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A This paper introduces a new approach for combining the integral equation and high
frequency asymptotic techniques, e.g., the geometrical theory of diffraction. The
method takes advantage of thé fact that the Fourier transform of the unknown surface
current distribution is proportional to the scattered far field. A number ‘of asymp-
totic methods are currently available that provide good approximation to this far field
in a convenient analytic form which is useful for deriving an initial estimate of the
Fourier transform of the current distribution.

An iterative scheme is developed for systematically improving the initial form of
the high frequency asymptotic solution by manipulating the integral equation in the
Fourier transform domain.

A synthetic-aperture-distribution scheme is also developed in which the approxi-
mate scattered far-field pattern obtained by asymptotic techniques is improved by sys-
tematically correcting the scattered field distribution on an aperture erected in jux-
taposition with the obstacle. The introduction of such a planar aperture not only pro-
vides an additional degree of freedom in performing improving operations, but also
renders the scheme to handle n-dimensional geometries by (n - 1)-dimensional fast
Fourier transform (FFT), where n = 2, 3, and circumvents the unwieldy three-dimensional
FFT, making it a conceptually simple and computationally efficient method. ¢

A salient feature of the method is that it provides convenient validity checks of
the solutions for the surface current distribution and the scattered far-field pattern
by verifying that the scattered field obtained indeed satisfies the boundary conditions
at the surface of the scatterer. Another important feature of the method is that it
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Diffractions by a strip, a thin plate, a rectangular cylinder, and a circular
cylinder are presented as illustrative examples that demonstrate the usefulness of the
approach for handling a variety of electromagnetic scattering problems in the resonance
region and above. Some concluding remarks and comparison with other methods are also

included.
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PREFACE

A little over a century ago, Maxwell put together the fundamental
laws that govern all the electromagnetic phenome:.. in an amazingly
elegant form, i.e., the set of equations named after him. Ever since
then, the major contributions in the field of electromagnetics have been
solving boundary value problems, or seeking solutions which satisfy
the Maxwell's equations and match the boundary conditions (including
radiating conditions as special cases)in specific environments under
consideration.

The dyadic Green's functions technique, an elegant and powerful
method for solving boundary-value problems, was first formulated by
Schwinger in the early 1940's. However, solutions obtained by that
technique are extrepely complicated and are not always best suited for
numerical computations.

In the late 1950's, Keller conceived the concept of a diffraction-
coefficient approach to the high-frequency scattering, and was able
to obtain approximate solutions for far-field patterns in a very simple
and straightforward manner. Although his method fails at certain aspect
angles in space, it has been applied to solve many practical problems.

In the 1960's, the moment method became popular due to the avail-
ability of the large scale computer systems. However, for electrically
large scatterers, the moment method is limited by the storage of a
computer.

In the early 1970's, a trend of combining the Keller's geometrical
theory of diffraction with the moment method to solve high-frequency
scattering problems was initiated. However, a general approach

for combining the two techniques has yet to be developed.
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It is the purpose of this study to introduce a method of combining
the integral equation and asymptotic techniques for solving electro-
magnetic scattering problems. The method is conceptually simple and
computationally efficient. Comparisons with contemporary combinational
approaches show that the method, when fully developed, appears to be
highly promising in solving practical problems. Of course, this thesis
is merely a start, and there is much left to be studied and investigated.
It is the author's hope that future research activities along the same
lines as described herein will result in not only a feasible but also

a practical way of handling real-world high-frequency scattering problems,



ABSTRACT

This paper introduces a new approach for combining the integral
equation and high frequency asymptotic techniques, e.g., the geometrical
theory of diffraction., The method takes advantage of the fact that the
Fourier transform of the unknown surface current distribution is pro-
portional to the scattered far field. A number of asymptotic methods
are currently available that provide good approximation to this far
field in a convenient analytic form which is useful for deriving an
initial estimate of the Fourier transform of the current distribution.

An iterative scheme is developed for systematically improving the
initial form of the high frequency asymptotic solution by manipulating
the integral equation in the Fourier transform domain.

A synthetic-aperture-distribution scheme is also developed in which
the approximate scattered far-field pattern obtained by asymptotic tech-
niques 1s improved by systematically correcting the scattered field
distribution on an aperture erected in juxtaposition with the obstacle.
The introduction of such a planar aperture not only provides an additional
degree of freedom in performing improving operations, but also renders
the scheme to handle n-dimensional geometries by (n - 1)~dimensional
fast Fourier transform (FFT), where n = 2,3, and circumvents the un-
wieldy three-dimensional FFT, making it a conceptually simple and com-

putationally efficient method.

ix



A salient feature of the method is that it provides convenient
validity checks of the solutions for the surface current distribution
and the scattered far-field pattern by verifying that the scattered
field obtained indeed satisfies the boundary conditions at the surface
of the scatterer. Another important feature of the method is that it
yields both the induced surface current density and the far field.

Diffractions by a strip,a thin plate, a rectangular cylinder, and
a circular cylinder are precanted as 1llustrative examples that demon-
strate the usefulness of the approach for handling a variety of electro-
magnetic scattering problems in the resonance region and above. Some

concluding remarks and comparison with other methods are also included.



3.

TABLE OF CONTENTS

INTRODUCTION. « « & ¢ ¢ « ¢ o o o &
FORMULATION OF AN ITERATION METHOD.

2.1 Derivation of the Method . . .
2.2 Recipe for Applying the Method

DIFFRACTION BY AN INFINITE STRIP. .

Introduction . « « ¢« ¢« & « & o
Geometry of the Strip Problem.

3.4.1 Normal incidence. . . .
3.4.2 Near grazing incidence.

3.5 Summary. . . . . ¢ 4 0 e e .
DIFFRACTION BY A FINITE THIN PLATE.

4.1 Introduction . « « ¢« « &+ ¢ o @

1
2
3 Iteration Method Applied to the Strip Problem.
4 Numerical Results and Discussions. . « « « « .

4,2 Iteration Method Applied to the Plate Problem.
4.3 Numerical Results and Discussions. . ¢« « « « &

A NEW LOOK AT THE SCATTERING OF A PLANE WAVE BY A

RECTANGULAR CYLINDER. .+ « « & « o &

5.1 Introduction . . ¢« « + ¢« &+ ¢ &
5.2 Formulation. . « « ¢« ¢« o o o &

5.2.1 Pole singularities in the diffraction

co-

efficients. ¢« « « +v o ¢ o ¢ o ¢ o ¢ o 0 0o 0 o0
5.2.2 Pole singularities in the physical optics

CUFTENES: &+ ¢ o« o o o o o » o ¢ o o o o o s s o
5.2.3 Discontinuities in the far-field pattern at ¢ =

%,ﬂ,andglo.............-...

5.2.4 Physical interpretation of the existence of the
discontinuities in the far-field pattern at ¢ =

3
12[’ ‘"’ and Elt LI ] e s @ " e 8 & o e ¢ e & s s @

5.3 Improved Far-Field Pattern and
Obtained by Other Approaches .

w
.
o

Accuracy Check « « « « « « « &

5.4.1 Method of computation .
5.4.2 Results and comments. .

5-5 sumarYO e 9 2 e s o e . s o o

Comparison with

Results

xi

Page

11
11
11
12
16

16
18

25
30
30
31
38
47
47
49
35
39

72

76

90
95

96
99

102



6. A SYNTHETIC-APERTURE-DISTRIBUTION APPROACH TO THE HIGH-
FREQUENCY ELECTROMAGNETIC SCATTERING OF OBSTACLES WITH
CONVE“Y CURVED SURFACE L4 L4 L] L] * L] L ] L ] ] . L] L] . L] L L] . L] L ] L]

Introduction. « ¢« « ¢« « o o o o o
Exact Solution. . « « ¢ ¢ ¢ o o &

6.
6.
6.3 Geometrical Optics Solution . . .

WK

.3.1 Flelds of aray. . . . . .
.3.2

two different media. . . .

.2 Reflection at a curved surface boundary separating

6.3.3 Scattering of a plane wave by a circular

cylinder . . . « « « « .+ .

6.4 Synthesizing the Approximate Aperture Field Distribution.

4.1 Method I . . .
4,2 Method II. . .
4.3 Method III . .
4.4 Method IV. . .
4,5 Method V.. . .

.
.
.
.
.

6.5 Computation of Induced Surface Current. . . . « « . « .« &

6.5.1 Method of computation. . .
6.5.2 Results and comments . . .

6.6 Accuracy Check. . . ¢« +« « « &« .+ &
6' 7 Summary L] . L] . . . L] L] L) L] . L] [ ]

7. CONCLUDING REMARKS « ¢ « + « o o o o &

REFERENCES ¢ o e o o o o o & ° s s e e s

APPENDIX A -- UNDERSTANDING AND APPLYING THE

TRANSFORM: + « « &+ ¢ ¢ o o &

1 The Discrete Fourier Transform. .
2 Properties of the DFT . . . . . .
.3 Fast Fourier Transform Algorithms
4 Employing FFT Subroutines . . . .

FAST FOURIER

x1ii

Page

104
104
111
118
118
126
129
132
135
138
141
147
153
169

170
173

177
181

183
188

191

192
194
196
198



xiii

LIST OF FIGURES

Figure Page
3.1. Diffraction by a strip illuminated by an E-wave. . . . . . 13

3.2. F{x) can be approximated by the GID solution to the half-
plane problem (a) shown on the left-hand side; F,(x) can
be approximated by the GTD solution to the half-plane
problem (b) shown on the right-hand side . . . « +« « « .+ . 13

3.3. Magnitude of the induced surfgce current density distri-
bution normalized to (ik ZO)' on the strip of
ka = 4, (L2739 wide), 9= 90° . o v ot bt .. L. 1T

3.4. Magnitude of the induced surfice current density distri-
bution normalized to (ikozo)' on the strip of
ka = 40. (12.73% wide), 65 = 90%. . . . ... ... 19

3.5. Moment method (applied in the spectral domain) solution
of the magnitude of the induced surface current density
distribution normalized to 1/Z, on the strip of
ka = 50. (15.921 wide), ¢, = 50°. . . . ... ... .. 20

3.6. Magnitude of the scagtered E-field evaluated on the strip
of ka = 40., ¢0 = 90" (one iteration). . « . ¢ ¢ ¢ & o o 21

3.7. Magnitude of «he induced surfice current density distri-
bution normalized to (ik Zo)' on the strip of
ka = 40., ¢0 = 10° (no igeration). P loo 008 00 0 22

3.8. Magnitude of the scattered E-field evaluated on the strip
of ka = 40., ¢0 = 10° (no iteration) . . « ¢« ¢ ¢ ¢ ¢ ¢ « 23

3.9. Magnitude of the induced surface current density distri-
bution normalizedoto (1k.Z.)"1 on the strip of
ka = 40., ¢0 = 10" (one Itération) « « ¢« ¢ ¢ ¢« &+ o ¢ o ¢ o 24

3.10. Magnitude of the scattered E~field evaluated on the strip
of ka = 40., ¢0 = 10° (one iteration). « « « ¢« v ¢ o &+ o 26

3.11. Magnitude of the induced surfice current density distri-
bution normalized to (ik.Z.)"* on the strip of
ka = 40., ¢O = 10° (two Ttérations). « « + o« « o o o o o o 27

3.12, Moment method (applied in the spectral domain) solution
of the magnitude of the induced surface current density
distribution normalized to 1/Z0 on the strip of
ka = 50., 60 = 5% ¢ 0 Lo e e 28

4.1. Diffraction by a finite rectangular thin plate illu~
minated by a normally incident plane wave with
polarization @s ShOWN. &« « « o « « o ¢ o o o o o o o o s o 32



xiv

Figure Page

4.2, Regions in the z = 0 plane in each of which the zero-
order approximation of the scattered field is ob-
tained according to Table 4.1. ¢« « « « o ¢ « o « o ¢ o o 32

4,3a. Magnitude of the drominant x-component of the surface
current density on a 1A x 1A plate (ka = 3.14) with
normal incidence; plate region: xe(-1,1), ye(-1,1) . . . . 39

4.3b. A 90° rotation of the surface current in Figure 4.3a . . . 40

4.4a. Magnitude of the dominant x-component of the surface

current density on a 2X x 2\ plate (ka = 6.28);

plate region: xe(-1,1), ye(~1,1), normal incidence

with %-polatiZation: . = s 6 & s s G =5 & » 8 & ap o & » 41
4,4b., Magnitude of the dominant x-component of the surface

current density on a 3\ x 3X plate (ka = 9.43);

plate region: xe(-1,1), ye(-1,1), normal incidence

with X-polarlization. « o « & "o olewbis ol o e o o oue o d 42

4.4¢, Magnitude of the dominant x-component of the surface
current density on a 4\ x 4) plate (ka = 12,6); plate region:
xe(-1,1), ye(-1,1), normal incidence with x-polarization . 43

4,5a. Magnitude of the cross-pclarized component of the
surface current density on a 1\ x 1\ plate (ka = 3,14);
plate region: xe(-1,1), ye(-1,1), normal incidence
with) x=polfarizatione e @ s « Glle el o0 & wsrfle b, 6 sk ol o) suwe) 45

4.5b, Magnitude of the cross-polarized component of the
surface current density on a 3X x 3X plate (ka = 9.43);
plate region: xe(-1,1), ye(-1,1), normal incidence
with x-polarization. . « ¢ « o ¢ ¢« ¢ o ¢ ¢ o s o o ¢ o+ & & 46

5.1. Diffraction by a rectangular cylinder illuminated by an
H-polarized plane wave incident at an angle ¢0 0 JORo O O & 50

5.2, Geometry of a perfectly conducting wedge immersed in a
uniform H-wave in the canonical wedge diffraction
problem . L] L] L] L] L] . [ ] L] . . . L] L] . L] . L] L] * . . . . L] [ ] 5 2

5.3. For the angle of incidence ¢, as shown, wedges 1, 2,
and 3 are illuminated while wedge 4 is in the dark . . . . 54

5.4a. Physical optics current Jiig' on the illuminated sur-

face Aof wedge 1. o v ¢ s ¢ ¢ ¢ o o o ¢ o o 0 0 0 o o 61

5.4b. Shadow and reflection boundaries predicted by geometrical
optics for wedge l L] L] L] L] . L] L ] L] . L] L] L] . L] L] L] * . L] . 61



Figure Page
Piol PcOo

5.5a. Physical optics currents J 2 and J B2 ©°n the

illuminated surfaces A andxﬁ of wedgz 3, respectively. . . . 62
5.5b. Reflection boundaries predicted by geometrical optics

for wedge 2. . [ ] L] . L] . . L] L] L] . L] L4 L] L ] . L] L] . L] . L] . * 62
5.6a. Physical optics current Jpég’ on the illuminated

surface B of wedge 3 . . e B o ok B i TR 63
5.6b. Shadow and reflection boundaries predicted by geometrical

optics for wedge 3 L . . . L] L] . L] . L] . L] L] L] L[] L] L] L] . L] L] 63

5.7. Diffracted far-field pattern of the rectangular cylinder
obtained by using (5.4); ¢0 =n/b, a=b=1X. . . 4 4 4 4 70

5.8. GTD diffracted far-field pattern of the rectangular
cylinder; ¢o = "/4’ a = b = lk L] . L] L] L] L ] L L] L] L] . [ ] L] [ ] . 71

d d

5.9a. J oJ contribute to the discontinuities in the

yD1’"xAl 3

far field at ¢ = E—;¢ = 0, respectively. . « « « « ¢« ¢ o . & 77
5.9b. JsBZ’JiAZ contribute to the discontinuities in the

far field at ¢ = %1.¢ = 7, respectively. « . « ¢+ ¢ ¢ o ¢ o & 78
5.9c. J:C3’J3B3 contribute to the discontinuities in the

far field at ¢ = 7,9 = %3 respectively . « . ¢« . « ¢« s 4 . & 79

5.10, Improved scattered far-field pattern of the rectangular
cylinder; ¢0 = “/4' a = b = lx L] L] . . L] L] L] . L] L] L] L] L] . L] 92

5.11. Scattered far-field patterns obtained by other approaches. . 94

5.12. Scattered far-field pattern in the hemisphere is used
to obtain the scattered E-field on the aperture. . . . . . . 97

5.13a. Magnitude of the scattered E-field on the aperture shown
in Figure 5.12, truncated to the surface of the rec-
tangular cylinder. « + « &« « ¢ ¢ ¢ ¢ ¢ o o o s o o 0 o o . o 100

5.13b. Phase of the scattered E~-field on the aperture shown in
Figure 5.12, truncated to the surface of the rectangular
cylinder L] . L] . L) . L] L) L] . L] L] L] . L] L] L] L] L] L) . L] [ ] . L] L[] 101

6.1. Diffraction by a circular cylinder illuminated by an
E—wave incident along the X-axis e ® ® 8 & 8 8 8 s & s & & ® 112

6.2a. Exact scattered far-field pattern in dB of a circular
cylinder with ka = 1 . . . . . o v v v ¢ s o o s o s 0 o o o« 114

6.2b. Exact scattered far-field pattern in dB of a circular
cylinder with ka = 5 [ ] [ ] . L ] L] L] L] L] L] L ] L L] . L] ] [ . * L] L] 115



Figure

6.2c.

6l2d.

6. 380

6.3b.

6.4,
6.5.
6.6.
6.7a.
6.7b.

6.8.

6.9.

6.10.

6.11.

6.12.

6.13.
6.14,

6.15.

6.16.

6.17a.

6.17b.

Exact scattered far-field pattern in dB of a circular
cylinder With ka L 10. L] L] L] L] L] . L] L] L] . * . L] . L] L] .

Exact scattered far-field pattern in dB of a circular
Cyl inder with ka - 6”. . L] (] [ ] [ ] L] L] L] L[] L] [ ] [ ] L] L] L] L] L[]

Magnitude of the total induced surface current on a

circular cylinder with radius a = 31 , , , ,

Phase of the total induced surface current on a circular

cylinder with radius a = 3A, . . . « « ¢ ¢ o ¢ « ¢ s & o

Rays of a point source. « . . . « .
Tube of rays from a point source. .
Astigmatic ray tube . . . . . . . .
Coordinate system . + o+ o « o o o &

Reflection from a curved surface. .

Geometry of the scattering problem of
cylinder (] L] L L] . . L] . L] . . [ ] L] L] L] . L ] L2 L ] * .

Geometrical optics scattered far-field pattern in

*

a

circular

Exact scattered electric aperture field in the
geometrical optics shadow region. . . . . « . <« ¢ & o

dB of
circular cylinder with radius a = 3, . . . « . ¢« &+ + &

Scattered far-field patterns in dB of a circular cylinder
with radius a = 3) obtained by Methods I and II . ., . . .

Scattered far-field patterns in dB of a circular cylinder
with radius a = 3\ obtained by Methods III and IV . . . .

A Gaussian pulse . . . . . + & . &

Fourier transform of the Gaussian pulse in Figure 6.13.

Locations of the basis functions on the aperture and
the testing functions on the surface of the obstacle. .

Aperture for the hemisphere of a testing function Pm. ¢

Scattered far-field pattern in dB of a circular cylinder

with radius a = 3\ obtained by Method V. . « ¢ & &« &+ &+ + &

Scattered far-field pattern in dB of a circular cylinder

with radius a = 6A obtained by Method V. . . « « . « . &

xvi

Page

116

117

119

120
121
122
124
127

127

130

133

136

139

145
157

159

160
162

167

168



xvii
Figure Page

6.18, Aperture for hemisphere of point Q at which the induced
surface current is evaluated. . « + + « ¢ s ¢ o ¢ o o s ¢ o 171

6.19., Total surface current on a perfectly conducting
circular cylinder with radius a = 3A. . . « + « &« o o ¢ o 174

6.20. Burnside's MM-GID solution for the induced surface
current on a circular cylinder with radius a = 4\ . . . . . 176



Table

4.1

5.1

6.1
6.2

A.l

LIST OF TABLES

Page
THE ZERO-ORDER APPROXIMATION OF é(Fx(x,y)) IN VARIOUS REGIONS
EXTERNAL TO THE PLATE OBTAINED VIA THE USE OF GTD METHOD. . . 36
POLE SINGULARITIES AT SHADOW AND REFLECTION BOUNDARIES THAT
HAVE BEEN SUBTRACTED FROM THE PERTINENT DIFFRACTION CO-
EFFICIENTS (S. B.: SHADOW BOUNDARY, R. B.: REFLECTION
BOUNDARY) L L] . . . L[] . L] . L] L] . L] L] L] L] L ] L] » . . . L] . L] . 60
ACCURACY CHECK RESULTS FOR THE A = 3X CASE. +. + ¢ &+ ¢ o & o » 180
ACCURACY CHECK RESULTS FOR THE A = 6)A CASE. . ¢ « &« ¢ ¢ o o 180
FFT SUBROUTINES L] L] L[] L] L] L] L] L] * . L L] L] L] L] L] L] [ L] L] L] L[] L] 199

o s e i e e z e e o }

é PRECENTN] DAAR RLAMYZ..NAT PTIMEND

T T .
}\" X
R Bt A s Lt M 4 Dy s P |



1. INTRODUCTION

It is well-known that the integral equation methods are limited
in application to scatterers whose characteristic dimensions are of
the order of one wavelength or less. On the other hand, the high-
frequency asymptotic techniques can be reliably used only when the
scatterer is large compared to the wavelength, and neither of the above
two methods is suitable in the resonance region.

This thesis introduces a new hybrid technique,1 based on a com-
bination of the integral equation and asymptotic methods, that is use-
ful in the entire frequency range encompassing the resonance region
and above. Another important feature of the method is that it can be
used to check and improve the accuracy of high-frequency asymptotic
solutions. Such an accuracy test and systematic improvement of the
asymptotic solution are often needed, but no reliable methods for per-
forming these are available at the present time.

In contrast to the ray optics methods, which are based on the dif-
fraction of ray fields as determined by the local properties of the sur-
face of the scatterer, the present method starts with the integral
equation formulation incorporating the boundary conditions on the entire
surface of the scatterer. Conventionally, th~ solution of the integral
equation for the induced surface current is carried out by matrix methods
(1], [2]. The size of the matrix becomes prohibitively large and its
solution extremely time-consuming when the characteristic dimension of

the scatterer approaches the wavelength of the illuminating field.

1The original concepts on which this thesis 1s based were described at the
1975 URSI Symposium in a paper entitled, "A new method for improving the
GTD solution via the integral equation formulation," by R. Mittra and

W. L. Ko.



The approach developed in this thesis circumvents this difficulty
while still preserving the self-consistent nature of the integral equa-
tion formulation by constructing the solution in the Fourier transform
or spectral domain rather than in the space domain. We take advantage
of the facts that the Fourier transform of the surface current distribu-
tion 78 directly proportional to the far scattered field and that the
asymptotic methods often provide a very good initial estimate of the
latter quantity. We next construct an iterative2 solution of the in-
tegral equation in the transform domain with the GTD3 or other high-
frequency solution as the zero-order approximation.

As shown in the thesis, this procedure not only allows us to im-
prove on the GTID or similar solutions but also provides a convenient
means for testing the satisfaction of the boundary conditions on the
surface of the scatterer. Furthermore, the method yields not only the
far field but also the induced surface-current distribution, a feature
not readily available in some other high-frequency techniques.

A detailed derivation of the iterative method is presented in
Chapter 2. A step-by-step recipe for applying the iterative scheme
to construct the solution of the induced surface current can also be
found in Chapter 2.

The application of the general procedure outlined in Chapter 2 is

illustrated by two examples: the two-dimensional problem of a plane

2A moment method solution in the spectral domain has also been devel-
oped (see [3 ]).

3For a comprehensive discussion of the Geometrical Theory of Diffraction
(GTD) and its application, see R. G. Kouyoumjian, Chapter 7 of Numerical

and Asymptotic Techniques in Electromagnetics, R. Mittra (Ed.),
Springer Verlag, 1975.



wave diffraction by a strip and a three-dimensional problem of a plane
wave diffraction by a thin plate.

In Chapter 3, the iteration procedure is applied to solve the strip
problem, This problem was chosen for the following reasons: It is shown
that when the angle of incidence is normal or near normal, the GTD solu-
tion accurately satisfies the boundary condition Etan = 0 on the strip
even when the multiple interaction between the two edges of the strip
is neglected. However, it is found that when the angle of incidence is
near grazing, the GID solution is quite unsatisfactory, while the it-
erated solution generated by the hybrid technique does display the cor-
rect behavior,

In Chapter 4, the iteration procedure is applied to solve the plate
problem. This problem was chosen for the following reasons: In the
plate problem, the difficulty in applying GID to this geometry stems
from the fact that the diffraction coefficient for the corners of the
plate is not known and neglecting the corner effects can cause substan-
tial errors in the resonance frequency region where the plate size is of
the order of one wavelength squared. However, the present technique,
based on a combination of the integral equation and asymptotic methods,
does allow the successful computation of the induced surface currents
on the plate.

In Chapter 5, diffraction by planar surface solid scatterers with
multiple edges, e.g., a rectangular cylinder,is considered. A technique
which is based on a representation of the scattered fields in terms of
the spectrum of the induced surface current on the scatterer rather

than the rays emanating from it is discussed. The scattered far-field



obtained by this technique compares extremely well with that obtained
from the moment method solution for thirty-two unknowns. Comparisons
with results obtained by other approaches in the literature [4 ] can

also be found in Chapter 5.

In Chapter 6, the method for combining integral equation and asymp-
totic techniques for solving electromagnetic scattering problems of a
convexly curved surface scatterer, e.g., a circular cylinder,is devel-
oped. Detailed descriptions of the synthetic-aperture-distribution
approach are documented, and comparisons with other methods [4 ], [5 ],
that have been developed recently for solving problems of a similar
nature are also included in Chapter 6. The idea is to transfer informa-
tion characterizing the curved surface onto a planar aperture where
operations for improving the high-frequency asymptétic solution are
carried out. A salient feature of the method is that the far field is
obtained by Fourier transforming the aperture-field distribution; hence,
it can handle problems of an n-dimensional obstacle by an (n - 1)-
dimensional fast Fourier transform (FFT), where n = 2,3. Therefore, the
unwieldy three-dimensional FFT is circumvented; hence, the method is
numerically efficient. Moreover, the method is conceptually simpler
than other conventional methods because operations for improvement are
carried out on a plane rather than on a curved surface.

In Chapter 7, concluding remarks are made and future research
activities along similar lines based on the present approach are recom-
mended.

In this method, the fast Fourier transform [6 ] is a necessary

tool; hence, a brief discussion on FFT is presented in Appendix A.



2. FORMULATION OF AN ITERATION METHOD

2.1 Derivation of the Method

We begin our analysis with the electric-field integral equation
[7 ] for a perfectly conducting scatterer. The equation may be sym-

bolically written as
= - -1 -
(G * J)t = -Et . resS (2.1)

where J(r') is the induced surface current density we are attempting

to determine, and the subscript t signifies tangential to the surface S;

i

= is the tangential component of the incident electric field Ei on the

E
surface S of the scatterer; and G is the free space Green's Dyadic, which
yields the scattered electric field when operating on J. 1In anticipation of
Fourier transforming (2.1), we extend it over all space by first defining

a truncation-projection operator 8 as follows:

For any vector K(;), which is a vector function of position E,

8(A)=[A 8(r -1 )dr , T €S (2.2a)

where &(r - ?s) is the Dirac delta function and the subscript t sig-
nifies tangential to the surface S. Also its complementary operator

8 is defined as
We can then rewrite (2.1) as

G*J= 6(—§i) + 8(G * (8J)) , for all space . (2.3)



As indicated above, (2.3) is valid at all observation points whether
on or off the surface S. Note that the integral equation (2.1) is em-
bedded in (2.3) and that we have made use of the obvious identity 6J = J.

Next we Fourier transform (2.3) by introducing the transform re-

lationships

Fk) = {: P T g7 - FlEE)) (2.4a)
and

F(E) = o) f: P T 4k - FlF®) (2.4b)

with ~ on top denoting the transformed quantities.

The transformed version of (2.3) reads
Gl = B+ F (2.5)

where § = F[é(a * (8J))] and EI is the transform of the tangential com-
ponent of the incident field truncated on S. Note that the convolution
operation in (2.3) is transformed into an algebraic product upon Fourier
transformation.

A formal solution to (2.5) can now be written

2 ] = =

J =G (-EI + F) . (2.6)
Equation (2.6) says that if we had available the Fourier transform of

the scattered electric field, we could construct the solution for the

induced surface current density in the transform domain by adding it



to -EI' which is known, and by performing an algebraic division repre-
sented by é-l. In practice, of course, % is not known and must be solved
for along with j if (2.6) is to be used in the form as shown. However,
instead of using this form, we proceed to derivé an iterated form of

the equation as shown below:

D) G-, + Fn)y (2.7)

which indicates the (n + 1)th approximation of J from the nth approxi-
F(m)

mation for F. We next show how F( n) itself can be derived from J

To this end, we use the identity
F = FIFLET) - o HEID) (2.8)

which may be verified by writing (2.8) as

~

FaFIE*T - o(-Eh) (2.9)
and using (2.3) to get
F = F[8(E * (61))] (2.10)

which, of course, is the definition of F. We can now use (2.8) to de-
rive the nth approximation F(n) of F from the nth approximation of J,

i.e., 3(n). The relationship is written as

FO o &™) - e L& ™y (2.11)

% (n+1)

The desired iteration relating J and J( n) may now be written.

Using (2.7) and (2.11)

3D L g 4 8™ - e ME ™ (2.12)



2.2 Recipe for Applying the Method

The step-by-step procedure for constructing the solution of the
transformed surface current J will now be glven:

1. Begin with an estimate of 3(0)

, which 1is the Fourier trans-

form of the induced surface current, or equivalently, the

scattered far field within a known multiplicative constant.

Typically, the initial approximation for 3, viz., 3 (0), can be cb-

tained as follows:

(a) Estimate %, the Fourier transform of the scattered field, f,
outside the scatterer, using GTD or other asymptotic solutions.4

(b) Subtract ﬁI’ the Fourier transform of the tangential component
of the incident electric field truncated to the surface of the
scatterer,

(c) Multiply the result of Step (b) by é-l. Note that g-l is
known and the operation is algebraic.

(d) Take the inverse Fourier transform of the result of Step (c)
and truncate it to the surface of the scatterer to obtain

3(0), the initial approximation for Jis

2. Multiply 3(0) by G, the known transform of the Green's Dyadic.
Note this involves algebraic multiplication and not the usual

time-consuming convolution operation.

4Note that GTD (Keller's) solutions may either have singularities or may

be in error near shadow and reflection boundaries or at caustics, and the
Uniform Theory of Diffraction (UTD) [8 ] and the Uniform Asymptotic Theory
(UAT) [9 ] break down at caustics. The Spectral Theory of Diffraction (STD)
[10], on the other hand, is uniform for all observation angles. The cri-
terion for choosing any of these asymptotic forms of solution is conve-
nience of computation for desired accuracy. For a comparative evaluation
of the accuracy of the GID, UTD, UAT and SID,the reader is referred to [11].
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Take the inverse Fourier transform of the product GJ(O) using

both visible and inviaible ranges.

Apply the truncation-projection operator 6 to F-l[éj(o)], which
gives the approximation to the tangential component of the
scattered electric field Ei on the surface S. The accuracy of

the solution can be conveniently checked at this point by veri-
fying the satisfaction of the boundary condition by the tangential
component of ES, viz., {E: = -ﬁt} on S. As mentioned in Chapter 1,
this is an important feature of the method.

Subtract e(F-l[éj(o)]) from the total F-l[gj(o)] already eval-
uated. |

Take the Fourier transform of the difference obtained in Step 5.
Subtract él’ the Fourler transform of the tangential component

of the incident electric field truncated on the surface, from

the result in Step 6.

Multiply the result obtained in Step 7 by 8-1. Note that g-l

is also known and the operation is again algebraic as in Step 2.
The result thus obtained is J(*), which is the first iteration
of the scattered far field.

3(1)

Take the inverse Fourier transform of J obtained in Step 8

and evaluate it on S to get the desired induced surface current

on the scatterer. In other words, perform the operation
G(F-l[i(l)]). For an exact solution, this operation is redundant,
since J = 0J, and hence, G(F-l[F[OE]]) = 00J = J. However, the |
2(n)

Fourier inversion of an nth approximate solution J will not
give rise to a current distribution that is nonzero except on S.

This step provides a test for the accuracy and for the



10
convergence of the approximate solution by comparing the approx-
imate 3 witn F[B(F-llj(l)])].

10. Take F[O(F-llj(l)])] to derive an improved approximation for
j(l)_

11. Repeat as necessary using, for instance, the improved 3(1)

from Step 10 in the iteration Equation (2.12) to generate the
next higher-order approximation 5(2).

Before closing this chapter we should point out that Galerkin's
method applied in the transformed domain also provides an alternate, and
in some cases the more desirable, approach for deriving the solution to
the transformed integral equation. 3(0),3(1), etc., as well as other suit-
able functions may be employed as a basis set for this purpose.

In the following two chapters, we show, in some detail, the appli-

cation of the procedure just described to a two-dimensional and a three-

dimensional scattering problem.



3. DIFFRACTION BY AN INFINITE STRIP

3.1 Introduction

In the last chapter, we presented a general iteration method for ob-
taining solution of the integral equation in the transform domain with th

GID or other high-frequency solution as the zero-order approximation. Th

11

e

is

iteration method not only allows us to improve on the GID or similar solu-

tions but also provides a convenient means for testing the satisfaction
of the boundary conditions on the surface of the scatterer. Furthermore,
the method yields not only the far-field but also the induced surface-
current distribution, a feature not readily available in some other
high-frequency techniques.

The application of the general procedure outlined in Chapter 2 is
illustrated in this chapter by using it to solve the two-dimensional
problem of a plane wave diffraction by a strip. This problem was chosen
for the following reasons: It is shown that when the angle of incidence
is normal or near normal, the GTD solution accurately satisfies the
boundary condition Etan = 0 on the strip even when the multiple inter-
action between the two edges of the strip is neglected. However, it
is found that when the angle of incidence 1s near grazing, the GID solu-
tion is quite unsatisfactory, while the iterated solution generated

by the hybrid technique does display the correct behavior,

3.2 Geometry of the Strip Problem

The geometry of the electromagnetic scattering problem involving
a perfectly conducting infinite strip of zero thickness illuminated

by a uniform plane wave, whose electric intensity vector is oriented
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parallel to the edges of the strip, is depicted in Figure 3.1. For
convenience of analysis, an arbitrary incident wave can always be decom-

posed into two components with respect to the z-axis, namely, TMz

(E-wave) and TEz (H-wave). In the following discussion we consider the

E-wave case only; the H-wave case can be solved in a similar manner
- 2Hj.

The incident field is given by

by considering ii

-ik(xcos¢o+y81n¢o)

E:(p,¢) =ie (3.1)

iw

where the e t time dependence is understood.

3.3 Iteration Method Applied to the Strip Problem

The integral equation formulation [12] for the problem at hand

takes the form

a
-E:(x) = f Jz(x')G(x -x')dx', x¢e [-a,a] (3.2)
-a
where Jz(x') is the algebraic sum of the induced surface current den-
sities on the top and the bottom surfaces of the thin strip. The kernel
G is the two-dimensional free-space Green's function given by

G(x - x') --% Hél)(kolx - x'|) (3.3)

where Hél) is the Hankel's function of the first kind of order zero.

k, = 2n/) is the free-space propagation constant. Note that (3.2) is

0
the conventional integral equation which equates the integral repre-

sentation of the tangential component of the scattered E-field radiated



13

y

OBSERVATION { .
POINT H

(P, )

oV (0,0) =X

(=0,0)

STRIP

Figure 3.1, Diffraction by a strip illuminated by an E-wave.
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Figure 3.2. F,(x) can be approximated by the GTD solution to the half-
p}ane problem (a) shown on the left-hand side; F.(x) can
be approximated by the GID solution to the half-plane
problem (b) shown on the right-hand side.
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by the induced surface current density to the negative of the tangential
component of the incident E-field on the surface of the perfectly con-
ducting scatterer as required by the satisfaction of the boundary con-
dition. Hence, (3.2) is valid on the strip only.

An extended integral equation that is valid for all x can be ob-
tained by including the scattered fields outside the strip as well.
If the scattered field on the interval (-=,-a) is designated by Fl(x)
and the scattered field on the interval (a,») is designated by Fz(x),

then the extended form of (3.2) becomes [13]

a
[ 3 (x)6(x - x") dx' = 0(-EL(0) + F (%) + Fy(x) (3.4)
-a

where 0 is defined in (2.2a).

Since the Fourier transform of the induced surface current density
can be related to the far field, (3.4) is Fourier transformed to give

. = o .
Jz(a)c(a) = 8(-E;) (@) + F, (e) + F,(a) , (3.5)

where ~ on top indicates the Fourier transform pair defined in (2.4)

which simplifies in the present one-dimensional problem to

F(a) = [ F(x) e (3.6a)

and

Fo) = 5= [ Fla) '™ o (3.6b)
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The Fourier transform of the two-dimensional Green's function in

(3.5) takes the form

i

G(a) = o (3.7)
i 2;5 - a

0

Note that (3.5) is an algebraic equation in the spectral domain in con-
trast to the convolution form of the integral equation (3.4) in the
spatial domain. The reason for working in the spectral domain will be-
come clear when the method of solution for (3.5) is developed. Following
the procedure discussed in Chapter 2 and in terms of the notations intro-
duced in the present problem, we proceed as follows:
1. Obtain 3£0)(a), the initial approximation of the Fourier transform
of the induced surface current density, or equivalently, the scattered far
field within a known multiplicative constant, as follows:
1.1, Find the expressions for the first estimate of F{o)(a) + Féo)(a).
Note that GID may be used to get closed-form expressions for
F{o)(a) and Féo)(a) since Fl(x) and Fz(x) can be approximated
by the GTD solutions to the two half-plane problems as shown
in Figure 3.2 (page 13). The expressions for §§0) and Féo)

as obtained from GID read

ikacos¢ ¢ iaa
50 ) o 1 0 % e
Fj () ZE" /Bk sin 2] (@ + K cos 5)7a T ¥
ia(a+kcos¢o)
ie

" (o + k cos ¢0) (3.8a)

and
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-ikacos¢ ¢ -iaa
~(0) i 0 20 e
F2 (“)--ZE /B_kcosz] (o + k cos ¢0) - a
-ia(a+kcos¢0)

ie
+ (a + k cos ¢0) ' (3.8b)

Note that these expressions are free of singularities for all a.
1.2. Solve for the initial approximation of 3z(a),3§0)(a). by

carrying out the operations shown below:

N
i =(0) ~(0)
. 4 0CE)(a) + F/ 7/ (a) + F, " (a)
J(O)(a)-FeFl __1 2 .
= G (a)

2, Use (2.12) to further improve the solution as necessary.
The check for satisfaction of the integral equation can be applied
very simply by computing J(2)G(a), taking its inverse Fourier transform,

and verifying how well it approaches -Ei on the surface of the scatterer.

3.4 Numerical Results and Discussions

3.4.1 Normal incidence

Figure 3.3 shows the calculated induced surface current density
distribution on the strip with ka = 4 (1.3) wide) for normal incidence.
Note that the current density becomes large at the edges, as it should
for E-wave incidence, although no specific condition was enforced at
the edges, nor any special care exercised. Note also that the approx-
imate current is confined essentially on the surface of the strip and
extends very little outside of this surface. Thus, the solution in this
case is very close to the true solution and this is easily verified by
truncating the current density, computing the scattered field it radiates
on the strip, and verifying that the scattered field is indeed very

nearly equal to -Ei.
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Figure 3.3, Magnitude of the induced surface current density dis-

tribution normalized to (ikoz )ol on the strip of
ka = 4. (1.273% wide), ¢, 2 90°.



Figure 3.4 depicts the result for ka = 40, i.e., a 13X strip.

Note that the peak in the center is no longer present and the current
there approaches that given by the physical optics approximation. There
are now more oscillations, however, and the current density has a sharp
dip before rising to infinity at the edges.

Figure 3.5 displays the moment method applied in the spectral do-
main solution [3 ] and the comparison with the one obtained here is
quite favorable.

Figure 3.6 exhibits the satisfaction of the boundary condition
after one iteration. As mentioned before, such a test is not available

in the conventional GID approach.

3.4.2 Near grazing incidence

Let us next turn to the interesting case of a near grazing inci-
dence where the zero-order current density has a long tail extending
beyond the edge of the strip (see Figure 3.7). This result is to be
expected since the two half-plane GTD solutions used in the zero-order
approximation represent a poor approximation for the induced current
for shallow incidence angles. If this tail is truncated, the remain-
ing portion of the current density on the strip produces a scattered
field on the surface of the strip which is significantly different from
-Ei, as may be seen from Figure 3.8.

Figure 3.9 shows the effect of one iteration on the zero-order
GID solution shown in Figure 3.7. Note that the current density is
significantly altered in the neighborhood of the shadowed edge demonstra-
ting the fact that even with a relatively poor initial guess, the con-

vergence is quite rapid in this case.

18
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Figure 3.6. Magnitude of the scatteredoE-field evaluated on the
strip of ka = 40., ¢0 = 90" (one iteration).
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Figure 3.9. Magnitude of the induced surface current density dis-
tribution normalized to (ikoz -1 on the strip of
ka = 40., ¢o = 10° (one iteragion).
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To see that this is indeed an improved solution, the truncated
portion of it is used to calculate the scattered field. It is observed
that the satisfaction of the boundary condition has been improved as
shown in Figure 3.10.

To verify the convergence of the solution numerically, one more
iteration is performed and the result is depicted in Figure 3.11. Note
that the shape of the surface current density does not change much which
indicates a settling down of the solution has occurred. Also, note
that the tail extending outside of the strip uhias been reduced to an in-
significant quantity, which, when truncated, will produce little effect
on the scattered field on the surface of the strip.

To further validate the solution, the moment method solution [3 ]
of the same problem with slightly different parameters is shown in Figure
3.12 for a comparison. Again, the agreement is good. However, in terms
of computational efficiency, the present method is far superior to the

moment-method solution for the accuracy realized.

3.5 Summary

Before closing this chapter, it is worthwhile to recapitulate the
main points of the approach discussed. The strip problem has been solved
by a combination of the integral equation and asymptotic high-frequency
techniques. Formulation of the integral equation in the Fourier trans-
form domain allows one to conveniently obtain the zero-order approximation
to the transformed unknown surface current density from the solution of

two half-plane problems.
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Higher-order solutions have been obtained via the iteration steps
outlined above and the numerical convergence has been demonstrated.
The iteration process generates the proper edge singularities even when
they are not present in the original approximation, e.g., physical optics.
However, additional iterations are necessary in that case. Validity
of the solution has been substantiated by numerically verifying the

satisfaction of the boundary condition.
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4. DIFFRACTION BY A FINITE THIN PLATE

4.1 Introduction

Having i1llustrated the usefulness of the hybrid technique for com-
bining the integral equation and GTD techniques relevant to a two-
dimensional scatterer, viz., the strip, we now turn to the more general
three-dimensional problem, a thin rectangular plate illuminated by a
plane wave. This problem was chosen for the following reasons: In
the plate problem, the difficulty in applying GTD to this geometry stems
from the fact that the diffraction coefficient for the corners of the
plate 1is not known and neglecting the corner effects can cause sub-
stantial errors in the resonance frequency region where the plate size
is of the order of one wavelength squared.

Before we discuss the present approach to solve the plate problem,
we would like to mention two other approaches [14], [4 ] that are based
on a combination of asymptotic and integral equation techniques. The
one developed by Thiele [14] decomposes a given problem into two parts,
one of which is handled using the GID method and the other using the
moment method. For the case of a wire antenna on a finite ground plane,
the effect of the edge diffraction from the ground plane is evaluated
using GTD and the result is subsequently used to augment the impedance
matrix of the monopole antenna over an infinite ground plane. Although
the method works rather well when GID results are accurately known for
the ground plane problem, e.g., a ground plane of circular shape, no
convenient means is available for improving the solution when there are
corners in the plane that contribute substantially to the scattered field.
The latter situation arises when the ground plane is of rectangular shape
and is not large compared to the wavelength, or when the antenna is

mounted close to one or more of the edges.
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The second method developed by Burnside [4 ] tends to rectify the
situation alluded to above by solving for surface currents via the moment
method in the regions where the GID solution is not accurate, and by
using asymptotic forms for the surface currents in regions where a good
approximation for these currents can be employed. However, this method
cannot be conveniently applied to either the strip problem with grazing
incidence, or to the large plate problem discussed in this thesis. For
the strip problem, the GID solution is quite inaccurate when the incident
angle of the illuminating wave is near grazing. For the plate problem,
the current does not settle down to known asymptotic form in the center
region of the plate until it is at least three to four wavelengths squared.
The moment method is incapable of handling the number of unknowns required
to accurately solve for the current distribution on plate sizes that
are larger than 2\ squared.

In the following sections, we present a new approach using the
iteration method developed in Chapter 2 to demonstrate that a successful
computation of the induced surface currents on the plate is not only

feasible, but also numerically efficient.

4,2 Iteration Method Applied to the Plate Problem

For the sake of simplicity we consider only the case of an x-polarized
uniform plane wave which is normally incident on a square thin plate.
The geometry of the problem is depicted in Figure 4.1, where the plate
is located in the z = O plane.

Using classical electromagnetic theory, the following coupled
integro-differential equations for the current components Jx and Jy are

readily obtained:
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Figure 4.1. Diffraction by a finite rectangular thin plate illuminated
by a normally incident plane wave with polarization as shown.
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Figure 4.2. Regions in the z = 0 plane in each of which the zero-order
approximation of the scattered field is obtained according
to Table 4.1.
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32 32 1
;;i + Kk x(x,y) + 3%3y Ay(x,y) - iweoEx(x,y) (4.1a)
and
32 2 52
—ayz- + k Ay(x,y) + _axay Ax(x,y) = ( (4.1b)

where x € (-a,a), y ¢ (-b,b), and z = 0. Ax and Ay in (4.1a) and (4.1b)
are the x- and the y-components of the magnetic vector potential, re-
spectively, containing the unknowns Jx’Jy implicitly.

Since the convolution of the induced surface current density with
the free-space Green's function gives the magnetic vector potential, we

have the expressions which are valid in the z = 0 plane

A (x,y) = J (& y) * G(x,y) (4.2a)

and

Ay(x.y) = Jy(x,y) * G(x,y) (4.2b)

where * denotes the convolution operation and the free-space Green's

function is given by

Glx - x',y - y') .%Mﬁ (4.3)

m r

where

r-j(x—x')2+(y-y')2, z2,2' =0 |,
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Note that (4.la), (4.1b) are conventional integro-differential equations
which are valid on the plate only. To obtain an extended form of these
equations, additional unknown functions Fx(x,y) and Fy(x,y) will be in-
troduced. The domain of these functions is the region complementary
to the plate in the z = 0 plane. Hence, the extended form of (4.1a),

(4.1b) can be written as

32 2 2 1
;;5 + k Ax(x.y) st 33y Ay(x.y) = ~lue, (-e(Ex(x,y))
+ é(Fx(x,y))) (4.4a)
and
% 2 52 a
——§-+ k Ay(x,y) + 5%3y Ax(x,y) = -iweoe(Fy(x,y)) (4.4b)

oy

where 0 and 6 are operators defined in (2.2a) and (2.2b), respectively.
Note that (4.4a), (4.4b) are valid for the entire z = 0 plane. These

equations are now Fourier transformed to obtain

(07 - k13, (@,8)8(0,8) + oBT (a0, B)E (8

= -7;- (-G(Ex) (a,8) + 8(F)) (a,8)) (4.5a)
and
2 2= 3 3 2 tky —~~
B -k )Jy(a.B)G(a.B) + aBJx(a.B)G(a.B) - O(Fy) (a,8) (4.5b)

0
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where ~ on top indicates the Fourier transform as defined in (3.6a)
with transform variables (a,B) corresponding to (x,y), respectively,
and Z, VF_——_'is the free-space impedance. In writing (4.5a) and
(4.5b), (4.2a) and (4.2b) have been utilized. The Fourier transform
of the free-space Green's function, specialized to the z = 0 plane as

given in (4.3), is

G(2,8) = 3+ gt : (4.6)

ko -a -8

Observe that (4.5a), (4.5b) are two algebraic equations in the transform
domain as opposed to the two integro-~differential equations in (4.4a)

and (4.4b). It is a simple step to derive the zero-order solutions of

. . ~~ r~~—

Jx(a.B) and Jy(a,B) once the estimates of e(Fx)(a,B) and e(Fy)(a,B) are
available. One merely solves the two coupled algebraic equations for
these two unknowns 3x(a.B) and 3y(a,8). For the present case, é(Fy)(x,y)
is zero due to the particular choice of x-polarized normal incident plane-

wave iliumination. With this in mind, the first-order solutions of the

transformed surface current density can be expressed as

- 2 Bz = kg Ca ‘I’ ~
J_(a,B) = — | [-8(E)) («,8) + 8(F ) (a,B)] (4.7a)
X ko -t -8 kozo X b4

and

P
J (a, B) ']1'—!—7[ Q][ 9(E ) (a,B) + 9(F )(@,B)] . (4.7b)
- - B k
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3x(a,8) and 3y(a,8) are then inverse Fourier-transformed and truncated
to obtain the induced surface current densities on the plate.

Next, we estimate the zero-order approximation to é(Fx)(x,j) using
the GTD solutions to four pertinent half-plane problems. The z = 0 plane
containing the plate has been divided into regions as shown in Figure 4.2
(page 32), where the hatched region is occupied by the plate and the scattered
field in this region must be equal to the -G(Ei(x,y)z to satisfy the
boundary condition. The rest of the z = 0 plane hﬁssbeen designated
by digital numbers and Roman numerals, and the manner in which the
scattered fields in these various regions are obtained is concisely

tabulated in Tabie 4.1.

TABLE 4.1

THE ZERO-ORDER APPROXIMATION OF 6 (F (x,y)) IN VARIOUS REGIONS
EXTERNAL TO THE PLATE OBTAINED vik THE USE OF GTD METHOD

Region Scattered Field Remarks

I, I1 Ex(x,z = 0) Derived from H-wave
strip GID solution

111, IV Ex(y,z = Q) Derived from E-wave
strip GID solution

15 2 0 First estimate

In deriving the zero-order approximation, the scattered fields in
regions 1, 2, 3 and 4 are neglected although these fields are nonzero

in higher-order approximations.
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The zero-order approximation to the scattered fields is computed
in Regions III and IV, by starting with the E-wave GTD solution for
the strip, and truncating it so that it is nonzero only in these regions.

In particul.r,

-18b -1ibRA
Fro ™ {'MEB—?’F‘-—E" 155 }2—81399' (480
and
ibR ibB
= e _ i & 2 sin(aa)
FIV {i/l-c. AT i 7 } 5 . (4.8b)

In Regions I and II, the H-wave GTD solution for a strip is used to
obtain Hy(x,z = 0), and then Ex(x,z = 0) is constructed from Maxwell's
equativas. The resulting solution is again truncated so that it is

nonzero only in the appropriate regions. In particular,

F.om(=ivk+a el2® + NE - ot e129) 5 sin(Bb) (4.9a)
Sl a k o P .,
and
i i i/k—--a e-iaa _ 1 ’kz - a: e-iaa 2 sin(Bb) (4 9b)
I -\ a % * ° |

Having completed the estimation of the zero-order approximation
to the scattered field §(Fx(x,y)) external to the plate, we now proceed
to solve for the induced surface current on the plate. To this end we
return to (4.7a) and (4.7b) and substitute the Fourier transform of
é(Fx(x,y)) and compute jx and jy' The desired induced surface current

densities in the space domain are then obtained by inverse Fourier



transformation and truncation. If necessary, the iteration scheme dis-
cussed in the previous sections can be followed to obtain higher-order
solutions. Convergence of the solution can be checked by performing
one more iteration and checking to see whether the solution has
"settled down." Validity of the solution can be assured by computing
the scattered field on the plate using the solution of the surface cur-
rent just obtained to see how well the boundary condition is satisfied
on the surface of the plate. It should be ~lear now that all of these
steps follow exactly the s;me line as in the case of the strip problem

discussed in Chapter 3.

4.3 Numerical Results and Discussions

The numerical result for the dominant x-component of the surface
current density for a one-wavelength squared plate is shown in Figure
4.3a. Note that the surface current density, which goes to zero at the
two edges perpendicular to the incident electric intensity vector, tends
to grow without bound at the other two edges parallel to the incident
electric intensity vector, although no special edge condition has been
enforced to derive this behavior. To see that edge behavior better, a
90° rotation of the surface current in Figure 4.3a is shown in Figure
4.3b. It is clearly seen from Figure 4.3b that the cross section of
the x-component of the surface current density at x = 0 closely re-
sembles the surface current on the strip plotted in Figure 3.3.

Figures 4.4a, 4.4b, and 4.4c exhibit the change in the behavior
of the current distribution both in the middle of the plate and at the

corners as the plate size is progressively increased.

38
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The corner singularities, which are highly localized, appear to be
present only for relatively small sized plates where corner-corner inter-
actions may play a significant role. It has not been possible to verify
the correctness of the behavior of the solution at the corners since no
reliable analytical or umerical solutions for the corner problem are
available at this time.

Figures 4.5a and 4.5b show the cross-polarized component of the
surface current density on the plate. This current density goes to zero
at the line of symmetry in the middle of the plate and has a tendency
to grow without bound at the edges. The results for the one-wavelength
squared plate have been checked by moment-method solutions and the agree-
ment is good. For such an electrically small plate, results are avail-
able for comparison in the literature [15], [16]. However, for elec-
trically large plates the matrix size becomes prohibitively large when
the conventional moment method type of approach is used. In contrast,
the accuracy and the convergence of the solution improve even further
for a large scatterer. It should also be mentioned that the number of
grid points at which the current density of the plate has been evaluated
i1s 2048. Such fine details of the current behavior would also be im-

practical to obtain using the moment method.



(x 103)

Figure 4.5a.

o T

X

Magnitude of the cross-polarized component of the sur-
face current density on a 1) x 1A plate (ka = 3.14);
plate region: xe(-1,1), ye(~1,1), normal incidence with
x-polarization.
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Figure 4.5b. Magnitude of the cross-polarized component of the sur-
face current density on a 3) x 3) plate (ka = 9.43);

plate region: xe(-1,1), ye(-1,1), normal incidence with
x-polarization.
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5. A NEW LOOK AT THE SCATTERING OF A PLANE
WAVE BY A RECTANGULAR CYLINDER
5.1 Introduction

The problem of scattering of electromagnetic waves by a rectangular
cylinder has been investigated by numerous scientific researchers in
the past; yet its flavor has not diminished but quite on the contrary,
it stimulates a strong interest in further pursuing this problem lately
as evidenced by the number of papers appeared in the literature [4], [17],
[18], [19], (20], [21] that deal with this subject.

Due to the two-dimensional nature of the problem, the conventional
moment method [17] can be applied in this case to an electrically large
cylinder when its symmetric properties are also exploited. Therefore,
it provides a convenient validity check for other methods. Indeed,
Burnside et al. [4] and Mautz et al. [18] have claimed their different
approaches valid only by a comparison of results with the conventional
moment method.

Both of the aforementioned papers made use of the so~called uniform
geometrical theory of diffraction developed by Kouyoumjian et al. [8] in
which the classical wedge diffraction coefficient put forth by Keller has
been modified using multiplicative factors in such a manner that one of
these factors goes to zero as the Keller's diffraction coefficient goes
to infinity at one of the shadow or reflection boundaries so that the
product remains finite. The resulting diffraction coefficient is indeed
applicable at all aspect angles. It is conceivable that an additive
term which goes to infinity as the Keller's diffraction coefficient goes
to infinity but with opposite sign will work equally well as does the

multiplicative~factor type of remedy. Indeed, this additive-term type
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of remedy has been followed by Lewis et al. [22]. Both of these remedies,
multiplicative and additive alike, still have room for further develop-
ment, and it is difficult to judge which one is superior. Furthermore,
both of these theories ‘are based on an Ansatz that has no physical justi-
fication at all to start,;ith.

In this chapter, we tackle the scattering problem using a completely
different technique which is based on a representation of the scattered
fields in terms of the spectrum of the induced surface current on the
scatterer rather than the rays emanating from it. This spectral domain
interpretation of high-frequency diffraction phenomena has been docu-
mented in detail in a recent paper by Mittra, Rahmat-Samii and Ko [10].
Ko and Mittra [23] also developed a method based on the spectral domain
concept for combining the asymptotic high-frequency technique and the
integral equation formulation. The method has been applied successfully
to infinitesimally thin scattering objects, e.g., an infinite perfectly
conducting strip and a finite perfectly conducting square plate [23].

To further develop the method, we apply it to the perfectly conducting
square cylinder.

This particular geometry has been chosen because it serves as a good
example for demonstrating that the method can be extended to treat with
ease scattering objects with finite thickness and planar surfaces.
Moreover, the validity of the method can be easily established by com-
paring with well-established solutions derived by entirely different
approaches available in the literature. We show that starting out with
Keller's wedge diffraction coefficient, only one iteration gives a far-
field pattern that compares extremely well with that obtained from the

moment-method solution for thirty-two unknowns.
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To emphasize the simplicity and efficlency of the present approach,
it is worth mentioning that the GID result deviates significantly in
those directions which coincide with the orientations of the surfaces of
the square cylinder even when multiple-edge interactions are included
in a self-consistent manner by introducing eight unknown diffraction co-
efficients. Only when one further modifies the GID method with the
uniform diffraction coefficient and combines it with the moment method
using a total of twenty-four unknowns will the result compare well with
the moment-method solution for thirty-two unknowns.

The present approach shows how the Keller's GID solution can be im-
proved in a straightforward manner based on a physical argument rather
than a remedy from an Ansatz. Thus, it gives insight into the mechanism
involved in problems of high-frequency scattering from scatterers with

planar facets.

5.2 Formulatiou

The geometry of the electromagnetic scattering problem involving a
perfectly conducting infinite rectangular cylinder of cross section 2a x 2b
illuminated by a uniform plane wave, whose magnetic intensity vector is
oriented parallel to the edges of the cylinder, is depicted in Figure 5.1.
For convenience of analysis, an arbitrary incident wave can always be de-
composed into two components with respect to the z-axis, namely, TMz
(E-wave) and TEz (H-wave). In the following discussion we consider the
H-wave case only; the E-wave case can be solved in a similar manner by
considering Ei = QEg.

In the H-wave case, the incident H-field is given by

-ik(xcos¢d+ysin¢o)

H:(p,qb) i (5.1)
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‘Y

OBSERVATION POINT

(py )

Figure 5.1, Diffraction by a rectangular cylinder illuminated
by an H-polarized plane wave incident at an angle ¢o-



diE time dependence 1s understood. The geometrical optics

where the e
reflected field can be derived easily from (5.1) once the geometrical
configuration is known. Hence, the geometrical optics part of the total
field will not be discussed on further.

We now turn to the diffracted field which results from the sharp
edges on the scattering cylinder. As alluded to in Section 5.1, we make
use of the Keller wedge diffraction coefficient to find the diffracted
fields. To make this discussion as self-contained as possible and to
introduce the notations that we have adopted in this chapter, a brief
review of the wedge diffraction coefficient is in order.

The geometry of a perfectly conducting wedge immersed in a uniform

H-wave in the canonical wedge diffraction problem is shown in Figure 5.2.

According to Keller's geometrical theory of diffraction, the diffracted

51

field by the edge of the wedge can be constructed by the following formula:

ikp

d ek e =it
Hz Hz(at the edge of the wedge) Dh -7§r-(e ) (5.2)
where
ein/lo % sin % %1' sin %
D = 7% + (5.3)
h U b (¢w - ¢’()w) T (¢w B ¢0w)
cos — - cosg|—m— cos — ~ cog\———
n n n n

and -~ means "asymptotically equal to." 1In the above formula, nm denotes
the exterior region while (2 - n)r denotes the wedge angle. Note that n

is not necessarily an integer; in the rectangular cylinder case, it will

take on the value 3/2., The subscript w attached to the angle of incidence

¢0 and the angle of diffraction ¢ serves as a reminder that these angles

are used in the canonical problem and their senses are defined as shown
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OBSERVATION POINT
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Figure 5.2. Geometry of a perfectly conducting wedge immersed
in a uniform H-wave in the canonical wedge dif-
fraction problem.
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in Figure 5.2. This fact 1s worth emphasizing since it is crucial in
constructing the diffracted field when several wedges are involved in
a scattering problem.

As shown in Figure 5.3, the major contributions to the diffracted
field are from wedges 1, 2, and 3 since the three edges of these wedges
are being illuminated by the incident field whereas wedge 4 is in the
dark and hence it can be ignored in the zeroth-order approximation to
the diffracted field. With this in mind, the diffracted far field can

be written in a concise fashion as follows:

/
¢ =9 ¢ =1-9¢ ¢ =n/2-¢
Hil il + H:Z v + H:B " ,o<¢<12'-
¢0W = ¢o ¢0W =T - ¢ ¢D'H o "/2 = ¢0
. =19 ¢ =T1-9¢
Hd w + Hd W ’L¢<ﬂ
zl Koo z2 O Y 2
Ow 0 Ow 0
d
Hz (p,9) = ‘
7 - ¢ =mn/2 + (271-¢)
14 b T P n<¢p<SL
zl . z3 o = /2 - 2
%ow = %0 ow 0
¢ =31 - ¢ o =7/2 4+ (2n=¢
H,( ¥ B[ ¥ gr<g<an
¢Ow =T ¢Ow =n/2 - ¢0
X

(5.4)
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is in the dark.
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where ¢0 = 1/4., In the above equation, subscripts 1, 2, and 3 on H:
designate wedges 1, 2, and 3, respectively. Each of the Hz's from
the individual wedges is of the form given by (5.2) and (5.3) with
proper values for ¢w and ¢0w substituted and proper phase shifts taken
care of due to the transfer of the phase center located at the edge
of the wedge in each of the individval canonical problems to the common
phase center located at the origin of the rectangular coordinate system

shown in Figure 5.3.

5.2.1 Pole singularities in the diffraction coefficients

It is well-known that the Keller's diffraction coefficient (5.3)
as introduced in the last section will not give the correct value for
the diffracted field at certain directions, namely, at the shadow and
the reflection boundaries predicted by geometrical optics. One can easily
see from (5.3) that the denominator of either one of the two terms in
the square brackets vanishes at one of these shadow and reflection
boundaries and gives infinite field values at those directions. We
know that the field actually remains finite and varies continuously
across the shadow and reflection boundaries. Hence, we cannot apply
Keller's diffraction coefficient near the shadow and reflection bound-
aries. It was precisely for this reason that some work had been done
in trying to construct a uniform diffraction coefficient. As mentioned
earlier in the introduction of this chapter, both multiplicative- and
additive-type approaches have been pursued and have shown some success.
In the following discussions we show that it is not necessary to use
the aforementioned "uniform diffraction coefficient” to solve the rec-

tangular cylinder problem under consideration.
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To start, we make direct use of Keller's diffraction coefficient
as given in (5.3) and substitute it in (5.2) to find the wedge dif-
fracted field. Observing that the diffraction coefficient contains
pole singularities which give nonphysical fields at the shadow and
reflection boundaries, we will first subtract out the pole singularities.
The reason for subtracting out the pole singularities becomes clear
in the next section where these singularities in the diffraction co-
efficient are shown to correspond exactly to those in the physical
optics current that exists on the semi-infinite surface of the wedge
in the canonical problem but should not have existed in the rectangular
cylinder case since the surfaces of the rectangular cylinder are finite
in width. With this in mind, the expressions for the zeroth-order approx-
imation to the diffracted field can be written explicitly as follows:

For wedge 1 (see Figure 5.3),

eikp ikacos¢ e-ikbsin¢

d i
~ Hy (at edge of wedge 1) Dy e

Hzl

-ik(-acos¢o+bsin¢o) eikp

= e 7‘?—'

T |2 2n _ikacos¢ _-ikbsing¢
. eiz 3 sin 3 e e
V2K

cos %1 - cos % (¢ - ¢0)

ik(acos(ﬂ+¢o)-bsin(w+¢o))

_e
¢-("+¢0)
_% sin'§1 eikacosd: e-ikbsin¢
+

cos %ﬂ - cos %-(¢ + ¢°)

ik(acos(w-¢o)-bsin(ﬂ-¢0))

e
N ¢0) . (5.5a)




where

0<¢
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T 3n
o_<_2and0_<_q>_5_2 .

Note that the second term in the square brackets 1is the pole singu-

larity of the first term at the shadow boundary and the fourth term

is the pole singularity of the third term at the reflection boundary.

For wedge 2 (see Figure 5.3),

ikp
oyl e -ikacos¢ =ikbsing
l-lz (at edge of wedge 2) th i e e

-ik(acos¢0+bsin¢o) e:l.kp

m

14 v i 2n e-ikacos¢ e-ikbsin¢
. e 3 3

T

cos 5L - cos 3 [(r - ) = (v = ¢)]

2 2" e-ikacos¢ e-ikbsin¢

351n3
2 2{(n -¢)+(w-¢o)}for0_<_¢_<_n
cos 3= = cos 3
(37 - ¢) + (7 - ¢o)

+

for%‘l§¢_<_21r

~ik(acos (1r-¢o)+bsin ('rr-¢0) )
e

+ for 0 < ¢ <7

¢-(‘"-¢o)

-ik (acos (2m- ¢0)+bs:ln (27~ ¢0) )

-5 o - (2 - ¢, for 3% < ¢ < 2n (5.5b)
0

5_12'-and0<¢<wand-gl<¢<2n.
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Note that no singularities are contained in the first term in the given
angular domain of ¢. The third term in the square brackets is the
pole singularity of the second term at the reflection boundary for
0 < ¢ < and the fourth term is that for -g-’l < ¢ < 2r. Also, note
that there are no shadow boundaries in this case.

For wedge 3 (see Figure 5.3),

ikp _
H:3 ~ H: (at edge of wedge 3) Dh3 2'7‘.)1- e 1kacaus eikbsj’nd’
i -ik(acos¢o-bsin¢o) eikp
e TD—
T
iz 2 sin 2r e-ikacos¢ eikbszlmp
, & 3 3
V21K T i T
2n 2 G- =G e for 0y
cos 3~ = cos 3( .
L [3 + (27 - ¢)] - (5 - ¢o) for m<¢<2m
-ik(acos (1r+¢o)-bsin(1r+¢o))
e
+
¢-("+¢0) for m < ¢ < 2m
% EHm -§_1r_ e-ikacos¢ eikbsin¢»
+ L T L
o 2 G-¢8 + G- ¢)| for0<¢<7
cos 3= = cos 3( "
[-i+ (2r - ¢)] + (-i-- ¢0) f°r_“-<-¢i2"
-ik(acos (2m- ¢0)-bsin(2ﬂ- ¢0) )
e
+ 5 = (2n - ¢0) for m < ¢ < 2n (5.5¢)
J
where
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Note that the second term in the square brackets i1s the pole singularity
of the first term at the shadow boundary and the fourth term is that
of the third term at the reflection boundary. For future reference,
all the pole singularities contained in the diffraction coefficient,
which have been discussed in detail above and shown explicitly in

(5.5a), (5.5b) and (5.5c¢), are tabulated in Table 5.1.

5.2,2 Pole singularities in the physical optics currents

It was discussed in the last section how the diffracted far field
can be constructed from the diffraction coefficients. In applying
these diffraction coefficients, one must recognize the fact that they
were derived from solving a canonical problem which involved an in-
finite perfectly conducting wedge, or more descriptively, two semi-
infinite perfectly conducting half planes joining each other at an
angle. Therefore, the solution of the canonicallproblem predicts a
physical optics current existing on the illuminaﬁed semi-infinite
surfaces of the wedge. Since the support of this physical optics
current is infinite, it gives rise to infinite fields at certain
directions in space. In the following discussions, we show that all
the pole singularities contained in the wedge diffraction coefficient
are precisely due to these physical optics currents with infinite
supports.

To tackle this problem one step at a time, Figure 5.3 has been
redrawn in more detail in Figures 5.4a, 5.4b, Figures 5.5a, 5.5b, and
Figures 5.6a, 5.6b. These figures exhibit the physical optics currents on the

11luminated surfaces of the illuminated wedges of the rectangular cylinder as



TABLE 5.1

POLE SINGULARITIES AT SHADOW AND REFLECTION BOUNDARIES
THAT HAVE BEEN SUBTRACTED FROM THE PERTINENT DIFFRACTION COEFFICIENTS
(S. B.: SHADOW BOUNDARY, R. B.: REFLECTION BOUNDARY)

Wedge Pole at Pole singularity
ik(-acos¢o+bsin¢°)
e
. B.
! ; W)
eik(-acos¢0-bsin¢0)
1 L] .
2 ¢ = (= ¢
ikacos¢0 -ikbsinct»o
-e e
2 R. B. 1 P ¢0
-ikacos¢o ikbsin%
e e
-1kacos¢o -ikbsincbo
-e e
:lkacos¢o -:I.kbsin¢0
3 S. B. £ =
¢ = (ﬂ + ¢o)
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xAl. on the illuminated surface A

Figure 5.4a. Physical optics current J
of wedge 1.

Figure 5.4b. Shadow and reflection boundaries predicted by
geometrical optics for wedge 1.
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SURFACE A: X € (-0, a) yB2
0 X
. X=a
SURFACE B: )~ (b o)
Figure 5.5a. Physical optics currents JP'O' and JP’O' on the 1llu-

minated surfaces A and B 0¥A%edge 2,y¥espectively.

Figure 5.5b. Reflection boundaries predicted by geometrical optics
for wedge 2.

62



63

X=a

Xl
"
N>
I
N -

yB3

* on the illuminated

Figure 5.6a. Physical optics current J
surface B of wedge 3.

Figure 5.6b. Shadow and reflection boundaries predicted by
geometrical optics for wedge 3.
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well as the shadow and reflection boundaries created by the illuminating
plane incident wave as predicted by classical geometrical optics.

Referring to Figure 5.4a, the far field ﬁi:i due to the physical optics
current JxAg. on the semi-infinite surface A of wedge 1 can be obtained
using classical electromagnetic theory. First of all, the subscripts
and superscripts attached to J and H must be understood properly.

The first subscript indicates the vector component of the quantity;

the second subscript designates the surface on which the current exists;
and the third subscript depicts the illuminated wedge under scrutini-

zation. The superscript reveals that the quantity under consideration

is obtained from physicel optics. In classical electromagnetic theory,

'PUO'
zAl

in free space are related in the following manner.

and the surface electric current JP'O'radiating it

the far field H XAl

tﬂ

i
P 0. ~P.0.
Hyap =ik Spgme— sin ¢ 3.0 (5.6)

where
~P00. POO.
e ofa)

®  -ik(xcos¢,+bsing,)

S

-iax

S§(y - b) e e-iBy dxdy

which 1s the Fourier transform of the surface electric current density

P 0.
xAl

present because the original problem, which involved an electric cur-

obtained by physical optics, 1.e., 2fi x H . The factor of 2 is

rent radiating in the presence of a perfectly conducting surface on

A A TS
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which it resides, is equivalent to the problem of twice the electric
current radiating in free space. If we ignore all of the effects at
infinity, which can be done by introducing an infinitesimal loss in
the medium, then the far field due to the physical optics current on
surface A of wedge 1 can be expressed as:

T

1k tz -ikbsin¢o-ikbsin¢ #a(kcos¢o+kcos¢)

0 )
e e e e
ik T 2sin ¢ 1i(k cos ¢0 + k cos ¢) - (5.7)

P.o'- -
zAl

H

It is very interesting to observe that the denominator in (5.7) vanishes
at ¢ = 7 + ¢0 which are precisely the reflection and shadow boundaries
as shown in Figure 5.4b. .

Knowing that the field produced by the physical optics current
does possess pole singularities at the shadow and reflection boundaries,
let us check the singular behavior as ¢ approaches = ¥ ¢0. To this
end, the denominator will be expanded into a Taylor's series in
[6 - (v + ¢0)]. In this series, only those terms up to the first
power of ¢ will be kept while all higher power terms are discarded
since their contributions are small compared with the first power term
in the series as ¢ approaches infinitely close to = ¥ ¢0. Putting
this in terms of mathematical language, we have

-ikbsin¢0+ikacos¢o -ikbsin¢p+ikacos¢p
e

s
HP'O' N eikp A 4|2 sin ¢p e
zAl o, VBnko ik{cos ¢, + cos ¢ - sin ¢p(¢ - ¢p) + ...}
(5.8)
where
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Through straightforward algebraic manipulations, we have

-ikbsin¢o+ikacos¢o eikp

HP.O.—’ e

zAl M'T'¢o L
1y [ -ikbsin(m+é)+ikacos (1¥o,)
, & e (5.9)
Yoo ENCERW) ' '

At this point, one may go back to (5.5a) or Table 5.1 to see that these
are indeed exactly the pole singularities at the shadow and reflection
boundaries of the wedge diffraction coefficient Dhl'
Referring to Figure 5.5a and proceeding along similar lines, one

can obtain

T
1kp 14 -ikbsin¢0-ikbsin¢ -ia(kcos¢o+kcos¢)
HP.O. - -1k & e 2 sin ¢ e e
zA2 Y 8Tkp -i(k cos ¢0 + k cos ¢)
(5.10)
and
1kp i% -ikacos¢0-ikacos¢ -ib(ksin¢o+ksin¢)
HP.O. - -ik & e -2 cos ¢ e e
zB2 VBTKp i(k sin ¢0 + k sin ¢) *

(5.11)

Similarly, the singular behavior of HZAg' and H:ég' can be shown to

be as follows:

-ikbsin¢.-ikacos¢ ikp
P.0O. 0 0e
2A2 ¢>n¥e e Vo

i% -ikbsin(ﬂ;¢0)-ikacos(n$¢0)

e e

¢ mﬂ - ('lT_i ¢0) (5.12)
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and

P.0. -ikacos¢0-ikbsin¢0 e:I.kp

—
H, B2 o " o
[ ad
m=g
w+¢0 w+¢o
ﬂ -ikacos -1ikbsin
etz . 2m=¢ Zﬂ-¢o
* VIR T+ % ‘ (5.13)
¢ -
L 2n = 4 J

It is very satisfying to observe that the pole singularity of H:Ag' at

¢ =T - ¢0 is exactly the pole singularity at the reflection boundary
off surface A of the diffraction coefficient th in (5.5b); and the

pole singularity of Hzég' at ¢ = 21 - ¢0 is exactly the pole singularity
at the reflection boundary off surface B of the diffraction coefficient

D. . in (5.5b) (see Figure 5.5b). These pole singularities are also

h2
listed in Table 5.1. The pole singularity of HZAg' at ¢ = 7+ ¢,

cancels the pole singularity of HZﬁg'at ¢ =T+ by exactly. It is
also interesting to note that the direction ¢ = 7 + ¢0 is inside
wedge 2.

Finally, referring to Figure 5.6a and proceeding as before, one

obtains
- 1k i% ) ~1kacos ¢-1kacose 1b (ksingy+ksing)
w0 magk e e cos ¢ e 2
zB3 75ﬂE5 i(k sin ¢0 + k sin ¢)

(5.14)
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The singular behavior of H:ﬁg' is studied similarly and the result is

shown below.

P.0. -ikacos¢o+ikbsin¢0 eikp

HzBS w+¢o e 7p
o>
2n-¢0
™ n+¢0 ﬂ+¢o
: -ikacos +ikbsi
i'z 21!-¢0 21r—¢0
e e
VI T o - SR
¢ -
L 2" - 4 :

Once again, by referring to Figure 5.6b and (5.5c),one can verify that
these pole singularities in Hzﬁg' are indeed those at the shadow and
reflection boundaries of the diffraction coefficient Dh3'

To recapitulate, the pole singularities contained in the diffraction
coefficient at the shadow and reflection boundaries correspond exactly
to the pole singularities contained in the physical optics currents
with infinite supports. This demonstration explains why we have sub-
tracted out the pole singularities in the diffraction coefficient before
we applied it to compute the diffracted far field. The main reason
is that we are applying these diffraction coefficients to construct the
far fleld diffracted by a finite two-dimensional scatterer where there
is, in fact, lack of all these physical optics currents with infinite
supports which would have existed on the illuminated surfaces of the
semi-infinite wedge in the canonical problem used to identify these
wedge diffraction coefficients. After these pole singularities have
been subtracted from the diffraction coefficients, the resulting expres-

sions for the diffraction coefficients can be used directly in the



construction of the diffracted far field. This procedure has been shown
explicitly in (5.5a), (5.5b), and (5.5c).

The superposition of H:l’ ng, and H:3, as done in the manner
indicated by (5.4), gives the diffracted far field from the rectangular
cylinder. The far-field pattern computed by using ¢0 --%,a = b= 1A,
in (5.4) is depicted in Figure 5.7. This plot shows that there are
no sporadic variations near the shadow aud reflection boundaries at
225°, 135°, and 315°. This pattern has already been in very good
agreement with that obtained by using the moment method, as shown in
Figure 5.11. By good agreement, we mean that all the locations of
the peaks and nulls are close to the right positions and the levels are
more or less on the right track. Except for the obvious discontinuities
in the pattern at the angles of o°, 90°, 1800. and 270°, which cor-
respond to the directions in which the four surfaces of the rectangular
cylinder are oriented, it 1s really remarkable how good a far-field
pattern a zeroth-order GTD solution can give! A simple physical in-
terpretation for the existence of these discontinuities can be found;
and their elimination is discussed in the following sections.

Before closing this section, it is noteworthy that due to the
complete symmetry of the rectangular cylinder, the pole singularities in
the wedge diffraction coefficients need not be subtracted out explicitly
as done in (5.5a), (5.5b), and (5.5c) before we use them to compute
the far field. In other words, the wedge diffraction coefficient as
gliven in its original form shown in (5.3) could have been used directly

to compute the far-field pattern; and indeed this is done and the result

is plotted in Figure 5.8. It is identical to Figure 5.7. The automatic
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Figure 5.7.

270°

Diffracted far-field pattern of the rectangular
cylinder obtained by using (5.4); ¢0 = /4, a=b = 1),

70




71

180°

270°

Figure 5.8. GTD diffracted far-field pattern of the rectangular
cylinder; ¢ = /4, a= b = 1A,
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pole cancellations happened in this completely symmetric case are

shown schematically in Figure 5.3 where pole singularities at shadow or
reflection boundaries indicated by like arrow pairs annihilate each
other. That this is indeed the case can be verified by checking (5.5a),
(5.5b), and (5.5c) for the pole singularities enclosed in the square
brackets as well as paying attention to the phase factor outside the
square brackets. While it is admittedly a happy coincidence that the
Keller's diffraction coefficients can be used directly in the rectangular
cylinder problem, in more general cases the procedure of subtracting
pole singularities explicitly from the diffraction coefficient, as

done in (5.5a), (5.5b), and (5.5c), should be followed in order to get

meaningful results near the shadow and the reflection boundaries.

5.2.3 Discontinuities in the far-field pattern at ¢ = 0, %-, T, and %ﬂ

In the previous sections the problem of diffraction by a rectangular
cylinder was solved by using Keller's wedge diffraction coefficients
minus the pole singularities in constructing the diffracted far field.
Although the far-field pattern varies smoothly and remains finite across
the shadow and reflection boundaries, there are noticeable discontinuities
in the pattern at ¢ = 0,-%, T, and %1. These directions are those in
which the surfaces of the rectangular cylinder are oriented. In the
next section, a physical interpretation of the existence of these dis-
continuities is given. Before doing that, these discontinuities are
studied and the results are displayed in full detail in this section.

Let us refer to (5.4). The discontinuity in the far field at

¢ =0 is

GRS
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H( = 0) - Hi(p = 2m) (5.16a)
m
d ¢w-o d 45&7-'"-0 d ¢w-3-o
= |H + H + H
zl -0 zZ¢ 5oL z3 i
Yow = %0 ow 0 bow "2 " %o
¢ = 31 - 2nw ¢ -1+(21r-21r)
o e A (5.16b)
4o, = T = ¢ 2o, = T - ¢
Ow 0 Oow 2 0
¢ =0
o (5.16¢)
g, = ¢
Ow 0
) -ik(-acos¢o+bsin¢o) e:lkp
e 5
T
iz 2 sin 21 ej'ka 2 sin 2 e:lka
, & 3 3 + 3 3 (5.16d)
V27K 2¢ 2m 2 *
2 0 cos =— = cos(% ¢,.)
cos 3= - cos —3- 3 37

1T 2 2r, ika
4 1kp | =-ik(-acos¢.+bsing,) (2)(5 sin 5=) e
e e 0 0 3 3
=<5 mﬂ e > 3 . (5.16e)

cos—l-cos—¢
3 37

Following the same lines, the discontinuity in the far field at

¢-%is

d i d ™
Hz(¢ =3 -) - Hz(¢ =3 +) (5.17a)



d ¢w =0

= HzB

i
bow ™2~ %0
i 2 2r, _1kb
e 4 eikp e-ik(acos¢0-bsin¢o) (2)63 sin 3 ) e
V2 71rﬁ 2 2 _ )
cos 3= - cos 3(2 ¢o)

In the above equation,

d T d T
B =g = Un i G-

and

d T d n
Hyo =g = Un (o =3+ )

where ¢ > 0 is any small positive real number. Similarly, the dis-

continuity in the far-field pattern at ¢ = 7 is
d d
H(¢=n-)-H(¢=mH+)

3
af%=0 _gd | T2

-1
z2 z3 m
%2 ="~ % bow =2~ %

-ik(acos¢0+bsin¢o) eikp ika

“C Ve
T
i- 2 2n 2 2
e 4 3 sin 3 . 3 sin 3 "
vZTK 2n 2

cos 53— = cos 3(m - ¢;) cos %1 = C°S'%(“ - 4g)

-ik(acos¢o-bsin¢o) eikp
- T'e

ika
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(5.17b)

(5.17¢)

(5.18a)

(5.18b)

(5.19a)

(5.19b)



75

L
i':? lsinzﬂ -g-sin-g-ﬂ
e 3 3 3 3
* VIR + . (5.19¢)

cos .§l - cos %(ﬂ + ¢o) cos %1 - cos %(Zw - ¢0)

Finally, the discontinuity in the far-field pattern at ¢ = -g—"- is

d 3n d 37
Hz(¢ == -) - HZ(¢ - +) (5.20a)
3n 3In
¢ M ¢ B e—
egd [ V2 ogd Y 2 (5.20b)

zl 22
*ow = %0 bow = T~ %

-1k (-acos¢ . +bsing,) ikp
0 0 e ikb

s e . -ﬁ- °* e
1 2 2 2 4021
e 3503 5 3 80 3
VITK 2n 2,3n 27 2,37
cos - - cos 3(‘2— - ¢0) cos 3= - cos 3(2 + ¢0)
) e-ik(acos¢o+bsin¢o) eikp . eikb
)
T
iZ 2 sin rul 2 sin 2n
e 3 3 3 3
. 7ZTT_.E 2.5 . (5-200)

2n 2,7 27 T
cos 3~ = cos 3(2 + ¢0) cos 3~ - cos 3(3- - ¢0)

To summarize, the discontinuities in the far field at ¢ = O,
%, T, and -g—"- have been studied in full detail and the results documented
in this section. The fact that the GTD solution of the far field con-
tains discontinuities is well-known. In the next section, the cause
of the existence of these discontinuities is investigated and a simple
physical interpretation is given which, in turn, provides a clue to

their elimination.
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5.2.4 Physical interpretation of the existence of the disconti-
nuities in the far-field pattern at ¢ = 0,'%. ™, and'%l

In the last section, the discontinuities in the far field at
¢ =0, %3 m, and %E have been studied and documented. The fact that
the GID solution of the far field contains discontinuities is well-
known. The cause of the existence of these discontinuities is investi-
gated and a simple physical interpretation is given which, in turn,

provides a clue to their elimination.
Note that in (5.4), the far field H: is constructed by using

H:l’ ng, and H:B’ each of which has its own angular domain of defini-

tion. More explicitly, H:l is defined on the angular range 0 < ¢ 5.%1

(see Figure 5.9a); outside of this angular range, H:z is simply assumed

to be zero. Likewise, ng is defined on 0 < ¢ < 7 and %£-§.¢ < 2m

(see Figure 5.9b); and H:3 is on 0 < ¢ 5.% and 7 < ¢§ < 21 (see Figure

5.9¢). It would have been a valid assumption in the canonical problem

since fields would have existed only in the exterior region of the wedge.

In the rectangular cylinder problem, it should be realized that the

fields do not terminate abruptly at the geometrical planes represented

by dashed lines in Figures 5.%a, 5.9b, and 5.9c. These dashed planes would
have been occupied by the semi-infinite wedge surfaces in the canonical prob-
lems. Physically, the fields should be continuous across these dashed planes
in space. Therefore, in constructing the far field as shown iﬁ (5.4),

we have effectively created a discontinuity at each of these dashed

planes. The presence of these discontinuities is solely artificial

because they are created by our abrupt truncation of the fields to

the regions in space corresponding to the exterior regions of the wedges
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Figure 5.9a. JyDl’ XAl
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Jd contribute to the discontinuities in the

far field at ¢ = %’-, ¢ = 0, respectively.
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SURFACE C

d d
ch3, JyB3 contribute toﬂthe discontinuities in the
far field at ¢ = 7, ¢ = 7 respectively.

79



80

used in the canonical problems. Now that the cause of the existence of
the discontinuities in the far-field pattern at ¢ = 0,-%, 7, and %l

has been found, we proceed to give them a physical interpretation which
in turn provides a clue to their elimination.

In the following discussion, a typical case is studied and the
solution to this case is derived in a step-by-step fashion. While
the results of other cases will be exhibited, their derivations are
left to the interested reader.

The typical case as shown in Figure 5.9a is studied. Let us con-
centrate on the extension of surface A. This extension 1s represented
by a dashed line from x = a to x = ® at y = b in the direction ¢ = O.
On one side of this plane, there exists H:I as shown in Figure 5.9a,
on the other side there is zero field. By classical electromagnetic
theory, we conclude that there is an electric surface current density
existing in the dashed plane. Such a current radiates in free space

to support this discontinuity in the H-field. In compact mathematical

language, we write

=d A =d
JAl =0 x Hl
A oand
y X szl
d
smzl
= ¢34 (5.21)
xAl ‘

where i is the unit normal vector to the surface A, the subscript A

refers to the extension of surface A, the subscript 1 designates the

SRR N S AR EmR T
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wedge under consideration, the superscript d means diffraction, and the
rest should be self-explanatory. Note that a factor of 2 is not present

d
in (5.21) because this JxAl
of the H-field and there is no backing of perfect conductor in this

is simply the discontinuity in free space

situation.

Referring to (5.5a) and keeping in mind that the original dif-
fraction coefficient is perfectly valid in the direction ¢ = 0, which
implies that the procedure of subtracting the pole singularities need

not concern us here, we can write

d d
Jear = Hpy (0 = 0
eikp
= f£,(=0) Vo Sy -b), p =2xce(a>) (5.22a)
where
-ik(-acos¢o+bsin¢o)
f1(¢ =0) =e
T
4 2 sin rut eika 2 sin 2 eika
. & 3 3 + 3 3 (5.22b)
vZTk 27 2 2 2 * *

08 57— = cos = ¢ s =L - = ¢
cos 3 s34 cos3 cos 3 ¢y

Note that in the above equation, an approximation of p by x has been
made and a constant value zero for the variable ¢ has been assumed.
The far-field expression as given in (5.5a) can be legitimately used
to compute the H-field on the dashed plane because any observation
points in that plane will be at least at a distance of 2a = 2A away

from the edge of wedge 1.
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d
The H-field generated by JxAl is
e %
=dEx e e ~d
HAl = -1k ;e [-2(-sin ¢JxA1)] (5.23)

where the superscript Ex stands for "excess'" to remind the reader that
this field has been created artificially by abruptly truncating the

diffracted fields, therefore, it should not have existed; hence, the

~

word "excess." JiAl in (5.23) is given by

d

- d
JxAl = F{JxAl}

i eikx -iox -1By
= f1(¢ = 0) !w fa'-7§— S(y -b) e e dxdy

© eix(k-a)

Bof e op—ax . (5.24)
a

-1
f1(¢ 0) e
By letting x(k - a) =-% t2, the integral with respect to x can
be transformed into an integral with respect to t which may be identi-

fied with the well-tabulated Fresnel integrals, 1i.e.,

® eix(k-a)
| =
w2
- 1T
-/ e? dt (5.25a)
a(K=o
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s T a- e? at (5.25b)

L
4
o m_' 2r W_e -{C( 2—:“- (1 - cos ¢))+ iS(jA:-E (1 - cos ‘”)}

(5.25¢)
In writing (5.25), we have explicitly used the relation a = k cos ¢
and the definitions of the Fresnel integrals, i.e.,
& 2
) = [ costpt?) dt (5.26a)
0
and
& 7 2
S(6) = [ sin(zt7) dt . (5.26b)
0

A knowledgeable reader could raise a question here concerning the
validity of the upper limit of the integral in (5.25a). However, one
need not be concerned with limits at this point of the derivation; in-
stead, one should merely view this as a formal transformation so that the
original integral can be manipulated into a form in which the limit
can be readily studied. The validity of this transformation will also
be substantiated by numerical computations in the next section.

Substituting (5.25¢) in (5.24) and the resulting expression for

3:A1 back into (5.23), we have
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i—
ikp a
:‘i" = -1k Syt | -2 (-s1n 0£, (4 = 0) & ikbsin¢
rp
4
S FUN (). ooy WV eyt

(5.27)
where fl (¢ = 0) is given in (5.22b).
Now we have the expression for the field generated by J:Al as shown

in (5.27). The next step is to examine the discontinuity introduced

at ¢ = 0 by ﬁﬁ'x. To this end, all we need to pay attention to is

the following limit:

2 sin 2 s
1in 7-1“—"5‘-%-3 : lim ;s:nz il I {_Z—} . (5.28)
{2,) il

Using (5.28) and (5.27), the discontinuity introduced at ¢ = 0 by

ﬁ" 18 found to be
=dEx dEx
HAl (¢ = 0) H (¢ = 2m)
'n I
ikp 4

T e

- -tk St |21 - D) 160 - [E Sy

4 ikp -ik(-acos¢0+bsin¢0) (2)(% in —§l)e:"ka

=5 & 7% . (5.29)
K4 cos % - CO8 % ¢0

0 Ao aperegl
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It is indeed enlightening to see that this discontinuity is exactly
the discontinuity given in (5.16e). The study of the typical case
is now completed. For the cases depicted in Figures 5.9a, 5.9b, and
5.9c, we simply list the results as follows:

The H-field generated by Jsbl in Figure 5.9a is

i

i—
. iko 4
Hgix - -1k & - e o0 Cae f1(¢ - %3) eikacos¢
£ &0
. e * o[ [EE piay
K ] {C( "(1+sin¢))+18(jﬂ(l+sin¢))}
(5.30a)
where
=-ik(-acos¢.+bsing,)
£ (s 5 20y =g 0 o), ikb
1 2
[ el 2020
. e 2 ) 3 3
V2T 27 2,3 2n 2,3n '
cos 3~ = cos 305— - oo) cos 35— = cos 3(2 + ¢o)
(5.30b)
The H-field generated by J:AZ in Figure 5.9b is
iko i%
=dE -ikbsi
HAZX.-ik%ﬁé— -2 -sin¢f2(¢-n)e Sauy

4

4
s o (o (R o ) + o [EEG eo 4])

(5.31a)
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where
-ik (acos¢+bsing,.)
f2(¢-ﬂ)-e 0 0 .eika
m
ei'a' % sin % -§- sin %'n
* VInk % . (5.31b)

cos -:2;1 - cos %('n - ¢0) cos % - cos %('n - ¢0)

The H-field generated by J$B2 in Figure 5.9b is
g
ikp 74
=dEx _ _. e e . . 3n, -ikacos¢
HBZ ikm—- 2 cos ¢ f2(¢ 2 ) e
T
Von 4 75k 2k,
27 e
L T — 77--{3(/“ (1 + sin ¢)) +iS(j = (1 + sin ¢))}
(5.32a)
where
1=
b= 21) ) _e-ik(acos¢o+bsin¢0) . kb, e 4
P =y 7Tk
2 2
. 3 sin 3"
2% 2 3
cos 5- - cos 3[(31r - 3= = ¢y)]
2 sin an
+ 3 3 (5.32b)

cos % - cos %[(31r - -g—“)-*-('n = ¢0)]

The H-field generated by J;BB in Figure 5.9c is

i SRR e
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pu
ikp 4
dEx _ _., e e . < I, _-ikacos¢ | V21
HB3 ik T 2 cos ¢ f3(¢ 2) e Y
%
2b
. —?7!— -{C (j—;l-((l - 8in ¢)) + is(j%ls(l - sin ¢))} (5.33a)
where
4
£ (o m Dy = -ik(acos¢o-bsin¢0) . ikb _ e 4
3 ¢ = 2 e e VZnk
% sin %‘n % sin _§1
5 . (5.33)

2 2 2 2
cos -3—" - cos 3(% - ¢o) cos 3—“ - cos 3(% - ¢o)

The H-field generated by J:C3 in Figure 5.9c is

m
o Q1Ko eia 2 sin ¢ £.(¢ = m) o1KDENG | V2n
c3 7§ﬂEp 3 YkvVT + cos ¢

=
4
o (B ) o B )| e

where
Pl
-ik(acos¢o-bsin¢0) ika e 4
£3(4 = %) = -e Tt I
% sin ?— -g- gin %
O + . (5.341))

cos %’- - cos %(n + ¢o) cos %1 - cos %(217 - 4:0)
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To examine the discontinuity introduced at ¢ = —2- by Hggx, we use

(5.33) to obtain
ul

1kp 1?
=dEx dEx
HB3 (¢ = ""')-H (¢=_+)--1k781r_-!i3'—
Ly
T Nors 4
o |-2{(V1 + sin 12'-)-(-/1 + sin %)} AR %) LY e
T
tko 4| -ik(acos¢.-bsing.) (2) & sin 2Ty ¢!KP
= 2 Spmt— 0 0 B Al s
TKp \Je

27 2,m
cos 5~ - cos 3( ¢0)

Again, this discontinuity is identical to that given in (5.17c¢c).

To examine the discontinuity at ¢ = 7, we use both Hzgx and Hgg:x

given by (5.31) and (5.34), respectively, since both J:AZ and J:C3 con-

tribute to the discontinuity. Hence, the discontinuity at ¢ = 71 is

R (CIIE T

T a7

— -ik eikp eil‘ 2{ (/E i l)_(_/f i lr-)} f ( - ). /2—'" . eil‘
ke sin 9 sin9)} L, =M &
- —
m T

Lo % " " A
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which is identical to the discontinuity in (5.19¢c).

Finally, to examine the discontinuity at ¢ = :—;-"- due to both J:DI

=dEx
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cos 3= - cos 3(2 + ¢o) cos 3~ - cos 365— - ¢0)

(5.37)

which is identical to the discontinuity in (5.20c).
Before closing this section, it is worthwhile to recapitulate
the main points discussed. The discontinuities at ¢ = 0, %3 wm, and

ax in the far-field pattern obtained by the GID technique have been

2
shown to be caused by the abrupt truncation of the diffracted field which
is effectively equivalent to artificially introducing sheets of elec-
tric surface current in free space. When these current sheets radiate
strongly in the directions ¢ = 0, %3 1, and %1, they produce discon-
tinuities corresponding exactly to those in the GID far-field pattern.
This discovery provides us a clue to further improve the GTD far-field
pattern. One simply subtracts out all these artificially created
"excess" fields from the GTD far-field pattern to get rid of these
discontinuities. The improved GID far-field pattern is discussed in

the next section along with some comparisons with the conventional

moment method solution and results obtained by a GTD-moment method

hybrid technique [4 ] and a self-consistent method [24].

5.3 Improved Far-Field Pattern and Comparison with Results Obtained
by Other Approaches

In the last section, Keller's wedge diffraction coefficient was
used to construct the far field scattered by a rectangular cylinder.
It was shown that when the pole singularities contained in the physical

optics current with infinite support on the semi-infinite wedge surface
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were subtracted from the wedge diffraction coefficient, the far field
remained finite and varied smoothly across the geometrical optics
shadow and reflection boundaries. Other chan the noticeable discontinuities
in the directions in which the surfaces of the rectangular cylinder are
oriented, that far~field pattern was in fair agreement with the con-
ventional moment method solution,

Then it was found that these discontinuities were caused by abrupt
truncations of the diffracted field to the regions in space which cor-
respond to tiie exterior regions in the wedge canonical problems. These
abrupt truncations were demonstrated to be effectively equivalent to
artificial introductions of semi-infinite electric surface current
sheets in free space. An in-depth study of these current sheets con-
sequently showed that they radiated strongly and introduced identical
discontinuities in those directions corresponding to the discontinuities
in the GTD far field. This discovery provides a clue which leads to
further improvement of the GTD far-field pattern,

The elimination of these discontinuities can be achieved by sub-
tracting ﬁ:ix, ﬁgfx, ﬁggx, ﬁggx, ﬁggx, and ﬁggx, given in (5.27), (5.30),
(5.31), (5.32), (5.33), and (5.34), correspondingly, from the GTD H:
given in (5.4). The improved GTD far-field pattern so obtained is
displayed in Figure 5.10. It is very interesting to observe that not

only the discontinuities at ¢ = 0,'%, m, and %1 disappear completely,

but also that nulls, which were not present in the GID far-field pattern

in Figure 5.7, are showing up in the neighborhood of ¢ = 7 and

¢ = %1. The disappearance of the discontinuities is to be expected since

these discontinuities have been examined carefully in the last section
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(see (5.29), (5.35), (5.36), and (5.37)) and were shown to be identical

to those in the GID far-field pattern in Figure 5.7.

Finally, results obtained by using (a) conventional moment method [17]
with 32 unknowns, (b) hybrid moment method and GID technique by
Burnside et al. [4 ]} with 24 unknowns, and (c) self-consistent method [24]
with 8 unknowns are exhibited in Figure 5.11. If one pays attention
to the insertion in Figure 5.11 showing the geometry of their problenm,
one will realize that their incident field is from a direction exactly
opposite to the one used in this study, hence, their far-field pattern
is opposite to that in Figure 5.10. Note that in Figure 5.11, the solu-
tion obtained by the self-consistent method, which apparently includes
all higher-order multiple-edge interactions in its formulation, still has
the discontinuities at ¢ = 0, 90°, 1800, and 270°. While the conventional
moment method solution and the moment method-GID hybrid solution deviate
only slightly in the backscattering direction, the present method solu-

tion as shown in Figure 5.10 is in good agreement with them.
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Figure 5.11. Scattered far-field patterns obtained
by other approaches.
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5.4 Accuracy Check

In the previous sections, a method has been discussed for obtaining
an improved scattered far-field pattern of a perfectly conducting rec-
tangular cylinder illuminated by a plane wave whose magnetic intensity
vector is parallel to the axis of the cylinder. The resulting improved
scattered far-field pattern has been compared with results obtained by
other approaches in the literature. In particular, results obtained by
using (a) conventional moment method [17] with 32 unknowns; (b) hybrid
moment method and GTD technique by Burnside et al. [4]) with 24 unknowns,
and (c) self-consistent method [24] with 8 unknowns have been used for
comparisons.

Qut of these three different approaches, only the conventional
moment method has comsistently taken into account in its formulation
the boundary condition, requiring the tangential components of the total
electric field be vanished on the surface of the rectangular cylinder.
In Burnside's hybrid moment method and GID technique, the boundary con-
dition is not enforced on the entire surface of the scattering object,
as in the case of the conventional moment method. Instead, point matching
is applied at the midpoint of each of the pulse current segments located
near the diffracting edges of the wedges of the rectangular cylinder,
and at some arbitrary points in the GTD regions of the surface of the
rectangular cylinder in order to obtain an equal number of equations as
the involved unknowns including the current samples and the diffraction
constants. The final result is somewhat dependeﬁt on the locations of
the arbitrarily chosen additional matching points in the GTD region on

the surface of the scatterer. Therefore, it takes a judicious choice
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of the locations of the aforementioned matching points and quite often, in
such a situation, more matching points than unknowns are needed such
that some averaging schemes can be applied to obtain meaningful results.

In the self-consistent method, no considerations are given to the satis-
faction of the boundary condition.

Although the comparisons of the scattered far-field pattern with
those obtained by the aforementioned methods are very favorable, indicating
the solutions are in good agreement with the true solution, an independent
accuracy check must be applied to further validate the approximate solu-
tion, especially when there are no available results in the literature
to compared with. Such an accuracy check is often needed but is not
readily available in the high-frequency asymptotic techniques.

In this section, we present a method which allows us to calculate
the tangential components of the scattered electric field on the surface
of the scatterer using the approximate scattered far-field pattern. The
accuracy of the solution can then be checked simply by observing whether
these tangential components of the scattered electric field on the sur-
face of the scatterer are equal to the negative of the tangential components
of the incident electric field on the surface of the scatterer. If the
outcome of such an observation is favorable, then the solution is good;

otherwise, further improvement is needed.

5.4.1 Method of computation

In classical electromagnetic theory, it is well-known that the
scattered magnetic far field is related to the Fourier transform of
the scattered electric field on an aperture in a relatively simple manner.

Consider the aperture shown in Figure 5.12. This aperture is a plane
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Figure 5.12. Scattered far-field pattern in the hemisphere is
used to obtain the scattered E-field on the aperture.



98

at y = b, containing the surface of the rectangular cylinder as its
central portion. The scattered far-field pattern enclosed in the hemi-
sphere corresponding to this aperture as shown in Figure 5.12 is used

to compute the Fourier transform of the scattered electric field on the
aperture. In particular, for the H-wave case considered in this chapter,
the Fourier transform of the tangential component of the scattered elec-

tric aperture field can be written as

E> \p @)
2o 1 H
" %6 T (¢) * exp(-ikb sin ¢) (5.38)
where
1kp+iz

e
glp) = i

Z0 is tbe free space characteristic impedance
TH(¢) is that portion of the scattered magnetic far field pattern
enclosed in the proper hemisphere corresponding to the aperture
under consideration, and
p and ¢ are the polar coordinates.
The phase factor in (5.38) is to assure that the aperture at y = b, but
not at y = 0, 1s under consideration. The tangential scattered electric
aperture field in the space domain can be obtained readily by an inverse

Fourier transform, viz.,

ES,p(6y = b) = FHUES, (6(a))] . (5.39)
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The tangential scattered electric aperture field in (5.39) is truncated
to the surface of the scatterer, i.e., x ¢ [-a,a] and an observation can
be made to judge whether the tangential scattered electrical field on
the surface of the rectangular cylinder is indeed equal to the tangential
incident electric field.

The hemisphere shown in Figure 5.12 is for the aperture at y = b.
Similar hemispheres and apertures corresponding to the other surfaces
of the rectangular cylinder can be established and the tangential com-
ponents of the scattered electric field on these surfaces can be com-

puted in a similar fashion.

5.4.2 Results and comments

In the previous sections, an improved scattered magnetic far-field
pattern has been obtained (see Figure 5.10). The accuracy of that pattern
can be verified by computing the tangential component of the scattered
electric field on the surface of the rectangular cylinder using the
method outlined in Subsection 5.4.1. The resulting tangential component
of the scattered electric field on the surface: x ¢ [-a,a], y = b, is
shown in Figures 5.13a and 5.13b. These curves were obtained by using that
portion of the improved pattern (Figure 5.10) enclosed in the hemisphere
schematically indicated in Figure 5.12, and by using the one-dimensional
FFT for the inverse Fourier transform operation.

The magnitude of the tangential scattered E~field shown in Figure
5.13a oscillates around the constant value 266.58, which is the magnitude
of the tangential component of the incident E-field. More precisely,
for normalized H-wave incidence, |Hi| - 1,|Ei| = 377, and the incident

angle ¢0 = 45°, therefore, the magnitude of the tangential component of
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the incident E-field is |Ei cos 45°| = 266.58. The phase of the tangential
scattered E-field shown in Figure 5.13b is varying linearly across the
surface of the rectangular cylinder and can be readily verified to be of
a phase difference of w or 180° from the phase of the tangential incident
E-field on the surface. Similar behaviors of the tangential scattered
E-field on other surfaces of the rectangular cylinder can be obtained

and are not repeated here. These observations confirm that the improved
far-field pattern obtained in the last section is indeed a very good
approximation to the true scattered field. Of course, the comparisons
with results obtained by other approaches as.done in the previous section
not only further validate the approximate solution, but also demonstrate
the effectiveness of the accuracy checking method developed in this

section.

5.5 Summary

In this chapter, the scattered far-field pattern of a perfectly
conducting rectangular cylinder illuminated by a plane H-wave has been
obtained by a zeroth-order GID approximation and the result improved by
a straightforwardly physical interpretation of the existence of the
discontinuities in the zeroth-order GID far-field pattern.

The improved scattered far-field pattern has been compared with
results obtained by other different approaches and the similarities and
differences between these results have been discussed. Generally speaking
the improved pattern obtained by the present approach is in good agreement
with the conventional moment-method solution with 32 unknowns.

An accuracy checking method has also been presented so that an in-

dependent check on the satisfaction of the boundary condition on the
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surface of the rectangular cylinder can be performed. The results of

such an accuracy check are quite favorable, which demonstrates that the
improved far-field pattern obtained by the present approach is indeed a
close approximation to the true solution. The merit of such an inde-
pendent accuracy checking scheme is that the approximate solution ob-~

tained can be validated without making comparisons with other methods.

This accuracy check is much desired especially when there are new re-

sults obtained and no available information in the literature that can

be trustworthy to compare with.
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6. A SYNTHETIC-APERTURE-DISTRIBUTION APPROACH TO
THE HIGH-FREQUENCY ELECTROMAGNETIC SCATTERING
OF OBSTACLES WITH CONVEXLY CURVED SURFACE
6.1 Introduction

In the previous chapters, we have discussed new approaches for
solving the high-frequency electromagnetic scattering problems involving
obstacles with planar surfaces and sharp edges. For all of these problems,
the zeroth-order approximation to the scattered far-field can be con-
structed from Keller's wedge-diffraction coefficient (including the
edge-diffraction coefficient as a special case) in a relatively simple
manner. The improvement of the zeroth-order solution can be achieved
in a systematic way, as demonstrated in the previous chapters, where
the infinite perfectly conducting thin strip, the finite perfectly con-
ducting rectangular thin plate, and the perfectly conducting rectangular
cylinder have been used as 1llustrative examples.

In reality, most of the scattering objects possess a smoothly
curved surface instead of planar facets and sharp edges. A circular
perfectly conducting cylinder is the simplest geometry of this category
of smooth-surfaced obstacles. The scattering by a circular cylinder is
among the few electromagnetic scattering problems that can be solved
by the method of separation of variables in partial differential equa-
tions. From a mathematician's point of view, the scattering by a cir-
cular cylinder is solved when the scattered field is expressed in terms
of an infinite series of eigenfunction expansion involving transcendental
functions. However, such an eigenfunction solution usually converges
slowly and many terms in the infinite series expansion must be included

before a "settled-dowr'" solution can be obtained. For high-frequency
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scattering, the obstacle is normally large in terms of wavelengths.
When it comes ‘o numerical computations, such an eigenfunction expansion
is no more than a mathematical elegance but is totally useless in
practicality.

For many decades, scientific-minded people have stared at this
exact solution which is expressed in such an elegant manner and yet so
formidable to get numerical results out of it. Before the advent of
the latest generation of large computer systems, many of the former
graduate students have spent a good deal of their time working on re-
search projects involving numerical evaluations of the exact solutions
with the aid of desk calculators. The introduction of the first large
computer system was expected to release them of these tedious calcu-
lations. However, they soon found out that the evaluation of the exact
eigenfunction expansion solutions on the computer was extremely time-
consuming., Furthermore, they discovered that the problem of numerical
instabilities would occur when increasingly higher-order terms were
included successively in the computation. Therefore, in high-frequency
scattering where the higher-order terms must be included in the series
to obtain a convergent solution, the numerical evaluation of the exact
solution is still hopeless.

Even before their disenchantment with the large scale computer
systems, people were so frustrated by the numerical evaluation of the
exact solution that thiey started deriving asymptotic formulas for both
high-frequency and low-frequency approximations to the exact solution.
Most of the high-frequency asymptotic formulas may be obtained either

directly, e.g., by the Luneburg-Kline method [25), or by asymptotic
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evaluations of contour-integral representations of the exact solution.
Saddle-point integration and the stationary-phase method are most often
used to obtain an asymptotic series if the integral representation of
the exact solution is the starting point of the derivation.

For high-frequency scattering, in most of the cases, the first
term of the asymptotic-series expansion gives an extremely good approx-
imation to the exact solution. However, for the case in which the first
term does not give a good approximation to the exact solution, including
the next higher-order term in the asymptotic series may or may not be
able to improve the approximate solution. This is a well-known property
of the asymptotic series,because in most situations, the asymptotic
series is a divergent instead of a convergent series.

To date, a method for systematically improving the asymptotic
solution is still the most desirable. In spite of all the efforts
that have been concentrated on this solution in the two decades since
Keller's first conception of the diffraction coefficient approach, no
systematic way exists to improve the high-frequency-asymptotic solution
when necessary. Many theories, which are improved versions of the
original Keller's geometrical theory of diffraction (GTD) [26]) have been
proposed, among these theories are the uniform theory of diffraction
(UTD) (8], the uniform asymptotic theory (UAT) [9], and the spectral
theory of diffraction (STD) [10J. Nevertheless, the computational ef-
ficiency of these theories when applied to practical situations still
remains to be seen.

Two of the state-of-the-art methods for solving the high-frequency

scattering problems involving perfectly conducting convex cylindrical
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structures have been presented, one has been published in the literature

[4], while the other has been presented at the USNC/URSI 1975 annual

meeting [5 ]. The first method uses a combination of the geometrical

theory of diffraction and the moment method to solve a circular cylinder
scattering problem, wherein the cylindrical surface is divided into
three regions, namely, the physical optics region in the well-illuminated
side, the GID region in the deep shadow, and the pulse region in the
transition region between the lit and the dark sides. The surface
current is first obtained, then the far-field can presumably (Bu;nside

et al. did not show the far-field pattern) be obtained by a numerical

double-integration of the surface current. There are three weaknesses

in Burnside's method:

(1) The composite surface current computed by using different tech-
niques in different regions on the cylindrical surface as in-
dicated above 1s not smoothly connected at the boundaries of
each region. These discontinuities are clearly shown in Figure 6.20;

(2) The far-field pattern must be computed by a numerical double-
integration of the surface current. Such a computation may be
time consuming; and

(3) Furthermore, the discontinuities at the high end in the surface
current (see Figure 6.20) may introduce extraneous high-~level side-
lobes in the far-field pattern (see Section 6.4 for a demonstration).
The second method used an N-sided polygon to model the circular

cylinder. Wang and Richmond's analysis is based on the self-consistent

geometrical theory of diffraction [24]. Two cylindrical waves with

unknown amplitudes are assumed to travel in opposite directions



(traverse to the axis of the cylinder) on each facet of the polygon.

The boundary conditions for the corners are applied to set up a matrix

equation for 2N unknowns (the amplitudes associated with the traveling

cylindrical waves).

After the amplitudes for the traveling waves have been determined,

the far field is obtained by the self-consistent method. There are

three weaknesses in Wang and Richmond's method:

(1)

(2)

3

Sharp edges are introduced artificially in modeling the smooth
circular cylindrical surface by a polygonal cylinder. In other

words, the nature of the problem has been changed substantially;

Crout's method is used to solve the matrix equation.
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In order to accurately model an electrically large circular cylinder,

it is conceivable that N, the number of polygonal facets used,
must be large; otherwise, the problem of a polygonal instead of a
circular cylinder is being solved. Hence, the number of unknowns,
2N, in the matrix equation can be large and the computation be-
comes, again, time consuming; and

In addition, the self-consistent method, as pointed out in the
last chapter, may not be able to get rid of the extraneous vari-
ations in the far-field pattern in the directions coincident with
the orientations of the individual facets of the modeling poly-
gonal cylinder.

It is also well-known in the high-frequency scattering that asymp-

totic evaluation of the integral representation of the scattered field

results in an infinite series whose terms can be interpreted as highly

attenuated, surface-mode, traveling-waves around the surface of the

obstacle. The diffraction coefficients and attenuation constants in
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the Keller's geometrical theory of diffraction for smoothly curved
surfaces can be identified from the terms in the series. Such traveling
waves propagate around the obstacle at a slightly slower speed than
that of light in free space, and continuously shed energy in directions
tangential to the surface as they travel along; hence, they are highly
attenuated. These waves are known as ''creeping waves." It was once of
great hope that the creeping-wave contributions would complete the pic-
ture of the geometrical-optics solution of scattering problems by pro-
viding a means of calculating the diffracted field in the deep-shadow
region. Conceptually, the creeping wave theory is attractive; but,
actually, due to the high-attenuation property of the creeping waves,
‘those waves that '"crept" around the obstacle more than once contribute
little to the total diffracted field. Therefore, if the first-order
creepidé wave. failed to improve the geometrical-optics solution to a
certain extent, including higher-order creeping waves seldom improves
the solution further. Besides, creeping waves are too complicated to
compute, hence, are not suited for programming on computers.

All of the above discussions point to the fact that a conceptually
simple, computationally efficient method of solving high-frequency
electromagnetic scattering problems involving curved-surface scatterers
is still much desired.

In this chapter, we introduce a new approach to the high-frequency
electromagnetic scattering of obstacles with a convexly curved surface.
The idea is to transfer information characterizing the curved surface
onto a planar aperture where maneuvers for improving the geometrical-

optics solution are carried out. In conventionei strategies, maneuvers
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for improvement are carried out either directly on the surface current
or directly on the far field. The introduction of a planar aperture in
the present approach 1s a marked difference from all of the conventional
methods. A salient feature of the method is that the far field is
obtained by Fourier transforming the aperture-field distribution; hence,
it can handle problems involving an n~dimensional obstaclc by an
(n ~ 1)-dimensional fast Fourier transform (FFT), where n = 2,3,
Therefore, the unwieldy three-dimensional FFT is circumvented, hence,
the method is numerically efficient. Another important feature of the
method is that the aperture-field distribution is slowly varying, i.e.,
not rapidly oscillatory, in magnitude and in phase. Hence, maneuvers
for improvement can be achieved in a relatively straightforward manner.
Moreover, the method 1s conceptually simpler than other conventional
methods in the literature, because maneuvers for improvement are car-
ried out on a plane rather than on a curved surface.

The best way to explain the method is to apply it to solve the
scattering problem of a plane wave by a:perfectly conducting circular
cylinder, because the principle involved can be illustrated without
the unnecessary complexities.

To make this chapter as self-contained as possible, we briefly
derive the exact solution in Section 6.2 and the geometrical-optics
solution in Section 6.3. Synthesizing the approximate aperture-field
distribution is demonstrated in Section 6.4. Computation of surface
current is carried out in Section 6.5. An accuracy check of the ap-
proximate solution is discussed in Section 6.6. A summary for the

chapter can be found in Section 6.7.
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6.2 Exact Solution

In this section, we briefly discuss the exact solution to the prob-
lem of scattering of a plane wave by a perfectly conducting circular
cylinder. The geometry of the problem is shown in Figure 6.1. A per-
fectly conducting circular cylinder located at the origin of the co-
ordinate system is illuminated by a uniform plane wave whose electric
intensity vector is parallel to the axis of the cylinder.

Using the method of separation of variables [27], the scattered

field can be written as

@

B2, = ] " a il o) ™ (6.1)

n=m=c

where Hél)(kp) is the Hankel function of the first kind, and the an's

Lut is understood.

are unknown coefficients. The time convention e~
To determine the an's, we evaluate (6.1) at p = a, the radius of the
cylinder, i.e., at the surface of the cylinder and then apply the
boundary condition. To do this, we first expand the incident electric

field into a series, namely,

E;Goad) =] (D3 (ko) ™™ (6.2)

N=m=0

vhere Jn(kp) is the Bessel function of the first kind. The boundary
condition requireé that the total tangential electric field vanish on

the surface of a perfectly conducting obstacle. Therefore,

E3(a,4) + EL(a,6) = 0 . (6.3)
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Using (6.1) and (6.2) in (6.3), we obtain

“p @) (6.4)
8 B emmheT— . .
B Hél)(ka)

Substituting (6.4) in (6.1), we have

o J_(ka)
8 n_"n 1) in¢
E,(p,4) = ’,,Z-,, W iy By ) @ : (6.5)
n

The far-field pattern of the scattered field is of interest. At

large distances from the cylinder, we can use the asymptotic formula

for H(l), namely,
n
1) -n _ikp
By ko) g b (6.6)
and (6.5) becomes
ES(p,4) =i [ o1KP ei% 17 JalkD)  ng (6.7)
2P kp+o J ko nh<e Hél)(ka) . .

The magnitude of the ratio of the scattered field to the incident field

18 therefore

]

o J (ka)
n elnel (6.8)

E =
--T—Tk—p-

%

This is the scattered far-field pattern. For ka = 1, 5, 10, and 6w,

N N

pe Ht(ll) (ka)

the far-field patterns are shown in Figures 6.2a, 6.2b, 6.2c, and 6.2d.
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Figure 6.2b. Exact scattered far-field pattern in dB of a circular
cylinder with ka = 5,
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Figure 6.2¢c. Exact scattered far-field pattern in dB of a circular
cylinder with ka = 10.
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Figure 6.2d. Exact scattered far-field pattern in dB of a circular
cylinder with ka = 67,
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Experience shows that the number of terms one should take in (6.8)
to compute the far-field pattern is of the order of ka, which means
that the convergence of the serjies is extremely slow for an electrically
large cylinder and the computation becomes time-consuming. For high-
frequency scattering, one must resort to approximation solutions to
obtain meaningful numerical results.

The surface current on the cylinder ;s also of interest. It can

be obtained from Maxwell's equations, i.e.,

1 aEz
Jsh,| et 2% (6.9)
z ¢ _— iwy 9p oha
i

where E,=E, + E:. Using (6.2) and (6.5), and simplifying the result

z

by the Wronskian of Bessel's equation, we obtain

2 v in ein¢ _
Jz(¢) = mkaZ

e (6.10)
0 n=-w Hél)(ka)

where Z0 is the free-space characteristic impedance. The surface cur-

rent for the case of a = 31 is shown in Figures 6.3a and 6.3b.

6.3 Geometrical Optics Solution

6.3.1 Fields of a ray

A point source radiating in all directions is indicated in Figure 6.4.
The energy between a set of such rays is assumed :.. remain constant.
Four of these rays, as shown in Figure 6.5, constitute a tube of rays.
The energy passing through the cross-sectional areas Al and A2 must

be a constant under the assumption of no fringing. A linear relation
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SOURCE

Figure 6.4. Rays of a point source.



Figure 6.5.

Tube of rays from a point source.
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exists between the length of a side and its position p or (p + &)

shown in Figure 6.5. Thus, the ratio of the areas is

2
D] B

7 (6.11)
2 (p+12)

>I>
—

A field quantity at the position (p + 2) may be written in terms
of its value at the position p. The field quantity considered here is
a scalar. A vector field can be resolved into two component fields,
one polarized in and the other normal to the plane of incidence, and
ehch component field treated as a scalar field. It should be empha-
sized that this 1s exactly the physical scattering process that occurs

at a boundary between two different media. The field quantity is then

- 1.y —P
u, Uljfz U, 53 6.12)

where U represents the scalar E- or H-field.
One may also consider a more general case involving an astigmatic
ray tube shown in Figure 6.6. In this case, the scalar field quantity

is given by

[ P1P2
J, + 2)(p, +2)

U, = U1 (6.13)

The electrical phase of the ray tube is given by the spatial phase

delay factor eikz, whea the time convention e 1%t

is understood. This,
of course, assumes that the phase reference position coincides with

the amplitude reference. Now one may write an expression for the fields
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LINE
CAUSTIC

Figure 6.6. Astigmatic ray tube.




125

of this astigmatic tube of rays in the form

i¢ P1Ps
1 L2 ikl
= J@l TG, v ¢ (610

There are other phase changes that must be carefully preserved.
Observe that the quantity under the radical becomes negative as & be-
comes less than =Py This introduces a phase jump of -90° or --% radians.
This point is called a caustic. The fields at the caustic point cannot
be determined by geometrical optics but the correct fields can be found
on either side of the caustic. If 2 becomes less than pl, then the
phase shift of 180° or v radians occurs.

The general geometrical optics expression for the field may be
written in the form

i¢

U(R) = er

0 p(p) ¥ (6.15)

where Uo is a reference amplitude at £ = O;

¢o is the reference phase at £ = 0;

P4P
172
- i .
F(2) \/;pl T z)(pz ) is the spatial attenuation factor;

and eikz is the spatial phase delay factor. In other words,

U() = [reference ﬁem]E*Pati;;c:g;emmﬂ [gg;;;a;aggg:ﬂ . (616
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6.3.2 Reflection at a curved surface boundary separating two
different media

In this section we discuss a simple technique for obtaining the
reflected field from a curved surface which i1s a boundary between two
different media. The cylindrical or two-dimensional geometry is con-
sidered simply to avoid any unnecessary complexities. Other surfaces
can be treated in the same manner.

The source is a line source as shown in Figures 6.7a and 6.7b. A plane
wave is obtained simply by allowing 20 to go to infinity. The reflected
rays now appear to be coming from a virtual source located a distance
Py inside the surface. All factors in (6.16) should be written in
terms of distance from the element of the surface as illustrated by 20,
zl. The quantity r, is the radius of curvature of the surface.

Now we proceed to determine the reflected fields. From (6.15),

the reflected field is obtained and takes the form

Ur = RU - e (6.17)

R

where R is the reflection coefficient and U0 is the reference field at
the surface.
The only remaining task is to evaluate pqy in (6.17). From trigo-

nometry, the angle 51 (see Figure 6.7a) is expressed as follows:
g, =T -a- (mr - 90)

=0, - o . (6.18)

Similarly,
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(a)

Figure 6.7a. Coordinate system.
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MEDIUM
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(b)

Figure 6.7b. Reflection from a curved surface.
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52 - 90 + a . (6-19)

The element of arc-length is equal to rc(Aa) (see Figure 6.7b) and it

is also equal to (Agl) Zolcos 90. Therefore,

(AEl) 20 i} (Aeo - ba) lo

rc(Aa) ¥ Tcos 60 cos 60 (6.20)
where the last equality is obtained by means of (6.18) and A denotes
the differential in the usual sense. By the same token,
(AE,) o (a6, + Aa) p
2° "1 0 1 (6.21)

r (Aa) =
c cos 60 cos 90
where the last equality is obtained with the aid of (6.19). Eliminating

Aa from (6.20) and (6.21) yields

1. ?lz‘ PO A (6.22)

Substituting (6.22) in (6.17) completes the solution for the reflected
field from the curved surface.

Thus, the expression for the field reflected by a two-dimensional
curved surface has been obtained in a relatively simple manner. The
validity of this expression has been checked by comparing solutions of
this type with exact solutions for spheres and cylinders [28]. For
further discussions on the subject of electromagnetic reflection from a
perfectly conducting surface, the interested reader is referred to the

literature [29].
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6.3.3 Scattering of a plane wave by a circular cylinder

In this section we apply the general formulas derived in the last
section for reflection at an arbitrarily convexly-curved boundary-surface
to the special case of a circular cylinder. The geometry of the scatter-
ing problem is shown in Figure 6.8. A plane wave polarized parallel to the
axis of the circular cylinder located at the origin of the coordinate

system is incident from the negative x-direction, viz.,

El(p,0) = getkPcos? (6.23)

where the time convention e-iwt is understood.

To obtain the geometrical optics reflected field, we use (6.17).
Since this is a perfectly conducting circular cylinder, the reflection
coefficient, R, is -1. The reference field, Uo, is the incident field

at the point of reflection, ir’ on the circular cylinder. From (6.23),

Uo = E:(p = a,p = )

a eikacos& . (6.24)

The spatial attenuation factor is determined when the caustic position,
Py is known. To find Pys We use (6.22). For plane wave incidence,

zo + o, The radius of curvature in this case is simply a constant, i.e.,

the radius of the circular cylinder, a. Hence, the caustic position

is given by

a cos 60

pp=—3— - (6.25)
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Figure 6.8, Geometry of the scattering problem of a circular cylinder.
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Note that the angle of reflection, 90. in (6.25) is a function of ¢,
i.e., it depends on the location of the point of reflection on the
cylindrical surface. The quantity El in (6.17) is the distance between
the point of reflection, ?r(a,g), and the point of observation, r(p,9).
This distance is denoted by % in Figure 6.8. To obtain an expression
for the scattered field at an observation point, r(p,¢), we must first
find a relation between the parameters (90,2,5) and the coordinates
(0,¢). However, there is no simple relation that can be found to ex-
press 90, %, and £ explicitly in terms of p and ¢. Therefore, in
practice, one has to resort to numerical methods. - There are basically
two routes that one can follow, namely, either searching for the point
of reflection when a point of observation is given, or interpolating
for the field when a point of reflection is chosen.

Nevertheless, a simple closed-form expression can be found for the
far field (p + «). In particular, we use the following approximations

when p >> a > A:

p =2 in the amplitude (6.26a)

p=2+acos 6 in the phase (6.26b)

8, = |"—;—Q| for 0 < ¢ < 27 (6.26¢) .
and

g =132 for 0 < ¢ < 21 . (6.26d)

Using (6.24), (6.25), and (6.26) in (6.17), and after some algebraic

manipulations, we obtain



i e

132

_ -ik2asin%
Eg g, (pr¢) = -z % sin %-e e (6.27)

p > a> A

fut is understood. The scattered far-field

and the time convention e
pattern obtained from (6.27) for the case of a = 3) is shown in Figure
6.9. For further discussions on the geometrical optics reflected fields,

the interested reader is referred to the literature [30].

6.4 Synthesizing the Approximate Aperture Field Distribution

In the last section we discussed the geometrical optics solution
to the problem of scattering of a plane wave by a perfectly conducting
circular cylinder. The geometrical optics scattered far-field pattern
is in excellent agreement with the exact (eigenfunction series expansion)
solution in the hemisphere containing the lit surface of the circular
cylinder. However, the geometrical optics solution fails completely in
the forward-scattering direction because it predicts a zero field in-
stead of the maximum of the main beam in that direction. This result
does not come as a surprise since in a geometrical optics solution only
the illuminated portion of the surface of an obstacle is taken into ac-
count, whereas the shadowed portion of the surface of the obstacle is
completely ignored in the solution. As a matter of fact, the shadowed

side of the scatterer could have been of any arbitrary shape and the
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geometrical optics solution would have still predicted the same scattered
far-field pattern as long as the illuminated portion of the surface
were cylindrical.

In spite of the serious discrepancy in the forward-scattering di-
rection, the geometrical optics far-field solution is, nonetheless, in
good agreement with the exact solution for a wide range of angles ex-
tending from the 1it hemisphere deep into the dark hemisphere. Only
within a narrow range of angles in the immediate neighborhood of the
forward-scattering direction does the geometrical optics far-field start
to deviate from the exact far-field pattern. This observation leads to
the conclusion that the geometrical optics solution i- a very good ap-
proximation to the exact solution except in the neighborhood of the
forward-scattering direction.

It is our conjecture here that the main beam in the forward-
scattering direction may be obtained from an aperture-field distribution.
If an infinite, planar aperture cutting the entire space into two half-
spaces is erected on the far-side of the cylinder when we view it from
the source side, we may stop all the geometrical optics rays at this
aperture and calculate the aperture-field distribution. For observa-
tion points beyond this aperture, we simply use Huygens' principle to
find the fields. Theoretically, this procedure of stopping the rays
at the aperture and then letting the aperture-field propagate beyond
it should not be different from the original ray fields which propagate
continuously undisturbed. Hence, we should obtain nothing more than
the original geometrical optics far-field pattern. However, if the

aperture is in juxtaposition with the cylinder, then that portion of
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the aperture field in the vicinity of the cylinder must be completely
different from the ray flelds. As a matter of fact, the geometrical
optics ray fields are no longer meaningful in that region. Consequently,
an option is opened here for modifying the aperture-field distribution
80 that an improved far-field pattern can be obtained. Methods of
synthesizing the aperture-field distribution are discussed in the follow-
ing subsections.

The format of presentation of the methods is as follows. In each
of the subsections, a method of synthesizing the rture-field distri-
bution is illustrated and the resulting far-field pattern displayed.

Each subsection is concluded by a discussion of the method and a hint
for a better synthesis. These methods for synthesizing the aperture-
field distribution are arranged in the order of increasing degree of
sophistication and accuracy. The first two methods presented below
give totally unsatisfactory far~field patterns; however, they serve

as good examples to indicate some of the pitfalls that one may run into,

hence, their inclusion here is well justified.

6.4.1 Method I

All scientific progress starts from observations. It is no ex-
ception in the development of this method. The exact scattered electric
aperture field in the shadow region cast by the geometrical-optics rays
is depicted in Figure 6.10. Note that the width of this shadow is
simply the diameter of the circular cylinder. 1In this particular ex-
ample, the radius of the circular cylinder is thrice the wavelength of

the incident plane wave which is polarized in the z-direction and has
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Figure 6.10. Exact scattered electric aperture-field in the geometrical
optics shadow region.
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a magnitude of 1. Due to symmetry, only half of the shadow-region scat-
tered aperture-field is plotted.

The magnitude curve has a constant value 1 at the center of the
shadow and hardly varies until it is about two wavelengths away from the
center, at which point the magnitude starts to decrease. The overshoot
}n the magnitude curve 1s highly exaggerated because the scale runs from
0.7 to 1.1 only. The value of the magnitude of the exact scattered
aperture field at the edge of the geometrical-optics shadow is approx-
imately 0.73. Note that the phase variation throughout the entire
shadow region is nothing more than attributing a negative sign to the
magnitude. This fact does not come as a surprise, because, in the
deep-shadow region, the total electric field should be zero; hence, the
scattered E-field in that region should be just the negative of the
incident E-field.

Having observed this fact about the scattered electric aperture
field, a first attempt to improve the geometrical-optics far-field is
naturally to assume an aperture distribution which is the negative of the
incident E-field in the geometrical-optics shadow region and is zero
outside this shadow region. Alternatively, the scattered electric
aperture field outside the shadow region could have been assumed the
value of the geometrical-optics scattered E-field. However, the process
of stopping the geometrical-optics rays at the aperture and then letting
them radiate again to generate the far-field is not much different from
the far-field obtained directly from the geometrical-optics rays prop-
agating to the far-field zone undisturbed. The only significant dif-
ference 1s an additional contribution generated by the shadow-region

aperture-field to the far-field. The scattered far-field pattern is

137
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obtained by superimposing the geometrical-optics far-field and the

additional far-field computed by Fourier transforming the assumed
scattered aperture E-field in the shadow region.

The far-field pattern obtained by this method is shown as a dotted
curve in Figure 6.11. Recall that the Fourier transform of the rectangular
pulse aperture distribution results in a sin x/x, or the sinc function,
type of far-field pattern. Therefore, the main beam in the forward-
scattering direction shows up. A comparison of Figure 6.2, Figure 6.9,
and Figure 6.1]1 manifests the remarkable improvement in the geometrical-
optics far-field pattern by the additional far-field generated by the
deep-shadow aperture-distribution which is precisely what was ignored
in the geometrical-optics solution. The deep nulls in the neighborhood
of the forward-scattering direction are due to the phase interferences
between the geometrical-optics solution and the Fourier transform of the
aperture-distribution. Moreover, the relatively pronounced oscillations
in the far~-field pattern are caused by the discontinuities in the aper-
ture-field distribution. In the next subsection we discuss another method
of synthesizing the aperture-field distribution so that the extraneous oscil-

lations can be suppressed.

6.4.2 Method 11

The method discussed in the last subsection substantially improved
the geometrical-optics solution of the scattered far-field pattern.
However, extraneous oscillations occurred in the far-field pattern and
further improvement is necessary. It is well-known in the field of
antenna design that a tapered aperture field produces a low side-lobe
radiation-pattern. Therefore, the second attempt to improve the
geometric-optics solution is to synthesize a smoothly tapered aperture-

distribution of the scattered E-field. To this end, consider a
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sinusoidal roll-off function of the form

f(y) = -%-i--]z*cosﬁ‘—-:—%n (6.28)
where A and B are parameters. Note that the attractive property of
such a sinusoidal roll-off function is that it serves as a very good
interpolating curve between the constant values -1 and zero. Not only
the values, but also the slopes of the function being interpolated are
matched at the two end points of the interpolation interval designated by
[A,B]}. In a sense, such a curve possesses the properties of a spline.

The parameters A and B are chosen to correspond to the width of
the penumbra-region, or better-known as the "transition-region' on the
aperture. To date, no reliable techniques are available in the liter-
ature to determine the width of the transition-region to a considerable
degree of accuracy. In the literature, it has always been assumed that
the transition~-region is located symmetrically about the boundary of
the geometrical shadow. However, such an assumption is not very accurate be-
cause from the exact aperture-field distribution, the transition-region
is observed to be asymmetric about the boundary of the geometrical-
optics shadow and it extends much farther into the illuminated region
than the dark region. This point is discussed further in the next sub-
section.

Nevertheless, it is educational to compute the far-field using
the aperture-field distribution synthesized from the tapering sinu-
soidal roll-off functions in the penumbra-region and the negative of
the incident field in the deep-shadow region. In this example, the
radius of the cylinder is 3); the closest approximation to the width

of the transition region is 1A on either side of the boundary of the
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geometrical-optics shadow, which means that a 2A-transition region is
assumed.,

The far-field pattern obtained by this method is shown as a solid
curve in Figure 6.11. As expected, the extraneous oscillations present
in the far-field pattern obtained by Method I are suppressed. However,
there are still quite an amount of discrepancies from the exact solu-
tion. The reason for these discrepancies can be traced to the ignorance
of the phase information in the course of solution. So far, the phase
has been assumed to take on the value m in the entire aperture-field
distribution. Actually, this is not the case in the transition region.
The phase information must be included in the process of solution;
otherwise, the far-field pattern cannot be improved further by simply
manipulating the magnitude. In the next subsection we discuss another
method of synthesizing the aperture distribution so that both the mag-
nitude and phase variations are taken into account in the process of
solution; hence, further improvements on the far-field pattern can be

achieved.

6.4.3 Method III

In the last two subsections, methods of synthesizing the scattered
electric aperture-field distribution in the geometrical-optics deep-
shadow region and the transition or the penumbra region have been dis-
cussed. Although the manipulations for magnitude only do give a sub-
stantial improvement over the geometrical-optics far field, the failure
to account for the phase variation in the transition region prevents
us from further improving the far-field pattern. Recognizing the im-

portance of the phase-variation, we reexamine the basic principles
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underlying the synthesis of the aperture distribution. It is found
that if the procedures in the following paragraph are followed to
synthesize the aperture distribution, the proper phase information can
be included in the solution.

As alluded to earlier in Subsection 6.4.1 when we discussed Method
I, the scattered electric aperture field in the well-illuminated region
may alternatively be approximated by the geometrical-optics scattered
far-field evaluated on the aperture. In other words, we stop the geo-
metrical-optics rays at the aperture and establish an aperture-distri-
bution which is nothiné more than the equivalent sources in the Huygens'
principle. When this aperture-distribution reradiates, the far-field
beyond the aperture can be recovered as if the rays propagated directly
to the far-zone undisturbed. Then, the original geometrical-optics
far-field pattern should be recovered intact.

However, if the negative of the incident field is assumed in the
deep-shadow region, the main beam of the scattered far-field pattern is
regained as shown in the previous two subsections. As before, for the
extraneous oscillations in the far-field pattern to disappear, the
magnitude of the aperture distribution must not contain any sharp cor-
ners or discontinuities. With this in mind, curve-fitting techniques
may be employed in the transition-region to smoothly join the assumed
approximate aperture-distributions in the well-illuminated region and
the deep-shadow regiom.

The simplest interpolating curve that fulfills the aforementioned

requirement for suppressing extraneous oscillations is the cubic spline

of the form
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2 3
f(y) = ¢y + coy + ¢y + ¢,y : (6.29)

The derivative of f(y) is

2
f'(y) =0+ cy + 2c3y + 3c4y c (6.30)

The coefficients €1s€91Cq and c, can be completely determined if the

values and the slopes of the interpolating cubic polynomial are known

at the end points of the interpolation interval. The interpolation

interval in the present example for a circular cylinder with radius 3\

is roughly from y = 2XA to y = 6A, which is obtained by observation of

the width of the transition region in the exact aperture-field distribution.
The values and slopes of the magnitudes and phases of the geometrical-
optics scattered aperture-field at the illuminated end and the negative

of the incident electric field at the dark end of the transition region

can be computed numerically. Then the coefficients Cy1C9sCq and ¢,

can be obtained by solving the following matrix equation:

i e ol [ eas
1 2 (@) (2)) e £(21)
0o 1 2020)  3(20)2 e, £1(20)
- | (6.31)
1 6 (602 63)3 s £(61)
0o 1 2060)  3(6))2 ¢ £1(62)
L -4 . -/ - o

where
f(2)) is the value of the magnitude or phase of the negative in-
cident field at y = 2A,
£f'(2)) is the slope of the magnitude or phase of the negative

of the incident field at y = 22,




TS e

f(6)) is the value of the magnitude or phase of the geometrical-
optics field at y = 6),
f'(6)) 1s the slope of the magnitude or phase of the geometrical-
optics field at y = 62,
and

A 1s the incident wavelength.

Thus, two sets éf coefficients, one for the magnitude, and the other
for the phase, are obtained from (6.31) by first substituting the mag-
nitude entries into the right-hand-side column-vector, and then doing
the same thing for the phase entries.

The magnitude and phase curves are chosen to be interpolated be~-
cause they are slowly varying smooth curves. The curve fitting cannot
be applied to the real- and imaginary-part curves of the same complex
quantity because they are highly oscillatory curves.

To summarize, an aperture-field distribution has been synthesized
with the negative of the incident electric field in the deep-shadow
region, the geometrical—-optics scattered field in the well-illuminated
region, and the cubic-spline interpolations (applied to the magnitude-
and phase-curves) in the transition-region. The synthesis 1s sche-

matically shown in Figure 6.12.

The scattered far-field pattern is computed in two steps: (1) For
the forward-scattering hemisphere, the far-field pattern is obtained by

Fourier transforming the synthesized aperture distribution via the well-

known relationship between the far-zone field and the aperture field.

(2) For the back-scattering hemisphere, the far-field pattern is simply

obtained from the geometrical-optics solution. The Fourier transform
can be performed efficiently by a one-dimensional fast Fourier trans-

form (FFT).

144
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However, attention must be called to the fact that the FFT result
is forced to zero at 90° and 270° because the aperture must be trun-
cated to a finite width (even as large as 90\, thirty times the radius

of the cylinder) in order to apply the FFT. Nevertheless, the FFT re-
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sult is extremely good in the forward-scattering direction. As mentioned

in the previous section, the geometrical-optics far-field is well-de-
fined and is accnrate for a wide range of observation angles extending
from the 1it side into the dark side. It is found that the FFT result
and the geometrical-optics far-field overlap for a relatively wide rar.ce
of angles (about 20 degrees) in the neighborhood of 70° and 290°, hence,
the two far-field patterns can be joined smoothly at 70° and 290° with-
out any discernible discontinuities.

The far-field pattern obtained in the above manner is shown in
Figure 6.12. Except for the slight differences in the directions around
50° and 3100, the pattern 1s in excellent agreement with the exact solu-
tion, which demonstrates that the inclusion of the phase information in
the transition region is crucial in obtaining an accurate approximation
to the exact solution. Due to the slow variation of the magnitude and
phase of the aperture-field distribution, the phase information is ade-
quately obtained by a relatively straightforward cubic-spline inter-
polation. In the next subsection, we discussed another method of syn-
thesizing the aperture-distribution so that the computation of the
aperture field can be reduced substantially while the accuracy in the

far-field pattern is still preserved.
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6.4.4 Method IV

In the last subsection, an aperture-field distribution has been
synthesized with the negative of the incident electric field in the
deep-shadow region, the geometrical-optics scattered field in the well-
illuminated region, and the cubic-spline interpolations (applied to the
magnitude- and phase-curves) in the transition region. The scattered
far-field pattern obtained by that method was in good agreement with
the exact solution.

However, a reevaluation of the synthesis in Method III reveals
that the computation of the geometrical-optics scattered field on the
aperture is redundant. Recall that in Method I or Method II, the
aperture-field distribution in the well-illuminated region was assumed
to be zero, and the far-field pattern in the forward-scattering hemi-
sphere was obtained by the superposition of the geometrical-optics
far-field and the far-field radiated by the assumed aperture-field dis-
tribution in the geometrical shadow region. The superposition of the
two far-fields in such a manner 1s equivalent to an alternative approach
that was mentioned in Subsection 6.4.3, i.e., the Huygens' equivalent
sources for the geometrical-optics far-field are created on the well-
illuminated portion of the aperture, and combined with the assumed
aperture-field distribution on the complementing nonilluminated portion
of the aperture to obtain a complete scattered electric aperture-field
distribution which, when reradiated into the forward-scattering hemi-
sphere, produces the scattered far-field pattern in that hemisphere.

Theoretically, these two different approaches for obtaining the

scattered far-field in the forward-scattering hemisphere give the same
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result. From a computational standpoint, however, the approach using
the geometrical-optics scattered field directly in the far-zone for
superposition i1s more efficient than the other approach. The reason for
its superiority is two-fold: First, computational time can be reduced
substantially because the aperture-field distribution in the illuminated
portion of the aperture need not be computed but is simply set equal to
zero; and second, the fast Fourier transform can be applied to its full
capacity, meaning no inaccuracies near 90° and 270°, because the aperture-
field distribution is completely confined to that portion of the aperture
which includes the deep-shadow plus the transition-region only. To
further emphasize the advantage of eliminating the calculations of the
aperture-field in the illuminated region, we discuss the labor involved
in setting up an aperture-field distribution in the next paragraph.

In order to obtain a facsimile of the Fourier transform of the in-
finite aperture-distribution using the fast Fourier transform (FFT),
the aperture must be truncated at points beyond which the aperture-field
has decreased to a negligible quantity; which means that the illuminated
portion of the aperture is typically as large as fifteen times the geo-
metrical-optics shadow on the aperture. As mentioned earlier in Section
6.3 where the geometrical-optics solution was briefly derived, there
is no simple relation that can be found to explicitly express in terms
of the polar coordinates (p,¢) the parameters 60, 2, and £, in the geo-
metrical-optics scattered-field expression. The far-field approximation
(p + =) cannot be directly employed to accurately calculate the geo-
metrical-optics aperture-field distribution because the aperture-plane
is in juxtaposition with the cylinder; hence, for a considerably large

portion of the aperture, the far-field approximation, e.g., (6.27), is
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still too crude. Therefore, in practice, one has to resort to numerical
methods. There are basically two routes that one can follow, namely,
either searching for the point of reflection when a point of observation
on the aperture is given, or interpolating for the field when a point
of reflection is chosen. While the accuracies of the numerical results
obtained by these two different approaches are comparable, the latter is
more straightforward in computer programming and more efficient compu-
tation-wise, But in either case, the geometrical-optics scattered
aperture-field has to be computed.

In this subsection, we discuss a synthesizing method which is, in
part, similar to Methods I and II, i.e., the calculations of the aperture-
field in the illuminated region are eliminated. However, the major
difference is the inclusion of the phase information in the transition-
region in the present synthesis. As in all of the previously discussed
methods, the scattered electric aperture-field distribution in the deep-
shadow region is assumed to be the negative of the incident field. The
field distribution in the well-illuminated portion of the aperture is set
equal to zero. In the transition-region, curve-fitting techniques are
employed to smoothly join the assumed approximate aperture-distributions
in the well-illuminated and the deep-shadow regions. A cubic spline is
obtained (for the magnitude of the aperture-field) by simply substituting
f(6X) = 0.0 and £'(6)A) = 0.0 into the right-hand-side of the column-
vector in (6.31) and solving the resulting matrix-equation for the un-
known coefficients. The interpolated curve is the gradually tapered
magnitude curve of the aperture-field distribution. It seems the phase .

curve, at the first look, cannot be obtained as straightforwardly as the
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magnitude curve, because the assumed aperture-field at the illuminated
end of the transition-region is zero and the value and slope of the
phase curve are unknown. However, the value and slope of the phase of
the geometrical-optics scattered field at the illuminated end of the
transition region can be used in (6.31) for obtaining the phase-informa-
tion in the transition region. This point ié discussed further in the
next paragraph.

In particular, the aperture-field being synthesized is the difference
of two aperture-field distributions, namely, the aperture-field synthe-

sized by Method III and the geometrical-optics aperture-field, i.e.,

v 11 G.0.
w a1 Yap G.0. 1¢,p
e = E e - E e

AP AP ‘AP (6.32)

E

where E is the magnitude and ¢ 1is the phase of the complex quantity.
Superscripts IV, III, and G.0. stand for Method IV, Method III, and

geometrical optics, correspondingly. Subscript AP stands for aperture.

Note that
I1I G.0.
bup (61) = 6,57 " (61) (6.33a)
and
I11 G.0
EAP (6)) = EAP (62) (6.33b)

which are direct consequences of the synthesis in Method III. Therefore,

at y = 6A, we have

£ 1o
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Iv G.0.
i i¢
IV AP III G.0O. AP
EAP e = (EAP - EAP ) e (6.34a)
G
= Qe 5 (6.34b)

This confirms the remarks made in the last paragraph that the magnitude
is zero and the phase is the geometrical-optics phase at the illuminated
end of the transition region.

Thus, an interpolation by a cubic spline for the phase in the
transition region gives an identical phase variation as in Method III.
Note, however, that the phase curve need be computed only in the deep-
shadow and the transition region where the magnitude of the aperture
distribution is nonzero. 1In the well-illuminated regilon of the aperture,
the phase variation becomes irrelevant because the magnitude of the
aperture distribution is zero.

As mentioned previously, the illuminated portion of the aperture
is typically as large as fifteen times the geometrical-optics shadow
region in order to obtain a facsimile of the Fourier transform of the
infinite aperture distribution using the fast Fourier transform. There-
fore, in setting up the aperture distribution for the Fourier-transform
operation, the present method is computationally more efficient than
Method III. 1In addition, the fast Fourier transform can be applied to
its full capacity, meaning no inaccuracies near 90° and 270°, because
the aperture-field distribution is completely confined to that portion
of the aperture which includes the deep-shadow plus the transition re-
glon only. This renders it unhecessary to join the two far-field patterns

at 70° and 290o as in Method III.
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To summarize, an aperture-field distribution has been synthesized
with the negative of the incident electric field in the deep-shadow
region, the zero field in the well-illuminated regidn, and the cubic-
spline interpolations (one of which is between the magnitude of the
incident field and zero-field for the magnitude-variation, and the other
is between the phase of the incident field and the phase of the geometrical-
optics field for the phase-variation) in the transition region. The
synthesis is schematically shown in Figure 6.12.

The scattered far-field pattern is computed in two steps:
(1) For the forward-scattering hemisphere, the far-field pattern is ob-
tained by Fourier transforming the synthesized aperture distribution
via the well-known relationship between the far-zone field and the aper-
ture field. The Fourier transformed result is then superposed on the
geometrical-optics far field to obtain the scattered far-field pattern
in that hemisphere. (2) For the back-scattering hemisphere, the far-
field pattern is simply obtained from the geometrical-optics solutionm.
Note that the geometrical optics far field 1s used throughout the en-
tire range of observation angles (0 to 360°) because in the synthesis
of the aperture-field distribution, the geometrical-optics aperture
field has not been taken into account (see (6.32)); hence, in step (1)
above, a direct superposition of the far fields is necessary to obtain
the scattered far-field pattern in the forward-scattering hemisphere.

The far-field pattern obtained in the above manner is shown in
Figure 6.12, Observe that the positions of the maxima and minima are
in good agreement with the exact solution. However, the oscillations
are not as pronounced ;nd there are slight discrepancies (about *1 dB)

in the levels of the maxima and minima in comparison with the exact



solution., Nevertheless, the far-field pattern of this method is in
better agreement with the exact pattern in the directions around 50°
and 310° than the far-field pattern of Method III, Generally speaking,
the overall far-field pattern is in reasonably good agreement with the
exact solution,

The slight discrepancies in the far-field pattern are due to the
fallure to take into account the shadowed portion of the cylindrical
surface in the solution process. As a matter of fact, the shadowed
portion of the obstacle can be of an arbitrary shape, but as long as
the illuminated portion of the obstacle is circularly cylindrical, the
far-field pattern obtained using the present method (or any one of the
methods discussed so far) will be the same as that of the circular
cylinder. In the next subsection, we discuss the use of Galerkin's
method applied in the spectral domain to further improve the scattered
far-field pattern by taking into account the information characterizing
the shadowed portion of the obstacle, e.g., the radius of curvature

of the shadowed surface, in the process of solution.

6.4.5 Method V

In the last subsection, we presented a method of synthesizing the
aperture~field distribution so that the redundant computations of the
aperture-field in the well-illuminated portion of the apertu 2 were
completely eliminated while the accuracy in the far-field pattern was
still preserved to an extent that the overall far-field pattern was
in reasonably good agreement with the exact solution. The slight dis-
crepancies in the far-field pattern were due to the failure to take into

account the shadowed portion of the surface of the obstacle in the
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process of solution. In this subsection, we discuss a method of synthe-
sizing the aperture-field distribution taking into account the informa-
tion characterizing the shadowed portion of the obstacle in the process
of solution so that further improvement of the scattered far-field pattern
can be achieved.

As alluded to in Section 6.1, the Introduction of this chapter,
a marked difference between the present approach and all of the con-
ventional methods available in the literature is the introduction of an
infinite planar aperture in juxtaposition with the obstacle. The scat-
tered far-field pattern in the forward-scattering hemisphere is obtained
by a Fourier transformation of the scattered field distributions on this
aperture, Therefore, operations for improving the scattered far-field
pattern can be performed on the scattered aperture-field distribution,
in contrast to the conventional approaches in which they are done either
directly on the induced surface current or directly on the scattered
far field. The advantage of concentrating our efforts on improving
the aperture-field distribution is two-fold. Firstly, the magnitude
and the phase of the aperture-field distribution are smoothly, non-
oscillatorily varying functions of positions in the plane of the aper-
ture; hence, improvement can be achieved in a relatively straightforward
manner. Secondly, the operations for improvement are performed on a
planar surface rather than on a curved surface as in the case of at-
tempting to directly improve the surface current on the obstacle in a
conventional approach, hence, the present method is conceptually simpler.
An improved scattered far-field pattern in the forward scattering hemi-
sphere of an n-dimensional obstacle can be obtained by Fourier trans-

forming an improved (n - 1)-dimensional scattered aperture-field



distribution, where n = 2,3, This is a salient feature of the method
which manifest itself to be numerically efficient by the circumvention
of the unwieldy three-dimensional fast Fourier transform (FFT). These
important points have been demonstrated in the previously discussed
methods of synthesizing the aperture-field distribution.

Because of the aonoscillatory nature of the magnitude and the phase
variations of the scattered aperture-field distribution, a very close
approximation to the exact aperture-field distribution was obtained by
Method III in which a simple cubic-spline interpolation-scheme was used
in the transition region to join the negative of the incident field
in the deep-shadow region smoothly to the geometrical optics scattered
field in the well-illuminated region. Again, a similar interpolation-
scheme was employed in the synthesis of the aperture-field distribution
in Method IV in which the difference of the aperture-field distribution
of Method III and the geometrical-optics scattered aperture-field was
closely approximated by joining the negative of the incident field in
the deep-shadow region smoothly to the zero "difference-field" in the
well-illuminated region. However, the magnitude and the phase varia-
tions in the transition region are slightly different from the inter-
polating cubic polynomials. Although the approximations made by these
cubic polynomials are very close to the true variations of the magni-
tude and the phase of the aperture-field distribution, these slight de-
viations manifest themselves in the resulting scattered far-field pat-
terns shown in Figure 6.12.

.he idea to further improve the scattered far-field pattern, or
equivalently, the synthesis of the aperture~field distribution of

Method IV, is to expand the aforementioned slight deviations of the
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aperture-field distributions in the transition region into a series of
known basis functions with unknown coefficients. The unknown coef-
ficients can be determined by enforcing the boundary conditions on

the shadowed portion of the cylindrical surface of the obstacle. This
particular portion of the surface of the obstacle is chosen because it
has the strongest effect on the variations of the aperture-field dis-
tribution in the transition region. In a sense, this is an application
of the Galerkin's method in the spectral domain to solve for the un-
known deviations of the first-order synthesis of the scattered aperture-
field distribution from the true variations of the scattered aperture-
field distribution to obtain an improved second-order synthesis. Note,
however, that the unknown quantities are the deviations from, but not

the true variations themselves. Since the first-order synthesis of
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Method IV is already a reasonably good approximation to the true solution,

only a refinement of the synthesis is necessary; and the Galerkin's
method applied in the spectral domain is well-suited for this purpose.
A word of caution is in order in regard of the choice of basis
functions in the Galerkin's method. Rectangular pulses are not recom-
mended for the basis because they introduce abrupt discontinuities into
the aperture-field distribution and give rise to the extraneous oscil-
lations in the scattered far-field pattern. This point has been demon-
strated in Method II of Subsection 6.4.2. Therefore, only smoothly
varying and gradually tapering off functions are suited for the use
as basis. With this in mind, a Gaussian pulse,as shown in Figure 6.13,

is used as the basis function, i.e.,

fn(xz) = exp(-azxzz) (6.

35)
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Figure 6.13. A Gaussian pulse.
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where a = 2,75 and X, is a local coordinate. This particular choice of
the spread of the Gaussian pulse, 1/a, is to assure that the Gaussian

pulse decreases to 1 percent of its peak value at x, = 0,78, and it

2
decreases to approximately 1l/e of its peak value at the crossover point
of two adjacent Gaussian pulses, which means that the gaps between ad-
jacent Gaussian pulses are filled up properly and tﬁe interferences
with Gaussian pulses beyond the adjacent ones are practically eliminated.
Thus, a superposition of these basis functions results in a smoothly
varying curve, which is precisely what is wanted in the refinement of
the aperture-field distribution.

In applying the Galerkin's method in the spectral domain, the
Fourier transform of the basis function is needed. For the particular

choice of a Gaussian pulse in (6.35) as a basis function, its Fourier

transform is simply another Gaussian function, namely,

fn(az) = F{fn(xz)}

oo [T%
B - (6.36)
4a

which is shown in Figure 6.14. In the above equation, a, is the Fourier

transform variable corresponding to the spatial variable X
The testing function in the Galerkin's method is the same as the

basis function. The locations of the basis functions on the aperture

and the testing functions on the surface of the obstacle are schematically

shown in Figure 6.15. Observe that the basis functions are situated

within the transition region in addition to the cubic-spline interpolation

of Method IV. The testing functions are arranged in the manner shown
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Figure 6.14. Fourier transform of the Gaussian pulse in Figure 6.13.
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in Figure 6.15 because that particular portion of the surface of the
obstacle has the . c:rongest effect on the variations of the aperture-
field distribution in the transition region. Due to the symmetry of the
problem, N basis functionms, fl'fz’ 5000 fN’ are used but only N/2 un-

known coefficients need be solved, hence N/2 testing functions,

Pl’Pz. ...’ PN/Z.
The aperture-field being synthesized is

N/2
E -EIV+§ c (f +f
n n

AP AP (6.37)
n=1

(N/2+n))

where ﬁig is the difference aperture-field distribution of Method IV

(see (6.32)), and the deviations of Eig from the true variations are
approximated by the series in basis function of the form given in (6.35),

or specifically,

£,0) = expl-a’(y - y0n)21 y, n=12 ..., N (6.38)

where Yon is the position at which the peak of the nth basis function
is located (see Figure 6.15). The unknown coefficients cn's are to be
determined by the Galerkin's method in the spectral domain.

Consider the aperture for the hemisphere of a testing function Pm
as shown in Figure 6.16. The portion of the aperture underneath the
Gaussian pulse is embedded in the obstacle. The width of this embedded
portion of the aperture is determined by the particular choice of the
spread of the Gaussian in (6.35) so that it is subtended by an angle
of 30° as shown in Figure 6.16. The scattered E-field on this embedded

portion of the aperture must be the negative of the incident E-field,
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Figure 6.16. Aperture for the hemisphere of a testing function Pn'
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-E:,to satisfied the extended boundary condition [31]. The scattered
E-field outside of this portion of the aperture is unknown and is desig-
nated by Fm as shown in Figure 6.16. Therefore, the scattered E-}ield

on this aperture can be written as

8 i
EmAP -Em + Fm (6.39)

where the subscript m signifies the aperture corresponding to the mth

testing function, P . The Fourier transform of (6.39) reads

~q ~
=-E +F (6.40)

where ~ on top indicates the Fourier transform of the corresponding term

in (6.39).
Now we take the inner product of the Fourier transform of Pm’ﬁm’

with (6.40), which results in the following equation:

~  ~g ~ i ~ o~
<Pm’EmAP> -<Pm,Em> + <Pm,Fm> (6.41)

where the angle brackets indicate an inner product of two complex func-

tions of B, e.g., A(8) and B(B), defined as

bl )
<A,B> = [ A (B)B(B) dB (6.42)

where the asterisk denotes complex conjugate. By Parseval's theorem
the second term in the right-hand-side member of (6.41) can be written

as

<Pm,Fm> = 2n<Pm,Fm> =0 (6.43)
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because Pm and Fm are defined in complementary domains on the aperture for

the hemisphere of Pm (see Figure 6.16). Therefore, (6.41) becomes

=1

P .ES >--<1'>m.Em> . (6.44)

P Erap
The Fourier transform of the aperture E-field, Ee , 18 related to the
far-field pattern in the hemisphere of Pm’Tm(¢£)’ by the following re-
lation:

~8 2

“wap ~ ¥sln 9, m %) )

where ¢2 = ¢ - ¢t,¢l being the local polar coordinate, ¢ the central
polar coordinate, and ¢t the polar coordinate of the location of Pm’

all of which are shown in Figure 6.16. Tm(¢2) is obtained by truncating
the complete scattered far-field pattern, TV(¢2), to the hemisphere of

P_. TV(4) is given by

N/2
\'s v f £
T () = T7(4) +n§1 e (To(8) + Ty o (9)) (6.46)
where TIV(¢) is the scattered far-field pattern of Method 1V; and T§(¢) is
the scattered far-field pattern of the nth basis function, fn’ in Figure

6.15. More specifically, T§(¢) is expressed in terms of the Fourier

transform of the nth basis function, fn,in the following manner:

i) = F e7HKAOSE £ (4) cos ¢

0 < ¢ < 90° and 270° < ¢ < 360° (6.47)
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in which A is the radius of the cylinder, and fn(¢) is obtained from

(6.36) using the shifting relation between Fourier pairs; hence,

- 12 2 -iky, sin¢
fn(¢) -—/-:— exp —k'—l’—iél_é L -} On ’ n= 1’2’ soo0y N (6048)
a

where Yon is the position at which the peak of the nth basis function,
fn’ is located (see Figure 6.15).

Using (6.48), (6.47), (6.46), and (6.45) in (6.44), an equation of
N/2 unknowns, C1sCos co vy CN/Z’ is obtained. Repeating the above pro-
cedure with different locations of the testing function on the surface
of the obstacle results in a system of N/2 linear equations of N/2 un-
knowns, which is then solved by standard matrix-inversion techniques.

The matrix elements are generated by the inner products of (6.44)
in a straightforward manner. The inner product on the left-hand-side
of (6.44) simply becomes a linear superposition of the inner products of
ﬁm with the individual far-field patterns. This can be seen from (6.45)
and (6.46). Since the invisible spectra of the far-field patterns are
highly attenuated and they hardly contribute to the inner products,
therefore, they can be ignored in the computation of the inner products.

Hence, the formula for computing the inner product of ﬁm and T is

<f’m,T>

¢2i=n iksin¢21A00515° Jr -k2 cos2 ¢21

= )] e = exp|————=| 21(4,,) 8¢ (6.49)
a 2 21 21

¢Ei=0 4a

where T stands for TIv or Tg. Using Parseval's theorem, the left-hand-side -
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of (6.44) can be written as

= ]l i
-<Pm,Em> = -2n<Pm,Em> o (6.50)

Since Pm is assumed nonzero only on the embedded portion of the aperture
for the hemisphere of Pm’ (Figure 6.16), the formula for computing the

inner product in (6.50) is

<P ,Ei>
m’ “m
x,  =Asinl5°
g3 2.2 o
.x z--Aain15° exp(-a X4 ikxzicos ¢t - ikA cos 15 sin ¢t)szi'(6’51)
21

After the unknown coefficients, CysCor oovs cN/Z’ have been deter-
mined by the Galerkin's method, we can substitute them into (6.37) to
obtain the improved synthesis of the 'difference" scattered aperture-

field distribution, EV » and then proceed as in Method IV to compute

AP
the far-field. Alternatively, the coefficients, cl,cz, 00 dn cN/Z’ can
be substituted into (6.46) to directly obtain the improved far-field
pattern, Tv(¢). The far-field pattern obtained by this method with

N/2 = 7 and ¢t = -15° to -45° at 5° increments is shown in Figures 6.17a

and 6.17b and is in excellent agreement with the exact far-field pattern.
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with radius a = 6) obtained by Method V.
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6.5 Computation of Induced Surface Current

In electromagnetic wave scattering, two quantities are of vital
importance, one is the scattered far-field pattern, from which the bi-
static radar-cross-section (RCS) can be determined, and the other is the
induced surface current on the scatterer, from which information can
be extracted to aid in the design of the mounting of antennas and sensor
booms on a practical scattering obstacle, e.g., a satellite. A detailed
discussion of the computation of the scattered far-field pattern by
systematically synthesizing the aperture-field distribution has been
presented in the last section. An excellent approximation to the exact
scattered far-field pattern has been obtained in a relatively straight-
forward manner by the introduction of an aperture on which the improve-
ment operations were performed. Such an accurate scattered far-field
pattern motivates us to develop a feasible technique for the computation
of the induced surface current on the obstacle to a reasonable degree
of accuracy.

In the conventional approaches in the literature, the calculation
of the scattered far-field pattern from an induced surface current may
be formidable because of the numerical multiple-integration involved;
on the other hand, the evaluation of the induced surface current di-
rectly from an approximate scattered far-field pattern may not be fea-
sible because such a far-field pattern is not accurate enough. The
development of the present approach provides a means to evade such a
dilemma so that the induced surface current can be evaluated with ease
when the approximate scattered far-field pattern has been improved.

This method of computation of the induced surface current is made

N —— ETE—
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possible by the extremely close approximation of the true scattered

far-field pattern obtainable by the method of synthetic aperture dis-
tribution discussed in the last section. The detailed development of
the method for computing the induced surface current is presented in

the next subsection.

6.5.1 Method of computation

Suppose the induced surface current at a point Q on the surface of
the obstacle as shown in Figure 6.18 is to be evaluated. The polar co-
ordinates of the point Q are simply (A,¢t), A being the radius of the
circular cylinder and ¢t the angular displacement from the &-axis with
positive reference direction counterclockwise. An infinite aperture
with Q as the point of tangency to the cylinder is established for the
hemisphere of Q as shown schematically in Figure 6.18. A local rec-
tangular coordinate system (xl,yz) and the accompanying local polar
coordinate system (pl,¢2) are set up for the aperture. The idea is to
use that portion of the scattered far-field pattern contained in the
hemisphere of point Q to obtain the scattered H~field on the aperture.
The scattered H-field at point Q is subsequently combined with the in-
cident H-field at point Q to obtain the total surface current at point
Q. For other points on the surface of the obstacle, the induced surface
currents can be obtained in the same manner by using their corresponding

hemispheres and apertures.

The relation between the scattered far-field pattern and the Fourier

transform of the scattered magnetic aperture field, ﬁs, is readily ob-

tained as

170

ﬁs(¢2) = i%; T(¢2) exp(-ikA sin ¢2) (6.52)
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Figure 6.18. Aperture for hemisphere of point Q at which the induced
surface current is evaluated.
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where T(¢z) is the scattered far-field pattern in the proper hemisphere,

Z, is the free space characteristic impedance, and ¢2 = ¢ - ¢t is the

0
local polar coordinate. The phase factor in (6.52) is to assure that
the aperture at Y, = A but not at Y, = 0 is considered. The scattered

magnetic aperture field, Hs, is obtained by an inverse Fourier trans-

form of H® in (6.52), i.e.,

H(x,) = FLES (0, )} (6.53)

However, only the value of the magnetic scattered field at X, = 0 is
of interest. Therefore, ignoring the negligible contributions from the
invisible range of the far~field pattern, Hs(xl = (0) can be expressed

as an integral of the following form:

¢ =T
s -1
H (xz =0) = ?EE £ - T(¢£) sin ¢, do, . (6.54)
[

The numerical evaluation of Hs(xz = () 1is expedited by the following
procedure: the interval of integration from O to =,[0,m], is divided
into 36 subintervals, each of which is of length w/36. Throughout the
entire subinterval, the sinusoid, sin ¢2, can be assumed to have the
constant value at the midpoint of the subinterval. Thus, (6.54) can

be written as

T
. 36 b4=%04*72 .
B (x, = 0) .121 sin(¢,,) ) T(¢£j) %0 (6.55)
= m

%94=%21772
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where ¢21 is the midpoint of the ith subinterval. If the scattered
far-field pattern T(¢2) is calculated at an increment of 1°, the index
j=1,2, ..., 5.

Note that the above procedure expedites the numerical evaluation
of Hs(xl = () without sacrificing the fine detail of the scattered far-
field pattern. This point is worth-emphasizing because the accuracy of
the scattered far-field pattern obtained in the last section should be
preserved as much as possible. Further degradation of the scattered
far-field pattern may give intolerable numerical results.

The incident H-field at the point Q is given by

gl = o1 gikAcosy (6.56)
y ZO

Combining (6.55) with (6.56), and using the relation between the total

surface current, J, and the total H-field at the surface, i.e.,

J =

x H

=33

x @+ 7% (6.57)

[}
= 4

the total surface current at the point Q(xz = O,y2 = A) is obtained.
This completes the development of the method of computation of the induced

surface current.

6.5.2 Results and comments

The magnitude and the phase of the total surface current on a per-
fectly conducting circular cylinder with radius = 3\ are displayed in
Figure 6.19. The exact eigenfunction solution of the total surface cur-

rent is also shown in the figure for comparison. It is seen that the
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solution of this study deviates slightly from the exact solution in
the neighborhood of 80°. However, the small deviatiun occurs at the
low end of the current curve, therefore, it is tolerable for practical
purposes. The rest of the curve is in remarkable agreement with the
exact solution.

Before closing this section, it is worthwhile to contrast the
present approach with the one developed by Burnside et al. [4 ]. Their
method uses a combination of the geometrical theory of diffraction and
the moment method to solve a circular cylinder scattering problem,
wherein the cylindrical surface is divided into three regions, namely,
the physical optics region in the well-illuminated side, the GTD region
in the deep shadow, and the pulse :region in the transition region be-
tween the 1lit and the dark sides. It is a typical example of the con-
ventional approaches of attempting to directly improve the surface cur-
rent. However, one finds that the composite surface current computed
by using different techniques in different regions on the cylindrical
surface as indicated above is not smoothly connected at the bound-
aries of each region. These discontinuities are clearly shown in
Figure 6.20, which is Figure 4 in [4 ] reproduced here for comparison.
Furthermore, the discontinuities at the high end in the surface cur-
rent may introduce extraneous high-level sidelobes in the far-field
pattern. In addition, the surface current of Burnside's method de-
viates from the exact solution in both the high and the low ends of
the current curve. Moreover, the pulse region in Burnside's method
is typically one half of the circumference of the circular cylinder;

therefore, many current samples are needed for an electrically large
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Figure 6.20. Burnside's MM-GID solution for the induced surface
current on a circular cylinder with radius a = 4).
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cylinder, especially in the case of an E-wave incidence where the
surface current starts to deviate from the physical optics current
much faster than it does in the H-wave case.

In Burnside's approach, the far-field pattern must be computed
by a numerical double integration of the surface current. Such a com-
putation may be very time consuming. In contrast, we have presented a
conceptually simple, computationally efficient method to obtain both
the scattered far-field pattern and the induced surface current,which

are in remarkably good agreement with the true solution.

6.6 Accuracy Check

In the previous sections, methods have been discussed for obtaining
scattered far-field patterns and induced surface currents. The results
have been compared with the available exact solution so that the ac-
curacies of the approximate solutions were verified. However, in many
practical situations, the exact solution is impossible to obtain, and
quite often, the solutions arrived at by other approaches may not be
accurate enough to compare with. Of course, experimental results pro-
vide a good evidence to validate the computed results. Nonetheless,
experiments are expensive to set up and also can be time-consuming.
Moreover, special techniques and ingenuities may be required to extract
the needed information from the experimental data, viz., the measurable
quantities. In addition, many environmental factors may inflict adverse
effects on the measurable quantities and affect the results of the ex-
periment. Therefore, an economical means of validating a computed

solution is very much desired.
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In the previous chapters, the approximate solutions of the scattered
far-field patterns or induced surface currents were validated by a self-
checking procedure, i.e., the tangential components of the scattered
E-fields on the surface of the scatterers were computed and compared
with the tangential components of the incident E-fields to check if
the boundary conditions were satisfied. For scatterers with planar
facets, the accuracy checking method developed in the previous sections
is feasible. On the other hand, for scatterers with smoothly varying
surface, or more precisely, surface with continuously varying curvatures,
the accuracy checking method developed in the previous chapter becomes
inefficient because a large number of points on the surface of the scat-
terer need be checked and each application of the method yields rele-
vant information at a single point, viz., the point of tangency of an
aperture and the obstacle. In order to provide a more efficient means
of checking the accuracy of the approximate solutions, the self-checking
procedure of the previous chapters need be modified to apply to the
curved surface scatterers.

The idea is to use the concept of the extended boundary condition
[31] instead of the ordinary boundary condition. Very briefly, the
extended boundary condition requires that the total electric field be
vanished in the region enclosed by the surface of the scatterer. This
concept allows a portion of the aperture be embedded in the<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>