
RADC-TR-76-118
Final Technical Report

RECTANGU"R EI.AT-PACK LIDS UNDER EXTERNAL PRESSURE

Syracuse University

act iI

Approved for public release;
distribution tunlimited.

I ' !~

Rome Air Development Center
Air Force Systems Command

Griffiss Air Force Base, New York 13441



This report has been r3viewed by the RADC Information Office (01) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it wdill be releasable to the general public including foreign nations.

This report has been reviewed ani is approved for publication.

APPROVED: ~ ~ *lf)

PETER F. MANNO
Project Engineer

APPROVED D : AA

JOSEPH J. NARESKY
Chief, Reliability and Compatibility Division

FOR THE COMMANDER* % ,

.;O OHNP.HUSS
Acting Chief, Plans Office

ACCSSION for

"Do not return this copy. Retain or destroy.

. . . .. .. . .... .. ..



TINCI ARS] PFfl
SECURITY CLASS-FICATION oF Tmis -&sE Wne. rn. iswoteed)

r REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
i BEFORE COMPLETING FORM

REP OVT ACE~jIbON NO. 3. PIrT"CATALOG NUMBER

RADC -76-11L-
4. TITLE (end Subtitle) Fnl.ehia/~t

LJECTANGULAR FLAT-PAKLD NE u 3-e 4
gRESSURE,

9. PERF'ORMING ORGANIZATION NAME AND ADDRESS t0. "PO'GiiAM ELEMENT, PROJECT, TASK

Syracuse University/Dept of Industrial Engineering
and Operations Research JO.5101
Syracuse N 13210
It. CONTROLLING OFFICE NAME AND ADDRESS 17RVRr

Rome Air Development Center (RBRM) & 'y-W3WV" G
Griffiss AFB NY 13441 6
14. MONITORING AGENCY NAME & AODRESS(If different from Cantrolling Office) 15. SECURITY CLASS. (of this c

Same UNCLASSIFIED
I5n. DECL ASSI FI CATI ON'DO.WN GRADING

/ASCHIFDULE
16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

I. 4 17. DISTRIBUTION STATEMENT (of the abstroct entered In Block 20, if different from Report)

IS. SUPPLEMENTARY NOTES

RADC Project Engineer: Peter F. Manno (RBRM)

19. K<EY WORDS (Continue an revere* side If necessary and Identify by blIock numberl

Flat-Packs centrifuge elastic restraint
hermeticity bonb pressure plate the~ory
Qualification procedures lid seal
tensile stresses reliability
Screening tests lid deflection

20. ABSTRACT (Continue oct reveres side it necessary end Identify by block number)

An. analysis is made of the tensile stresses in the lid seal and the lid
deflections for a rectangular flat-pack under external pressure. On the basis
of this analysis, formulas and charts are presented to facilitate (a) the
proper design of the package so that it will retain its hermeticity under a
given screening pressure and (b) the selection of the proper pressure to use in
the hermeticity screening of an already designed package.

(Cont 'd)

FD ORMDD JAN 73 1473 EDITION OF 1 NOV6 5 IS, OBSOLETE UNCLASSIFIED
SECUNITY CLASSIFICATIUN OF THI-S PAGE (WISen Del. E~tt.red)

.6 < / ....... .......



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Information is also given on the approximate equivalence of external
pressure and centrifuge acceleration in regard to the seal stresses and lid
deflections of a rectangular flat-pack.

.1

.. I

JNCLASSIylED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

.4



CONTENTS

Page

SUNMMARY . * 1

INTRODUCTION . .. . . . . . . . . . . . . . . . . . . . . 1

ELASTIC RESTRAINT FURNISHED BY WALLS. .......................3

BASIC DATA FROM PLATE THEORY ................................ 5

FORMULAS FOR TENSILE STRESS IN THE SEAL .. ...................7

APPLICATION TO DESIGN AND SCREENING .. .......................9

FLAT-PACKS IN A CENTRIFUGE. ................................ 13

NUMERICAL EXAMrLES .................. ....................... 16

CONCLUDING REMARKS .................. ....................... 20

APPENDIX A:
SMALL DEFLECTION ANALYSIS OF A UNIFORMLY LOADED
ELASTIC RECTANGULAR PLATE WITH EDGES ELASTICALLY
RESTRAINED AGAINST ROTATION ........ ................... 24

APPENDIX B:
SMALL-DEFLECTION ANALYSIS OF A UNIFORMLY LOADED
ELASTIC RECTANGULAR PLATE WITH CLAMPED EDGES.......36

APPENDIX C:
REMARKS ON THE CORNER STRESS. ................ ......... 49

REFERENCES. ................................................ 51

FIGURES .. .................................................. 52



ii

:II
EVALUATION

This study was performed in support of the overall program of the
Solid State Applications Section directed toward developing adequate
reliability screening and qualification testing sequences for micro-
electronic devices in accordance with the Reliability Technical Program
Objective No. 13. It successfully met its objective which was to provide
a means for predicting the stress on the lid seal of a hermetic package
under various leveis of pressure and constant acceleration. These levels
are included in the screening procedures imposed by MIL-M-38510 and
MIL-STD-883. The results of the study will be used by the Air Force to
establish effective test levels as a function of package size and
material and also by part manufacturers as design guidelines. The
equations which have been developed will first be verified by experi-
mentation and then used for formulating revised screening requirements
in MIL-STD-883A, "Test Methods and Procedures for Microelectronics,"
in the preparation of proposed Method 5008, "Test Procedures for Hybrid
and Multichip Microcircuits" to MIL-STD-883A and in support of the JLC
Joint Technical Coordinating Group Subtask on Hybrid Microcircuit
Technology Base.

PETER F. MANO

Solid State Applications Section
Reliability Branch
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SUMMARY

An analysis is made of the tensile stresses in the lid seal and

the lid deflections for a rectangular flat-pack under external pressure.

On the basis of this analysis, formulas and charts are presented to

facilitate (a) the proper design of the package so that it will retain

its hermeticity under a given screening pressure and (b) the selection

of the proper pressure to use in the hermeticity screening of an already

designed package.

Information is also given on the approximate equivalence of external

pressure and centrifuge acceleration in regard to the seal stresses and

lid deflections of a rectangular flaL-pack. -t

INTRODUCTION

External pressure, per Method 1014 of reference 1, is generally

accepted as a means of screening out non-hermetic or potentially non-

hermetic microelectronic packageo. Knowing that this is the screening

device to be employed, the designer and the user of such packages are

then faced with the following two important questions, respectively:

(a) Given the screening pressure to which the package will be

subjected, what should the design features of the package

be in order that a seal of good quality will retain its

hermeticity under that pressure?

(b) Giver a package that is already designed and available,

what screening pressure should be used in order to weed out

(i.e., destroy the hermeticity or aggravate the non-hermeti-

city of) those seals at the low end of the quality spectrum?

--1--



This report is intended as an aid in answering these two questions,

with particular reference to flat-pack configuration shown in Figure 1.

The following two hypotheses form the main basis of the present

work:

(a) Under external pressure the lid of the package may be

regarded as a uniformly loaded rectangular plate with

edges elastically restrained against rotation, this

restraint being furnished by the walls of the package.

(b) The external pressure weeds out unziatisfactory seals by

creating tensile stresses in the sealing material that

exceed the tensile strength of that material. (In poor

quality seals (for example, those containing voids or

inclusions of foreign matter) this tensile strength will

presumably be lower than in good quality seals.)

SYMBOLS

The following symbols will be used for the geometric parameters

and elastic constants. Other symbols will be introduced as needed.

a - width of lid (in.)

b = length of lid (in.) (b>a)

t = hickness of lid (in.)

w = thickness of walls (in.)

h - inside height of walls (in.)

E - Young's modulus of lid material (psi)
C

E W Young's modulus of wall material (psi)

V Poisson s ratio of lid material
c
v - Poisson's ratio of wall material

WD E t 3 /t12(1-v 2)] plate flexural stiffness of lid
c c3 2

D w E w /t12(1-v w plate flexural stiffness of walls

-2-



ELASTIC RESTRAINT FURNISHED BY WALLS

The walls will be regarded as wide vertical beams of height h,

with the local rotation 0 (in radians) at the upper end proportional

to the local intensity M of the bending moment per unit width exerted

upon the wall by the edge of the lid. This relationship can be

expressed as

M -kO (1)

where k is a proportionality constant. The value of k depends upon the

restraint which the base of the package furnishes to the lower edge of

the wall. Two bracketing cases can be envisioned and are illustrated

in Figure 2. In one of these (Fig. 2(a)) the base is so stiff in bending

(perhaps because of a thick substrate bonded to its entire surface) that

it prevents essentially any rotation of the lower edge of the wall. In

this case beam theory gives

k -4 D /h (2)
w

in the second case (Fig. 2(b)) the base of the package has the same

flexural stiffness as the lid and, therefore, with the package under

hydrostatic pressure, the lower edge of the wall will be subjected to

bending moments of the Fame magnitude as the upper edge. In that case

it can be shown that

k 2 D /h (3)
w

The actual state of affairs will lie somewhere between these two, and,

therefore, k will be given the following representation:

k aD /h (4)
w
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where a lies between 4 and 2, with its actual value depending on the

flexural stiffness of the base of the package. In the absence of better

information a value of a equal to 3 is suggested. It will be seen later

that this uncertainty regarding the exact value of a will usually be of

very little consequence.

For later use the following non-dimensional measure of k will now

be introduced:

K - 4a -g2DD

ff c 7T c

This definition can be rewritten as follows:

K -4K (5a)

1T

where

K __wa (6)
K-D hc

If the Poisson's ratios of the lid and wall materials are the same,

the last equation reduces to
E w w 3

K -a-(-) (6a)
c

In the graphs to be presented it will be advantageous to show various

quantities as tenctions of arctan K, rather than as functions of K.

Therefore, Figure 3 is presented to permit an easy conversion from K to

arctan K. In Figure 3 there is also a graph to facilitate the conversion

from K to arctan K.

-4--



BASIC DATA FROM PLATE THEORY

Under the action of a uniform gage pressure p (psi), reactions

will develop along the edges and at the corners of the flat-pack lid,

as depicted in Figure 4. These will include bending moments of varying

intensity M (in.-lb.per in.) due to the restraint against rotation

furnished by the walls, vertical forces of varying intensity V(lb. per in.),

and concentrated downward forces of magnitude R(lb.), due to the tendency

of the corners to rise. The maximum values of M and V occur at the

middle of the long side. These, together with R, can be expressed as

Mmax - n1 • pa (7)

Vmax w n 2 * pa (8)

R - n3 • pa (9)

where nl, n2 and n3 are functions of the elastic restraint parameter K

and the aspect ratio b/a of the lid. The values of nl, n 2 and n3

associated with any given configuration can be obtained from Figures 5,

6 and 7, respectively.*

*In Figure 5 the data for a clamped plate (K--, arctan K - f/2) are taken
from Table 35 of reference 2. All other data in this figure are based on
the analysis in appendix A.

In Figure 6 the data for a simply supported plate (arctan K - 0) are from
Table 8 of reference 2. The data for a clamped plate (arctan K - 7r/2)
are based on the analysis in appendix B. The curves for elastically
restrained plates (arctan K - .4, .8 and 1.2) were inserted by interpolation
assuming a linear variation of n2 with respect to arctan K, which is approx-
imately the variation obtained for n1 and n . In view of the small change
in n2 in going from simple support to clamping (around 6% at the most) and
the small role that n will play in the subsequent development, this linear
interpolation employee in Figure 6 is considered quite accentable.

In Figure 7 the data for a simply supported plate (arctan K = 0) are from
Table 8 of reference 2. The remaining data are based on the analysis in
appendix A.

-5-
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KThe maximum deflection 6 of the lid under the lateral pressure
max

p will occur at the center of the lid. The analysis of appendix A, which

is based on sma~ll-deflection plate theory, gives

6 ma n4  r P& 12(1-.v2) a- 3-3 a n

where nis a function of K and b/a to be obtained from Figure 8.* With

V c approximated as 0.3, this becomes

p a 3
ma 410.92 n .2..~ *a

It is well known, however, that small-deflection theory tends to over-

estimate the deflection. Figure 9, therefore, presents a correction factor

n 9based on large-deflection theory, to be applied to the right-hand sides

of the above equations.** With this correction incorporated, the formula

f or maximum deflection now reads

4
6 n4  pa n (10)mx 4D 5

or, with vc taken as 0.3,

6 10.92 n .() 3 a -n5  (10a)

For most packages K is likely to be very large, on the order of 100

or more, corresponding to nearly clamped conditions for the edges of the

lid. In this range large changes in K, by a factor of 1/2 to 2, produce

*The data in Figure 8 for the cases arctan K =0 and 1T/2 are taken froma
Tables 8 and 35, respectively, of reference 2. The remaining data are
based on the analysis in appendix A.

**Figure 9 applies rigorously only to the case K = 0, v - 0.*3, but ij
probably sufficiently accurate for practical purposes For other values
of K and v cas well. The solid curves of this figure are based on the
table onpage 181 of reference 3. The dashed curves are estimated
interpolations or extrapolations due to the writer.
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only small changes in arctan K (see Fig. 3) and, therefore, only small

changes in nl, n2 , n3 and n4 . This supports the assertion made earlier

that the uncertainty regarding the exact value of a to be used in

equation (4) will generally not have serious consequences.

FORMULAS FOR TENSILE STRESS IN THE SEAL

There are two conceivable locations for the maximum tensile stress

ii. the seal: (a) in the middle of the long side, where the bending moment

transmitted from the lid to the wall is a maximum; and (h) at the corners,

where a reaction force R is developed to prevent the corners of the lid

from lifting u-, We shall consider these two locations separately.

Figure 10(a) shows the assumedly linear stress diaLLibution across

the width of the seal at the middle of the long side due to the bending

moment M MX alone, and Figure 10(b) shows the uniform compressive stress

at the same location due to V . Superposition of the two diagrams
max

gives
6M V

Smax max (1)edge w 2 w

for the maximum tensile stress in the seal at the middle of the long

side. It occurs at the outside edge of the seal. Substituting for Mmax

and V the expressions given in equations (7) and (8), one obtains
max

- n dge (12)

where
w

n 6n -n 2 (13)*
edge 1 2 a

*Because of the factor w/a in equation (1.3), it is now evident that n
plays only a small role in determining the magnitude of the stress. 2There-
fore, the simplifying assumption used in inserting the dashed curves in
Figure 6 is quite acceptable.
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Turning now to the corner, in order to estimate the stress due to

the reaction R, one must make a reasonable assumption as to the area A

over which this theoretically concentrated force is actually distributed.

In the present work (see Fig. 11) A is assumed to be made up of the corner
2

area w , diminished by the area (1 --- )rw due to a possible small radius
4

at the corner of the lid, and augmented by the area .47 tw along each

side.* Thus,

A - w2 [1 + .94(t/w) - 21(/)2 1 (14)

In the event that the wall itself is rounded at the corners, as in

Figure 12, the following formula should be used instead:

A w2 [.79 + .94(t/w) + 1.57(r'/i/;)] (15)

Both of these formulas can be represented by the single equation

A w2 n 6  (16)

I + .94(t/w) - .21(r/w) 2  (17a)

n6 or

.79 + .94(t/w) + 1.57(r'/w) (17b)

the choice of (17a) or (17b) depending on whether the corner configuration

is as shown in Figure 11 or Figure 12.

The tension stress in the seal at the corners can now be written as

S c R/A (18)corner

or, substituting for R and A their expressions from equations (9) and

(16), respectively,

a 2S p(-) n (19)
corner w corner

*The dimension .47t in Figure 11 is based on some rather limited theoretical
data from p. 173 of reference 2. There an analysis by A. Kromm is cited,

* :for the case of a simply supported square plate with a/t - 20 and with

deflections due to transverse shear taken into account, which leads to a
high-intensity distributed reaction in place of the concentrated reaction
R. The maximum intensity of this distributed reaction in that particular
example can be correctly obtained by assuming the concentrated R of clas-
sical plate theory to be uniformly distributed of a total length of edge
equal to .94 times the plate thickness.
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where

~corner (20)

Equations (12) and (19) furnish two candidate values for the

maximum tensile stress S in the seal. Thus
max

a 2
S mx p(-) nima (21)

where

ni the larger of neg and cone (22)

For most designs nd will govern in equation (22).

APPLICATION TO DEC TON ANlD SCREENING

The formulas developed above can be of use both to the designer,

whose objective is to design a package that will remain hermetic under

i a specified screening pressure, and the user, whose objective is to

ofec packages opwith e poorequaity sreas.ueta ildsro h em

seleactkane aprpiate soreng prsueqhtwildsroahlhreiitysas

Application to design: Considering first the designer, let it be

supposed that he knows the sealing material to be used and has a value

of the allowable tensile stress S all for that material. Then his criterionI

for a satisfactory design, from the point of view of retaining hermeticity

under external pressure, should be that S, as given by equation (21),

is less than Sall* That is,

p (-;) n ma < Sal(3

where p is the largest anticipated screening pressure. In selecting Sl

the designer should, of course, be conservative. If S all is taken as the

-9-



median tensile strength of the sealing material, as obtained from a number

ot tests of that material alone, then packages designed on the basis of the

equality sign in equation (23) will have a failure rate of approximately

50% even if properly sealed (and a higher failure rate if there is a

mixture of properly and improperly sealed packages). On the other hand,

if the designer selects for S all the 1-percentile value of the tensile

strengths obtained in a large nuimber of tests of the sealing material

alone, then he should expect only a 1% failure rate for properly sealed

packages designed on the basis of equation (23) with the equality sign.

it could happen that th-z designer has very little data on the

distribution of tensile strength values for the sealing material, or even

on ýhe mean strength, but he doer know that a certain previously designed

package, designated as I, when properly sealed with the same material had

an acceptable failure rate F under a screening pressure of pI. Then in

order for the new package, designated as II, to have a failure rate no

greater than F when properly sealed and subjected to its screening pressure

PII, he should so design package II that its Smax is no greater than that

of package I. Thus, referring to equation (21), his criterion for a

saLisfactory design of package II should be

P L(,a 2 n] < pl) n(ax] 2 (24)
nmax II m a

or Lw nj -J n) n (24a)II - Pll I
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If the same screening pressure is to be used for package II as for

package I, this design criterion becomes

Lw nJ n ~ ma; (24L)

Application to screenijg: Turning now to the user of an already

designed package, let us first suppose that he has a minimum acceptable

value, Saccept' for the tensile strength of the seal and wants to be

sure of rejecting all packages with seal strengths less than that. Then

he should select a screening pressure p such that the Smax defined by

equation (21) is equal to or greater than S accept. Thus, the required

screening pressure is defined by

Saccept

PIa 2 (25)
- nw max

It is more than likely, however, ' iat the user of the package will

not have enough information about the sealing material to be able to

specify a value for Saccept, but he might know that in the past a certain

pressure p, was considered suitable for the screening of a certain package,

designated as I, employing the same sealing material as the present package,

which we shall designate as II. Then his criterion for selecting a suit-

able screening pressure pll for the present package should 1" that the

Smax of package II, under the pressure pI', be at least as big as the

Smax of package I under the pressure pI. Referring agaii1 .-' equation (21),

we see that the criterion for selecting p I is then

P Fa)2 nma ] I [(A)2n (26)

11 2Ms.], w-1.]-
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or F2 1
P 1  P1 [ (26a)

Possible mod1ification in above procedures: In appendix C some

doubts are raised as to the validity of the corner stress. Theoretical

arguments are presented which indicate that equation (19) might over-

estimate this atress and that, in fact, this stress might not exist at

all. Thus, there is an uncertainty regarding the existence of the corner

stress, and the question naturally arises what modifications, if any,

are needed in the designing and screening recommendations just present~ed

because of this uncertainty.

In the writer's opinion, the answer to this q~uestion should be a.s

follows: One should accept or discount the existence of the corner

stress on the basis of which attitude will lead to the more conservt~tive

result. For the designer this means that if he is designing on the

basis of equation (23) he should use that equatioci as it stands; but

if designing on the basis of equation (24), (24a) or (24b), he should

make sure that the inequality remains satisfied with n replaced

by n on both sides. On the other hand, the user of the package,

who is trying to arrive at a proper screening pressure p, would make

two calculations, one on the assumption that the corner stress exists,

the other on the assumption that it does not exist, and use the higher

of the two pressures thus obtained. The first calculation is the

one already described above; that is, it is a calculation baE.ed on

equation (25) or (26a). For the second calculation equation (25)

or (26a) is again used, but with n replaced by nege

L -12-



Fortunately, for most packages S edge~ as given by equation (12),

will be much greater than Sconr as given by equation (19). Thus, in

most cases the question as to whether equation (19) over-estimates

S or whether S actually exists will be academic, and the
corner corner I

modified designing and screening procedures will be in no way different

from the original procedures.

Lid deflection: It goes without saying that the designer and the

user both must concern themselves with the center deflection of the lid,

in order to insure that during any screening the deflection will not be

so large as to produce contact between the lid and the contents of the

package. The pertinent formula for estimating center deflection is

equation (10a). The designer should so design the package that under the

anticipated screening pressure this deflection is less than the antici-

pated internal clearance hetween lid and contents. By the same token,

the user, after tentatively selecting a screening pressure, should compute

the center deflection produced by that pressure and make sure that it does

not exceed the internal clearance. If it does, then he may have to use a

less severe screening pressure (i.e., accept a higher risk of non-

hermeticity) in order not to jeopardize the integrity of the contents of

the package in the screening.

FLAT-PACKS IN A CENTRIFUGE

As part of the total screening process, packages are frequently spun

in a centrifuge in such a way that the centrifugal force tends to push

the lid into the cavity. As far as the lid alone is concerned, this

-13-



centrifugal force is equivalent to a lateral pressure of magnitude Gtd,

where G is centripetal acceleration in units of g (acceleration of

gravity, 32.2 ft./sec. t is the lid thickness, and d is the opecif ic

weight (weight per unit volume) of the lid material. If t is in inches

and d in lbs. per cubic inch, the formula

p - Gtd (27)

will give the effective pressure, in psi, due to a centrifuge acceleration

of G g's.

Thus, the formulas developed in the preceding sections can be made

to apply to a package in a centrifuge simply by replacing the symbol p

everywhere by Gtd. In this way, for example, the following formula is

obtained from equation (10a) for the central deflection of the lid of a

package in a centrifuge:

6 -lGtd a 3
6max - 10. 9 2 n4 -- () a- n 5  (28)

From equations (12), (19) and (21) the following formulas are obtained

for the tensile stresses in the seal:

a 2
S - Gtd(-) n (29)edge w edge

a2So - Gtd(-) n (30)
corner w corner

a 2S Gtd(--a) n (31)

It should be noted that the interaction among the base, walls, and

lid of a package may be somewhat different for a package in a centrifuge

than for the same package under a uniform hydrostatic pressure. There-

fore, the value of a to be used in equations (4) to (Ga) is not necessarily

the same for the package in the centrifuge as it is for the same package

-14-



under hydrostatic pressure. As an aid in estimating the appropriate

value of a let us consider one extreme condition, illustrated in Figure

14(a). ILI this figure the lid and base are assumed to be identical and

the package is assumed to be supported in the centrifuge only at its

edges. Under these circumstances the lid and base will deform identically

under their centrifugal loadings and the walls will develop lines of

contraflexure at mid-height. It can be shown that the appropriate value

for a is then 6. A more likely support condition is illustrated in

Figure 14(b). There the base is firmly bonded to a flat surface, producing

an essentially clamped condition for the bottom edges of the walls. In

this case a should be taken as 4. Again it should be noted that for most

packages this uncertainty in the value of a is of no real consequence.

Equations (28) to (30) can be used to determine if any undesirable

:1 lid deflection or seal stresses will result from a given centrifuge accel-

eration. Equation (27) can be used in the following way: If a cqrtain

hydrostatic pressure p is known to be destructive of lid or seal for a

j-iven package, then equation (27), rewritten as

G = td (32)

will give the acceleration (in g's) that will produce approximately the

same destructive effects. Conversely, if a certain hydrostatic pressure

is known to be non-destructive of lid or seal then equation (32) can be

used to estimate a value of C that will also be non-destructive.

To gain further insight into the equivalence of hydlrostatic pressure

and constant acceleration, let us consider a lid of .030 in. thickness

and .302 lbs. per cu. in. density and ask how many g 's of centrifuge

-15--



acceleration are equivalent to a lateral pressure of 30 psi on the lid.

From equation (32) the answer is

30 - 3310 (g's)(.030) (.302)

NUMERICAL MXWOPLES

Example 1. A package has the following properties: a - b 1.000 in.,

C EWt - .015 in., h - .105 in., w - .040 in., r - .010 in., E. E 20,000,000

3
psi, V - -= 0.3, d - .302 lb./in. . What are the maximum tensile stress

in the seal and the central deflection of the lid due to an external pressure

of 30 psi?

With a assumed to be 3, equation (6a) gives

.040)3 1.000
K -3 -"• -- 00 541 (33)

.105

Figure 3 then gives arctan K - 1.57 (that is, the lid is essentially

clamped along its edges). Enteri..g Figures 5, 6, 7 and 8 with b/a 1

and arctan K - 1.57, one obtains

nI - .051, n2 - .443, n3  0, n4  .00125 (34)

For p - 30 psi,

pa 30
30 1 29.6 (35)

t4 20,000,000 k.015)

Therefore (Fig. 9)

n - .825 (36)
5 '2

Equation (10a) now gives the following lid deflection:

30 (_ )
6 -10.92(.00125) 3 n)(85
max 20,000,000 .015) (1.000 in.)(.825

0050 in. (37)
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ti
From equations (13), (17a), (20) and (22) there follows

.040
nedge - 6(.051) - (.443) * - .288

edge ~ -. 1.040

n- 1 + .94 .21 1 1.34

(38)
n •0

corner

n - .288
max

Thus, the maximum tensile stress in the seal occurs at the middle of the

long edge. Its value, from equation (21), is

11.o00o\2S -30 ( (.288) , 5,400 psi (39)

Smax .040/

Example 2. Suppose that 30 psi is considered a satisfactory screening

pressure for the package of Example 1 (to b. referred to as package I),

what screening pressure would be appropriate for a second package

(package II) identical in all respects to package I except for the length

b, which is 2.000 in.? What will the lid deflection be under this screen-

ing pressure?

For package II we have b/a - 2 and arctan K still equal to 1.57.

Figures 5, 6, 7 and 8 then give the following information for this package:

n .083, n2 - .51, n 3 - 0, n 4 - .00255 (40)

Aljo, from equations (13), (17a), (20) and (22),

nedge - 6(.083) - (.51) -- .477

n - 1.34
(41)

n •
corner

n m .477

-17-
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Equation ( 2 6 a) now gives

'1.0002
S.040 (.288)

"P 2 - 18 psi (42)

( 1.0ooo (.477)
_.044

as the appropriate screening pressure for package II. For this pressure

44

pa 18 (i.000 19
E t 4  20,000,000 17.9 (43)

c

The curve for b/a - 2 in Figure 9 then gives

n 5 - .87 (44)

From equation (10a) the center deflection of the lid of package II under

a screening pressure of 18 psi is now found to be

18 /1.00o0N
6max - 10.92(.00255) 20,000,000 k-- 5) (1.000 in.)(. 8 7 )

= .0065 in.

Example 3. For the package of Example 1 a maximum tensile stress

of 5,400 psi in the seal material was computed for a screening pressure

of 30 psi. Suppose that the maximum permissible stress in the seal is

4,500 psi, what new lid thickness (if any) would reduce S to this
max

value, all other dimensions remaining unchanged?

Assume, tentatively, that S will still occur along the edge,
max

rather than at the corner. Then the criterion for a satisfactory design,

from equation (23) with n set equal to nedge, is

S

all 4500
edge 2 /1.000%2 .24

a 301 -pa(-" 3 .040)
w

-18-
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In view of equation (13) this criterion may be written as

6n - n -H< .24 (45)
1 2a-

or, substituting for w/a its value of .040 and solving for ,

n,<.040 + .0067 n2  (46)

The value of n 2 is fairly insensitive to K (see Fig. 6) and, therefore,

very little error is involved if we continue to use for n 2 the value

found for it in Example 1, namely .443. Thus, equation (46) becomes

n 1 < .043 (47)

Referring to the curve for b/a -1 in Figure 5, we see that this requires

arctan K < 1.45 (48)

or, from Figure 3,

K1< 20 (49)

Substituting for K1 its expression from equation (6a), and using the

numerical data specified in Example 1, we convert this to

.w: 1.0003(-) -15< 20 (50)

whence

w
-< .888

or (51)

t > w - .045 in.
_.888 .888

Thus, a lid thickness comparable to the wall thickness would be

needed to reduce the maximum tensile stress in the seal at the middle

of the side to 4500 Psi.

The corner stress in the seal must now be checked to see that it

does not exceed the maximum permissible stress of 4500 psi. From
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equations (19), (20) and (1 7 a), we have

(a2 n 3
S up(a.)

2  (52)Scorner (522
1 + .94 - .21(-)

For arctan K - 1.45 and b/a - 1.0, Figure 7 gives

n- .0056 (53)

Substituting this into equation (52) together with the numerical values of

the other parameters, we have

-01.0002 .0056"I 30 0.097• _ .010 " 32 psi (54)

corner .040 1 [ .4.097N_ * .O4OJ,

which 19 indeed less than the 4500 psi allowable.

CONCLUDING REMARKS

Formulas based on classical plate theory have been presented for the

reactions and center deflection of the lid of a rectangular flat-pack

undLt external pressure, and suggestions have been made as to how these

formulas can be of use in the design and screening of flat-packs.

There are several simplifying assumptions underlying the present

work. Most of them have already been discussed and justified. One

which has not yet been discussed, and which warrants close scrutiny, is

the second hypothesis stated in the Introduction; namely, that the screen-

ing effectiveness of external pressure in weeding out non-hermetic or

potentially non-hermetic seals is due to the tensile stresses which this

pressure produces in the seal material. This hypothesis is admittedly

debatable. One could argue that the screening action is due to the

-20-
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seepage of fluid into the package through pre-existing voids or narrow

passages in seals of poor quality. Undoubtedly, some of the screening

action is due to such seepage, but the writer feels that the tensile

stresses produced by the pressure are the predominant screening mechanism.

There is some evidence to support this feeling: Firstly, those who are

knowledgeable in the screening of flat-packs report that the screening

power (failure rate) of external pressure goes up drastically as the

package size (dimensions a and b) increases. This is consistent with

equation (21), which shows that the maximum tensile stress in the seal

is approximately proportional to the square of the dimension a. Secondly,

p. 5 of reference 4 describes the "pressure withstanding capability"' of

properly sealed Bendix packages as follows:

Holder Size Pressure Differential

3/8 square 5 atmospheres
3/8 to 5/8 square 3 atmospheres
5/8 to 3/4 square 2 atmospheres
3/4 square 1.25 atmospheres

We note that as the size is doubled (going from 3/8 square to 3/4 square),

the allowable pressure differential is reduced by a factor of 4 (from 5

atmospheres to 1.25 atmospheres). Equation (26a) predicts approximately

the same relationship between package size and screening pressure.I
A second assumption which warrants further attention is the one

illustrated in Figure 10(a); namely, that the bending moment at the edge

of the lid produces a linear variation of stress across the width of the

seal, as in elementary beam thcory. This kind of assumption is frequently

made; it follows from the assumption of plane horizontal sectio~ns t~hrough

the seal remaining plane and the assumption of H-ooke's law. As the

-21-



stresses in the seal material becomes nigh we can expect that plastic

behavior and possibly creep in the seal material will destroy the

linearity in the stress distribution and reduce the maximum stress.

Furthermore, if the lid is thin compared to the thickness of the wall

(t<<w), we should not expect the lid to be able to enforce the plane

sections assumption in the seal. For t<<w the action of that portion

of the lid in contact with the seal would probably be like that of a

beam attached to an elastic foundation, ana the pressure distribution

between such a beam and its foundation is known to be non-linear. Thus,

the linear-stress-distribution assumption of Figure 10(a) has obvious

shortcomings. Nevertheless, it has been employed in the hope that it

may be sufficiently good for practical purposes and because any more

sophisticated assumption would involve an inordinate amount of additional

analysis.

A third assumption implicit in the present work is that the pressure

on the side walls makes a negligible contribution to the stresses in the

seal. For shallow packages the validity of this assumption is intuitively

evident. A semi-quantitative justification of it can be made by analyz-

ing the configuration of Figure l(b) as a rigid-jointed plane frame under

pressure on the vertical members alone and pressure on the horizontal

members alone. Such an analysis shows that the ratio of the corner bending

moment due to side-wall press,. e alone to the corner bending moment due to

pressure on thc top and bottom covers alone is of the order of D h 3/D a3
c

or (E c/E w) (t /w 3) (h 3/a 3). For any flat-pack of practical design this

ratio will be much smaller than unity, indicating that the side-wall

-22-
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pressure makes a negligible contribution to the bending moment transmitted

across the scal and, therefore, to the stress in the seal.

The final test of the validity of any theoretical work and the

hypotheses on which it is based must, of course, be baspd on experiments.

In the present case one can envision a modest experimental program that

could provide evidence as to the validity of the assumptions that have

been made. This program would require flat-packs of different sizes

and shapes, all carefully sealed with the same material. The value of

n max (eq. (22)) would be computed for each package. Each package would

then be subjected to external pressure which is increased in small steps,

and the pressure p cr which first causes a loss of hermeticity would be

noted. The product pcr (a/w)2 nmax would then be computed for each

package. According to equation (21), this product represents the maximum

tensile stress in the seal at the time of loss of hermeticity. If the

seals are of reasonably uniform quality, so that they all have essentially

the same tensile strength Sult, and if the hypothesis of this report (to

the effect that failure occurs when S - S ) is correct, then this
max ult

product shouj.d turn out to be approximately the same for all packages.

If the test program just described tends to confirm the present

hypotheses, then a second program would be desirable, identical to the

first, except that the seal material would be changed to one of much

higher or much lower strength. The purpose of this program would be to

see if there is a corresponding change in the experimental values of

pcr (a/w) nmax, as there should be if the failure hypothesis S - Suit

is correct.
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APPENDIX A

SMALL-DEFLECTION ANALYSIS OF A UNIFORMLY LOADED ELASTIC

RECTANGULAR PLATE WITH EDGES ELASTICALLY RESTRAINED AGAINST ROTATION

Here the energy method will be employed, in conjunction with

double Fourier series and Lagrangian multipliers, to obtain the

deflections and other quantities of interest in a uniformly loaded

elastic rectangular plate with edges elastically restrained against

rotation.

Coordinate system and notation.- We shall employ the coordinate

system and notation shown in Figure 4 and let w(x,y) denote the

deflection of the plate, positive if in the same direction as the

pressure, p. The following additiona.. symbols will be used:

k = elastic restraint stiffness (moment per unit length per

radian-of rotation).

E - Young's modulus of plate material.

v= Poisson's ratio.

E3 2
D M Et3/[12(i-v2)].

2K m 4ak/(¶ D).

a/b.

Series for w and its second derivatives.- The double Fourier series

M N
w(x,y) a sin(m7Tx/a) sin(niry/b) (Al)

m-1,3,.. n-1.3,..

is an appropriate representation of the deflections of a rectangular

plate with zero deflection at the edges. Only odd values of the

-24-
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summation indices m and n are taken in equation (Al) because under

uniform pressure the deflections will be symmetric with respect to

the planes x-a/2 and y-b/2. Upper limits M and N are shown for

the summations with the understanding that in the computations M and

N will be assigned sufficiently high values to establish practical

convergence for all quantities of interest.

The boundary condition of zero deflection at the edges permits

one to obtain a2w/ax 2 , a2w/ay2 , and a 2 w/axay by termwise differentiations

of aquation (Al). Consequently,

2 M N
Sx a mn(mr/a)2 sin(mTx/a) sin(nny/b)

ax2 m-l,3,.. n-l,3,..

a2w M N
2 a M (nT/b) sin(miix/a) sin(niy/b) (A2)

ay m-1,3,.. n-,3,..

2 M N
a w a (miT/a)(nTr/b) cos(mirx/a) cos(niiy/b)
axay m-l,3,.. n-l,3,.. Mn

Series for edge rotations.- The rotations 0l(x) of the edge y- 0

and a (y) of the edge x-O will be represented in the form of single series:
2

M N
01 (x)- b sin(mirx/a) 02 (y) Y c sin(nity/b) (A3)

m nl, 3,..

Constraining relations.- The deflections w(x,y) and the rotations

01 (x) and 02 (y) must satisfy the following compatibility conditions:

i(aw/IYy)Y 0 a 0l(x) (aw/aX) x=0 - 62 (y)1 

2
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These give rise to the following constraining relations among the

Fourier coefficients an, b m, Cn

N
a M -b 0 (m-1,3,...M)

n-1,3,., mn b m

(A4)
M

a RI -c= 0 (n-l,3,...,N)
m-,3.,mn a n

Strain energy of plate.- The strain energy integral for a

rectangular elastic plate undergoing small deflections is given on

page 342 of reference 2. There it is also shown that substitution of

the series (Al) into the strain energy integral leads to the following

formula for the strain energy V1 of the plate:

4 M N 2 2 n22
8mn

m-1,3,.. n21,3,.. a b

Strain energy of elastic restraint.- The strain energy V2 of the

rotational elastic restraint along the edges of the plate can be written

as a b

V2  2{ [ Wol(X)]2 dx + 1 k e[2 (y)] dy}

0 0

Substitution of the series (A3) for 01 (x) and 02 (y) leads to
i b2

V ka kb c (A6)
2 2 m 2 nm-l,3,.. n-l,3,..

Potential energy of the applied load.- Taking the xy-plane taken as

datum, one may express the potential energy V3 of the applied load as

V 3 -P w dx dY

-26-



or, substituting for w its series expression,

M N a
V 4pab m___n (A7)
3 2 mn

T m-1,3,.. n-l,3,.. .

Minimization of the total potential energy.- The total potential

energy (TPE) of the system consisting of the plate, its loading, and the

elastic constraints is defined as

TPE - V1 + V2 + V3 (A8)

According to the principle of minimum total potential energy for elastic

structures, the true configuration of the system, among all possible

configurations satisfying continuity and any rigid constraints, is that

which minimizes the TPE. Thus, the correct values of the a , b and c
mn m n

are those which minimize expression (A8) while at the same time satisfying

the constraining relations (A4). This "constrained minimization" problem

can be solved by setting up the new function

TPE M N
=1 2 3 mamn b m

m=l,3,.. n-1,3,..

N M mit
-n( [ a !-- c) (A9)

n=l,3,.. m-l,3,.. .

where the am and n are Lagrangian multipliers, and making it stationary

with respect to the a 's, the b 's, the c 's, the a 's, and the 3 'smn r5 n m n

via the following conditions:

D(TPE*)/3aij - 0 (i-l,3,...,M; J-1,3,...,N) (AlO)

ý(TPE )/Di 0 (i-l,3,...,M) (All)

a(TPE)3cj - 0 (J-I,3,...,N) (A12)
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D(TPE*)/B0i 0 (i-il,3,... ,M) (A13)

3 (TPE*)//D - 0 (J-l,3,...,N) (A14)

(Equations (A13) and (A14) merely replicate the constraining relations

(A4).) With the differentiations carried out and some minor algebraic

manipulations executed, (Al0) to (A14) become:

1 + j 2AA + i2B
A~j 2 222 (i-1,3,...,M; j-1,3,....N) (A15)

lj j(i2+j2 2 2

bi - - Ai/K (i-l,3,...,M) (A16)

c - - B /K (J-1,3,...,N) (A17)
, 14

* N
b - i83 JAi - 0 (i-l,3,...,M) (A18)

J-1,3,..

* M
cj -j iA - 0 (J-I,3,...,N) (A19)

where Ai, Ai, B", b, cil, and K are dimensionless measures of ai 1 , i'

Oil bi, ci, and k, defined as follows:

Aij a6 Daij/16a4p (A20)

Ai £ i i 3c ai/4ab2 p (A21)

B M JIT 3 /4a 2bp (A22)
* i5Db 2

b i7 Db 1 6ab 2p (A23)

ci - Dc /16a 3 p (A24)

2K L- 4ka/h D (A25)
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Equations (A15) through (A19) are a system of simultaneous linear

algebraic equations defining the Aij, A1, Bj, hi, and cj.

Simplification of simultaneous equations.- Equations (A15), (A16)

and (AM7) can be used to eliminate the Ai, bi and c in (Al8) and (A19).

The latter then becomes:

J2 2SN 1 + A+ B
AA + K3K 1= 0 (i1-,3 ...M) (A26)

J-l,3,.. (i +j2f2) 2 22

2 2M 1 + j2A + i2Bj

B + K 1+ + - 0 (J-l,3,. ,N) (A27)x 2+22 221-1,3,.. (1+

A further reduction in the number of simultaneous equations is effected

as follows: Solve (A27) for each B in terms of all the A to get

f 2 (j) 2 M A
BJ fl( 2f2 2 2 (J-l,3,...,N) (A28)q-1,3,.. (q2+j29)

where M
-1 2 2 2 2-2

fI(j) -K + i i(i2+j2)

(A29)
M

f(j) -_ 2 2+j22-2

iu1, 3,..

Now use (A28) to eliminate the B 's in (A26) and thereby arrive at the

following system of simultaneous equations in the A 'a alone:

M
X A qf6(1,q) f -7(2) (i--,3,...,M) '(A30)
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where

f6(i,q) 3 K[3-1 +- N 2 2 2+22-2
Sj-,3,.. (i+j

N
-2 Z J 2 (q 2+j 2 2 2 (i 2+j 2 2 ) 2 [f (J)]1  (A31)

.J-l,3,..

N

f 7(i) - 222-2 )[fl(j)] (A32)
J-l,3,..

with i being Kronecker's delta.
iq

On the basis of these transformations, we now have the following

calculation procedure: Solve e4uations (A30) (whose number depends only

on M, not on N) simultaneously for the A 's and substitute their values
qinto (A28) to obtain the B 's. (In the special case k-O the Aq'a and

0 h A

the B 's are identically zero (see eqs. (A26) and (A27)). With the aq

and B 's known, equations (A15) will yield the values of the A ij's.

Once the above quantities have been determined, all other items of

interest can be computed, as will be seen in the following sections.

Center deflection.- Equation (Al), evaluated at x-a/2, yfb/2, gives

4 M N m+n-2a b11 16a p A (_) 2 (A33)
6 A (-1)w, L m=l,3,.. n=l,3,..

Corner reaction.- From page 85 of reference 2 we have the following

equation for the corner reaction in terms of the corner rate of twist:

R = 2D(l-v)(3 2 w/DxDY)x=0
y=O
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Elimination of the twist through equation (A2) then gives 1*
N N

pa- I32(-) -4  I mn (A34)
m-l,3,.. n-1,3,..

Bending moments along the sides.- The bending moments normal to the

edges y-O and x-O are related to the rotation functions 0l(X) and 0
2 (y)

as tollows:

My) O 
(A35)

(Mx) - -k0 2 (y)
x0O

Substituting for 01 (x) and O2 (y) their series expansions (A3) and making

use of the relations (A16) and (AM7), one obtains

,)_2 M A sin(mnx/a)

Y) Y iO 7T3 m=l,3,.. m

(A36)

__2 N B sin(nny/b)
(M pa-

Mx) x-0 3 nl,,.n

IT n-1,3,.

Curvatures along the sides.- The curvatures normal to the edges

can now be determined from the moment-curvature relations and equations

(A36) as follows:

2 2 M A sin(mitx/a)
a--(H 4pb r____(MyO =0 IDi_

ay2 y=0 D m-1l,3,.. m
"' ~(A37)

2 2 N B sin(nity/b)
( . (M ) - n3 D

2D x x-O 3n
ax X=0 It D nnl,3,..
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Some third derivatives of w.- Termwise differentiation of the

Fourier series (Al) is permissible in order to arrive at the following

series expansions:

3 M N
w a nit 2 (!ýI-) cos in--x sin nry2 ran b a a bDxay m-1,3,.. n-1,3,..

(A38)
3 M N

D w m7T 2 nTr mnx n"ya (-b) sin cos
Dx 2 3y mn a a b

Termwise differentiation is, however, not valid for obtaining 33 W/ax 3

3 3
and 3 W/ay . We therefore postulate the new series

3 M
w N b cos MIT x sin n1ly
3 X mn a b

ax m-1,3,.. n-1,3,..

(A39)

a 3 w M N ax n1ly
X c sin -M' cos3 mn a b

Dy M-1 3,.. n-1,3,..

from which it follows that

b a 3
a wf cos -mnx sin n7TY dx dyb

mn ab a b
0 0 x

(A40)
a b

4 f j 3 w Cos n,,y sin Mil X dy dxc -mn ab 3 b a
ay

0 0
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Partial integration with respect to x in the first of these equations

gives

4 b 2

b - a • sin • dy]a a ,2 x.O b

0

- sin mTx sin n•y dx dy] (A41)
a aba b dxdyl

The first bracketed term will be recognized as the formula for the

Fourier coefficient in the sine series for (a 2w/Dx 2 ) x0, and therefore,

referring to equations (A37) , it may be replaced by

2 B
4pa n

3 D n

The second bracketed Lerm is the formula for the Fourier coefficient

in the sine-sine series expansion for a w/ax , and, referring to

2
equations (A2), it may be replaced by -a (mff/a) As a result, equationmn

(A41) becomes

16pa Bn ,mu 3
b = Bn an(-) (A42)
UMn 3 n mnna

iT D

Analogous operations on the second of equations (A40) give

A.16pb .m_ nn.3
Cmn 3D m amn-) (A43)

71 D

Thus, the b and c in equations (A39) are now expressed in terms

of quantities which are known once the A A and B have been computed.
ii' i j
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Vertical reaction along the edges.- From page 86 of reference 2

the effective vertical shears along the edges x-O and y=O, in units

of force per unit length, are

(V)x0 D- D[ + (2-v) - w
x 3 Dx y2 x-0

(A44)

3w3
(V) - D[ -w + (2-v) ý3w
y Y-O 32Dy DyDx y-0

Replacing the derivatives by their series expansions (A38) and (A39),

and utilizing the relations (A42) and (A43), one obtains

lpi3  jN
(Vx) 16pax S sin(niy/b)

(A45)

M N
(V " 16paii- 3  T sin(mux/a)

m-1, 3,..• n=1, 3,.. m

where

2 22 -
S Amn m[m + (2-v)n ] -B an-

(A46)

T - Amn n1[f2 n2 + (2-v)m 2] - (m3)-1
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Computational details. - The above analysis vas the basis for

computing the n. and n data in Figures 5 and 71 for values of K other

than 0 and -.* "alculations were made for M - N -11, 13, 15 and the

results were graphically extrapolated to M = N = .This technique

could not be used successfully for computing n2 because of poor

convergence, or, perhaps, non-convergence, of the series (A45).
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APPENDIX B

SMALL-DEFLECTION ANALYSIS OF A UNIFORMLY LOADED ELASTIC

RECTANGULAR PLATE WITH CLAMPED EDGES

Here the energy method is again employed in conjunction with

Lagrangian multipliers but with a different double Fourier series, to

analyze a uniformly loaded rectangular plate with clamped edges. The

main purpose is to obtain data for the K = • curve of Figure 6 (which

data could not be obtained from the analysis in appendix A because of

poor convergence). At the same time, expressions are given for the

deflections and the edge bending moments. It will be seen that the

data needed for the K = w curve of Figure 6 are obtained directly

from the values of the Lagrangian multipliers.

Coordinate system and notation.- The same coordinate system is

used as in appendix A, and the symbols k, E, v, D, K and ý will have

the same definitions as in appendix A.

Series for w.- The following series gives zero normal slope at

the edges and the deflection symmetry appropriate to a uniform loading:

M N
w(x, y) = a cos(mfrx/a)cos(nffy/b) (BI)

m=0, 2,. ,. n=0, 2,. , . Mn

It is understood that calculations will be made with successively higher

values of M and N until convergence has been achieved for all physical

quantities of interest.

Constraining relations.- The conditions of zero deflection along

the edges requires that the following constraining relations be imposed

on the coefficients:
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M
a O0 (n O, 2, 4, ... ,N) (B2)

m"',O,2 . .

N
a ,0 0 C(m 0, 2, 4, ... , M) (B3)
mn

nO,22,..
II

These equations are redundant, inasmuch as summing (B2) over n leads

to the same equation as summing (B3) over m. In order to remove this

redundancy, we shall replace the first of equations (B2) and the first

of equations (B3) by the single equation obtained. by summing these two.

Thus, the following set of independent constraining relations is

obtained to replace (B2) and (B3):

N M
2a 00 + , on a4+ a.m 0 (B4)

n-2 ,4 -2,4,..

M
a - 0 (n = 2, 4, 6, ... , N) (B5)

m-0, 2,..

N
F a - 0 (m- 2, 4, 6, ... , M) (B6)

n0, 2,..

Strain energy of plate.- Substitution of the series (Bl) into

the strain energy expression for a rectangular elastic plate undergoing

small deflections (p. 342 of ref. 2) gives the following formula for

the strain energy V1 of the plate:

4D M N

V - Ib (mC + n6) + 6mo + On)amn (B7)
1 8a3 m;0,2,.. n=0,2,..

where 6 and 60n are Kronecker deltas.
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Potential energy of the applied load.- With the xy-plane as

datum, the potential energy V3 of the applied load is

V3 -- p ff wdxdy

or, in view of equation (Bl),

V = -paba 0 0  (B8)

Minimization of the total potential energy°- The total ',otential

energy (TPE) is defined as

TPE - V + V (B9)
1 3

By the same argument as in appendix A, the correct values of the a
mn

in the series (Bl) are those which minimize expression (B9) while at

the same time satisfying the constraining relations (B4) to (B6).

Again we have a "constrained minimization" problem which can be solveij

by setting up the new function

N M
1 3 00aOn 0aa

n=2,4,.. m=2,4,..

N M M N
aa )a X ( X a) (BO)

n=2,4,., m 0,2,.n m=2,4,.. n= ,2,.. n

where y, an n m are Lagrangian multipliers, and making it stationary

with respect to the a 's, y, the a 's, and the s 's via the conditions
mn n m

D(TPE*)/ao 0 (Bll)
00

a(TPE*)/ao 0 (i 2, 4, 6, .. , H) (B12)io

0(TPE*)/Da 0 (j - 2, 4, 6, N) (B13)
0j

a(TPE*)/Da 0 (i 2, 4, , M; j - 2, 4, ., N) (B14)
ii
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TIMM r
a(TPE*)/ay - 0 (B15)

-(TPE*)/a 0 (j - 2, 4, 6, ... , N) (BI6)

a(TPE*)/aBi - 0 (i - 2, 4, 6, ... , m) (B17)
Ki

The last three of these conditions merely reproduce equations

(B4), (j35) and (B6). With the differentiations carried out, the first

four conditions read as follows:

-pab - 2y - 0 (B18)

4•D 4
.ab L 4a - y - - 0 (i 2, 4, ... , M) (Bi9)

DI 4
8ab4aT - y -2 4 - 0 (j - 2, 4, ... , N) (B20)

ir4D i 2 2+ J 2 ) 2 -1 -i 0 (i 2, 24, ., N) (B21)
8ab +j a 2, 4, N

Equations (BI8) through (B21), together with (B4), (B5) and (B6), are a

system of simultaneous linear algebraic equations defining the aii,

%i, ai and y.

For later use we now introduce the following dimensionless measures

of An ,B and an:

A -- iDa / pab2
mn mn

B U2m/pabm m (B22)

A n _ 2a n/pab
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Simplification of simultaneous equations.- From (B18)

y - -pab/2 (B23)

With this result substituted into (B19), (B20) and (B21), the

latter become, after minor algebraic manipulation,

A i0 = 2(B i-)/i4 (i- 2, 4, ... , m) (B24)

4 2
A - (A -W)/Ci (a) (j - 2, 4, ... , N) (B25)Qi

Aij- 2Aj+ B)6(i2+ j62-2 i 2, 4, .. ,M
A C 2, 4, .2, 2) (B26)

These can be used to eliminate the a in equatio'is (B5) and
mn

(M6). Those equations can then be written as follows:

M
A n [n- 4 -2 - M2 , 2Bm 2(m3 2 + n2 2)-22 ]If(n) (B27)

U ~m,2,4,..m

(n - 2, 4, ... , N)

N

4m22 2 2 2 2-2CR8
B f2(m) -m-46 - 2A ý2(m2 + n22- (B28)

2A3( 2n(nn-2.4,.,

(m - 2,4, ... , M)

where

-4 -2 M 2 2 2 2-2fl(n) n + L 2(2(m + n2)
m=2,4,..

(B29)

-4 2 N 2 2 2 2-2
f 2 (m) ( m + X 2 2(m + n2)

n-2,4,..

If (B27) is now used to eliminate the A in (B28), the lattern

equations become
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M
B B c r (m - 2, 4, ... , M) (B30)

q=2#49. q mq mI

where

N 4 2 2 2-2 2 2N 1a 404(m2 + n2B2)-(q2 + n g)-[f (n)]-i

mq 2 qm n-2,4,..
(B31)

Nm-r E M_ 2n-4(m2 + n202)-2[f (n)]-I
m n -2,4,..

on the basis of these developments we now have the following cal-

culation procedure: Solve equations (B30) (whose number depends only

on M) simultaneously for the B q Wfth these known, equations (B27) will

furnish the values of the A . Then equations (B24) to (B26) will yieldn

all the A except A The latter is defined by equation (B4) as
ij A0 0.

M
A0 0  A A + A (B32)

n02,4,. m-2,4,..

Deflections and edge bending moments.- Once the A are known,
ij

the deflections and edge bending moments are readily computed. Equation

(Bl) gives the former as

4 M N
W(x,y) = PA • . I I A cos -- Cos (B33)

D 4 ý mn a b
IT m-0,2,.. n=0,2,..

The bending moments normal t6 the edge x - 0 are also obtained with

the aid of equation (Bl) as follows:

2 2 2 2 N N
(M) x -D( W/ax) pb2- 1 Amn2 cos(nmy/b)

(B34)
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Those along the edge y - 0 are obtained in a similar way:

M A

(My)y2 22--D(w/ y)2 -2 M(M y Y- D3Wa YO-p A mn ncos(mux/a)

m-0,2,.. n-2,4,.,.m

(B35)

Vertical reactions along the edges.- The unknown vertical reactions

(force per unit of length) along the edges x - 0 and y - 0 will be

sought in the following Fourier series form:

N
(Vx)x-0 na S cos(nny/b)
x O n-0,2,..

(B36)
M

(Vy)yNO pb T cos(mwx/a)
m-0,2,..

where the coefficients S and T are as yet unknown except for the fact
n m

that overall equilibrium of the plate requires that

pab - 2pa(S 0 b) + 2pb(T 0 a)

from which it follows that

S0 +T 0 - 1/2 (B37)

In order to determine the S and T we shall postulate an auxilaryni m

problem, that of a uniformly loaded plate, with edges constrained to

have zero normal slope, with prescribed vertical loadings, in the form

of (B36), along the edges x - 0, y - 0, and with the loadings along the

other two edges dictated by symmetry. We shall determine the deflection

shape w(xy) for this plate by means of the energy method, and then ask

what the prescribed vertical loadings along the edges have to be in
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order to reduce the edge deflections to zero, i.e., to bring the plate of

the auxiliary problem into the same state of deformation as the plate

of the original problem.

To solve the auxiliary problem, we shall again assume the deflections

in the form of the series (Bl), which again leads to equation (B7) for

the strain energy V. The potential energy of the applied loads must

now include the potential energy of the prescribed vertical loadings

along the edges. Thus, in addition to (B8), we have the following

contribution to this energyt

a b
V4 - 2f (Vy )y.w(x,O)dx + 2f (Vx)x.w(O,y)dy (B38)

0

Substitution of the series expansions (B36) and (BI) converts this tc

M N T S
V 4 2pab a mn 2-6 2-6 (B39)

Sm-O,2,.. n-O,2,.. mO nO

The total potential energy (TPE) can now be written as

TPE- V + V + V (B40)
1 3 4

where the three terms on the right are defined by equations (B7),

(BB) and (B39), respectively.

To fir~d the deflection shape under the given loading, we now make

the TPE stationary with respect to the a via the equations.
ii

B(TPE)/3aO0 - 0 1

3(TPE)/Dai- 0 (i - 2, 4j ... , M) (B41)

(Cont'd on next pg.)
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-(TPE)/Daoj . 0 (j - 2, 4, ... , N)

D(TPE)/Da - 0 (i - 2, 4, ... , M; j - 2, 4, ... , N)

With the differentiations carried out, these become

-pab + 2pabT0 + 2pabS 0 - 0 (B42)

4 4l4D i4
8a- • * 4a + pabTi + 2pabS0  0 (i 2, 4, ... , M) (B43)

8aD 42 -0 1 -2 N

b4D J4a2 4a~j + 2pabT0 + pabSM 0 (j 2, 4, ... , N)8ab0

(B44)

f4D + j28)2 2alj + 1 2, 4,... M

8ab j - + + + a2, 4,..., N

(B43)

At this point the similarity between this group of equations

and equations (B18) to (B21) should be noted.

We now postulate that the loading functions (Vx ),. and (Vy )y0 are not

arbitrary, but are whatever is necessary to give zero deflection along

the edges. In that case the plate deflections of the auxiliary problem

must be identical with those of the original problem. That is, the aij

in equations (1142) to (B45) will be the same as the aij in equations

(B18) to (B21). It then follows that
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2pab(T 0 +S0 ) 0 -2y

pab(T +2So) -(y+i

(B46)
pab(2To+S) -(y+

pab(Ti+S) -- (a +0i

Substituting y = -pab/2 (from eq. (B23)),dividing through by pab/2,

and making use of the definitions (B22), we can convert these equations

to the following form:

4(To+So) - 2 (B47)

2(Ti+2S0 ) - 1 - Bi (B48)

2(2T0 +Sj) - 1 - A (B49)

2(T +S ) - -(A j +B) (B50)

where i - 2, 4, ... , M and J 2, 4, ... , N. The first of these

equations confirms the equilibrium condition, (B37); and the fourth

equation is implied by the first three.

We thus have arrived at the following relationships between the

Fourier coefficients in equations (B36) and the dimensionless Lagrangian

multipliers A and Bi defined by equations (B30) and (B27)t

411
SO0 + To- 1/2 (B51)

STi " (1-B -4s0 (1 2, 4, .... , m) (B52)

1-

Sj " (I-A-4T) (j - 2, 4, ... , N) (B53)
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iii•I We see that the Ti and Sj have been determined to within a single

undetermined constant, say S The removal of this indeterminacy is
01

discussed in the next section.

Removal of indeterminacy. - We note first that the choice of a value

for S can in no way affect the deflections, inasmuch as they are com-

pletely determined by the A and B through equations (B24) to (B26),

(B32) and (B33). On the otbh'L hand, the value chosen for S0 will affect

the Ti and S (see eqs. (B51) to (B53)) and, therefore, the reactions

(V) and (Vy)y.O (see eqs. (B36)).
x XinO yyO

The question naturally arises, how can variations in S alter the
0

vertical reactions along the edges kwhich can just as well be regarded

as loads) without at the same time altering the deflections? A plausible

conjecture one can make in order to answer this question is that equations

(B36) represent not only distributed reactions but also a set of concen-

trated self-equilibrating forces infinitesimally close to the corners, as

shown in Figure 15, and that by varying S0 we are varying the magnitude

of these forces. This conjecture is plausible because concentrated forces

such as shown in Figure 15 will alter the mean values of (Vx)x- 0 and

S(V y )y0, and, therefore, SO and .To, without producing any deflections and

without changing the sum SO + T0.

Accepting this conjecture, it now becomes .lear that S should be so

chosen as to cause that component of the reactions represented in Figure

15 to vanish. The reason is that these concentratfd forces correspond to

Dirac delta function components in (VX)x=0 and (Vy)y-0, and if the series

(B36) have to represent such aomponents they will. not converge in the
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usual sense, because their coefficients S n and T mwill not approach zero

as N, M, n and m approach infinity. Thus, if the reaction component shown

in Figure 15 is not "swept out" of equations (B36) those equations will be

unusable for computing V anywhere along the edge x - 0 or V anywhere
x y I

along the edge y =0 (not only at the corners).

It has already been mentioned that the presence of any P other than

zero in the rea±ctions along the edges will manifest itself through S and
n

T not approaching zero as N, M, n and mn approach infinity. Thus, either

of the following conditions should suffice to eliminate any P-forces from

equations (B36):

Lim S N 0
N-+

(B54)
Lim T -O0

Within the framework of a solution with a finite number of terms, S N and

T M themselves are the best available estimates of the left-hand sides.

Thus, equations (B54) will be replaced by

S -o0

(B5 5)
F T -0

and, in view of equations (B52) and (B53), these lead to the following

equations for T 0and S0

0 04

0 T(l - B M)(B7

The following two calculation procedures now suggest themselves:

()Use (B57) to compute So then (B51) to get To, and accept some degree
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of non-satisfaction of (B56). (b) Use both (B56) and (B57) to evaluate

T and S and accept some degree of non-satisfaction of (B51). In the

second procedure the closeness of TO + S to 1/2 can be taken as an over-

all measure of the convergence. The second procedure is the one that was

used in the computations leading to the K - • (arctan K wr/2) curve of

Figure 6.

An alternate hypothesis was also investigated as a basis for removing

the indeterminacy in SO. This is the hypothesis that at a corner the

vertical reaction intensity is continuous around the corner. That is,

(Vx)x-0,y0- (Vy)y.0,x.o (B58)

or, in view of (B36),

N M

S - b T ((B59)n m

n-0,2,.. m-0,2,..

Eliminating S and T through (B52) and (B53), then replacing TO by - - SO$

and then solving for So, one obtains

N M

2 + 6N + M + 26 A- 2 B
n m

O n-2,4... m-264.. (s (B60)

4 (I+N) (1I+B)

as the equation defining S on the basis of this second hypothesis. The

alternate procedure just described for removing the indeterminacy in SO

leads to essentially the same numerical results as the first procedure.
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APPENDIX C

REMARKS ON THE CORNER STRESS

The analysis of appendix A, which produced the values of R given in

Figure 7, is based on the assumption that the rotational spring stiffness

k (see Pq. (1)) furnished by a wail to the adjacent odge of the lid is

constant all along the length of that edge. Since each wall is essent-

ially a wide beam this is a plausible assumption everywhere except near

the corners. Where two walls meet at a corner their continuity with each

other tends to increase the rotational stiffness of each; in fact, this

stiffness approaches infinity right at the corner. This discrepancy between

the actual Liature of the rotational restraint and that assumed in the

analysis is purely a local one. As long as the height h of the package is

small compared to the dimensions a and b there should be very little error

in any computed quantities except for the corner force R. R is proportional

to the race of twist of the lid at the corner and that, in turn, is strongly

depeTndent on the local constraint conditions at the corner. Consequently,

it is highly probable that the R values furnished by Figure 7 are not valid

(probably too high) when applied to the lid of a flat-pack under external

pressure.

Othei considerations lead to the conclusion that the corner reactions

for the flat-pack lid might even be zero: If one assumes perfect joint

rigidity at the corner, not only between the two walls but also between

each wall and the lid, it then follows, by a not too difficult argument,

that the rate of twist of the lid must vanish at the corner.* Consequently,

*Referring to Figure 13, consider three points A, B and C infinitesimally
close to the corner 0. Assume perfect joint rigidity, which implies that
right angles are maintained at points 1, 2 and 3 between the pair of dotted
lines meeting at each of these points. Now suppose there is some twist of
the lid at the corner. This twist will cause point A to move vertically,
say downward. The mainte ance of right angles at points I and 2 will then
require that points B and C both move outward. However, this would destroy
the right angle which must exist at point 3 between lines C3 and B3. We
must, therefore, conclude that point A can have no vertical movement; i.e.,
The lid can have no twist at the corner.
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R, which is proportional to the rate of twist at the corner, must

vanish.

We are thus faced with an uncertainty regarding the. magnitude or

even the existence of the tensile stress in the seal at the corners of

the package. Fortunately, for most packages the proportions are such

that Sede as given by equation (12), will exceed Scre~as given by

equation (19). For those packages S will not govern in either the
corner

design or the screening process, and the question as to whether it exists

or whether equation (12) over-estimates it becomes academic. For those

rare cases in which S ,onr as given by equation (19), might govern, a

conservative approach to this question has been outlined in the body of

this report.
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a•

(a) Exploded view

BASE -7

(b) Cross section

Figure 1.- Flat-pack configuration.

- D 2D 0

h h

(a) Bottom edge clamped M( t d a(b) Bottom edge subjected to
same moment as upper edge

Figure 2.- Moment-rotation relationships for walls.
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a

x

y

RR

Figure 4.- Reactions at edges and corners of a uniformly loaded

rectangular plate with edges elastically restrained

against rotation.
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Figure 6.- Intensity of vertical reaction 
at the middle of the

long side for a uniformly 
loaded rectangular plate

with edges elastically 
restrained against rotation.

(vC 0.3)
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maxa
w W

W w

(a) Due to M (b) Due to V

Figure 10.- Stress distributions across the width of the

seal at the middle of the long side.

.47 t

w

.47t

A - w2 [A + .94t .21(K)2
w w

Figure ii.- Area (shaded) over which the corner reaction R is

assumed to be distributed.
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.47t

2I47 ii t i

where th w2l met
I-ý

Figure 12.- Area (shaded) over which corner reaction R is assumed
to be distributed for package with rounded corners ,

where the walls meet.

LID •

jA

-62 -

0u

WALL" WALLl!

-3i

i Figure 13.- Points near the junction of two walls and the lid.
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(a) (b)

Figure 14.- Two possible kinds of lid-wall-base interaction

for a paekage in a centrifuge.

PP

SN"
x

pY

P

Figure 15.- A loading which will not produce deflections but

will altcr the Fourier series for (V ) and (Vy)
x-6O y y=O
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