- Best
Available
Copy

_—— 2 (i - VY SNTERY CAEmgTRo R i & - R S S | ST S S—CTRERRR R

U.S. DEPARTMENT OF COMMERCE
National Technical Information Service

AD-A025 508

Interprocess Communication

o~

Protocols for Z“omputer Networks

Stanford Univ.

Prepared For
Office of Naval Researck

December 1975

Between the time you ordered this report—
which is only one of the hundreds of thou-
sands in the NTIS information collection avail-
able to you—and the time you are reading
this message, several new reports relevant to
your interests probably have entered the col-
lection.

Subscribe to the Weekly Government
Abstracts series that will bring you sum-
maries of new reports as soon as they are
received by NTIS from the originators of the
research. The WGA's are an NTIS weekly
newsletter service covering the most recent
research findings in 25 areas of industrial,
technological, and sociological interest—
invaluable information for executives and
proiessionals who must keep up to date.

The executive and professional informa-
tion service provided by NTIS in the Weekly
Government Abstracts newsletters will give
you thorough and comprehensive coverage
kof government-conducted or sponsored re-

4 KEEP UP TO DATE

search activities. And you'll get this impor-
tant information within two weeks of the time
it's released by originating agencies.

WGA newsletters are computer produced
and electronically photocomposed to slash
the time gap between the release of a report
and its availability. You can learn about
technical innovations immediately—and use
them in the most meaningful and productive
ways possible for your organization. Please
request NTIS-PR-205/PCW for more infor-
mation.

The weehly newsletter series will keep you
current. But /learn what you have missed in
the past by ordering a computer NTISearch
of all the research reports in your area of
interest, dating as far back as 1964, it you
wish. Please request NTIS-PR-186/PCN for
more information.

WRITE: Managing Editor
5285 Port Royal Road
Springfield, VA 22161

N\

7

SRIM (Selected Research in Microfiche)
provides you with regular, automatic distri-
bution of the complete texts of NTIS research
reports only in the subject areas you select.
SRIM covers aimost all Government re-
search reports by subject area and/or the
originating Federal or local government
agency. You may subscribe by any category
or subcategory of our WGA (Weekly Govern-
ment Abstracts) or Government Reports
An:iouncements and Index categories, or to
the reports issued by a particular agency
such as the Department of Defense, Federal
Energy Administration, or Environmental
Protection Agency. Other options that will
give you greater selectivity are available on
request.

The cost of SRIM service is ouly 45¢
uomestic (60¢ foreign) for each complete

4 Keep Up To Date With SRIM

microfiched report. Your SRIM service begins
JZ soon as your order is received and proc-
essed and you will receive biweekly ship-
ments thereafter. If you wish, your service
will be backdated to furnish you microfiche
of reports issued earlier.

Because of contractual arrangements with
several Special Technology Groups, not all
NTIS reports are distributed in the SRIM
program. You will receive a notice in your
microfiche shipments identitying the excep-
tionally priced reports not available through
SRIM.

A deposit account with NTIS is required
before this service can be initiated. If you
have specific questions concerning this serv-
ice, please call (703) 451-1558, or writc NTIS,

attention SRIM Product Manager. /

=

5285 Port Royal Road
Springfield, Virginia 22161

This information product distributed by
m US. DEPARTMENT OF COMMERCE

National Technical Information Service

169086

= -t

[) 4

INTERPROCESS COMMUNICATION PROTOCOHLS
FOR COMPUTER NETWORKS

1

by

Carl Allan Sunshine

ADAO25508

December 1975

Technical Report #1035

This research was supported by the Defense Advanc:d Research
Projects Agency under ARPA Order No. 2494, Contract No.
MDA903-76C-0093 and by thie National Science Foundation
Graduate Fellowship Program.

Reproduction in whole or in part is permitted for any purpose
of the U.S. Government.

faited

DIGITAL SVSTEMS LABORATORY
STANFORD ELECTRONICS LABORATORIES

STANFORD UNIVERSITY - STRAFORD, CALIFORNIA

REPRODUCED BY

NATIONAL TECHNICAL
INFORMATION SERVICE

U.S. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA. 22161

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE e e vian

1 REPORT NUMBER 2. GOVT ACCESSION NO. | 3 RECIPIENT'S CATALOG NUMBER
TR105 {/ -

4 TITLE (ang Subtitie) 5. TYPE OF REPORT & PERIOD COVERED i |
Interprocess Communication Protocols for Technical Report :
Computer Networks : |

e — 3
6 PERFORMING ORG REPORT NUMBE P %
7 AUTHORIS) 4
B CONTRACTY OR GRANT NUMBE RPis)
Carl Allan Sunshine MDA903-76C-0093
ARPA Order No. 2494
- £l
9 PERFORAMING ORGANIZATION NAME AND ADDRESS 10 PROGRAM ELEMENT PROJFC™
. & AREA & WORK UNIT NUMBE =5
Stanford Electronics Laborz cories/ 6T10
Stanford University
Stanford, CA 94305 72 AEPORAT DATE 13. NO. OF PAGES
77 CONTROLLING OFFICE NAME AND ADDRESS December 1975 37@
Defense Advanced Research Projects Agency BRI AR e T
Information Processing Techniques Office UNCLASSIFIED
1400 Wilson Ave., Arlington, VA 22209
14 MONITORING AGENCY NAME & ADDRESS (if diff. from Controlling Office)
Mr. Philip Surra, Resident Representative T T Ve T e T T
Office of Naval Research SCHEDULE
Durand 165, Stanford University
16 DISTRIBUTION STATEMENT (of this report)
Reproduction in whole or in part is permitted for any purpose of the U. §S.
Government, : - —nr
% ., 1c.20860 win il e
’-_ f TRIBUT ON STATEMENT (of the abstract entered n Block 20) «f diftérent from 'tuovlf s .‘.;Zud

1% SUPPLEMENTARY NOTES L i

5 w7 WOROE IComints on reveres soe necessary and denity by block mumber) g o
computer networks, interprocess communication, communication protocol,
performance evaluation, reliability, efficiency, interconnection,
internetworking, correctness, initialization, throughput, delay, Gateway,
routing, addressing, standards.

I ABSTRACT (Cort nue on reverse side f necessary and dentity by block number) o =
This report focuses on the design and analysis of interprocess communication

protocols for networks of computers. Previous research has emphasized system

perfgrmance at lower levels, within the communication medium itself. This work

xamines requirements and performance of protocols for communication between !

rocesses in the Host computers attached to the communication system. '

~ Both the reliability and the efficiency of protocols are discussed. Reliability

nvol_ves overcoming unreliable network transmission facilities to avoid loss, i

uplication, or out-of-order delivery of data. Reliability performance goals are

]
DD.>.1473 UNCLASSIFIED
FDITION OF 1 NOV 65 IS OBSOLETE SECURITY CLASSIFICATION OF THIS PAGE (When Data ¢ nrerad ’
‘ {

/

StULURITY CLASSIFICATION OF THIS PAGE (\“When Data Entereq)
19 8ty WORDS 1 Corninued)

J0 AHSTRACT iContinued’

defined, and the correctness of different protocol mechanisms in achieving these
goals is demonstrated. Consequences of protocol failures (Host crashes) and
problems of initializing control mechanisms required for reliable communication
are also considered.

Efficiency primarily concerns throughput and delay achievable for communication
between remote processes. The performance of successively more powerful protocols
including error detection, retransmission, flow control, limited buffering, and
sequencing is analyzed. Protocol parameters such as retransmission interval,
window size, buffer allocation, packet size, and acknowledgement strategy emerge
as important factors in determining efficiency. Several graphs showing quantita-
tive performance results for representative situations are included.

An additional section of the report considers the problems of inte-connecting
heterogeneous computer networks to allow communication between processes in
different networks. Topics discussed include global addressing and routing
techniques, level of network interconnection. extent of changes required in

individual nets, and functions performed by the interface or Gateway between
networks.

1id

DD. .. 1473 B4cx UNCLASSIFTED

tDITION OF 1 NOV 65 IS OBSOLETE DECURITY CLASSIFICATION OF 11405 AL £ (When @

1

,*’a

: INTERPROCESS COMMUNICATION PROTOCOLS
: FOR COMPUTER NETWORKS

by

Carl Allan Sunshine

December 1975
Technical Report #105

DIGITAL SYSTEMS LABORATORY
Dept. of Electrical Engineering Dept. of Computer icience
Stanford University
Stanford, California

The views and conclusions contained in this document are those of the
author and should not be interpreted as necessarily representing the
official policies, either express or implied, of the Defense Advanced
Research Projects Agency or the United States Government

-].:' i * e

. loloase;

. -2 Uai'aited

This research was supported by the Defense Advanced Research Projects
Agency under ARPA Order No. 2494, Cotract No. MDA903-76C-0093 and by
the National Science Foundation Graduate Fellowship Program. |

Reproduction in whole or in part is permitted for any purpose of the U. S.
Government.

[(‘_ b r

© 1976

by

Carl Alilan Sunshine

ABSTRACT

This thesis focuses on the design and analysis of
interprocess communication protocols for networks of computers.
Previous research has emphasized system performance at | ower
levels, wWithin the communication medium itself. This work
examines requirements and performance of protocols for
communication between processes in the Host computers attached
to the communication systenm.

Both the reliability and the efficiency of protecols are
discussed. Reliability involves overcoming unreliable natwork
transmission facilities to avoid |loss, duplication, or
out-of-order delivery of data. Reliability performance goals

are cefined, and the correctness of different protocol

mechanisms in achieving these goals s demonstrated. .

Consequences of protoco! failures (Host crashes) and problems of
initializing contro! mechanisms required for reliable
communication are also considered.

Efficiency primarily concerns throughput and delay
achievable for communication betuween remote processes. he
performance of successively more powerful protocols including
error detection, retransmission, flow control, limi ted
buffering, and sequencing is analyzed. Protocol parameters such

as retransmission interval, window size, buffer allocation,

packet size, and acknowledgement strategy emerge as important
factors in determining efficiency. Several graphs shoning
quantitative performance results for representative situations
are included.

An additional section of the thesis considers the
problems of interconnecting heterogeneous computer networks to
al low communication betuween processes in different networks.
Topics discussed include global addressing and routing
techniques, level of network interconnection, extent of changes
required in individual nets, and functions performed by the

interface or GCateway between networks.

-jVe=

ACKNOWLEDGEMENTS

First and foremost, I wish to thank my adviser,

Professor Vint Cerf, for his constant support, good advice, and

good humor throughout the preparation of this work. Feu
advisers have done their job so well, and allowed graduate study
to be so pleasant and prcfitable an experience. The other

members of my committee, Professors Forest Baskett and Gene

Colub, also provided valuable imput to this work, Their
personal corcern and counsel over the past three years have been
most appreciated. Tharks also go to Bob Metcal fe and Jon Postel
for many heipful suggestions on the text of this report, and to
Tom Bredt for his support during my first years at Stanford.

My fellow students in the Digital Systems Lab have
contributed in many ways to this work, expecially Ron Crane,
Richard Karp, Jim Mathis, John Mortenson, and Alan Smith. The
ready sar and thoughtful comments of my office partner, Yogen
Dalal, have been most helpful and encouraging, while his hard
work has gotten us over many obstacles. Special thanks also go
to Carolyn Taynai, that most human of secretaries, for her l
exceptional attention to our well-being in all matters. |

This research has been financially supported by the

National Science Foundation Graduate Fellouwship Program, and by

the Advanced Research Projects Agency of the Department of

Defense. Facilities and individuals at several ARPA sponsored
institutions including the Digital Systems Lab, the Artificial
Intelligence Lab, and the SUMEX project at Stanford Universi ty,
the Augmentation Research Center at Stanford Research Institute,
the Information Sciences Institute of USC, Bolt Beranek and
Neuman, The Department of Computer Science of University Col lege
London, and the Rand Corporation have been instrumental in
supporting this research and producing this report. Special
thanks go to Ray Tomlinson {BBN) for his tireless efforts on the
BCPL compi ler, to Ed Tompkins (RAND) for polishing the
illustrations, and to Ray Finkel (SU-AI) for developing the type
font for this report.

IFIP Working Group 6.1 (Internetuork Working Group of
the International Federation for Information Processing) has

provided an invaluable forum for the exchange of ideas on

communication protocols. Louis Pouzin, Roger Scantlebury,

Hubert Zimmerman, and Alex McKenzie have participated in
numerous stimulating discussions on the topics of this research.

My final thanks go to family and friends who have given
me the encouragement to continue my work, and most specially to
Tove who has made the best of many long nights at t-e office and

sent me off ready to do battle again the next morning.

Chapter

I1

Subject

ABSTRACT
ACKNOWLEDGEMENTS
E TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES

TABLE OF CONTENTS

INTRODUCTION
1 SUMMARY

2 TRANSMISSION MEDIUM CHARACTERISTICS

PROTOCOL RELIABILITY

1

INTRODUCTION
1.1 Related Work

1.2 Protocol Specification and
Verification Technigues

PROTOCOL MECHANISMS AND PERFORMANCE GOALS
2.1 Protocol Definition

2.2 Performance Measures

BASIC PAR PROTOCOL
PAR PROTOCOL WITH SEQUENCING

“Vii=

vii
w¢d
xii

15

15

18

22
25
25
27
28
37

1
|
|
|
4
1
|
4
|
|
i
|
i
!
i

Table of Contents

o

CONNECTION ESTABLISHMENT

5.1 Connection Definition

5.2 Opening a Connection

5.2.1 Selecting ISN
5.2.2 Setting ESN equal to ISN

5.2.3 Correctness of Connection
Establ ishment Mechanisms

Closing a Connection

5.3.1 FIN Mechanism

S.3.2 Possibility of "Hung" Connections
S.4 Reducing Costs of a CCP

[11 PROTOCOL EFFICIENCY

1
V4
3

INTRODUCTION

SIMPLE PROTOCOL WITHOUT ERROR CORRECTION
PAR PROTOCOL (RETRANSMISSION)

3.1 Constant Transmission Delay

3.2 Exponential Transmission Delay

3.3 Erlangian Transmission Delay

3.4 Results

FLOW CONTROL

DESTINATION BUFFER ALLOCATIDON

S.1 Ackrouledgement and Buffer Allocation
Stra'egies

Table of Contents

5.2 Optimistic Buffer Allocation Strategy
5.3 Results
6 SEQUENCING

6.1 Increased Roundtrip Delay
6.2 Discard Probability
7 PACKET SIZE

1V NETWORK INTERCONNECTION
1 INTRODUCTION
2 ROUTING AND ADDRESSING

2.1 Local Net Participation in
Internetworking

2.2 Routing Data Structures and
Contro’' Strategies

2.3 Conclusions

LEVEL OF INTERCONNECTION

3.1 Local Net Interface Level
3.2 Local Net Service Level

3.3 Endpoint vs. Hop-by-Hop
Protocol Implementation

ADDITIONAL GATEWAY FUNCTIONS

Appendix A CONNECTION ESTABLISHMENT PROOFS

1 Protocol Machine Model

2 Composite State Model

3 Correctness Under Normal Operation

Table of Contents

4 Consequences of Protocol Failures 235
S Inadequacy of Simpie Protocol 238
Appendix B REFERENCES FOR EXAMPLE NETWORKS 243

REFERENCES 244

- -

LIST OF TABLES

Chapter |
|

Il 1 Processing of Received Packets in SPAR Protocol 38 }

|

ITT 1 1Important Names and Variables Used in Chapter 111 81 :

IV 1 Network Interconnection Alternatives of Other |
Authors in Terms of Our Classification Scheme 181 |

2 Result of Internet Fragmentation for
Tuwo Packet Size Strategies 214
Appendix A

1 3-Way Handshake Protoco! State Transitions
From Not Active State 226

2 3-Way Handshake Protocol State Transitions
From SYN Received State 227

3 3-Way Handshake Protocol State Transitions Ny
From SYN Sent State 228

4 3-UWay Handshake Protocol State Transitions '
From Establ ished State 229

State Transitions for Simpie Protocol Machine 240

LIST OF FIGURES

Chapter 1]

1 Augmented Service from Interprocess :
Communization Protocol (IPC)]

2 PAR Protocol Sending Discipline
3 PAR Protoco! Receiving Discipline 30
4 SPAR Protocel Sending Discipline 40
S SPAR #rotpcol Receiving Discipline 41
6 States of a Cornection Between Two Processes S0 ']
7 Error Due to Reuse of Sequence Numbers S3
8 Simple Connection Establishment Using
SYN Control Packet 60 :
9 Simple Connection Establishment Error 60
10 "3 Way Handshake" Connection Establishment 62
11 Rejection of Old SYN Packet with "3 Way Handshake" 62
12 Connection Closed with FIN Control Packet e 68 %
13 Connection Closed with Simul taneous FIN Packets 69

Chapter 111
1 Transmission Delay Density Function f(t) 84
2 Successful Transmission Delay Probabil ity

Mass Function, g(t), for Constant
Transmission Medium Delay D=l 92

3 Successful Transmission Delay Cumulative |
Uistribution, G(t), for Constant |
Transmission Medium Delay D=1 92 |

R e e

List

10

11

12

13

14

15

16

of Figures

Mean Delay DL vs. Retransmission Intarval R
for Constant Transmlsslon Medium Delay D=l

Throughput Factor TPretrans vs.
Retransmission Interval R for Constant
Transmission Medium Delay D=1

Mean Delay DL vs. Throughput Factor TPretrans
for Constant Transmission Medium Delay D=1

Successful Transmission Delay Probability
Density Function, g(t), for Exponential
Transmission Medium Delay with Mean=l

Successful Transmission Delay Cumulative
Distribution, G(t), for Exponential
Transmission Medium Delay with Mean=l

Mean Delay DL vs. Retransmission Interval R for
Exponential Transmlssion Medium Delay with Mean=1

Throughput Factor TPretrans vs.
Retransmission Interval R for Exponential
Transmission Medium Delay With Mean=1

Mean Delay DL vs. Throughput Factor TPretrans for
Exponential Transmission Medium Delay with Mean=1

Erlangian Probability Density Function, f(t),
Wwith Mean=1 and Shape Parameter k=1,4,16

Successful Transmission Delay Probability

Density Function, g(t), for Erlangian Transmission

Medium Delay with Mean=1 and k=16

Successful Transmission Delay Cumulative
Distribution, G(t), for Erlanglan Transmission
Medium Delay With Mean=l and k=16

Mean Delay DL vs. Retransmission Interval R
for Erlangian Transmission Medium Delay
With Mean=1 and k=16

Throughput Factor TPretrans vs. Retransmlss|on
Interval R for Erlangian Transmission Medium
Delay with Mean=1 and k=16

-xiii=

91

94

94

5

98

98

100

102

103

104

104

o B g T P PP o - Ty T . hm_‘—J

; 17
18
18
20

E 2l

22

24

1

wW

F-N

Chapter 1V

of Figures

Mean Delay DL vs. Throughput Factor TPretrans

for Erlangian Transmission Medium Oelay

with Mean=1 and k=16 104
Queuing Model of Flow Control 111
Throughput Factor UT vs. Flow Control Window

Size Nuin for Various RHO = Tlocal/Tnet 114
Queuing Model of Destination Buffer Space

Limitations 124

Probability of Discarding an Arriving Packet,

Pfull, vs. RHO=(production rate)/ (consumption rate)
for Various Buffer Sizes Nbuf 125

Mean Delay Including Sequencing, OLseq, vs.
Retransmission Interval R for Sequencing Protocol 132

Probability of Discarding an Arriving Packet,
Pdis, vs. Destination Buffer Space
for Sequencing Protocol 137

Total Delay vs. Packet Length
for Various Letter Sizes 142

Embedding Internet Packet in Local Packet . iy 154
Overlapping Internet and Local Net Packet Headers 154
Tuo Levels of Host Addressing 15S
Cateway Routing Table for Single Level

Address Space 162
Gateway Routing Tables for a Hierarchical

Address Space 164
Hosts Falsely Declared Unreachable Due to Fixed

Supernet Routing 168
Crocker's Addressing and Routing Scheme 172

Interconnection Level Issues 178

List of Figures

Ny

| 9 Endpoint Network Interconnection
% 10 A Gateway "Hal f"
11 Routing Tables for A Gateway "Half"
12 Gateway "Half" in an Internet Host
| 13 Hop-by-Hop Network Interconnection
14 Internet Service Center
Appendix A
A-1 "3 Way Handshake" Protocol Machine
A-2 Composite State Diagram for
"3 Way Handshake" Protocol
A-3 Additional Composite State Transitions
for Failure Recovery
A-4 Simple Connection Establishment Protocol Machine
A-S Composite State Diagram for Simple Protoco!

-xV=

- TR

Introduction 1

Chapter I
INTRODUCTION

This thesis focuses on the .dasign and analysis cf
interprocess communication protocols for use in computer
netuorks. The feasability and utility of computer networks has
been clearly demonstrated recantly with several sophisticated
nets fully operational (NPL, ARPA, TYMNET, ALOHA) and many
others planned (CYCLADES, EPSS, SITA, CANUNET, AUTODIN II) (see
Appendix B). However, much of the research accompanying these
developments has emphasized system performance wuithin the
ccmmunication network itself. Our study examines the
requirements for communication between processes In the Host
computers attached to the network.

To clarify our level of interest, we note the parallel
history of computer network development and sing!s computer
system development. In single computer systems, the original
empahasis wWas on “"harduware" questions of memories, bus
structure, basic a-ithmetic and logic operations, etc.
Eventual |y such herduare design problems became a specialty, and
efforte to provide a more convenient interface to the computer

user grew in importance. Programming |anguages, operating

systems, and time sharing were born.

A

Introduction

Similarly, the first years of computer network
development have smphasized internal degign questions such as
circuit topclogy and capacity [Frank70, Frank72a, Cerf7Sal,
routing [Frank71, Fuitz72, McQuillan74], sWitching node
requirements [Fultz72, McQuillan72], reliability [VanSlyke72],
and congestion control [Davies72, Kahn72l. This emphasis is
most apparent in the ARPANET and related packet switching
network experience [Frank72, Metcalfe?3]. Many of these
internal design problems now have a wel | developed theory and
practice [Kleinrock70, Frank72, Pyke73, Karp73, Kershenbaum74)
that serves to provide the basic communication facility or
transmission medium that interconnects network users at the
lowest level.

Unfortunately, processes attempting to communicate with
each other over a ccwputer network face a problem similar to
humans trying to use a single computer: the basic or "raw"
facility provided is often too primitive, unreliable, or
otherwise inconvenient. The traditional approach in the
computing domain has been to create an operating system to
bridge the gap between raw machine and user desires, creating a
"virtual" machine that is much more powerful, reliable, and

convenient.

To facilitate interprocess cormunication over a computer

netiwork, a eimilar "augmented" communication facility must be

I T T P

Introduction 3

built upon the basic netuork services available. In fact, many
different levels of augmented service prove desirable for
various special communication purposes [Crocker72]. A partially
reliable "best effort" communication service represents the
lowest level, followed by a general purpose fully reliable
interprocess communication protocol, and finaily various special
purpose services such as file transfer, remote job entry,
interactive terminal, and graphics.

Compared to the rigor of internal network design theory
and practice, the science of higher level protocol design is in
its infancy. This thesis focuses on the general interprocess
communication protccois which provide the basic facility on
which more specialized services Will be built [Pouzin74c].

Although good interprocess communication facilities are
a necessary condition for the flexible resource sharing
envisioned by network architects [(Roberts72, Kahn72a, Watson73,
McKay73], they are by no means sufficient. A wide range of
higher level problems in distributed system design such as
synchronization, file systems (Thomas73], task partitioning,
resource allocation, priority assignment [Bowdon72], etc. remain
to be solved.

Resource sharing in the distributed environment of
computer netuorks imposes special demands on interprocess

communication facilities. Processes are seen as the active

L

Introduction 4

elements in a distributed computing system. Human users at
terminals, 1/0 devices, file systems, service routines,
operating systems, are all represented by processes that
communicate to accomplish their goals. Processes are often
treated as equals for communication purposes rather than
requiring a "master” and "slave" relationship typical of polling
or centralized control systems (e.g. IBM's SDLC [Donan74,
Kersey74]). As opposed to traditional centralized systems where
reliability is often taken for granted, the distributed
environment of computer networks demands that the interprocess
communication facility pay explicit attention to assuring

reliability [Metcalfe72l. These considerations determine the

type of augmented service desirable, or performance goals for an
interprocess communication protocol in a computer network

environment.

Reliability and efficiency may be distinguished as two
main classes of performance goal. Reliability of the
interprocess communication protocol involves avoiding loss or
duplication of data transmitted, delivering data in the same
order as submitted, and properly initializing and terminating
data transfers for continued reliable operation. Efficiency
primarily concerns throughput and delay achievable for
communication between remote processes. These depend on the

operation of protocol mechanisms such as retransmission, flou

control, buffer allocation, sequencing, and fragmentation.

Introduction 5

These performance goals define one side of the protocol

design problem, while the transmission medium characteristics

define the other. To the greatest extent possible, we take

transmission medium behavior, particulerly the difficult

characteristics of packet switching nets {(PSN), as a given se?

of characteristics which must be dealt with by a protocol,

rather than assuming them auay to simplify analysis. After a

summary of the contents of this thesis in section 1, we return

to discuss transmission medium behavior in section 2. This

characterization serves as a basis for protocol design

considerations throughout the rest of this work.

Summary

1. _ SUMMARY

Chapters !l and IIl present the major new results of
this study concerning reliability and efficiency of protocols
respectively. Our contribution is both methodological in
develooing new analysis techniques, particularly in chapter 11,
and substantive in presenting answers to protocol desig:-
problems. Chapter IV presents a survey of recent work on
protocols stitable for the interconnection of packet switching
networks and a discussion of the interface or Gateway between
networks.

Chapter Il defines reliability performance measures and
considers the protocol mechanisms necessary to achieve various
levels of reliability., Interest in protocol verification has
increased recently, with several authors applying various proof
techniques to verifying certain aspects of protocol reliability
[Postel74, Bochman?S, Mer!in75}. We employ less formal
techniques in order to achieve results for more realistic
assumptions about underlying transmission medium behavior. We
are particularly interested in developing protocols able to
overcome the potentially hostile transmission characteristics of
packet switching networks, and our aﬁalysis covers the full
range of network behavior.

The consequences of protocol failures (for examp le due

to Host crashes) are also considered, leading to an important

Summary 7

result that interprocess communication protocols cannot
guarantee "invisible" recovery from protocol failures. That is,
loss or duplication of data cannot be prevented by the protocol
iiself . after -a failure, but highcr level error recovery
procedures must be invoked.

Chapter I also considers the problems involved in
initializing the control information required by reliable
communication mechanisms. Sophisticated methods of selecting
initial control information values and synchronizing the other
side of a connection prove necessary in a potentially hostile
environment such as a PSN. Such mechanisms are defined and
verified using a state diagram model which includes the state of
both protocol processes (on each side of the connection) plus
information transmitted b;tueen processes.

Chapter 111 defines efficiency performance measures of
throughput and delay for interprocess communication protocols.
Successively more powerful protocols including retransmission,
flow, control, limited buffering, and sequencing are analyzed to
determine the impact of protocol parameters such as
retransmission interval, wuindow size, buffer allocation, and
fragment size on efficiency. Transmission medium
characteristics such as delay, banduidth, and errors also
strongly affect efficiency. In Chapter 111 we are forced to
make some simplifying assumptions about transmission .edium

characteristics.

Summary 8

Chapter IV considers the problem of interconnecting
independent computer networks to proVide communication between
processes on computers in different networks. We compare
several approaches to network interconnection incliuding those
requiring substantial changes to existing local net operations.
Techniques to implement internet addressing, routing, and other
protocol services discussed in chapters II and IIl on top of

ocal netw. facilities appear to be feasible without imposing

changes on individual nets.

Transmission Medium Characteristics 9

2. TRANSMISSION MEDIUM CHARACTERISTICS

This section identifies the important characteristics of
the basic transmission medium or communication facility that the
protocol must use in providing an augmented service. The six
characteristics discussed emerged primarily through experience
with packet switching neinorks as the basic transmission medium,
and are most appropriate to that context. The transmission
medium |Is assumed to accept packets or blocks of data from a
source and make a "best effort® to deliver them to the

destination. That is, we limit our concern to racket

communication media [Metculfe/3], although not strictly to
packet switching nets. Many of the points raised apply to other
network technologies or even simple communication |ines as well,

and an effort is made to include these points in the following.

The transmission medium characteristics discussed are:
1) Variable delay
2) Duplication of paciets
3) Loss and damage of packets
4) Out-of-order delivery
S) Packet siie
6) Banduidth

Transmission Medium Characteristics

Delay

Transmission medium delay is the amount of time betieen
submission of a packet at the source and delivery of the packet
at the destination. Traditionally, total delay is decomposed

into transmission delay, or the time required to transmit all

F the bits of a packet at the nominal rate of the transmission

medium, plus propagation delay, or the time it takes a bit to

' travel through the transmission medium to the destination. 0On a
dedicated hardware |ine these delays are relatively constant.
If the transmission medium 1is shared among many users as is
usually the case, there may also be access or gueuing delay
Wwhile a packet waits its turn to be transmitted.

In store-and-forward packet switching networks with many
nodes, the packet experiences combinations of these delays at
every hop, and as competing traffic level increases, larger

access or queuing delays occur at each node. Errors followed by

retransmissions between nodes, and alternate routing of packets

also contribute to variations in the delay experienced by

different fpackets. MWithout specifying the global traffic
pattern and routing algorithm, it is difficult to detail the |
delay distribution, but in general variations equal to or
greater than the mean delay are typical [(Forgie75]. ;

Satellite links with high bandwidths impose large

propagation delays (about 250 msec) so retransmission delay il

i

|
i a S S S S e S SARA B |) ey e 3 ‘W.m‘h‘ m—u;‘—J

Transmission Medium Character|stlcs 11

becomes a more Important source of variation, although satell|te
error rates are |ower than ground |lnes [Sastry74]. Loop nets
provide relatively constant delay characteristics wlth access
delay accounting for the major variability.

An important delay characteristic for protocol design is
the maximum propagation time or packet lifetime in the
transmission medium, represented by L. For simple data |inks
and loop nets, packet lifetime is nearly constant and determined
largely by line length and physical transmission properties. In
packet switching networks with occasional routing anomalies and
} other malfunctions, L may be orders of magnitude greater than
the normal or mean propagation times. As dlscussed in chapter
1 I, protocols must always be wary of "old" packets arriving, so
- a minimum L is desirable. One means suggestad to achieve this
is a packet which self-destructs after a speclfied time in the
net. Further consideration of such transmission medium problems
is beyond the scope of this work, and L is taken as one of the

given characteristics of the transmlssion medium.

Dupiication

A single packet submitted for transmission may be
duplicated by the transmission medium and more than one copy
delivered to the destination. Normally the transmisslon medium
removes any duplicates it generates (by internal
retransmissions), but certain line or node faiiures at critical

moments can result in dupiicates emerging at the destination.

Transmission Medium Characteristics 12

Loss and Damage

A great deal of work has been done to characterize the
errors occurring on real transmission lines of various types
[Tounsend64, Beniceb4a, Trafton7l, Burton72]. Detecting damaged
packets is a well developed problem in coding theory. Without
further discussion, wWe assume that the protocol designer has
techniques available to decode packeté and detect wrrors in
packets to any desired degree of reliability. Davies and Barber
(1973) survey the problem of error characteristics and suitable
coding techniques. Higher reliability requires longer codes,
increasing the overhead to transmit a packet, and reducing
effective banduidth as discussed in chapter 111,

On harduare lines, unless the line is completely open,
it is safe to assume that a transmitted packet will arrive
either intact or damaged. In networks with multiple lines and
nodes in the transmission path, the pessibility of total packet
loss is finite and must be explicitly recognized. Some networks
even discard packets as a means of internal congestion control.

Normally a protocol will discard damaged packets and
wait for or request their retransmission. This converts the
problem of packet damage to packet loss, treating both with the
same mechanism (retransmission). However, some applications may
tolerate the delivery of damaged packets to the protocol user,

and/or loss of some packets.

Transmission Medium Characteristics 13

Ordering

Packets may arrive at the destination in a di fferent
order than they were submitted to the transmission medium. In a
packet switching net with multiple paths from source to
destination and alternate routing of packets, a packet submitted
later may travel by a shorter route and arrive sooner than a
packet submitted earlier. In line switced nots or on simple
data links where all packets follow the same route,
retransmission to correct internal errors may cause the
retransmitted packet to arrive after one or more later packets
transmitted successfully the first time. Some networks provide
an ordering facility at the destination, implementing an
end-to-end sequencing service within the network communication

facility.

Packet Size

The transmission medium normally has a maximum size

packet that it will accept. If a process wishes to send a chunk

of data larger than this size, the protocol must fragment the
chunk into pieces smal |l enough for transmission, and reassembl|e
the chunks, or at least deliver the fragments in order at the
destinution. The transmission medium itself may have to
fragment packets for transmission on certain links (sarticularly
likely if different nets are connected together), so there may

be layers of fragmentation and reassembly, or a uniform

Tranemission Medium Characteristics 14

fragmentation scheme used at all levels which requires
reconstruction only at the destination.

The optimization of pa~ket size involves consideration
of line rates, error characteristics, traffic patterns, and
performance objectives ([Metcalfe?3, Crowther74]l. At the
interprocess communication protocol design level, we assume a

given maximum packet size, P.

Banduwidth

The transmission medium accepts packets at a nominal bit
rate B. In a packet switching net this rate is usually the
harduare |ine capacity from the Host to the packet switch.
However, the transmission medium may become "unavailable" at
times due to internal congestion control mechanisms, and the
effective bit rate offered is further reduced by framing and
control information required on the line. These considerations

affect any protocol using the transmission medium, and will not

be considered further.

T

Introduction

Chapter 11
PROTOCOL RELIABILITY

1. INTRODUCTION

In this chapter we study the reliability of interprocess
communication protocols. As discussed in chapter I, this
requires a clear understanding of protocol performance goals and
transmission medium characteristics relevant to reliability
since a protocol must bridge the gap between services available
and facilities desired.

We are particulariy interested in treatiry the full
range of transmission medium behaviour that protocols may have
to cope with. UWhile other authors have assumed wel|-behaved
transmission media in order to apply formal analysis techniques,
We are more interested in developing protocol mechanisms
suitable for worst case situations In real packet suitching
network environments. We return to thls difference in goals in
section 1.2 belou.

Transmission medium characteristics most relevant to
reliability include delay, loss, damage, duplication, and
out-of-order delivery of information (cf chapter I). The basic
function of an interprocess communication protocol is to mask

these undesirable characteristics and provide a reliabie and

convenient communication path between processes (see figure 1).

B e O SRS EISEY MWMW B e e VRSER IS

A, e ——

10

FIGURE 1 AUGMENTED SERVICE FROM INTERPROCESS
COMMUNICATION PROTOCOL (IPC)

RELIABLE
COMMUNICATION FACILITY
- iy

PROCESS IPC IPC PROCESS
=al

UNRELIABLE
COMMUNICATION FACILITY

L P . © T W

Introduction 17

Hence an Important goal of protocol anaiysis |s to demonsti-ate
that a candldate protocol or class of protocols Indeed provides
the desired reliability: i.e. does not duplicate packets, lose
packets, or deliver them out of order.

Protocol verification is one part of the complete
protocoi design process. Successfui protocol design aiso
requires a clear specification of performance goais, development
of mechanisms to achieve those goals, and evaluation of
alternative mechanisms. Evaiuation includes verification that
the performance goals are met when the protocol is functioning
normaliy. Unfortunately, normai conuter system operations are
occasional iy disrupted by catastrophic fallures (harduare
faults, deadlocks, protection violations, restarts, etc.).
Hence another important consideration of protocoi analysis
concerns the results of protocoi faiiures. By protocol fallures
We mean the (rare) maifunction of a normal ly correct protocol
due to some external catastrophe, rather than a protocol that
normally functions incorrectiy due to a flaw in |ts algor| thms.

A third component of protocol evaluation concerns
initialization of the protocol mechanisms used to overcome
transmission medium deficiencies. Since thiu initialization may

have to be performed over the same unreliable transmission

medium, it presents a difficult synchronlzation prob|em.

B i

Introduction 18

These four topics are the main subject metter of chapter
(1) Definition of performance goals and protocol mechanisms
to achieve reliability.

(2) Verification of correct protocol operation under normal
circumstances.

(3) Results of protocol failures.
(4) Protocol initialization requirements and techniques.
Whenever possible, the cost of the various solutions to these

problems is discussed.

Section 2 outlines the important parts of an
interprocess communication protocol, and defines reliability
performance measures (efficiency measures are considered in
chapter 11l). Section 3 describes a simple protocel to avoid
loss and duplication of packets, verifies the reliability of
this protocol, and explores the consequences of protocol
failures. Section 4 extends the analysis to a more powerful
protocoi including a sequencing mechanism that correctly orders
delivered packets.

Analysis of the protocols specified in sections 3 and 4

shous that when both sides of the protocol function correctly,

loss, duplication, and ordering problems are eliminated.
Houever, when one side of the protocol fails (memory loss) as
would occur in a Host crash/restart, we prove that loss or
duplication of packets may occur. That is, it is impossible to
guarantee error-free recovery after a failure by either side of

a connection,

Introduction 19

In section 5 we consider the addltlonal problems of
initializing the mechan i sms which achleve rellable
communication. Thls initlalization |s uidely referred to as
connection establishment, and presents a difficult
synchronization problem since it must be accomp!ished using the
unreliable basic communication facility, The concepts of
connection and connection state are defined, and mechanisms to
reliably establish connections (initialize protocols) are
specified ard classified. We demonstrate the limitations of
various mechanisms and prove the robustness of the "3-way
handshake" mechanism for connection establishment (Toml inson74,
Dalal74] using a composite state diagram model. Consequences of
failures (memory loss) and failure recovery techniques are also

cons idered.

1.1 Related Work

"Closed loop" or "feedback correction" type protocols
suitable for overcoming the transmission medium characteristics
discussed in chapter | have been Widely treated in the
literature ([Beniceb4a, LynchEs, Stutzman72, Burton72,
Metcalfe73]. The ARQ type protocol is more suitable for
hardware |ines where compiete packet loss is impossible, since
It requires elther a positive acknouledgement (ACK) or negative

acknouledgement (NACK or Retransmission Request) for every

packet sent.

Introduction

Several authors have used state diagrams to modal simple
ARQ protocols [LynchE8, Bartlett63, Birke7l, Bochman74]. Lynch
presents an informal proof that these protocols provide reliable
communication over Well behaved transmission media that never
lose packets, duplicate packets, or deliver packets out of
order. Recently Bochman has analyzed the same protocol by the
method of action sequences. Seidler (1975) presents a more
formal model for analysis of ARQ type protocols.

A Positive Acknouledgement, Retransmission on timeout
(PAR) type protocol is more suitable in a packet suitching net
environment where data packets or acknowledgements may be
completely lost, since these protocols do not require a NACK to
stimulate retransmission. Forward error correction may be used
in addition to error detection on noisy channels to reduce
retransmission [Beniceb4b, Sastry74]. Metcalfe provides an
excellent summary of the motivation for and suitability of PAR
protocols [Metcal fe73 pp. 3-4 to 3-11]. Kalin (1971) has also
discussed several impartant considerations in protocol
reliability including protocol initializatlon,

Postel (1374) has analyzed some simple examples of PAR
protocols for "proper termination." This analysis shous that
the specified protocol functions correctly in avoiding loss,
duplication, and out-of-order delivery. Postel's work does not

treat the general class of PAR protocols or examine the

consequences of protocol failures. A specific connection

.

W gy g oy v

Introduction 21

estabiishment procedure (the ARPANET Inltial Connection
Protocol) is shown to have a race condition, but the general
question of connection establishment is not treated.

Merlin (1974, 1975) has used Fetri nets and their
corresponding "token iachines" to show that a simple class of
PAR protocois is "“recoverabie" from loss or duplication of
packets by the transmission medium, and that packets are
deiivered in order. Connection esfablishment and protocol
faiiures are not discussed, aithough the analysis technique may
be applicable to some types of failures.

Bochman (1974) has analyzed some simple PAR protocols
using the "action sequences" associated with a state diagram
model. He has also explored an algorithmic protocol
specification as a basis for both assertion proof techniques and
protocoi impiementation by structured programming [(Bochman7S].

Le Moii (1973) has proposed a "coiloquy" model for
protocol specification consisting of a finite state machine with
cieariy defined wuser interface on one side and network
communication interface on the other side. Danthine and Bremer
(1375a, 1975b) have extended this model to facilitate simulation
of protocols.

Gilbert and Chandler (1972) have treated the interaction
of parallel processes by defining a "composite state" Including
the state of each process and the vaiues of shared variabies.

Bredt (1973) has extended this model to aliow infinite numbers

sl b a i e o e i S E

Introduction 22

of processes or infinite values for variables. The requirement
fcr shared variables between proce’ ses prevents the direct
application of these techniques to communication protocols.
However, in section 5 we have modified this model to allow
message-based interprocess communication and have applied the
extended model to verify a complex protocol initialization
mechanism,

Day (1975) has begun research to determine the issues
involved in designing "resilient" protocols. He suggests that
protocul specification techniques are of primary importance, and
that several approaches to verification may prove wuseful
including formal modeling, program proving, implementation alds,
and implementatlion testers or exercisers.

Members of IFIP WG6E.1 (INWG) have been active in
developing Interprocess communication protocols. Researchers at
Stanford University and Bolt Beranek and Newman have been
particularly interested in protocol reliability [Cerf74b,
Dalal74, Sunshine74, Be. nes74a, Tomlinson74, McKenzie74].

1.2 Protocol Specification and Verification Techniques

Analysis and design of communication protocols requires
a clear protocol specification. A good protocol specification
must ultimately serve several purposes, including definition,

verification, simulation, implementation, and documentation of

i

Introduction 23

the algorithms involved [(Danthine7Sb, Bochman75). We do not
attempt to develop a complete theory of protocol specification,
or of protocol verification, although both specification and
verification are important in the broader performance analysis
We seek.

We have used differunt protncol specification techniques
for the different performance topi.: treated in this thesis in
order to most clearly define the protocol behaviour relevant to
each topic. Sections 3 and 4 employ a flouchart or algorithmic
protocol specification. Section S wuses a state diagram
specification consistent with the exchanges of control
information required to initialize and terminate connections.
Appendix A develops a detailed protocol specification model
based on state diagrams with additional “context" information.

Authors primarily interested in verification have
employed formal models such as Petri nets [Merlin74], UCLA
Graphs [Postel73], and state diagrams [Bochman74, Lynch68]. By
specifying a protocol in terms of one of these formal models,
the powerful general theory developed for these abstract models
may be brought to bear on a particular aspect of protocol
verification. These techniques have succeeded in verifying some
facets of protocol reliability assuming reasonably wel|-behaved
transmission media,

Unfortunately, both the complexity of more powerful

protocois, and more hostile transmission media are beyond the

Introduction 24

capabiiities of current formai models. The explosion of states
or nodes required to represent more complex protocols causes
some problems. Other difficulties arise in trying to
incotporate transmission media aliowing total loss (as opposed
{o damage) of packets, large amounts of internal storage,
internal duplication, and out-of-order delivery of packets.

We have been forced to abandon some of the rigor of
formal definitions and models in order to achieve results of
broader scope. Our protocol specification techniques include
prose, algorithms, fiou charts, and state diagrams. Our proof
techniques inciude decomposition into simpie moduies, exhaustive
or complete test input sets, assertion proving [Floyd67, Naur66,
Hoare63], and the formai models mentioned above. An advantage
of the informal assertion techniques used throughout this
chapter is that in many cases they can be used to demonstratg
protocol faliure consequences and initiaiization requirements in

addition to correctness under normai operation.

Protocol Mechanisms and Performance Goals 25

2. PROTOCOL MECHANISMS AND PERFORMANCE GOALS

In this section we present an outline of the mechanisms
employed in typical positive acknowledgement, retransmission
(PAR) type protocols. The description is purposely broad in
order to encompass a wide ciass of protocols. Sections 3 and 4
examine more detailed examples of PAR protocols.

After outlining protocol mechanisms, we define four
per formance measures used in later sections to evaluate protocol
reliability. These measures relate to loss, duplication, and

out-of-order delivery of packets.

2.1 Protocol Definition

A PAR interprocess communication protocol consists of a

sending discipline, a receiving discipline, and a 3r§n§mi§g{8n '

medium for sending packets (messages, letters, finite length bit
strings) between processes.

The sending discipline accepts packets from a process,
attaches any control information used by the protocol to achieve
reliable communication, and passes the packet to the
transmission medium. (Submitted packets may be fragmented into

smal ler pieces before transmission.)

Normally the sending disclpline will retransmlt each

packet at intervals datermined by a retransmission timeout

- i 5,

Protocol Mechanisms and Performance Goals 26

parameter R, until a positive acknowledgement (ACK) is received.
Then the process is notified that the packet has been
successfully deiivered. Another parameter, the guit time Q,
determines when the sending discipiine should give up and report
possible failure to deliver a packet.

The cheiving discipline receives packets +from the
transmission medium and uses the control information to
eliminate duplicates, reassemble or reorder fragments, and
deliver packets to the process in order. Successfuily received

packets are acknowledged. The transmission medium accepts

packets from the sending discipline and delivers them to the
receiving discipline subject to the delay, loss, duplicatlon,
ordering, size, and bandwidth characteristics discussed in

chapter |.

Since a PAR protocol provides bi-directional

communication between two processes, a sending and receiving
discipline are required on each side of the communication path.
The protocol at each slde must be Inltialized (control
information set up) as discussed in section S before rellable

communication can begin.

Protocol Mechanisms and Performance Goals

¢.2 Performance Measures

(1) DELIVERY: A protocol successful ly delivers packets if every
packst submitted by the source process is eventually delivered
(undamaged) to the destination process. A protocol fails to
deliver a packet Iif a packet submitted to the protocol |s not

delivered (undamaged) to the destination process.

(2) LOSS: A protocol loses a packet if it reports successful
deliverg. of a packet to the sending process when in fact the
packet has not been successfully alivered to the destination
process. A protocol does not lose packets if |t reports

successful delivery only if the packet was in fact successful |y

del ivered.

(3) DUPLICATION: A protocol duplicates packets if a single
packet submitted by the source process is delivered more ihan.
once to the destination process. A protocol does not duplicate
packets if every packet submitted is delivered at most once.

(If the process submits the same message twice, both copies Will

be delivered at the other end--this Is not dupllcation.)

(4) DRDERING: A protocc!| delivers packets in order |f packets
are deliverad to the destination process in exactly the same
order that they were submitted by the source process. A

protocol delivers packets out of order if packets are delivered

in a different order than they were submitted.

.. 1 -
e e S i

i e

Basic PAR Protocol 28

3. BASIC PAR PROTOCOL

In this section we consider a class of simple PAR
protocols without sequencing, fragmentation, flow controi, or
connection establishment. In particular we note that this ciass
of protocois provides no mechanism for sequencing packets that
may arrlve out of order.

First we define this class of protocols using the
generali outiine of a sending discipline and a recelving

discipllne presented in sectlon 2:

SENDING DISCIPLINE (see figure 2):

Each packet submltted by the source process is assigned a

unique Identlfier. (He temporarliy ignore the probiems of

an infinite ID space.) The packet Is transmitted, and a
- copy |s retained.

Arriving ACK's are checked for errors, and damaged ones
discarded. b

When an ACK referencing this Iidentifier |s received, the
retalned copy |s discarded (and the source process notified
of success). If no ACK is recelved wWithln the
retransmission timeout period R, the copy is again
transmitted and the cycle repeated. I[f the cuit time has
been exceeded, retransmission is suspended (and the sending
process notified). .

ACK's for discarded packets are ignored.

RECEIVING DISCIPLINE (see figure 3):

Each packet received from the transmission medium is checked
for errors and dlscarded if damaged.

If not damaged, the packet's ID is added to the list of
rece!sed-packet ID's and an ACK referencing the identifier

FIGURE 2 PAR PROTOCOL SENDING DISCIPLINE

DISCARD

INITIALIZE
racket from process ACK
1 WAIT
ASSIGN ;
timeout
UNIQUE ' yes no
ID TO
PACKET
‘L RETRANS DEQUEUE
& QUEUE PACKET,
TRANSMIT Y NOTIFY
I PROCESS
QUEUE
. _ . TR T—
B a2t o B o i M‘A&m-ﬂh-hm

e o

30

FIGURE 3 PAR PROTOCOL RECEIVING DISCIPLINE

INITIALIZE

packet arrives 0

yes

yes
ID ON LIST

7

y

ADD ID TO LIST,
DELIVER PACKET SEND ACK

Basic PAR Protocol

Is transmitted. (He temporar|ly Ignore the fact that the
recelved-packet |ist slze increases as more packets are
received.) If the packet's identifler |s already in the
list, the p:cket is discarded as a duplicate. Otherwlse the
packet is delivered to the process.

TRANSMISSION MEDIUM:
Characterized by such parameters as delay, maximum packet

lifetime in medium, banduidth, (non unity) loss probability,

and (non unity) damage probability. The compllcations of

addressing, routing, and multiplexing many connections over
a single path are ignored here--the protocol |s defined for
a single connection,

The protocol Is inltlalized when both sides have empty

received-packet |ists and no packets have been sent. (How to

re'iably accomplish this |s discussed in section S.)

The above protocol definition assumes that al| damaged

packets and acknouledgements uill be detected. In fact it is

not possible to detect all transmission errors, resuiting in

occasional acceptance of a faulty packet or ACK. Houever; the
probability of an undetected error can be made extremely smal |
at modest cost by use of well known coding techniques, and we
Rill continue to assume perfect error detection.

Although the abovz protocol definition Is quite
specific, it still serves to define a class of protocols
equivalent for purposes of reliability analysis. DIfferent
mechanisms for.unique identifier selection, for example, or even
additionai protocol mechanisms such as negative acknou|edgements

to stimulate retransmission are included In this class of

;i
|
|
|
‘
|
|
i
|
{

Basic PAR Prctocol 32

protocols. These differences may have important effects on
efficiency or cost of implementation, but do not alter the

reliability of the protocol.

Having specified a class of simple PAR protocols, we now

show that this class satisfies several of the reliability

per formance goals defined in section 2.

THM 1: A correctly functioning PAR protocol with infinite quit

time never loses, duplicates, or fails to deliver packets.

THM 1A: A correctly functioning PAR protocol with finite quit
time never |loses or duplicates packets, and the probability of

failing to deliver a packet can be made arbitrarily smal! by the

sender.
PROOF:
DUPLICATION:
No duplicate packet generated by the sending
discipline or transmission medium will ever be delivered to

the process, because in checking the list of received-packet

ID's, the receiving discipline will discard them.

LOSS AND FAILURE TO DELIVER:
There is a nonzero probability that the transmission
medium will successfully transmlit a packet. Hence an

infinite quit time implies eventual successful delivery with

Basic PAR Protocol 13

probability one. (However this may take a long time If the
transnission medium i; highly unreliable!)

For finite quit times, the time may be exceeded
before successful transmission. Houwever, the process |g
notified that the packet way not have been delivered (it
also may have been delivered if the ACK's are lost), and can
command the protocol to reset the quit time and continue, or
give up. The protncol never reports successful del ivery
falsely, and the process can make the probabi | ity of failure

to deliver arbitrarily small by increasing the quit time.

We now examine the consequences of protocol failures In

either the receiving discipline or the sending disclpline. This

analysls was suggested In an informal note by Belsnes (1974a).

THM 2: A PAR protocol that is functioning incorrectly because
the received-packet ID list is lost (receiver crashes and
restarts) will either lose packets, generate duplicate packets,
or fail to deliver packets, and the failure probabi | Ity cannot

Le made arbitrarily small by the sender.

PROOF: Suppose the protocol was Initially functioning
correctly. Let side A be sending packet X to side R.

Suppcse that when B fails, it loses Its received-packet 1D

list, but then continues to function normal ly. Suppose the

original transmission of X arrived Intact at B and was

. T S S ———— - . W .

Basic PAR Protocol 34

delivered, but the ACK was damagsd or delayed. Then B
fails, clearing its received-packet ID list. A
retransmission of X then arrives, and is not detected as a

duplicate, hence is delivered te the process.

Alternatively, suppose that uhen B receives any packet from
A after failing, it notifies A of the failure, and rejects
any packets until the protocol is initialized again. In
this case A reinitializes the protocol (by some foolproof
means beyond the scope of this analysis). But then A must

decide what to do about X:
If A sends X, it may be a duplicate as above.

If A doesn’t rend X, and reports success, the packet may

be lost (i’ B failed before receiving a good copy of X).

If A notifies the process of the failure and the
uncertain fate of X, the process has the same

possibilities for failure:

Continue trying to send X which may result in a
duplicate as above. (This couldn't happen in THM
1.)

Give up which may be a failure to deliver X.
Furthermore, the sender cannot make the probabi | ity d

of failure to deliver arbitrarily small by changing

R —_

Basic PAR Protocnl 35

parameters available to him, sirce this failure

depends on the rellabliity of the receiver.

THM 3: A PAR protocol that is functioning incorrectly because
the sending discipline loses track of 1D's used or packets
pending (sender crashes and restarts), will elther lose packets,

fail-to deliver packets, or force the sending process to

duplicate packets.

PROOF:

LOSS: 1f the serder loses track of 1D's, and reuses an 1D
for a new packet, the receiver will ACK it but discard the
packet as a duplicate. However, the sender ulll recelve the

ACK and report successful delivery.

FAILURE 70 DELIVER: If the sending discipline loses packets
that have been transmitted, but not yet acknowledged, it
ceases to retransmit them, and they are not dellvered.

Furthermore the process may not even be notlfied of the

failure,

DUPLICATION: If the sending process tries to recover from
the absence of either a success or quit notificatlon from

the protocol by resending a packet, the packet may have

already been delivered before the failure.

:

Basic PAR Protocol 36

Theorems 1-3 demonstrate the fundamental limitations of

PAR protocols: they successful ly mask errors in the transmission

medium, Lkut they cannot guarantee reliable transmission when
part of the protocol itself is violated due to failure of one
side or the other. The information maintained at both sides of
the protocol is necessary for correct functioning.

Many protocol designers persist in trying to get around
this fundamental limitation and "invisibly" recover from
failures by introducing more complicated control mechanisms,
usually involving reinitializing the connection [Mader74). The
issue of (relinitializing a connection for reliable transmission
after a failure (cf section 5) is separable from the issue of
reliability within a connection. Theorems 2 and 3 shou that
given certain types of failure, there can be no guaranteed
reliability with PAR type communication protocols.

Those desiring greater reliability may implement failure
recovery schemes at a higher (process) level (where they meet
the same problems), or reduce the possibillty of protocol
failﬁre With se'f checking or redundant machines, backup stores,

checkpointing, or other means.

AR -

Sequencing PAR Protocol 37

! ; 4, PAR PROTOCOL WITH SEQUENCING

The basic PAR protocol above does not concern |tself
With sequencing. HWhen the characteristics of the transmission
medium include out-of-order delivery (frequently the case In
packet suitching nets), the basic PAR protocol must be augmented
Wwith a sequencing mechanism if correctly sequenced interprocess
communication is desired. This section incorporates such a
mechanism into.a PAR protocol, resulting in a Sequencing PAR or
SPAR protocol. Delivering packets in order is now included in ‘
the protocol performance requirements.

Sequencing is normally achieved by including a gegquence }

number (SN) in the control information attached to each packet

by the sending dlscipline. The recelving discipline uses SN to

determine the correct order of arriving packets. First we

describe a SPAR protocol using both sequence number and unique
identifier (cf section 3) fields in each packet. We show that
the sequence number may also serve as a unique identifier,
eliminating the need for a separate packet ID field. HWe then
define a class of simplified SPAR protocols and analyze its

reliability as in section 3.

DEF: A Sequencing Positive Acknouledgement, Retransmission
(SPAR) protocol is a PAR protocol with the followlng additions:

Sequencing PAR Protocel

SENDING DISCIPLINE: The sending discipline maintains a

sequence humber (SN). Each packet submitted by the process
has SN attached (along with ID), and then SN is incremented.

RECEIVING DISCIPLINE: The receiving discipline maintains an

expected seguence number (ESN). After discarding damaged

packets, the packet's ID and SN determine the action to be

taken according to Table 1.

: ' Table 1

Processing of Received Packets in SPAR Protocol

packet SN : ESN
| ower equal higher

ID new XXX ACK, deliver to discard as
process, INC, ENTER out of order

ID old ACK, discard XXX XXX

ACK means transmit an ACK referencing ID;

INC means increment ESN;

ENTER means enter the packet's ID in the
received-packet ID list;

XXX means this case does not occur.

The protocol is initialized when SN and ESN are equal to
each other (may be different in the two directions), no packets

have been sent, and both sides have empty received-packet 1D

lists.

Sequencing PAR Protocol 39

From Table 1 we see that the sequence number and
identifier fields in a packet maintain redundant
information--they are both duplicate suppressors. In
particular, the receiving discipline never needs to check the
received-packet ID |ist to detect duplicates, because the ESN
screening accomplishes this. Since it is easier to remember a
single ESN than a potentially infinite list of ID's, the ID can
be dropped entirely from the SPAR protocol, with the sequence
number performing both the duplicate detection and sequencing

functions. The resulting simpler SPAR is specified as followus:

SENDING DISCIPLINE (see figure 4):

The sending discipline maintains a sequence number (SN).
Each packet submitted by the process has SN attached, and
then SN is advanced to its successor. (1) The packet is
transmitted, and a copy retained.

Arriving ACK's are checked for errors, and d.:aged ones
di scarded. .

When an ACK referencing this packet's sequence number is
received, the retained copy is discarded (and the sending
process notified of success). I[f no ACK is received within
the retransmission timeout period R, the copy is
retransmitted and the cycle repeated. If the quit time has
been exceeded, retransmission is suspended (and the sending
process notified).

ACK's for discarded packets are ignored.

(1) The simplest and most widely used successor function is to
increment by one, although more complex successor relations have
been wused to support priority (IMP-IMP protocol [McQuillan72])
or fragmentation and reassembly [Cerf74b],

40

FIGURE 4 SPAR PROTOCOL SENDING DISCIPLINE

INITIALIZE
packet from process o ACK

Asss':‘GN timeout yes no
INCREM.

= &

l RETRANS. DEQUEUE DISCARD
TRANSMIT e bapictain oo s sl

OR QUIT NOTIFY
l PROCESS

T mp———

FIGURE S5 SPAR PROTOCOL RECEIVING DISCIPLINE

INITIALIZE

DISCARD PACKET

DELIVER PACKET

INCREMENT ESN | |

SEND ACK

DAMAGED Licod
?
no
greater
—p
COMPARE equal
PACKET SN ===
TO ESN
—
less

DISCARD PACKET

(duplicate)

Sequencing PAR Protocol 42

RECEIVING DISCIPLINE (see figure 5):

The receiving discipline maintains an expected sequence
number (ESN),

Each packet received is checked for errors, and discarded if
damaged.

If not damaged, the packet’s sequence number (SN) is
compared with ESN. The receiving discipline operates as
follows on the basis of this comparison:

If less, transmit an ACK referencing the packet's SN and
discard the packet as a duplicate.

If equal, transmit an ACK, deliver the packet to the
process, and advance ESN to its successor.

[f greater, discard the packet as out of order. (1)

The protocol is initialized when SN and ESN are equal to
each other in both directions (see section 5) and no packets

have been sent.
Theorems 1-3 carry over straightforwardly to SPAR protocols.

THM 1B: A correctly functioning SPAR protocol with infinite quit
time never loses packets, duplicates packets, fails to deliver

packets, or delivers packets out of order.

PROOF: The first three parts are proved as in theorem 1 with
the sequence number acting as ID. If a packet ever arrives

at the receiving discipline before one of its predecessors,

(1) For greater efficiency, the receiving discipline may choose
to keep some number of out of order packets for a time. The

costs and benefits of such schemes will be discussed in chapter
I11. :

|
’}
:

Sequencing PAR Protocol 43

Stk o B e a s S

the ESN check will cause it to be discarded. Only the next

packet in order can be delivered to the process.

E

[THM 2A: A SPAR protocol that is functioning incorrectly because
i the receiving discipline loses ESN (receiver crashes and
i

restarts), will either lose packets, duplicate packets, or fail

T T T a—

to deliver packets.

PROOF: Same as theorem 2 with ESN taking the place of ID.

THM 2B: A malfunctioning SPAR protocol where ESN and SN become

desynchronized may completely fail to deliver packets.

PO il el

PROOF: Desynchronization may occur if either the sending or
receiving discipline fails to maintain SN or ESN correct!y.
If ESN winds up below or above the sequence number of all

outstanding packets (outside the "Window" of expected

sequence humbers described in [Cerf74bl), the "expected"
sequence number wWill never appear at the receiving
discipline, and no packet will be accepted. Recovering from
such deadlocks requires resynchronizing the protocoi as
discussed in section S.

Even if SN and ESN are Jost or misset, a
malfunctioning SPAR will not deliver packets out of order as
long as the ESN screening in the receiving discipline is

obeyed. (However, a series of in-order duplicates may be

delivered as in THM 2A.)

o e oo D

Sequencing PAR Protocol 44

Theorem 1B shows that SPAR protocols provide the desired
reliabillty characteristics when functioning correctly. Under
protocol failures, however, invisible error-free recovery is
again impossible to guarantee, and SPAR protoco! failures may
even result in total deadlocks of the communication path,

Both the infinite sequence number space assumed in this
section for SPAR prectocols, and the infinite identifier space
assumed for PAR protocols in section 3 are impossible in

practice. For SPAR protocols, a finite sequence number space

places constraints on the volume of traffic transmitted. If the

maximum packet lifetime is L, no sequence number can be reused
for time L, limiting the rate of transmission. If the size of
the sequence number space is N, Cerf and Kahn (1974c) have shown
that at most N/2 packets can be outstanding (transmittea but not
yet acknowledged) at any time. A suitable modulo N successor
function and cotiparison operations are also required.

If these constraints are violated, "old" packets with
acceptable sequence numbers may appear at the receiving
discipline and be accepted instead of the current packet with
the same sequence number (cf section 5.2). These constraints
must be included in the protocol specification in order to
assure reliable operation.

Similar constraints on the reuse of packet identifiers
by the sending discipline apply ‘o (nonsequencing) PAR

protocols. Maintenance of the received-packet ID list by the

Sequencing PAR Protocol

receiving discipline presents other difficulties. Received

identifiers must be removed from the list after time L so the

next use of the ID will be accepted. This may adequateiy reduce

the size of the list with low transmission rates or small L.
Further reductions may be accomplished by assigning identifiers
sequentially so that remembering a single ID can represent the
fact that .all previous ID's have been received. Only the
relatively small number of noncontiguous 10's must be remembered
individual ly. Sequencing also provides a simple means of
generating unique identifiers at the sending discipline. Hence
sequence numbers provide the cheapest way to keep track of
packets already sent or received, even If the sequencing
information is not used to deliver the packets in order. Pouzin
(1974c) has described a combination bit map and sequencing

mechanism to further reduce storage requirements.

-

Connection Establ ishment

9. CONNECTION ESTABL I SHMENT

Sections 3 and 4 have focused on the operation of a
communication protocol after the protocol is initialized, The
analysis considered a single conversation betueen two processes
desiring to communicate with each other. This section examines
the additional issues involved in beginning and ending a
conversation,

After clarifying the concept of a connection betueen
processes for reliable communication, we discuss the actions
required to establish a connection and show that some simple
mechanisms proposed for this purpose are inadequate with a
hostile transmission medium. We present more robust connection
establishment mechanisms and demonstrate their correctness under
normal operation and the consequences of various failures.
Appendix A develops a state diagram model for representing
connection establishment procedures which is used to analyze
both simple and robust establishment mechanisms.

The need to consider explicitly starting and ending

conversations arises for several reasons (Pouzin?79) ;

(1) In order to function correctly, the protocol must be

initialized before a conversation begins.

(2) In reallty, many processes will want to communicate with

many other processes. [f there are N processes, there are

Connection Estab! ishment

N(N-1)/2 possible conversations (assuming no one talks to
himself), but the nunber of conversations actually active at
any moment will generally be far smaller. Without a
mechanism for starting and ending conversations on demand,
the state of all possible conversations must be maintained
perpetual ly at an impossible cost for even a moderate number

of processes.

(3) In the case of certain protocol failures (Host crashes),
the protocol must be reinitialiazed to allow reliable
comunication to proceed from the time of fallure (see

theorems 2-3).

(4) Processes may wish to make themselves available for
communicaation at some times, and refuse conversation at

other times.

S.1 Connection Definition

The notion of a convarsation can be formallzed as
tol lous: A connection is a bi-directional communication
mechanism between two processes. A connection is uniquely
specified by a pair of processes. That is, once the idea of
multiple connections between various processes is introduced,
the communication protocol must provide a means for identifging

processes and hence connections. These process ID's are cal led

Connection Establishment 48

addresses, and a connection is specified by a pair of addresses.
We denote connections by address pairs in angle brackets,

<address, address>.

To start a conversation, two praocesses OPEN a
connection, and to end the conversation they CLOSE the
connection. This leads to the specification of states of a
connection:

ESTABLISHED: when the protocol has been initialized and the
processes are free to exchange packets.

NOT ACTIVE: when the protocol is not initialized and the

processes do not intend to communicate. A minimum of state
information about the connection is maintained.

The communication protocol attempts to establish a

connection upon a process's request tc OPEN a connection, and to

terminate the connectior on the process's command to CLOSE. An

incarnation of a connection is the time from the establ ishment

to the closing of the connection. A connection <A,B> may go
through many incarnations as processes A and B open and close 1

communication path over time.

Without fully specifying the details, we name the new
class of protocol that includes a mechanism for opening and

clesing connections a Communication Control Protocol (CCP). A

CCP is a SPAR protocol wWith the additional mechariisms necessary

to reliably initialize and terminate the protocol.

Connection Establishment 49

To move a connection ‘rom the Not Active ata‘e to the
Established state, the protocol must be initialized, and the
;:onnection may spend some time in an intermediate state called
OPENING. In going from the Established state to the Not Active
state, the protocol shouid terminate communication in an orderly
fashion (perhaps wait for outstanding packets to be received or
acknouledged), and the connection may spend some time in an
intermediate state CLOSING. (See figure 6)

It is important to note that the protocol disciplines on
the two sides of the connection may think that the connection is
in different states. The full state of a connection is
specified by a pair of states, one for each side. We denote
connection states by state pairs in angle brackets, <state,
state>.

The correct functioning of a protocol can nol be
considered in terms of the state transitions. Each of the ma:ior
states above may have a substructure of more detailed states.
For example, the exchange of data packets described in section 4
occurs With both processes in the Established state. The
analysis of possible transitions and determination of
undesirable states is an extremely useful technique for protoco!
analysis as ue shall see later in this section. But first He
examine the means for opening and closing a connection.

In the simplest system, connections might be opened and

closed by some means external to the communication system. For

. Ee———

FIGURE 6 STATES OF A CONNECTION BETWEEN TWO PROCESSES

CLOSING

ESTABLISHED

—— e i =

Connection Establ ishment 51

example users might call each other up, or physical ly move from
one place to another and instruct the CCP to Inltialize o
terminate a connection. Such systems will be called external iy
controlled. The coordination of the two sides |s enforced
externally by sume higher authority, subject to Its own
validation problems.

However, external control is frequently not possible or
desirable. The most interesting and useful systems use the
transmission medium itself to control connections as wel| as to
communicate processes’ data. To this end, CCP's exchange

control packets. Only such internally controlled sysiems Wl ||

be considered further, although the pitfalls discussed below

apply to externally controlled systems as wel|.

5.2 0Opening a Connection

Suppose for concreteness that processes A and B wlsh to
open a connection. The primary task in opening the connect!on
<A,B> is is to initialize the protocol. Each CCP has SN in the
sending discipline, and ESN in the receiving discipline as

described in section 4.

1) SN(A) and SN(B) must be set to some initial values,
ISN(A) and ISN(B).

2) ESN(A) must be set to ISN(B) and ESN(B) must be set to
ISN(A).

Connection Establishment g2

9.2.1 Selecting ISN

The conditions for initialization of SPAR protocols
required that there be no packets excharged between A and B.
This may not be true if A and B have been previously connected,
and in fact packets from the previous incarnation of a
connection may emerge, due to delays in the transmission medium
and out-cf-order delivery, during the current incarnation. The
sequencing mechanism defined for SPAR protocols successful Iy
handles duplicates within a single connection, but cannot in jts
simple form reliably manage opening and closing connections. In
particular if ISN is picked for the new incarnation so that some
sequence numbers from an old incarnation are reused, errors may

occur.

THM 4: A CCP that transmits packets undi fferentiable as to
connection incarnation (by reusing sequence numbers) Hill lose

packets, duplicate packets, and deliver packets out of order.

PROOF: (see figure 7) Suppose packet X from an old
incarnation of connection <A,B> and packet Y from the
current incarnation of <A,B> are assigned the same seauence

number by A and transmitted to B. Furthermore suppose X was

retransmitted during the old incarnation. I[f the

FIGURE7 ERROR DUE TO REUSE OF SEQUENCE NUMBERS

PROCESS A PROCESS B

——— SEQ NO. 1)(ABC) —_—
—— (SEQNO.2)(DEF)* [r—D>

1 =i (SEQ NO. 2)(DEF) —_—
;. : |

[] B
(new incarnation)

—® (SEQ NO. 1)(QRS) —i-

W (SEQ NO.2)(DEF)* ——»

accept
——® (SEQNO.2){TUV)Y ——
discard, ACK

——— Normal Transmission
Cr—> Delayed Transmission
(Sequence Number) (Data)

ot

I —— RN,

Connection Establishment

connactions were recently closed, it must

(retransmitted) packet ¥ arrives at B before Y, it may be

accepted and acknouledged in place of Y, and packet Y will

be discarded as a duplicate. A will receive the ACK and
think Y was successfully transmitted. Message X is
duplicated and delivered out of order, while message Y s

lost.

This failure occurs because:

(1) The transmission medium can delay or store (retransmitted)

packets so they reach their destination out-of-order during

a later incarnation.

(2) Messages from old incarnations may not be distinguished from

packets of the current incarnation.

Accordingly, there are two types of solution to the problem:

(1) Suppose there is a maximum time L that a packet can be

stored in the transmission medium (see chapter I). Then if no

connection is opened before time L after its |ast closing, all

old packets will be gone, and any ISN may be used to initialize

the connection.

This solution requires CCP's to remember for time L that

a connection was closed, and hence runs counter to the goal of

minimizing state information maintained for Not Active

connections. Furthermore, if a Host fails and forgets which

prevent opening

. L el pr M‘M‘»‘J

Connection Establ ishment 55

connections for ALL its processes for time L since any of them
might have had recently closed connec*ions. The cost of this
type solution is then storage of status information, and delay
in reestablishing connections after failures. When L is large,
these costs may be high. A recent proposal to ICITT for an
international standard of 30 seconds for L makes this approach

more attractive [INWG7S].

(2) Be sure packets from the current incarnation can be
distinguished from old packets. Ways to achieve this second

type of solution include:

(a) Set ISN to the last sequence number from the previous
connection, This also violates the absence of state
information for inactive connections because the last
sequence number used must be remembered for time L. on every
connection., 0Once time L has passed, any value for ISN may
be used. If a Host fails, all connections must wait time L

as in type 1 solutions.

(b) Set ISN from a single clock for all connections at a
Host (Tomlinson74]. The clock value is the only state
information that must be preserved through inactive
connections and host crashes. This scheme requires
resetting the sequence number (resynch) if the clock cycles

around to where the sequence nhumber is. The time until

Connection Establishment

resynch is required is determined by the sequence number
: field size, clock rate, and connection traffic intensity

(Dalal74). An additional cost of this mechanism is these

A —

resynch tests. .

(c) Add more identifying information to each packet so
othernise identical sequence numbers can be distinguished.
This requires keeping an "incarmation number" for each
connection, or possibly a global single ID which is assigned
to each new incarnation, and then incremented. 1[f the ID
has cycle time greater than L, no confusion is possible.
For the single global 1D, only a single number need be
remembered for all connections as in (b). Another fleld on

everg‘packet sent is required, increasing overhead.

In general, all solutions of type 2 may fail if the

state information which distinguishes previous incarnations is
lost. In this case the CCP must resort to a type 1 solutions as
shown in theorem S below. To reduce the |ikelihood of failure,
the state information can be reduced to a minimum and maintained

by scme specially reliable mechanism like an independent clock

or counter.

THM 5: A CCP with firite maximum packet lifetime L that fails by |
forgetting the state of connections must eithar inhibit all

transmission for time L after the failure, or will lose packets,

Connection Establ ishment

duplicate packets, deliver packets out of order, and fail to

correctly initialize connections.

PROOF: When the CCP forgets the state of a connection, it
loses wWhatever state information is used to differentiate
packets from different incarnations of the connection as
descrlbed above. Then It may restart by resetting this
state information to a value used earlier, introducing
packets in the current incarnation that are undifferentiable
from packets of a past incarnation. Then by theorem 4,
packets may be duplicated or delivered out of order. In
particular, the control packets causing initiallzation
(discussed in the next section) may be lost or dellvered out
of order, causing Incorrect initialization. To avoid these
problems, the CCP must wait time L after a failure before

transmitting any packets.

Theorems 4 and 5 extend the results of theorems 2-3 to
CCP's. Loss of state information allows new packets to be
transmitted on a connection when it is still possible for old
(retransmitted) packets that look the same to arrive at the
receiving discipline and be accepted Instead. In practice a
combination of minimizing the possibillty of state information
loss and waiting some time after restarts may reduce the
probability of confusion to an acceptably low level.
Transmission media that guarantee in-order delivery avoid thisg

problem.

Connection Establishment S8

Confusing packets from different incarnations of a
connection is not as unlikely a prohlem as might be supposed.
Many protocols use zero for the initial sequence number every
time a connection is established. In these protocols it is
quite possible to open a connection, close it, and reopen it
within a maximum packet lifectime L. In this event it is quite
likely that retransmissions from a previous incarnation will
emerge With correct sequence numbers to be accepted during the
current incarnation.

The worst difficulties occur uhen the control packet (s)
that initialize a connection get confused. Then one or both
CCP's may think the connection is established, but SN is not
equal to ESN and no packets can be successfully transmitted. A
deadlock cccurs which must be broken by further control message

exchanges as described below, or by some external means.

S.2.2 Setting ESN equal to ISN

Once ISN is selected for a new incarnation of a
connection, ESN must be set equal to ISN in both directions. To
accomplish this, each CCP may try to keep the sara state
information that the other CCP uses to select ISN. This is not
aluays possible, and where it ‘s possible, requires a lot of
work to synchronize all clocks, remember incarnation numbere for

all Hosts, or remember old sequence numbers for all old

Connection Establishment 59

connections. And all this information must be set somehow in

: the "beginning" or after a failure.

| This suggests that to establish a connection, the

| sending discipline should transmit a sunchronization control
I packet (SYN) to the receiving discipline giving the value of ISN

(see figure 8). The receiving dizcipline can set ESN to this

value without maintaining any state information about ite

partner CCP. The receiving CCP returns a SYN giving its

oHN

ISN, or can reject any SYN that arrives when the protocol Is in

an inappropriate state (the only appropriate state is the

Opening state where the process has signified its readiness to

converse, but the connection is not yet estab! ished.)

Inappropriately timed arrivals are either old retransmissions,

protocol errors, or attempts to establish a conversation with an

unwil ling partner.

Unfortunately, this simple system of a credulous CCP is
inadequate when packets may arrive out-of-order as shown by

theorem 6 below. Once sequencing is initialized,

sequence

numbers serve to validate incoming packets. But while the

connection is being initialized, there is no way for the

receiving discipline to validate an arriving SYN since it

maintains no state information about the other side's ISN.

THM B: A CCP that maintains no state information about ISN

f or

the remote end of the connection, but accepts ISN from an

60

FIGURE 8 SIMPLE CONNECTION ESTABLISHMENT USING SYN CONTROL PACKET

PROSHS A PROCESS B

pick ISN =Y
—_— (SYN)}(SEQ NO. X) s

f— (ACK X) g———

-+ (SYN)(SEQ NO. Y) S

— (ACK V) —

IR (SEQNO. X + 1) ===
(DATA)

FIGUREY SIMPLE CONNECTION ESTABLISHMENT ERROR

PROCESS A R
Cr—> (SYNNSEQNO.Z) ——»
set ESN = 2
-— (ACK Z) S—

«|—— (SYN)}SEQNO.Y) -

—_— {ACK Y) —_—
Established
pick ISN = X
— (SYN){SEQ NO. X) —_— |

retransmit

Connection Estat|ishment Rl

arriving SYN control packet, may incorrectly synchronize the

connection and cause a deadlcck.

PROOF: (See figure 3) Suppose a SYN control packet with an
old ISN was retransmitted and delayed in the transmission
medium during a previous incarnation of the connection.
This old SYN may arrive just when the new connection is in
the opening state, and be accepted as valid. E M will be
set to the old ISN, and the connection state set to

Established. But no data will be accepted as in theorem 2C.

"3 Way Handshare"

To avoid this problem, a more reliable means of
transmitting the current ISN to a CCP must be used. Toml inson
(1974) has presented such a scheme called the "3 way handshake. "
Instead of simply accepting an arriving SYN, the receiving CCP
must ask the sending CCP to verify the SYN as current. The
receiving CCF returns a SYN-Verify control packet to the sending
CCP uhich refars to the ISN from the SYN (see figure 10). 1If
tive SYN was a current packet, the sender returns a positive
acknouledgement (ACK), and only then does the receiver accept
the SYN and set ESN. This synchronizatior must occur in both
directions, with the SYN-Verify also carrying ISN of the
receiver in the other direction,

It the SYN-Verify references an old ISN (See figure 11),

the sender returns a negative acknouledgement (NACK) and the

FIG'/RE 10 *“3 WAY HANGSHAKE CONNECTION ESTABLISHMENT

PROCESS A PROCESS B

pick ISN = X
b s~ (SYN)(SEQ NO. X) ——

remeinber X

pick ISN = Y
<——— (SYN.VERIFY (X))(SEQNO.Y) <e——m

(ACK Y) —

set ESN = X

Established Established
[] []
[] []
[] [J

FIGURE 11 REJECTION OF OLD SYN PACKET WITH “3 WAY HANDSHAKE"”

C—> (SYN)(SEQ NO. 2) e

remember Z

pick ISN = Y
P——— (SYN-VERIFY (2))(SEQ NO. Y) -—

invalid

— (NACK Y) —_—
reject SYN

Connection Establ ishment 63

receiver discards the SYN. This takes care of old

(retransmitted) SYN nr SYN-Verify packets.

Collision Avoidance

This "3 way handshake" mechanism for establ ishing
connections is inherently asymetric, with one side initiating
the attempt by sending a SYN, and the other side Haiting to
respond to a SYN from the active side. However, some processes

may not have agreed on an active and passive side and both sides

may attempt to initialize the conihection. Then each side wil!l

see a simple SYN rather than a SYN-Verify in response to its own
SYN. In this case a collision is said to occur, and the
collisior resolution mechanism used in broadcast transmission
media (Abramson73a]l may be applied. Both sides "forget" that
they have sent or received any SYN's and wait a random amount
of time before trying to initialize the connection again,

Several authors have investigated the relationship
between retry intervals, propagation time, and time until
success in broadcast media [Metcalfe73, Abramson73al. If the
retry time distribution is wide relative to the propagation
delay, then very likely one side will try again and have its SYN
delivered while the other side is stiil waiting, avoiding a
second collision. The collision avoidar.ce mechanism simplifies
connection establishment since it reduces simultaneous

initiations to the more tractable one-sided attempts. This

Connection Establ ishment

application of collision avoidance tn connection establishment

is believed to be a new technique.

In order to reduce the frequency of collisions,

Tom! inson has suggested that a CCP enter a special simul taneous

initialization state when it detects 3 collision [private

communication]. Dalal (1975) has developed algorithms which

allow the connection to be reliably established for "normal"” but

simul tareous initialization attempts. However, if an "old" SYN

from a previous incarnation arrives during a simul taneous

initialization attempt, the CCP must still give up and retry

from scratch.

9.2.3 Correctness of Connection Establishment Mechanisms

Sections 5.1 and 5.2 have shown the shcrtcomings of some
simple protoco! initialization mechanisms, and suggested more

comp | icated mechanisms to successfully deal with transmission

mediur characteristics. In this section we prove that a

correctly func’ioning CCP using the ISN selection and 3 uay

handshake mechanisms described above does indeeg correctly

estab!ish connections for reliable interprocess communication.

THH 7: A correctly functioning CCP (With infinite quit time)

using ISN selection and 3 Way handshake mechanisms above,

correctly estaolishes connections

espite transmission medium

64

Connection Establishment 8S

characteristics of loss, delay, damage, duplication, and

out-of-order delivery of packets.

The proof of theorem 7 is based on a state diagram model
of the protocol process on each side of the connection. These
tuo processes interact by exchanging nackets which we assume may
be lost, durlicated, or delivered out-of-order slnce we are
particularly interested in developing robust protocols for worst
case situations. Each protocol process |s driven by events
including user commands, packet ar~ivals, and internal timers.

The complete state of the system includes both protocol
processes’ states and the packets in the transmission medium. A
large reduction in complexity is achieved by classifying all
packets in the transmission medium as either "current® packets
c* "old" packets (cf appendix A). Only current packets must be
explicitly represented as part of the composite state.

Appendix A proves theorem 7 and also reproves theorem 6
using the compos.te state formalism to show the correctness of a
pouerful protocol and the inadequacy of a simple protocol for
connection establishment. Failure recovery techniques are also

considered.

R RN,

Connection Establishment 66

5.3 Closing a Connection

The purpose of closing a comrnection is to return the
connectior to the Not Active state, freeing the resources
associated with maintaining the connection. The tables,
buffers, and other data structures used to support the
connection are then available for other connections.

The CLOSE command means that the process does not want
to send or receive any more packets. Normally processes
exchange data signaling the end of their conversation, and then
request the CCP to close the connection. In this case when
processes on both sides of the connection request termination,
the CCP at each side can simply return al! resources and place
the connection in the Not Active state without exchanging any
control packets. This simple scheme relies on both processes
cooperating to close the connection.

Houwever, some processes may not have an agreed
termination procedure, or one process may Wwish to terminate the
connection while the other attempts to continue. The simple
unilateral termination scheme above might leave the connection
Wwith one side in the Not Active state, while the other side
thinks the connection is still Established and continues to use
transmission medium resources in useless (reltransmissions.

Since successful communication requires cooperation by

both sides, when either side attempts termination, both sides

Connection Estab!ishment

should be closed. To accomplish this, uhen the CCP gets a CLOSE

request, it creates and transmits a termination control packet

(FIN). This control packet is easier to validate than the
initialization control packets discussed In saction 5.2 because

the connection is already estab!ished.

S.3.1 FIN Mechanism (See figure 12)

The sending side places the normal next sequence number
in the FIN, and the receiving side uses the sequence number to
determine whether the FIN is valid or an old duplicate just as
for data packets. Furthermore, the sequence number determines
exactly where in the data stream the FIN occu‘'s, so that the
receiver can wait for any outstanding packets if the FIN has
arrived out of order. The receiving discipline returns an ACK
for the FIN just as for data packets. It then notifies the
process that the other side has terminated the connection, and
places the connection in the Not Active state.

When the sending discipline sees the ACK for its FIN, it
knows that the other side has terminated the connection and it
can finish closing the connection on its oun side. In this way
when either process closes the connection, the resources at both
sides are freed, and the state of the connection is kept

consistent at both sides wWithout depending on process

cooperation. This mechanism allows both for cooperating

Connection Establ ishment

FIGURE 12 CONNECTION CLOSED WITH FIN CONTROL PACKET

PROCESS A PROCESS B
Established Established
SN=F, ESN=G SN=G, ESN=F
CLOSE
= (FIN)(SEQ NO. F) —
e (ACK F) ——
Not Active Not Active

processes to terminate the connection in an orderly fashion
(after exchanging all desired data), and for one process to shut
off the other uncooperative process and prevent useless
activity.

To handie the case where both sides try to close the
connection and send FIN simultaneously, the mechanism used in
the ARPA net Host-Host protocol may be adopted (Carr70].
Instead of acknouledging a FIN with a normal ACK, the reply to a
FIN is another FIN. Then the initiating and replying

termination control mesages are identical, and simultaneous

closes look |ike responses to both sides (see figure 13).

Connection Establ ishment

FIGURE 13 CONNECTION CLOSED WITH SIMULTANEOUS FIN PACKETS

PROCESS A PROCESS B
Established Established
SN=F, ESN=G SN=G, ESN: F
CLOSE

(FIN){(SEQ NO. F) e

-, (FIN)(SEQ NO. G) -+
Not Active Not Active

5.3.2 Possibility of "Hung" Connections

Even with a FIN mechanism, a |imited type of connection
state inconsistency is still possible in closing a connection.
To discuss this problem, we use the following notation: In
closing a connection, both sides must move from the Established
state (E) to the Not Active state (N) by passing through the
Closing state(s) (C). The possible connection states are then

<k,E>, <E,C>, <E,N>, <C,C>, <C,N>, and <N,N> counting symmetric

states only once.

Connection Establishment

While the connection is in the Established or Closing
states, the normal retransmission/duplicate detection mechan i sm
using sequence numbers masks the effect of loss, reordering, and
delay in the transmission medium. Once either side of the
connection reaches the Not Active state however, essentially al |l
information about the connection is lost and arriving packets
are simply discarded (except SYN to start a new connection).
This is exactly what is desired in the <N,N> state, but
deadlocks are possible in the <E,N> and <C,N> states.

The unilateral close mechanism al lous the <E,N> state to
persist withost any failure in the transmission medium, but
because the processes fail to agree on closing the connection.
This can be avoided by requiring the exchange of FIN control
packets as described above.

The FIN scheme prevents the <E,N> state, but results in
the <C,N> state if the ACK of a FIN is lost in the transmission
medium, In this case, retransmissions of the FIN from the
Closing side are discarded because the connection has already

heen inactivated. It is appealing to try to soive the prob | em

by introducing another stage in the rontrol packet exchange

where the respondent to the FIN returns a FIN-Reply control
packet and does not inactivate the connection until receiving an
ACK for the FIN-Reply. Unfortunately this only shifts the
problem to the other side and the final ACK.

Connection Establishment 71

THMN 8: Any mechanism for closing connections in an internally
controlled CCP allous either <E,N> or <C,N> states to occur
where the connection will not terminate (eriter the <N,N> state)

using the normal closing mechanism.

PROOF: For unilateral termination schemes the <E,N> state
can persist if one of the processes does not close its side
as discussed above. For schemes involving exchange of FIN
control packets, the <C,N> state occurs when the C side has
sent the FIN type packet, and the N side has received this
packet and returned an ACK. If the ACK is lost or damaged,
the C side retransmits the FIN, but the N side cdiscards the

retransmissions because the connection is Not Active,

As noted in Appendix A, such “hung" or "hal f open"
connections can also rssult from protocol failures where one
side of the connection must restart in the Not Active state. To

avoid such hung connections while closing a connection, three

types of solution exist:

(1) A timeout mechanism whereby one side of the connection
unilaterally "“gives up" and goes to the Not Active state
when it gets tired of waiting. This can be explicitly
requested by the process (a sort of Reset command) or

automatical ly performed by the CCP. This corresponds to the

Quit time defined in section 2.

Connection Establ ishment

(2) A CCP in the No- Active state returns some special .
control packet when it receives a packet for a connection it
considers inactive. The Connection Inactive control packet
is a kind of negative ACK and refers to the sequence number
of the arriving normal packet so the CCP that receives the
NACK can verify that it refers to a current packet. of
course error packets are nnt returned for error packets.
When a CCP in the E or C state gets a NACK instead of the
expected ACK, it can c'ose the connection. This corresponds
to the Reject mechanism added to the protocsl for failure
recovery in Appendix A.

Another similar solution for a CCP in the N state
that receives a FIN type control packet is to construct the
appropriate ACK for return as if the connection were still
active. This avoids special processing by the sender in the
E or C state by shifting it to the receiver in the N state.

This is not aluays possible since connection state

information is generally discarded when the connection
enters the N state, and the protocol may not know how to

construct an appropriate ACK.

(3) When the CCP sends the final ACK before setting the
connection Not Active, it can send n copies of the ACK,

where n is large enough to "guarantee" that at jeast one

PR e

will get through. This biute force approach is actual ly

Connection Establishment 73

used in at least one protocol known to the author (an early

version of the ether net protocol at Xerox PARC used n=10).

5.4 Reducing Costs of a CCP

It is apparent from the above discussion that
transmission medium characteristics of delayed out-of-order
delivery of (retransmitted) packets cause difficult problems for
reliable communication. 0One seemingly attractive approach to
this proolem is to require a transmission medium that delivers
packets in order, or to implement a "lou level”™ protocol
mechanism that orders packets on a Host-Host basis, creating a
first level virtual transmission medium that delivers packets in
order, and s‘mplifies the interprocess protocol design.

The direct cost of this approach is the cost of the
sequencing mechanism itself with its own Initialization
problems. Where several connections share the same Host-Host
sequencing mechanism, significant savings may result. When most
connections are to different hosts, the two level mechanism,
each level requiring independent state information and
initialization, may result in increased delay and higher cost.

The indirect cost of this aproach is the interference
betueen different connections now sharing the same order | ng

mechanism, When a packet from one connection is lost or

delayed, subsequent packets on other connections cannot be

- — i R

Connection Establ ishment 74

delivered even though they wouid be in-order on their oWN
connection. [|f packet |loss recovery mechanisms are also shared,
then buffering constraints mean that a sluggish process that is
slow to accept its arriving packets may hold up all the other
processes sharing the same sequencing and error correction
channel.

One disadvantage of a CCP is the relatively large
overhead in packet heacers and control packet exchanges
required. This cost is particularly heavy for short single
transaction applications [Kleinrock74]. Nevertheless, we have
shown that given the hostile transmission medium characteristics
dascribed in chapter [, ruwerful mechanisms are necessary to
guarantee reliable communicatior. A partial solution for
transaction traffic may be to muliiplex many transactions over a
single longer duration cionection. This introduces the
inter ference petween transactions mentioned a.ove, but may be

justified by savings in overhead and connection set up activity.

Introduction 75

Chapter 111
PROTOCOL EFFICIENCY

L. INTROOUCTION

This chapter considers the efficiency of interprocess

communication protozols for computer netuworks, As uith the

reliability performance discussed in chapter 11, quantitative
performance delivered to processes by a communication protocol
must be based upon the performance of the transmission medium
under lying the protocol. Transmission medium characteristics

most important to efficiency are delay, bandwidth, maximum

packet size, and error characteristics.
To provide efficient interprocess communication based on
these transmission medium characteristics, a protccol can

attempt to optimize several internal parameters such as

retransmission interval, packet size, flow control strategy,
buffering, and acknouledge~ent scheme. 0f course much of the

perforiiance seen by a prccess on one side is controlled by the

behavior of the other process with which it is communicating.
For example a protoco! cannot on the average provide throughput
to a source process that is greater than the acceptance rate at

the receiver. In general, the maximum performance possible

under ideal process behavior is of interest, as well as reduced

performance due to limiting process behavior on one or both

sides.

Introduction 76

This chapter develops models to analyze the efficiency
of successivellyy more complex protocols. The two main

performance measures chosen for analysis are average maximum

throughput ard mean dalay since these represent the performance
of primary interest to processes using the protocol. By
throughput we mean the transmission rate of useful data betwseen
processes, excluding any control information or retransmissions
that the protocol requires. By Jdelay we mean the time from
starting to transmit a packet at the sender to successfuyl
arrival of the entire packet at the receiver, or arrival of an
acknoi ledgement at the sender in the case of roundtrip dalay.
We raturn to further define these performance measures later in

this section.

Other efficiency performance measures of interest
include retransmission rate, line afficienc » and buffer

requirements. Retransmission rate indicates the number of times

each packet mus! be transmitted and is a useful cost measure
since packet communication costs typically include a per packet
charge. Line efficiency is the ratio of usefu! traffic
(throughput) to total traffic ¢enerated by a protocol including
control information and retrarsmissions. It provides a measure
of the overall efficiency of a protocol by indicating the
fraction of total traffic that represents use.ul data. Buffers

are required at the sender to hold packets until acknow | edged,

and at the receiver to hold packets until processed or for

Introduction 77

sequencing out-of-order arrivals. Limited buffer storage
restrict: throughput and delay achievable.

Several authors have analyzed the efficiency of
communication protocols for simple transmission media with fixed
delay and no packet loss or reordering [Bericeb4a, Benicebdb,
Danthine?Sc, Pouzin73a, Burton7¢, Sastry74]. This study
[emphasizes performance analysis of protocols for interprocess
communication over packet switching nets (PSN) with more comp | ex
and hostile transmission .7 racteristice icf section 1-2).

Delay includes packet transmission time, or the time

required to transmit all bits of a packet into the transmission
medium (a function of the transmissic: medium banduidth), and

propagation de'ay, or the time required for a bit to travel from

source to destination tnrough the transmission medium. In a

store-and-foruard PSN, the propagation delay uay itself have

several components (cf section 1-2) which we do not consider

fur ther.

Frequently it is important for the sender to receive a
positive acknouledgement that the packet was delivered, in which
case the roundtrip delay or time for successful delivery and
return of response is the significant measure. A transaction
system is an example of such a situation. Floundtrip delay
includes delz for a packet to reach the receiver, processing

time at the receiver, and delay for the response to reach the

sender.

Introduction

If a sending process produces packets for transmission
at a high rate, the protocol may be unable to transmit packets
immediately as they are submitted. In this case, submitted
packets must be queued until they can be transmitted. The total

delay seen by the process will consist of the waiting time while

the packet is queued for service plus the normal delay to
successfully transmit the packet through the transmission
medium. During heavy demand periods, the total time to complete
a requested transmission may be dominated Ly the Haiting time.
Under such conditions, the throughput is also important in
determining total completion time because it determines the rate
at which the waiting queue is emptied. To separate thessa
efiects, we explicitly exclude the above waiting time from our
definition of delay.

While we define delay as an inherently single packet
phenomenon, throughput concerns performance for a stream of
packets. HWith simple protocols that transmit a single packet
and then wait for its acknowledgement, throughput is simply the
inverse of roundtrip delay multiplied by the useful bits per
packet. By taking advantage of the pipeline or multi-server
capacity of the transmission medium, a protocol can transmit
multiple packets while waiting for acknowledgements and achieve
higher throughput. The extent of this multiplexing is |imited
by transmission medium capacity, flow control mechanisms, and

other constraints discussed in thie chapter.,

Introduction 79

Achievable throughput is found to depend on six main

factors: overhead, retransmission or error recovery, flow
control or multiplexing, buffer allocation, receiver rate, and
transmission medium bandwidth. These factors in turn depend on
both protocol parameter settings and transmission medium
characteristics.

For a simple PAR protoco! with deterministic
transmission delay on a single hop transmission |ine, Metcal fe
(1973) has evaluated several of these factors. Section 3
extends the analysis of the error factor to include more
realistic transmission delay functions for packet switching
networks, and to include the effect of varying retransmission

intervals. Section 4 considers the effect of flow control

mechanisms on the multiplexing factor. In section S5 we discuss

several acknowledgement, retransmission, and buffer allocation
strategies, and consider the throughput degradation resulting
from buffer limitations. Section 6 examines the effects of
requiring sequencing at the destination (SPAR protocols).
Sectior 7 briefly discusses the impact of packet size on
protoco! performance.

Cffective delay depends more directly on the
transmission medium characteristics, but packet size,
retrgnsmission interval, and sequencing requirements also have

important effects. In general, minimum delay and maximum

throughput are conflicting goals[Crouther?S, Opderbeck74), so

Introduction

protocol parameters must be adjusted to provide the type of
service desired by a particular process (cf section 7).

In developing our efficiency analysis, we define a large
number of parameters and performance measures in this chapter.

To aid in remembering them, table 1 provides a |ist of names and

brief definitions for the more important terms along with page

numbers where they are first defined or discussead.

Introduction

Name.

f(t)
F(t)

Tprop
P/B
LS
TPmax

OH
TPoh
g(t)
G(t)
oL

Ntrans

Table 1

Important Names and Variables Used in Chapter II1

Definition

Transmission delay distribution

Transmission delay cumulative distribution
Packet length

Banduidth of transmission medium

Propagation time

Packet transmission time

Loss or damage probability

Average maximum throughput (useful data rate)
Retransmission interval

Header |[ength

Data length in a packet

Overhead

Overhead factor in throughput

Successful transmission de'ay distribution
Successful trans. delay cumulative distribution
Mean delay unti! successful delivery of a packet

Mean number of transmissions

TPretrans Retransmission factor in throughput

Page

- = el R
p—

i

!
1
|

Name

Nuin
Tlocal
Tnet.
RHO
uTt
Nuinmax
Nbu f
Pfull
TPbuf
Tint
H(t)
OLseq

Pinord

Pdis

Introduction

Table 1 (cont'd)

Definition Page

Window size for flow control
Packet transmission time (Host to Packet Switch) 112
Roundtrip time through netuork less Tlocal
Ratio of service times or rates
Utilization of sender

Window size allowing maximum throughput
Number of buffers at receiver

Probability that all buffers are full
Buffer limitation factor in throughput
Time between new packet transmissions
Cunulative delay distribution with sequencing 131
Mean delay including sequencirg . 131
Probability packet arrives in order 13S
Probability packet is discarded 136

Simple Protocoi 83

2. SIMPLE PROTOCOL WITHOUT ERROR CORRECTION

Perhaps the simplest communication system consists of a
perfect (error free) |line between tuo users with banduidth
B bits/sec and nearly constant propagation delay Tprop. With no
errors, overhead for headers, or flow control, users simply
transmit data over this line, obtaining a maximum throughput
TPmax = B bits/sec. The mwan delay to deliver a packet of

length P bits is:
T = P/B+Tprop = transmission time + propagation time (1)

The line efficiency this ideal system is 1, giving a
transmission cost of 1 bit/bit.

To increase the generality of thls model, we will
represent the propagation time for a packet as a probabilit

density function, f(t). To represent a nearly constant delay

Tprop, f(t) has a narrow, high peak at time t=Tprop (see figure
lal.

We also introduce the possibility of transmission
errors, and assume that damaged packets are detected and
discarded as described for PAR protocols in chapter II, but as
yet no positive or negative acknowledgements (ACKs or NACKs) are

returned for received packets. The probability, LS, of lost or
damaged packets (which may depend on the packet length) can be

included in f(t) as an impulse at t=infinity with value LS (the

probability that a packet never arrives) (see figure 1b).

84
FIGURE 1 TRANSMISSION DELAY DENSITY FUNCTION f(t)

(a) PROPAGATION DELAY DENSITY FUNCTION f(t) WITH NO PACKET LOSS

|

f(t)

F

1 1

Tprop
TIME t

(b) PROPAGATIOII DELAY DENSITY FUICTIOM f(t) \VITH PACKET LOSS
PROBABILITY LS

f(t)

LS
1 w
I " I
0 Tprop o0

TIME 1t

(c) TRANSMISSION DELAY DENSITY FUNCTION f(t) INCLUDING PACKET
TRANSMISSION TIME P/8 AND PACKET LOSS PROBABILITY LS

f(t)

‘2
L t L
Tprop + P/B 00

Q=

Simple Protoco! 85

Since we are primarily interested in PSN where the
end-to-end propagation time is much larger than the Host to
Packet Switch transmission time for a packet, it is convenient
to also include the transmission time for a packet of length P
in f(t) which will now also depend on P (gee flgure lc). We
call the end-to-end (or roundtrip) delay distribution including
packet transmission time and packet loss or damage probabi | ity
the transmission delay density function, f(t).

The source can still transmit packets at rate B/P, but
only the fraction (1-LS) arrive successful ly at the destination.

Hence the average maximum throughp.t is given by:
TPmax = B- (1-LS) (2)

The mean delay is strictly infinite since some packets (LS#0)
never arrive. The line efficiency is (1-LS), but . the

transmission cost is not well defined since some data is never

del ivered.

v -

Retransmission Page 86

3. PAR PROTOCOL (RETRANSMISSION)

The most imporiant reliability performance goal
discussed in chapter [l is to deliver each packet precisely
once. In a PSN environment where packet loss and duplication
occur, reliable communication requires a PAR type protocol as
described in section [1-3. Adding the constraint that every
packet must be successfully delivered requires analyslis of
retransmission and control overhead necessary for reliable

communication. This introduces the retransmission time interval

parameter, R: if an ACK is not received uithin time R after a
packet's last transmission, the packet will be retransmi tted.

To provide error and duplicate detection with a PAR
protocol, each packet must carry some control information, or a
header of length H in addition to data. The header typical ly
includes a checksum for error detection, and an identifier or
sequence number for duplicate detection. It may also include
address information, reverse ACKs, text length, or fiow control
information. In general the header length is fixed so P=H+D
where D is the (variable) data length. The fraction of each
packet taken up by the header will be called overhead, OH « H/P,
which varies from H/Pmax of a feu percent, to H/H=1 for control
packets with no data. The throughput obtained due to other
considerations must be multiplied by a factor TPoh to account

for the portion of banduwidth consumed by overhead:

Retransmission Page 87

TPoh(P,H) = 1-H/P ()

Retransmission introduces the first real difficulty in
analyzing quantitative protocol performance. Now we must find
the probability distribution for the first successful delivery
of possibly many (re)transmissions. To do so, we assume that
retransmissions take precedence over new transmissions, and
hence when a packet's retransmission time arrives, it is
imediately retransmitted. Preemption of a partially
transmitted packet is not allowed, so a retransmission may
actually have to wait for completion of a transmission in
progress, but we assume this waiting time is insignificant
compared to the retrar.nission interval R, This is a reasonable
assumption in a PSN where R is typically an order of magnitude
larger than a packet transmission time, P/B.

We also assume that the end-to-end delay density
function f(t) and its associated cumulative distribution F(t)
are identical for each (reltransmission of a packet, i.e. the
delays for (reltransmissions of a packet are independent. This
assumption is reasonable for large retransmission intervals
typical of PSN's where alternate routing and long paths minimize
dependence [Forgie’S].

We can nouw write the successful transmission delay

distributions including retransmissicn, g(t) and G(t), in terms

of R and the basic transmission delay distributions f(t) and

F(t) directly from basic probability considerations:

Retransmission Page 88

G(t)= Problat least one successful delivery by time t)

= 1 - Problno success by time t)

=] - Probllst transmission not arrived
and 2nd trans. not arrived ...

«e. and nth trans. not arrived' n= [t/R]

n
=1 - I Problith trans. not yet arrived)
i=]

n-1

=1~ I [1-F(t-i-R)] (4)
i=0

gl(t)= Prob(first successful delivery occurs at time t)

n

= z Prob(trans. i arrives at time t and no other
i=l transmission yet arrived) n= [t/R]
n-1 n-1

& Z {f(t=-i-R) « I (1-F{t-j-R)) (S)
i=0 j=0

jmi

Of course gf(t) = d/dt G(t) as required for any
probability distribution with the understanding that G(t) is at
leas\ piecewise continuous (may abruptly change slope at points
t=i-R) so that g(t) may have step discontinuities at points t=i-R.
Using equation S directly, it is also possible to determine the
probability mass function g(t) for a discrate distribution f(t).

The mean delay including retransmission until the first

successful delivery is given by:

Retransmission Page 83

DL(R,F) = f°°° tegly)-dt (6)
= [-Gt

Another important measure is the mean number of

transmissions until the first success:

Ntrans(R,F) = I i . Prob(first success between
=]l transmission i and i+1)

= £ i (G(i-R) = G((i=1)+R))
which telescopes to

n-1
= |limit [(n-G(n-R) - T G(i-R)
N0 i1=0

Noting that limit G(n-R) must be 1 gives

N0
n-1
= |imit £ (1 - G(i-R))
N=+o0 =0
[]
= 21 (1-G(i+R)] (7)
im

If F(t) represents the roundtrip delay distribution
(time from transmitting a packet until first ACK received), then
equation 6 gives the mean roundtrip delay for a successful
(acknouledged) transmission as a function of the retransmission
interval R. Equation 7 gives the mean number of transmissions
to achieve successful transmission as a function of R,

Typically packet communication costs are dominated by a per

packet charge, so Ntrans is also a good cost measure. Since

Retransmission Page 90

each successful transmission requires on the average Ntrans
actual transmissions, maximum throughput attainable will be

proportional to a retransmission factor:
TPretrans = 1/\trans (8)

In general, a__larger retransmission interval R al lous

higher throughput since no bandwidth is "wasted" retransmitting
packets that might be long delayed and not actually lost. This
is true because the source can continue sending new packets
while it waits for ACKs of delayed pa-kets (i.e. no sequencing
of parkets is puarformed).

Smaller R_reduces mean delay for two reasons:

1) A Loss factor. Packets actually lost or damaged are
retransmitted sooner.

2) An QR factor. Since all retransmissions are equivalent;
the OR function in accepting retransmissiuns selects the
minimum transmission time. The more retranemissions in

progress at once, the smaller the minimum time for one.

The remainder of this section examines several
representative transmission delay distributions, f(t), to
explore the resulting protocol performance as a function of the
~etransmission interval R. The mean of each f(t) is fixed at

unity to facilitate comparison, while shapes and variances of

f(t) are varied. In each case, the resulting successful

Retransmisslon Page 91

transmission delay distributions, g(t) and G(t) from equations S
and 4, are plotted for several values of R aid packet loss
probability, LS. Then equations 6 and 8 are used to plot delay
and throughput as functions of R and LS. Finally, delay versus

throughput is plotted for each f(t).

3:1 Constant Transmission Delay

Figures 2 and 3 shou the successful transmission delay
distributions g(t) and G(t) resulting from a constant
transmission delay functlion F(t) wWith constant delay D=1 and
loss probability LS:

(0 t <D
F(t) = (1-LS D < tc<ew

(1 t=e
For this simple F(t), analytic results are easily derived for
the mean delay until successful transmission, DL, and number of

transmissions, Ntrans:

DLD,R) = D + R-LS/(1-LS)
Ntrans(D,R) = 1/(1-LS) + |O/R|

These results include the expected sum of a geometric
series, 1/(1-LS), since in this case transmission is just a
repeated series of independent trials, each wlth probability LS
of failure. Mean delay DL is just the fixed delay D plus a term

A TR T RN

FIGURE 2 SUCCESSFUL TRANSMISSION DE
FOR CONSTANT TRANSMISSION

n]'tA

0.0

92

LAY PROBABILITY MASS FUNCTION, g(t),
MEDIUM DELAY D = 1

LS = PROBABILITY OF PACKET LOSS
R = RETRANSMISSION INTERVAL i

O 15-0

LS4R8
LS. 4 Re2

—
_— o
= T O | (R e

FIGURE 3 SUCCESSFUL TRANSMISSION DELAY C

FOR CONSTANT TR ANSMISSION MEDI

G(t)

0.0 |

UMULATIVE DISTRIBUTION, G{t),

UM DELAYD =1

Ls-0

LS 4

ALLR
R- 38

LS = PROBABILITY OF PACKET LOSS
R = RETRANSMISSION INTERVAL

&
TIME =

1

3

Retransmission Page 93

proportional to the retransmission intei-val R, (iy the loss
factor operates to lower delay; since F(t) is constant, there is
no overiap in f(t) from subsequent transmissions and the OR
factor is zero. Figure 4 shous mean deiay DL as a function of R
for D=1, The deiay for a constant F(t) gives the upper bound
for delay resuiting from other F(t) with nonzero variance where
the OR factor does contribute to reducing DL.

Ntrans is just the mean number of triais for a Bernouiii
process, 1/(1-LS), pius the additional number of trials executed
untii the success becomes "known" time D later. Figure S shows
the mean throughput, TPretrans, as a function of R. -

Figure 6 shous delay versus throughput resuiting from a
constant F(t) with D=1. For realistic error rates (LS<«<1), RaD
is cleariy the optimai retransmission interval since there is no
throughput gain by waiting ionger than [j, and iittie deiay gain :
for retransmitting before time D. A constant transmission deiay
function presents an unreaiisticaily narrow delay distribution,

but it does capture the minimum delay behavior typical of PSN's.

3.2 Exponential Transmission Delay

Figures 7 and 8 show g(t) and G(t) resuiting from an

. exponential transmission delay function (with mean delay = 1):

[=
 ush s
a f g
> — T
FIGURE 4 * ! s i
=]-C LSet §
MEAN DELAY DL vs. lé’ i j
RETRANSMISSION INTERVAL i
R FOR CONSTANT < an L ‘
TRANSMISSION MEDIUM LéJ g]
DELAYD =1 k LS = PROBABILITY OF PACKET LOSS |
0.0 A :
0 1
RETRANSMISSION INTERVAL R
r e K i = sl - = T &
U+ -
FIGURE 5 g e ,
! THROUGHPUT FACTOR = r | Sl
TPretrans vs. RETRANSMISSION ~ t 1
INTERVAL R FOR CONSTANT < ' ‘
TRANSMISSION MEDIUM & 1.5 5 | l
DELAYD =1 O L , ,’
< i i 1
L‘fj f . 1 1 1 4
P ‘ :::... A 1 4
- L R = '3 a— — e e el -
G5 1
THRBUGHPUT TPretrans
r - - o ke & — e = - 5 i - -
o t 2 |
FIGURE 6 B 1o i B
MEAN DELAY DL vs. s i g2 |
THROUGHPUT FACTOR ‘ k o i
TPretrans FOR CONSTANT £ I el
TRANSMISSION MEDIUM . t ==
DELAYD = 1 S 0.5} — .
L }, 4
& =)
S8 ' == 4
g: ' _if 1
@ { = {
.:.L T e el 5 e e s s -,
& '\1.5

RETRANSMISSION INTERVAL R

FIGURE 7 SUCCESSFUL TRANSMISSION DELAY PROBABILITY DENSITY FUNCTION, g(t),
FOR EXPONENTIAL TRANSMISSION MED

(a) PACKET L@SS PR@BABILITY LS-0

=
©
{b)
1.0
S 0.5
°
0.0

RETRANSMISSION INTERVAL R-5,2,.8,.3

95

IUM DELAY WITH MEAN = 1

T = T

RETRANSMISSION INTERVA' R-]
PACKET LOSS YROBABILITY LS-0,.2..4

T iy

-

96

FIGURE 8 SUCCESSFUL TRANSMISSION DELAY CUMULATIVE DISTRIBUTION, G(t),
FOR EXPONENTIAL TRANSMISSION MEDIUM DELAY WITH MEAN = 1

lal PACKET L@SS PROBABILITY LS-0
RETRANSMISSI@N INTERVAL R-5,2,.8,.3

‘ E e —

=
(o)
i i i
2 3 4
TIME ¢t
b) PETRANSMITCION INTERVAL R-,
PACK=T 1B8. FHRBAGHLITY L5-0,.2,.4
P i i e y - —
— —— -
e ._._._._,_,_.—-—-—'_
- " /L’S:':—r e
| i
A
;,1' rd
P :
/z ’.
5 g P ,’
O ,///
>
| P
|
Nk
S S | -

.
IS TSNS AR e e - -

Retransmission Page 97
-u-t
Flt)= { (i-LS)(1-e) Dstemw
{1 t = ®

Figures 7a and 8a shou the successful transmission delay

distributions, g(t) and G(t), for several retransmission

intervals R but no packet loss (LS=0). Smaller R moves the
deiay density toward shorter times because of the significant OR
factor with the wide exponential! f(t). Figures 7b and 8b shou 4
g(t) and G(t) for several packet loss probabilities LS at a]
fixed R. Smaller LS also moves the delay denslty to the left.

For LS=0, equations 6 and 7 readily yleld analytic

expressions for mean delay DL and number of transmisslons

Ntrans:

w =i+ (1+1)+R-u/2
'2 [— 1}

o =j-(i+l)-R.u/2
Ntrans(u,R) = '80 e
|=

For nonzero LS, numerical solution techniques become necessary.

Figures 9 and 10 show mean delay DL and thrsughput
TPretrans for various R and LS. Reéults from the previous
section are shown cotted for comparison. The OR factor serves

to lower delay for smill R because the wide exponential f(t) for

neighboring transmissions overlap significantly for small R. As

R Increases, mean delay approaches tha upper bound proportional :i

FIGURE 9

MEAN DELAY DL vs.
RETRANSMISSION INTERVAL
R FORt EXPONENTIAL

| TRANSMISSION MEDIUM
DELAY WITH MEAN = 1

FIGURE 10

THROUGHPUT FACTOR
TPretrans vs. RETRANSMISSION
INTERVAL R FOR
EXPONENTIAL TRANSMISSION
MEDIUM DELAY WITH
MEAN=1

FIGURE 11

MEAN DELAY DL vs.
THROUGHPUT FACTOR
TPretrans FOR EXPONENTIAL
TRANSMISSION MEDIUM
DELAY WITH MEAN =1

MEAN DELAY 0Ot

THROUGHFUT TPretrans

!
158

MEAN DELAY O

T

0.3

Dl

W
LR

/! 1 e 2

] - 3
RETRANSMISSION INTERVAL H

|

LS = PROBABILITY OF PACKET LOSS

=

1 1

0

1 2 3
RETRANSMISSION INTERVAL R

Tt Pl Rl SR

Retransmission Page 99

to R as with a constant f(t) uhere only the Loss factor is
contributing. Throughput rises smoothly with R because of the
Wwide spread of f(t).

The exponential ransmission delay function presents a

Wwide delay distribution but does not Incorporate a minimum

delay, opposite to a constant f(t), There is no optimal

operating point on the throughput vs. delay curves shown in

flgure 11, but rather a smooth tradeoff of throughput for delay.

3.3 Erlangian Transmission Delay

The Erlangian distribution represents a more realistic
transmission delay, including a minimum transmission time,
moderate variance, and a small but long tail. Actually the
Erlangian is a family of distributions, with mean determined by

the parameter u and variance by the "shape" parameter k:

k-1 ~keue t
{ (1-LS) « (keu) + (keuy-t) ‘e Dstew
{ (k=1)!
f(t)s {

{ LS (unit impulse at te=w)

The mean of the Erlangian distribution is 1/u uhile the variance
With mean of unity is just 1/k. This family conveniently models
a uide range of delay distributions from exponential (kel) to
constant (k+w). Figure 12 shous the Erlangian f(t) wuith meansl

and k=1,4,16.

100

FIGURE 12 ERLANGIAN PROBABILITY DENSITY FUNCTION, f(t), WITH MEAN = 1
AND SHAPE PARAMETER k = 1, 4, 16

Retransmlssion Page 101

Several authors have measured ARPANET mean delay times
under various conditions [Kleinrock74a, Cole7l, Naylor73] and
more recently Forgie (1975) has obtained transmission delay
distributions under a limited set of circumstances. Even under
these |imited circumstances, there is considerable variation in
the spread of the delay distribution, but the Erlangian
distribution with k=16 provides a reasonable approximation to
real network transmission characteristics while remaining
computationally manageable. As uwe shall see below, protocol
performance is relatively insensitive to the exact shape or
variance of f(t) as long as the variance is not larger than one,

so a perfect representation of netuwork delay is unnecessary.

Figure 13 shous the successful transmission delay

distribution g(t) resulting from an Erlangian f(t) with mean=]
and k=16. Figure 14 shous the cumulative delay distribution .
G(t) for several retransmission intervals R and loss
probabilities LS. Again smaller R and LS move the distribution
to the left (shorter times) although not as much as with
exponential f(t).

Figure 15 shous mean delay DL as a function of R for
several LS. Results from the previous section are shown dotted
for comparison. The Loss factor and the OR factor both serve to
reduce delay for small R, but the OR factor is much less
pronounced than for exponential f(t) since the delay density is

more concentrated about the mean. For large R, mean delay again

102

FIGURE 13 SUCCESSFUL TRANSMiSSION DELAY PROBABILITY DENSITY FUNCTION, g(t),
FCR ERLANGIAN TRANSMISSION MEDIUM DELAY WITH MEAN =1 AND k = 16

5 PACK:T L@S. PREBBAGILITY LL-L
RETRANSMI. CIEN INTERVAL R-5,.,.0

———

*

(b) RE TRANSMISSION INTERVAL R-,
PACKET L@SS PREBABILITY 15-0,.2,.4

T = | a

103

FIGURE 14 SUCCESSFUL TRANSMISSION DELAY CUMULATIVE DISTRIBUTION, G(t), FOR
ERLANGIAN TRANSMISSION MEDIUM DELAY WITH MEAN =1 AND k = 16

(8) PACKET L@SS PROBABILITY LS-0
RETRANSMISSION INTERVAL R-5.1,.5

e e - -

——y
Ir 4
|
{
1
4
Nt
o , .
|
-+
1 i P | Rl Py ¥ Trmp ey GhE |
] E 3 4
T 7T
IME t
U #ETRANGMISCIAN INTERVAL =t
PALEET LUST PRBEARIL Ty L8=0,.2,.4
rd
/ (e
/
i
{
k ! 1
) | |
D i
[
}
|
[
|.'r :
| | PP | N—. -4 - PO —
[E 4

FIGURE 15

MEAN DELAY DL vs.
RETRANSMISSION INTERVAL
R FOR ERLANGIAN
TRANSMISSION M EDIUM
DELAY WITH MEAN =1

AND k =16

FIGURE 16

THROUGHPUT FACTOR
TPretrans vs. RETRANSMISSION
INTERVAL R FOR ERLANGIAN
TRANSMISSION MEDIUM DELAY
WITH MEAN =1 AND k = 16

FIGURE 17

MEAN DELAY DL vs.
THROUGHPUT FACTOR
TPretrans FOR ERLANGIAN
TRANSMISSION MEDIUM
DELAY WITH MEAN =1
ANDk =16

HMEAN DELAY DL

GHPUT TPret:

T L"’(L"

MEAM DELAY OL

—p———— - - e ————— -

Sk
—— EHLANG]AN
[.. LXPRNENTIAL
2
|
3 :--"" T
1 }’ .:_,a"é—-ﬁ e -
Sel
| &
| .S ~ PROBABILITY OF PACKET LOSS
OF
S . " . v Iy [\
) } 2
RE TRANSHMISSIBN INTERVAL R
\
(4 acy leny
[LS. LT
' Ge
} LS=- 4
t
.
' Y
i
-/
t
ot [_.L — i 5 el =
i &
RETRANSMISSION INTERVAL R
I+
— WL AR 5 4
1 ExbANENT A

¥ q,.\" _,1.1..4 T

Retransmission

Page 105

approaches ﬂthe upper bound proportional to R as for a constant

f(t) wuhere the OR factor dces not contribute at all.,

Figure 16 shows mean throughput TPretrans as a function
of R for several LS. Throughput resulting from the moderate
variance Erlangian f(t) with k=16 is already approaching the
step-like behavior derived for a constant f(t), with faster
approach to the limiting throughput for R>l than with the wider

exponentlal f(t).

Finally, flgure 17 shous delay versus throughput
resulting from the Erlangian f(t) with mean=l and k=16. For
nonzero packet loss probabilities, a definite "knee" occurs
because delay {ncreases linearly with R while throughput quickly

approaches its maximum with increasing R.

3.4 Results

We have examined PAR protocol performance resulting from

varying the retransmission interval R wWwith a wide range of

transmission delay distributions f(t) and packet loss

probabilities LS. Mean delay DL rises linearly with R and LS
for realistic values as expected in a "repeat until success"
system. For R<l, DL drops somewhat more quickly due to the OR

factor described above. However, thils effect is only

significant with high variance f(t), and is accompaniid by a

large increase In the average number of transmlssions required,

and hence a decrease In attainable throughput.

Retransmission Page 106

A throughput factor TPretrans equal to the inverse of

the number of transmissions required was defined and represents

the max i mum aQerage throughput attainable with a given R, tak ing

into account the fraction of bandwidth used in retransmission.
TPretrans asymptotically approaches its maximum of 1/(1-LS) for
large R. With realistic f(t) this results in the "knee" or
optimal performance area observed in delay versus throughput
curves. The location of this knee is determined primarily by
the mean and variance of f(t), and not by loss probability LS.
The knee is sharpest for small variances and occurs at a value
of R such that R is also the knee of the F(t) curve (i.e. the
packet has almost certainly arrived if it is going to arrive, by
time R after transmission).

In summary, the best strateqy for choosing a
retransmission interval R is to set R equal to the time when

"most" transmissions would have succeeded if there Were no lost

or damaged packets. Larger R brings minimal improvement in

attainable throughput while increasing delay. Smaller R brings

significant throughput degradation with minimal decrease in
delay. However, for low total throughput requirements, mean
delay may be reduced by using a smaller R, but with a
substantial cost in additional retransmission.

For realistic error rates (LS<<l), mean delay is qui te

insensitive to R, so a relatively wide range of R is near

optimal. Since network transmission delay varies with time,

T AT DT T m——

Retransmission Page 107

using a somewhat larger fixed R is probably a good heuristic to
stay in the high throughput portion of the performance curve. R
may also be set dynamically on the basis of observed
transmission delays.

We are now able to include the effects of retransmission
and overhead in protocol performance. Equation 6 gives the
delay resulting from choice of R. The maximum average
throughput attainable, TPmax, is a product of the overhead
factor TPoh from equation 3, the retransmission factor TPretrans

from equation 8, and the transmission medium bandwidth B:

TPmax = TPoh . TPretrans - B (9)

Flow Control 108

4. FLOW CONTROL

In section 3 we found the throughput limitation due to
retransmission of packets by deriving the -action of available
banduwidth consumed by retransmissions. Another throughput
limitation results when roundtrip delay is large relative to
packet transmission tine as is frequently the case in packet
switching networks. In this case, the sender may be idle a
large fraction of the time waiting for an acknow|edgement.

To achieve higher throughput, the sender may be allowed
to transmit multiple packets before receiving any
acknowledgements, Since each outstanding packet requires buffer

storage and other source resources, an importatant efficiency

question becomes how large must the "window" of al lowed

transmissions be in order to achieve maximum throughput?

For several reasons it is also desirable and even
imperative for source transmission rate to be limited. The

transmission medium itself may become congested due to excessive

traffic from all Hosts it serves, requiring some means of
congestion control to limit entering traffic. Several

techniques have been proposed to deal with network congestion
(Kahn?72, McQui | 1an72, Davies72, Pouzin73b, Belsnes74,
Crowther75]. These constraints are generally enforced by the
transmission medium and are not under control of a communication

protocol so we do not discuss them further.

Flow Control 109

More relevant to this study, transmission rate betueen
each sourcé and degtination process must be controlled to match
a sender’s production rate to the recelver's consumption rate,
minimlzing buffer storage and banduidth r