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ABSTRACT 

Bv considering   Lho  quadratic  assignment   problem   (QAP)   as   that 

of minimizlnR  the  product   of  a  distance-graph with  a  flow-graph  several 

special  cases  of   the QAP are  investigated.     A  polynomial-growth algorithm 

is   described   for  the  QAP when  the distance  and   flow-graphs  are  isomorphic 

trees.     In   the  case when   the  graphs  are  single  stars   the  algorithm becomes 

the well   known  rule   for multiplying  two sequences   of  numbers.     The  case 

nl   11   complete  distance-graph  and  r.   tree   flow-graph  becomes   the   travelUn;- 

salesman  prohloin when   the   tree   is   n  hami1tonian  chain  and   the   flows  are 

all   enilv.     A  dynamic   programming algorithm   is   presented   for   the  case  ol 

the   I low-graph  being   a  general   tree  with  arbitrary   flows.     The   very  special 

case  of  "narrow"   bipartite  graphs  is  also  considered. 

il 
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1 .  1 NTRODUCTION 

Consider p machines 1,...,a,•.•»P with a known flow of material 

I ,, between every pair of machines (o,B) .   Let there be q '% p locations 
OP 

1, . . . , i , . ..,q  ith known distances d.. between every pair of locations 

(i,j).  An assignment of machines to locations is a one to one mapping 

p of Lhe set of machines into the set of locations, so that P(Q) is the 

locntion thnt machine a  is assigned to. 

Tin' (ost nl' a mapping p is defined as 

zip)   ■-     Z     C .d , ^ ._ (1) 
a ■ ■ P 

C.iven  the  two matrices   [f     |   and   [d. .|,   tVie  quadratic  assignment 
Q-fci 1 j 

probl.'in (QAP) is that of finding a mapping p* which minimizes z(p) as given 

by (1). 

The  QAP appears in a number of spacial location problems such as 

ihe allocation of machines to locations - used above to introduce the QAP - 

the location of electronic components on ciniMt boards [12], the ordering 

of Interrelated data on magnetic tape, etc.  Other examples not involving 

special location, but which can he (ormulatcd as QAP's include the trian- 

gulai ization of economic Input-output matrices \'.'] ,   the minimization of 

average job completion timt in machine scheduling [8] and extensions of 

the travelling salesman problem [7]. 

A survey of exact algorithms for the general QAP is given by Pierce 

and (rowston [11], and an improved algorithn i^ described ir [4].  Exact 

algorithms, however, are unable to solve general QAP's of even moderate 

size [4].  Approximate algorithms for the QAP are surveyed by Nugent et al 

[lO] and Moore [9], while Sciabin and Vergin [131 demonstrate that these 

are, in general, unsatisfactory. 

/. 

»^^,,..^.,^-^^.1.Mi.^,/^;itB^tl^ji|jtiiji.| 
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In   tills   pa|i(M   we   cunsMer   special   cnses   of   the   QA1' which   are  easier 

tn   solve.      Bv   i ecasl I ng   the  (JAP   in   graph   thtnretlc   terms   ai   the  dot-product 

of  n   di st ance-v.raph with   a   flow-nraph,   we consider cases when   these  graphs 

have   special   forms.     Tn  particular we  describe  a   polynomial   growth  algorithm 

lot   the  QAP when  h.ith   of   these  graphs  are  trees.     When only  one   of   the   two 

graphs   is  a   tree  and   the  other  is  a  complete  graph,   the  QAP  can  be  solved 

bv  a   special   dynamic   programming  algorithm which   is   a   generalization  of   a 

similar  algorithm  for   the   travelling  salesman  problem.     This   last  case  occurs 

very   often   in  practical   location   problems,e.g.,   in   the   layout   of   an  assembly 

I i no . 
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2.     GRAPHICAL  REPRESENTATION 

A  graph G  is  defined  by  the  doublet   (X,A)  where X  is  a   set  of 

vertices  and A a   set   of   links.     Unless  otherwise  specified we will   use 

"graph"   to mean a  "non-directed  graph without   loops."     The   terminology 

used   i s   I nun   [ 1 , *! • 

(liven a  «raph G (X   ,A   )   with  a cost  matrix   [c   . ] ,   an   isomorphic 

graph C" -   (X     ,   A')    with  a  cost  matrix  [', .!   and  a  mapping  p   of X    onto 

x',   the  dot-product  graph  is writttn  -  using  the  product  operator ^(p)   -   ns; 

' , V    „     " 
G Ti(p")G 

and is defined as the graph G = (X,A) isomorphic to G with costs given 

by c . 
1 ! 

cii • cp(i)p(.ir 

The  value  of  a  graph G   -   (X,A)   is  defined  as: 

V(G)   - Z <■•. . 
f x. , x .) eA   ' ' 

i     .1 

An   image   of  a   ^raph  G      in  a   y;r.'iph  G     is   anv  pnrtial   subgraph   of   G     which 

is   isomorphic   to G'.     We will   denote  by M(G',G   )   the   family  of  all   such 

ima)',e   y.r-'iphs.     The  cardinality  of   the   set M(G',G   I   is   called   the   image 

number  of  G '   in G     and   is   denoted   by m(G   .G    ). 

The QAP can now be  restated   in  the  following way. 

Let G    =   (X   ,A   )   be  a   flow-graph,  whose  vertices X     represent   the 

set   of machines   and  the   link  costs   are   the  flows between  the  corresponding 

machines.     Similarly,   let  G     =   (X   ,A  ")   be a  di.--  ance-graph,   whose  vertices 

represent   the  set   of  locations  and   the  link  costs  are  the dis  .luce:,   between 

the  crrrespondinf   locations.     We will  assume   (without   loss   of  generality) 

that   |xf|   „  lxdl. 

Inü-irm-r -11 -riifflgrima'iiaMiiiiiiiiriteiiriiiiiniii- mmm* rt l'i ■awiiTi^rfifcii' fifiii^Brffint ill' firil«^* tt'itrl i  -äJ 
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The QAP is then the problem of finding a graph G and a mapping 

p ol C    on C  which minimizes the expression: 

Min   [Min V((: TT(PU;) i 
I  .1  P 

(?) 

The   nuinluT  DI   ilifleront   mappings   p   nf   C     onto  an   isomorphic   graph   is   the 

i somorphic  mimln'r  *(C  )   of C   .     Thus,   the  inner minimization  of   (?)   is 

ovor a   set  (if cardinality s(G   )   and  the  outer minimization  is  over a   set 

f     d 
of  cardinality m(G   ,G   ). 

It   is  reasonable  to expect   that  as  s(G   )   and m(G   ,G   )   increase, 

thr  difficulty  of   the  QAP will   also  increase.     Cases  when both  s(G   )   and 

m((',   ,G   )   are small  can be  solved   trivially by enumeration.     Very  few 

special   cases   in which   onlv  ono  of   these   two numbers   is   large  can   be 

f <l 
sulvcd   by   pul ynomla 1   growth   a ! ('.or i I Inns ,     The   case  where  (. (I K      Cthe 

n 

loinplcle   grnpli   on   n   vertices:    is   the  problem  usually  considered   in   the 

literature  as   the  general   QAP and   has  ni(G   ,G   )   =   1   and   s(G   )   --  n! 

■tüü iJÄLSL^iiÄÜÜ > -     ■ ■   '•  
nggmuii 
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I.      CASr.S  WJ TH j: _      C^_.      { Imn^c-   nunihe r  --    1) 

Wlu'ii   I lie   lin/iv.«'  nunilipr iii((i   ,(•   )        1   the outer minimization  ol    (.'i 

beconifs   redundant  and   only   the   inner niinlmi zat Ion  remains. 

1. !.     Trivial   cases   (small   isomorphic   number) 

Trivial  cases   that   can  be   solved  by roraplete  enumeration are: 

(i)     Chains:     When C     and G     are  chains,   the   isomorphic  number 

s((;   )   =   2  and   the  inner minimization  in  expression   (?)   onlv 

involves   two evaluations. 

(ii)     Cyc les:     The   isomorphic   number   sfCi   )   =   ?n. 

(iii)     Wheels:     The   isomorphic   numoer s(C   )   =   2(n-l). 

(iv)     Regular  graphs:      Certain   regular  graphs   (e.g.,   webs   of   low 

order1)   have  small   isomorphic  numbers  and   can  be  enumerated. 

There   is,   however,   grent   variation   in   the   isomorphU    numbers 

of   regular  graphs   even  of   the  same  degree  as   shown  bv  the 

example   in Fig.   1.,   and   no  general   statement   can  be made. 

I. f" .      Solvable  cases   (large   isomorphic   number < 

A, 

vertex   (with   index  IM   and   n  outer vertices, the   isomorphic   number 

is   n!     However,   this   special   QAP can   be   solved   by  a  well   known 

rule  namely:     Order   the   n   flows   f       in ascending  order,   and   the 
OQ 

n distances  ci   .   in descending order.     The  optimum mapping  p* 

then maps   the  k       flow  in  the  flow  list   to  the k       distance 

in  the  distance   list   for all  k =   l....,n. 

B.     Multiple  stars 

The  graph   in  Fig.   2   shows  a  28-vertex   3rd   order  star 

with  vertex   1   as   the  center.     Consider a  general  k-order multiple 

Simple  stars:     When V.     and  C    are  simple  stars  with   one  central 

»■^.■„■..i-^. m&imi*mm ': : " • ■    •■ u. -. i_ jy     •    ' v; -.     ■ •    •' ■,■ M    A- ..- : -      ■      --• ÜU^lI ^famtfe.g^^-';i;: :-.'■:: :.r: :-;^.:^r:;:- V.%- -. ■ ^■^i;: 
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star  f.rapli arhitrarilv   rooted   at   the  center  vertex and   lot   the 

label   Mxi   nl   vertex   x   be   the   cardinality  of   the   path   from 

tin'   rciitei   luv.      I In-   label   (if    the   iiulennouL   vertlce.'i   In   then 

k  ami   the   label   ol   the  center  vertex  is  zero. 

Wo  describe  below a dynamic   programming algorithm  for  the 

solution of QAP's   involving  arbitrary k-order  stars. 

Let   the   flow and distance  graphs  be G    =   (X   ,A  )   and 

('. (X   ,A  1   respectively.     For any vertex x     e X    and x.   e  X 

let   c(j,n   be   the minimum cost   of mapping  x    and  all   its   successors 
a 

(i.e., vertices reachable from x  via arcs of the rooted tree) 
Q 

to x. and all its successors.  We will denote by x . , the 
i p(a) 

predecessor ol vertex >: . 
Li 

Description  nl   the   nl^orilhm   (lor   k-order  stars) 

S'cn   1.     For   each  >:     e  X     and   x.   e  X     with  -t.(x  )   = -^ (x   )   =  k   set 
a i Q      i 

P(Q\,  P(i)i 

Set LEVEL - k - 1 

Step 2.  For each x  e X and x. e X with -t.(x ) = -t(x.) = LEVEL calculate 
a i (v     i 

c(a , i ) as follows: 

(i)  Let [ai,...,tr]   --   iß|p(ß) = a] 

and ij1,...,,ir] = [j \?< j'l - i] 

(ii)  Set up the linear assignment problem with cost matrix 

(iii 

c(B1>i1) 

0(3^1,) 

• c(P  j ) 
1  r 

c(ß ,1 ) 
r  r 

and let V . be the value of the solution of this problem, 
ai 

Update c(a,i) = f , x  . d .... + V ., 
P(a)a   p(i)i   ai 

ruMiiiHiirinrHii-ir -^—^-^ 
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Step 3.  Set LEVEL = LEVEL -1.  If LEVEL = 0 go to (4) else go to (2). 

Step A.  Stop.  If x  and x.  are the center vertices of G and G 
Q i o o 

respectively,   C(Q   ,i   )   is   the   value of   the   solution  to   the  QAP. 

(Note:     The mapping  corresponding  to  this   solution value  can   be 

found  by backtracking  in  the  usual  dynamic   programming manner.) 

The  above algorithm  is   good,   exhibiting  polynomial   rate  of  growth 

with   the   total   number  of   vertices   in   the  k-order   star.     Thus,   if   each 

k+1 
vertex   of   the   star has   exactly m successors,   there  are   (m       -l)/(m-l) 

k-1 2k-2 vertices   in  all.     The algorithm involves   2m sortings,  m"     "  evaluations 

2k-2 0 

and   the   solution of   (m -IV(m -1)   assignment   problems  of  size m  X m. 

It   should   be   noted  here   that   in  the   first   pass   through  step  2  of   the  above 

algorithm,   the   solution  of   the assignment   problems  defined  by C   is   unnecessary 

since   these   assignment   problems  correspond   to  simple   stars   and   L.I..   he 

solved   by   the   simple ordering  described   earlier.     Thus,   in   the  case   of   the 

simple   star   the  above  algorithm  disintegrates   to   the  well   known   ordering 

rule   of    i. '(A) . 

C.     Generil   trees 

Any   tree can  be  arbitrarilv  rooted   and  considered  as  a  k-order 

star with oo-cost   (flow/distance)   arcs.      The   algorithm  described   above 

can  therefore   he used   to  solve  QAP's  with   general   trees.     This  is  equivalent 

to  slightly motlifying   the  above  algorithm   so   that   c(Q,i)   is   finite   only 

for  those  pairs  of  vertices   [x   ,x.]   for which   the  subtree  defined  by x 
a    i Q 

and  its   successors   in G       is   isomorphic   to   the  .  ibtree  defined  by x.   and 
i 

its  successors  in G   . 

söiaaJsfiiÄaSiäaSÄa msämäMä^imääm ^fiiiiaMBiitiiii^^ 
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1).     Narrow   Bipartite  Cr.iphs 

Consider   the  QAP when  (I    and  (I     are   complete   bipartite   graphs, 

say  of   the   form  K        .     Using   the  normal   notation we will   express G     in   terms 
i , s 

f f     f 
of  its   two   independent   vertex  sets,   i.e.,   G     =   (X   ,X  )   and  similarly 

G    =   (X   ,X   ).     Wo  call  K narrow if min   (r,s)   •'•     max   (r,s).     Let  us 
r     s r,s 

assume   that   r =  min   (r,s)   and  specifically  consider   the  case when  r  is   small. 

The   isomorphic  number  of K      _   is   r!s!,   however,   if   r  is   small  enough,   the   r! 
r, s 

possible mappings of X on X  could be enumerated.  For each such mapping p 

we would then compute ¥ x  G X and x. e X : 
a s is 

c(a,i)   =       E       f      . d 
xf     aß       ip(ß) 

ß     r 

and   solve   the  s   by  s   linear  assignment   problem with  cost  matrix   [c(a,i)l. 

The   least  cost   assignment   solution  over  all   r!   mappings  p   i^   then   Llr    solution 

to  the QAP. 

Obviously,   such   a   procedure   is   only   practical  when  r   is   very   small 

7   5 
(.say _ 5)   but   with   a  given   r   the  complexity as   ;i   function  of  s   is 0(s' '   ) 

since   it  only  involves   the   linear assignment   problem. 

■Mmtfirtiritiiffi^ 
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4.     CASI'S  WIIKN  C     IS   COMPTJ'TK 

Wi* wl I 1    IIDW   I .'ike   C     ID   In'  .i   complete'   ^rMpli   on   n   vc'rticoH   )m<l 

conn I dor  cases   when  ('.     Is   ol   illlferont   forms. 

^ •     Ü _ LK_ ü si"iplc  sfnr with n   vortices 

The   imaKP  number m((;   ,('•   )   is   n.     Kach   image  corresponds   to n 

star  partial   graph   of  G    with a   specific  center  vertex.     Once an  image  graph 

G     is  chosen   the  optimum mapping p  of G    onto G     can be  found as   in section 

2 
3.2(A)   earlier.     The   total  complexity of  the  procedure   is  therefore 0(n     log  n). 

B,     General   trees with n vertices 

Although   the   procedure   for simple  stars   given  in section  3  for  the 

case  in which  C     -  G     is   generalized  above   to   the  case   in which G     is  a 

complete  praph,   the   corresponding algorithm of  section   3.2(B)   for k-order 

stars   (or arbitrary   trees)   does   not   generalize.     The   fact   that  such  .i  generaliza- 

tion  is  not   possible  can be demonstrated  by  considering G     to be  a   simple 

chain  of  n vertices   numbered consecutively   Irom an end   vertex and   take   f ,    =   1 
o.crH 

for all  a =   l,...,n-l.     Wc  now have   s(G  )   --   2  and  m(G   ,G  )   -   l/2n!     In  fact, 

the  image graphs  of G    in     G    are all   the hamiltonian paths  of G   ,   and  since 

we  have  taken all   flows  to  be  unity,   the value  of   the  product graph  of G 

with an  image  graph   Is  simply   the  length of  the  hamiltonian path  forming   the 

image  graph.      (Note   that   the 2   possible mappings   of G     onto  the  image  graph 

give  the  same   value.)     Thus,   the QAP with  G     a   simple  chain and G     the  complete 

graph  becomes   equivalent   to  the   open-ended   travelling  salesman  problem. 

Although the algorithm of section 3.2(R) do s not gener.iH ze to the 

present case, this case (of G being an arbitrary tree and G the complete 

graph)   is  possibly   the most  important  of all   cases  of   the QAP -  as   far as 

['(inTinirtrt^ni-ininnK-d-n.iiiindi Ü^M^^^^ rnuäiM aüftüü 
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practical  applications   are  concerned  -   since  in many  situations   (e.g.,   in 

assembly  line  layout,   pipeline design,   etc.)   the   flow graph is  of  this 

form.     In view  of   its   importance we  present here  a   specialized algorithm 

which can  solve  QAP's  of considerebly  larger  size  than any algorithm for  the 

general QAP. 

The  algorithm is  a  generalization of   the dynamic   programming  algorithm 

in  [6]   for  the   travelling salesman problem.     The  generalization is   in two 

directions:     (i)   it  considers different  flows   between machines,  and   (ii)   it 

can  accommodate   nrMtrary  trees   instead  of  simply  chains. 

Consider  a  general   tree graph     G    and   suppose  it  is arbitrarily 

rooted at   some  vertex  x   .     Let T(x  )   be  the  directed  subtree  reachable  from 
o a 

x   ,   including x     itself  as   the  root  of   the  subtree.     We will  also use T(x   ) 
a a a 

to mean the set" of vertices of this subtree.  Let x . v be the immediaLe 
Pia; 

predecessor of  vertex  x    in  the   rooted   tree G   . 
o 

For a given  vertex  x     e X     let  S   c X     and  x.   e  S    where   Is   I   =   |T(X  )1. 

Let       S      -be   rhe  induced  subgraph on  the subset  S     of vertices of  the distance 
a a 

graph G .  Define the function g(S ,x.) as: 

g(Sa,x.) Min 
GeM(T(x ), S ■) 

Min V 

-p(x )=x 
Q'    1 

(T(X )TT(p)G) (3) 

i.e.,   g(S   ,x.)   is   the   solution   to  the  QAP defined   on  the  subgraphs  T(x )   and 
a i a 

• S ^ with the restriction that the optimum mapping should have p(x ) = x. , 
a a    i 

The function g(S ,x.) can be computed recursively as follows: 
o i 

(i)  If x  is the predecessor of only one vertex x«: 

g(S ,x ) = Min [g(S x ) + f Rd..1 
a i   v -c     P 1    W ij 

wl lere S  = SD U [x.} 

(4) 

jjiiigatiiittiiaBigii^^ 
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(11)     IT  x     Is   I he   proilrci'SHor of   r   ( ■  1)   vertices x     , 
a P, 

fY       1 
Mln E        Min Ig(S     ,x    )   + f      d 

k=l    x.   eS„ ßk     Jk ^  ij' 
\    K 

k     'k 

where  the  o uter minimization  is   over all  possible   sets  SQ   ,....SD    with 
ßl ßr 

lSß   1   -   |T(xß  )1,   and 

(5) 

S     =  SR   U ... US      U [x  }, 
Q P1 Pr 1 

Sft   OS,     =  0    ¥ k.-tell.-.-.r}. 

llie  initial  values  of  g(S   ,x.)  are  taken  to be 0  for S    =   fx,},  ¥ x.   e X 
a i a    1     i 

and for all terminal vertices x of the directed tree G . 
a. 

It may be worthwhile to indicate the order in which the computation of 

the functions g(S ,x.) would take place for the example of Fig. 3. 

x is a terminal vertex of G , We can start from g(S ,x.) = 0 with 

S = [x } ¥ x. e Xd, and then calculate g(S ,x.) for each S ex with JS j = |T(3)| =5 

and for each x. e S  by using expression (4) iteratively.  Similarly we can 

compute:  g(S8,x.) ¥ Sg with jSgj = 3; gCS^x.) ¥ S11 with JS^ = 2; 

g(S13,x.) ¥ S13 with |S13| = 2; g(S16,x.) ¥ S^ with JS^J = 2; and gCS^.x.) ¥ S^ 

with 1S18| = 3. 

The next computation would be g(S ...x.') from equation (5) ¥3^ with 

|S  I = JS  | + JS  |+1=6.  The next computation would be g(S ,x ) also 

from equation (S) ¥ S with |S?1 =- JS | + |s | + JS  | + 1 - 11.  Finally 

K(S ,x ) Is computed from equation (5) for S = X  (i.e., JS | ^ |S,| + |s  | I 

|s j.! + 1) and ¥ x. e S .  The value g(S ,x.) then is the solution to the 

t^^.^^^^^«^^ Mjaaa.sa.^a mm* i^ü^S^M^..^^. 
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QAP with vertex   1   of   the   flow graph  G    mapped  onto vertex x    of  the distance 

graph  G   .     The  value  of   the  solution  to  the QAP would   then  be: 

z  =    Min    [g(S     x   )] 
x.eXd 1     ' 

i 

It is interestii-t, to note that the case of G  being a single star- 

graph involves only one application of iteration (5) to calculate g(S ,x. ) 

for each x  and even for that single application, the linear assignment problem 

can be used to solve the outside minimization as mentioned earlier.  This is the 

simplest case mentioned in section 4.A. above.  The computationally most difficult- 

case is the casf of G  being a hamiltonian chain which, as mentioned earlier, 

leads to the travelling salesman problem.  Cases of trees G with values of 

graph diameter 1etween these two extremes are of intermediate complexity. 

C. Narrow bipartite   graphs 

When G = (X ,X ) is the complete bipartite graph K   with r -'•  s the 

QAP can he solved when r is very small by the method of section 3.D. , i.e., 

simply enumerating all r!(r) mappings of the set X  into a set of r vertices 

of G and solving an s by s assignment problem for each such mapping.  Obviously 

this would only be practical for r = 2 or at most 3 even for graphs G with 

only 20 or 30 vertices, 

D. G  is a collection of links 

For Instructional purposes it may be worthwhile to note that if G 

is a disconnected graph composed of q components each of which is a single 

link, then if all flows are unity the QAP becomes a.  matching pii.'ilem and 

can be solved as such.  It is not at all clear if the problem with non-unitv 

fatodj^^^ftma*^ 
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flows  could  be solved  as  a  matching  problem.     Although   the matching algorithm 

can also  bt   used   to  solve  general   degree-constrained   partial  ^raph  problems 

defined   on C   ,   the   lorm of   the   solution cannot   be  guaranteed   to correspond 

to  any a  priori  defined   flow  graph  G   . 

 : :       ^^.^ii^^^i.^^^i.^^^i.^i^'j^^^^ gMaajgaaiiiiiiigaiiaaiig 
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5.     CONCLUSION 

We have  expressed   the  GAP in  terms  of  graph  multiplication and 

classified  and   investigated   rases  depending  on  the   form  that   the distance 

graph   C     and   flow   graph   C.      Lake.     The  case when C     and  C.     are   hofh   simple 

star  grapiis  was  known   as   .1   solvable  case  of   the  QAP.     A   polynomial-growth 

n 1 gorithin  lias   now   been  given   for   the   solution  of  QAP's  when  both C     and  G 

are  arbitrary  trees.     Al tliough   the algorithm  for  simple   star graphs  generalizes 

to  the case  of  one  graph  G     being  a  star and   the other G     being  a complete 

graph,   the new algorithm   for arbitrary  trees  does  not,   since any such generaliza- 

tion   implies  the   travelling  salesman  problem.     However,   a   specialized  algorithm 

for  solving QAP's  where  G     is  any   tree  and  G     the  complete  graph,   is  described 

which  can  solve  considerably   larger  problems   than any  general QAP algorithm. 

^^a^^ad^a^^ 
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