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Diffractions by a strip,  a thin plate,  a rectangular cylinder,  and a circular 

cylinder are presented as illustrative examples that demonstrate the usefulness of the 
approach for handling a variety of electromagnetic scattering problems in the resonance 
region and above.    Some concluding remarks and comparison with other methods are also 
Included. 
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PREFACE 

A little over a century ago, Maxwell put together the fundamental 

laws that govern all the electromagnetic phenomeu In an amazingly 

elegant form, i.e., the set of equations named after him. Ever since 

then, the major contributions in the field of electromagnetics have been 

solving boundary value problems, or seeking solutions which satisfy 

the Maxwell's equations and match the boundary conditions (including 

radiating conditions as special cases)in specific environments under 

consideration. 

The dyadic Green's functions technique, an elegant and powerful 

method for solving boundary-value problems, was first formulated by 

Schwinger in the early 1940's. However, solutions obtained by that 

technique are extremely complicated and are not always best suited for 

numerical computations. 

In the late 1950's, Keller conceived the concept of a diffraction- 

coefficient approach to the high-frequency scattering, and was able 

to obtain approximate solutions for far-field patterns in a very simple 

and straightforward manner. Although his method fails at certain aspect 

angles in space, it has been applied to solve many practical problems. 

In the 1960's, the moment method became popular due to the avail- 

ability of the large scale computer systems. However, for electrically 

large scatterers, the moment method is limited by the storage of a 

computer. 

In the early 1970's, a trend of combining the Keller's geometrical 

theory of diffraction with the moment method to solve high-frequency 

scattering problems was initiated. However, a general approach 

for combining the two techniques has yet to be developed. 

■^ r — ■ ■"■■-■"■'""-■■ ■ 
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It Is the purpose of this study to Introduce a method of combining 

the integral equation and asymptotic techniques for solving electro- 

magnetic scattering problems. The method is conceptually simple and 

computationally efficient. Comparisons with contemporary combinational 

approaches show that the method, when fully developed, appears to be 

highly promising in solving practical problems. Of course, this thesis 

is merely a start, and there is much left to be studied and investigated. 

It is the author's hope that future research activities along the same 

lines as described herein will result in not only a feasible but also 

a practical way of handling real-world high-frequency scattering problems. 
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ABSTRACT 

This paper Introduces a new approach for combining the Integral 

equation and high frequency asymptotic techniques, e.g., the geometrical 

theory of diffraction. The method takes advantage of the fact that the 

Fourier transform of the unknown surface current distribution is pro- 

portional to the scattered far field. A number of asymptotic methods 

are currently available that provide good approximation to this far 

field in a convenient analytic form which is useful for deriving an 

initial estimate of the Fourier transform of the current distribution. 

An iterative scheme is developed for systematically improving the 

initial form of the high frequency asymptotic solution by manipulating 

the Integral equation in the Fourier transform domain. 

A synthetic-aperture-distribution scheme is also developed in which 

the approximate scattered far-field pattern obtained by asymptotic tech- 

niques is improved by systematically correcting the scattered field 

distribution on an aperture erected in juxtaposition with the obstacle. 

The Introduction of such a planar aperture not only provides an additional 

degree of freedom in performing improving operations, but also renders 

the scheme to handle n-dimensional geometries by (n - 1)-dimensional 

fast Fourier transform (FFT), where n - 2,3, and circumvents the un- 

wieldy three-dimensional FFT, making it a conceptually simple and com- 

putationally efficient method. 

ix 
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A salient feature of the method Is that It provides convenient 

validity checks of the solutions for the surface current distribution 

and the scattered far-field pattern by verifying that the scattered 

field obtained Indeed satisfies the boundary conditions at the surface 

of the scatterer.    Another Important feature of the method Is that It 

yields both the Induced surface current density and the far field. 

Diffractions by a strip, a thin plate, a rectangular cylinder, and 

a circular cylinder are presented as illustrative examples that demon- 

strate the usefulness of the approach for handling a variety of electro- 

magnetic scattering problems In the resonance region and above.     Some 

concluding remarks and comparison with other methods are also Included. 
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1.     INTRODUCTION 

It is well-known that the Integral equation methods are limited 

in application to scatterers whose characteristic dimensions are of 

the order of one wavelength or less.    On the other hand,  the high- 

frequency asymptotic techniques can be reliably used only when the 

scatterer Is large compared to the wavelength,  and neither of the above 

two methods is suitable in the resonance region. 

This thesis  Introduces a new hybrid technique,    based on a com- 

bination of the integral equation and asymptotic methods,  that is use- 

ful in the entire frequency range encompassing the resonance region 

and above.    Another important feature of the method is that it can be 

used to check and improve the accuracy of high-frequency asymptotic 

solutions.    Such an accuracy test and systematic improvement of the 

asymptotic solution are often needed, but no reliable methods for per- 

forming these are available at the present time. 

In contrast to the ray optics methods, which are based on the dlf- 

fraction of ray fields as determined by the local properties of the sur- 

face of the scatterer,  the present method starts with the Integral 

equation formulation incorporating the boundary conditions on the entire 

surface of the scatterer.    Conventionally,  tb'1 solution of the integral 

equation for the Induced surface current is carried out by matrix methods 

[1 1>   [2 ].    The size of the matrix becomes prohibitively large and its 

solution extremely time-consuming when the characteristic dimension of 

the scatterer approaches the wavelength of the illuminating field. 

The original concepts on which this thesis is based were described at the 
1975 URSI Symposium in a paper entitled,  "A new method for improving the 
GTD solution via the Integral equation formulation," by R. Mittra and 
W. L. Ko. 
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The approach developed In this thesis circumvents this difficulty 

while still preserving the self-consistent nature of the Integral equa- 

tion formulation by constructing the solution In the Fourier transform 

or spectral domain rather than In the space domain. We take advantage 

of the facts that the Fourier transform of the surface current distribu- 

tion is directly proportional to the far scattered field and that the 

asymptotic methods often provide a very good Initial estimate of the 

2 
latter quantity. We next construct an Iterative solution of the In- 

3 
tegral equation in the transform domain with the GTD or other high- 

frequency solution as the zero-order approximation. 

As shown in the thesis, this procedure not only allows us to im- 

prove on the GTD or similar solutions but also provides a convenient 

means for testing the satisfaction of the boundary conditions on the 

surface of the scatterer. Furthermore, the method yields not only the 

far field but also the Induced surface-current distribution, a feature 

not readily available in some other high-frequency techniques. 

A detailed derivation of the iterative method is presented in 

Chapter 2. A step-by-step recipe for applying the iterative scheme 

to construct the solution of the Induced surface current can also be 

found in Chapter 2. 

The application of the general procedure outlined in Chapter 2 is 

illustrated by two examples: the two-dimensional problem of a plane 

2 
A moment method solution in the spectral domain has also been devel- 

oped (see [3 ])• 
3 
For a comprehensive discussion of the Geometrical Theory of Diffraction 

(GTD) and its application, see R. G. Kouyoumjian,  Chapter 7 of Numerical 
and Asymptotic Techniques in Electromagnetics, R. Mittra (Ed.), 
Springer Verlag,  1975. 
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wave diffraction by a strip and a three-dimensional problem of a plane 

wave diffraction by a thin plate. 

In Chapter 3, the Iteration procedure Is applied to solve the strip 

problem. This problem was chosen for the following reasons: It Is shown 

that when the angle of Incidence Is normal or near normal, the GTD solu- 

tion accurately satisfies the boundary condition E   = 0 on the strip 

even when the multiple Interaction between the two edges of the strip 

Is neglected. However, It Is found that when the angle of Incidence Is 

near grazing, the GTD solution Is quite unsatisfactory, while the It- 

erated solution generated by the hybrid technique does display the cor- 

rect behavior. 

In Chapter 4, the Iteration procedure is applied to solve the plate 

problem. This problem was chosen for the following reasons: In the 

plate problem, the difficulty in applying GTD to this geometry stems 

from the fact that the diffraction coefficient for the corners of the 

plate is not known and neglecting the corner effects can cause substan- 

tial errors in the resonance frequency region where the plate size is of 

the order of one wavelength squared. However, the present technique, 

based on a combination of the integral equation and asymptotic methods, 

does allow the successful computation of the Induced surface currents 

on the plate. 

In Chapter 5, diffraction by planar surface solid scatterers with 

multiple edges, e.g., a rectangular cylinder,is considered. A technique 

which is based on a representation of the scattered fields in terms of 

the spectrum of the Induced surface current on the scatterer rather 

than the rays emanating from it is discussed. The scattered far-field 



obtained by this technique compares extremely well with that obtained 

from the moment method solution for thirty-two unknowns. Comparisons 

with results obtained by other approaches In the literature [4 ] can 

also be found In Chapter 5. 

In Chapter 6, the method for combining Integral equation and asymp- 

totic techniques for solving electromagnetic scattering problems of a 

convexly curved surface scatterer, e.g., a circular cylinder,is devel- 

oped. Detailed descriptions of the synthetic-aperture-distribution 

approach are documented, and comparisons with other methods [4 ], [5 ], 

that have been developed recently for solving problems of a similar 

nature are also included In Chapter 6. The idea is to transfer Informa- 

tion characterizing the curved surface onto a planar aperture where 

operations for improving the high-frequency asymptotic solution are 

carried out. A salient feature of the method is that the far field is 

obtained by Fourier transforming the aperture-field distribution» hence, 

it can handle problems of an n-dimenslonal obstacle by an (n - 1)- 

dimensional fast Fourier transform (FFT), where n « 2,3. Therefore, the 

unwieldy three-dimensional FFT is circumvented; hence>the method is 

numerically efficient. Moreover, the method is conceptually simpler 

than other conventional methods because operations for Improvement are 

carried out on a plane rather than on a curved surface. 

In Chapter 7, concluding remarks are made and future research 

activities along similar lines based on the present approach are recom- 

mended . 

In this method, the fast Fourier transform [6 ] Is a necessary 

tool; hence, a brief discussion on FFT is presented in Appendix A. 
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2. FORMULATION OF AN ITERATION METHOD 

2.1 Derivation of the Method 

We begin our analysis with the electric-field integral equation 

[7 ] for a perfectly conducting scatterer. The equation may be sym- 

bolically written as 

(G * J)t - -Sj ,  r e S (2.1) 

where JCr')  is the induced surface current density we are attempting 

to determine,  and the subscript t signifies tangential to the surface S; 

E    is the tangential component of the incident electric field E    on the 

surface S of the scatterer;   and G Is the free space Green's Dyadic,  which 

yields  the scattered electric field when operating on J.     In anticipation of 

Fourier transforming  (2.1), we extend it over all space by first defining 

a truncation-projection operator 6 as follows: 

For any vector Ä(r), which is a vector function of position r, 

6(Ä)-/Äf.6(r - r )dr , r    e S (2.2a) 
CSS 

where 5(r - r ) is the Dirac delta function and the subscript t sig- 
s 

nifies tangential to the surface S. Also its complementary operator 

6 is defined as 

e(Ä) - A - 9(5)   . (2.2b) 

We can then rewrite (2.1) as 

G * J » et-E1) + 9(5 * (6J)) ,  for all space  . (2.3) 
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As Indicated above, (2.3) is valid at all observation points whether 

on or off the surface S. Note that the integral equation (2.1) is em- 

bedded in (2.3) and that we have made use of the obvious identity 6J - J. 

Next we Fourier transform (2.3) by introducing the transform re- 

lationships 

-x -ik«r ,,- 
F(k) - / F(r) e"" r dr - F[F(5)] (2.4a) 

and 

J.N3 
'2* 

ik'r .r --1, F(r) - (^V / F(k) e1K,r dk - F'^FÖÖ] (2.4b) 

with - on top denoting the transformed quantities. 

The transformed version of (2.3) reads 

GJ - -Ej. + F (2.5) 

where F - F[e(G * (SJ))] and iL is the transform of the tangential com- 

ponent of the incident field truncated on S. Note that the convolution 

operation in (2.3) is transformed into an algebraic product upon Fourier 

t rans fo rmat ion. 

A formal solution to (2.5) can now be written 

J - G  (-Ej + F) (2.6) 

Equation (2.6) says that if we had available the Fourier transform of 

the scattered electric field, we could construct the solution for the 

induced surface current density in the transform domain by adding it 
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to -E-, which is known, and by performing an algebraic division repre- 

sented by G . In practice, of course, F Is not known and must be solved 

for along with J If (2.6) Is to be used In the form as shown. However, 

Instead of using this form, we proceed to derive an Iterated form of 

the equation as shown below: 

s^1). g-^-lj + l^) (2.7) 

which Indicates the (n + l)th approximation of J from the nth approxi- 

mation for F. We next show how F   Itself can be derived from J  . 

To this end, we use the Identity 

I - FIF-^GJ] - e(F"1[G3l)] (2.8) 

which may be verified by writing (2.8) as 

t - F[G * J - et-E1)] (2.9) 

and using (2.3) to get 

F - F[e(G * (ej))] (2.10) 

which, of course. Is the definition of F. We can now use (2.8) to de- 

rive the nth approximation F   of F from the nth approximation of J, 

i.e., J  . The relationship is written as 

l(n) - FtrW10] - e(F-1[5!(n)i)]  . (2.11) 

The desired iteration relating J and J       may now be written. 

Using  (2.7)  and  (2.11) 

|(tri.l) „ s-1^ + piF-ljgfOaV} . e(F-1tGJ(n)])]]      . (2.12) 



2.2    Recipe for Applying the Method 

The step-by-step procedure for constructing the solution of the 

transformed surface current J will now be given: 

1. Begin with an estimate of J      , which Is the Fourier trans- 

form of the Induced surface current,  or equlvalently, the 

scattered /or field within a known multiplicative constant. 

Typically,  the initial approximation for J, viz., J        ,  can be ob- 

tained as follows: 

(a) Estimate F,  the Fourier transform of the scattered field, F, 

outside the scatterer, using GTD or other asymptotic solutions. 

(b) Subtract E..,  the Fourier transform of the tangential component 

of the Incident electric field truncated to the surface of the 

scatterer. 

s-i fi-l 
(c) Multiply the result of Step (b) by G . Note that G  Is 

known and the operation is algebraic. 

(d) Take the inverse Fourier transform of the result of Step (c) 

and truncate It to the surface of the scatterer to obtain 

J  , the initial approximation for J. 

2. Multiply J   by G, the known transform of the Green's Dyadic. 

Note this Involves algebraic multiplication and not the usual 

time-consuming convolution operation. 

Note that GTD (Keller's) solutions may either have singularities or may 
be in error near shadow and reflection boundaries or at caustics, and the 
Uniform Theory of Diffraction (UTD) [ 8 ] and the Uniform Asymptotic Theory 
(UAT) [9 1 break down at caustics. The Spectral Theory of Diffraction (STD) 
[10], on the other hand, is uniform for all observation angles. The cri- 
terion for choosing any of these asymptotic forms of solution is conve- 
nience of computation for desired accuracy. For a comparative evaluation 
of the accuracy of the GTD, UTD, UAT and STD,the reader is referred to [11]. 
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3. Take the inverse Fourier transform of the product GJ ^ using 

both visible and invisible ranges. 

4. Apply the truncation-projection operator 9 to F [GJ  ], which 

gives the approximation to the tangential component of the 

scattered electric field 1® on the surface S. The accuracy of 

the solution can be conveniently checked at this point by verl- 

*   fylng the satisfaction of the boundary condition by the tangential 

component of Es, viz., {E^ - -E } on S. As mentioned In Chapter 1, 

this Is an Important feature of the method. 

5. Subtract eCF^GJ^ ]) from the total F"1[GJ^0^] already eval- 

uated. 

6. Take the Fourier transform of the difference obtained In Step 5. 

7. Subtract E-, the Fourier transform of the tangential component 

of the Incident electric field truncated on the surface, from 

the result in Step 6. 

8. Multiply the result obtained In Step 7 by G~ . Note that G" 

Is also known and the operation Is again algebraic as In Step 2. 

The result thus obtained Is J^ , which Is the first Iteration 

of the scattered far field. 

9. Take the Inverse Fourier transform of J   obtained In Step 8 

and evaluate It on S to get the desired Induced surface current 

on the scatterer. In other words, perform the operation 

9(F [J  ]). For an exact solution, this operation is redundant, 

since J - 9J, and hence, e(F~ [F[0J]]) » eej ■ J. However, the 

Fourier Inversion of an nth approximate solution J   will not 

give rise to a current distribution that is nonzero except on S. 

This step provides a test for the accuracy and for the 
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convergence of the approximate solution by comparing the approx- 

imate 5<0) with HQif'^jW])]. 

10. Take F[e(F    [J    '])] to derive an improved approximation for 

11. Repeat as necessary using,  for instance,  the improved J 

from Step 10 in the iteration Equation   (2.12) to generate the 

-(2) next higher-order approximation J      . 

Before closing this chapter we should point out that Galerkin's 

method applied in the transformed domain also provides an alternate,  and 

in some cases the more desirable,  approach for deriving the solution to 

the transformed integral equation.    J      ,J      ,  etc., as well as other suit- 

able functions may be employed as a basis set for this purpose. 

In the following two chapters, we show,  in some detail, the appli- 

cation of the procedure just described to a two-dimensional and a three- 

dimensional scattering problem. 
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3.     DIFFRACTION BY AN INFINITE STRIP 

3.1    Introduction 

In the last  chapter, we presented a general Iteration method for ob- 

taining solution of the integral equation in the transform domain with the 

GTD or other high-frequency solution as the zero-order approximation.    This 

iteration method not only allows us to improve on the GTD or similar solu- 

tions but also provides a convenient means for testing the satisfaction 

of the boundary conditions on the surface of the scatterer.    Furthermore, 

the method yields not only the far-field but also the induced surface- 

current distribution,  a feature not readily available in some other 

high-frequency techniques. 

The application of the general procedure outlined in Chapter 2 is 

illustrated in this chapter by using it to solve the two-dimensional 

problem of a plane wave diffraction by a strip.    This problem was chosen 

for the following reasons:    It is shown that when the angle of incidence 

is normal or near normal,  the GTD solution accurately satisfies the 

boundary condition E        » 0 on the strip even when the multiple inter- 

action between the two edges of the strip is neglected.    However,  it 

is found that when the angle of incidence is near grazing, the GTD solu- 

tion is quite unsatisfactory, while the iterated solution generated 

by the hybrid technique does display the correct behavior. 

3.2   Geometry of the Strip Problem 

The geometry of the electromagnetic scattering problem involving 

a perfectly conducting infinite strip of zero thickness Illuminated 

by a uniform plane wave, whose electric intensity vector is oriented 
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parallel to the edges of the strip, Is depicted in Figure 3.1. For 

convenience of analysis, an arbitrary incident wave can always be decom- 

posed into two components with respect to the z-axls, namely, TM 

(E-wave) and TE (H-wave). In the following discussion we consider the z 

E-wave case only; the H-wave case can be solved in a similar manner 

by considering H = ZHQ. 

The incident field is given by 

E*(P,*) - e 
-ik(xcos<l>0+y8in<|)0) 

(3.1) 

where the e    time dependence is understood. 

3.3 Iteration Method Applied to the Strip Problem 

The integral equation formulation [12] for the problem at hand 

takes the form 

,     a 
-E^x) - / J (xf)G(x - xf) dxf ,  x e [-a,a] (3.2) 

-a 

where J (x') is the algebraic sum of the induced surface current den- 
z 

sities on the top and the bottom surfaces of the thin strip. The kernel 

G is the two-dimensional free-space Green's function given by 

G(x- x») -^H^Ckjjlx- x'l) (3.3) 

where H^ '  is the Hankel's function of the first kind of order zero. 

k0 ■ 2ir/X is the free-space propagation constant.    Note that  (3.2) is 

the conventional integral equation which equates the integral repre- 

sentation of the tangential component of the scattered E-field radiated 
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OBSERVATION 
POINT 

STRIP 

Figure 3.1.   Diffraction by a strip Illuminated by an E-wave. 

HALF     -E 
PLANE 
 a- 

i 

-a 
STRIP 

HALF 
PLANE F, 

x 

(a) (b) 

Figure 3.2.   F.Cx) can be approximated by the GTD solution to the half- 
plane problem (a) shown on the left-hand side; F.Cx) can 
be approximated by the GTD solution to the half-plane 
problem (b)  shown on the right-hand side. 
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by the Induced surface current density to the negative of the tangential 

component of the Incident E-fleid on the surface of the perfectly con- 

ducting scatterer as required by the satisfaction of the boundary con- 

dition. Hence, (3.2) Is valid on the strip only. 

An extended Integral equation that Is valid for all x can be ob- 

tained by Including the scattered fields outside the strip as well. 

If the scattered field on the Interval (-°°,-a) Is designated by F. (x) 

and the scattered field on the Interval (a,00) Is designated by F2(x), 

then the extended form of (3.2) becomes [13] 

a . 
/ J (xl)G(x - x') dx1 - 6(-E1(x)) + F. (x) + F0(x) (3.4) 4        Z Z x i -a 

where 6 Is defined In (2.2a). 

Since the Fourier transform of the Induced surface current density 

can be related to the far field,   (3.4) Is Fourier transformed to give 

J (a)G(a) - e(-Eb(o) + F. (a) + F9(a) (3.5) z z i z 

where - on top Indicates the Fourier transform pair defined in (2.4) 

which simplifies In the present one-dlmenslonal problem to 

00 

F(o) - / F(x) e'iax dx (3.6a) 

and 

F(x) --^ / F(o) eiax da (3.6b) 
—00 
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The Fourier transform of the two-dimensional Green's function in 

(3.5) takes the form 

G(a)"izr7 • (3.7) 

Note that (3.5) Is an algebraic equation in the spectral domain in con- 

trast to the convolution form of the integral equation (3.4) in the 

spatial domain. The reason for working in the spectral domain will be- 

come clear when the method of solution for (3.5) is developed. Following 

the procedure discussed in Chapter 2 and in terms of the notations intro- 

duced in the present problem, we proceed as follows: 

1. Obtain J  (o), the initial approximation of the Fourier transform 
z 

of the Induced surface current density, or equlvalently, the scattered far 

field within a known multiplicative constant, as follows: 

1.1. Find the expressions for the first estimate of F| '(a) + ti (a). 

Note that GTO may be used to get closed-form expressions for 

F^ '(a) and F^  (ot) since F.(x) and F-U) can be approximated 

by the GTD solutions to the two half-plane problems as shown 

in Figure 3.2 (page 13). The expressions for F^ ' and F^ 

as obtained from GTD read 

?<0)W-i[e 
ikacos*        Cl o^8in_oJ_ laa 

e  
k cos ♦nKa + k 

le 
la(a+kcosij>0) 

(a + k cos ^0) 
(3.8a) 

and 
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-laa 
e 

(a + k cos ♦0)»'k - a 

le 
-ia(ot+kco8(t>Q) 

(o + k cos fyj 
(3.8b) 

Note that these expressions are free of singularities for all o. 

1.2. Solve for the initial approximation of 5z(a),Jz (a), by 

carrying out the operations shown below: 

8(-?)(a) + Fj0)(a) + F^0)(o) 
5<o>(a) e F -i 

G(a) 
J'J 

2.    Use  (2.12) to further improve the solution as necessary. 

The check for satisfaction of the integral equation can be applied 

very simply by computing J(a)G(a), taking its inverse Fourier transform, 

and verifying how well it approaches -E    on the surface of the scatterer. 

3.4   Numerical Results and Discussions 

3.4.1   Normal incidence 

Figure 3.3 shows the calculated induced surface current density 

distribution on the strip with ka - 4 (1.3X wide)  for normal incidence. 

Note that the current density becomes large at the edges, as it should 

for E-wave incidence,  although no specific condition was enforced at 

the edges, nor any special care exercised.    Note also that the approx- 

imate current is confined essentially on the surface of the strip and 

extends very little outside of this surface.    Thus,  the solution in this 

case is very close to the true solution and this is easily verified by 

truncating the current density,  computing the scattered field it radiates 

on the strip, and verifying that the scattered field is indeed very 

nearly equal to -E  . 

::,.J,,-.. Mr-,....:■   -■• ■..■,■■    ■    ■      : ■    '• 
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2.55   -1.82    -1.09   -0.36      0.36 .   1.09 
X(X|0"1) 

1.82      2.55 

Figure 3.3. Magnitude of the Induced surface current density dis- 
tribution normalized to (lloZ-)"1 on the strip of 
ka - A.  (1.273X wide), $n - 90°. 
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Figure 3.4 depicts the result for ka ■ 40, i.e., a 13X strip. 

Note that the peak In the center Is no longer present and the current 

there approaches that given by the physical optics approximation. There 

are now more oscillations, however, and the current density has a sharp 

dip before rising to Infinity at the edges. 

Figure 3.5 displays the moment method applied In the spectral do- 

main solution [3 ] and the comparison with the one obtained here Is 

quite favorable. 

Figure 3.6 exhibits the satisfaction of the boundary condition 

after one Iteration. As mentioned before, such a test Is not available 

In the conventional GTD approach. 

3.4.2 Near grazing Incidence 

Let us next turn to the Interesting case of a near grazing Inci- 

dence where the zero-order current density has a long tall extending 

beyond the edge of the strip (see Figure 3.7). This result is to be 

expected since the two half-plane GTD solutions used In the zero-order 

approximation represent a poor approximation for the Induced current 

for shallow Incidence angles. If this tall Is truncated, the remain- 

ing portion of the current density on the strip produces a scattered 

field on the surface of the strip which Is significantly different from 

-E , as may be seen from Figure 3.8. 

Figure 3.9 shows the effect of one Iteration on the zero-order 

GTD solution shown in Figure 3.7. Note that the current density Is 

significantly altered In the neighborhood of the shadowed edge demonstra- 

ting the fact that even with a relatively poor Initial guess, the con- 

vergence Is quite rapid in this case. 
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2.55   -1.82    -1.09   -0.36      0.36     1.09        1.82      2.55 
X 

Figure 3.4. Magnitude of the Induced surface current density dis- 
tribution normalized to (Ikf.Z-.)"1 on the strip of 
ka - 40. (12.73X wide), (^ - 90°. 
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Figure 3.6. Magnitude of the scattered E-field evaluated on the 
strip of ka - 40., ^_ ■ 90° (one iteration). 
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-2.55    -1.82    -1.09   -0.36      0.36 1.09 1.82       2.55 

Figure 3.7, Magnitude of the Induced surface current density 
trlbutlon normalized to (IICQZQ)"

1
 on the strip of 

ka - 40., (j)0 - 10° (no Iteration). 
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Figure 3.8.    Magnitude of the scattered E-field evaluated on the 
strip of ka - 40.,  (j(n - 10°  (no iteration). 
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Figure 3.9.    Magnitude of the induced surface current density dis- 
tribution normalized to  (ik^Q)"1 on the strip of 
ka - 40.,  fyj - 10° (one iteration). 
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To see that this Is Indeed an Improved solution, the truncated 

portion of It Is used to calculate the scattered field. It Is observed 

that the satisfaction of the boundary condition has been improved as 

shown in Figure 3.10. 

To verify the convergence of the solution numerically, one more 

iteration is performed and the result is depicted in Figure 3.11. Note 

that the shape of the surface current density does not change much which 

indicates a settling down of the solution has occurred. Also, note 

that the tall extending outside of the scrip has been reduced to an in- 

significant quantity, which, when truncated, will produce little effect 

on the scattered field on the surface of the strip. 

To further validate the solution, the moment method solution [3 ] 

of the same problem with slightly different parameters is shown in Figure 

3.12 for a comparison. Again, the agreement is good. However, in terms 

of computational efficiency, the present method is far superior to the 

moment-method solution for the accuracy realized. 

3.5 Summary 

Before closing this chapter, it is worthwhile to recapitulate the 

main points of the approach discussed. The strip problem has been solved 

by a combination of the integral equation and asymptotic high-frequency 

techniques. Formulation of the Integral equation in the Fourier trans- 

form domain allows one to conveniently obtain the zero-order approximation 

to the transformed unknown surface current density from the solution of 

two half-plane problems. 

 » *—.„...■.—»a—-. ■■■ ■ , i. 
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Figure 3.10. Magnitude of the scattered E-fleld evaluated on the 
strip of ka ■ 40., (j)n - 10° (one iteration). 
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Higher-order solutions have been obtained via the Iteration steps 

outlined above and the numerical convergence has been demonstrated. 

The Iteration process generates the proper edge singularities even when 

they are not present In the original approximation, e.g., physical optics. 

However, additional Iterations are necessary In that case. Validity 

of the solution has been substantiated by numerically verifying the 

satisfaction of the boundary condition. 



■      ■    :    ■        ■ 

30 

4.     DIFFRACTION BY A FINITE THIN PLATE 

A.l    Introduction 

Having Illustrated the usefulness of the hybrid technique for com- 

bining the Integral equation and GTD techniques relevant to a two- 

dimensional scatterer, viz.,  the strip, we now turn to the more general 

three-dimensional problem,  a thin rectangular plate Illuminated by a 

plane wave.    This problem was chosen for the following reasons:    In 

the plate problem,  the difficulty In applying GTD to this geometry stems 

from the fact that the diffraction coefficient for the corners of the 

plate Is not known and neglecting the corner effects can cause sub- 

stantial errors In the resonance frequency region where the plate size 

Is of the order of one wavelength squared. 

Before we discuss the present approach to solve the plate problem, 

we would like to mention two other approaches  [14],   [4 ]  that are based 

on a combination of asymptotic and Integral equation techniques.    The 

one developed by Thiele [14]  decomposes a given problem Into two parts, 

one of which Is handled using the GTD method and the other using the 

moment method.    For the case of a wire antenna on a finite ground plane, 

the effect of the edge diffraction from the ground plane Is evaluated 

using GTD and the result Is subsequently used to augment the Impedance 

matrix of the monopole antenna over an Infinite ground plane.    Although 

the method works rather well when GTD results are accurately known for 

the ground plane problem,  e.g., a ground plane of circular shape, no 

convenient means Is available for Improving the solution when there are 

corners In the plane that contribute substantially to the scattered field. 

The latter situation arises when the ground plane Is of rectangular shape 

and Is not large compared to the wavelength, or when the antenna Is 

mounted close to one or more of the edges. 

■ 
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The second method developed by Burnslde [4 ] tends to rectify the 

situation alluded to above by solving for surface currents via the moment 

method In the regions where the GTD solution Is not accurate, and by 

using asymptotic forms for the surface currents in regions where a good 

approximation for these currents can be employed. However, this method 

cannot be conveniently applied to either the strip problem with grazing 

incidence, or to the large plate problem discussed in this thesis. For 

the strip problem, the GTD solution is quite inaccurate when the incident 

angle of the illuminating wave is near grazing. For the plate problem, 

the current does not settle down to known asymptotic form in the center 

region of the plate until it is at least three to four wavelengths squared. 

The moment method is Incapable of handling the number of unknowns required 

to accurately solve for the current distribution on plate sizes that 

are larger than 2X squared. 

In the following sections, we present a new approach using the 

iteration method developed in Chapter 2 to demonstrate that a successful 

computation of the induced surface currents on the plate is not only 

feasible, but also numerically efficient. 

4.2 Iteration Method Applied to the Plate Problem 

For the sake of simplicity we consider only the case of an x-polarlzed 

uniform plane wave which is normally incident on a square thin plate. 

The geometry of the problem is depicted in Figure 4.1, where the plate 

is located In the z ■ 0 plane. 

Using classical electromagnetic theory, the following coupled 

integro-differentlal equations for the current components J and J are 
x     y 

readily obtained: 
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Figure 4.1.    Diffraction by a finite  rectangular thin plate  illuminated 
by a normally  incident plane wave with polarization as shown. 

Figure 4.2. Regions in the z - 0 plane in each of which the zero-order 
approximation of the scattered field is obtained according 
to Table 4.1. 

HI . i 



KillWOTW—illWiiWIlln   .  

H 
33 

32 1 
(x'y) + "3^7 Ay(x'y> " l^0Ex(x,y) (4.1a) 

and 

2   \ 2 

. T + k2 Ay^»y> + ^ Ax(x,y) - 0 (A.lb) 

where x e (-a,a), y e (-b,b), and z - 0. A and A in (4.1a) and (4.1b) x y 

are the x- and the y-components of the magnetic vector potential, re- 

spectively,  containing the unknowns J  ,J    implicitly. 

Since the convolution of the induced surface current density with 

the free-space Green's function gives the magnetic vector potential, we 

have the expressions which are valid in the z - 0 plane 

Ax(x,y) - Jx(x,y)  * G(x,y) (4.2a) 

and 

Ay(x,y) - Jy(x,y)  * G(x,y) (4.2b) 

where * denotes the convolution operation and the free-space Green's 

function is given by 

G(x-x',y-y')-^^Eilkrl ^ 

where 

r - ^(x - x')2+ (y - y')2 ,  z,z' - 0  . 
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Note that (4.1a),   (4.1b) are conventional integro-differentlal equations 

which are valid on the plate only.    To obtain an extended form of these 

equations, additional unknown functions F  (x,y) and F (x,y) will be in- x y 

troduced. The domain of these functions is the region complementary 

to the plate in the z - 0 plane. Hence, the extended form of (4.1a), 

(4.1b) can be written as 

H^ + k2]Ax(x,y) + ^ Ay(x,y) - -iu^-e^x.y)) 

+ 6 (Fx(x,y))) (4.4a) 

and 

1-4+ k2 Ay(x.y) +-ä^ Ax(x.y) - -lWe0§(Fy(x.y)) (4.4b) 

where 6 and § are operators defined in (2.2a) and (2.2b), respectively. 

Note that (4.4a), (4.4b) are valid for the entire z - 0 plane. These 

equations are now Fourier transformed to obtain 

(a2 - k2)Jv(o,ß)G(a,ß) + o$J (a,ß)G(a,3) x y 

■=-£ (-e(ES(o,ß) + e(F )(o,e)) 
ÄQ X x 

(4.5a) 

and 

(ßZ - k2)J (o,ß)G(o,ß) + oßj (oc,0)G(ci,(ä) -~ e(F )(a,ß) 
y x i.a y 

(4.5b) 
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where • on top Indicates the Fourier transform as defined In (3.6a) 

with transform variables (a,6) corresponding to (x,y), respectively, 

and Z0 ■ /p0/e0 is the free-space Impedance. In writing (4.5a) and 

(4.5b), (4.2a) and (4.2b) have been utilized. The Fourier transform 

of the free-space Green's function, specialized to the z = 0 plane as 

given in (4.3), is 

G(a.6) - i •  1 ; 1 ;; —, ir^? (4.6) 

Observe that (4.5a), (4.5b) are two algebraic equations in the transform 

domain as opposed to the two integro-differential equations in (4.4a) 

and (4.4b). It is a simple step to derive the zero-order solutions of 

J (a,3) and J (a,ß) once the estimates of 9(F )(a,ß) and e(F )(a,3) are x y x y 

available. One merely solves the two coupled algebraic equations for 

these two unknowns J (a,3) and J (a,3). For the present case, 6(F )(x,y) 
x       y y 

is zero due to the particular choice of x-polarized normal Incident plane- 

wave illumination. With this in mind, the first-order solutions of the 

transformed surface current density can be expressed as 

Jx(a'e)--n—r T2 r" A -a - 

2   2 
* -ko 
kozo 

[-9(Ejp(o,3) + e(Fx)(a,3)] (4.7a) 

and 

Jy(a'e) "T2 ? 
-2 

7ko - "^ - 
i nrn1"9^^^+ ^V(a»B)1 (4.7b) 
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J (a, ß) and J (a.ß) are then Inverse Fourier-transformed and truncated 
x        y 

to obtain the Induced surface current densities on the plate. 

Next, we estimate the zero-order approximation to ö(F )(x,y) using 

the GTD solutions to four pertinent half-plane problems. The z - 0 plane 

containing the plate has been divided Into regions as shown In Figure 4.2 

(page 32), where the hatched region Is occupied by the plate and the scattered 

field In this region must be equal to the -6(E (x,y)) to satisfy Che 

boundary condition. The rest of the z = 0 plane has" been designated 

by digital numbers mi Roman numerals, and the manner In which the 

scattered fields In these various regions are obtained Is concisely 

tabulated In lahl".  4.1. 

TABLE 4.1 

THE ZERO-ORDER APPROXIMATION OF e(F   (x,y))  IN VARIOUS REGIONS 
EXTERNAL TO THE PUTE OBTAINED VIA THE USE OF GTD METHOD 

i    Region Scattered Field Remarks                j 

I,  11 Ex(x,z - 0) Derived from H-wave 
strip GTD solution 

III,   IV Ex(y,z - 0) Derived from E-wave 
strip GTD solution 

1.   2, 
1    3»  4 

0 First estimate 

In deriving the zero-order approximation,  the aoattered fields In 

regions 1,   2,   3 and 4 are neglected although these fields are nonzero 

In higher-order approximations. 
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The zero-order approximation to the scattered fields Is computed 

In Regions III and IV, by starting with the E-wave GTD solution for 

the strip,  and truncating It so that It Is nonzero only In these regions. 

In particular, 

F rIII 

and 

F IV 

f ibß Ibß^ o    .   /    N 

In Regions I and II, the H-wave GTD solution for a strip Is used to 

obtain H (x,z = 0), and then E (x,z = 0) Is constructed from Maxwell's 
y * 

equations.    The resulting solution Is again truncated so that It Is 

nonzero only In the appropriate regions.    In particular. 

;       f-tKTZ eiaa a  l7k2 - a2 eia°\ 2 sln(ßb) n  a . 
h ' \77C ST + k -J ß (4-9a) 

and 

F rII 
fi£ZI e'1™      iA2 -  a2 e~la(i\ 2 sin(ßb) ,,  Q. . 
\y$ ä k tr]—ß (4'9b) 

Having completed the estimation of the zero-order approximation 

to the scattered field 9(F  (x,y)) external to the plate, we now proceed 

to solve for the Induced surface current on the plate.    To this end we 

return to  (4.7a) and  (4.7b) and substitute the Fourier transform of 

6(F  (x,y))  and compute J    and J  .     The desired induced surface current 

densities In the space domain are then obtained by Inverse Fourier 

■:,,;-. 
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transformation and truncation. If necessary, the iteration scheme dis- 

cussed in the previous sections can be followed to obtain higher-order 

solutions. Convergence of the solution can be checked by performing 

one more iteration and checking to see whether the solution has 

"settled down." Validity of the solution can be assured by computing 

the scattered field on the plate using the solution of the surface cur- 

rent just obtained to see how well the boundary condition is satisfied 

on the surface of the plate.  It should be "1ear now that all of these 

steps follow exactly the same line as in the case of the strip problem 

discussed in Chapter 3. 

4.3 Numerical Results and Discussions 

The numerical result for the dominant x-component of the surface 

current density for a one-wavelength squared plate is shown in Figure 

4.3a. Note that the surface current density, which goes to zero at the 

two edges perpendicular to the incident electric intensity vector, tends 

to grow without bound at the other two edges parallel to the incident 

electric intensity vector, although no special edge condition has been 

enforced to derive this behavior. To see that edge behavior better, a 

90 rotation of the surface current in Figure 4.3a is shown in Figure 

4.3b.  It is clearly seen from Figure 4.3b that the cross section of 

the x-component of the surface current density at x = 0 closely re- 

sembles the surface current on the strip plotted in Figure 3.3. 

Figures 4.4a, 4.4b, and 4.4c exhibit the change in the behavior 

of the current distribution both in the middle of the plate and at the 

corners as the plate size is progressively increased. 
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The corner singularities, which are highly localized, appear to be 

present only for relatively small sized plates where corner-corner inter- 

actions may play a significant role.    It has not been possible to verify 

the correctness of the behavior of the solution at the corners since no 

reliable analytical or    umerlcal solutions for the comer problem are 

available at this time. 

Figures 4.5a and 4.5b show the cross-polarized component of the 

surface current density on the plate.    This current density goes to zero 

at the line of symmetry In the middle of the plate and has a tendency 

to grow without bound at the edges.    The results for the one-wavelength 

squared plate have been checked by moment-method solutions and the agree- 

ment is good.    For such an electrically small plate,  results are avail- 

able for comparison in the literature [15],  [16].    However,  for elec- 

trically large plates the matrix size becomes prohibitively large when 

the conventional moment method type of approach is used.    In contrast, 

the accuracy and the convergence of the solution improve even further 

for a large scatterer.    It should also be mentioned that the number of 

grid points at which the current density of the plate has been evaluated 

is 2048.    Such fine details of the current behavior would also be im- 

practical to obtain using the moment method. 

. 
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1.0 2.0 

Figure 4.5a.    Magnitude    of the cross-polarized component of the sur- 
face current density on a 1A x 1A plate  (ka - 3.14); 
plate region:  xe(-l,l), ye(-1,1), normal incidence with 
x-polarlzation. 
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30 r 

To20t- 

Figure 4.5b.    Magnitude    of the cross-polarized component of the sur- 
face current density on a 3X x 3X plate   (ka » 9.43); 
plate region:  xe(-l,l), ye(-l,l), normal incidence with 
x-polarization. 

S;v 
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5. A NEW LOOK AT THE SCATTERING OF A PLANE 
WAVE BY A RECTANGULAR CYLINDER 

5.1 Introduction 

The problem of scattering of electromagnetic waves by a rectangular 

cylinder has been investigated by numerous scientific researchers in 

the past; yet its flavor has not diminished but quite on the contrary, 

it stimulates a strong Interest in further pursuing this problem lately 

as evidenced by the number of papers appeared In the literature [4], [17], 

[18], [19], [20], [21] that deal with this subject. 

Due to the two-dimensional nature of the problem, the conventional 

moment method [17] can be applied in this case to an electrically large 

cylinder when its symmetric properties are also exploited. Therefore, 

it provides a convenient validity check for other methods.  Indeed, 

Burnside et dl.   [4] and Mautz et al.   [18] have claimed their different 

approaches valid only by a comparison of results with the conventional 

moment method. 

Both of the aforementioned papers made use of the so-called uniform 

geometrical theory of diffraction developed by Kouyoumjian et al.   [8] in 

which the classical wedge diffraction coefficient put forth by Keller has 

been modified using multiplicative factors in such a manner that one of 

these factors goes to zero as the Keller's diffraction coefficient goes 

to infinity at one of the shadow or reflection boundaries so that the 

product remains finite. The resulting diffraction coefficient is indeed 

applicable at all aspect angles.  It is conceivable that an additive 

term which goes to infinity as the Keller's diffraction coefficient goes 

to infinity but with opposite sign will work equally well as does the 

multiplicative-factor type of remedy. Indeed, this additive-term type 



.   -    .  ■■■ ■       .;■   .,-..  , 

48 

of remedy has been followed by Lewis et al.   [22].    Both of these remedies, 

multiplicative and additive alike,  still have room for further develop- 

ment,  and it is difficult to Judge which one is superior.    Furthermore, 

both of these theories are based on an Ansatz that has no physical justi- 
i 

fication at all to start,with. 

In this chapter, we tackle the scattering problem using a completely 

different technique which is based on a representation of the scattered 

fields in terms of the spectrum of the induced surface current on the 

scatterer rather than the rays emanating from it.    This spectral domain 

interpretation of high-frequency diffraction phenomena has been docu- 

mented in detail in a recent paper by Mlttra, Rahmat-Samii and Ko  [10]. 

Ko and Mittra [23] also developed a method based on the spectral domain 

concept for combining the asymptotic high-frequency technique and the 

integral equation formulation.    The method has been applied successfully 

to infinitesimally thin scattering objects, e.g., an infinite perfectly 

conducting strip and a finite perfectly conducting square plate  [23]. 

To further develop the method, we apply it to the perfectly conducting 

square cylinder. 

This particular geometry has been chosen because it serves as a good 

example for demonstrating that the method can be extended to treat with 

ease scattering objects with finite thickness and planar surfaces. 

Moreover,  the validity of the method can be easily established by com- 

paring with well-established solutions derived by entirely different 

approaches available in the literature.    We show that starting out with 

Keller's wedge diffraction coefficient, only one Iteration gives a far- 

field pattern that compares extremely well with that obtained from the 

moment-method solution for thirty-two unknowns. 
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To emphasize the simplicity and efficiency of the present approach, 

it is worth mentioning that the GTD result deviates significantly in 

those directions which coincide with the orientations of the surfaces of 

the square cylinder even when multiple-edge interactions are included 

in a self-consistent manner by introducing eight unknown diffraction co- 

efficients. Only when one further modifies the GTD method with the 

uniform diffraction coefficient and combines it with the moment method 

using a total of twenty-four unknowns will the result compare well with 

the moment-method solution for thirty-two unknowns. 

The present approach shows how the Keller's GTD solution can be im- 

proved in a straightforward manner based on a physical argument rather 

than a remedy from an Ansatz. Thus, it gives Insight into the mechanism 

involved in problems of high-frequency scattering from scatterers with 

planar facets. 

5.2 Formula t lull 

The geometry of the electromagnetic scattering problem involving a 

perfectly conducting infinite rectangular cylinder of cross section 2a x 2b 

illuminated by a uniform plane wave, whose magnetic intensity vector is 

oriented parallel to the edges of the cylinder, is depicted in Figure 5.1. 

For convenience of analysis, an arbitrary Incident wave can always be de- 

composed into two components with respect to the z-axis, namely, TM 
z 

(E-wave) and TE (H-wave). In the following discussion we consider the 

H-wave case only; the E-wave case can be solved in a similar manner by 

-1  * 1 
considering E - ZEQ. 

In the H-wave case, the incident H-field is given by 

.       -ik(xco8(t»n+ysin(|in) 
irCM) - e    ü   ü (5a) 
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1 
OBSERVATION   POINT 

H1 « £Hi 

Figure 5.1.  Diffraction by a rectangular cylinder illuminated 
by an H-polarized plane wave Incident at an angle C^Q. 

Jäbii^üM^ih^*^4*a^'*^l*-■;J';*'•a^"", 
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-iut 
where the e ' ' time dependence Is understood. The geometrical optics 

reflected field can be derived easily from (5.1) once the geometrical 

configuration Is known. Hence, the geometrical optics part of the total 

field will not be discussed on further. 

We now turn to the diffracted field which results from the sharp 

edges on the scattering cylinder. As alluded to In Section 5.1, we make 

use of the Keller wedge diffraction coefficient to find the diffracted 

fields. To make this discussion as self-contained as possible and to 

Introduce the notations that we have adopted In this chapter, a brief 

review of the wedge diffraction coefficient Is In order. 

The geometry of a perfectly conducting wedge Immersed In a uniform 

H-wave In the canonical wedge diffraction problem Is shown In Figure 5.2. 

According to Keller's geometrical theory of diffraction, the diffracted 

field by the edge of the wedge can be constructed by the following formula: 

Iko 
Hz ~ Hz(at the ed8e of the wed8e) Dh ^^ (e"iu)t:) (5.2) 

where 

lTr/4 
e 
75^ 

1 , TT 
— sin — 
n    n 

1  ,  IT 
— sin — 
n   n 

cos cos 
n (^) cos cos 

n (^) 

(5.3) 

and - means "asymptotically equal to." In the above formula, nir denotes 

the exterior region while (2 - n)ir denotes the wedge angle. Note that n 

Is not necessarily an Integer; in the rectangular cylinder case, It will 

take on the value 3/2. The subscript w attached to the angle of Incidence 

(t)Q and the angle of diffraction $ serves as a reminder that these angles 

are used In the canonical problem and their senses are defined as shown 

■ 
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OBSERVATION   POINT 

Figure 5.2. Geometry of a perfectly conducting wedge Immersed 
In a uniform H-wave In the canonical wedge dif- 
fraction problem. 

v.. ..>;..-■-■.-' ■••- --'■■■■■'•■ ■■-  ■'■■■■ 
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in Figure 5.2. This fact Is worth emphasizing since It Is crucial In 

constructing the diffracted field when several wedges are Involved In 

a scattering problem. 

As shown In Figure 5.3, the major contributions to the diffracted 

field are from wedges 1, 2, and 3 since the three edges of these wedges 

are being Illuminated by the Incident field whereas wedge 4 Is In the 

dark and hence It can be Ignored In the zeroth-order approximation to 

the diffracted field. With this In mind, the diffracted far field can 

be written In a concise fashion as follows: 

s 

H%,4.) 
Z 

♦Ow " ^OJ 

- * 

^Ow 

+ H z2 

■   TT   - 

*0w " ^ " ♦' 

■   H   -   (|) 

+ H 
IT/2 - 4) 

ir/2 - *, 

+ H 
* -  <t>r 

,0«Kf 

•2 
:(|)<IT 

+ H 
d , *w   - TT/2 + (2ir-*) 

3ir - ♦ 

z3 
'Ow TT/2 - *- 

.ir^l2- 

Hz2 r H«3 
<ti      - ir/2 +  (2ir-(t0 

/2 - ♦, 
l.yL«t.<21T 

(5.4) 
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Figure 5.3.  For the angle of incidence $Q  as shown, wedges 1, 2, and 3 
are illuminated while wedge 4 is in the dark. 
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where 4»- - IT/4.    In the above equation,  subscripts 1,  2,  and 3 on H u z 

designate wedges 1,   2, and 3,  respectively.    Each of the H 's from 
z 

the Individual wedges Is of the form given by (5.2) and (5.3) with 

proper values for 4) and $_ substituted and proper phase shifts taken 

care of due to the transfer of the phase center located at the edge 

of the wedge In each of the Individual canonical problems to the common 

phase center located at the origin of the rectangular coordinate system 

shown in Figure 5.3. 

5.2.1 Pole singularities in the diffraction coefficients 

It is well-known that the Keller's diffraction coefficient (5.3) 

as Introduced in the last section will not give the correct value for 

the diffracted field at certain directions, namely, at the shadow and 

the reflection boundaries predicted by geometrical optics. One can easily 

see from (5.3) that the denominator of either one of the two terms in 

the square brackets vanishes at one of these shadow and reflection 

boundaries and gives infinite field values at those directions. We 

know that the field actually remains finite and varies continuously 

across the shadow and reflection boundaries. Hence, we cannot apply 

Keller's diffraction coefficient near the shadow and reflection bound- 

aries. It was precisely for this reason that some work had been done 

in trying to construct a uniform diffraction coefficient. As mentioned 

earlier in the Introduction of this chapter, both multiplicative- and 

additive-type approaches have been pursued and have shown some success. 

In the following discussions we show that it is not necessary to use 

the aforementioned "uniform diffraction coefficient" to solve the rec- 

tangular cylinder problem under consideration. 
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To start, we make direct use of Keller's diffraction coefficient 

as given In  (5.3)  and substitute it In (5.2) to find the wedge dif- 

fracted field.    Observing that the diffraction coefficient contains 

pole singularities which give nonphysical fields at the shadow and 

reflection boundaries, we will first subtract out the pole singularities. 

The reason for subtracting out the pole singularities becomes clear 

in the next section where these singularities in the diffraction co- 

efficient are shown to correspond exactly to those in the physical 

optics current that exists on the semi-infinite surface of the wedge 

in the canonical problem but should not have existed in the rectangular 

cylinder case since the surfaces of the rectangular cylinder are finite 

in width.    With this in mind, the expressions for the zeroth-order approx- 

imation to the diffracted field can be written explicitly as follows: 

For wedge 1   (see Figure 5.3), 

iko „d        „1 / .     . -•      j      i\ ^      e ikacos<|)    -ikbsln^ H ,   - H    (at edge of wedge 1) D...    'jm   e T e zl        z hi    /p 

-ik(-acos(t)0+bsin(ji0)    ikp 

TJrftc 

2 .     2ir    ikacosd)    -lkbsin(j> 3 sin j- e y e 

2ir 2  ,.        ,   . cos ^ cos -j U -  (j)0) 

ik(aco8 (-rr+O-bsintir+O ) 
e 

* -   (IT + *0) 

2^    .    ^    ikacos<j)    -ikbsln(|> ^r sxn 5    e e 

cos -^ cos -j ((]) + ()»0) 

ik(acos(ir-<j>0)-bsln(iT-(|)0)) 

♦  -    (IT  -   (JIQ) 
(5.5a) 
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Note that the second term In the square brackets Is the pole singu- 

larity of the first term at the shadow boundary and the fourth term 

is the pole singularity of the third term at the reflection boundary. 

For wedge 2  (see Figure 5.3), 

ikp 
Hz2 ' Hz (at ed8e of wed8e 2) Dh2 vT 

-lkacos(|) -ikbsin(j) 

-lk(acos(|i0+bsln(|i0) ikp 

^ 
e 

' 727^ 

2    .     2ir    -ikacosih    -ikbsinct) 
•z sin "ö- e e 

cos -r cos -r I(ir - ^)  -   (TT ♦0)1 

2    .     TU   -ikacos^    -ikbsincti 
Q  s xn ^^^ c 6 

2v 2 r(ir    - ^ + (T - to^ for 0 < ♦ < ir 
OS ^r cos -zl ) •» 

J L(3Tr - *) +  (ir - 40)J for y1 <  * < 

-ik (acos (Tr-<|)0)+bsin(ir-(J0) ) 

♦ -  (t -  t0) for 0 <. 4) <. TT 

-ik(acos(2ir-(|>0)+bsin(2ir-(j)0)) 

(1) -   (2Tr - (|)0) ~" for -I21 < 4» < 2ir (5.5b) 

where 

0 <. (j)n .< y and 0 < < TT and y < <\) < 2ir. 

. 
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Note that no singularities are contained in the first term in the given 

angular domain of $. The third term in the square brackets is the 

pole singularity of the second term at the reflection boundary for 

0 <_ (j) <, IT and the fourth term is that for •j~ — ^ — ^'n•    Also» note 

that there are no shadow boundaries in this case. 

For wedge 3 (see Figure 5.3), 

iko „d        „i /  .     j e      J       o\  n      e    -ikacos<{i    ikbsin^ H - - H    (at edge of wedge 3)  D. - -7=- e T e ZJ        z nj    vp 

-ik(acos<J)0-bsin<j)Q)     ikp 

V 

4 e 
* 77v£ 

2     .     2ir    -ikacos(fi    ikbsin(|) -» sin 3- e T e 

2* cos -» cos -s 
(7 - *)    -  (7 - tSi for 0<*<J 

[■| + (2Tr - *) ] -  (| - (J.0)J for ir<*<2ir 

-ikUcosdr+O-bsindr+O) 

* - (if + *0) 
for ir <.()).< 2Tr 

where 

2    .    Zir    -ikacosij)    ikbsin^i n    s in   "«        6 6 

2Tr 2 cos ■= cos -r 
(f - *)    + (f - *0)1    for 0 < * < J 

[~ + (2Tr - 4.)] + (I - 4>0)|    for TT < 4> < 2TT 

-ik(acos(2Tf-<{>0)-bsin(2ir-(j>0)) 

* -   (2Tr - ^0) for TT <_ (Ji <_ 2Tr (5.5c) 

0 1 ♦n - 9" and ^ ~ ♦ 5 7 and ^ 1 <!> 1 2IT 

■    •   ■. 
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Note that the second term In the square brackets Is the pole singularity 

of the first term at the shadow boundary and the fourth term Is that 

of the third term at the reflection boundary. For future reference, 

all the pole singularities contained in the diffraction coefficient, 

which have been discussed in detail above and shown explicitly in 

(5.5a), (5.5b) and (5.5c), are tabulated in Table 5.1. 

5.2.2 Pole singularities in the physical optics currents 

It was discussed in the last section how the diffracted far field 

can be constructed from the diffraction coefficients.  In applying 

these diffraction coefficients, one must recognize the fact that they 

were derived from solving a canonical problem which involved an in- 

finite perfectly conducting wedge, or more descriptively, two semi- 

infinite perfectly conducting half planes Joining each other at an 

angle. Therefore, the solution of the canonical problem predicts a 

physical optics current existing on the illuminated semi-infinite 

surfaces of the wedge. Since the support of this physical optics 

current is infinite, it gives rise to infinite fields at certain 

directions in space.  In the following discussions, we show that all 

the pole singularities contained in the wedge diffraction coefficient 

are precisely due to these physical optics currents with infinite 

supports. 

To tackle this problem one step at a time. Figure 5.3 has been 

redrawn in more detail in Figures 5.4a, 5.4b, Figures 5.5a, 5.5b, and 

Figures 5.6a, 5.6b. These figures exhibit the physical optics currents on the 

illuminated surfaces of the illuminated wedges of the rectangular cylinder as 
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TABLE 5.1 

POLE SINGULARITIES AT SHADOW AND REFLECTION BOUNDARIES 
THAT HAVE BEEN SUBTRACTED FROM THE PERTINENT DIFFRACTION COEFFICIENTS 

(S.  B.:    SHADOW BOUNDARY,  R.   B.:    REFLECTION BOUNDARY) 

Wedge Pole at |           Pole singularity 

1 S.  B. 

|             ik(-acos((i0+b8in(|i0)          | 

|                       * -   (ir + *0)                j 

1 R.  B. 

ik(-aco84)0-b8in(ji0)          | 

♦ - (ir - ^Q)              1 

2 R.  B.   1 

ikaco8(ji0    -ikbsin(ti0      | 
-e                  e                u      ! 

* - ^ + *o             S 

1        2 R.  B.   2 

-ikacos(|>0    ikb8ln<)), 
e                   e 

* - 2ir + (|>0                \ 

i 3 R.  B. 

-ikacos^i-    -ikbsin(|)0 

-e                    e 

* - 2ir + ^o              \ 

3 S.  B. 

ikacos(|)0    -ikb8in(|i0 

* " (ir + *o)            1 
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nl rjH'^Hi 

SURFACE A. ;«?-a,a)) 

P 0 
Figure 5.4a. Physical optics current »Ljl/ on the illuminated surface A 

of wedge  1. 

R.B. 

<t> = w + 6 

Figure 5.4b.    Shadow and reflection boundaries predicted by 
geometrical optics for wedge 1. 

. 



SURFACE A: . y = b 

afMH* 

X€(-oo,a) 

SURFACE B: x=a 
y€(b,-oo) 

P.O. TP.O. 
Figure 5.5a. Physical optics currents JJ^' an^ JvB2* on the ^^^u~ 

minated surfaces A and B oFwedge 2, respectively. 
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Figure 5.5b. Reflection boundaries predicted by geometrical optics 
for wedge 2. 
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SURFACE   B '- 
x = a 
y€(-b,oo) H^tHl 

P 0 
Figure 5.6a. Physical optics current J '»' on th^ illuminated 

surface B of wedge 3.   y 

Figure 5.6b. Shadow and reflection boundaries predicted by 
geometrical optics for wedge 3. 
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well as the shadow and reflection boundaries created by the Illuminating 

plane Incident wave as predicted by classical geometrical optics. 

Referring to Figure 5.4a, the far field n    '   due to the physical optics 

P 0 current J  [■,'  on the semi-infinite surface A of wedge 1 can be obtained 

using classical electromagnetic theory.    First of all,  the subscripts 

and superscripts attached to J and H must be understood properly. 

The  first subscript indicates the vector component of the quantity; 

the second subscript designates the surface on which the current exists; 

and the third subscript depicts the illuminated wedge under scrutini- 

zation.    The superscript reveals that the quantity under consideration 

is obtained from physical optics.    In classical electromagnetic theory, 

P 0. P 0 
the far field H I-/and the surface electric current J',*radiating it 

in free space are related in the following manner. 

1- ikp    14 e    K e „P.O.     ..   e"^ e "     .     .   -P.O. 
HzAl =-ik    ^Ttkp      8in * JxAl (5.6) 

where 

JxAl ki     \;XAI/ 

oo  co   -ik(xcos4)0+bsin<j)0) , 

/  /  2e       0     0 6(y - b) e iax e ißy dxdy 
-ao -a 

which is the Fourier transform of the surface electric current density 

P.O -1 
J*,*obtained by physical optics, i.e., 2ft x H . The factor of 2 is 

present because the original problem, which involved an electric cur- 

rent radiating in the presence of a perfectly conducting surface on 
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which It resides, is equivalent to the problem of twice the electric 

current radiating In free space. If we Ignore all of the effects at 

Infinity, which can be done by Introducing an Infinitesimal loss In 

the medium, then the far field due to the physical optics current on 

surface A of wedge 1 can be expressed as: 

H P.O. 
zAl 

1-2 
ikp    ^ e        e 

-ik ^re-2 sin ♦ 

-Ikbslncju-lkbsln^    la(kcos^0+kco8({i) 
I e_  

l(k cos (ft- + k cos  ij)) 
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.(5.7) 

It Is very Interesting to observe that the denominator In (5.7) vanishes 

at <t) * TT + <|>0 which are precisely the reflection and shadow boundaries 

as shown In Figure 5.4b. 

Knowing that the field produced by the physical optics current 

does possess pole singularities at the shadow and reflection boundaries, 

let us check the singular behavior as $ approaches v + $Q,    To this 

end,  the denominator will be expanded Into a Taylor's series In 

[()) -  (ir + $»)]•    In this series,  only those terms up to the first 

power of 4) will be kept while all higher power terms are discarded 

since their contributions are small compared with the first power term 

In the series as <t> approaches Infinitely close to ir + ^Q.    Putting 

this In terms of mathematical language, we have 

/Strkp 

1^ 
P 0 eikp e A 

H :?\iA    -ik e 
zAl A-tib 

where 

-ikbslnta+ikacosta   -ikbsin^ +lkacos4> 
2 sin (j)    e e p p 

ik{cos (frft + cos <J>    - sin A  (ö- A )+..•} 
Op P P 

(5.8) 

*p - ^ + *0 
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H P.O. -ikbsln(t)0+ikacos(|i0    Ikp 

zAl  <J»->-IT+(|I0 yQ 

e 
-lkbsin(iT+(J)0)+lkacos (ir+tj).) 

* -  (TT T *0) (5.9) 

At this point, one may go back to (5.5a) or Table 5.1 to see that these 

are Indeed exactly the pole singularities at the shadow and reflection 

boundaries of the wedge diffraction coefficient D.-. 

Referring to Figure 5.5a and proceeding along similar lines, one 

can obtain 

l4 
„P.O. >v elkp e 4 

HzA2    " "ik    /Biltp- 
2 sin * 

-lkbsln())0- 
e 

-Ikbsin* 
£ 

-la(kco8(t)0+kcos(j))~ 

-l(k cos <t>0 + k COS   (ji) 

(5.10) 

and 

ilr- 

„P.O. ,L  eikP e 4 

H2B2        "ik    /BiTcp- 

-ikacos(tin-ikacos(t»    -lb (ksln(|>.+k8ln(|)) 
-2 cos d> e e 

l(k sin <l>0 + k sin *) 

(5.11) 

P.O. P.O Similarly,  the singular behavior of H A-'   and H *2*  can be shown to 

be as follows: 

p Q -ikbsin(t»Q-ikacos<t0    ikp 

zA2  ijrmfyn ' ~^Q~ 

e 
TOT 

-ikbsln(ir+(()0)-ikacos (TT+^Q) 

«J-   "    (f  ^   ♦Q) 
(5.12) 
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.P.O. 

«I 

-Ikaco8(|>0-ikb8ln(fr0 elkp 

-ikacosi ^H-lkbsln/ '    ^ 

2* -  ♦, 

(5.13) 

.P.O. 
It Is very satisfying to observe that the pole singularity of H *2* at 

$ - ir - (|»0 is exactly the pole singularity at the reflection boundary 

off surface A of the diffraction coefficient D , in (5.5b); and the 

P 0 pole singularity of H '^ at $ - 2ir - (Ji- is exactly the pole singularity 

at the reflection boundary off surface B of the diffraction coefficient 

D., in (5.5b) (see Figure 5.5b). These pole singularities are also 

listed in Table 5.1. The pole singularity of IT^' at ♦ • ir + ^ 

P 0 
cancels the pole singularity of H '»'at ^ ■ ir + fy. exactly. It is 

also interesting to note that the direction ^ - ir + ^. is inside 

wedge 2. 

Finally, referring to Figure 5.6a and proceeding as before, one 

obtains 

i- 
ikp    h 

HP.O.  ,,ik
e..    *   - HzB3 /Birkp 

2 cos 6 e 
-ikacos^Q-ikacos*    ib (ksin^+ksincj)) 

i(k sin «^o + k sin ♦) 

(5.14) 

. , 
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PtO. The singular behavior of H '_' Is studied similarly and the result Is 

shown below. 

P.O. 
zB3 

^< 

■* -( 

-lkacos4>0+lkbsin(|i0    Ikp 

-I e 
/Zrrlt 

-Ikacos/ S+ikbsln/ 

I2 211-*, l^oj 

* -< 
l2ir - *, 

(5.15) 

Once again, by referring to Figure 5.6b and (5.5c), one can verify that 

P.O. 
these pole singularities In H '-' are Indeed those at the shadow and 

reflection boundaries of the diffraction coefficient D. _. 
nj 

To recapitulate, the pole singularities contained In the diffraction 

coefficient at the shadow and reflection boundaries correspond exactly 

to the pole singularities contained In the physical optics currents 

with infinite supports. This demonstration explains why we have sub- 

tracted out the pole singularities in the diffraction coefficient before 

we applied it to compute the diffracted far field. The main reason 

is that we are applying these diffraction coefficients to construct the 

far field diffracted by a finite two-dimensional scatterer where there 

is, in fact, lack of all these physical optics currents with infinite 

supports which would have existed on the illuminated surfaces of the 

semi-infinite wedge in the canonical problem used to identify these 

wedge diffraction coefficients. After these pole singularities have 

been subtracted from the diffraction coefficients, the resulting expres- 

sions for the diffraction coefficients can be used directly in the 
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construction of the diffracted far field. This procedure has been shown 

explicitly In (5.5a), (5.5b), and (5.5c). 

The superposition of H ,, H 9, and H _, as done In the manner 

Indicated by (5.4), gives the diffracted far field from the rectangular 

cylinder. The far-field pattern computed by using «Ju - -^a ■ b ■ IX, 

In (5.4) Is depicted In Figure 5.7. This plot shows that there are 

no sporadic variations near the shadow aud reflection boundaries at 

225°, 135°, and 315°. This pattern has already been In very good 

agreement with that obtained by using the moment method, as shown In 

Figure 5.11. By good agreement, we mean that all the locations of 

the peaks and nulls are close to the right positions and the levels are 

more or less on the right track. Except for the obvious discontinuities 

In the pattern at the angles of 0°, 90°, 180°, and 270°, which cor- 

respond to the directions In which the four surfaces of the rectangular 

cylinder are oriented. It Is really remarkable how good a far-field 

pattern a zeroth-order GTD solution can give! A simple physical In- 

terpretation for the existence of these discontinuities can be found; 

and their elimination Is discussed In the following sections. 

Before closing this section, It Is noteworthy that due to the 

complete symmetry of the rectangular cylinder, the pole singularities In 

the wedge diffraction coefficients need not be subtracted out explicitly 

as done In (5.5a), (5.5b), and (5.5c) before we use them to compute 

the far field. In other words, the wedge diffraction coefficient as 

given In Its original form shown In (5.3) could have been used directly 

to compute the far-field pattern; and Indeed this Is done and the result 

is plotted In Figure 5.8. It Is Identical to Figure 5.7. The automatic 
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90e 

I80c 

Figure 5.7. 

270c 

Diffracted far-field pattern of the rectangular 
cylinder obtained by using  (5.4);  ^Q = "M, a ■ b IX. 

■'.' ■ 
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90e 

I80c 

270' 

Figure 5.8.    GTD diffracted far-field pattern of the rectangular 
cylinder;  (ta ■ ir/A,  a ■ b - IX. 

- 
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pole cancellations happened In this completely symmetric case are 

shown schematically in Figure 5.3 where pole singularities at shadow or 

reflection boundaries indicated by like arrow pairs annihilate each 

other. That this is indeed the case can be verified by checking (5.5a), 

(5.5b), and (5.5c) for the pole singularities enclosed in the square 

brackets as well as paying attention to the phase factor outside the 

square brackets. While it is admittedly a happy coincidence that the 

Keller's diffraction coefficients can be used directly in the rectangular 

cylinder problem, in more general cases the procedure of subtracting 

pole singularities explicitly from the diffraction coefficient, as 

done in (5.5a), (5.5b), and (5.5c), should be followed in order to get 

meaningful results near the shadow and the reflection boundaries. 

5.2.3 Discontinuities in the far-field pattern at (|) ■ 0, -x , IT, and -r 

In the previous sections the problem of diffraction by a rectangular 

cylinder was solved by using Keller's wedge diffraction coefficients 

minus the pole singularities in constructing the diffracted far field. 

Although the far-field pattern varies smoothly and remains finite across 

the shadow and reflection boundaries, there are noticeable discontinuities 

7T 37T 
in the pattern at (J) » 0, -r, IT, and -r-« These directions are those in 

which the surfaces of the rectangular cylinder are oriented.  In the 

next section, a physical interpretation of the existence of these dis- 

continuities is given.  Before doing that, these discontinuities are 

studied and the results are displayed in full detail in this section. 

Let us refer to (5.4). The discontinuity in the far field at 

(|) - 0 is 

3ir 

.■   ' .    ■        .   . 
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(5.16a) 

2 

2 0/J 

Hd|*w-3ir-2M   +Hd Mw • ! + (2ir - 2Tr)\ 
(5.16b) 

- H d  / Tw 
zl 

*0w " *0i 

(5.16c) 

-ik(-acos(t)0+b8in({»0)    ikp 

>! 
2    .    2*    ika 
■r sin -r— e 

cos -r cos —=- 

2 .    2T\    ika 
3 8ln T e 

2Tr /2 ,   v 
cos -s- " coafe <t)0) 

(5.16d) 

i^- 14    ikp e      e -ik(-acos((>0+bsin*0) (2)(-|8injL)  eika 

5 2^       r~ 
cos y- - cos -j <J>0 

(5.16e) 

Following the same lines,  the discontinuity in the far field at 

if J ♦ - "2 is 

<<♦ - i -) - Hj(t ■ f +) (5.17a) 
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(J.   - 0 

''Ow" 2" *0, 

74 

(5.17b) 

i- \    ikp e      e  ^ -ik(aco8(|i0-bsin(J)0)   (2) (-r sin Y-)  e 

2IT 2,TI       v v 
cos -r- - cos  ~(-r -  (|)n) 3V2 

(5.17c) 

In the above equation, 

HJU - 4 -) - lira H^(4> T - e) (5.18a) 

and 

H>.1+) lim Hd((|) « -I + e) 
e-K) 

(5.18b) 

where e > 0 is any small positive real number.    Similarly,  the dis- 

continuity in the far-field pattern at ()> ■ ir is 

Hd((t. « ir -)  - Hd(<() = TT +) z z (5.19a) 

H d  |    w 
z2 - H 

*02 " ^ ~  *0i 
z3 

Tw      2 

*0w" 2 " ♦o- 

(5.19b) 

-ik(acos(|i0+bsln<|)0) eikp        ika 

Tp 
■   e 

i 2    ,     2Tr 

38ln T 
2 .     2 3 sin 3 TT 

-| 

"ZW 2Tr cos -z COS !(.. L s
+          2IT               2. 

(|)0)      cos Y" - cos  3(IT • ■ VJ 

-ik(acos(|)0-b8ln(|)0) eikp        „ 
- e A-    • e 

MMMitl WMM«<* 
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f         2    .    2                                    2.2 j          -z sin -r ir                                -r sin -r TT 

.      (5.19c) 
[cos Y - cos -jdr + *0)      cos y1 - cos "I^TT • ■vj 

Sir Finally,  the discontinuity in the far-field pattern at ^ ■ y- is 

H^U - fL -) - H^(* - fL +) (5.20a) 

3ir, 

Hol-Ü'Sow--^ (5.20b) 

-ik(-acos(|>0+bsin(t)0)      eikp        ikb 
e • —=- •  e 

4 
e 

2    ,    2ir •» sin -r— 

2IT 2,311 
cos •« cos "ÖVÖ"" 

2 ,    2Tr 3 sin 3- 
.   x 2TI 2/311  ,   ,   v (|)0) COS 3- -   COS 3(y- +   <j)0)^ 

-ik(acos(|)0+bsin(j.0)  eikp        ikb 
-e —,      , e 

1        2    ,    2ir                                      2    .    2ir 
38inr                      .              38in3" 

!         2ir              Zfif  .    . \              2ir              2/Sir [cos 3 COS -JCJ + <|)Q)       cos y- - COS 3(3  vj (5.20c) 

To summarize, the discontinuities in the far field at 41 = 0, 

IT       3ir 
-T, ir, and Y~ have been studied In full detail and the results documented 

in this section. The fact that the GTD solution of the far field con- 

tains discontinuities is well-known. In the next section, the cause 

of the existence of these discontinuities is investigated and a simple 

physical interpretation is given which, in turn, provides a clue to 

their elimination. 

.. ■  ■ 
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5.2.4 Physical Interpretation of the existence of the dlscontl- 

nultles In the far-field pattern at (|) ■ 0, -r, ir, and 4- 

In the last section, the discontinuities In the far field at 

♦ " 0, •«, IT, and 4~ have been studied and documented. The fact that 

the GTD solution of the far field contains discontinuities Is well- 

known. The cause of the existence of these discontinuities is investi- 

gated and a simple physical interpretation is given which, in turn, 

provides a clue to their elimination. 

Note that in (5.A), the far field Hz is constructed by using 

H .., H 2> and H », each of which has its own angular domain of defini- 

tion. More explicitly, H , is defined on the angular range 0 <_ (j) <_-r— 

(see Figure 5.9a); outside of this angular range, H - is simply assumed 

to be zero. Likewise, H 2 is defined on 0 £ ()> ^ ir and y- ± ^ ± 2tt 

(see Figure 5.9b); and H-isonO^^^-r and v <_ $ <_ 2v  (see Figure 

5.9c). It would have been a valid assumption in the canonical problem 

since fields would have existed only in the exterior region of the wedge. 

In the rectangular cylinder problem, it should be realized that the 

fields do not terminate abruptly at the geometrical planes represented 

by dashed lines in Figures 5.9a, 5.9b, and 5.9c. These dashed planes would 

have been occupied by the semi-infinite wedge surfaces in the canonical prob- 

lems. Physically, the fields should be continuous across these dashed planes 

in space. Therefore, in constructing the far field as shown in (5.4), 

we have effectively created a discontinuity at each of these dashed 

planes. The presence of these discontinuities Is solely artificial 

because they are created by our abrupt truncation of the fields to 

the regions In space corresponding to the exterior regions of the wedges 
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SURFACE   A 

SURFACE   D 

^ = 0 

Figure 5.9a. J „,, J .- contribute to the discontinuities in the e yDl*  xAl      _ 
far field at (j» - "r-» <)) ■ 0, respectively. 
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\J 

xA2 

*8*,.a" 

Hzz 'y 

O A 
i3 

-a 

-a 

z//y ^-SURFACE   B 

SURFACE  A 

-b     -b 

Figure 5.9b. J «o» J^o contribute t0 the discontinuities in the 

far field at (j) - ■»-, <ti " n, respectively. 
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<t> = ir/2 

SURFACE  B 

SURFACE   C 

Figure 5.9c. J^y  «I B3 contribute to the discontinuities in the 

far field at ()) - IT, $ - -r, respectively. 

■ 
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used In the canonical problems. Now that the cause of the existence of 

the discontinuities In the far-field pattern at ^ ■ 0, ^, IT, and ■*- 

has been found, we proceed to give them a physical Interpretation which 

In turn provides a clue to their elimination. 

In the following discussion, a typical case Is studied and the 

solution to this case Is derived in a step-by-step fashion.  While 

the results of other cases will be exhibited, their derivations are 

left to the Interested reader. 

The typical case as shown In Figure 5.9a Is studied.  Let us con- 

centrate on the extension of surface A. This extension Is represented 

by a dashed line from x«atox»"»aty = bln the direction 4) ■ 0. 

On one side of this plane, there exists H . as shown In Figure 5.9a, 
Z X 

on the other side there Is  zero field.    By classical electromagnetic 

theory, we conclude that there Is an electric surface current density 

existing In the dashed plane.    Such a current radiates In free space 

to support this discontinuity In the H-fleld.    In compact mathematical 

language, we write 

^ 
-       ::d n x H. 

A A 

y x zH zl 

*H 

SU 

zl 

d 
xAl 

(5.21) 

where ft Is the unit normal vector to the surface A, the subscript A 

refers to the extension of surface A, the subscript 1 designates the 
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wedge under consideration,   the superscript d means diffraction, and the 

rest should be self-explanatory.    Note that a factor of 2 Is not present 

In (5.21) because this J   ...   Is simply the discontinuity In free space 

of the H-fleld and there Is no backing of perfect conductor In this 

situation. 

Referring to (5.5a)  and keeping In mind that the original dif- 

fraction coefficient is perfectly valid In the direction ^ ■ 0, which 

Implies that the procedure of subtracting the pole singularities need 

not concern us here, we can write 

4i ■ Hzi(* ■ 0> 

f^* - 0) 
ikp 

<5(y - b)   ,       pax e(a,») (5.22a) 

where 

t^t - 0) - e 
■Ikf-acosta+bslnfyj) 

"2 , 2v    Ika 
3 sln T e 

2IT      2 A cos ■» cos -z $Q 

2 .  2ir j -z sin ■»- e 
2ir -x  cos 

ika   "| 

cos Y" 3*oJ 
(5.22b) 

Note that in the above equation, an approximation of p by x has been 

made and a constant value zero for the variable $ has been assumed. 

The far-field expression as given in (5.5a) can be legitimately used 

to compute the H-field on the dashed plane because any observation 

points in that plane will be at least at a distance of 2a - 2A away 

from the edge of wedge 1. 

- ;   ,    .•:..•.  ,  ' ,■:• :., ,  •             . 

 , 



mtmmmmmmmmmm 

82 

The H-f ield generated by J^ is 

jjdEx 
HA1 

ikp    "-A . 
(5.23) 

where the superscript Ex stands for "excess" to remind the reader that 

this field has been created artificially by abruptly truncating the 

diffracted fields, therefore, It should not have existed; hence, the 

word "excess." J"^ In (5.23) Is given by 

^ — ^xAl } 

oc 00 Ikx 
■ f^* - 0) / 

—00 
/ 

a 

e 
6(y - b) 

■ f^ - 0) e Ißb 
00 

/ * 
a 

lx(k- a) 
 1-.r 

^ 
ax 

-lax -Ißy , , t e  ' dxdy 

(5.24) 

By letting x(k - a) ■ -r t , the Integral with respect to x can 

be transformed Into an Integral with respect to t which may be Identi- 

fied with the well-tabulated Fresnel Integrals, I.e., 

» Ix(k-a) 

/ J-7f—*• a 

sin   r 
7r^ 720^=0) 

e *      dt (5.25a) 

, . 
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2 
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(5.25b) 

e 
TT -|c(y^ (1 - cos *)) + is\ß& (1 - cos 4.)j\ 

(5.25c) 

In writing  (5.25), we have explicitly used the relation a = k cos 4» 

and the definitions of the Fresnel integrals,  i.e.. 

C(0  - /    cos (ft2)  dt (5.26a) 

0 
SO-) - /' 8in(-|t2) dt (5.26b) 

A knowledgeable reader could raise a question here concerning the 

validity of the upper limit of the integral in (5.25a). However, one 

need not be concerned with limits at this point of the derivation; in- 

stead, one should merely view this as a formal transformation so that the 

original integral can be manipulated into a form in which the limit 

can be readily studied. The validity of this transformation will also 

be substantiated by numerical computations in the next section. 

Substituting (5.25c) in (5.24) and the resulting expression for 

xAl ^ac*t into (5.23), we have 

M ;i^ 
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n^Ex   <v e
lkp e1* HAI - -lk 7m -2|-sin ^f.O - 0) e 

e 

-IkbsliKt) 

-{<(/? (1 - COS (Jl) 

where f^ - 0) is given in (5.22b). 

Now we have the expression for the field generated by J ., as shown 

in (5.27). The next step is to examine the discontinuity introduced 

at (j) ■ 0 by HA1 .  To this end, all we need to pay attention to is 

the following limit: 

lim 
2 sin -J cos ■* 

, /0 \/2"sin 1 2 
{4). (5.28) 

Using (5.28) and (5.27), the discontinuity introduced at 

H.,  is found to be Al 

0 by 

fiAlX(* " 0) - fiflX(* ' 21T) 

» -ik 

i-^ ikp x4 e   e 
TSvGp -2-[^- (-/2)] f^* - 0) «yp  -Tjl 

i- 4 ikp 
Ä e ^. eJ 

2    2^  ika 
-ik(-aco8(t)0+bsin4)0) (2) (^ sin ^e1 a 

2Tr     2 . cos -r cos -T (j). 
(5.29) 



85 

It is Indeed enlightening to see that this discontinuity Is exactly 

the discontinuity given In (5.16e). The study of the typical case 

Is now completed. For the cases depicted In Figures 5.9a, 5.9b, and 

5.9c, we simply list the results as follows: 

The H-fleld generated by J . In Figure 5.9a Is 

qdEx 
^l 

-Ik 

1- 
Ikp 14 

e   e 
/Hirkp 

* •   c  /J.      3Trv  Ikacot -2 cos $  t. (♦ ■ y) e 

e 
TT -{c {j&kl + .in ♦)) + is(j»d + Si» «j 

(5.30a) 

where 

fj^C* --f") - e 
-lk(-acos*0+b8ln*0)   ikb 

• e 

..lf 

* 7^ 
2 , Zir 
3 8in 3" 

2 , 2Tr 
38ln3" 

2Tr              2.317       .  v               2ir 2,311  .    .   N cos -^ cos •jC^ $0)      cos -^ cos -jty- + $0) 

(5.30b) 

The H-fleld generated by J .2 In Figure 5.9b Is 

1- 

HdEx  -  -<k  e e 
HA2 ik    ^Sirlcp 

-2|-sln ((> f2((|) ■ ir) e -lkbsln<t> 

VkVl + cos i 
e 
TT "f (V^1"1" C08 ♦Ü + "(T^- + cos *))} 

(5.31a) 
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where 

-ik(acos(|>0+b8in(j)0)        ika 

f2U - if) - e • e 

ß r 2     .     27r 
38in- 

2     .     2 •s sin -rir 
- 

/Tnt cos 2TT               2, •^ cos -^(TT -v cos 2TT               2, 
■Z COS   -^(TT -V 

.(5.31b) 

The H-fleld generated by J B2 in Figure 5.9b is 

if 
HB2    " -ik    v^Birkp 

a x e  a.      3ir\    -ikacos* -z cos f f2((t) «= -r-)  e 

i? 

L       ^ JJ 
(1 + sin ♦) 

(5.32a) 

where 

-ik(acos*0+bsin*0)        ^        e 

f2u - ^ -) » -e                                      •  e        • 

r          2,2 T sin -TIT 

^cos |2. _ C08 lio,, . il)-^ - (|)o)] 

+ 
2    ,    2IT 

38in3~ 

cos |2- - cos ■|[(31T - |^)+(ir - <t.0)]_ 

(5.32b) 

The H-field generated by J B3 in Figure 5.9c is 

. i 
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5dEx        ..   e        e 
H

B3 ■ -ik 7m 

e -{c(^a-.m«) + is( j^a - .i. «I (5.33a) 

where 

i^ 

£3(4 -) 2-' 

-lk(aco8(j>0-bsin(t>0)        lkb      e 4 

' e        '75^ 

2    J    2 •T sin -rir 2    .    2ir 
38inT 

2ir              2^      .  .              2-n 2,v       .  s cos -^ cos -JOJ - (IIQ)       COS -^ cos -JCJ -  <|>Q) 
(5.33b) 

The H-field generated by J __ in Figure 5.9c is 

l4 
Hn? - -^ ejfl.e 

C3 /Birkp 
Ä     ,     ,  r  /^        \    ikbsin^i Jlri  i sin ♦ t3U - IT) e •  ^1 4. -i I 

Of 
e 

-fc(7~t(l+ cos J))   + 18(^(1 + cos *))j 

where 

1^ 

fjU ir) ■ -e 
-ik(acos(|)0-bsM0)        lka 4 

* e        * 7CT 

2    .     2ir ■r sin Y" 

3(n + ♦Q) 
2Tr 2. cos -r cos -H 

2    .    2Tr •x sin -r- 
+          2ir 2 

cos -x cos •» •I(27r - O 

(5.34a) 

(5.34b) 
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To examine the discontinuity Introduced at 4) - T by H _ , we use 

(5.33) to obtain 

HB3  (*-2-)-
HB3 (»-2+) "-lk TSSSt 

/27 4 
-z{(/l + sln|)-(-/l + sin |)) • f3(* - f) ' TT * TT 

li Ikp \ 
e K e 

-Ik(aco84)0-b8ln4>0) (2) (r sin-j-) e 

lit 2,11      .v 
cos -s cos -jty - 4,Q} 

.(5.35) 

Again, this discontinuity Is Identical to that given In (5.17c). 

~dEx    —dEx 
To examine the discontinuity at <|> - ir, we use both H. „ and H, A2 *C3 

given by   (5.31)  and (5.34), respectively,  since both J^o an^ ^ r3 con~ 

tribute to the discontinuity.    Hence,  the discontinuity at $ ^ n is 

^ » 
7r")  " "ff  (* " ir+) '4f c* IT-)   - 

qdEx 
HC3 (« - ir+) 

-Ik 

1- ikp    \ e _     e 
TRfES 2{(/2 sin |)-(-^2 sin |)}  f2(* 

'f 
N     \/2T\      e 

ikp      4 
..   e _     e 
1K    /5?Icp 2{(/2 sin ^-(-/I sin-I)} f3( 

ikp    14 e  ^ e 
Akp 

1 -lk(acos(J)0+bsln(|)0)      ika 
i -fi '  e •  e 

^ v     v^ü      e 

2  • 

2 .    2Tr 3 sln^ 

2T\ 2, v N cos 3 cos -jdr - (j)0) 

,; . ■ . .   ■. .     .   ■    . 
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r  * e 
2 75- • (-1) • 

-ikCacos^Q-bsin^Q)    ^^ 

2    .     2ir 
3slnr 

2    .    2TT 
38in3- 

cos f -  cos |(it + ^Q) cos |L - cos |(2ir 

(5.36) 

which is identical to the discontinuity in (5.19c) 

Finally,  to examine the discontinuity at ()) - ip due to both J~ ^^ 

and JyB2, we use H^x and H^* given in (5.30)  and  (5.32), respectively, 

to get 

13)1    CT ")  " ^l     C2    ^ +|HB2    C2      '      HB2     Kl   +;J 

i- 
eikp e 4 

<% 

-*{(-^) - (/2)} • f^* - y1) ' TT ' TT 

- ik 

il- 
& e 7 

v'Birkp 

c 
-£{(-/2) - (v^)} • f2(^|L) -^'TT 

eikp 
il 4        -ik(-acos(l)0+b8in*0)    ikb 

TT* 

2    ,     2TI jsiny- 
2    .    2ir 
38lnr 

2ir      ^a 2r3iL cos ■= cos —1.0 3V2 
.)    .cod f - cos |(f + ♦„) 

^ •   (-1)   ' e 

-ik(aco84)0+bsin(t>0)    ikb 

• 



90 

2    .    2Tr 
3sinr 

cos -~ COS l(f + *0) 

2    ,     2TT 

lBinT 
2-n 2,51 cos -r cos -rCy 2,5u _ 

*0) 

(5.37) 

which is identical to the discontinuity in (5.20c). 

Before closing this section, it is worthwhile to recapitulate 

the main points discussed. The discontinuities at $ ■■ 0, -j, it, and 

•a— in the far-field pattern obtained by the GTD technique have been 

shown to be caused by the abrupt truncation of the diffracted field which 

is effectively equivalent to artificially introducing sheets of elec- 

tric surface current in free space. When these current sheets radiate 

strongly in the directions (J) ■ 0, -r, IT, and Y"» they produce discon- 

tinuities corresponding exactly to those in the GTD far-field pattern. 

This discovery provides us a clue to further improve the GTD far-field 

pattern. One simply subtracts out all these artificially created 

"excess" fields from the GTD far-field pattern to get rid of these 

discontinuities. The improved GTD far-field pattern is discussed in 

the next sect ■'on along with some comparisons with the conventional 

moment method solution and results obtained by a GTD-moment method 

hybrid technique [4 ] and a self-consistent method [24]. 

5.3 Improved Far-Field Pattern and Comparison with Results Obtained 
by Other Approaches 

In the last section, Keller's wedge diffraction coefficient was 

used to construct the far field scattered by a rectangular cylinder. 

It was shown that when the pole singularities contained in the physical 

optics current with infinite support on the semi-infinite wedge surface 
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were subtracted from the wedge diffraction coefficient, the far field 

remained finite and varied smoothly across the geometrical optics 

shadow and reflection boundaries. Other ct.an the noticeable discontinuities 

In the directions In which the surfaces of the rectangular cylinder are 

oriented, that far-field pattern was In fair agreement with the con- 

ventional moment method solution. 

Then It was found that these discontinuities were caused by abrupt 

truncations of the diffracted field to the regions In space which cor- 

respond to fhe exterior regions In the wedge canonical problems. These 

abrupt truncations were demonstrated to be effectively equivalent to 

artificial Introductions of semi-infinite electric surface current 

sheets in free space. An In-depth study of these current sheets con- 

sequently showed that they radiated strongly and Introduced Identical 

discontinuities In those directions corresponding to the discontinuities 

In the GTD far field. This discovery provides a clue which leads to 

further improvement of the GTD far-field pattern. 

The elimination of these discontinuities can be achieved by sub- 

...  ndEx ndEx ndEx r,dEx    sdEx   , rdEx   .    .,  /c O-JN  /C on\ 
tracting HA1 , H^ , HA2 , HB2 , HB3 , and Hc3 , given in (5.27), (5.30), 

(5.31), (5.32), (5.33), and (5.34), correspondingly, from the GTD Hd 
z 

given in (5.4). The improved GTD far-field pattern so obtained is 

displayed in Figure 5.10.  It is very interesting to observe that not 

TT       37r 
only the discontinuities at $ = 0, -z,  IT, and y- disappear completely, 

but also that nulls, which were not present in the GTD far-field pattern 

in Figure 5.7, are showing up In the neighborhood of (j) ■ ir and 

3IT 
4) > -r-. The disappearance of the discontinuities Is to be expected since 

these discontinuities have been examined carefully in the last section 

.... ■        .      . .   .  ■ . 
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Figure 5.10.     Improved scattered far-field pattern of the rectangular 
cylinder;   $0 - TT/4,  a b = IX. 
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(see (5.29), (5.35), (5.36), and (5.37)) and were shown to be identical 

to those In the GTD far-field pattern In Figure 5.7. 

Finally, results obtained by using (a) conventional moment method [17] 

with 32 unknowns, (b) hybrid moment method and GTD technique by 

Bumslde et al.   [4 ] with 24 unknowns, and (c) self-cons Latent method [24] 

with 8 unknowns are exhibited in Figure 5.11. If one pays attention 

to the insertion in Figure 5.11 showing the geometry of their problem, 

one will realize that their Incident field is from a direction exactly 

opposite to the one used in this study, hence, their far-field pattern 

is opposite to that in Figure 5.10. Note that in Figure 5.11, the solu- 

tion obtained by the self-consistent method, which apparently includes 

all  higher-order multiple-edge interactions in its formulation, still has 

the discontinuities at 41 - 0, 90°, 180°, and 270°. While the conventional 

moment method solution and the moment method-GTD hybrid solution deviate 

only slightly in the backscattering direction, the present method solu- 

tion as shown in Figure 5.10 is in good agreement with them. 

... ■      ,.. 
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Figure 5.11. Scattered far-field patterns obtained 
by other approaches. 
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5.4 Accuracy Check 

In the previous sections, a method has been discussed for obtaining 

an Improved scattered far-field pattern of a perfectly conducting rec- 

tangular cylinder Illuminated by a plane wave whose magnetic Intensity 

vector Is parallel to the axis of the cylinder. The resulting Improved 

scattered far-field pattern has been compared with results obtained by 

other approaches In the literature. In particular, results obtained by 

using (a) conventional moment method [17] with 32 unknowns; (b) hybrid 

moment method and GTD technique by Burnslde et at.   [4] with 24 unknowns, 

and (c) self-consistent method [24] with 8 unknowns have been used for 

comparisons. 

Out of these three different approaches, only the conventional 

moment method has aonsietently  taken Into account In Its formulation 

the boundary condition, requiring the tangential components of the total 

electric field be vanished on the surface of the rectangular cylinder. 

In Burnslde's hybrid moment method and GTD technique, the boundary con- 

dition Is not enforced on the entire surface of the scattering object, 

as In the case of the conventional moment method. Instead, point matching 

Is applied at the midpoint of each of the pulse current segments located 

near the diffracting edges of the wedges of the rectangular cylinder, 

and at some arbitrary points In the GTD regions of the surface of the 

rectangular cylinder In order to obtain an equal number of equations as 

the Involved unknowns Including the current samples and the diffraction 

constants. The final result Is somewhat dependent on the locations of 

the arbitrarily chosen additional matching points In the GTD region on 

the surface of the scatterer. Therefore, It takes a Judicious choice 
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of the locations of the aforementioned matching points and quite often, In 

such a situation, more matching points than unknowns are needed such 

that some averaging schemes can be applied to obtain meaningful results. 

In the self-consistent method, no considerations are given to the satis- 

faction of the boundary condition. 

Although the comparisons of the scattered far-field pattern with 

those obtained by the aforementioned methods are very favorable. Indicating 

the solutions are In good agreement with the true solution, an Independent 

accuracy check must be applied to further validate the approximate solu- 

tion, especially when there are no available results In the literature 

to compared with. Such an accuracy check Is often needed but Is not 

readily available In the high-frequency asymptotic techniques. 

In this section, we present a method which allows us to calculate 

the tangential components of the scattered electric field on the surface 

of the scatterer using the approximate scattered far-field pattern. The 

accuracy of the solution can then be checked simply by observing whether 

these tangential components of the scattered electric field on the sur- 

face of the scatterer are equal to the negative of the tangential components 

of the Incident electric field on the surface of the scatterer.  If the 

outcome of such an observation Is favorable, then the solution Is good; 

otherwise, further Improvement Is needed. 

5.4.1 Method of computation 

In classical electromagnetic theory. It Is well-known that the 

scattered magnetic far field Is related to the Fourier transform of 

the scattered electric field on an aperture In a relatively simple manner. 

Consider the aperture shown In Figure 5.12. This aperture Is a plane 
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Figure 5.12. Scattered far-field pattern In the hemisphere Is 
used to obtain the scattered E-fleld on the aperture. 
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at y = b, containing the surface of the rectangular cylinder as its 

central portion. The scattered far-field pattern enclosed in the hemi- 

sphere corresponding to this aperture as shown in Figure 5.12 is used 

to compute the Fourier transform of the scattered electric field on the 

aperture. In particular, for the H-wave case considered in this chapter, 

the Fourier transform of the tangential component of the scattered elec- 

tric aperture field can be written as 

^W 

20 
ik 2g(p) 

TH(<|.) exp(-ikb sin (J)) (5.38) 

where 

g(p) 

ikp+ij 

•8Trkp 

Z. is the free space characteristic impedance 

T ((J)) is that portion of the scattered magnetic far field pattern 

enclosed in the proper hemisphere corresponding to the aperture 

under consideration, and 

p and (j) are the polar coordinates. 

The phase factor in (5.38) is to assure that the aperture at y = b, but 

not at y = 0, is under consideration.  The tangential scattered electric 

aperture field in the space domain can be obtained readily by an Inverse 

Fourier transform, viz.. 

E^Ap(x,y - b) - F'
1[E^p((|.(a))]  . (5.39) 

1.v„:^^:,^;-1,;.i--i.il-..A:.^M.-..,  ■■  J;;;.;-^V.^V:.^;'..h-^V.^^ ,.^\.^^,-...^Ui: ■ :< -s:: .^.-k-.u.^y.-/ ■.^-■....;:........ .. .     ^'.^L^^J^^a^x^^-^L^^Ji 
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The tangential scattered electric aperture field In (5.39) Is truncated 

to the surface of the scatterer, I.e., x e [-a,a] and an observation can 

be made to Judge whether the tangential scattered electrical field on 

the surface of the rectangular cylinder Is Indeed equal to the tangential 

Incident electric field. 

The hemisphere shown In Figure 5.12 Is for the aperture at y > b. 

Similar hemispheres and apertures corresponding to the other surfaces 

of the rectangular cylinder can be established and the tangential com- 

ponents of the scattered electric field on these surfaces can be com- 

puted In a similar fashion. 

5.4.2 Results and conments 

In the previous sections, an Improved scattered magnetic far-field 

pattern has been obtained (see Figure 5.10). The accuracy of that pattern 

can be verified by computing the tangential component of the scattered 

electric field on the surface of the rectangular cylinder using the 

method outlined In Subsection 5.4.1. The resulting tangential component 

of the scattered electric field on the surface: x e [-a,a], y ■ b, Is 

shown In Figures 5.13a and 5.13b. These curves were obtained by using that 

portion of the improved pattern (Figure 5.10) enclosed in the hemisphere 

schematically indicated in Figure 5.12, and by using the one-dimensional 

FFT for the inverse Fourier transform operation. 

The magnitude of the tangential scattered E-fleld shown in Figure 

5.13a oscillates around the constant value 266.58, which is the magnitude 

of the tangential component of the incident E-fleld. More precisely, 

for normalized H-wave incidence, |H | * 1,|E | « 377, and the Incident 

angle (fu > 45 , therefore, the magnitude of the tangential component of 
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Figure 5.13a.    Magnitude of the scattered E-field on the aperture 
shown in Figure 5.12,   truncated to the surface of 
the rectangular cylinder. 
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Figure 5.13b. Phase of the scattered E-field on the aperture shown 
In Figure 5.12,  truncated to the surface of the 
rectangular cylinder. 
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the Incident E-fleld Is |E COS 45°| - 266.58. The phase of the tangential 

scattered E-field shown In Figure 5.13b Is varying linearly across the 

surface of the rectangular cylinder and can be readily verified to be of 

a phase difference of IT or 180 from the phase of the tangential Incident 

E-fleld on the surface. Similar behaviors of the tangential scattered 

E-fleld on other surfaces of the rectangular cylinder can be obtained 

and are not repeated here. These observations confirm that the Improved 

far-field pattern obtained in the last section Is Indeed a very good 

approximation to the true scattered field.  Of course, the comparisons 

with results obtained by other approaches as done In the previous section 

not only further validate the approximate solution, but also demonstrate 

the effectiveness of the accuracy checking method developed in this 

section. 

5.5 Summary 

In this chapter,  the scattered far-field pattern of a perfectly 

conducting rectangular cylinder illuminated by a plane H-wave has been 

obtained by a zeroth-order GTD approximation and the result Improved by 

a straightforwardly physical interpretation    of the existence of the 

discontinuities in the zeroth-order GTD far-field pattern. 

The Improved scattered far-field pattern has been compared with 

results obtained by other different approaches and the similarities and 

differences between these results have been discussed.    Generally speaking 

the Improved pattern obtained by the present approach is in good agreement 

with the conventional moment-method solution with 32 unknowns. 

An accuracy checking method has also been presented so that an in- 

dependent check on the satisfaction of the boundary condition on the 

  . ... ... .   
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surface of the rectangular cylinder can be performed. The results of 

such an accuracy check are quite favorable, which demonstrates that the 

Improved far-field pattern obtained by the present approach Is Indeed a 

close approximation to the true solution. The merit of such an Inde- 

pendent accuracy checking scheme Is that the approximate solution ob- 

tained can be validated without making comparisons with other methods. 

This accuracy check Is much desired especially when there are new re- 

sults obtained and no available Information In the literature that can 

be trustworthy to compare with. 

: 
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6.    A SYNTHETIC-APERTURE-DISTRIBUTION APPROACH TO 
THE HIGH-FREQUENCY ELECTROMAGNETIC SCATTERING 

OF OBSTACLES WITH CONVEXLY CURVED SURFACE 

6.1    Introduction 

In the previous chapters, we have discussed new approaches for 

solving the high-frequency electromagnetic scattering problems Involving 

obstacles with planar surfaces and sharp edges.    For all of these problems, 

the zeroth-order approximation to the scattered far-field can be con- 

structed from Keller's wedge-dlffraction coefficient  (including the 

edge-diffraction coefficient as a special case)  in a relatively simple 

manner.    The Improvement of the zeroth-order solution can be achieved 

in a systematic way,   as demonstrated in the previous  chapters, where 

the infinite perfectly conducting thin strip,  the  finite perfectly con- 

ducting rectangular thin plate,  and the perfectly conducting rectangular 

cylinder have been used as  illustrative examples. 

In reality,  most of the scattering objects possess a smoothly 

curved surface Instead of planar facets and sharp edges.    A circular 

perfectly conducting cylinder is the simplest geometry of this  category 

of smooth-surfaced obstacles.    The scattering by a circular cylinder is 

among the few electromagnetic scattering problems that can be solved 

by the method of separation of variables in partial differential equa- 

tions.    From a mathematician's point of view,  the scattering by a cir- 

cular cylinder is solved when the scattered field is expressed in terms 

of an infinite series of eigenfunction expansion involving transcendental 

functions.    However,   such an eigenfunction solution usually converges 

slowly and many terms in the Infinite series expansion must be included 

before a "settled-down" solution can be obtained.    For high-frequency 

■.:,■;■. :.:■.:-■:,>- ■-■A.:^'■■■'■■-■■■'-'■ ■ 
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scattering, the obstacle is normally large in terms of wavelengths. 

When it comes to  numerical computations, such an eigenfunction expansion 

is no more than a mathematical elegance but is totally useless in 

practicality. 

For many decades, scientific-minded people have stared at this 

exact solution which is expressed in such an elegant manner and yet so 

formidable to get numerical results out of it. Before the advent of 

the latest generation of large computer systems, many of the former 

graduate students have spent a good deal of their time working on re- 

search projects involving numerical evaluations of the exact solutions 

with the aid of desk calculators. The introduction of the first large 

computer system was expected to release them of these tedious calcu- 

lations. However, they soon found out that the evaluation of the exact 

eigenfunction expansion solutions on the computer was extremely time- 

consuming. Furthermore, they discovered that the problem of numerical 

instabilities would occur when increasingly higher-order terms were 

included successively in the computation. Therefore, in high-frequency 

scattering where the higher-order terms must be included in the series 

to obtain a convergent solution, the numerical evaluation of the exact 

solution is still hopeless. 

Even before their disenchantment with the large scale computer 

systems, people were so frustrated by the numerical evaluation of the 

exact solution that they started deriving asymptotic formulas for both 

high-frequency and low-frequency approximations to the exact solution. 

Most of the high-frequency asymptotic formulas may be obtained either 

directly, e.g., by the Luneburg-Kline method [25], or by asymptotic 

. .   , . 



■ 

106 

evaluations of contour-Integral representations of the exact solution. 

Saddle-point integration and the stationary-phase method are most often 

used to obtain an asymptotic series if the integral representation of 

the exact solution is the starting point of the derivation. 

For high-frequency scattering, in most of the cases, the first 

term of the asymptotic-series expansion gives an extremely good approx- 

imation to the exact solution. However, for the case in which the first 

term does not give a good approximation to the exact solution, including 

the next higher-order term in the asymptotic series may or may not be 

able to improve the approximate solution. This is a well-known property 

of the asymptotic series,because in most situations, the asymptotic 

series is a divergent instead of a convergent series. 

To date, a method for systematically Improving the asymptotic 

solution is still the most desirable. In spite of all the efforts 

that have been concentrated on this solution in the two decades since 

Keller's first conception of the diffraction coefficient approach, no 

systematic way exists to improve the high-frequency-asymptotic solution 

when necessary. Many theories, which are improved versions of the 

original Keller's geometrical theory of diffraction (GTD) [26] have been 

proposed, among these theories are the uniform theory of diffraction 

(UTD) [81, the uniform asymptotic theory (UAT) [9], and the spectral 

theory of diffraction (STD) [ICJ. Nevertheless, the computational ef- 

ficiency of these theories when applied to practical situations still 

remains to be seen. 

Two of the state-of-the-art methods for solving the high-frequency 

scattering problems involving perfectly conducting convex cylindrical 

mm. 
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structures have been presented, one has been published In the literature 

[4], while the other has been presented at the USNC/URSI 1975 annual 

meeting [5 ]. The first method uses a combination of the geometrical 

theory of diffraction and the moment method to solve a circular cylinder 

scattering problem, wherein the cylindrical surface Is divided Into 

three regions, namely, the physical optics region In the well-lllumlnated 

side, the GTD region In the deep shadow, and the pulse region In the 

transition region between the lit and the dark sides. The surface 

current Is first obtained, then the far-field can presumably (Bumside 

et at.  did not show the far-field pattern) be obtained by a numerical 

double-integration of the surface current. There are three weaknesses 

in Bumside's method: 

(1) The composite surface current computed by using different tech- 

niques in different regions on the cylindrical surface as in- 

dicated above is not smoothly connected at the boundaries of 

each region. These discontinuities are clearly shown In Figure 6.20; 

(2) The far-field pattern must be computed by a numerical double- 

integration of the surface current. Such a computation may be 

time consuming; and 

(3) Furthermore, the discontinuities at the high end in the surface 

current (see Figure 6.20) may introduce extraneous high-level side- 

lobes in the far-field pattern (see Section 6.4 for a demonstration). 

The second method used an N-sided polygon to model the circular 

cylinder. Wang and Richmond's analysis is based on the self-consistent 

geometrical theory of diffraction [24]. Two cylindrical waves with 

unknown amplitudes are assumed to travel in opposite directions 

       ,   , 
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(traverse to the axis of the cylinder) on each facet of the polygon. 

The boundary conditions for the corners are applied to set up a matrix 

equation for 2N unknowns (the amplitudes associated with the traveling 

cylindrical waves). Grout's method Is used to solve the matrix equation. 

After the amplitudes for the traveling waves have been determined, 

the far field Is obtained by the self-consistent method. There are 

three weaknesses In Wang and Richmond's method: 

(1) Sharp edges are Introduced artificially In modeling the smooth 

circular cylindrical surface by a polygonal cylinder. In other 

words, the nature of the problem has been changed substantially; 

(2) In order to accurately model an electrically large circular cylinder. 

It Is conceivable that N, the number of polygonal facets used, 

must be large; otherwise, the problem of a polygonal Instead of a 

circular cylinder Is being solved. Hence, the number of unknowns, 

2N, In the matrix equation can be large and the computation be- 

comes, again, time consuming; and 

(3) In addition, the self-consistent method, as pointed out in the 

last chapter, may not be able to get rid of the extraneous vari- 

ations in the far-field pattern In the directions coincident with 

the orientations of the Individual facets of the modeling poly- 

gonal cylinder. 

It Is also well-known in the high-frequency scattering that asymp- 

totic evaluation of the Integral representation of the scattered field 

results In an Infinite series whose terms can be Interpreted as highly 

attenuated, surface-mode, traveling-waves around the surface of the 

obstacle. The diffraction coefficients and attenuation constants In 
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the Keller's geometrical theory of diffraction for smoothly curved 

surfaces can be Identified from the terms In the series. Such traveling 

waves propagate around the obstacle at a slightly slower speed than 

that of light In free space, and continuously shed energy In directions 

tangential to the surface as they travel along; hence, they are highly 

attenuated. These waves are known as "creeping waves." It was once of 

great hope that the creeping-wave contributions would complete the pic- 

ture of the geometrical-optics solution of scattering problems by pro- 

viding a means of calculating the diffracted field In the deep-shadow 

region. Conceptually, the creeping wave theory Is attractive; but, 

actually, due to the high-attenuation property of the creeping waves, 

'those waves that "crept" around the obstacle more than once contribute 

little to the total diffracted field. Therefore, If the first-order 

creeping wave failed to Improve the geometrical-optics solution to a 

certain extent, Including higher-order creeping waves seldom Improves 

the solution further. Besides, creeping waves are too complicated to 

compute, hence, are not suited for programming on computers. 

All of the above discussions point to the fact that a conceptually 

simple, computationally efficient method of solving high-frequency 

electromagnetic scattering problems involving curved-surface scatterers 

Is still much desired. 

In this chapter, we Introduce a new approach to the high-frequency 

electromagnetic scattering of obstacles with a convexly curved surface. 

The idea is to transfer Information characterizing the curved surface 

onto a planar aperture where maneuvers for Improving the geometrical- 

optics solution are carried out. In conventions'. strategies, maneuvers 

i^Ei.,^^,,iSi-^i^;,.•;1;.■1,■.•il■;.llSi..i,^»,,^.a ..,,._ ^ ,,--- ^ . .», .. u,,^^        ,     ., u. ,   lA ^ .  „-„^    -u,.  ...»J    -J. 
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for Improvement are carried out either directly on the surface current 

or directly on the far field. The Introduction of a planar aperture In 

the present approach Is a marked difference from all of the conventional 

methods. A salient feature of the method Is that the far field Is 

obtained by Fourier transforming the aperture-field distribution; hence, 

It can handle problems Involving an n-dimensional obstacle by an 

(n - l)-dlmenslonal fast Fourier transform (FFT), where n - 2,3. 

Therefore, the unwieldy three-dimensional FFT Is circumvented, hence, 

the method Is numerically efficient. Another Important feature of the 

method Is that the aperture-field distribution Is slowly varying, I.e., 

not rapidly oscillatory. In magnitude  and In phase.    Hence, maneuvers 

for Improvement can be achieved In a relatively straightforward manner. 

Moreover, the method Is conceptually simpler than other conventional 

methods In the literature, because maneuvers for Improvement are car- 

ried out on a plane rather than on a curved surface. 

The best way to explain the method Is to apply It to solve the 

scattering problem of a plane wave by a perfectly conducting circular 

cylinder, because the principle Involved can be Illustrated without 

the unnecessary complexities. 

To make this chapter as self-contained as possible, we briefly 

derive the exact solution In Section 6.2 and the geometrical-optics 

solution In Section 6.3.  Synthesizing the approximate aperture-field 

distribution Is demonstrated In Section 6.4. Computation of surface 

current Is carried out In Section 6.5. An accuracy check of the ap- 

proximate solution Is discussed In Section 6.6. A summary for the 

chapter can be found In Section 6.7. 

, 
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6.2 Exact Solution 

In this section, we briefly discuss the exact solution to the prob- 

lem of scattering of a plane wave by a perfectly conducting circular 

cylinder. The geometry of the problem is shown in Figure 6.1. A per- 

fectly conducting circular cylinder located at the origin of the co- 

ordinate system is illuminated by a uniform plane wave whose electric 

intensity vector is parallel to the axis of the cylinder. 

Using the method of separation of variables [27], the scattered 

field can be written as 

E^P.*)-I  (i^a^Ckp) ein* (6.1) 
n__oo 

where H  (kp) is the Hankel function of the first kind, and the a 's 
n n 

are unknown coefficients. The time convention e   is understood. 

To determine the a 's, we evaluate (6.1) at p = a, the radius of the 

cylinder, i.e., at the surface of the cylinder and then apply the 

boundary condition. To do this, we first expand the incident electric 

field into a series, namely, 

E*(p.*)-I  (i)n J (kp) ein* (6.2) 

where J (kp) is the Bessel function of the first kind. The boundary 

condition requires that the total tangential electric field vanish on 

the surface of a perfectly conducting obstacle. Therefore, 

E*(a,<|,) + zhaA) '  0  . (6.3) z        z 

. 
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E^E1 

OBSERVATION 
POINT 

Figure 6.1.  Diffraction by a circular cylinder illuminated by an 
E-wave incident along the x-axis. 
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Using  (6.1) and (6.2)  in (6.3), we obtain 

n 

-Jn(ka) 

H^1)(ka) 
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(6.4) 

Substituting  (6.4)  in (6.1), we have 

» J  (ka)       ,.. ... 
E*(P,*)  - - I       (i)n "7^  H<1)(kp)  ein* 

z n-« HU,(ka)    n 

n 

(6.5) 

The far-field pattern of the scattered field is of interest.    At 

large distances from the cylinder, we can use the asymptotic formula 

for H      , namely. 

Hn    (kp) k^fcoJiTrkp JiTrkD 
ikp 

(6.6) 

and (6.5) becomes 

^'^ k^-l«p 

iy      «       J (ka) 

J^'^-^l  ^ in* 

n—oo H(1) (ka) 
n 

(6.7) 

The magnitude of the ratio of the scattered field to the incident field 

is therefore 

P1 
•J irkp 

V^Lein* 
n—oo H(1) (ka) 

n 

(6.8) 

This is the scattered far-field pattern. For ka " 1, 5, 10, and 6ir, 

the far-field patterns are shown in Figures 6.2a, 6.2b, 6.2c, and 6.2d. 

 i iSM 
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Figure 6.2a. 

270 

Exact scattered far-field pattern In dB of a circular 
cylinder with ka - 1. 
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i 

180 

270° 

Figure 6.2b.    Exact scattered far-field pattern in dB of a circular 
cylinder with ka ■ 5. 
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180° 

270° 

Figure 6.2c. Exact scattered far-field pattern in dB of a circular 
cylinder with ka ■ 10. 
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90c 

180 

270 

Figure 6.2d.    Exact scattered far-field pattern In dB of a circular 
cylinder with ka ■ 6ir. 

...... ....^•::,.i.ii,r;.:,M«'...--^,.i^-:.«..,,.«i^ <,..w,iMi,».JiM;i,i 



118 

Experience shows that the number of terms one should take In (6.8) 

to compute the far-field pattern Is of the order of ka, which means 

that the convergence of the series Is extremely slow for an electrically 

large cylinder and the computation becomes time-consuming.  For high- 

frequency scattering, one must resort to approximation solutions to 

obtain meaningful numerical results. 

The surface current on the cylinder is also of interest. It can 

be obtained from Maxwell's equations, i.e., 

z   $ 

i  8E 

1  z 
-iüiy 3p 

p=a 
(6.9) 

p-a 

i s where E    = E    + E  .    Using  (6.2)  and  (6.5),  and simplifying the result z z z 

by the Wronskian of Bessel's equation, we obtain 

Jz^ ■ ^kk: I  rafrr (6-10) 
0 n»-00 H  (ka) 

n 

where Z-, is the free-space characteristic impedance. The surface cur- 

rent for the case of a = 3X is shown in Figures 6.3a and 6.3b. 

6.3 Geometrical Optics Solution 

6.3.1 Fields of a ray 

A point source radiating in all directions is indicated in Figure 6.4. 

The energy between a set of such rays is assumed to remain constant. 

Four of these rays, as shown in Figure 6.5, constitute a tube of rays. 

The energy passing through the cross-sectional areas A] and A» must 

be a constant under the assumption of no fringing. A linear relation 

■ . . ; ;,   ,     : 
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SOURCE 

Figure 6.4.    Rays of a point source. 
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Figure 6.5. Tube of rays from a point source. 
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exists between the length of a side and Its position p or  (p + £) 

shown In Figure 6.5.    Thus,   the ratio of the areas Is 

A 2 
r—ß—2   • ^•11> 2   (p + ir 

A field quantity at the position  (p + £) may be written In terms 

of Its value at the position p.    The field quantity considered here Is 

a scalar.    A vector field can be resolved Into two component fields, 

one polarized In and the other normal to the plane of Incidence,  and 

e&ch component field treated as a scalar field.    It should be empha- 

sized that this Is exactly the physical scattering process that occurs 

at a boundary between two different media.    The field quantity Is then 

ü2-uiJ^-uiriT (6-12> 

where U represents the scalar E- or H-field. 

One may also consider a more general case Involving an astigmatic 

ray tube shown In Figure 6.6. In this case, the scalar field quantity 

Is given by 

"2 • "i j(p11
1I)(p2TIT    • (6-13> 

The electrical phase of the ray tube Is given by the spatial phase 

delay factor e  , when the time convention e b) Is understood. This, 

of course, assumes that the phase reference position coincides with 

the amplitude reference. Now one may write an expression for the fields 

,   . .   .■ ■ ■;*4si"i 
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Figure 6.6.  Astigmatic ray tube. 
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i*l   / P1P2 
U2 " V      JCp^ 4) (p2 + Ä) 

m (6.14) 

There are other phase changes that must be carefully preserved. 

Observe that the quantity under the radical becomes negative as SL be- 

O TT comes less than -p2.    This Introduces a phase Jump of -90    or - -r radians. 

This point Is called a caustic.    The fields at the caustic point cannot 

be determined by geometrical optics but the correct fields can be found 

on either side of the caustic.    If £ becomes less than p., then the 

phase shift of 180    or ir radians occurs. 

The general geometrical optics expression for the field may be 

written In the form 

UU) - U0e   r0 FCO eikÄ (6.15) 

where U_ Is a reference amplitude at Ä * 0; 

(|>n Is the reference phase at £ - 0; 

I Pp^  
F(ll) - H I~jT7 .   o\  i8 the spatial attenuation factor; 

IkA and e        Is the spatial phase delay factor.    In other words, 

»a)-Ir.f.r.n«fl.ld)["»"iJicJ«"""1'j[2J^l
f.^'|     .    (6. 16) 
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6.3.2 Reflection at a curved surface boundary separating two 
different media 

In this section we discuss a simple technique for obtaining the 

reflected field from a curved surface which Is a boundary between two 

different media. The cylindrical or two-dimensional geometry Is con- 

sidered simply to avoid any unnecessary complexities. Other surfaces 

can be treated in the same manner. 

The source is a line source as shown in Figures 6.7a and 6.7b. A plane 

wave is obtained simply by allowing lQ  to go to infinity. The reflected 

rays now appear to be coming from a virtual source located a distance 

p, inside the surface. All factors in (6.16) should be written in 

terms of distance from the element of the surface as Illustrated by iQ, 

£... The quantity r is the radius of curvature of the surface. 

Now we proceed to determine the reflected fields. From (6.15), 

the reflected field is obtained and takes the form 

ur = RV^r^e (6-17) 

where R is the reflection coefficient and UQ is the reference field at 

the surface. 

The only remaining task Is to evaluate p.   in (6.17).    From trigo- 

nometry,   the angle £.,   (see Figure 6.7a)   is expressed as follows: 

^ = IT - a -   (ir - OQ) 

=  0O - a      . (6.18) 

Similarly, 

.        . . ■■ ............. .   
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MEDIUM 
® MEDIUM 

(D 

LINE 
SOURCE 

(a) 
Figure 6.7a.    Coordinate system. 

MEDIUM 
© MEDIUM 

VIRTUAL   SOURCE 

(b) 

Figure 6.7b. Reflection from a curved surface, 
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(6.19) 

The element of arc-length Is equal to r (Aa) (see Figure 6.7b) and It 

Is also equal to (AC,) ÄQ/COS QQ.    Therefore, 

rc(Aa) 
(ACj^) AQ  (AOQ - Ao) £0 

cos 6, cos 6, 
(6.20) 

where the last equality Is obtained by means of (6.18) and A denotes 

the differential In the usual sense. By the same token, 

rc(AoO 
(AC2) Pl       (Ae0 + Ao) pj^ 

cos 6, cos 6, 
(6.21) 

where the last equality Is obtained with the aid of (6.19). Eliminating 

Aa from (6.20) and (6.21) yields 

.L-1. + 2  
p1  £0  rc cos e0 

(6.22) 

Substituting  (6.22)  In (6.17) completes the solution for the reflected 

field from the curved surface. 

Thus,  the expression for the field reflected by a two-dimensional 

curved surface has been obtained In a relatively simple manner.    The 

validity of this expression has been checked by comparing solutions of 

this type with exact solutions for spheres and cylinders [28].   For 

further discussions on the subject of electromagnetic reflection from a 

perfectly conducting surface, the Interested reader Is referred to the 

literature [29]. 

■   



I 

129 

6,3.3    Scattering of a plane wave by a circular cylinder 

In this section we apply the general formulas derived in the last 

section for reflection at an arbitrarily convexly-curved boundary-surface 

to the special case of a circular cylinder.    The geometry of the scatter- 

ing problem is shown in Figure 6.8.    A plane wave polarized parallel to the 

axis of the circular cylinder located at the origin of the coordinate 

system is incident from the negative x-direction,  viz., 

=1,     .v       *  ikpcosij) E  (p,(|.)  - ze    H (6.23) 

where the time convention e    is understood. 

To obtain the geometrical optics reflected field, we use (6.17). 

Since this is a perfectly conducting circular cylinder, the reflection 

coefficient, R, is -1. The reference field, U0, is the incident field 

at the point of reflection, F , on the circular cylinder. From (6.23), 

U0 - E^(p - a,* - 0 

ikacosC (6.24) 

The spatial attenuation factor is determined when the caustic position, 

p., is known. To find p.,, we use (6.22). For plane wave incidence, 

£. ->■ <>>. The radius of curvature in this case is simply a constant, i.e., 

the radius of the circular cylinder, a. Hence, the caustic position 

is given by 

a cos 6, 
(6.25) 

'•••- - ... 
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7 ' POINT    OF   OBSERVATION 
Pr • POINT    OF   REFLECTION 

Figure 6.8.    Geometry of the scattering problem of a circular cylinder. 
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Note that the angle of reflection,  0.,  In (6.25)  Is a function of $, 

i.e.,  it depends on the location of the point of reflection on the 

cylindrical surface.    The quantity i.  in (6.17)  is the distance between 

the point of reflection, P   (a,0.  and the point of observation, r(p,4)). 

This distance is denoted by I in Figure 6.8.    To obtain an expression 

for the scattered field at an observation point,  r(p,4>)> we must first 

find a relation between the parameters   (6.,£,5)  and the coordinates 

(p,^).    However,  there is no simple relation that can be found to ex- 

press OQ,  i,  and 4 explicitly in terms of p and $.    Therefore, in 

practice,  one has to resort to numerical methods.    There are basically 

two routes that one can follow, namely,  either searching for the point 

of reflection when a point of observation is given,  or interpolating 

for the field when a point of reflection is chosen. 

Nevertheless,  a simple closed-form expression can be found for the 

far field  (p -* °°).     In particular, we use  the following approximations 

when p >> a > X: 

p = £ in the amplitude (6.26a) 

p - i + a cos  6. in the phase (6.26b) 

en *  r 9 ^1 for 0 < <|) < 2Tr (6.26c) 
'0  "  2 

and 

5 - I-j-k for 0 < (j) <, 2TT  . (6.26d) 

Using (6.2A), (6.25), and (6.26) in (6.17), and after some algebraic 

manipulations, we obtain 

: 

-•  * ■   • ■Jl 
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(6.27) 

where 

0 <_())<. 2ir 

p » a > A 

and the time convention e    Is understood. The scattered far-field 

pattern obtained from (6.27) for the case of a = 3X Is shown In Figure 

6.9. For further discussions on the geometrical optics reflected fields, 

the Interested reader Is referred to the literature [30]. 

6.4 Synthesizing the Approximate Aperture Field Distribution 

In the last section we discussed the geometrical optics solution 

to the problem of scattering of a plane wave by a perfectly conducting 

circular cylinder. The geometrical optics scattered far-field pattern 

Is In excellent agreement with the exact (elgenfunctlon series expansion) 

solution In the hemisphere containing the lit surface of the circular 

cylinder. However, the geometrical optics solution falls completely In 

the forward-scattering direction because It predicts a zero field In- 

stead of the maximum of the main beam In that direction. This result 

does not come as a surprise since In a geometrical optics solution only 

the Illuminated portion of the surface of an obstacle Is taken Into ac- 

count, whereas the shadowed portion of the surface of the obstacle Is 

completely Ignored In the solution. As a matter of fact, the shadowed 

side of the scatterer could have been of any arbitrary shape and the 

.    ■ . .      .-,.•.«« 
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geometrical optics solution would have still predicted the same scattered 

far-field pattern as long as the Illuminated portion of the surface 

were cylindrical. 

In spite of the serious discrepancy In the forward-scattering di- 

rection, the geometrical optics far-field solution Is, nonetheless. In 

good agreement with the exact solution for a wide range of angles ex- 

tending from the lit hemisphere deep Into the dark hemisphere.    Only 

within a narrow range of angles In the Immediate neighborhood of the 

forward-scattering direction does the geometrical optics far-field start 

to deviate from the exact far-field pattern.    This observation leads to 

the conclusion that the geometrical optics solution xa a very good ap- 

proximation to the exact solution except In the neighborhood of the 

forward-scattering direction. 

It Is our conjecture here that the main beam In the forward- 

scattering direction may be obtained from an aperture-field distribution. 

If an Infinite, planar aperture cutting the entire space Into two half- 

spaces Is erected on the far-side of the cylinder when we view It from 

the source side,  we may stop all the geometrical optics rays at this 

aperture and calculate the aperture-field distribution.    For observa- 

tion points beyond this aperture, we simply use Huygens'  principle to 

find the fields.    Theoretically,  this procedure of stopping the rays 

at the aperture and then letting the aperture-field propagate beyond 

It should not be different from the original ray fields which propagate 

continuously undisturbed.    Hence, we should obtain nothing more than 

the original geometrical optics far-field pattern.    However,  If the 

aperture is In juxtaposition with the cylinder,  then that portion of 

^^>i;^i^^.fc-.;^a^;&^ 
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Che aperture field In the vicinity of the cylinder must be completely 

different from the ray fields. As a matter of fact, the geometrical 

optics ray fields are no longer meaningful in that region. Consequently, 

an option is opened here for modifying the aperture-field distribution 

so that an improved far-field pattern can be obtained. Methods of 

synthesizing the aperture-field distribution are discussed In the follow- 

ing subsections. 

The format of presentation of the methods is as follows. In each 

of the subsections, a method of synthesizing the   rture-fleld distri- 

bution is illustrated and the resulting far-field pattern displayed. 

Each subsection is concluded by a discussion of the method and a hint 

for a better synthesis. These methods for synthesizing the aperture- 

field distribution are arranged in the order of increasing degree of 

sophistication and accuracy. The first two methods presented below 

give totally unsatisfactory far-field patterns; however, they serve 

as good examples to indicate some of the pitfalls that one may run into, 

hence, their inclusion here is well justified. 

6.4.1 Method I 

All scientific progress starts from observations.    It is no ex- 

ception in the development of this method.    The exact scattered electric 

aperture field in the shadow region cast by the geometrical-optics rays 

is depicted in Figure 6.10.    Note that the width of this shadow is 

simply the diameter of the circular cylinder.    In this particular ex- 

ample,  the radius of the circular cylinder is thrice the wavelength of 

the incident plane wave which is polarized in the z-directlon and has 
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a magnitude of 1. Due to symmetry, only half of the shadow-region scat- 

tered aperture-field is plotted. 

The magnitude curve has a constant value 1 at the center of the 

shadow and hardly varies until it is about two wavelengths away from the 

center, at which point the magnitude starts to decrease. The overshoot 

in the magnitude curve is highly exaggerated because the scale runs from 

0.7 to 1.1 only. The value of the magnitude of the exact scattered 

aperture field at the edge of the geometrical-optics shadow is approx- 

imately 0.73. Note that the phase variation throughout the entire 

shadow region is nothing more than attributing a negative sign to the 

magnitude. This fact does not come as a surprise, because, in the 

deep-shadow region, the total electric field should be zero; hence, the 

scattered E-field in that region should be just the negative of the 

incident E-field. 

Having observed this fact about the scattered electric aperture 

field, a first attempt to improve the geometrical-optics far-field is 

naturally to assume an aperture distribution which is the negative of the 

incident E-field in the geometrical-optics shadow region and is zero 

outside this shadow region. Alternatively, the scattered electric 

aperture field outside the shadow region could have been assumed the 

value of the geometrical-optics scattered E-field. However, the process 

of stopping the geometrical-optics rays at the aperture and then letting 

them radiate again to generate the far-field is not much different from 

the far-field obtained directly from the geometrical-optics rays prop- 

agating to the far-field zone undisturbed. The only significant dif- 

ference is an additional contribution generated by the shadow-region 

aperture-field to the far-field. The scattered far-field pattern is 

.  - - ■■■ — I.,,.". ,■;■—-,— 
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obtained by superimposing the geometrical-optics far-field and the 

additional far-field computed by Fourier transforming the assumed 

scattered aperture E-field in the shadow region. 

The far-field pattern obtained by this method is shown as a dotted 

curve in Figure 6.11. Recall that the Fourier transform of the rectangular 

pulse aperture distribution results in a sin x/x, or the sine function, 

type of far-field pattern. Therefore, the main beam in the forward- 

scattering direction shows up. A comparison of Figure 6.2, Figure 6.9, 

and Figure 6.11 manifests the remarkable improvement In the geometrical- 

optics far-field pattern by the additional far-field generated by the 

deep-shadow aperture-distribution which is precisely what was ignored 

in the geometrical-optics solution. The deep nulls in the neighborhood 

of the forward-scattering direction are due to the phase Interferences 

between the geometrical-optics solution and the Fourier transform of the 

aperture-distribution. Moreover, the relatively pronounced oscillations 

in the far-field pattern are caused by the discontinuities in the aper- 

ture-field distribution. In the next subsection we discuss another method 

of synthesizing the aperture-field distribution so that the extraneous oscil- 

lations can be suppressed. 

6.4.2 Method II 

The method discussed in the last subsection substantially Improved 

the geometrical-optics solution of the scattered far-field pattern. 

However, extraneous oscillations occurred in the far-field pattern and 

further Improvement is necessary. It is well-known in the field of 

antenna design that a tapered aperture field produces a low side-lobe 

radiation-pattern. Therefore, the second attempt to improve the 

geometric-optics solution is to synthesize a smoothly tapered aperture- 

distribution of the scattered E-fleld. To this end, consider a 
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sinusoidal roll-off function of the form 

f(y) - - i + ico8 rri ^ <6-28) 

where A and B are parameters. Note that the attractive property of 

such a sinusoidal roll-off function is that it serves as a very good 

interpolating curve between the constant values -1 and zero. Not only 

the values, but also the slopes of the function being interpolated are 

matched at the two end points of the interpolation Interval designated by 

[A,B]. In a sense, such a curve possesses the properties of a spline. 

The parameters A and B are chosen to correspond to the width of 

the penumbra-region, or better-known as the "transition-region" on the 

aperture. To date, no reliable techniques are available in the liter- 

ature to determine the width of the transition-region to a considerable 

degree of accuracy. In the literature, it has always been assumed that 

the transition-region is located symmetrically about the boundary of 

the geometrical shadow. However, such an assumption is not very accurate be- 

cause from the exact aperture-field distribution, the transition-region 

is observed to be asymetrio  about the boundary of the geometrical- 

optics shadow and it extends much farther into the illuminated region 

than the dark region. This point is discussed further in the next sub- 

section. 

Nevertheless, it is educational to compute the far-field using 

the aperture-field distribution synthesized from the tapering sinu- 

soidal roll-off functions in the penumbra-region and the negative of 

the incident field in the deep-shadow region.  In this example, the 

radius of the cylinder is 3X; the closest approximation to the width 

of the transition region is IX on either side of the boundary of the 
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geometrical-optics shadow, which means that a 2X-transition region is 

assumed. 

The far-field pattern obtained by this method is shown as a solid 

curve in Figure 6.11. As expected, the extraneous oscillations present 

in the far-field pattern obtained by Method 1 are suppressed. However, 

there are still quite an amount of discrepancies from the exact solu- 

tion. The reason for these discrepancies can be traced to the ignorance 

of the phase information in the course of solution.  So far, the phase 

has been assumed to take on the value ir in the entire aperture-field 

distribution. Actually, this is not the case in the transition region. 

The phase information must be included In the process of solution; 

otherwise, the far-field pattern cannot be improved further by simply 

manipulating the magnitude. In the next subsection we discuss another 

method of synthesizing the aperture distribution so that both the mag- 

nitude and phase variations are taken into account in the process of 

solution; hence, further improvements on the far-field pattern can be 

achieved. 

6.4.3 Method III 

In the last two subsections, methods of synthesizing the scattered 

electric aperture-field distribution in the geometrical-optics deep- 

shadow region and the transition or the penumbra region have been dis- 

cussed. Although the manipulations for magnitude only do give a sub- 

stantial Improvement over the geometrical-optics far field, the failure 

to account for the phase variation in the transition region prevents 

us from further improving the far-field pattern. Recognizing the im- 

portance of the phase-variation, we reexamine the basic principles 

i,J.&.r.'.!aJ.i.i,.r:^:-^ il'Äiü^-'v.i. ^    ,tt .   ,  ..^j.,      ,  . A 
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underlying the synthesis of the aperture distribution. It Is found 

that If the procedures In the following paragraph are followed to 

synthesize the aperture distribution, the proper phase Information can 

be Included In the solution. 

As alluded to earlier in Subsection 6.4.1 when we discussed Method 

I, the scattered electric aperture field In the well-illuminated region 

may alternatively be approximated by the geometrical-optics scattered 

far-field evaluated on the aperture. In other words, we stop the geo- 

metrical-optics rays at the aperture and establish an aperture-distri- 

bution which Is nothing more than the equivalent sources in the Huygens' 

principle. When this aperture-distribution reradlates, the far-field 

beyond the aperture can be recovered as If the rays propagated directly 

to the far-zone undisturbed. Then, the original geometrical-optics 

far-field pattern should be recovered Intact. 

However, If the negative of the Incident field Is assumed In the 

deep-shadow region, the main beam of the scattered far-field pattern Is 

regained as shown In the previous two subsections. As before, for the 

extraneous oscillations In the far-field pattern to disappear, the 

magnitude of the aperture distribution must not contain any sharp cor- 

ners or discontinuities. With this In mind, curve-fitting techniques 

may be employed In the transition-region to smoothly join the assumed 

approximate aperture-distributions In the well-illuminated region and 

the deep-shadow region. 

The simplest interpolating curve that fulfills the aforementioned 

requirement for suppressing extraneous oscillations is the cubic spline 

of the form 

*.j,^,ys..^...:Mimm^mmmmm*fiBifmmima*itmmmn  ' 
■ ■ ■ jiää 
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(6.29) 

The derivative of f(y) Is 

f (y) - 0 + c2 + 2c3y + 3c4y (6.30) 

The coefficients c^.c-.c» and c, can be completely determined If the 

values and the slopes of the Interpolating cubic polynomial are known 

at the end points of the Interpolation Interval. The Interpolation 

interval In the present example for a circular cylinder with radius 3X 

Is roughly from y = 2X to y = 6X, which Is obtained by observation of 

the width of the transition region In the exact aperture-field distribution. 

The values and slopes of the magnitudes and phases of the geometrical- 

optics scattered aperture-field at the illuminated end and the negative 

of the incident electric field at the dark end of the transition region 

can be computed numerically. Then the coefficients c, ,c2,c3 and c, 

can be obtained by solving the following matrix equation: 

1 2X uxr (2X) 

0 1 2(2X) 3(2X) 

1 6X (6X)2 (6X) 

0 1 2(6X) 3(6X) 

■"    *•" ***                  "^ 

Cl 
f(2X) 

C2 f,(2X) 

C3 
f(6X 

CA f(6X)I 

(6.31) 

where 

f(2X) is the value of the magnitude or phase of the negative in- 

cident field at y » 2X, 

f'(2X) is the slope of the magnitude or phase of the negative 

of the incident field at y = 2X, 
■ 

... _. .i . .  - :  ,—MI^'JI.! ...u ■ . im 



f(6X) Is the value of the magnitude or phase of the geometrical- 

optics field at y - 6X, 

f(6X) Is the slope of the magnitude or phase of the geometrical- 

optics field at y ■ 6X, 

and 
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X Is the Incident wavelength. 

Thus,  two sets of coefficients, one for the magnitude, and the other 

for the phase,  are obtained from (6.31) by first substituting the mag- 

nitude entries Into the right-hand-side column-vector, and then doing 

the same thing for  the phase entries. 

The magnitude and phase curves are chosen to be Interpolated be- 

cause they are slowly varying smooth curves.    The curve fitting cannot 

be applied to the real- and Imaginary-part curves of the same complex 

quantity because they are highly oscillatory curves. 

To summarize,  an aperture-field distribution has been synthesized 

with the negative of the Incident electric field In the deep-shadow 

region,  the geometrical-optics scattered field In the well-illuminated 

region, and the cubic-spline Interpolations   (applied to the magnltude- 

and phase-curves)  In the transition-region.    The synthesis is sche- 

matically shown in Figure 6.12. 

The scattered far-field pattern is computed In two steps:    (1) For 

the forward-scattering hemisphere,  the far-field pattern is obtained by 

Fourier transforming the synthesized aperture distribution via the well- 

known relationship between the far-zone field and the aperture field. 

(2) For the back-scattering hemisphere,  the far-field pattern is simply 

obtained from the geometrical-optics solution.    The Fourier transform 

can be performed efficiently by a one-dimensional fast Fourier trans- 

form (FFT). 

■..'■..-   
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However, attention must be called to the fact that the FFT result 

Is forced to zero at 90 and 270 because the aperture must be trun- 

cated to a finite width (even as large as 90A, thirty times the radius 

of the cylinder) In order to apply the FFT. Nevertheless, the FFT re- 

sult Is extremely good In the forward-scattering direction. As mentioned 

In the previous section, the geometrical-optics far-field Is well-de- 

fined and Is accurate for a wide range of observation angles extending 

from the lit side Into the dark side. It Is found that the FFT result 

and the geometrical-optics far-field overlap for a relatively wide rar ?e 

of angles (about 20 degrees) In the neighborhood of 70 and 290°, hence, 

the two far-field patterns can be joined smoothly at 70° and 290° with- 

out any discernible discontinuities. 

The far-field pattern obtained in the above manner is shown in 

Figure 6.12. Except for the slight differences in the directions around 

50 and 310 , the pattern Is In excellent agreement with the exact solu- 

tion, which demonstrates that the inclusion of the phase information in 

the transition region is crucial in obtaining an accurate approximation 

to the exact solution. Due to the slow variation of the magnitude and 

phase of the aperture-field distribution, the phase information is ade- 

quately obtained by a relatively straightforward cubic-spline inter- 

polation. In the next subsection, we discussed another method of syn- 

thesizing the aperture-distribution so that the computation of the 

aperture field can be reduced substantially while the accuracy in the 

far-field pattern is still preserved. 
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6.4.4 Method IV 

In the last subsection, an aperture-field distribution has been 

synthesized with the negative of the Incident electric field In the 

deep-shadow region, the geotnetrlcal-optlcs scattered field In the well- 

illuminated region, and the cubic-spline interpolations (applied to the 

magnitude- and phase-curves) in the transition region. The scattered 

far-field pattern obtained by that method was in good agreement with 

the exact solution. 

However, a reevaluation of the synthesis in Method III reveals 

that the computation of the geometrical-optics scattered field on the 

aperture is redundant.  Recall that in Method I or Method II, the 

aperture-field distribution in the well-illuminated region was assumed 

to be zero, and the far-field pattern in the forward-scattering hemi- 

sphere was obtained by the superposition of the geometrical-optics 

far-field and the far-field radiated by the assumed aperture-field dis- 

tribution in the geometrical shadow region. The superposition of the 

two far-fields In such a manner Is equivalent to an alternative approach 

that was mentioned In Subsection 6.4.3, i.e., the Huygens1 equivalent 

sources for the geometrical-optics far-field are created on the well- 

illuminated portion of the aperture, and combined with the assumed 

aperture-field distribution on the complementing nonillumlnated portion 

of the aperture to obtain a complete scattered electric aperture-field 

distribution which, when reradiated into the forward-scattering hemi- 

sphere, produces the scattered far-field pattern In that hemisphere. 

Theoretically, these two different approaches for obtaining the 

scattered far-field In the forward-scattering hemisphere give the same 
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result. From a computational standpoint, however, the approach using 

the geometrical-optics scattered field directly In the far-zone for 

superposition Is more efficient than the other approach. The reason for 

its  superiority Is two-fold: First, computational time can be reduced 

substantially because the aperture-field distribution In the illuminated 

portion of the aperture need not be computed but is simply set equal to 

zero; and second, the fast Fourier transform can be applied to its full 

capacity, meaning no Inaccuracies near 90 and 270 , because the aperture- 

field distribution is completely confined to that portion of the aperture 

which Includes the deep-shadow plus the transition-region only. To 

further emphasize the advantage of eliminating the calculations of the 

aperture-field in the illuminated region, we discuss the labor involved 

in setting up an aperture-field distribution in the next paragraph. 

In order to obtain a facsimile of the Fourier transform of the in- 

finite aperture-distribution using the fast Fourier transform (FFT), 

the aperture must be truncated at points beyond which the aperture-field 

has decreased to a negligible quantity; which means that the illuminated 

portion of the aperture is typically as large as fifteen times the geo- 

metrical-optics shadow on the aperture. As mentioned earlier in Section 

6.3 where the geometrical-optics solution was briefly derived, there 

is no simple relation that can be found to explicitly express in terms 

of the polar coordinates (p,^) the parameters 6., 1,  and C> in the geo- 

metrical-optics scattered-field expression. The far-field approximation 

(p •♦ ") cannot be directly employed to accurately calculate the geo- 

metrical-optics aperture-field distribution bei-auoo the aperture-plane 

is in juxtaposition with the cylinder; hence, for a considerably large 

portion of the aperture, the far-field approximation, e.g., (6.27), is 

.  ■ .  .     .  _ . .  .      ...        .     .   
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still too crude. Therefore, In practice, one has to resort to numerical 

methods. There are basically two routes that one can follow, namely, 

either searching for the point of reflection when a point of observation 

on the aperture is given, or interpolating for the field when a point 

of reflection Is chosen. While the accuracies of the numerical results 

obtained by these two different approaches are comparable, the latter is 

more straightforward in computer programming and more efficient compu- 

tation-wise. But in either case, the geometrical-optics scattered 

aperture-field has to be computed. 

In this subsection, we discuss a synthesizing method which is, in 

part, similar to Methods 1 and II, i.e., the calculations of the aperture- 

field in the illuminated region are eliminated.  However, the major 

difference is the Inclusion of the phase Information in the transition- 

region in the present synthesis. As in all of the previously discussed 

methods, the scattered electric aperture-field distribution in the deep- 

shadow region is assumed to be the negative of the incident field. The 

field distribution in the well-illuminated portion of the aperture is set 

equal to zero. In the transition-region, curve-fitting techniques are 

employed to smoothly join the assumed approximate aperture-distributions 

in the well-illuminated and the deep-shadow regions. A cubic spline is 

obtained (for the magnitude of the aperture-field) by simply substituting 

f(6X) » 0.0 and f'CöX) ■ 0.0 into the right-hand-side of the column- 

vector in (6.31) and solving the resulting matrix-equation for the un- 

known coefficients. The Interpolated curve is the gradually tapered 

magnitude curve of the aperture-field distribution. It seems the phase 

curve, at the first look, cannot be obtained as straightforwardly as the 
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magnitude curve, because the assumed aperture-field at the Illuminated 

end of the transition-region Is zero and the value and slope of the 

phase curve are unknown. However, the value and slope of the phase of 

the geometrical-optics scattered field at the Illuminated end of the 

transition region can be used in (6.31) for obtaining the phase-Informa- 

tion in the transition region. This point is discussed further in the 

next paragraph. 

In particular, the aperture-field being synthesized is the difference 

of two aperture-field distributions, namely, the aperture-fieid synthe- 

sized by Method III and the geometrical-optics aperture-field, i.e., 

..IV III G.O. 
„IV ^AP  ,,111 l*AP   P

G-0-  ^AP 
EAP e    " EAP e     " EAP  e (6-32) 

where E is the magnitude and ^ Is the phase of the complex quantity. 

Superscripts IV,  III, and G.O.   stand for Method IV, Method III, and 

geometrical optics, correspondingly.    Subscript AP stands for aperture. 

Note that 

*SI(6X) " ^'^ ^•33a> 

and 

III 
EAP  (6X) " EAP0,(6X) (6-33b) 

which are direct consequences of the synthesis in Method III.    Therefore, 

at y ■ 6X, we have 

i 
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- Oe ^    . (6.34b) 

This confirms the remarks made In the last paragraph that the magnitude 

Is zero and the phase Is the geometrical-optics phase at the Illuminated 

end of the transition region. 

Thus, an Interpolation by a cubic spline for the phase In the 

transition region gives an Identical phase variation as In Method 111. 

Note, however, that the phase curve need be computed only In the deep- 

shadow and the transition region where the magnitude of the aperture 

distribution is nonzero.  In the well-illuminated region of the aperture, 

the phase variation becomes irrelevant because the magnitude of the 

aperture distribution Is zero. 

As mentioned previously, the illuminated portion of the aperture 

Is typically as large as fifteen times the geometrical-optics shadow 

region in order to obtain a facsimile of the Fourier transform of the 

infinite aperture distribution using the fast Fourier transform. There- 

fore, in setting up the aperture distribution for the Fourier-transform 

operation, the present method is computationally more efficient than 

Method III. In addition, the fast Fourier transform can be applied to 

its full capacity, meaning no inaccuracies near 90 and 270 , because 

the aperture-field distribution is completely confined to that portion 

of the aperture which includes the deep-shadow plus the transition re- 

gion only. This renders it unnecessary to join the two far-field patterns 

at 70° and 290° as in Method III. 
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To summarize, an aperture-field distribution has been synthesized 

with the negative of the incident electric field in the deep-shadow 

region, the zero field in the well-illuminated region, and the cubic- 

spline interpolations (one of which is between the magnitude of the 

incident field and zero-field for the magnitude-variation, and the other 

is between the phase of the incident field and the phase of the geometrical- 

optics field for the phase-variation) in the transition region. The 

synthesis is schematically shown in Figure 6.12. 

The scattered far-field pattern is computed in two steps: 

(1) For the forward-scattering hemisphere, the far-field pattern is ob- 

tained by Fourier transforming the synthesized aperture distribution 

via the well-known relationship between the far-zone field and the aper- 

ture field. The Fourier transformed result is then superposed on the 

geometrical-optics far field to obtain  the scattered far-field pattern 

in that hemisphere.  (2) For the back-scattering hemisphere, the far- 

field pattern is simply obtained from the geometrical-optics solution. 

Note that the geometrical optics far field is used throughout the en- 

tire range of observation angles (0 to 360 ) because in the synthesis 

of the aperture-field distribution, the geometrical-optics aperture 

field has not been taken into account (see (6.32)); hence, in step (1) 

above, a direct superposition of the far fields is necessary to obtain 

the scattered far-field pattern in the forward-scattering hemisphere. 

The far-field pattern obtained in the above manner is shown in 

Figure 6.12. Observe that the positions of the maxima and minima are 

in good agreement with the exact solution. However, the oscillations 

are not as pronounced and there are slight discrepancies (about ±1 dB) 

in the levels of the maxima and minima in comparison with the exact 

. 
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solution. Nevertheless, the far-field pattern of this method Is In 

better agreement with the exact pattern In the directions around 50° 

and 310 than the far-field pattern of Method III. Generally speaking, 

the overall far-field pattern is in reasonably good agreement with the 

exact solution. 

The slight discrepancies in the far-field pattern are due to the 

failure to take into account the shadowed portion of the cylindrical 

surface in the solution process. As a matter of fact, the shadowed 

portion of the obstacle can be of an arbitrary shape, but as long as 

the illuminated portion of the obstacle is circularly cylindrical, the 

far-field pattern obtained using the present method (or any one of the 

methods discussed so far) will be the same as that of the circular 

cylinder.  In the next subsection, we discuss the use of Galerkin's 

method applied in the spectral domain to further improve the scattered 

far-field pattern by taking into account the information characterizing 

the shadowed portion of the obstacle, e.g., the radius of curvature 

of the shadowed surface, in the process of solution. 

6.4.5 Method V 

In the last subsection, we presented a method of synthesizing the 

aperture-field distribution so that the redundant computations of the 

aperture-field in the well-illuminated portion of the apertu 3 were 

completely eliminated while the accuracy in the far-field pattern was 

still preserved to an extent that the overall far-field pattern was 

in reasonably good agreement with the exact solution. The slight dis- 

crepancies in the far-field pattern were due to the failure to take into 

account the shadowed portion of the surface of the obstacle in the 
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process of solution.    In this subsection, we discuss a method of synthe- 

sizing the aperture-field distribution taking Into account the Informa- 

tion characterizing the shadowed portion of the obstacle In the process 

of solution so that further improvement of the scattered far-field pattern 

can be achieved. 

As alluded to In Section 6.1,  the Introduction of this chapter, 

a   marked difference between the present approach and all of the con- 

ventional methods available In the literature Is the Introduction of an 

Infinite planar aperture In juxtaposition with the obstacle.    The scat- 

tered far-field pattern In the forward-scattering hemisphere Is obtained 

by a Fourier transformation of the scattered field distributions on this 

aperture.    Therefore,  operations for Improving the scattered far-field 

pattern can be performed on the scattered aperture-field distribution, 

In contrast to the conventional approaches In which they are done either 

directly on the Induced surface current or directly on the scattered 

far field.    The advantage of concentrating our efforts on Improving 

the aperture-field distribution Is two-fold.    Firstly, the magnitude 

and the phase of the aperture-field distribution are smoothly,  non- 

osclllatorlly varying functions of positions In the plane of the aper- 

ture; hence,  Improvement can be achieved In a relatively straightforward 

manner.    Secondly,  the operations for Improvement are performed on a 

planar surface rather than on a curved surface as In the case of at- 

tempting to directly Improve the surface current on the obstacle In a 

conventional approach, hence,  the present method Is conceptually simpler. 

An Improved scattered far-field pattern In the forward scattering hemi- 

sphere of an n-dlmenslonal obstacle can be obtained by Fourier trans- 

forming an Improved (n - 1)-dimensional scattered aperture-field 
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distribution, where n = 2,3. This is a salient feature of the method 

which manifest itself to be numerically efficient by the circumvention 

of the unwieldy three-dimensional fast Fourier transform (FFT).  These 

important points have been demonstrated in the previously discussed 

methods of synthesizing the aperture-field distribution. 

Because of the aonoscillatory nature of the magnitude and the phase 

variations of the scattered aperture-field distribution, a very close 

approximation to the exact aperture-field distribution was obtained by 

Method 111 in which a simple cubic-spline interpolation-scheme was used 

in the transition region to join the negative of the incident field 

in the deep-shadow region smoothly to the geometrical optics scattered 

field in the well-illuminated region.  Again, a similar interpolation- 

scheme was employed in the synthesis of the aperture-field distribution 

in Method IV in which the differenoe  of the aperture-field distribution 

of Method III and the geometrical-optics scattered aperture-field was 

closely approximated by joining the negative of the Incident field in 

the deep-shadow region smoothly to the zero "difference-field" in the 

well-illuminated region. However, the magnitude and the phase varia- 

tions in the transition region are slightly different from the inter- 

polating cubic polynomials. Although the approximations made by these 

cubic polynomials are very close to the true variations of the magni- 

tude and the phase of the aperture-field distribution, these slight de- 

viations manifest themselves in the resulting scattered far-field pat- 

terns shown in Figure 6.12. 

.he idea to further improve the scattered far-field pattern, or 

equivalently, the synthesis of the aperture-field distribution of 

Method IV, is to expand the aforementioned slight deviations  of the 

.. - ~ 
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aperture-field distributions In the transition region into a series of 

known basis functions with unknown coefficients. The unknown coef- 

ficients can be determined by enforcing the boundary conditions on 

the shadowed portion of the cylindrical surface of the obstacle. This 

particular portion of the surface of the obstacle is chosen because it 

has the strongest effect on the variations of the aperture-field dis- 

tribution in the transition region. In a sense, this is an application 

of the Galerkin's method in the spectral domain to solve for the un- 

known deviations  of the first-order synthesis of the scattered aperture- 

field distribution from the true variations of the scattered aperture- 

field distribution to obtain an Improved second-order synthesis. Note, 

however, that the unknown quantities are the deviations  from, but not 

the true variations themselves. Since the first-order synthesis of 

Method IV is already a reasonably good approximation to the true solution, 

only a refinement of the synthesis is necessary; and the Galerkin's 

method applied in the spectral domain is well-suited for this purpose. 

A word of caution is in order in regard of the choice of basis 

functions in the Galerkin's method. Rectangular pulses are not recom- 

mended for the basis because they introduce abrupt discontinuities into 

the aperture-field distribution and give rise to the extraneous oscil- 

lations in the scattered far-field pattern. This point has been demon- 

strated in Method II of Subsection 6.4.2. Therefore, only smoothly 

varying and gradually tapering off functions are suited for the use 

as basis. With this in mind, a Gaussian pulse,as shown in Figure 6.13, 

is used as the basis function, i.e., 

fn(x£) - exp(-a
2xÄ

2) (6.35) 
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x/ 

Figure 6.13.    A Gaussian pulse. 
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where a - 2.75 and x Is a local coordinate. This particular choice of 

the spread of the Gaussian pulse, 1/a, Is to assure that the Gaussian 

pulse decreases to 1 percent of Its peak value at x « 0.78, and It 

decreases to approximately 1/e of Its peak value at the crossover point 

of two adjacent Gaussian pulses, which means that the gaps between ad- 

jacent Gaussian pulses are filled up properly and the Interferences 

with Gaussian pulses beyond the adjacent ones are practically eliminated. 

Thus, a superposition of these basis functions results In a smoothly 

varying curve, which Is precisely what Is wanted In the refinement of 

the aperture-field distribution. 

In applying the Galerkln's method In the spectral domain, the 

Fourier transform of the basis function Is needed. For the particular 

choice of a Gaussian pulse In (6.35) as a basis function, Its Fourier 

transform Is simply another Gaussian function, namely. 

fn^> " F{ W} 

(6.36) 

which is shown in Figure 6.14. In the above equation, a Is the Fourier 

transform variable corresponding to the spatial variable x.. 

The testing function in the Galerkln's method is the same as the 

basis function. The locations of the basis functions on the aperture 

and the testing functions on the surface of the obstacle are schematically 

shown in Figure 6.15. Observe that the basis functions are situated 

within the transition region in addition to the cubic-spline interpolation 

of Method IV. The testing functions are arranged in the manner shown 
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Figure 6.14.    Fourier transform of the Gaussian pulse in Figure 6.13. 
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Figure 6.15. Locations of the basis functions on the aperture and the 
testing functions on the surface of the obstacle. 
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in Figure 6.15 because that particular portion of the surface of the 

obstacle ha. the . wrongest effect on the variations of the aperture- 

field distribution In the transition region. Due to the symmetry of the 

problem, N basis functions, fi»^' '*** ^w' are use^ but only N/2 un- 

known coefficients need be solved, hence N/2 testing functions, 

12* *''' N/2* 

The aperture-field being synthesized Is 

2 
sV -IV   N^ 
E^-EAP + ^   cn(fn+f(N/2+n)> ^37> n«l 

=IV where E^^-  Is the difference aperture-field distribution of Method IV 

(see  (6.32)),  and the deviations of E._  from the  true variations are AP 

approximated by the series In basis function of the form given In (6.35), 

or specifically, 

fn(y) - exp[-a2(y - y0n)2]  ,      n - 1,2 N (6.38) 

where y^. Is the position at which the peak of the nth basis function 

Is located (see Figure 6.15). The unknown coefficients c 's are to be 

determined by the Galerkln's method in the spectral domain. 

Consider the aperture for the hemisphere of a testing function P m 

as shown in Figure 6.16.    The portion of the aperture underneath the 

Gaussian pulse is embedded In the obstacle.    The width of this embedded 

portion of the aperture is determined by the particular choice of the 

spread of the Gaussian in (6.35) so that It Is subtended by an angle 

of 30    as shown In Figure 6.16.    The scattered E-field on this embedded 

portion of the aperture must be the negative of the incident E-fleld, 

.   . .    ^ni^hnÜfriVti.  .... . ... 
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Figure 6.16. Aperture for the hemisphere of a testing function P . 
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-E ,to satisfied the extended boundary condition [31].    The scattered 

E-field outside of this portion of the aperture Is unknown and Is desig- 

nated by F    as shown In Figure 6.16.    Therefore,  the scattered E-field 

on this aperture can be written as 

E8
A_ - -E1 + F (6.39) mAP mm 

where the subscript m signifies the aperture corresponding to the mth 

testing function, P . The Fourier transform of (6.39) reads 
m 

E*  - -E1 + F (6.40) mAP    mm 

where - on top Indicates the Fourier transform of the corresponding term 

In (6.39). 

Now we take the Inner product of the Fourier transform of P ,F , r m* m* 

with  (6.40), which results  In the following equation: 

<P  ,ES.n> - -<P  .i^ + <P  ,F > (6.41) nr  mAP m    m m    m 

where the angle brackets Indicate an Inner product of two complex func- 

tions of 3. e.g., A(0) and B(ß), defined as 

<A,B> - / A (ß)B(ß) d$ (6.42) 
»00 

where the asterisk denotes complex conjugate.    By Parseval's theorem 

the second term In the right-hand-side member of  (6.41)  can be written 

as 

<P  ,F > - 2Tr<P  ,F > = 0 (6.43) ram in   in 

 . J 
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because P    and F   are defined In complementary domains on the aperture for mm 

the hemisphere of P    (see Figure 6.16).   Therefore,  (6.41) becomes 

m   mAF m    m 

The Fourier transform of the aperture E-field, E , , Is related to the 

far-field pattern in the hemisphere of P ,T (4).), by the following re- 

lation: 

^ - kiiih^ W (6-45> 

where «t1« = «I» -<!>,.»<t>» being the local polar coordinate,  ({> the central 

polar coordinate, and 4*    the polar coordinate of the location of P , 

all of which are shown in Figure 6.16.    T (cfi ) is obtained by truncating 
in x 

v 
the complete scattered far-field pattern, T (O, to the hemisphere of 

P .  T (<))) is given by 

TV(*) - TIVU) + I    cn(T^U) + T*  n(<t))) (6.46) 
n»l 

where T    ((fr)  Is the scattered far-field pattern of Method IV;  and TU)  Is 

the scattered far-field pattern of the nth basis function,  f  ,   in Figure 

6.15.    More specifically, T ((ft)  is expressed in terms of the Fourier 

transform of the nth basis function,   f ,In the following manner: 

„f/.v      -k   -IkAcos^ 2  /x\ „  A TU) = -^ e T * (♦)  cos * n i n 

0 < 4» < 90° and 270° < 4» < 360° (6.47) 
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in which A Is the radius of the cylinder, and £ (41) Is obtained from 

(6.36) using the shifting relation between Fourier pairs; hence, 

J-        / 1 2  . 2 .\   -lkyrt sln(|. 
i /x\      vv        |-k sin yl     'On , „     „    /^ /o\ fn(<t») - — exp[ 2  I  e •  »■ 1»2, ..., N     (6.48) 

where y- Is the position at which the peak of the nth basis function, 

f , Is located (see Figure 6.15). 

Using (6.A8), (6.47), (6.46), and (6.45) In (6.44), an equation of 

N/2 unknowns, c..»^, ..., c.,,-. Is obtained. Repeating the above pro- 

cedure with different locations of the testing function on the surface 

of the obstacle results In a system of N/2 linear equations of N/2 un- 

knowns, which Is then solved by standard matrix-Inversion techniques. 

The matrix elements are generated by the Inner products of (6.44) 

In a straightforward manner. The Inner product on the left-hand-side 

of (6.44) simply becomes a linear superposition of the Inner products of 

P with the Individual far-field patterns. This can be seen from (6.45) m 

and (6.46). Since the Invisible spectra of the far-field patterns are 

highly attenuated and they hardly contribute to the Inner products, 

therefore, they can be Ignored In the computation of the Inner products. 

Hence, the formula for computing the Inner product of P and T Is 

<Pm.T> 

**!- iksln^Acos^0 ^   /-k2 cos2 ^A 

\Koe ~ex*\Z?—     u   u 

where T stands for T  or T . Using Parseval's theorem, the left-hand-side 

..,-,.^„l;i';~t-. 
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of  (6.44)  can be written as 

-<P .E^ - -2IT<P  .E^       . (6.50) mm mm 

Since P Is assumed nonzero only on the embedded portion of the aperture 

for the hemisphere of P , (Figure 6.16), the formula for computing the 

Inner product In (6.50) Is 

<P ,Ei> 
m m 

x ."Aslnl5 
9 9 r* 

1 J       exp(-a x . + Ikx cos (b - ikA cos 15 sin (ji )Ax ,. (6.51) 
*        *       i  rO XX X- X t LvX x  .—Aslnl5 

After the unknown coefficients, c^^«» •••! CM/O» have been deter- 

mined by the Galerkln's method, we can substitute them Into (6.37) to 

obtain the Improved synthesis of the "difference" scattered aperture- 

-V 
field distribution, EAp, and then proceed as In Method IV to compute 

the far-field. Alternatively, the coefficients, c^c,, ..., c^..», can 

be substituted Into (6.46) to directly obtain the Improved far-field 

pattern, T ((ft). The far-field pattern obtained by this method with 

N/2 = 7 and $   *  -15 to -45 at 5 Increments Is shown In Figures 6.17a 

and 6.17b and Is In excellent agreement with the exact far-field pattern. 

■ ■   .      . ■ . 
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Figure 6.17a. Scattered far-field pattern in dB of a circular cylinder 
with radius a - 3X obtained by Method V. 
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Figure 6.17b.  Scattered far-field pattern in dB of a circular cylinder 
with radius a = 6X obtained by Method V. 
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6.5 Computation of Induced Surface Current 

In electromagnetic wave scattering, two quantities are of vital 

Importance, one Is the scattered far-field pattern, from which the bl- 

statlc radar-cross-section (RCS) can be determined, and the other Is the 

Induced surface current on the scatterer, from which Information can 

be extracted to aid In the design of the mounting of antennas and sensor 

booms on a practical scattering obstacle, e.g., a satellite. A detailed 

discussion of the computation of the scattered far-field pattern by 

systematically synthesizing the aperture-field distribution has been 

presented In the last section. An excellent approximation to the exact 

scattered far-field pattern has been obtained In a relatively straight- 

forward manner by the Introduction of an aperture on which the Improve- 

ment operations were performed. Such an accurate scattered far-field 

pattern motivates us to develop a feasible technique for the computation 

of the Induced surface current on the obstacle to a reasonable degree 

of accuracy. 

In the conventional approaches In the literature, the calculation 

of the scattered far-field pattern from an Induced surface current may 

be formidable because of the numerical multiple-Integration Involved; 

on the other hand, the evaluation of the Induced surface current di- 

rectly from an approximate scattered far-field pattern may not be fea- 

sible because such a far-field pattern Is not accurate enough. The 

development of the present approach provides a means to evade such a 

dilemma so that the Induced surface current can be evaluated with ease 

when the approximate scattered far-field pattern has been Improved. 

This method of computation of the Induced surface current Is made 

   _ —.- 
_,. 
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possible by the extremely close approximation of the true scattered 

far-field pattern obtainable by the method of synthetic aperture dis- 

tribution discussed in the last section. The detailed development of 

the method for computing the Induced surface current Is presented In 

the next subsection. 

6.5.1 Method of computation 

Suppose the Induced surface current at a point Q on the surface of 

the obstacle as shown In Figure 6.18 is to be evaluated. The polar co- 

ordinates of the point Q are simply (A,*), A being the radius of the 

circular cylinder and * the angular displacement from the y-axis with 

positive reference direction counterclockwise. An infinite aperture 

with Q as the point of tangency to the cylinder is established for the 

hemisphere of Q as shown schematically in Figure 6.18. A local rec- 

tangular coordinate system (x^.y») and the accompanying local polar 

coordinate system (PntO are set up for the aperture. The idea is to 

use that portion of the scattered far-field pattern contained in the 

hemisphere of point Q to obtain the scattered H-field on the aperture. 

The scattered H-field at point Q is subsequently combined with the in- 

cident H-field at point Q to obtain the total surface current at point 

Q. For other points on the surface of the obstacle, the Induced surface 

currents can be obtained In the same manner by using their corresponding 

hemispheres and apertures. 

The relation between the scattered far-field pattern and the Fourier 

transform of the scattered magnetic aperture field, H , Is readily ob- 

tained as 

fi8(V ' Itf" T(V exP^ikA 8in V (6-52) 

i 
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Figure 6.18. Aperture for hemisphere of point Q at which the Induced 
surface current Is evaluated. 
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where T(I)I ) is the scattered far-field pattern In the proper hemisphere, 

Z0 Is the free space characteristic Impedance, and <j) - (J> - (j> is the 

local polar coordinate. The phase factor In (6.52) Is to assure that 

the aperture at y = A but not at y = 0 Is considered. The scattered 

magnetic aperture field, Hs, Is obtained by an Inverse Fourier trans- 

form of Hs In (6.52), I.e., 

H8(x0) - F'^H
8 ($>>)> (6.53) 

However,  only the value of the magnetic scattered field at x. - 0 Is 

of Interest.    Therefore,  ignoring the negligible contributions from the 

invisible range of the far-field pattern, H8(x   - 0)  can be expressed 

as an integral of the following form: 

H8^ - 0) S- / 
0    ^-0 

T(^)  sin (^ d*£ (6.54) 

The numerical evaluation of H  (x   - 0)  is expedited by the following 

procedure:    the Interval of integration from 0 to Tr,[0,Tr], is divided 

into 36 sublntervals, each of which is of length IT/36.    Throughout the 

entire sublnterval,  the sinusoid,  sin 41.,  can be assumed to have the 

constant value at the midpoint of the sublnterval.    Thus,   (6.54) can 

be written as 

H8(x0 

36 
0) 'I    sin(4.H)    I 

1-1 * 

hj'hfn 
^V 180 

him*un 
(6.55) 

■ 
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where 4»..   Is the midpoint of the ith subinterval.    If the scattered 

far-field pattern T(()).)  is calculated at an increment of 1 ,  the index 

J ■ 1.2 5. 

Note that the above procedure expedites the numerical evaluation 

of Hs(x    » 0) without sacrificing the fine detail of the scattered far- 

field pattern.    This point is worth-emphasizing because the accuracy of 

the scattered far-field pattern obtained in the last section should be 

preserved as much as possible.    Further degradation of the scattered 

far-field pattern may give intolerable numerical results. 

The incident H-f ield at the point Q is given by 

„i      -1    ikAcosij) /<-  c/r-v H    - — e r       . (6.56) 
y      40 

Combining  (6.55) with (6.56), and using the relation between the total 

surface current, J,  and the total H-field at the surface, i.e., 

J - ii x H 

- n x  (H1 + HS) (6.57) 

the total surface current at the point Q(x = 0,y - A) Is obtained. 

This completes the development of the method of computation of the induced 

surface current. 

6.5.2 Results and comments 

The magnitude and the phase of the total surface current on a per- 

fectly conducting circular cylinder with radius ■ 3X are displayed in 

Figure 6.19. The exact eigenfunction solution of the total surface cur- 

rent is also shown in the figure for comparison.  It is seen that the 

...  ....   
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solution of this study deviates slightly from the exact solution In 

the neighborhood of 80  .    However,  the small deviation occurs at the 

low end of the current curve,  therefore. It Is tolerable for practical 

purposes.      The rest of the curve Is In remarkable agreement with the 

exact solution. 

Before closing this section.  It is worthwhile to contrast the 

present approach with the one developed by Burnslde et at.  [4 ].    Their 

method uses a combination of the geometrical theory of diffraction and 

the moment method to solve a circular cylinder scattering problem, 

wherein the cylindrical surface Is divided Into three regions, namely, 

the physical optics region In the well-illuminated side, the GTD region 

In the deep shadow, and the pulse /egion In the transition region be- 

tween the lit and the dark sides.    It Is a typical example of the con- 

ventional approaches of attempting to directly Improve the surface cur- 

rent.    However,  one finds that the composite surface current computed 

by using different techniques In different  regions on the cylindrical 

surface as indicated above is not smoothly connected at the bound- 

aries of each region.    These discontinuities are clearly shown in 

Figure 6.20, which is Figure 4 in [4 ] reproduced here for comparison. 

Furthermore,  the discontinuities at the high end in the surface cur- 

rent may Introduce extraneous high-level sldelobes    In the far-field 

pattern.    In addition, the surface current of Bumslde's method de- 

viates from the exact solution In both the high and the low ends of 

the current curve.    Moreover, the pulse region In Bumslde's method 

is typically one half of the circumference of the circular cylinder; 

therefore, many current samples are needed for an electrically large 
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Figure 6.20. Bumslde's MM-GTD solution for the Induced surface 
current on a circular cylinder with radius a » 4X. 
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cylinder, especially in the case of an E-wave incidence where the 

surface current starts to deviate from the physical optics current 

much faster than it does in the H-wave case. 

In Burnslde's approach, the far-field pattern must be computed 

by a numerical double integration of the surface current. Such a com- 

putation may be very time consuming. In contrast, we have presented a 

conceptually simple, computationally efficient method to obtain both 

the scattered far-field pattern and the induced surface current,which 

are in remarkably good agreement with the true solution. 

6.6 Accuracy Check 

In the previous sections, methods have been discussed for obtaining 

scattered far-field patterns and induced surface currents. The results 

have been compared with the available exact solution so that the ac- 

curacies of the approximate solutions were verified. However, in many 

practical situations, the exact solution is impossible to obtain, and 

quite often, the solutions arrived at by other approaches may not be 

accurate enough to compare with. Of course, experimental results pro- 

vide a good evidence to validate the computed results. Nonetheless, 

experiments are expensive to set up and also can be time-consuming. 

Moreover, special techniques and ingenuities may be required to extract 

the needed information from the experimental data, viz., the measurable 

quantities. In addition, many environmental factors may inflict adverse 

effects on the measurable quantities and affect the results of the ex- 

periment. Therefore, an economical means of validating a computed 

solution is very much desired. 
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In the previous chapters, the approximate solutions of the scattered 

far-field patterns or Induced surface currents were validated by a self- 

checking procedure, i.e., the tangential components of the scattered 

E-fields on the surface of the scatterers were computed and compared 

with the tangential components of the incident E-fields to check if 

the boundary conditions were satisfied. For scatterers with planar 

facets, the accuracy checking method developed in the previous sections 

is feasible. On the other hand, for scatterers with smoothly varying 

surface, or more precisely, surface with continuously varying curvatures, 

the accuracy checking method developed in the previous chapter becomes 

inefficient because a large number of points on the surface of the scat- 

terer need be checked and each application of the method yields rele- 

vant information at a single point, viz., the point of tangency of an 

aperture and the obstacle. In order to provide a more efficient means 

of checking the accuracy of the approximate solutions, the self-checking 

procedure of the previous chapters need be modified to apply to the 

curved surface scatterers. 

The idea is to use the concept of the extended boundary condition 

[31] instead of the ordinary boundary condition. Very briefly, the 

extended boundary condition requires that the total electric field be 

vanished in the region enclosed by the surface of the scatterer. This 

concept allows a portion of the aperture be embedded in the obstacle 

as illustrated in Figure 6.16. Thus, the accuracy check of the approx- 

imate solution can be done in the Galerkin's sense, which means that 

(6.44) is employed as a criterion for validating the approximate solu- 

tion. The detailed discussion of the computations of the inner products 

in (6.44) has been presented In Subsection 6.4.5 where Method V was 
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developed; hence, to save repetition, the analysis Is omitted In this 

section. The only important point need be emphasized Is that the ap- 

proximate scattered far-field pattern, T(4>), whose accuracy is being 

"'S examined,   is to be used to compute E ._ in the inner product of the 

left-hand-side member of  (6.44). 

This accuracy checking procedure has been applied to the approx- 

imate far-field patterns obtained by Method IV of Subsection 6.4.4 for 

the cases of A ■ 3X and A = 6X, with the testing Gaussian pulse located 

at *    ■ -15 , -30 ,  and -45  .    Results of these accuracy checks are 

tabulated in Tables 6.1 and 6.2. 

Observe that the dominant parts of the entries in the second and the 

third columns of these tables are Identical to two significant digits. 

The differences of the entries in the second and the third columns are 

shown in the fourth columns of these tables.    The maximal deviation is 

about ±5 percent from the expected zero value, which shows that the 

results of the accuracy checks are quite satisfactory;  hence,  the scat- 

tered far-field patterns of Method IV can be concluded to be quite ac- 

curate without comparisons with the exact solutions.    Of course,  in 

the case of A = 3X,  the exact scattered far field has also been com- 

puted and a comparison with the approximate solution of Method IV not 

only further confirms the validity of the approximate solution, but 

also indicates that the accuracy check procedure is effective.    For 

the scattered far-field pattern obtained by Method V,   the self-checking 

procedure has already been built into that method as part of the solu- 

tion process; hence,  a separate accuracy check is repetitive. 
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TABLE 6.1 

ACCURACY CHECK RESULTS FOR THE A - 3X CASE 

♦t 'V^ n   n ^Ä*+ ^«'^1 
-15° 0.0004793 

+ 11.1452 
-    0.000003465 
+ 11.19533 

0.0004828 
- 10.0501185 

-30° 1.46487 
- 10.42989 

1.44525 
- 10.48077 

0.0196276 
+ 10.050886 

-45° - 2.05293 
- 10.59244 

- 2.016778 
- 10.64182 

-    0.036151 
+ 10.04938 1 

TABLE 6.2 

ACCURACY CHECK RESULTS FOR THE A - 6X CASE 

♦t m    m 
<fm*iLp> + <>$ 

-15° 1.18760 
+ 10.02917 

1.19917 
- 10.00001 

-    0.01565 
+ 10.029184 

-30° -    1.20338 
+ 10.943703 

-    1.21897 
+ 10.911953 

0.015594 
+ 10.03175              1 

-45° - 1.72229 
- 11.24086 

- 1.72114 
- 11.21891 

- 0.0011549 
- 10.0219545          | 

| 
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6.7 Summary 

In this chapter, a synthetic-aperture-distribution approach to the 

high-frequency electromagnetic scattering of obstacles with convexly 

curved surface has been presented. The idea was to transfer information 

characterizing the curved surface onto a planar aperture where operations 

for improving the geomoirical-optics solution were carried out. The 

introduction of a planar aperture in the present approach is a marked 

difference from all of the conventional methods. A salient feature of 

the method is that the far field is obtained by Fourier transforming 

the aperture-field distribution; hence, it can handle problems involving 

an n-dimensional obstacle by an (n - 1)-dimensional fast Fourier trans- 

form (FFT), where n ■ 2,3. Therefore, the unwieldy three-dimensional 

FFT is circumvented; hence, the method is numerically efficient. Another 

Important feature of the method is that the aperture-field distribution 

is slowly varying, i.e., not rapidly oscillatory, in magnitude  and in 

phase.    Hence, operations for improvement can be achieved in a relatively 

straightforward manner. Moreover, the method is conceptually simpler 

than other conventional methods in the literature, because operations 

for Improvement are carried out on a plane rather than on a curved sur- 

face. 

The method has been applied to solve the scattering problem of a 

ple-rg Wave by a perfectly conducting circular cylinder. The underlying 

principles involved have been illustrated by a detailed discussion on the 

syntheses of the approximate aperture-field distribution. 

The Galerkin's method applied in the spectral domain not only results 

in a self-checking synthesis of Method V, as described In Subsection 6.4.5, 
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but also provides a convenient accuracy check of the approximate solution 

obtained by other methods. 

The remarkable agreement between the scattered far-field obtain- 

able by the method with the true solution makes It possible to devise 

a means of obtaining the Induced surface current on the obstacle di- 

rectly from the knowledge of the scattered far field. The computed sur- 

face current Is In reasonable agreement with the true solution. 

Considering the efforts Involved In the formulations of the solu- 

tions and the computations of numerical results In conventional methods, 

the present approach Indeed manifests Itself as a conceptually simple, 

computationally efficient method for solving high-frequency electro- 

magnetic scattering problems of curved-surface scatterers. 
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7. CONCLUDING REMARKS 

A new approach for combining the Integral equation and high fre- 

quency asymptotic techniques has been demonstrated with four Illustrative 

examples—diffraction by a strip, a thin plate, a rectangular cylinder, 

and a circular cylinder. The basic Idea Is to start with the asymptotic 

high-frequency solution leading to the zero-order approximation of the 

scattered far field, and to use the latter In the Fourier-transformed 

version of the extended form of the Integral equation to derive an Improved 

result for the Induced surface current density and the scattered far 

field. By formulating the problem In the spectral domain, the spatial 

domain Integral equation becomes an algebraic equation, which can be 

recast In an Iteration scheme suitable for manipulations on the computer. 

A salient feature of the method Is that the accuracy of the solution for 

the surface current density and the scattered far field can be conve- 

niently checked by verifying whether the scattered field, which Is also 

computed In the process of generating the solution, Indeed satisfies 

the boundary condition at the surface of the scatterer. Therefore, this 

approach not only provides a way for systematically Improving the GTD 

solution using the self-consistent. Integral equation formulations, but 

also provides a convenient validity check of the ray optics solution. 

Furthermore, the method of solution yields both the Induced surface 

current density and the far field—an Important feature which Is not 

present In conventional asymptotic high-frequency methods. 

The convergence of the Iterative scheme In Chapter 2 has not been 

proven rigorously but has been demonstrated by numerical verification 
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only. Note, however, that the Iteration procedure can always be followed, 

after a few iterations, by an application of the Galerkin's method in 

the transform domain. The iterated solutions, being close to the true 

solution, provide a very convenient choice for the basis set that may 

include some other functions as well.  In fact, for curved surface 

structures, such as the circular cylinder in Chapter 6, the Galerkin's 

method has been found to be the more desirable one to follow. 

We would like to mention two other approaches [14 ], [4 ] that are 

based on a combination of asymptotic and Integral equation techniques. 

The one developed by Thiele [14] decomposes a given problem into two 

parts, one of which is handled using the GTD method and the other using 

the moment method. For the case of a wire antenna on a finite ground 

plane, the effect of the edge diffraction from the ground plane is eval- 

uated using GTD and the result is subsequently used to augment the im- 

pedance matrix of the monopole antenna over an infinite ground plane. 

Although the method works rather well when GTD results are accurately 

known for the ground plane problem, e.g., a ground plane of circular 

shape, no convenient method is available for improving the solution when 

there are corners in the plane that contribute substantially to the 

scattered field. The latter situation arises when the ground plane is 

rectangular shaped and is not large compared with the wavelength, or when 

the antenna is mounted close to one or more of the edges. 

The second method developed by Burnside [4 ] tends to rectify the 

situation alluded to above by solving for surface currents via the 

moment method in the regions where the GTD solution is not accurate, and 

by using asymptotic forms for the surface currents in regions where a 
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good approximation for these currents can be employed. However, this 

method cannot be conveniently applied to either the strip problem with 

grazing Incidence, or to the large plate problem discussed In this thesis. 

For the strip problem, the GTD solution is quite Inaccurate when the In- 

cident angle of the Illuminating wave Is near grazing. For the plate 

problem, the current does not settle down to known asymptotic form In 

the center region of the plate until It Is at least three to four wave- 

lengths squared. The moment method Is Incapable of handling the number 

of unknowns required to accurately solve for the current distribution 

on plate sizes that are larger than 2A squared. To demonstrate that 

the present method is equally well applicable to the same type of practical 

structures which have been solved by the hybrid technique developed by 

Burnslde [4 ], the geometries,including a rectangular cylinder, possess- 

ing multiple sharp edges and a circular cylinder having a smooth curved 

surface, have been investigated. Both the relative accuracy and the 

efficiency of the transform method have been found to be very favorable. 

The detailed description of this work has been presented in Chapters 

5 and 6. 

One other method developed by Bojarski [32] should be mentioned 

for completeness since he also uses the transform technique to convert 

the Integral equation into an algebraic form. However, he uses a 

three-dimensional Fourier transform which again becomes unwieldy, both 

in terms of computer storage and time.  In contrast, the present method 

employs (n - 1)-dimensional transforms even for an n-dimenslonal curved 

surface, where n - 2,3, as shown in Chapter 6, thus achieving a saving 

in the storage requirement by approximately two orders of magnitude 
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and a corresponding saving In CPU and I/O times as well.    One other 

point with respect to Bojarski's work is that no advantageous use is 

made of the available analytic form of the GTD solution for the far field 

in the visible and invisible ranges, which,  in many cases, forms an ex- 

cellent starting point of the iteration procedure. 

In conclusion,  a conceptually simple,  computationally efficient 

method for solving high-frequency electromagnetic scattering problems 

has been Illustrated.    The method has devised ways and means to system- 

atically improve the far field as well as the induced surface current. 

It has been shown by examples that the method is applicable to scat- 

terers with multiple edges as well as those with smooth curved surface. 

The computational efficiency of the method has been demonstrated.    Both 

the far field and the surface current are obtainable in the process of 

solution.    Furthermore,  accuracy check is a built-in feature of the 

method. 

It was the purpose of this study to demonstrate that a new approach 

to the high-frequency scattering is feasible.    However,  to develop the 

method further,  it will be desirable to investigate its applications to 

more practical problems.    The pioneering work done and documented herein 

is hoped to stimulate strong interests In future research activities along 

similar lines based on the present approach.    The ultimate goal of the ap- 

proach as well as any other approaches Is to solve scattering problems In- 

volving arbitrarily shaped obstacles.    Therefore,  the next stage of de- 

velopment of the method should be an extension of It to cope with el- 

liptical cylinders,spheres, and ellipsoids.    All of these scatterers 

are of fundamental Interests in high-frequency scattering.    The fact 
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that the present approach uses two-dimensional FFT even for three- 

dimensional scatterers should make it feasible in obtaining reasonable 

results for these scatterers, vhich,  in turn,  can considerably augment 

the scope of future research. 
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APPENDIX A 

UNDERSTANDING AND APPLYING THE FAST FOURIER TRANSFORM 

This appendix Is written to serve as a tutorial presentation of 

the Cooley-Tukey Fast Fourier Transform for rapid computation of the 

Discrete Fourier Transform of a function represented by a discrete set 

of data points. 

The Fourier transform of a function f(t) may be defined by 

F(u)) - F{f(t)} - /    f(t)  e"Jü,t dt       . (A.l) 

Both F(u) and f (t) are complex functions of veal variables. 

Suppose that f(t) Is not available analytically, but Instead Is 

expressed as a sequence of samples, f(nT). If these samples are taken 

to be the sequence produced by sampling f (t) with a Dlrac delta func- 

tion sampler, we may write 

f*(t) - I      f(nT) 6(t - nT) (A.2) 

where the asterisk Implied a sampled function. 

The equation (A.2) has a Fourier transform 

F*(«) - I     f (nT) e"junT  . (A. 3) 

If f (nT) ■ 0 for n < 0, (A.3) reduces to the familiar z-transform 

F(z) - I    f(nT) z 
n-0 

-n 
(A.4) 
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Observation of (A.3) shows that the Fourier transform of any train of 

impulses is periodic in w with a period 2ir/T. 

A.l The Discrete Fourier Transform 

Suppose that f (t) is represented by a finite number of samples, 

say N, such that the samples are f (nT), 0 < n < N - 1.  Further, let 

the spectral function F(ü)) be represented by F(kn), 0 < k < N - 1. 

The variables T and ü  represent the spacing of samples in time and fre- 

quency, respectively. Then in (A.2) and (A.3) there are only a finite 

number of samples and we can write 

N-l 
f*(t) - I    f(nT)6(t - nT) (A. 5) 

n-0 

and 

N-l 
F*(kn) = I    f(nT) e"^11"1  . (A. 6) 

n-0 

The equation (A.6) represents a discretlzing of the integral transform 

(A.l)  in both time and frequency.    Thus, the expression (A.6) can be 

readily computed.    From (A.6) we drop the asterisk notation and define 

the Discrete Fourier Transform (DFT) of f (t) as 

N-l 
F(kfl) - I    f(nT) e"jfiTnk (A.7a) 

n-0 

where 

ß-||      • (A.7b) 
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We may show that for this choice of ft, there are only N distinct values 

of F(kft) which can be computed. 

Consider an arbitrary Integer k. This Integer can be expressed 

as 

k ■ rN + krt 

where 

k0 • k modulo N 

and 

r - (k - k0)/N  . 

We can thus write 

N-l      -jnTn(rN+kn) 
F(kJ2) - I    f(nT) e 

n-0 

N-l      -JfiTnk0 
I    f(nT) e 

n-0 

Now 

flTN - 2ir from (A. 7b),  so e -jfiTNnr 

s 

and 

N-l -JOTnkn 
F(kfi) - I    f(nT) e U 

n-0 
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So for k > N - 1, F(kft) reduced to F[(k mod N)fi].    That Is to say that 

F(kft)  Is periodic In k with period N. 

A. 2    Properties of the DFT 

The DFT can be shown to be frequency selective.    Suppose f (nT) 

- ejq        where we have let u - qft be a multiple of Q.     (It is not 

necessary that q be an integer.)    Then 

F(kfi) -Y eJ ({l-k)nßT (A. 8a) 
n-0 

1 _ ej (q-k)NnT 

" , . ej (q-k)fiT ' (A-8b) 

Consider (A. 8) for integral q. If k - q mod N, eJ (9-
k)KnT . eJ (q-k)nT 

- 1, and (A. 8b) is seen to be a 0/0 form. However, it is clearly seen 

from (A.8a) that F(kft) = N in this case. For k ^ q mod N, the exponential 

in the numerator of (A.8b) still has a value of 1, but the exponential 

in the denominator does not, so F(kfi) - 0. 

N  k ■ q mod N 
F(kfi) -< . (A.9) 

0  k |< q mod N 

If q is not an integer, we may deduce from (A.8b) that F(kn) j* 0 for all 

k.    Thus,  from (A.9) we see that the DFT is frequency selective for fre- 

quency which   is an integral multiple of fl;—a property which corresponds 

closely to the frequency selectivity of the continuous Fourier transform. 

The DFT is a linear operator directly from the definition of  (A. 7). 

This may be expressed by the statement 

DFT{af(nT) + bg(nT)} - aDFT{f(nT)} + bDFT{g(nT)}       . (A.10) 
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An Inverse DFT exists which will map a DFT back Into Its generating 

sequence.    This Inverse Is expressed by 

fUD-i   T    F(kfl) e+JfiT£k      . (A.ll) 
N k-0 

This differs from (A. 7)  In the — scale factor and the sign of the rota- 

tion of the exponential. 

We may show  (A.ll)  to be valid by substituting  (A.7)  for F(kft). 

N k-0    n-0 

N n-0 k-0 

Now 

Ye^T(il-n)k JN     n-^odN 
k-0 \ 0      n ?< £ mod N 

so 

fUT)  -^ £[(Ä mod N)T]N 

f[a mod N)T] 

We observe that the inverse transform reproduces the original function 

with a periodic extension of period N. 

• 
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A. 3 Fast Fourier Transform Algorithms 

The DFT of a function can be calculated through a direct application 

of (A. 7). The compute time required for this calculation would be pro- 

2 
portlonal to N If all N frequency points were extracted. 

The Cooley-Tukey algorithm uses the presence of redundant calcu- 

lations in (A. 7) and of factorable multiplications in order to reduce 

the compute time of the computation. For N,which is a power of two, 

the computation is proportional to N log« N. This provides substantial 

2 
time savings. For example, if N - 1024, N - 1,048,576, while N log. N 

2 
■ 10,240, or just under one percent of N . 

In describing the Cooley-Tukey algorithm, for notational simplicity, 

we define 

W - e-JfiT - e-J (2ir/N)  . (A. 12) 

This definition requires that we not neglect the dependence of W on N. 

For Instance, when we transform a sequence with N/2 points W would be 

2 
replaced by W . 

Consider a set of N samples f. , where N is divisible by 2. Let us 

decompose the sequence into a sequence of even numbered samples and a 

sequence of odd numbered samples: 

h " f2Ä 
A - 0,1,2,   ....  N/2 - 1      . (A.13) 

The DFT's of these sequences may be written as 
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N/?-1    2 Pk 

*  A-0 
(A.14) 

We can also write the DFT of the entire sequence as 

N 
Fk- I fnW 

n«0 

nk 

N/2-1 

• I 
Ä-0 

(g/^ + hÄw
(2Ä+1>k) 

N/?"1    2 Ak   k^?-1    2 Äk 
£-0 £-0 

■Gk + W\  ' (A.15) 

Hence, the DFT of the sequence can be written as a combination of the 

DFT's of two shorter sequences. Thus, through separating the sequences 

the computation time of (A. 15) can be reduced to something proportional 

2 
to N + (N/2) . Further, since G and H have a period N/2, only half of the 

N points Is needed to reproduce F. 

If N/2 Is also divisible by 2, each of G and H can be reduced to 

the DFT of two shorter sequences. This procedure, termed decimation In 

time, can be continued until the sequence Is reduced to subsequences 

of two points. These subsequences can be DFT'ed, and from these DFT's 
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the DFT of the total sequence can be constructed. The computation time 

In this case can be derived to be proportional to N log» N. 

In the case that N Is not divisible by two but Is factorable, the 

above procedure may be repeated for other divisions than two. The number 

of points Involved In the largest DFT subsequence will be the largest 

prime factor of N. The decimation In "time" algorithm may be used In 

exactly the same fashion for the Inverse transform by changing the sign 

of the exponent In the definition of W. 

A similar algorithm termed decimation In frequency has been derived 

by Sande, Cooley, Stockham and others. This algorithm calculates even 

and odd subscripted points In the frequency domain from half sequences 

In the time domain. The computational efficiency of this method Is 

equivalent to that of the decimation In time method. 

This procedure can be employed In an N-dlinenslonal Fourier trans- 

form. The algorithms, being equivalent, will not be discussed here. 

A.4 Employing FFT Subroutines 

There are five FFT routines available through the IBM Common Computer 

User Group Library. The routines are written In USASI Basic Fortran 

and hence may be used with most third generation Fortran processors. 

The routines are designed such that they take maximum advantage of data 

form for the problem at hand. Substantial time penalties will result 

from using a program general beyond the requirements of a given problem. 

Table A.l lists the routines and their functional characteristics. 

The user Is referred to IBM documentation for the details of using these 

routines. 
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FFT SUBROUTINES 
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FOURI One dimensional 

Power of two data points 

FOURG General one dimensional 

FOURZ Multidimensional 

Power of two data points in 
all dimensions 

FOURT General multidimensional 

FOR2D Multidimensional 

Power of two data points 

Data stored on direct access file 

_J 


