORMULAS FOR TENSILE STRESS IN THE SEAL

There are two conceivable locations for the maximum tensile stress
in the seal: (a) in the middle of the long side, where the bending moment
transmitted from the 1id to the wall is a maximum; and (h) at the corners,
where a reaction force R is developed to prevent the corners of the 1id
from lifting ur, We shall consider these two locations separately.,

Figure 10(a) shows the assumedly linear strress 2isi.ibution across
the width of the seal at the middle of the long side due to the bending
monent Mmax alone, and Figure 10(b) shows the uniform compressive stress
at the same location due to Voax® Superposition of the two diagrams

gives

max max (11)

Sedge 2 w

for the maximum tensile stress in the seal at the middle of the long
gide. It occurs at the outside edge of the seal., Substitucing for Mmax

and Vmax the expressions given in equations (7) and (8), one obtains

a - o(3y2
aedge p(w) ncdge (12)
where
= - ¥ 1)+
nedge b 6n1 % a a3

*Because of the factor w/a in equation (13), it is now evident that n
plays only a small role in determining the magnitude of the stress. "There-
fore, the simplifying assumption used in inserting the dashed curves in
Figure 6 1s quite acceptable,

-7-
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Turning now to the corner, in order to estimate the stress due to

i the reaction R, one must make a reasonable assumption as to the area A

over which this theoretically concentrated force is actually distributed.
In the present work (see Fig. 11) A 1s assumed to be made up of the corner
area wz, diminighed by the area (1 - I-)rw due to a possible small radius
at the corner of the 1id, and augment:a by the area .47 tw along each
side.* Thus,

A= w2[1 + 94(t/w) - .21(r/w)2] (14)

In the event that the wall itself is rounded at the corners, as in

Figure 12, the following formula should be used instead:

A= wP[.79 + .94(t/0) + 1.57(c' /)] (15)
Both of these formulas can be represented by the single equation
A= w2 ng (16)
where 2
1+ .9 (t/w) -~ .21(x/w) (17a)
ne = or
79 + .94(t/w) + 1.57(x"/w) (17b)

the choice of (17a) or (17b) depending on whether the corner configuration

is as shown in Figure 11 or Figure 12.

The tension stress in the seal at the corners can now be written as

Scorner = R/A (18)

or, substituting for R and A their expressions from equations (9) and
(16), respectively,
= p(-f";)2 n (19)

S
corner corner

*The dimension .47t in Figure 11 is based on some rather limited theoretical
data from p. 173 of reference 2. There an analysis by A, Kromm is cited,
for the case of a simply supported square plate with a/t = 20 and with
deflections due to transverse shear taken into account, which leads to a
high-intensity distributed reaction in place of the concentrated reaction
R. The maximum intensity of this distributed reaction in that particular
example can be correctly obtained by assuming the concentrated R of clas-
sical plate theory to be uniformly distributed of a total length of edge
equal to .94 times the plate thickness.

~8- i
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where
E S50
Reorner n3’“6 (20

Equations (12) and (19) furnish two candidate values for the

maximum tensile stress S in the seal. Thus

a, 2
Smax p(;p “hax (21)

where

1"l

the larger of n, and (22)

n n
max dge corner

For most designs nedge will govern in equation (22).
APPLICATION TO DECTGN AND SCREENING

The formulas developed above can be of use both to the designer,
whose objective 1s to design a package that will remain hermetic under
a gpecified screening pressure, and the user, whose objective 15 to
select an appropriate screening pressure that will destroy the hermeticity
of packages with poor quality seals,

Application to design: Considering first the designer, let it be

supposed that he knows the sealing material to be used and has a value
of the allowable tensile stress Sall for that material. Then his criterion
for a satisfactory design, from the point of view of retaining hermeticity

under external pressure, should be that Smax’ as given by equation (21),

is less than Sall' That is,

a2
P noe 28 (23)
where p 1s the largest anticipated screening pressure. In selecting S811

the designer should, of course, be conservative., If Sall is taken as the

—9-
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median tensile strength of the sealing material, as obtained from a number
ot tests of that material alone, then packages designed on the basis of the
equality sign in equation (23) will have a failure rate of approximately

50% even if properly sealed (and a higher failure rate if there is a

. e e el s e

mixture of properly and improperly sealed packages). On the other hand,
if the designer selects for Sall the l-percentile value of the tensile

strengths obtained in a large number of tests of the sealing material

R A T

alone, then he should expect only a 1% failure rate for properly sealed

packages designed on the basis of equation (23) with the equality sign.

T e T A

It could happen that th~ designer has very little data on the
distribution of tensile strength values for the sealing material, or even
on ihe mean strength, but he doer know that a certain previously designed

package, designated as I, when properly sealed with the same material had

an acceptable failure rate F under a screening pressure of Py- Then in

order for the new package, designated as II, to have a fallure rate no

greater than F when properly sealed and subjected to its screening pressure

Pyys he should so design package II chat its smax 1s no greater than that

AL

of package I. Thus, referring to equation (21), his criterion for a

saltisfactory design of package II should be

a,2 a,2
pII [(z_v') nmaxj] II AL Py IE;) nmax}I (24)
or [(3)2 n ] < 3:-[- Ir(i)2 n ] (24a)
w max) ;. —Pyp LW max |
-10-
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If +he same screening pressure is to be used for package II as for

package I, this design criterion becomes

[ nud < [® nd G

Application to screening: Turning now to the user of an already

i
&
g
4
s

1
1
¢
e |
;!
4

designed package, let us first suppose that he has a minimum acceptable

3 value, S for the tensile strength of the seal and wants to be

accept’

sure of rejecting all packages with seal strengths less than that. Then

he should select a screening preesure p such that the Smax defined by

equation (21) is equal to or greater than S Thus, the required

accept’
screening pressure is defined by
S
p > a;cegt (25)
& n
W max

It is more than likely, however, i iat the user of the package will
not have enough information about the sealing material to be able to
specify a value for Saccept’ but he might know that in the past a certain
pressure p, was cons’dered suitable for the screening of a certain package,
designated as I, employing the same sealing material as the present package,
which we shall designate as II. Then his criterion for selecting a suit-
able screening pressure Pry for the present package should t~ that the
S x of package II, under the pressure Py be at least as big as the

ma

Smax of package I under the pressure Py Referring agaiu .2 equation (21),

we see that the criterion for selecting Pyr is then

a,2 a, 2
Pyr E;) nmax]n z pI [(;) nmax]I (26)

=

-11-

e AT A oyl st LA A o A B S AU L LA nitat v el ebie ars 304 il diintl TR e Bt A A s ) NS i et (s S o T S kb Ak




o AT RS A R mn N GO0 2 S I RS A SR S T i Rt o i i i L O P PSS L T N e e

or 4.2
o]
w max 1
Pi12P1F .2 (26a)
oF

Possible mcdification in above procedures: 1In appendix C some

doubts are raised as to the validity of the corner stress. Theoretical
arguments are presented which indicate that equation (19) might over-
estimate this stress and that, in fact, this stress might not exist at °
all, Thus, there is an uncertainty regarding the existence of the coruer
stress, and the question naturally arises what modifications, 1if any,

are needed 1n the designing and screening recommendations just presented
because of this uncertainty.

In the writer's opinion, the answer to this duestion should be sas
follows: One should accept or discount the existence of the corner
stress on the basis of which attitude will lead to the more conservsative
result. For the designer this means that if he is designing on the
basis of equation (23) he should use that equation as it stands; but
if designing on the basis of equation (24), (24a) or (24b), he should
make sure that the inequality remains satisfied with noax replaced
by nedge on both sides. On the other hand, the user of the package,
who is trying to arrive at a proper screening pressure p, would make
two calculations, one on the assumption that the corner stress exists,
the other on the assumption that it does not exist, and use the higher
of the two pressures thus obtained. The first calculation is the
one already described above; that 1s, it is a calculation based on
equatior (25) or (26a). For the second calculation equation (25)

or (26a) is again used, but with N ax replaced by nedge'

~12-




Fortunately, for most packages Sedge’ as given by equation (12),
will be much greater than § , as given by equation (19). Thus, 1in
corner
most cases the question as to whether equation (19) over-estimates
S or whether S actually exists will be academic, and the
corner corner
modified designing and screening procedures will be in no way different

from the original procedures.

Lid deflection: Tt goes without saying that the designer and the

user both must concern themselves with the center deflection of the 1id,
in order to insure that during any screening the deflection will not be

so large as to produce contact between the 1id and the contents of the
package. The pertinent formula for estimating center deflection is
equation (10a). The designer should so design the package that under the
anticipated screening pressure this deflection is less than the antici-~
pated internal clearance between lid and contents. By the same token,

the user, after tentatively selecting a screening pressure, should compute
the center deflection produced by that pressure and make sure that it does
not exceed the internal clearance. If 1t does, then he may have to use a
less severe screening pressure (i.e., accept a higher risk of non-
hermeticity) in order not to jeopardize the integrity of the contents of

the package in the screening.

FLAT-PACKS IN A CENTRIFUGE

As part of the total screening process, packages are frequently spun
in a centrifuge in such a way that the centrifugal force tends to push

the 11d into the cavity. As far as the 11d alone is concerned, this

13~
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centrifugal force is equivalent to a lateral pressure of magnitude Gtd,
where G is centripetal acceleration in units of g (acceleration of
gravity, 32,2 ft./sec.z). t is the 1lid thickness, and d is the opecific
weight (weight per unit volume) of the 1lid material. If t i{s in inches
and d in 1bs. per cubic inch, the formula
p = Gtd (27)

will give the effective pressure, in psi, due to a centrifuge acceleration
of G g's.

Thus, the formulas developed in the preceding sections car be made
to apply to a package in a centrifuge simply by replacing the symbol p
everywhere by Gtd. In this way, for example, the following formula is
obtained from equation (10a) for the central deflection of the 1lid of a

package in a centrifuge:

Gtd ,a.3
6max 10.92 n GE) a*n

(28)
4 E,

5

From equations {12), (19) and (21) the following fermulas are obtalued

for the tersile stresses in the seal:

a2
Sedge th(w) Nedge (29)
S - ctd@? (30)
corner w corner
s =otd®?n (31)
max w max

It should be noted that the interaction among the base, walls, and
1id of a package may be somewhat different for a package in a centrifuge

than for the same package under a uniform hydrostatic pressure. There~

fore, the value of o to be used in equations (4) to (Ja) is not necessarily

the same for the package in the centrifuge as it 1s for the same package

14~
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under hydrostatic pressure. As an aid in estimating the appropriate
value of a let us consider one extreme condition, illustrated in Figure
1l4(a). In this figure the 1id and base are assumed to be identical and
the package 1s assumed to be supported in the centrifuge only at its
edges. Under these circumstances the 1id and base will deform identically
under their centrifugal loadings and the walls will develop lines of
contraflexure at mid-height. It can be shown that the appropriate value
for o is then 6. A more likely support condition 18 illustrated in
Figure 14(b). There the base is firmly bonded to a flat surface, producing
an essentially clamped condition for the bottom edges of the walls. 1In
this case o should be taken as 4. Again it should be noted that for most
packages this uncertainty in the value of a is of no real consequence.
Equations (28) to (30) can be used to determine if any undesirable
1id deflection or seal stresses will vesult from a given centrifuge accel~
eration. Equation (27) can be used in the following way: If a certain
hydrostatic pressure p is known to be destructive of 1lid or seal for a

¢lven package, then equation (27), rewritten as

=L
G td (32)

will give the acceleration (in g's) that will produce approximately the
same destructive effects. Conversely, 1f a certain hydrostatic pressure
is known to be non-destructive of 1lid or seal then equation (32) can be
used to estimate a value of G that will also be non-destructive.

To gain further insight into the equivalence of hydrostatic pressure
and constant acceleration, let us consider a 1id of ,030 in. thickness

and .302 1bs. per cu. in. density and ask how many g's of centrifuge

~15-
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acceleration are equivalent to a lateral pressure of 30 psi on the 1lid.

From equation (32) the answer is

30

G = T7030) (.302)

= 3310 (g's)

NUMERICAL EXAMPLES

Example 1. A package has the following properties: a = b =1.000 in.,
t = ,015 4in., h = ,105 in., w = ,040 in., r = ,010 in., Ec - Ew = 20,000,000
psi, Vo TV, T 0.3, d = .302 1b./in.3. What are the maximum tensile stress
in the seal and the central deflection of the 1i1d due to an external pressure
of 30 psi?

With o assumed to be 3, equation (6a) gilves

.0401° 1.000
( 015) =5 - 541 (33)

Figure 3 then gives arctan K = 1.57 (that is, the 1id is essentially
clamped along its edges). Enteri., Figures 5, 6, 7 and 8 with b/a = 1
and arctan K = 1.57, one oktains

ny = .051, n, = .443, ny = 0, n, = .00125 (34)

For p = 30 psi,

4 4

pa_ _ 30 1 -

~ .4~ 70,000,000 (.015) 29.6 @33
(o]

Therefore (Fig. 9)
ng = .825 (36)

Equation (10a) nov gives the following 1id deflection:

3
; 30 1)
8 ax 10.92(.00125) 56,000,000 (_015’ (1.000 in.)(.825)
= , 0050 1in. (37)
F ]

~16-




From equations (13), (17a), (20) and (22) there follows

. 040
nedge = 6(.051) - (.443) 1,000 .288
01 o1d) 2
n6 =14+ ,94 (ﬁ - .21 (.04 = 1,34
(38)
n =
corner
n = ,288
max

Thus, the maximum tensile stress in the seai occurs at the middle of the

long edge. Its value, from equation (21), is

1.000\>
Sax = 30 ("'.'&‘6) (.288) + 5,400 psi (39)

Example 2. Suppose that 30 psi is considered a satisfactory screening
pressure for the package of Example 1 (to b: referrad to as package 1),
what screening pressure would be appropriate for a second package
(package 1I) didentical in all respects to package I except for the length
b, which {s 2,000 in.? What will the 1id deflection be under this screen-

ing pressure?

For package II we have b/a = 2 and arctan K still equal to 1.57,

Figures 5, 6, 7 and 8 then give the following information for this package:

n, = .083, n, = .51, ny = 0, n, = .00255 (40)
Also, from equations (13), (17a), (20) and (22),
. 040
nedge = 6(.083) - (.51) 1000 - JA477
n, = 1.34
6 (1)
n -
corner
]
n = ,477 §
max ;

-17- j
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Equation (26a) now gives

(1 oo;) .288)

Prr 18 18 psi (42)

1.000
(-7555) (.477)

as the appropriate screening pressure for package II. For this pressure

4 4
pa_ _ 18 1.000\" _
4 - 20,000,000 ( .015) 17.9 (43)
E_t

The curve for b/a = 2 in Figure 9 then gives

ng = .87 (44)

From equation (10a) the center deflection of the 1id of package II under

a screening pressure of 18 psi is now found to be

$ = 10.92(.u0255)

18 1.000
max 20,000,000

3 .
.015) (1,000 1in.)(.87)

= ,0065 1in.

Example 3. For the package of Example 1 a maximum tensile stress
of 5,400 psi in the seal material was computed for a screening pressure
of 30 psi, Suppose that the maximum permissible stress in the seal 1s
4,500 psi, what new 1lid thickness (if any) would reduce Smax to this
value, all other dimensions remaining unchanged?

Assume, tentatively, that Smax will still occur along the edge,
rather than at the corner. Then the criterion for a satisfactory design,

from equation (23) with n _ set equal to Bedge’ is

all _ 4500

n < = *
edge — 2 1,000\2
p(2; 30( .040)

24
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In view of equation (13) this criterion may be written as

W

6n1 -0, ;f_ 24 (45)
or, substituting for w/a its value of .040 and solving for i,

n, < .040 + .0067 n, (46)

The value of n, is fairly insensitive to K (see Fig. 6) and, therefore,

very little error is involved if we continue to use for n, the value

2
found for it in Example 1, namely .443, Thus, equation (46) becomes

n, < .043 (47)

Referring to the curve for b/a = 1 in Figure 5, we see that this requires

arctan K < 1.45 (48)
or, from Figure 3,
k! <20 (49)
1

Subgtituting for K~ its expression from equation (6a), and using the

numerical data specified in Example 1, we convert this to

3
3@y L:000 . 4

t) T.105 < (50)
whence
T < .888
or (51)
W . 040
t > %8s " Tgag - ‘045 in.

Thus, a 1id thickness comparable tc the wall thickness would be
needed to reduce the maximum tensile stress in the seal at the middle
of the side to 4500 psi.

The corner stress in the seal must now be checked to see that it

does not exceed the maximum permissible stress of 4500 psi. TFrom

-19-
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; equations (19), (20) and (17a), we have i
: :

b a,2 "3 ;

% Scorner p(w) (52)

z‘ t r 2 xé
0 1+ .94 == .21 i
il i
@ !

i For arctan K = 1.45 and b/a = 1.0, Figure 7 gives ‘

' n, = ,0056 (53)

3

Substituting this into equation (52) together with the numerical values of

the other parameters, we have

2
o 1.000 . 0056 -
% Scorner 30 ( .040) L+ .94 L097\ _ 21 010\ 2 32 psi (54)
A : .040) e W)

which is indeed less than the 4500 psi allowable.

CONCLUDING REMARKS

Formulas based on classical plate theory have been presented for the
reactions and center deflection of the 1lid of a rectangular flat-pack
undec external pressure, and suggestions have been made as to how these ;
formulas can be of use in the design and screening of flat-packs.

There are several simplifying assumptions underlying the present

work. Most of them have already been discussed and justified. One

which has not yet been discussed, and which warrants close scrutiny, is
the second hypothesis stated in the Introduction; namely, that the screen-

ing effectiveness of external pressure in weeding out non-hermetic or

potentially non~hermetic seals is due to the tensile stresses which this

pressure produces in the seal material. This hypothesis is admittedly

debatable. One could argue that the screening action is due to the

-20-
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seepage of fluld into the package thrcugh pre-existing voids or narrow
passages 1in seals of poor quality. Undoubtedly, some of the screening
action is due to such seepage, but the writer feels that the tensile
stresses produced by the pressure are the predominant screening mechanism.
There is some evidence to support this feeling: Firstly, those who are
knowledgeable in the screening of flat-packs report that the screening
power (failure rate) of external pressure goes up drastically as the
package size (dimensions a and b) increases. This is consistent with
equation (21), which shows that the maximum tensile stress in the seal

is approximately proportional to the square of the dimension a. Secondly,
p. 5 of reference 4 describes the 'pressure withstanding capability" of

properly sealed Bendix packages as follows:

Holder Size Pressure Differential
3/8 square 5 atmospheres

3/8 to 5/8 square 3 atmospheres

5/8 to 3/4 square 2 atmospheres

3/4 square 1.25 atmospheres

We note that as the size is doubled (going from 3/8 square to 3/4 square),
the allowable pressure differential is reduced by a factor of 4 (from 5
atmospheres to 1.25 atmospheres). Equation (26a) predicts approximately
the same relationship between package size and screening pressure.

A second assumption which warrants further attention 1s the one
illustrated in Figure 10(a); namely, that the bending moment a2t the edge
of the 1lid produces a linear variation of stress across the width of the
seal, as in elementary beam thcory. This kind of assumption is frequently
made; it follows from the assumption of plane horizontal sectiouns through

the seal remaining plane and the assumption of Hooke's law. As the

—21-




stresses in the seal material becomes nigh we can expect that plastic
behavior and possibly creep in the seal material will destroy the
linearity in the stress distribution and reduce the maximum stress.
Furthermore, if the 1id is thin compared to the thickness of the wall
(t<<w), we should not expect the 1lid to be able to enforce the plane
sections assumption in the seal. For t<<w the action of that portion

of the 1lid in contact with the seal would probably be like that of a
beam attached to an elastic founda“ion, ana the pressure distribution
between such a beam and its foundation is known to be non-linear. Thus,
the linear-stress~distribution assumption of Figure 10(a) has obvious
shortcomings. Nevertheless, it has been employed in the hope that it
may be sufficiently good for practical purposes and because any more
sophisticated assumption would involve an inordinate amount of additional
analysis.

A third assumption implicit in the present work is that the pressure
on the side walls makes a negligible contribution to the stresses in the
seal. TFor shallow packages the validity of this assumption is intuitively
evident. A semi-quantitative justification of it can be made by analyz-
ing the configuration of Figure 1(b) as a rigid-jointed plane frame under
pressure on the vertical members alone and pressure on the horizontal
members alone. Such an analysis shews that the ratio of the corner bending
moment due to side-wall pressr.e alone to the corner bending moment due to
pressure on the top and bottom covers alone is of the order of Dch3/Dwa3
or (Ec/Ew) (t3/w3) (h3/a3). For any flat-pack of practical design this

ratio will be much smaller than unity, indicating that the side-wall

~22-
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pressure makes a negligible contribution to the bending moment transmitted
across the scal and, therefore, to the stress in the seal.

The final test of the validity of any theoretical work and the
hypotheses on which 1t is based must, of course, be based on experiments.
In the present case one can envision a modest experimental program that
could provide evidence as to the validity of the assumptions that have
been made. This program would require flat-packs of different sizes
and shapes, all carefully sealed with the same material. The value of
N oax (eq. (22)) would be computed for each package. Each package would
then be subjected to external pressure which 1s increased in small steps,
and the pressure Per which first causes a loss of hermeticity would be

noted. The product Pop (a/w)2 nox would then be computed for each

package. According to equation (21), this product represents the maximum

tensile stress in the seal at the time of loss of hermeticity. If the
seals are of reasconably uniform quality, so that they all have essentially

the same tensile strength Su ¢ and if the hypothesis of this report (to

1

the effect that failure occurs when Sma - Sult) is correct, then this

X
product shou/d turn out to be approximately the same for all packages.
If the test program just described tends to confirm the present
hypotheses, then a second progfam would be desirable, identical to the
first, except that the seal material would be changed to one of much

higher or much lower strength., The purpose of this program would be to

see if there is a corresponding change in the experimental values of

2
pcr(a/w) 0 oy’ 28 there should be if the failure hypothesis S nax Sult

is correct. i
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APPENDIX A

SMALL-DEFLECTION ANALYSIS OF A UNIFORMLY LOADED ELASTIC

RECTANGULAR PLATE WITH EDGES ELASTICALLY RESTRAINED AGAINST ROTATION

!
|

Here the energy method will be employed, in conjunction with

double Fourier series and Lagrangian multipliers, to obtain the

deflections and other quantities of interest in a uniformly loaded
elastic rectangular plate with edges elastically restrained against
§ rotation.

Coordinate system and notation.- We shall employ the coordinate

gystem and notation shown in Figure 4 and let w(x,y) denote the
deflection of the plate, positive if in the same direction as the
pressure, p. The following additiona. symbols will be used:

k = elastic restraint stiffness (moment per unit length per

radian-of rotation).

E = Young's modulus of plate material,

Poisson's ratio.

<
[}

Et3/[12(1-v%)].

o
n

4ak/ (1°D).

=
1]

a/b.

[

B

Series for w and its second derivatives.- The double Fourier series

M N

w(x,y) = a__ sin(mmx/a) sin(nny/b) (al)
m-1§3,.. n=1§3,.. mm

is an appropriate representation of the deflections of a rectangular

IS

plate with zero deflection at the edges. Only odd values of the

24~
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summation indices m and n are taken in equation (Al) because under
uniform pressure the deflections will be symmetric with respect to
the planes x=a/2 and y=b/2. Upper limits M and N are shown for
the gummations with the understanding that in the computations M and
N will be assigned sufficlently high values to establish practical
convergence for all quantities of interest.

The boundary condition of zero deflection at the edges permits

one to obtain azw/axz, azw/ayz, and Bzw/axay by termwise differentiations

of aquation (Al). Consequently,

2 T \ 2

—-% - ) 7 a_ (mm/a)” sin(mnx/a) sin(nny/b)

X w=1,3,.. n=1,3,.. mn

82 M o 2

——% - - ) ) a_ (nn/b)° sin(mmx/a) sin(nny/b) (A2)
oy m=1,3,.. n=1,3,.. o

aZW M N

2Rdy m-1§3,.. n-l?B,.. amn(mn/a)(nﬂ/b) cos (mwx/a) cos(nmny/b)

Series for edge rotations.- The rotations el(x) of the edge y=0

and Bz(y) of the edge x=0 will be represented in the form of single series:

M N
Gl(x) = X bm gin(mnx/a) Gz(y) - ) <, sin(nay/b) (A3)
n=1,3,.. n=1,3,..

Constraining relations.— The deflections w(x,y) and the rotations

Ol(x) and Gz(y) must satisfy the following compatibility conditions:

(awlay)y_o = 0,(x) (aw/a:) 5 = 8,(y) %

-25-
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These gilve rise to the following constraining relations among the

Fourier coefficients a b, c

m n
? a M_.p =0 (w=1,3 M)
mn b m 1Faeees
n-1,3’¢o
(Ab)
M am 'Ei - Cn - 0 (n’l,B,o'o,N)
m=1,3,.. o0

Strain energy of plate.- The strain energy integral for a
rectangular elastic plate undergoing small deflections is given on
page 342 of reference 2, There it is also shown that substitution of
the series (Al) into the strain energy integral leads to the following

formula for the strain energy V. of the plate:

1
4 M N 2 2
vy - 2,05 2 w5
m=1,3,.. n=1,3,.. a b

Strain energy of elastic restraint.- The stralin energy V, of the

2

rotational elastic restraint along the edges of the plate can be written

as a b
Li| o, ex+ 3 | 10,0017 ay)
0] 0

Vo, = 2

Substitution of the series (A3) for el(x) and sz(y) leads to

M N
vy=2ka ] b2+ Zw § & (A6)

2 m=1,3,.. B n=1,3,.. B

Potential energy of the applied load.~ Taking the xy-plane taken as

datum, one may express the potential energy V3 of the applied load as

V3 = —p JJ w dx dy

26~
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or, substituting for w its serles expression,

4pab M N 4mn
' v3 TT T2 Z z mn (A7)
T m=1,3,.. n=1,3,..

Minimization of the total potential energy.- The total potential

energy (TPE) of the system consisting of the plate, its loading, and the

WS A e L AT R e

elastic constraints is defined as

TPE = ViV, +V, (A8)

According to the principle of minimum total potential energy for elastic
structures, the true configuration of the system, among all possible
configurations satisfying continuity and any rigid constraints, is that
which minimizes the TPE. Thus, the correct values of the a o bm and ch
are those which minimize expression (A8) while at the same time satisfying
the constraining relations (A4). This "constrained minimization' problem
can be solved by setting up the new function

M N

% ’ nn
TPE =V, +V, +V, - ¥ a () a_ —-b)
L2003 pa1y3,.. @ pel,3,,. ™Po@m
N M o
-y G a_ o= c) (49) |

n=1,3,.. ° m=1,3,..
where the % and Bn are Lagrangian multipliers, and making it stationary
with respect to the a 's, the b _'s, the ¢ 's, the o 's, and the B 's
mn m n m n

via the following conditions:

a(TPE*)/aaij =0 (i=1,3,...,M; j=1,3,...,N) (A10)
a(TpE*)/abi =0 (1=1,3,...,M) (A11) |
a(TPE*)/acj = 0 (3=1,3,...,N) (A12) !
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3 (TPE") /3 L =0 (1=1,3, ... M) (A13)

1 3 (uwz"’)/mj -0 (4=1,3, - .,N) (A14)

(Equations (Al3) and (Al4) merely replicate the constraining relations
(A4).) With the differentiations carried out and some minor algebraic

i manipulations executed, (Al0) to (Al4) become:
2

B
3 A, = : (1=1,3,...,M; §=1,3,...N) (A15)
e

1+ jzAi 1

% by = - AJK (1=1,3,...,M) (A16)
ci = - B,/K (421,354, N) (A7)
J J
b, - g3 ? JA,, =0 (i=1,3,...,M) (A18)
1 3=1,3,.. = B
. M
¢y = 3 I =0 (=1,3,..,8) (A19)
1=1,3,..

I T
where Aij’ Ai’ Bj’ bi’ cj’ and K are dimensionless measures of aij’ o

B, bi’ cj, and k, defined as follows:

h |
4
Ay n6Daij/l6a p (A20)
A, = inoa,/4ab%p (a21)
i i
Bj = jn38j/4asz (A22)
b: T inSDb1/16ab2p (A23)
c; = jnsch/l6aBp (A24)
K = 4ka/72D (A25)

28~




Rl sl il sblarban o A o e Ly i r s macs
i T TR T TR T 8T TG 458 i M s 45,33 s W 1 2yt T+ o

Equations (Al5) through (Al9) are a system of simultaneous linear

* *
algebralc equations defining the Aij’ Ai’ Bj' bi’ and cj.

i=1,3,.. (1"+378%)

Simplification of simultaneous equations.- Equations (Al5), (Al6)
* *

and (Al7) can be used to eliminate the Aij’ bi and cJ in (A18) and (A19).

The latter then becomes:
g 3 N 1+ 3%, + 1%,
g A+ BK N RN =0  (i=1,3,...M) (A26)
; 3=1,3,..  (1“+3%8°)
; M 1+ jzAi + 1231
g‘ Bj + K 2 3. 9.2 = ( (J=1,3,...,N) (A27)

A further reduction in the number of simultaneous equations is effected
as follows: Solve (A27) for each BJ in terms of all the Ai to get

. G 42 M

2 ) —3 _ (4=1,3,...,N) (A28)
I H®  HQ 03,00 (@222

§ where
: M

£, = Ko+ ) 12 (124425272

i=1,3,..
(A29)
M
g, =- L @hlh
1=1,3,..

Now use (A28) to eliminate the Bj's in (A26) and thereby arrive at the
following system of simultaneous equations in the Ai's alone:
M

N AfeLha) = £,(1) (1=1,3,...,M) ' (A30)
q=1,3,..

~29-~
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where

N

gt =8, [0+ 1 sPata?ehHT
q
i=1,3,..
N
-1 1 A@PeBEh it h e o™t @a
3i=1,3,..
3 2,,2,20-2 (. 2 -1
£,(1) = - 1 @HHTT MM £ W17 (A32)
1=1,3,..

with qu being Kronecker's delta.

On the basis of these transformations, we now have the following
calculation procedure: Solve ejuations (A30) (whose number depends only
on M, not on N) simultaneously for the Aq's and substitute their values

into (A28) to obtain the B,'s. (In the special case k=0 the Aq's and

J
the Bj's are identically zero (see eqs. (A26) and (A27)). With the Aq's
and Bj's known, equations (Al5) will yield the values of the Aij's.

Once the above quantities have been determined, all other items of
interest can be computed, as will be seen in the following sections.

Center deflection.- Equation (Al), evaluated at x=a/2, y=b/2, gives

mn-2

4 M N —_—
W@, B 22y NG (433)

L wm=1,3,.. n=1,3,.,

Corner reaction.- From page 85 of reference 2 we have the following

equation for the corner reaction in terms of the corner rate of twist:

_ _ 2
R = 2D(1-v) (d w/BxBy)x=0
y=0
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Elimination of the twist through equation (A2) then gives

2 S 3
R = pa“s32(1-v)Bm ) ) Ay, m (A34)
w=1,3,.. n=1,3,..

Bending moments along the sides.- The bending nioments normal to the

edges y=0 and x=0 are related to the rotation functions el(x) and ez(y)

as tollows:

M) = -k0, (x)
AN 1
y=0 (A35)

(Mx)xm0 = -kez(y)

Substituting for Gl(x) and ez(y) their series expansions (A3) and making

use of the relations (Al6) and (Al7), one obtains

2 M A sin(mmx/a
o) _ 4pb° ) m /a)
yy=0 3 me1ls,.. m
(A36)
2 N B_ sin(nmy/b
™) - 4pa n y/b)
x"x=0 ﬂ3 n=1,3,.. n

Curvatures along the sides.- The curvatures normal to the edges

can now be determined from the moment-curvature relations and equations

(A36) as follows:

azw 1 4 b2 M Aﬂ sin(mwx/a)
(=9 =) === ] -
2 Dy y=0 3 m
dy”~ y=0 mD m=1,3,.. (A37)
Bzw 4 a2 N Bn sin(nuy/b)
(-"_E) s E(Mx)x=0 T3 Z n
ax~ x=0 1w D n=1,3,..
<31-
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Some third derivatives of w.- Termwise differentiation of the

Fourier series (Al) is permissible in order to arrive at the following

series expansions:

3 M N

n 7
Toe- ) L e EHPE) cos
IX3y m=1,3,.. n=1,3,..
3 M N
.- ] L e @ADL e1n BX
ox dy m=1,3,.. n=1,3,..

Termwise differentiation is, however, not valid for obtaining 33w/3x

and B3w/ay3. We therefore postulate the new series

83w \ N mix niy
— = Z Z b_cos == sain
3 mn a b
ax m=1,3,. n=1,3,..
3 N
3Tw mix nny
) z z ¢on gin s 08

3y m=1l,3,.. n=1,3,..

from which 1t follows that

b a 3
-4 9w mix nny
bmn ab J J NE cos —— sin b dx dy
o o “*
a b 3
4 3w nw mnx
Con ™ ab J J ;-3 cos in ~a dy dx
0o 0o
-32-
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Partial integration with respect to x in the first of these equations

gives

b2 3w any
bon a[bJ(a) sin 2L dy]
x x=0
0
+ EI~[ 4 833 sin orx sin fLub A dx dy] A4l
a ab ax2 a b y ( )

The first bracketed term will be recognized as the formula for the
Fourier coefficient in the sine series for (Bzw/axz)x_o, and therefore,

referring to equations (A37) , it may be replaced by

2 B
_bpa’ n
“3D n

The second bracketed term is the formula for the Fourler coefficient
in the sine-sine series expansion for azw/axz, and, referring to
equations (A2), it may be replaced by -amn(mﬂ/a)z. As a result, equation

(A4l) becomes

lépa Bn mw, 3
bmn = 3 n 8mnca_) (a42)

Analogous operations on the second of equations (A40) give

A
o lépb "m _ am, 3 .
an Sp U anm(b ) (A43)

Thus, the bmn and Con in equations (A39) are now expressed in terms

of quantities which are known once the Aij’ Ai and Bj have been computed.

=33~
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Vertical reaction along the edges.- From page 86 of reference 2

; the effective vertical shears along the edges x=0 and y=0, in units

i of force per unit length, are

i (o mpp 2y gy M
i x"x=0 3x3 axay2 x=0
' (A44)
g 3 3
§ ) 9
] (V.Y o = = Dl 3+ (2=v) —%,]
‘ yy dy dydx” y=0

X Replacing the derivatives by their series expansions (A38) and (A39),

and utilizing the relations (A42) and (A43), one obtains

b 3§ ¥
E (V) g = l6paw ) Y S sin(nny/b)

n=1,3,.. m=1,3,..

(A45)
4 M N
(Vy)y=0 = lé6pam ) 2 Ton sin(mmx/a)
m=1,3'no n‘l,3,..
where

i
r

2 2.2 -1
Smn = Amn m[m® + (2-v)n"87] E.n n ‘

Co 2.2 Coye2q -1
1mn Amn nB[B n” + (2-v)m”] Am(mB)

—34—
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Computational details.- The above analysis was the basis for

computing the a, and n, data in Figures 5 and 7 for values of K other
than 0 and «, Jalculations were made for M = N = 11, 13, 15 and the
results were graphically extrapolated to M = N = =, This technique
could not be used successfully for computing n, because of poor

convergence, or, perhaps, non~convergence, of the series (A45).

-35-
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APPENDIX B
SMALL-DEFLECTION ANALYSIS OF A UNIFORMLY LOADED ELASTIC

RECTANGULAR PLATE WITH CLAMPED EDGES

Here the energy method is again employed in conjunction with
Lagrangian multipliers but with a different double Fourier series, to
analyze a uniformly loaded rectangular plate with clamped edges. The
main purpose is to obtain data for the K = » curve of Figure 6 (which
data could not be obtained from the analysis in appendix A because of
poor convergence). At the same time, expressions are given for the
deflections and the edge bending moments. It will be seen that the
data needed for the K = « curve of Figure 6 are obtained directly
from the values of the Lagrangian multipliers.

Coordinate system and notation.- The same coordinate system is

used as in appendix A, and the symbols k, E, v, D, K and 8 will have
the same definitions as in appendix A.
Series for w.- The following series gives zero normal slope at
the edges and the deflection symmetry appropriate to a uniform loading:
M N
w(x, y) = X z a__ cos(mmx/a)cos(nmy/b) (Bl)
m=0,2,..n=0,2,.. ™
It is understood that calculations will be made with successively higher
values of M and N until convergence has been achieved for all physical

quantities of interest.

Constraining relations.- The conditions of zero deflection along

the edges requires that the following constraining relations be inposed

on the coefficients:

-36-~
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22 a =0 (@=0,24, ..., W) (B2)
m=0,2,..

N

) a0 (m=0,2,4, .., M (B3)
n=0,2,..

These equations are redundant, inasmuch as summing (B2) over n leads

to the same equation as summing (B3) over m. In order to remove this
redundancy, we shall replace the first of equations (B2) and the first
of equations (B3) by the single equation obtained by summing these two.
Thus, the following set of independent constraining relations is

obtained to replace (B2) and (B3):

N M
2a_+) a, + ) a_ =0 (B4)
; 00 n-2,4,.9n m-2,4,..mO
‘

M

1 ) a =0 (n=2,4,6, ..., N) (B5)
g‘ m=0,2,..

i - a =0 (m=2, 4, 6, ..., M) (B6)
" n=0,2,..™

Strain energy of plate.-— Substitution of the series (Bl) into

the strain energy expression for a rectangular elastic plate undergoing
: small deflections (p. 342 of ref. 2) gives the following formula for

the strain energy V1 of the plate:

4. M N
‘, v, =10 7 T @® + %P2+ 5
g 8a> m=0,2,.. n=0,2,..

2
o* Son)amn (B7)

where § and § are Kronecker deltas.
mh) On
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Potential energy of the applied load.- With the xy-plane as

datum, the potential energy V, of the applied load is

3
Vy = -p ff wdxdy

or, in view of equation (Bl),

V, = -paba (B8)

3 00

Minimization of the total potential energy.~ The total rotential

energy (TPE) is defined as

TPE = Vl + V3 (B9)

By the same argument as in appendix A, the correct values of the a .
in the series (Bl) are those which minimize expression (B9) while at
the same time satisfying the constraining reclations (B4) to (B6).
Again we have a "constrained minimization" problem which can be solve!
by setting up the new function

N M

TPE* =V, +V, - y(2a_. + ) a, + ) &)
13 00 p-2,4,.0% ped,q,. 0

] ) ) )
- a ( a )= B ( a_) (B10)
n=2,4,.."w=0,2,. ™ g=2,4,.." n=0,2,..™

where v, o s Bm are Lagrangian multipliers, and making 1t stationary

with respect to the amn's, Y, the uh's, and the Bm's via the conditions

9 (TPEX) /3, = 0 (B11)
a(TPE*)/aa10 =0 (1=2,4,6, ..., W (B12)
B(TPE*)/3ap, = 0 (3 =2, 4, 6, .c\y W) (B13)
ITPEX) /3ay, = 0 (1 =2, 4y ooy M3 3 =2, 4, .00y M) (B14)
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3(TPE*) /3y = 0 (B15)
; a(TpE*)/aaj =0 (1 =2, 4, 6, v0ouy N) (B16)
I(TPEX) /3B, = 0 (L =2, 4, 6, ...\ M) (B17)

The last three of these conditions merely reproduce equations

T e i S
R T cie I

(B4), (85) and (B6). With the differentiations carried out, the first

four conditions read as follows:

A -pab - 2y = 0 (B18)
i .

l: lr._.l.)_ . i— . - - "~

1 2 bagg - Y- B =0 (1=2, 4, ..., M) (B19)

4
TD , ,4.2 . _ _ - .
gap 3 B dap -y -a =0 (2,4 ., N) (820)
4y 42 1=2,4, ..., M
m™D i~ 2.2 _ - - G y * Yy
gab (g tIB)2a, -a =B =0 =24, ..., N (B21)

Equations (B18) through (B21), together with (B4), (B5) and (B6), are a

system of simultaneous linear algebraic equations defining the aij’

B,, o, and Y.

i’ 74
For later use we now introduce the following dimensionless measures

of Amn’ Bm and a

\
A = ﬂaDa / pazb2
'mn mn |
B = ZBm/pab }(322) j
An = 2an/pab ;
J 3

-39~
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Simplification of simultaneous equations.- From (B18)

Y = -pab/2 (B23)

With this result substituted into (B19), (B20) and (B2l), the

latter become, afier minor algebraic manipulation,

2 4 .
Ao =8 (Bi-l)/i (1= 2, 4, ..oy, M) (B24)
: 4 2
| AOj = (Aj"l)/(j B ) (.j = 2, 4) coey N) (BZS)
2'. .
¢ - i=2, 4, vy M
: A =2, + 8087t + %0 Gaz 4 LW (B26)
| i} b i
/
b These can be used to eliminate the L in equations (B5) and
|
% (B6). Those equations can then be written as follows:
1
. -4 -2 M 2, 2 2.2,-2
g A = [n87° - ¥ 2B B°(m” + n“B°) “1+f. (n) (B27)
: n m 1
m=2,4,..
‘ (n=2,4, ..., N)
{ 42 X 2,2 22.-2
Bf (m) =m B8 - } 2A_B“(m” + n“B%) (B28)
4" m 2 n 4 n
{ n=2.4,..
nfr
! (m= 2,4, ..., M)
ﬁ where
' 42 M 2,2, 2.2-2
£, (n) = B+ ) 28°(m“ + n“p“)
m=2,4,..
(B29)
N
£,(m) = m g + ) 282 (m? + n%g?)~2
n=2,4,..

If (B27) 1s now used to eliminate the An in (B28), the latter

equations become

-40- i
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M
q-g,a,..chmq mrp (@2, 4, e, M) (830)
where
N

: _ 4, 2 2.2.-2,2 2,2.-2 -1

cmq = fz(m)aqm n-g . 48 (m” + n"B") “(q° + n"B7) [fl(n)]

’ ’Ol
(831)
42§ 4, 2 2.2.-2 -1
r =m 8- ] 2n (@ + n“B%) (£ (n)]
m n=2,4,.. 1

On the basis of these developments we now have the following cal-
culation procedure: Solve equations (B30) (whose number depends only
on M) simultaneously for the Bq‘ Wi*h these known, equations (B27) will

furnish the values of the An. Then equations (B24) to (B26) will yield

all the Aij except AOO' The latter is defined by equation (B4) as
1 g ?
A= Z0 A+ A ] (B32)
00 n=2,4,.. On m=2,4,.. mo

Deflections and edge bending moments,~ Once the Aij are known,

the deflections and edge bending moments are readily computed. Equation

(Bl) gives the former as

4 M N
1 , .
wix,y) = R%— e ) ) Amn cos E%E cos R%X (B33)
n @ m=0,2,.. n=0,2,..

The bending moments normal t6 the edge x = 0 are also obtained with

the aid of equation (Bl) as follows:

2 2 2 =2 N M 2
(Mx)x_0 = -D(3"w/3x )x=0 = pb°n % % A it cos(nny/b)
n=0,2,.. m=2,4,..

(B34)

-41-
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Those along the edge y = 0 are obtained in a similar way:

M N
= -D(azw/ayz) -0 " pazﬂ-2 E z Amnnzcos(mwx/a)
y m=0,2,.. n=2,4,..

* (B35)

Vertical reactions along the edges.~ The unknown vertical reactions

(force per unit of length) along the edges x = 0 and y = 0 will be

sought in the following Fourier series form:

N
V) o= nva X S cos(nny/b)
x'x=0 " .5,2,.. °
(B36)
?
V) .g=pb ) T cos(mnx/a)
y'y=0 m=0,2,.. "

where the coefficients Sn and Tm are as yet unknown except for the fact

that overall equilibrium of the plate requires that

pab = Zpa(SOb) + 2pb(TOa)

from which it follows that

S0 + TO - 1/2 (B37)

In order to determine the Sn and Tm we shall postulate an auxilary
problem, that of a uniformly loaded plate, with edges constrained to
have zero normal slope, with prescribed vertical loadings, in the form
of (B36), along the edges x = 0, y = 0, and with the loadings along the
other two edges dictated by symmetry. We shall determine the deflection
shape w(x,y) for this plate by means of the energy method. and then ask

what the prescribed vertical loadings along the edges have to be in

=42~
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order to reduce the edge deflections to zero, i.e., to bring the plate of

the auxiliary problem into the same state of deformation as the plate

of the original problem.

To solve the auxiliary problem, we shall again assume the deflections
in the form of the series (Bl), which again leads to equation (B7) for

the strain energy Vl‘ The potential energy of the applied loads must

now include the potential energy of the prescribed vertical loadings

along the edges. Thus, in addition to (B8), we have the following

contribution to this energy:

b
w(x,0)dx + 2[ ) w(0,y)dy (B38)
n X x=

a
Yy = zé Vy)y=0

Substitution of the series expansions (B36) and (Bl) converts this tc

T
i V, = 2pab a_ (5= + 5 b) " (B39)
4 w=0,2,.. n=0,2,.. " 285 28

The total potential energy (TPE) can now be written as

4
; TPE = V, + V, + V, (B40)

where the three terms on the right are defined by equations (B7),

(B8) and (B39), respectively.

R MR e

To fird the deflection shape under the given loading, we now make

via the equations.

the TPE stationary with respect to tche aij

Ty

: B(TPE)/BBOO -0

'g B(TPE)/3a, = 0 (1 =2, 4 ...y M) (B41) ]
( .

TR BT S x

(Cont'd on next pg.)
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8(TPE)/8a0j =0 (3 =2,4, ..., N)

a('rpx«:)/a.aij =0 (1=2,4, «o., M; 3 =2, 4, ..., N)

With the differentiations carried out, these become

-pab + 2pabT, + 2pab5, = 0 (B42)
ﬂ4D 14 '
Bab ° ;7 . 4810 + pab'I'i + 2pabS0 =0 (L =2, 4, ..., M) (B43)
: 4
D, 42, : . -
8ap " J 8 4a0j + 2pabTO + pabSJ 0 (J=2,4, ..., N)
(B44)
|
. 42 L 2.2 i=2, 4 M
—— (= . - L4 y e
8ab * (B + 1°8) Zaij + pabTi + pabSJ 0 ( )
j-2,4,....N =
(B453) ;

At this point the similarity between this group of equations

and equations (B18) to (B21) should be noted.

We now postulate that the loading functions (Vx)x-O and (V )y-O are not
” arbitrary, but are whatever is necessary to give zero deflection along

the edges. In that case the platedeflectionsof the auxiliary problem

must be identical with those of the original problem. That is, the aij

in equations (B42) to (B45) will be the same as the aij in equations

(B18) to (B21). It then follows that

e e T AR TR
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q 2pab(T#S,) = -2

i i

pab(Ti+ZSO) = ~(y+8,)

(B46)

)

pab(2T0+SJ) - -(Y+o¢j

) =-(ay+8,)

pab(Ti+Sj

Dl e e

Substituting vy = -pab/2 (from eq. (B23)), dividing through by pab/2,

and making use of the definitions (B22), we can convert these equations

e

to the following form:

; G(TgHs ) = 2 (B47)
‘ 2(T1+280) -1 - B1 (B48)
2(2T0+Sj) -1 - AJ (B49)
2(1y+5,) = ~(A+B,) (850)

where 1 = 2, 4, ..., Mand jJ = 2, 4, ..., N. The first of these
equations confirms the equilibrium condition, (B37); and the fourth
equation is implied by the first three.

We thus have arrived at the following relationships between the
Fourler coefficients in equations (B36) and the dimensionless Lagrangian

multipliers Aj and Bi defined by equations (B30) and (B27):

Sg+ Ty = 1/2 ' (B51)
1 .
T, = F(1-B-4s) (=2, 4, .0y M) (B52) ;
1 , |
Sj 7(1—AJ-AT0) (3 =2, 4, «.., N) (B53) ;
-45- :
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We see that the Ti and Sj have been determined to within a single

undetermined constant, say SO' The removal of this indeterminacy is

discussed in the next section,

Removal of indeterminacy. - We note first that the choice of a value

for So can in no way affect the deflections, inasmuch as they are com-
pletely determined by the Aj and Bi through equations (B24) to (B26),
(B32) and (B33). On the othz. hand, the value chosen for SO will affect
the Ti and Sj (see eqs., (B51) to (B53)) and, therefore, the reactions

V) and (Vy)y-O (see eqs. (B36)).

x x=0
The question naturally arises, how can variations in S0 alter the
vertical reactions along the cdges (which can just as well be regarded
ag loads) without at the same time altering the deflections? A plausible
conjecture one can make in order to answer this question 1s that equations
(B36) represent not only distributed reactions but also a set of concen-
trated self-equilibrating forces infinitesimally close to the corners, us
shown 1in Figure 15, and that by varying So we are varying the magnitude

of these forces. This conjecture 1s plausible because concentrated forces

such as shown in Figure 15 will alter the mean values of <Vx)x-0 and

(vy)y-O

without changing the sum SO + TO.

» and, therefore, S0 and TO’ without producing any deflections and

Accepting this conjecture, it now becomes clear that S0 should be so
chosen as to cause that component of the reactions represented in Figure
15 to vanish. The reason is that these concentrated forces correspend to
Dirac delta function components in (Vx)x_o and (Vy)yuO’ and 1f the serles

(B36) have to represent such components they will nct converge in the

46—
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usual sense, because their coefficients Sn and Tm will not approach zero
as N, M, n and m approach infinity., Thus, 1f the reaction component shown
in Figure 15 is not "swept out" of equations (B36) those equations will be
unusable for computing Vx anywhere along the edge x = 0 or Vy anywhere
along the edge vy = 0 (not only at the corners).

It has already been mentioned that the presence of any P other than
zero in the reactions along the edges will manifest itself through Sn and
Tm not approaching zero as N, M, n and m approach infinity. Thus, either
of the following conditions should suffice to eliminate any P~forces from

equations (B36):

Lim S, ~ 0
N+
(B54)
Lim T, = 0
M-+

Within the framework of a solution with a finite number of terms, SN and

'1‘M themselves are the best available estimates of the left-hand sides.

Thus, equations (B54) will be replaced by

Sy = 0
(B55)
Ty = 0
and, in view of equations (B52) and (B53), these lead to the following

equations for T, and SO:

0
1
To - z(l - AN) (B56)
1
SO - z(l - BM) (B57)

The following two calculation procedures now suggest themselves:

(a) Use (B57) to compute SO’ then (B51) to get TO’ and accept some degree

-47-
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of non-satisfaction of (B56). (b) Use both (B56) and (B57) to evaluate
§ To and So and accept some degree of non-satisfaction of (B51). In the

’ second procedure the closeness of T0 + S0 to 1/2 can be taken as an over-
! all measure of the convergence., The second procedure is the one that was
él used in the computations leading to the K = » (arctan K = 7/2) curve of

: Figure 6.

An alternate hypothesis was also investigated as a basis for removing

the indeterminacy in SO. This is the hypothesis that at a corner the

vertical reaction intensity is continuous around the corner, That is,

(vx)x=0,y-0 N (vy)y-O,x-O (858)
or, in view of (B36),
N M
a) s = bl T (B59)

n=0,2,.. m=0,2,,.

Eliminating Sn and Tm through (B52) and (B53), then replacing T0 by %-- 0

and then solving for SO’ one obtains

N M
24+ BN+ M+ 28 ) A -2 ) B
So - nﬂ?-,zL‘_co mHZ,AL. (B60)

4 (14N) (1+8)
as the equation defining S0 on the basis of thils second hypothesis. The
alternate procedure just described for removing the indeterminacy in S

0
leads to essentially the same numerical results as the first procedure.
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APPENDIX C

REMARKS ON THE CORNER STRESS

The analysis of appendix A, which produced the values of R given in

Figure 7, is based on the assumption that the rotational spring stiffness

k (see ~q. (1)) furnished by a wa:l to the adjacent i:dge of the 1lid is
t constant all aiong the length of that edge. Since each wall is essent-
ially a wide beam this is a plausible assumption everywhere except near
the corners. Where two walls meet at a corner their continuity with each
other tends to increase the rotational stiffness of each; in fact, this
stiffness approaches infinity right at the corner. This discrepancy between
the actual uature of the rotational restraint and that assumed in the
analysis 1s purely a local one, As long as the height h of the package 1is
small compared to the dimensions a and b there should be very little error
in any computed quantities except for the corner force R. R is proportional
to the race of twist of the 1id at the corner and that, in turn, is strongly
deper:ient on the local constraint conditions at the corner. Consequently,
it is highly probable that the R values furnished by Figure 7 are not valid
(probably too high) when applied to the 1id of a flat-pack under external
pressure.

Othe:r considerations lead to the conclusion that the corner reactions

for the flat-pack 1lid might even be zero: If one assumes perfect joint
rigidity at the corner, not only between the two walls but also between
each wall and the 1id, it then follows, by a not too difficult argument,

that the rate of twist of the 1id must vanish at the corner.* Consequently,

*Referring to Figure 13, consider three points A, B and C infinitesimally

: close to the corner 0. Assume perfect joint rigidity, which implies that
right angles are wmaintained at points 1, 2 and 3 between the pair of dotted
lines meeting at each of these points. Now suppose there is some twist of
the 1id at the corner. This twist will cause point A to move vertically,
say downward. The mainte ance of right angles at points 1 and 2 will then
require that points B and ( both move outward. However, this would destroyv
the right angle which must exist at pcint 3 between lines C3 and B3. We
must, therefore, conclude that point A can have no vertical movement; i.e.,
che 1id can have no twist at the corner.
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R, which is proportional to the rate of twist at the corner, must
vanish.

We are thus faced with an uncertainty regarding the magnitude or
even the existence of the tensile stress in the seal at the corners of
the package. Fortunately, for most packages the proportions are such

that Sedge’ as given by equation (12), will exceed Scorner’ as glven by

equation (19). For those packages Scorner will not govern in either the

design or the screening process, and the question as to whether it exists
or whether equation (12) over-estimates it becomes academic. For those
rare cases in which Scorner’ as given by equation (19), might govern, a

conservative approach to this question has been outlined in the body of

g this report.
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Figure 4.~ Reactions at edges and corners of a uniformly loaded
rectangular plate with edges elastically restrained

againgt rotation.
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Figure 7.- Magnitude of concentrated corner reaction for a uniformly

loaded rectangular plate with edges elastically restrained

against rotation. (Applies for Vo ™ 0.3. For other values k
of v_ multiply ordinate by (1-v)/0.7.) 1
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Figure 8.- Center deflection of a uniformly loaded rectangular plate with edges

elastically restrained against rotation (small-deflection theory).
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seal at the middle of the long side.

NYAS

e
AN

. g

A= Wil + 9t
w

L

- b

LV"‘\/J

Figure 11.- Area (shaded) over which the corner reaction R {s

assumed to be distributed.
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Figure 13.- Points near the junction of two walls and the lid.
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f Figure 15.- A loading which will not produce deflections but

will alter the Fourier series for (Vx) and (V) . 3
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RADC is the principal AFSC organization charged with
planning and executing the USAF exploratory and advanced
development programs for information sciences, intelli-
gence, command, control and communications technology,
products and services oriented to the needs of the USAF.
Primary RADC mission areas are ccommunications, electro-
‘ magnetic guidan.e¢ and control, surveillance of ground

' and aerospace objects, intelligence data collection and
handling. information system technoloqy, and electronic
reliability, maintainability and compatibility. RADC
has mission . esponsibility as assigned by AFSC for de-
monstration and acquisition of selected subsystems and
systems in the intelligence, mapping, charting, command,
ccntrol and cormrunications areas. )
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