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ABRSTRACT

Bv considering the quadratic assignment problem (QAP) as that
of minimizing the product of a distance-graph with a flow-graph several
special cases of the QAP are investigated. A polynomial-growth algorithm
is described for the QAP when the distance and flow-graphs are isomorphic
trees. In the case when the graphs are single stars the algorithm becomes
the well known rule for multiplying two sequences of numbers. The case
of a complete distance-graph and e tree {flow-graph becomes the travellin;
salesman problem when the tree is a hamiltonian chain and the flows are
atl mnity, A dynamic programming aigorithm is presented for the case of
the tlow-praph being a general tree with arbitrarv flows. The very special

case of "narrow"” bipartite graphs is also considered.
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1NTRODUCTION

Consider p machines 1,...,y,...,p with a known flow of material

faﬁ between every pair of machines (¢,B). Let there be q > p locations
1,...,i,...,9 ith known distances dij between every pair of locations
¢ (i,j). An assignment of machines to locations is a one to one mapping
E n of the set of machines into the set of locations, so that p(g) is the
] location that machine o is assigned to,.
‘
. The cost of a manping p 18 defined as

z(p) = L

£ d ,
LB oB 0 (a)p(F)

Given the two matrices [f B| and [dijl, the quadratic assignment
e

problem (QAP) is that of finding a mapping p* which minimizes z(¢) as given

by (1),

The QAP appears in a number of spacial location problems such as

the allocation of machines to locations - used above to introduce the QAP -

the location of electronic cecmponents on citci:it boards [12], the ordering

of interrelatrcd data on magnetic tape, etc. Other examples not involving

special location, but which can be formulated as QAP's include the trian-

gularization of economic input-output matrices [}, the minimization of

averape job completion time in machine scheduling [8] and extensions of

the travelling salesman problem [7].

A survey of exact algorithms for the general QAP is given by Pierce

and (rowston [11], and an improved algorithm i. described i [4]. Exact

alpgorithms, however, are unable to solve general QAP's of even moderate

size [4]. Approximate algorithms for the QAP are surveyed by Nugent et al

[10] and Moore [9], while Sciabin and Vergin [13] demunstrate that cthese

|

are, in general, unsatisfactory.
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In this paper we conslder special cases of the QAP which are easfer
tn solve. By recasting the QAP in graph theoretic terms a3 the dot-product
of a distance-graph with a flow-graph, we consider cases when these graphs
have special lorms. 1In particular we describe a polynomial growth algorithm
tor the QAP when both of these graphs are trees. When only one of the two
praphs is a tree and the other is a complete graph, the QAP can be solved
by a special dvnamic programming algorithm which is a generalization of a
similar algorithm for the travelling salesman problem. This last case occurs

very often in practical location problems,e.g., in the layout of an assembly

line,

Rrorer

¥

b




LR DR & sy it 1o b i i o

Sl b TR g i s b

R/ L g

boancias oo o

2. GRAPHICAL REPRESENTATION

A graph G is defined by the doublet (X,A) where X is a set of
vertices and A a set of links. Unless otherwise specified we will use
"graph'" to mean a '"non-directed graph without loops.'" The terminology
used is trom [1, 1],

Given a graph ¢’ (X',A/) with a cost matrix [c{jl, an isomorphic

rraph ¢ - (X’l, A"”)Y with a cost matrix [v{}l and a mapping ¢ of X' onto

14

X", the dot-product graph is written - using the product operator m(p) - as:

¢ n(p)¢ "

(X,A) isomorphic to G’ with costs given

and is defined as the graph G

’ 14

by - . .
Y S Seed

The value of a graph G (X,A) is defined as:

V(Y = z o
(x,,x.)eA J
7]

An image of a pgraph G' in a graph G “is anv partial subgraph of ¢ " which
is isomorphic to G'. We will denote by M(G’,C'S the family of all such
imape wraphs, The cardinality of the set M(C’,G'S is called the image
number of G’ in ¢ ” and is denoted by m(G',CIW.

The QAP can now be restated in the following way.

Let Gf = (Xf,Af) be a flow-graph, whose vertices Xf represent the
sct of machines and the link costs are the flows between the corresponding
machines, similarly, let ¢ = (Xd,Ad) be a di. ance-graph, whose vertices
represent the set of locations and the link costs are the dis:aunce: between
the ccrresponding locations. We will assume (without loss of generality)

ehat |xT] = [x9].
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The QAP is then the problem of finding a graph G and a mapping

f . .
p ot ¢ on C which minimizes the expression:

Min [Min V((:'n(p)(:)] (?2)

t Jd P
GeM(G LG

[
The number ot different mappings p of ¢ onto an isomorphic graph is the

f f
isomorphic number s(CG) of (G, Thus, the inner minimization of (?) is

f
over a set of cardinality s(G ) and the outer minimization is over a set

f d
of cardinality m(G ,G ).

It is reasonable to expect that as s(Gf) and m(Gf,Gd\ increase,
the difficulty of the QAP will also increase. Cases when both s(Gf) and

1
m(uf,G() are small can be solved trivially bv enumeration. Very few

sprcial cases in which onlv one of these two numbers is larpe can be

f !
solved by polynomial growth alyorithms. The case where (. G K (the

complete praph on n vertices) is the problem usually considered in the

d

[
literature as the general QAP and has m(G ,G ) = ] and s(Gf) = n!

s
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f d
cases Wi ¢L ol (lmage number - 1)

f d
When the fmage number m(G ¢ ) = 1 the outer minimization o ()
becomes redundant and only the inner minimization remains.

Trivial cases (small isomorphic number)

Trivial cases that can be solved by complete enumeration are:
. . f d . . .
(i) Chains: When G and G are chains, the isomorphic number
f q 8 3 5
$(G Y = 2 and the inner minimization in expression (2) onlv

involves two evaluations.

f
Cycles: The isomorphic number s(G ) ’n.

Wheels: The isomorphic numner s(Cf) 2(n-1).

Regular graphs: Certain regular graphs (e.g., webs of low

order) have small isomorphic numbers and can be enumerated.
There is, however, great variation in the isomorphi. numbers
of regular graphs cven of the same degree as shown by the
example in Fig., 1., and no general statement can be made.

Solvable cases (large isomorphic number.

A. Simple stars: When “f and Cd are simple stars with one central
vertex (with index ) and n outer vertices, the isomorphic number
is n! However, this special QAP can he solved by a well known
rule namely: Order the n flows foa in ascending order, and tne

n distances doi in descending order. The optimum mapping p¥*

then maps the kth flow in the flow list to the kth distance

in the distance list for all k = 1....,n.

Multiple stars

The graph in Fig. 2 shows a 28-vertex 3rd nrder star

with vertex 1 as the center. Consider a general k-order multiple
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star praph arbitrarily rooted at the center vertex and let the
label £(x) ol vertex x be the cardinality of the path from
the center to s, The Tabel of the outermost verticen [u then
k and the label of the center vertex is zero.

We describe below a dynamic programming algorithm for the
solution of QAP's involving arbitrary k-order stars.

lLet the flow and distance graphs be Gf = (Xf,Af) and

d f
G- (Xd,Ad) respectively. For any vertex 3 e X and X, € X

let c¢(%,i) be the minimum cost of mapping x and all its successors
o
(i.c., vertices reachable from x via arcs of the rooted tree)
o}

to xi and all its successors. We will denote b the

Y %o ()

predecessor ol vertex
&)

Description of the alyorithm (lor k-order stars)

For each x ¢ Xt and x; € Xd with 4(x ) l(xi)
o

@

iy, 1) ] Py
C{n,1 lP(a\u 'dp(l)l

Set LEVEL = k - 1
f d .
For each x ¢ X and Xy € X with L(xn) LEVEL calculate
a !
c(a,i) as follows:
(i) Let {b,...,5 J = {B|p(®) = o]
and {j,,...,5 } = {jlprid - i}

Set up the linear assignment problem with cost matrix

B, i) - cml,irﬂ

C(Sr,i])

and let V ; be the value of the solution of this problem.
Q

lipdate c(a,1) f .d .. o
P L pla)a p(idi + Val
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Step 3. Set LEVEL = LEVEL -1. 1If LEVEL = 0 go to (4) else go to (2).
Step 4. Stop. If x and x, are the center vertices of Cf and Gd
Yo o
respectively, C(Qb,io) is the value of the solution to the QAP.
(Note: The mapping corresponding to this solution value can be
found by backtracking in the usual dynamic programming manner.)
The above algorithm is good, exhibiting polynomial rate of growth
with the totil number of vertices in the k-order star. Thus, if each
. k+1
vertex of the star has exactly m successors, there are (m -1)/(m-1)

2k-2

. . k-1 .
vertices in all. The algorithm involves 2m sortings, m evaluations

and the solution of (m2k-2-1\/(m2-1) assignment problems of size m X m.

It should be noted here that in the first pass through step 2 of the above
algorithm, the solution of the assignment problems defined by C is unnecessary
since these assignment problems correspond to simple stars and i be

solved by the simple orderinp described earlier. Thus, in the case of the
simple star the above alporithm disintegrates to the well known ordering

rule of 3.7(A).

C. GCeneral trees

Any tree can be arbitrarilv rooted and considered as a k-order
star with ®-cost (flow/distance) arcs. The algorithm described above
can therefore be used to solve YAP's with general trees. This is equivalent
to slightly modifying the above algorithm so that c(g,i) is finite onlyv
for those pairs of vertices [x ,xi] for which the subtree defined by x
a
and its successors in G is isomorphic to the ..btree defined by X and

. d
its successors in G .

53
Y
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D. Narrow Bipartite Craphs

d
Consider the QAP when Gr and (¢ are complete bipartite graphs,

. c - f .
say of the form Kr g Using the normal notation we will express G in terms
X

£ f f
of its two independent vertex sets, i.e., G = (Xr,XS) and similarly

cd & (xd,xi). We call K narrow if min (r,s) -~ max (r,s). Let us
r’s i
assume that r = min (v,s) and specifically consider the case when r is small.

The isomorphic number of K is r!s!, however, if r is small enough, the r!
p r. ’ b g ’
’

could be enumerated. For each such mapping n

d-
.

s o %

f
possible mappings of X[ on X

f
we would then compute ¥ x € Xg and X, € X
[0 b

Clani) = L o Logedinp
r
and solve the s by s linear assignment problem with cost matrix [c(a,i)].
The least cost assignment solution over all r! mappings p is then th. solution
to the QAP.
Obviouslv, such a procedure is only practical when r is very smaltl

2.5,
(say _ 5) but with a given v the complexity as & function of s is 0 (s )

since it only involves the linear assignment problem.
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4,  CASES WHEN ¢ [S COMPLETE

d
We will now take ¢ to be o complete graph on n vertices and

|
cons{der cases when ¢ fs of diflerent forms.,

(
A. (G is a sfmple star with n vertices

£ od. ., .
The image number m(G ,G ) is n. Kach image corresponds to a

star partial graph of Gd with a specific center vertex. Once an image graph

d . . . f d . .

G is chosen the optimum mapping p of G onto G can be found as in section
3.2(A) earlier. The total complexity of the procedure is therefore O(n2 log n).

B. General trees with n vertices

Although the procedure for simple stars given in section 3 for the

f d d
case 1n which G = G is generalized above to the case in which G is a

complete graph, the corresponding algorithm of section 3.2(B) for k-order

dpeatte s Gs

stars (or arbitrary trees) does not ygeneralize. 1The fact that such a ;eneraliza-
. . Nt .

tion is not possible can be demonstrated by considering G to be a simple

chain of n vertices numbered consecutively from an end vertex and take f =1

a,atl
for all ¢ = L,...,n-1. We now have s(Cl) = 2 and m(Cf,Gd) = 1/2n! 1n fact,

the image grapl s of Gr in Gd are all the hamiltonian paths of Gd, and since

we have taken all flows to be unity, the value of the product graph of Gf

with an image graph is simply the length of the hamiltonian path forming the
image graph. (Note that the 2 possible mappings of Gf onto the image graph
give the same value.) Thus, the QAP with Gl a simple chain and Gd the complete

graph becomes equivalent to the open-ended travelling salesman problem.

Althoupgh the algorithm of section 3.2(R) do ¢ not generalize to the 3
{ , . d ;:
present case, this case (of (¢ being an arbitrary tree and G the complete 49

graph) is possibly the most important of all cases of the QAP - as far as A
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practical applications are concerned - since in many situations (e.g., in

assembly line layout, pipeline design, etc.) the flow graph is of this

form. 1In view of its importance we present here a specialized algcrithm
which can solve QAP's of considerably larger size than any algorithm for the
general QAP.

The algorithm is a generalization of the dynamic programming algorithm
in [6] for the travelling salesman problem. The generalization is in two
directions: (i) it considers different flows between machines, and (ii) it
can accommodate arbitrary trees instead of simply chains.

Consider a general tree graph Gf and suppose it is arbitrarily
rooted at some vertex xo. Let T(Xa) be the directed subtree reachable from
Xa’ including xa itself as the root of the subtree. We will also use T(Xa)
to mean the set of vertices of this subtree. Let xp(a} be the immediate
predecessor of vertex 3 in the rooted tree Gf.

For a given vertex xa € Xf let SQC Xd and x5 € Sa where \Sa‘ = lT(xa)\.

Let - S - be ihe induced subgraph on the subset S of vertices of the distance
o o

graph Gd. Define the function g(Sa,xi) as:

a(S_,x,) = Min L Min Y (T(x )T(p)G) (3)
GeM(T(x ), S 9 p o
o bp(x )=x,
Y 1

i.e., g(Sa,xi) is the solution to the QAP defined on the subgraphs T(x ) and
o
-‘Sa\ with the restriction that the optimum mapping should have p(x ) = X, -
o
The function g(§ ,xi) can be computed recursively as foliows:
o

(1) If x_is the predecessor of only one vertex Xg:
Q

S ,x.) = M S.,X. £ .d,,
g( O[,xl) X.zg [g( 8 xJ) + oB iJ]




‘i- ‘ s ,‘ X 5 i ”
A
tl
1
3
? -11-
% (i1)y 10 x is the predecessor of r (- 1) vertices x_, ,...,x
3 Yy B 1 B r
. )
E g (S ,x1\ Min % Min [g(SB ,X. ) + f 5 di' ] (5)
3 ” Sy 0o-aSg (ke xS k Ik P
! ! r Tk P
z where the outer minimization is over all possible sets SB ,...,SB with
3 1 r
- lSB l = |T(xB )l, and
Y k k
i s =8, U...US, Ufx.],
E o By B, i
3 S NS, =0 ¥ k,le{l,...,r}.
3 k i
d
: The initial values of g(§ ,xi) are taken to be 0 for Sa = {xi}, ¥ x; € X
;. o
3
4 and for all terminal vertices xa of the directed tree Gf.

4 It may be worthwhile to indicate the order in which the computation of

the functions g(Sa,xi) would take place for the example of Fig. 3.

X. is a terminal vertex of G

7 £ We can start from g(S7,xi) = 0 with

B

A
3
o

d d
= 1 = =
S7 {xi} ¥ X, € X, and then calculate g(S3,xi) for each S3CZX with \33\ |T(3)| 5

and for each X € S3 by using expression (4) iteratively. Similarly we can

CEAMERSS AR

compute: g(SB,xi) ¥ 88 with ‘88‘ = 3; g(Sll,xi) ¥ S11 with ‘Slll = 2;

xlnsc

A

8(S4,%,) ¥ S 4 with 1313\ = 2; 8(8,4.%;,) ¥ S, with \sl6l = 2; and g(S;g,%,) ¥ Syg

with |s,0] = 3.

The next computation would be g(SlS,xi) from equation (5) ¥ S15 with

ISlS‘ = lsl6l + lslg\ + 1 = 6. The next computation would be g(Sz,xi) also

1 from equation (5) ¥ S, with |s,| = |s,] + [sg| + 19,1\ + 1 = 11. Finally

g(Sl,xi) is computed (rom equation (5) for S, = Xr (i.e., ‘S

1 ‘Sg‘ + |S

1

‘815| + 1) and ¥ xi € S The value g(Sl,xi) then is the solution to the

1
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£
QAP with vertex 1 of the flow graph G mapped onto vertex X, of the distance

graph Gd. The value of the solution to the QAP would then be:

z = M1nd lg(Sl,xi)]

%, eX
i

It is interestir, to note that the case of Gf being a single star-
graph involves only one application of iteration (5) to calculate g(S],xi)
for each X, and even for that single application, the linear assignment problem
can be used to solve the outside minimization as mentioned earlier, This is the
simplest case mentioned in section 4.A. above. The computationally most difficult
case is the case of Gf being a hamiltonian chain wrkich, as mentioned earlier,
leads to the travelling salesman problem, Cases of trees Gf with values of

graph diameter !etween these two extremes are of intermediate complexity.

C. Narrow bipartite graphs

When Gf = (Xr,XS) is the complete bipartite graph Kr,s with r <~ s the
QAP can be solved when r is very small by the method of section 3.D., i.e.,
simply enumerating all r!(?) mappings of the set x" into a set of r vertice:
of Gd and solving an s by s assignment problem for each such mapping. Obviously
this would only be practical for r = 2 or at most 3 even for graphs Gd with

only 20 or 30 vertices.

D. Gf is a collection of links

i
For Instructional purposes it may be worthwhile to note that if G

is a disconnected graph composed of q components each of which is a single

link, then if a1l flows are unity the QAP becomes a matching prihblem and

can be solved as such. Tt is not at all clear if the problem with non-unitvy
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flows could be solved as a matching problem. Although the matching algorithm
can also be used to solve general degree-constrained partial zraph problems

d :
defined on G , the form of the solution cannot be puaranteed to correspond :

to any a priori defined flow graph Cf. 3

i s

=

TR
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5. CONCLUSTON
We have expressed the QAP in terms of graph multiplication and
classified and investipatced casos depending on the form that the distance

1 { f
praph ¢ and flow praph ¢ take. The case when ¢ and Gd are both simple

star praphs was known as a solvable case of the QAP. A polynomial-growth
algorithm has now been given for the solution of QAP's when both Gf and Gd

are arbitrary trees. Although the algorithm for simple star graphs generalizes
to the case of one graph Gf being a star and the other Gd being a complete

graph, the new algorithm for arbitrary trees does not, since any such generaliza-

tion implies the travelling salesman problem. However, a specialized algorithm

f d
for solvinp QAP's where G is any tree and G the complete graph, is described

which can solve considerably larger problems than any general QAP algorithm.
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