L REPORT SAMSO-TR.75-255, VOL. IV

. Mias

Volume IV: Numerical Operators

s it o\ sl Kol ae s AL e e A B e ikl o . 2L

PRI

TRAJECTORY ANALYSIS P ROGRAMMING DEPARTMENT
7‘ Information ’>rocessing Division
-¢1Engineering Science Operations
4 The Aerospace Corporation
El Seguado, Calif. 90245

ADAD25436

[/ SUPGIMET PO

= 16 April 1078 f
2 ‘<
‘e .
¥ Final Report :
5

B

C

T _ R APPROVED FOR PUBLIC RELEASE;

% . DISTRIBUTION UNLIMITED

EE

£

'{9} L

s » Prepared {or

f;' ,,,AIR FORCE ROCKET PROPULSION LABORATORY

S - «_@ y‘-. - AIRFORCE SYSTEMS COMMAND

. Edwards Air Forece Base, Calil. 98623 s
and THE AEPOSPALE C ()l{l’OR/\l 1ON

SPACE AND MISSILE SYSTEMS ORGANIZATION
AIRFORCE SYSTEMS COMMAND
Los Angeles Air Force Station
I P.0.Box 92960, Worldway I'ostal Center
L.os Angeies, Calif. 90009

S

THIS DOCUMENT IS BEST
QEJA_LIT Y AVAILABLE. THE COPY
HED TO DTIC CONTAINED
SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT

>
W

REPRODUCED FROM
BEST AVAILABLE COPY

PR

U7 T Lo AT o E T TR TR e e T St vt - T TRVRERER TR S AR T T R T

This final report was submitted by The Aerospace Corporation,
El Segundo CA 90245, under Coniract F04701-75-C-0076 with the Space and
Missile Systems Organization, P.O. Box 92960, Worldway Postal Center,
Los Angeles CA 90009. It was reviewed and approved for The Aerospace
Corporation by D, A. Schermerhorn and A, R, Sims, Engineering Science
Operations. The Air Force Project Engineer was Lt. Jce Hildreth,
AFRPL/MKCD.

This technical report has been reviewed and is approved for publica-
tion, Publication of this report does not constitute Air Force approval of
the report's findings or conclusions. Jt is published only for the exchange

and stimulation of ideas.

This report has been reviewed by the Information Office (Ol) and is
releamatle to the National Technical Inforrnation Service (NTIS). At NTIS,
it will be available to the general public, including foreign nations.

o OV,

Gerhard E. Aichinger
Technical Sdviacr \J
Contracts Management Office

FOR THE COMMANDER

F J.” Ban
Chief, Contra

Management Office

“

S) 1

UNCLASSIYIED i

PP ETE

SECYURITY L‘LHHCANON QF THIS PAGE (When Dets Entersd;
. ‘ READ INSTRUCTIAONS
: []/ REPORT DOCUMENTATION PAGE B TR TIONS
, }/ TVREPD e —————— 2 GOVT ACCESSION NO[3 »’!ﬁ!plENT'S CATALOG NUMBER
k /oAMSO TR-75-255 Vol - B f /
t 4 'hn_r, (and Subritle) mmﬂtﬂmmmwﬁe7 e~
{ - - N T T Final Repeswte / ;- .- ol
{ Tho Generalized Trajectory Simulation bystnm 3 .,'f‘ P‘r * e {
_,Jr/ taa 1 o)
Volume IV, Numerical Operators «
Wx———!”
/[zJ TR -G87¢ 6666%1-\/01—!# 7@‘
{ 7. AUTHGR(W) fl.w—ow SRt <
: Trajectory Analysis Programming Department f 7
Information Procession Divisior ,E; F04781-75-C-0076 ['/ :
Engineering Science Operation’ 7’ .
9 PERFCRMING ORGARIZATION NAME AND ADDFESS 10. P:g(,iR‘A on MENYT PROJEECT TASK
! A W UNIT NUMBE RS
{ The Aerospace Corporation TN
: El Segundo, California 90245 — i/,v///.f .
¢ s R
5 11, CONTROLLING OFFICE NAME AND ADDRESS " I,'2__BEPORI DATE . _
1 Space and Missile Systems Orpganization Q[/'y 15 Apr 76 /
] Air Force Systems Command R o e
é Los Angeles, Califorma 90045 104 4
Ig 14 MONITORING AGENCY NAME & ADCRESS/If dilferent from Controlling Oflice) V5. SECURITY CULASS. ot this report}
: Air Force Rocket Propulsion Laboratory Incl _
Air Force Systems Command Unclassified
Edwards A:r Force Base, Calif. 93523 s CECLASEIFICATION DOWNGRADING
L} ULE
t 16, DISTRIBUTION STATEMENT (of thia Report)

Approved for public release; distrihution unlimited.
| / /
//j/ \ / / 7
7 DISTRIBUTION cMAQj_(_(ot the w_am".} .1l dil(grent from Pepor)

18 SUPPLEMENTARY NOTES

'3 KEY WORDS rConilnue on reverss glde il necessary & d tdentlly by block numbher)

ety

CDC 6000/7009 Nonlinear Constrained Para- Optimal Contro)
. Modular.zed Program meterizaticn Optimization Constraint Solving
. \ Software Systern Optimization Techniques
Numerical Operators Nonlinear Least Squares Trajectory Optimizat oy
Performance Analysis

Nonlinear Programming 3earch Techniques

e

:

E ? ABSTRACT rContinue on reverae slde If nacessary and Identily by block number)

i The Generalized Trajectory Simulation (GTS) system provides a vehicle

s design and trajectory simulation capability, GTS 15 written in FORTRAN and 1s

} comnpatible with CDC 6000/7000 series computer systems. User-oriented

¢ input data specifications, computational efficiency, diverse program

i applicebility, an'l convanient program medifications have been primary

. 8 considerations in the design of the GTS system, The trajectory sunddation \\

i A
{

FORM -
0o 1473 e, N UNCLASSIFIED

PE ALY g

SECLRITY CLASSIFICATION OF TwIS PAGE (When Dete Brtnred)

o7

UNCLAGSIFIED
SECURITY CLASBIFICAYION OF TH!S PAGE(Wha Daie Baterad)
19 KEY WOROS (Continved)

Vehicle Sizing Dynamic System Simulation
Vehicle Design Post Ylight Reconstruction
Vehicle/ Trajectory Optimization Intzrpolation

Numerical Integration

Trajectory Simulation
Boost Vehicle Simulation

\\ Reentry Vehicle Sinmulation

C ABSTRACT (Coniinued)

apabiiity can accommodate diverse types of velicle configurations, flight
profiles, and mission objectives., Additionally, the GT5 system contains an
extensive vehicle sgizing capability and a state-of-the-art optimization
capability.

This volume documnents the GTS library of optimization, integration, and
interpolation operators. Included with the description ot each operator is

a description of the inputl data requirad to executc the operators and
reccommendations concerning the types of problems for which each operator
is best suited,

e,

UNCLASSIFIED

SECUmITY C.LAlilFiCATK/N OF THIS PAGE(When Dote Buterwd)

™

P XTI

PREFACE

This volume, the fourth of five volumes that describe the Generalized Tra-
jectory Simulation (GTS) system, concerns the GTS library of numerical
operators, including integration, optimization, and interpolation operators.
The remaining volumes are:

Volume 1: GTS Overview. This volunm orovides the potential user
with an overview of GTS, including a su..;mary of the major opera-
tional capabilities and structural design of the GTS system.

Volume II: GTS Usage Guide, This volume serves as a general usage
pguide for GTS and includes a set of example problems, a compre-
hensive description of the Generalized Trajectory Language, and a
discussion of the trajectory simulation control, In addition, a set of
appendices contains a master reference list for all volumee and
supplementary information to aid the user in defining his problem.

Volume III: GTS Flight Dynamic Models. This volume concerns the
GTS library of flight mechanics and flight dynamics models utilized
for trajectory simulations.

Volume V: GTS Weight Estimation Models for Sizing Applications,
This volume documents the GTS library of weight estimation models
utilized for sizing applications,

This report was prepared by J. L. Searcy. The author acknowledges the
beneficial contributions and suggestions made by D.S. Meder, J. T. Betts,
and G.B. Green,

acoessicy
ms Waite Setiine M(

il st [|

I

JUN 14 1978

TS
el

% AYALARILITY COOES

i aet e Briom

ks o B T S N N T O . - i e e st

CONTENTS
k ‘ -
§ v Page
E 1. INTRODUCTION. . v ¢+ ¢ ¢ ¢ 0 o« v v e v v s v o o oo w121
E .‘ 2. OPTIMIZATION AND SEARCH CAPABILITY. +
i 2.1 Overview e e e e e e e e e e e
_ 2.1.1 Problem Formualation, .
: 2.1.2 Data Specification « « « « + ¢« ¢+ ¢ v 0 v e e e .,
: 2.1.3 Function Generator Error Response
2.1.4 Restart Capability . . « o .
2.1.5 Optimal Control Problems,
1 2.1.6 Recommendations for Usage
F 2.2 Optimization and Search Operators N
2.2.1 UOPTIM. e e e e e am e
2.2.1,1 General Description . +
2.2.1.2 Equality Constrained Ajgorithm.
: 2.2.1,3 Basis Determination.
, ‘E' (:! 2.2.1.4 Example « « « v v v v v et e e e e e e e .
£ 2.2.1.5 Special Usage - « « v v v o v o e v v v v o v
2.2.1.6 Interpretive Output from UOPTIM
E 2.2.1.7 Diagnostic Output . + + v « ¢« v v+ 4 40 o.

22,2 UBEST ¢ ¢ o v e v v v v v o 0 o o o o o v v v v o o

_g 2.2.2.1 Preliminary Dcvelopments . . .« v . o . . .
; 2.2.2.2 Unconstrained Optimization Algorithm
] 2.2.2.3 Determination of the Basis
E 2.2.2,4 Constraint Phase e e e e
1 2,24.2,5 The Nonlinear Programming Algorithm. . . .
3 2.2.2.6 Example « + v v v v v e e e e e e e e

2.2.2.7 Special Usage . . ¢« o v v v v v v v v v v v v

2.2.2.8 Interprctive Output from UBEST
2.2.2.9 Diagnostic Qutput from UBEST
2.2 3 USCHN. & o 0 v i it e e e e e it e s e e e o s

—:J“*'m ”

2.2.3.1 Basic Procedure . « « v « . . f e e e e e e e .

I . TUOTT TR A N O TR PR WM Y U ey et © T T R TR I I SO TR LS N N 7 AU YN TR S L -

i
} i
7 2.2.3.2 Update Logic. e e e e e e e . 2.2-29
2.2.3.3 USCHN Algorithm , ., ., 2.2-30
] 2.2.3.4 Interpretive Qutput from USCHN ..., 2.2-31
g 2.3 OptimizationInput. . .+ + « ¢ ¢« 4 o o ¢ + = o « ¢« s « & . e 2.3-1
2.3.1 Optimization Input Format e e e e 2.3-1
L 2.3.2 Problem Definition Models (PROBDEF) 2.3-2
3 2.3.2.1 Problem Definition Model 1 (PRBDFM1) . ., . 2.3-3
] 2.3.3 Objective Function Models (OBJFTN). 2,.3-8
2.3,3.1 Objective Function Model 1 (OBJFNMI1). . . . 2.3-8
2.3.4 Constraint Models (CONSTR)+ .. 2.3-11 .
2.3.4.1 Constraint Model 1 (CNSTRM1} 2.3-.11 i
2.3.5 Independent Variable Models (INDVAR). 2.3-17 i
2.3.5.1 Independent Variable Model 1 (VARMI). . . . 2,3-17 é
! 2.4 Optimization and Search Output N N | %
2.4.1 Optimization Input Summary . .- 2,4-1 i
2.4.2 Iteration SUMMATy. « « « « « + o « - o o 4 o . . C . 2.4-2 :

2

-~
‘"-o‘

3. INTEGRATION OPERATORS + « « ¢« ¢« + v c v 0 v v 0 0 o s s & 3-1

3.1 Trajectory Simulation. . . « « . « « ¢« v v 4 v 0 v v .. 3,11 §
g 3.2 Integration Methods . . . « ¢ v ¢ o o v v v v v v o v .. 3.2-1 %
g 3.2.1 Runge-Kutta, Fixed Step (4-th Order) 3.2-1 3
E 3.2.2 Adams-Moulton, Fixed Step (m-th Order) 3.2-2
‘ 3.2.3 Adams-Moulton, Variable Step (m-th Order) . . . 3.2-8 _
E 3.3 Recommendations for Usage . o+ « « « « + « ¢ « « v o « 4 3.3-1 :
' 3.4 Integration Input Models (INTGRA). e .. 3,401 ;
_ 3.4.1 Integration Model ! (INTGRM1)., 3.4-1 g
3.5 Integration OULPUL « « & o o o v o v v v v e 0 e o e et 3,5.1 ;
: i
4. INTERPOLATION OPERATORS =« + + ¢ ¢ = =« « ¢« ¢ S 5
' 4,1 Interpolation Formulas « « « « o ¢ « v ¢ ¢ v v s o = o « & 4,1-1 4
i 4.1.1 Univariate Interpelation 4.1-1 i
: 4.1,2 Multivariate Interpolation . . . « « . + 4,1-3 3
' 4,2 Interpolation/Integration Interaction 4,2-1 i
E ‘ v TERENCES e R-1 . |
o ©
E vi ?
i

. LT
——n " . e a

ST TR AR YSE . Ty S etk st otiag T e, . L L 2 R

E TS T Y R i e A e S A A L T

W T wes XTRrY

1 FIGURES E
& Page “
F 2.2-1 UOPTIM Example . « « o« . . B %
] 2.2-2 UBEST EXample o v o v v o o o v o o v v v v s e 2,2-19
f 3.2-1 The 4-th Order Runge-Kutta Integration Method 3.2-3
![: 3.2-2 Adams-Moulton Integration Method 3.2-6 g
| 3
] 3.2-3 Summary of Derivative Evaluation,+« « o ¢« ¢ o . 3.2-7
& -
: ;
1 &
k- %!
'} '
%
3
E
E' P
g \w’
3
:
! ;
j
4 3
r’ k-
¥ K-
4
3
1
I 4 Y
vii

%’
f(v
|

: -‘""‘W)mw

R TVITE X R P

T—_—r—

-t SRS

PRI Ty

Kt S A 2o s Bk DL 5 s Ll ol ST A I LR Bl zin I Y PG A LI

SECTION 1
INTRODUCTION

This volume documents the GTS library of numerical operators.
These operators are distinguished from the engineering models documented
in Volumes III and V in that they implement a numerical algorithm for the
solution of a mathematical problem rather than modeling a physical phenomenon,
The three major categories of operators are optimization and search operators,

integration operators, and interpolation operators.

To provide the user with an effective and efficient method for
solving bis individual problem, several operators are available within each
category. Furthermore, no a priori restrictions are made ccncerning the
operator that may be selected for a given application. That is, any numerical
operator may be specified in conjunction with any particular model configura-

tion that the user has specified.

This independence of the operators and models allows the user
considerable flexibility in defining problems for solution, For example, the
optimization operators may be specified in conjunction with an integration
operator for a trajectory optimization problem, or the same optimization
operator may be specified for a vehicle design problem which does not require
a trajectory simulation. All the numerical operators are compatible with
the GTS input language. Thus, any Generalized Trajectory Language {GTIL)
capability such as GTL FORTRAN routines, tabular input, or the equivalence op-

tion may be specified at the user's convenience to define an optimization problem.

This volume documents the operators that are available within each
category. The discussion of each operator contains a user-oriented
description of the algorithm that is embodied in the oi:erator. A more
complete mathematical description of each algorithm can be found in the
listed references. Clearly, within each category not all operators are equally
well suited for all applications. Consequently, included with the deacription
of cach operator is an indication of the types of problems for which each
operator might Le best suited. Also included with the discussion of each
operator is a description of the input data required to execute the operator

and a description of any output obtained frorn the operator,

s e w9

3

3

3

J SECTION 2

5 ® OPTIMIZATION AND SEARCH CAPABILITY

The GTS optimization and search capability is described in this section,
First, an overview of the capability is presented. A description of the
individual operators, the input data required to execute these operators, and
the output obtained as a part of the optimization process are then presented
in succeeding sections, Examples of the application of the optimization and

search capability are presented in Volume 11,

2.1 Overview

The GTS optimization and search capability is a valuable analytical
tool which is an integral part of the GTS system, This capability can be applied
to a diverse set of problems. This diversity of application is achieved by
pe rimnitting the complete library of flight dynamics models and weight estima-
tion models to be available as a part of the definition of an optimization or
search problem. Furthermore, the GTS system provides several optimization
and search operators, each of which may be applied to several types of

o problems, Thus, the user is able to specify the problem formulation and

operator which best satis{ies his requirements for accuracy and efficiency.

The information contained in this section is applicable to all operators
] and is intended to enable the user to apply effectively the GTS optimization
and search capability to his individual application. Included is . complete
list of the optimization and search operators which are available in the GTS
system and recommendations concerning the class of problems for which

cach opcrator is best suited,

2. 1,1 Problem Formulation

The GTS optimization capability may be applied to solving general

nonlinear constrained parameter optimization problems, search problems,
or nonlinear lecast squares problems, Optimal control problems which can

be posed as parameter optimization problems can also be solved. For

-
H
! e :

TP T N " R R TIIT A Y I A I AR, - 1§ v o

R —

v e —n

e ——— e e s s 42 St .+ "

S ote memem we o rdewcltmwE .

purposes of definition, a parameter optimization problem can be described
as follows: determine the values of n parameters, or independent variables
(xl. . xn), such that the scalar function f(xl,. . .xn) = f(x) is optimized (i.e,,
maximized or minimized), The function f(x) is referred to, among other
names, as the objective function, the performance index, performance cri-
teria or cost function. Additional restrictions may be imposed on the prob-
lern so that the variables are to be determined not only to optirnize the

objective function, but also tc satisfy equality constraints of the form

ci(xl,...,xn)=0 i=1l,...,k

and/or inequality constraints of the form

ci(xl....,xn)ao i =k+l,.,.,m

Example 3 of Volume II illustrates these concepts. In this example, the
objective function is vehicle weight; the independent variables are three burn
times, four reorientation angles, and two pitch rates; and the constraints are
four equality constraints which define a final orbit, Thus, the problem is to
minimize the vehicle weight as a function of the nine specified parameters

subject to a set of four equality constraints which define a final orbit.

Search problems are a special case of parameter optimization problems
for which an objective function is not explicitly defined. Rather, for search
problems the intent is to determine the values of n parameters which satisfy
a set of constraints. The number of independent variables may be greater

than or equal to the number of constraints, Root solving problems are a sub-

class of search problems for which the number of variables equals the number
of constraints, Example 2 of Volume 1l is an example of a root solving prob-
lemr.. The constraints are that the longitude and latitude of impact should be
equal to specified values, The independent variables or targeting parameters
are the launch azimuth and a pitch rate,

An optimization problem whose objective function can be written as the
swn of squares of the constraints (residuals) 1s called a least squares problern.,
In general, the number of constraints is greater than or equal to the number of

variables, and it is not expected that the residuals will be zero at the solution,

2,1-2

e e————— - -

o s ARSI e S it ot BT

L, -~
s

I

£ bt b o . p . P
. tow A duntl TR o Vo

N ..\‘-.L‘.AM-‘.‘!MM'_MLMW -}

- —
e N
SNSRI HETTN W -

L

WRT A ARTAT WY O

b s A il

e

TP R

R T N 1S I SPAR, » ATV ¢ ' ST T [emr eI

TV N T ey 4

QY DOCTTIHI G IS N @ e, oA

A least squares problem of this type can be solved using the optimization
oporators, by posing a problem with equality constraints and no explicit

objective function, [lence, the GTS optimization and search capability may

be applied to scveral types of problems, These options are discussed in

more detail in Section 2, 3.2.

All the optimization and search operators discussed in Section 2,1 are
overational as a part of the GTS system. Thus, the complete GTS model

library, the GTL input language, and the GTS process control capability may

3
!

be employed to define optimization and search problems. This flexibility
permits many diverse types of problems to be posed for solution within the

GTS systermn. Potential problems include boost trajectory problems (see

bt S . 7 Mkt P

example 3 of Volume II), orbital transfer problems (see example 4 of

Volume II}), or trajectorics that include both boost and reentry phases.

Vehicle design problems (see example 9 of Volume II) illustrate that an
optimization problem need not require a trajectory simulation. Furthermore,
as illustrated by example 10 of Volume II, problems may be formulated

independent of any flight dynamics models.

s 1.2 Data Specification

The data required to define an optimization or search problem 1s
specified via GTL. A specific format for the definition of optimization and
scarch problems is part of GTL. A complete description of this input format is
given in Section 2. 2. In addition, all GTL capabilities (see Volume II), such as
the tabular input format, event speciiication, and GTL FORTRAN routines,

may be utilized for defining an optimization or search problem., Briefly, the

Rt kA Bl (1 ot R, M, 06 R NG Nk P w“

input for optimization and search problems is in the model type--model format.
These optimization input model types reflect the major components of an
optimization problem (i. e., objective function, constraints and independent
variables), and cornsequently, these niodel types are independent of a particular
operator requested to solve the problem. That is, all the optimization input

models described in Section 2.1 are compatible with all of the optimization

UL S L v i b P ket My et 0 dn ok o Eiad, o A ik . .

b

opcrators described in Section 2,2, Furthermore this independence of input
models and operators impli.s that the user may choose the input format which
is most convenient for his particular problem, regardless of the operator
requested to solve the problem. Also, once a problem has heen defined, a
different operator may be requested to solve the problem without redefining

the input data.

2.1.3 Function Generator Error Response

As a part of an optimization application, the condition may be encountered
that the GTS system is unable to compute the values of the constraints or the
objective function for a specified set of values of independent variables. For
example, consider a trajectory optimization application for which the values of
the independent variables are such that an abnormal trajectory termination
{e. g., a negative altitude) occurs, From the user's viewpoint, this situation
may be tolerable if the optimization process can recover {rom the current
difficulty, continue the optiinization process,and ultimately obtain a solution.
Alternately, the user may feel that the inability of the program to compute all
desired quantities is symptomatic of a fundemental error in the problem
formulation., For this case the user would prefer that the optirmization process
be terminated and that the problem be studied before continuing the optimization

process.

The GTS optimization system is cognizant of these potential situations,
and the following logic concerning the inability of the function generator to
complete a function or gradient evaluation has been implemented into the
GTS optimization system, First, there are two situations which result in the
program terminating when such a point is encountered, One is that the user
requests, -ia input, that the job be terminated whenever the program is
unable toc complete an evaluation of the objective function or constraints. The
second such situation is that the initial point is not a computable point. That
1s, the system does not attempt to determine a feasible point if the first point

is not feasible; rather, it terminates and requests that the user provide such

%
]

"

i

[p——

ofsd

o e & Ve a0

P

PRI VLY DRV O R P T

BT IR LoD

TN T Y TR

-

L A2 TN s s

RFT IS 4

T S AT

information. Here a feasible point is defined to be a point where all desired

evaluations can be made.

Otherwise, the program will attempt to continue if a nonfeasible point
is encountered. Except for the initial point, a nonfeasible point can occur
in two different circumstances, and the program response is different in each
casc, First, the nonfeasible point is a prediction made by the optimization
operator., For this case, a message is printed indicating the situation and
a return is made to the optimization operator with the information that an
evaluation was not possible at the last point, The optimization operator must

then provide a new prediction. Second, the nonfeasible point is a perturbed

:
:

trajectory requested in the process of providing numerical derivative information.

For this case, the current perturbation size is changed and a new set of
perturbed evaluations are attempted. A message indicating the situation and

the new values of the perturbation size is printed.

Finally a note of caution—this error response capability is available for
the user's convenience in situations where a nonieasible point is a temporary
anomaly and the rather simple logic described above is sufficient to overcome
the difficulty. The logic is probably inadequate to handle more complicated
situations such as a problem in which the solution lies near a region of non-
feasibility. Furthermore, this capability should not be a substitute for an

adequate problem formulation.

2.1, 4 Restart Capability

The algorithms embodied in the UOPTIM and UBEST operators are
recursive in nature. That is, successive estimates of the solution are based

not only on the information obtained at the most recent evaluation, hut on

information obtained at all previous evaluations. Consequently, the algorithms

are generally more efficient if they are allowed to continue uninterrupted to a
solution rather than requiring the program to begin anew at a set of inter-

mcdiate points. It is not always practical to permit the program 1o proceced

3
ij
3
|
|

AL

U INE L. JUHIY P PP ar CPUr eI IE U, I SR TR P o gy s v DAV - VORI P Wy J |

o ap

TR s e YL T AT mbrma g Ty Sl Sy e e oA et ARy

uninterrupted to a solution, or the user may want to analyze intermediate
results. For these situations a restart capability has been incorporated

into the program, This restart capability permits recursively generated
information to be saved at the completion of a job if a solution has not been
obtained. A subsequent run may access the information generated by the
original run, thereby eliminating the need to regenerate this information.
The input data required to save this information and subsequently access this

information is discussed in Section 2,3.2,

2.1.5 Optimal Control Problems

In addition to the nonlinear programming problems and search problems
previously discussed, optimal control problems may be posed for solution on
GTS. For purposes of definition, assume a set of state equations of the form

dx

T f(t, x,u) x(to) = X,

where x and { are n-vectors and u is an m-vector. Also, assume a

performance index of the forrn

Tu) = Gt , tox(t), x(t))
t

{
+ J’ g(t,x,u) dt
to

The problem is to chonse the set of functions u, referred to as
the control functions, such that the functional J{u) is minimized. In addition,

constraints of the form

0

-
1"

ci(t,x,u) l,...,)

\

[}

-
]

ci(t,x,u) 4 =g+, .00k

may be imposed on the system. For optimal control problecms, as contrasted

with optimization and search problems, the problem solution rcquires the

Iy —— . SRR ¥ VARSARIE §5 AT TRETATHE . BT A T T raanl

i
L

L T S oy (e

determination of a time dependent function u(t) rather than a finite set of ‘
parameters. Morcover, the constraints are time dependent functions. In 7

additicn, the initial time t , or final time t, may be parameters to be -
determined. Example 10 of Volume II is an illustration of an optimal control
problem, The control functions are the rates of change of mechanical power
u, of the individual power plants. The objective is to minimize the function

J , subject to the constraint that the total power produced equal the demanded

YR

load.

A general method that may be implemented within the GTS system for
the solution of optimal control problems is to approximate the contreol functions
3 by a finite set of parameters and then to apply the existing nonlinear program-

ming operators to this resulting finite dimensional optimization problem,

Again, example 10 of Volume U illustrates this technique. For this exampgle,
the set of parameters which approximate the rate of change of mechanical

power is the value of these rates at a specified set of time points. This

wall oo 4

approximation technique is easily implemented via GTL tabular input and the

t) GTL equivalence option. The constraint
|u.1(t)| U,

is approximated by a finite set of constraints that require each of the tabular
values of the rate of change of mechanical power to satisfy the above constraints, J
Thus, a time varying constraint has been replaced by a discrete set of

constraints,

Certainly, different techniques for approximating the control functions

and specifying the constraints rnay be more desirable for specific problems,

eI o TR IO T OSSN e W

and the user has the option of designing a parameterization technique which

suits his problem,

] 2.1.6 Recommendations for Usage

Potential difficulties commeon to all optimization and search operators
are mentioned prior to presenting specific recommendations concerning)

the individual operators. When defining the input data for a search or

|

T e O N W VST ey g sy

Rl o

optimization problem, tne user must insure that the particular model config-
uration specified does compute the objective function and the constrainte. In
addition, the user must insure that the independent varizbles are valid inputs
for the models that are to be executed. For example, tor prublem number 9
of Volume 1I, RANGLS is not a valid objectiive function for the specified model

configuration since a trajectory simulation is not being periormed,

All the optimization and search operators implicitly agsume that the
computed quantities (i.e., the objective function and constraints) satisfy
continuity and convexity requirements. These requirements are generally
very difficult to verify analytically, and it is not expected that the user do so.
The user should, however, formulate his problems such that known discon-

tinuities in the function and derivatives are avoided.

For trajectory simulations, the user must accept some inaccuracy
associated with the integration process. A given integration accuracy that
may be acceptable for the user's analysis, however, may not be acceptable
for a simulation which is a part of an optimization or search problem. This
situation is especially true for optimization and search problems which obtain
derivative information via numerical perturbations. Recommendations for

the usage of integration operators are given in Section 4. 3,

In addition, for trajectory cases the user should realize that an
optimization or search operator may, potentially, request a trajectory
simulation with values of the independent variables which results in an event
sequence that is different from the one encountered in the nominal case,

The user must either formulate the problem in such a manner that this
situation presents no difficulty or he must eliminate this problem by the
specification of the range of the independent variables or by the specification

of the event criteria.

For the convenience of the user, a list of the optimization and search
operators available in GTS is given below. Recommendations concerning

the types of applications to which each operator might be best applied are

0 PRy o

TN IS NS LS WP Y o ISP

FUUNIT N ~FOP IR WU SSPRN V- Py

b i

also presented. These recommendations are only to serve as general guides,
not absolute rules. Specific knowledge or experience that a user may have .
concerning an individual problem would supersede these recommendations,
The algorithms are undergoing a continuing process of modification and
improvement. Furthermore, new algorithms may be introduced into GTS.
Consequently, the user should be sure that his selection of an operator is

based on the most recent information that is available. 2

1. USCHN -- USCHN is only applicable tc search problems. Further-
more, its effectiveness is generally limited to smaller dimensional problems,
roughly less than 10 variables and 10 constraints. USCHN does not require
an evaluation of partial derivatives at each point. Consequently, it is more

efficient than the other algorithms for those problems where it is applicable.

g

2. UOPTIM -- UOPTIM is applicable to general nonlinear constrained
parameter optimization problems, search problems, least squares problems,
and root solving problems. For constrained parameter optimization problems,
the UOPTIM algorithm generates a set of intermediate points which satis{y
the constraints. Consequently, UOPTIM is preferred for those problems in
which it is useful to obtain intermediate points that satisfy the constraints.

For all problems the UOPTIM algorithm requires gradient information at
every point; consequently, it will be less efficient than USCHN for probiems
for which USCHN is applicatle.

3. UBEST -- UBEST is applicable to general nonlinear constrained
parameter optimization problems, search problems, least squares problems,
and root solving problems. ¥or constrained paramater optimization problems,
UBEST gencrates a set of intermediate points which are near the optimum of
the objective function but which violate the constraints, Consequently,

UBEST is preferred for those problems in which it is useful to obtain inter-
mediate points ncar the optimum of the objective function., For search or
least squares problems, the UBEST operator is preierred to UOPTIM,

especially for cases which have a nunzero minimum. UBEST requires

v
—
'

Nej

YT A S G T

gradient information at every point and is less efficient than USCHN for

problems for which USCHN is applicable.

2.1-10

9y |

S e o

¥

PRI ORERY I TR AP AT

2.2 Optimization and Search Operators

All of the optimization and search operators available in the GTS
program are discussed in this section, The description of each operator
includes a brief, heuristic outline of the optimization or search algorithm
and a list of the informative and diagnostic messages that are output by the
operator, These messages are intended to permit the user to follow the

progress of the algorithm and to analyze the results that are obtainea.

2. 2.1 UOPTIM

The optimization operator UOPTIM is described in the following
sections, This operator is designed to solve the following problem, Determine

the n-vector x that optimizes (i.e., maximize or minimize) the scalar function
f(x) = fx)x5000,x) (1)

subject to the equality constraints

ci(x)=0 i=1,2,...,k (2)

and the inequality constraints

ci(x) >0 i=k+l,k+2,,..,m 3)

‘The functions f(x) and ci(x) are assumed to be twice continuously
differentiable in the region

X, € X € xy {4)

where xp and Xy ~re specified upper and lower bounds. These bounds
detcrmine a region of computability and unlike constraints cannot be violated
during the ijtcrative process,

As special caszs of this problem, the UOPTIM operator is designed
to solve unconstrained optimization problems in which there are no constraints

{m = 0), nonlinear root solving problems, scarch problems,and nonlinecar

lcast squares problems,

N S I omp et o e il L ead T A VS
gl S S I B ARy NI s 2 Rl S ORI LA PR e SR T TR 2 - < = 3Ly T g

The following sections give a brief, user.oriented description of the -

UOPTIM algorithm. A more complete development of the algorithm may be

found in Ref. 1.
2.2.1.1 General Description
Assume the optimization problem defined by Egs. (1), (2), and (3) has a -
solution x™, At x* the following conditions hold: o
cx*) =0 i=1,2,...,k 3
and for :
i = k+l,k+2,...,m
either
. =
ci(x*) =0
or -

ci(x“‘) >0

That is, at the solution an inequality constraint is either satisfied as an
equality constraint, or it is satisfied as a strict inequality constraint and,
as such, imposes no restrictions on the problem, For definiteness, we
shall refer to the set of constraints B that is satisfied as equality

constraints at the solution as the basic set of constraints.

Byj: - ’Cl 'Ci(x’;‘) =0 i= l,Z,....rn}

Clearly, B* contains all equality constraints and a subset of the inequality

constraints. Hence, the optimization problem defined above can be solved

if the following two subproblems can be solved. First, determine the basic
set of constraints B*, Second, solve the following equality constraint

problem:

TR

B antote o i d

i -":4- Siinrad

1 ' s
) - optimize f(x) ‘

subject to ,'

ci(x) =0 4 € B* ‘
To solve the first problem, a sequence of estimates of the
basic set of constraints is made. Each of these estimates of the basic set
of constraints is referred to as a basis. Each basis contains all equality
constraints and a subset of the inequality constraints, The total number of
constraints in each basis is restricted to be less than or equal to n. As
each basis, B, is specified, an associated equality constrained optimization
problem is posed. After a solution to this equality constrained problem is
found, a new basis estimate is made by adding and/or deleting inequality
constraints from the existing basis, The constraint addition and deletion
logic is formulated such that if at the solution of a posed equality constrained i
problem no constraints can be added to or deleted from the current basis, :
then the current basis is the basic set of constraints. Therefore, the current

point is the solution to the overall optimization problem.

2.2.1.2 Equality Constrained Algorithm

Assume a basis estimate has been determined. This section describes
the associated equality constrained optimization problem that is posed and
the method used to solve this problem. The next section Gescribes the i

constraint addition and deletion logic used to obtain a new basis estimate.
Consider the function
fix) = f(x) + rP(x) (5) R

where f(x) is the objective function, r is a nonnegative scalar referred

to as the penalty parameter, and the function P(x) is defined by

IO D) (6)

, cifB

BEOYO SN trtr it O At e S el = su 2 Sna s SR REBOTLAAL) LT B DS B S LS

G AT AAT ey T L 0 ST 57 TmaanR e 2 D owatew o mamie el Xy THE S e A e e ¥ AT T -

where

c.l-(x) = min[O, ci(x)]

The UOPTIM algorithm poses the following constrained problem

for solution:
optimize f.(x)
subject to

ci(x) =0 cie B

This equality constrained problem is solved by the following elimination
of variables technique. Assume that ci , 151,2,...,r<n are the constraints
in the current basis. Then define a new set of variables u, o, i=1,2,...,n,
in the following manner. For i=1,...,r let u, = ci(x). For i=r+l,...,n,

1 - . .
set ui = xi' » where xi is chosen among the original set x, .. .xn. Hence,

1
we have defined a set of functions Yi(x), i=1,...,n, such that u, =)’i(x).

where
u, = ¥(x) = ci(x) i=1,2,...,r
u4=7.(x)=xf i=r+l,...,n
i i i
If we require that the Jacobian matrix J =);‘ is nonsingular, then

there is an implicitly defined family of functions l‘i, i=1,...n, such that
X, = I‘i(ul, Uypeoo ,un), i=1,...,n. Now consider the function g defined by

glapseeenu) = E (R epu) Tlup, ey)

The problem of optimizing f(x) subject to c(x)=0,i=1,...,r is
equivalent to optimizing g(ul, Usyeeo ,un) subject to Up S0, Tl Fu o F 0.

Equivalently, this problem reduces to optimizing

h(u_ yseeesu) =8(0,0,0..,0,u yyenya)

2.2-4

uﬂ&m@ o

~
naiad

PR PIROYVE SRR WIS SRS W ST PVAVIIIIILILD T UY TROT Jopgeore e ‘

PRI VPRI PR

e D

Atm

- S VARG ESTIR AR T R

IS
§
[\
o ek gt A ik ae y I....'MJ

Thus, the equality constrained optimization problem with n independent
variables has been reduced to optimizing a function h of n-r variables

with no constraints.

Y (R

Note that the ner optimization variables u., i=r+l,...,n, are
a subset of the original set of independent variables. The remaining r ;

! variables from the set Xy e

E ui=ci(x)=0 i=l,2:---,r

x are determined so that the r constraints

o e i

are satisfied. This completely defines the vector x.

Therefore, the equality constrained optimization problem has
been '"factored' into the two problems of an unconstrained optimization
problem of n-r variables and a root solving problem for a system of r
variables and r constraints, Currently, the root solving problem is

accomplished by minimizing the associated function

3 - _ l y 2
o= 3 3 [60)] |
[N c;€B
; i
Consequently, the equality constrained problem has been reduced to two

lower dimensional unconstrained minimization problems.

The following basic technique is used to solve both of these unconstrained
minimization problems, Let {f represent the function to be minimized. That
] is, f = h for the unconstrained minimization problem and i =¢ for the root
solving problem, The algorithm thern minimizes { by making a series of
iterative improvements to an initial estimate xo, according to the formula
l’ xiH=xi-pisi i=0,1,2,...

The search vector s’ is computed by

st ad orxt) i=1,2,...

E where Vf(xl) is the gradient of f at x! and K' is an i-th approximation
of the inverse of the Hessian matrix, or matrix of second partial derivatives

of f. The scalar P' is determined by a one dimensional search procedure.

T

= T e o —

. i+] : . . .
At the point x ', a new estimate of the inverse of the Hessian matrix

Kw1 is made based on the values of f(xi+l), f(xi), Vf(x“l), Vf(xi) and
Ki. Once Ki‘\1 is determined, the procedure is to be repeated until the
specified convergence criteria are satisfied. This scheme is quasi-second
order, in that convergence is quadratic if the objective function is quadratic

near the solution.

2.2.1,3 Basis Determination

Assuming that the equality constrained optimization algorithm described
in the previous section obtains a solution to the posed problem, we describe
the method by which constraints are added to, or deleted from, the current
basis to form a new basis. I the current point is a solution to
the posed problem, an attempt is made to add all violated constraints to the
basis. U this is not possible, then the constrainte are ranked in order of
their ''violation.!" For the UOPTIM algorithm, the ''violation" of a constraint
is defined to be a linear estimate of the distance from the current point to
the ncarest point where the constraint is satisfied. Recalling that a basis
may contain at most n constraints, as many constraints as possible are

added to the basis in order of their ''violation, "

The constraint deletion logic attempts to determine the one constraint

that, if released from the basis, will result in the greatest improvement in

the function { consistent with the requirement that the other constraints

in the current basis remain satisfied. The current logic permits only one
constraint to be released. Furthermore, the constraint deletion logic is
consistent with the Kuhn-Tucker neccssary condition for a solution., If at

the solution to an equality constrained problein there are no violated constraints
and no constraints can be deleted from the current basis, then the current

basis is the basic set of constraints and the current point is a solution.

2.2, 1.4 Example

As an illustration of the UOPTIM algorithm, consider the following

simple problem:

2,2-6

(U

. 2 2

minimize {(xl. xZ) = X v ox,
subject to: Cl(xl' XZ) = -(xlz)/‘l + x, t 4>0)
;
3 ¢y (X, x,) =2x) +x, - 820

Figure 2, 2-1 illustrates the contours of the objective function, as
well as the constraint boundaries. The violated regions for the constraints
have been crosshatched. For this problem assume that constraint e (xys x5)
is in the initial basis. Assume the initial point was specified to be x = (4, 4)

Lol Sl B L b e L i

(labeled (1) in the figure). Initially, a factorization is obtained which specifies k.
that the wvariable %, is the constraint solving variable and variable number 2
is the optimization variable. ‘Then a solution of the constraints is found as a

function of the constraint solving variable., The point (5. 6568, 4,0) (labeled (2))

is such a point. Next, the function {(x) is minimized subject to the constraints
in the basis, <y in this case, The point (3. 6673,-0,6377) (labeled {3)) satisfies

| this condition. Now constraints are added and/or deleted from the current

RITE B Spegy s

basis. Clearly, cz(x) must be added to the basis, and the algorithm determines ~ .‘
that cl(x) can he released from the basis. Thus, a new equality constrained
problem of optimizing f(x) subject to cz(x) =0 1is posed for solution. The point
(3.2, 1.6) (labeled (4}) iv then determined to be the solution to this problem.
At this point there are no violated constraints, and, furthermore, no constraint =5

can be released from the basis. Thus, the basic set of constraints has been

determined, and the point (3.2, 1,6) is the solution to the problem,

22.1.5 Special Usage

The following input quantities which are specific to the operator UOPTIM
can be specified as a part of the problem definition model PRBDFMI1 input

(Section 2.3,2.1). However, it is recommendcd that these quantities not
be changed from the preset values without knowledge of the algorithm and a

demonstrated requirement for an alternate input value,

(.

TP SR T TR PR, ST RN AT (A T R TR e

b e _,ﬁ-ﬁﬁf&'wwa‘asﬁw}acw:m&ﬁvmﬂlwgﬂfi .

cz(x)=0
X, cl‘(x)=o
/\
flx) =647 /\
z f(x) =36 S
‘k ~
L(2).

i Figure 2.2-1. UOPTIM Example

bttt

k,) Mnemonic Description Default Value 3
: .
3 PENLTY Value of the penalty parameter 1.
]
] ITC Problem number for analytic test 0
problem (integer) 3
MAXITC Iteration limit for the constraint solving 99
process
MAXITS Iteration limit for the unconstrained 99 =

optimization process

MAXITP Limit on the number of equality 20
constrained problems that may be posed

2.2.1.6 interpretive Qutput from UQPTIM

The following set of messages appear during the normal operation
of the algorithm and are designed to aid the user in following the progress
of the algorithim, These messages are printed in addition to the point: by-

point iteration print described in Section 2. 3. 2

» r———

; ’ OBJECTIVE FUNCTION + PENALTY = xxxxx...the value of f(x) (Eq. (4)). »

DEFINE EQUALITY CONSTRAINED PROBLEM N JMBER n... (see
Section 2.2. 1. 2).

FOR THIS SUBPROBLEM THE VALUE OF THE PENALTY PARAMETER
IS xxxxx... (see Eq. (4)),

BEGIN EQUALITY CONSTRAINED OPTIMIZATION ALGORITHM IN ORDER
TO OPTIMIZE THE OBJECTIVE FUNCTION SUBJECT TO THE CONSTRAINTS
IN THE CURRENT BASIS, (see Scction 2,2,1,2)

CONSTRAINT SOLVING VARIABLFES...a list of the independent variables
specified by the factorization to solve the constraints. (Section 2.2.1.2)

OPTIMIZATION VARIABLES. .. a list of the independent variables specified
by the factorization to optimize the objective function. (Section 2.Z2.1.2)

BEGIN CONSTRAINT SOLVING ALGORITHM. (Section 2.2.1.2)

e S 1 Y G} r——o— | — an

2.2-9 -

TR T e 1 o T YT e oo

. —— - . [, ——

| B Pl

Ay

CONSTRAINT SOLVING ALGORITHM ITERATION NUMBER n.
(Section 2,2.1.2)

UNCONSTRAINED OPTIMIZATION ALGORITHM ITERATION NUMBER n.
(Section 2,2.1.2)

END CONSTRAINT SOLVING ALGORITHM, THIS POINT SATISFIES THE
CONSTRAINTS IN THE BASIS, (Section 2.2.1,2)

END UNCONSTRAINED OPTIMIZATION ALGORITHM, THIS POINT
OPTIMIZES THE OBJECTIVE FUNCTION SUBJECT TO THE CONSTRAINTS
IN THE BASIS.

NO CONSTRAINT CAN BE DELETED FROM THE CURRENT BASIS
(CASE 1) ...constraint deletion logic to attempt to form a new basis.

NO CONSTRAINT CAN BE DELETED FROM THE CURRENT BASIS
{CASE 2)...constraint deletion logic to attempt to form a new basis.

THE FOLLOWING INEQUALITY CONSTRAINT HAS BEEN RELEASED 3
FROM THE CURRENT BASIS (CASE 1) n,..constraint deletion logic to v
attempt to form a new basis. -

THE FOLLOWING INEQUALITY CONSTRAINT HAS BEEN RELEASED
FROM THE CURRENT BASISE (CASE 2) n...constraint deletion logic to
attempt to form a new basis, -

THE FOLLOWING n VIOLATED INEQUALITY CONSTRAINTS HAVE
BEEN ADDED TO THE CURRENT BASIS,.. a list of the constraints added i
to form a new basis. (see Section 2.2.1.3) p:

THE BASIS CONSISTS OF THE FOLLOWING n CONSTRAINTS...a list
of ccnstraints in the current basis, (see Section 2.2.1.2)

2.2.1.17 Diagnostic Output

Any one of the following set of messages may appear if the UOPTIM
algorithm is not progressing in a nominal manner., The appearance of
one or more of these messages should serve as an indication ¢f a possible
problem; however, it does not necessarily imply that the algorithm will
be unable to obtain a solution. F
IN THE CONSTRAINT SOLVING ALGORITHM THE CURRENT POINT 15

ON THE BOUNDARY AND THE CONSTRAINTS ARE NOT SATISFIED, The
constraint solving algorithm has terminated on a bound defined by Eq. (4). This

2,2-10

Rl L MR L T

EEE R P L IR

e TS TN

o~
{_—:

-

condition may be an indication of an unrealistic specification of the bounds
or an inadequately definec prcblem,

REQUEST A NEW SET OF CONSTRAINT SOLVING VARIABLES. In an
attempt to solve the constraints in the basis, a new set of constraint solving
variables is requested.

THE CONSTRAINTS IN THE BASIS CANNOT BE SATISFIED WITH THE
CURRENT SET OF CONSTRAINT SOLVING VARIABLES. The constraint
solving algorithm is unable to satisfy the constraints. The algorithm will
attempt to formulate a new problem by changing the constraint solving
variables or by altering the basis.

IN THE OPTIMIZATION ALGORITHM THE CURRENT POINT IS ON THE
BOUNDARY AND THE ALGORITHM CAN DO NO MORE PROCESSING.
The unconstrained optimization algorithm has terminated on a bound
defined by Eq.(4). This conditionmay be an indication of an unrealistic
speculication of the bounds or an inadequately dcfined problem,

END EQUALITY CONSTRAINED OPTIMIZATION PROCESS, THE
CONSTRAINTS IN THE BASIS ARE INCONSISTENT OR INDETERMINATE
AND CANNOT BE SATISFIED., The algorithm will attempt to formulate
a new basis by deleting a satisfied inequality constraint,

NO INEQUALITY CONSTRAINT IN THE BASIS IS SATISFIED, No equality
constraint can be deleted. The algorithm will terminate.

IN AN ATTEMPT TO FIND A BASIS THAT CAN BE SATISFIED, THE
FOLLOWING INEQUALITY CONSTRAINT IS BEING RELEASED FROM

THE CURRENT BASIS n. If a solution to the constraints in the new pasis is
found, then the algorithm wil] continue as outlined in Sections 2.2.1.3 and 2.2.1. 2,

IMPOSSIBLE INCONSISTENCY ERROR CONDITION, The constraints are
probably inconsistent, This may indicate an ill-posed problem.

THE ALGORITHM TERMINATED ON A MAXIMUM NUMBER OF
ITERATIONS COUNT AND MAY NOT HAVE CONVERGED TO A PROPER
SOLUTION., Further iteration will probably not yield any further
improvement. An alternate problem formulation may be desirable,

THE PROGRAM DETECTED A PROBABLE CYCLING BEHAVIOR IN THE
BASIS SELECTION PROCESS. The basis selection process is unable to
determine the basic set of constraints. An alternate problem formulation
may be desirable.

A PROBABLE ESSENTIAL INCONSISTENCY IN THE CONSTRAINTS HAS
BEEN ENCOUNTERED. The algorithm has determined that the constraints
do not have a solution, at least locally. A different starting point or an
alternate problem formulation may be desirable.

I e R e AL MG Al i e L

E
|
!
:
i
L
]

THIS POINT 1S ON A BOUNDARY AND THE ALGCRITHM MAY NOT HAVE
CONVERGED TO A PROPER SOLUTION. The algorithm is unable to find a
solution that is interior to the region defined by Eq. (4). A larger value of the
input value of PENLTY, or an alternate problem formulation, may be desirable,

2.2.2 UBEST

The optimization operator UBEST is described in the following
sections. The operator is designed to solve the following problem. Determine
the n-vector x that optimizes (i.e., maximizes or minimizes) the scalar

function

f(x) = f(xl,....xn) (1)
subject to the equality constraints

c;lx) = 0 i=1,2,...,k (2)
and the inequality constraints

k+1,k+2,...,m (3)

ci(x) >0 i

The functions f{(x) and ci(x) are :ssumed to be twice continuously

differentiable in the region

x, € X € % (4)

L= U

where Xy and Xy are specified lower and upper bounds. These bounds
determine a region of computability and unlike constraints cannot be violated

during the iterative process.

As special cases of this problem, the UBEST operator is desiguned to
solve unconstrained optimization problems in which there are no constraints
{m = 0), nonlinear root solving problems, search problems, and nonlinear

least squares problems.

The following sections give a brief, user-oriented description of the
UBEST algorithm. A more complete development of the algorithm may be
found in Refs, 2, 3, and 4,

2.2-12

S il 4SS deinn. 1 u.LO MMWWMMW}A&%M

It ra——

2.2.2.1 Preliminary Developments s

Define the Lagrangian function

Lix,A) = £(x) + c T (x)A (5)
£/
where c(x) is the m-vector of all constraints and A is the m-vector of '
Lagrange multipliers. At the optimum point (x*, A%)
VL(x%, A%) = g(x*) + G(x*)A= =0 {6)
where VL is the gradient of the Lagrangian function with respect to x,
g(x) is the gradient of the objective function, and the n x m Jacobian
matrix is given by
. -
8cl dc
m
3% BRI
G(x) = [Vcl,..., va] = - . (7)
acl ch
den 5xn] N
Furthermore, at the solution
Ny, () =0 i=1,...,m (8)
whe rc
5
)\iso for i=(k+l),...,m (9)
To distinguish the constraints that are satisfied as equality
constraints at a solution, define the basic set of constraints,

w - %"y _ .
B -{cilci(x)-O i=1,...,mj (10)

An estimate of B* shall be referred to as a basis, B, If the gradients of

the constraints in B* are linearly independent at x*, then Eqgs. (6), (8), and (9)

2,.2-13

- —— -

constitute the Kuhn-Tucker necessary conditions for the existence of an

optimum.

Assume a basis estimate has been made. The basic philosophy used
by the optimization operator UBEST is to find a point where the Lagrangian
condition, Eq. (6), is satisfied and then to estimate a point where the constraints
are satisfied. At such a point a new basis estimate can be made, and the
process can be repeated. In contrast, for a given basis, the operator
UOPTIM first satisfies the constraints and then follows the constraint

surface to a point where the Lagrangian condition is met,

2.2.,2.2 Unconstrained Optimization Algorithm

It can be demonstrated that the Lagrangian condition, Eg. (6), is satisfied

at points which minimize the augmented penalty function.

T, A, 1) = f(x) + ¢ (x)A+ rP(x) = L(x,A) + rP(x) (1)
where 1 is a scalar referred to as the penalty weight, A is an m-vector of .,
specified estimates of the Lagrange multipliers, and P/x) is the penalty
function

2 2
P(x) = E clix) + Z 1fe;(x)] " (x) (12)
i€B i¢B
with the indicator 1 defined by
i if ¢,<0
1fe.(x)] = ! i=1,2,...,m (13)
i .
0 if ciZO
For specified values of A and r , the minimization of J is8 an unconstrained

optimization problem,

The basic procedure used to solve this unconstrained problem is to
make a series of iterative improvements to an initial estimate of the

solution, xO, according to the formula

o d ot 00,2, (14)

2.2-14

T S P VT TN 1 T W T I TTT I IO [L TP on UL P s m o

I Y TN R

- The search direction s’ is computed by solving the augmented system
H G o'\ [viit)
= 15)
AT 1 A (
R T A 0

where VJ is the gradient of J, 8 is the Jacobian nmiairix of the active
-~onstraints, and an i-th estimatc of the Hessian matrix or matrix of second
partial derivatives of J is deftned by 'VZJ =H' + Zra GT. The scalar pi is
chosen using a cubic search procedure so that

J(x”l) < J(xl)

. i+]
At the point x'

St A kMG S L bt 1 . it eIt A

, a new estimate of the Hessian matrix can be constructed
it gl . vItY) L and 93(x'). This

procedurec can then be repeated to obtain a new estimate of the solution. I

based on the values Ht » J(x

the search direction vector computed by Eq. (15) violates the bounds, Eq. (4), a

ol A .

quadratic programming algorithm is employed to compute s'. This iterative

process continues until

(TP T RT3

Iosehi] < 6, (16)

or

g, = xitl _yh “("xi“ + l)’1 <é (17)

2

nans Casalshera Ll by

where 61 and 62 are specified tolerances on the gradient norm and the

[OOSR

resolution norm. If J is a quadratic function of the independent variables
x, convergence will occur after n-iterations, i.e., the process is quasi-

second order.

2.2.2.3 Determination of the Basis

] The unconstrained optimization algorithm is applicable for a

] fixed basis and corresponding fixed values for the Lagrange multipliers.
Estimates of the Lagrange multipliers are determined at a fixed point x

to be the values of A which minimize the error in Kuhn-Tucker conditions

2.2-15

e

K
{
R e Tl T e b B T R L L PO ii

LA A |

en) = Har + bl ® (18)
where
G g
A= |0 ...0 b= |---- (19) 3
. C . . o=
v te 0 -
0 cm

The minimization of e as a function of A, subject to the negativity constraints,

Eq. (9), is solved using a quadratic programming algorithm.

The estimates of the multipliers and the values of the constraints are
used to determine a new basis B from the old basis B according to the

following rules:

Rule 1. If i<k, then ie€B; (20)
Rule 2. If i €B, then ie€B iff (A;<0 or c.<4)) (21)
Rule 3. Ifi¢B, then i€B iff (A,<0 and c,<4,) (22)

Rule 1 requires that all equality constraints be in the basis. Rule 2 gives

the conditions for deleting a constraint; namely the i-th constraint is deleted

if it is satisfied and has a nonnegative multiplier. According to Rule 3, a

constraint is added if its multiplier is negative and the constraint is violated.

It is possible that there is no point which satisfies the constraints in
which case the constraints are called inconsistent, If there is an indication
of constraint inconsistency, then B is constructed from B by deleting all

satisfied inequality constraints,

2,2.2.4 Constraint Phase

The purpose of the constraint solving phase is to predict a point
where the constraints are satisfied, while keeping the Lagrangian condition, Eq. .!
(6),satisfied. An estimate of the basis is required and the previously '

2.2-16

- R i el L AT b i AR A 3, i -,

P
1
n\
Fl
¥
.

Ll

i

L]

[

}
7
A

”l'

c

described unconstrained optimization algorithm is applicd to the penalty

function alone, ignoring the contribution of L{x,A) to J(x,A,r). The procedure

gt dbins

W

assumes the objective function is quadratic and the constraints are linear,

In particular, a direction is obtained by soiving Eq. (15) in its limiting form

T S I Y QD

. Hi a i » i k.
eT o AR/ \@)

ey vwer

where € denotes the i constraints in the current basis and any other violated

A . A k-
constrainte, G denotes the Jacobian matrix of the active constraints, and A 3

denotes che corresponding multipliers. The search step is then given by
f %=x-gs (24)

where the scalar step length 8 is chosen such that P(X)< P(x). Nominally

B =1, and a cubic interpolation procedure is used if necessary.

At the end of the constraint phase, the penalty weight is increased

according to the computation

- —— T

Ny T '
kil |=VL 9P . 10 max ("12) kK (25) %
1

VP VP

where K is an input quantity, When the basis is unchanged from the
Lagrangian phase to the constraint phase, X is set to one, i.e., there is no

increase in the penalty weight.

2.2.2.5 The Nonlinear Progamminj Algorithm

The basic steps of the algorithm are:

Step 1. (Lagrangian Phase) For a fixed basis Bk , fixed multipliers
Ak , and fixed penalty weight rk , minimize the augmented
penalty function, Eqg. (11}, using the unconstrained optimization

algorithm given in Section 2,2.2.2. Call the solution X.

Step 2. {Basis Determination) Keeping X fixed, compute a new

2.2-17

basis B and multipliers A, using the procedure in Section
2.2.2.3.

Step 3. (Constraint Phase) Beginning at X , with fixed basis B,

minimize P, using the unconstrained algorithm given in
Section 2.2.2.4. Call the solution x**), 11 Pe**!) £ 0,

constraints may be inconsistent.

Step 4. {Basis Determination) Keeping ka fixed, determine a

1

new basis Bk+ and multipliers)\kﬂ using the procedure

given in Section 2, 2. 2.3, When checking for inconsistent

constraints, if B = B]l<+1 , terminate the algorithm.
Step 5. (Convergence Tests) Terminate if e(A) <61 and o, <62 - %
from Eqs. (16) and (17). 3

Step 6. (Define Penalty Weight) Compute new penalty weight

using Eq. (25).

C

Step 7. (Update Information) Set k = k+l , xk = xk“ ’ 1-k = rk+l ,

Ak = Ak+l , Bk = BkH, etc. Return to Step 1.

2.2,2.6 Example

As an illustration of the behavior of the algorithm, consider the

following example:
2

minimize {(x) = lOO(x2 - X 2) + (l-xl)2

1
subject to

.2
cl(x)~x2 + xl?.O
c (x)=x2 + x,20
VA 1 2

1
s e >
cylx) = -x; + 5 20

ﬂ
N

PUPPNIEIVEPIGW B W ot TN

2.2-18

w acciilicd

g Wt . - = *

- Nty ey e -

\c4(x) - 0
c3(x) = 0
OBJECTIVE
FUNCTION
CONTOURS X

/}“‘:’l’. . A [AR . 4 ¥ / 4

Cl(x) o \\) ,% | (3)VL(X,)\) =0
N\, 7/

Figure 2.2-2, UBEST Example

2.2-19

c lx) = x +%zo

[}
U
X
[§¥]
+
[d
v
o

cs(x) =

Figure 2, 2-2 illustrates the contours of the objective function as
well as the constraint boundaries. The violated regions for the constraints
have been crosshatched, For this example there were no constraints in the
initial basis, so the initial multipliers were set to zero. A penalty weight
of r1 =1 was used and at the initial point, xO = (-2,1); the value of the
augmented index J(xo, A,r) = 915,25, The first iteration of the unconstrained
minimization produced the point (1,027,3.614), which is labeled (2) in the
Figure 2.2-2 and at this point J = 662.03. After 32 function evaluations
(27 iterations), the unconstrained minimum of J was located at
xl = (0.75, 0,5625), labeled (3), completing Step 1 of the algorithm,

Observe that for this problem the Lagrangian condition VL =0, is
satisfied when X, - xf‘ =0, for 0.5 le €1, and clearly xl lies on this
curve, The basis was determined as described in Step 2, Constraint Cq
was elzdded to the basis, with the multiplier estimate A3 = -.0.4705, Beginning
at x , an estimate of the constrained solution was made, assuming €y
was in the final basis. The point X = (0.5,. 0.1873) is shown with a (4) on
the figure. Note that the point satisfies the constraint, since Cc, is linear,
After making a new estimate of the basis in Step 4, and increasing the
penalty weight in Step 6, the algorithm returns to Step 1, with r2 =10,

The unconstrained minimum of J was located at x'2 = (0.545, 0.297) labeled
(5). Two more constraint phases and two more unconstrained minimizations
were performed before the solution at x* = (0.5, 0,25) was obtained. A total

of 47 function evaluations were required to guarantee five place accuracy.

2,2.2.7 Special Usage

The following quantities which are specific to the operator UBEST
may be specified as a part of the problem definition mecdel, PRBDFMI input.
(See Secction 2,3,2.1,)

2,2-20

()]

However, it is recommended that these quantities not be changed from their
L) preset values without knowledge of the program and a demonstrated requircment @

for an alternate input valuo,

IR TR Y

Mnemonic Description Default Value
3
4 DELTAL dependent variables convergence tolcrance 10'3
3

(see Step 5, and Eq. (16)); i,e., acceptable

error in Kunn-Tucker conditions. 2

DELTA2 independent variable resolution convergence 10

TR

tolerance (see Step 5, and Eq. (17)); guarantees
1 T . . -

log e significant figures accuracy in the L3
> .

independent variables,
CONLIM convergence limit, 10

EUSE typically EUSE>DELTA2, determines when 10
to use the U matrix in the Hessian comput-

ations. (see Ref. 3)

ITMAX the number of improving steps taken in an 1 b
unconstrained scarch iteration. An improved S

step decrcases the augmented objective

- — . " O .

function.

PERSNT percentage of the range of the variables to be 0. 01

permitted on first search evaluation.

7ERO floating point numbers whose absolute values 10

are less than ZEROQ treated as 9.

DELTR K in Eq. (25), smallest penalty increment per 10

cycle.

f PENLTY the scalar rin Eq. (11). If PENLTY <0, a 1

E 2.2-21

s o e £+ e =

Mnemonic Description Default Value

basis estimate is made at the initial point

and r = max (|/PENLTY/!, 1.).

MODEOP Mode of operation. When MODEQOP =1, 1
begin with Lagrangian phase (Step 1),
When MODEOQOP = 2, begin with constraint
phase (Step 3). When MODEOP = 3, begin
with Step 4.

2.2.2.8 Interpretive Output from UBEST

The following set of inessages appear in the normal operation of the
algorithm and are designed to aid the user in following the progress of the
algorithm. These messages are printed in addition to the point by point

iteration print described in Section 2. 3.

OBJECTIVE FUNCTION SCALE WEIGHT . . . the objective

function scale factor,
CONSTRAINT SCALE WEIGHTS . . . the constraint scale factors.

VARIABLE SCALE WEIGHTS . . . ind¢pendent variable scale

factors.

CONVERGENCE TOLERANCES. DELTAI =

DELTAZ2 = __ . Egs. (16) and (17)

ITERATION NUMBER __ _, GRADIENT NORM = __
AUGMENTED INDEX = __, ... display Ivsl and J. (Section 2)
SEARCH. . .STEP = __ _INDEX REDUCTION = . . . display

one-dimensional search information, p and J(xiH) - J(xi).
(Section 2, 2. 2. 2)

2.2-22

CONVERGENCE GRADNM =, RESNOR= _)

SOLUTION HAS BEEN OBTAINED WITH R = . + . coOnvergence

-—

of unconstrained algorithm, display losl . o,» and r. (Section 2.2, 2. 2)

SEARCH VECTOR COMPUTED USING Q. P, ALGORITHM . . .
quadratic programming algorithm was used to compute the s

vector. (Section 2,2.2,2)

U MATRIX USED FOR ALL SUBSEQUENT ITERATIONS. . . U

matrix used in the Hessian matrix approximation. (see Ref. 2)

LEAST-SQUARES SOLUTION OBTAINED . . . unconstrained
optimization algorithm used to minimize penalty only, i.e.,

J = P. (Section 2,2.2.2)

CONSTRAINTS IN BASIS . . . display basis constraint indices in
order of violation. (Section 2, 2.2.3)

LAGRANGE MULTIPLIERS . . . display estimates of Lagrange
multipliers, }‘i-' (Section 2. 2. 2. 3)

ERROR IN GRADIENT . . . the error in the Lagrangian condition,
"VL(x"r‘,}*)" in Eq. (6).

ERROR IN CONSTRAINTS ., . . the error in the constraints,
[P(x*)] 1/2..

INDEPENDENT VARIABLE RESOLUTION ERROR. . . errcr in

the variables, x and A.

2.2.2.9 Diagnostic Qutput from UBEST

The following list contains messages which may appear if the algorithm

is behaving in an abnormal fashion. The appearance of one or more of these

mesgsages should serve as an indication of a possible problem, It does rnot

- - — P - ———— s — e

————

2,2-23

ot R i AR A, 8, M‘H

T
oot b ks WKl S i P ek ot T &

[D NS S D

e M

Lo o d

necessarily imply that the algorithm will be unable to terminate normally.

CONVERGENCE TOLERANCES CHANGED DELTAl = _
DELTAZ = __ Internal convergence tolerances changed, usually
because one but not both of the input tolerances are satisfied. The

input convergence tolerances may be inconsistent or ' nrealistic.

PSEUDORANK = =~ LESS THAN _ _ _. . . Possible numerical
difficulties in the linear least squares process used to compute

the pseudoinverse, The problem may be poorly scaled.

SOLUTION MAY BE A DEGENERATE LOCAL MINIMUM. . .
Possible numerical difficulties in the quadratic programming
algorithm, The problem may be poorly scaled. This message

often occurs in conjunction with the previous message.

HESTENES ESTIMATE OF MULTIPLIERS USED . . . Numerical
difficulties computing the Lagrange multipliers. The approximation
A. = 2rc.I(c.] is used.

i i thi

CONSTRAINTS MAY BE LINEARLY DEPENDENT . ., . The g.sadients
of the constraints may not be linearly independent at the solution,

in which case the Kuhn-Tucker conditions are not applicable. One
may expect deterioration in the performance of the algorithm, as
well as other indications of numerical problems. An alternate

formulation of the problem may be appropriate.

THE FOLLOWING CONSTRAINTS ARE INCONSISTENT . , . The
penalty function has a nonzero value at its minimum. No constraint
could be deleted from the current basis, There may not be a point
which satisfies the constraints, in which case the problem should be
reformulated. The constraints may be locally inconsistent, in
which case restarting the algorithm from the initial point with a

ltarger penalty weight may lead to a solution.

2,2-24

i e o

————

NUMBER OF EQUALITY CONSTRAINTS =, GREATER THAN N,
Unless this is a search problem (PROB = :SEARCH:), it may be poorly

formulated.

TERMINATION BECAUSE POINT IS ON BOUNDARY . . . the
unconstrained algorithin has terminated with one of the variables on
the boundary. The point may not be on the VL = 0 surface. This
may imply a poor problem formulation and/or incorrect use of the

bounds. The solution may be nonoptimal,

2.2.3 USCHN

The search operator USCHN is described in the following sections.

This operator determines the values of a set of n variables

which satisfy the m equality conetraints
c,p=0 i=1,2,...,m 2)
where m<n. The region of search is limited by

xLSXSxU (3)

where Xy and x.,. are specified lower and upper bound vectora. These

U
bounds determine a region of computability and, unlike constraints, cannot

be violated during the iteration process,

2.2-25

%
|

1
;

A ainan? Ak~ milnd

o

il T

e e 3e o o e i KA MK - A i as i A s B |

2.2.3.1 Basic Procedure

(0)

The user specifies an initial point x' '. In addition, he must specify

a perturbation step size ij for each of the n variables.

Nominally, an initial difference matrix D(O) is computed at the
initial point by
(4)

(0) _ (0) (0) . .=
Dij = ci(x)-ci(x -ij) i=l,...,.mj=1,...,n

where A.x is a vector whose components are zero except for the j-th
component which is ij. Optionally, p(®) may be specified by the user
or may be generated in the previous case.

(1)

USCHN generates an estimate x of the solution by

x(l) = x(o) - 6x (5)

: . . 1]
where §x is to be determined. Two requirements are enforced or :;(),

L)

First, must be within the region defined by Eq. (3), Secondly,

(0) (1)

must be no

(0)

of the input perturbation size, where 1 is a

the change in any of the variables in going from x

(0)

to x
more than a multiple 1

scalar. That is,0x is required to satisfy

- fx €x (6)

U

and

ot s 0 ax 5=1,2,....n (7)
J)

USCHN accomplishe: this in the following manner. Define a trial bounding

vector B¢ by
(B,), = min ¥ lejl, lx(?) SCIDI PR AN xJ(O)I; (8)

j=L2,...,n

2.2-26

Define the diagonal matrix AX by
AX),. = Ax,
E ()JJ X; (9) _»
Let the n-dimensional vector p minimize ;
lex(®) - D%l (10)
subject to the constraint :3
L p. AX. 2
2 —g) < (11) ..
=1\ B
Then éx defined by
éx = (aX)p (12) 3
satisfies (6) and (7), and we generate the trial point x, by
0
. =x() . (AX)p (13)
: W, We comment at this point that if the matrix J* is defined by
y< = p'%ax)-! t;’
then 34
ci(x(o)) - c.(x(o) - A.X)
()5 1 J
Ax;
J
Thus, J* = D(o)(A)()~1 is an approximation to the Jacobian matrix
J = (3c/3dx). Equations (10), {12), and (13) are then seen to represent a Newton- ,
like method for determining a solution to the set of conetraints using J* ae
an approximation to the Jacobian matrix. The restriction Eq. (11) ensures that "3{
Egs. (6) and (7) are satisfied,
Beforea the trial point X, is accepted as the point x“). the algorithm must 7
determine whether ''sufficient improvement' in the constraints has been
obtained at X, The method for this decision is explained in Section 2. 2. 3. 2. @
If sufficient improvement has been obtained, x, is accepted as the new point)
x(l) and the difference matrix D(o) is updated by
| 1w
|
2.2-217 :ﬁ
i S
b ‘

e e reeam - —— C e e a—e - - o e eme e -

7 S B i e T Vi et ¢ m e

AR P PR 2

p) = pl@ _ 4ptD) (14)

where the matrix AD“) is computed by
(1) = e, - i=1 5
(aD).lj-_._;‘_z_L i=1l,...,mj=1,...,n (15)

In addition, an 17(1) is computed from fl(o) and the amount of gain. This
procedure is repeated until a solution is found or an unsatisfactory

condition occuraes.

Hence, the general iteration scheme for the USCHN algorithm is
as follows. Assume x(k), c(x(k)), D(k), and ﬂ(k) have been determined.

Calculate the solution p which minimizes

o™ . ™l (16)
subject to the constraint

n p. AX. 2 '

‘ <1 (17)

J'l ﬂj /
where

() _ . yplk) (k) _ _ (k)

By = min {1 ax, ™ -) b gy - % (18)

i=l,...,n

Compute the trial point

xy = x(k) - {ax)p (19)

If "sufficient improvement' in C(x?]z is achieved as defined by Section 2. 2.3, 2,

x, is accepted as the new point x +l). The matrix D(k) is updated by

Skt | k)| A p(ctl) 20)
where
(k+1) :
c,(x) P.
(AD(k“))ij - _1__._"7___)_ (21)
P

2.2-28

) (k) (k+1)
and the scalar 7 is updated to 0 by determining how much gain
in the constraints ii:as been made,

This procedure is continued until either the convergence criteria has
The

been satisfied or a maximum number of predictions has been made.
convergence criteria is that

|c‘(x(k))| <€ i=1,2,...,m (22)

where the tolerances €, are specified by the user. Currently, no resolution

f
§
|
1
i
1
i
|
]

] test is made on the independent variables.

2.2.%.2 Update Logic

The purpose of the update logic is to determine if sufficient improvement
has been obtained at a trial point. Also, if sufficient improvement has not
been obtained, then the update logic specifies a procedure for generating a
new trial point, Specifically, the gain g ig defined to be the square root
of the ratio of the sum of the squares of the constraints at a previous or

: 1 a
reference point x(k’ to the sum of the squares of constraints at a trial point

x That is

-
2
(e, ()
i 23)

2
(c;(x¢))

Clearly, the gain indicates if the USCHN algorithm is converging (g > 1)
or diverging (g<1).

il tlina b it N ervar B e ik 32 st b Bl Ul 811 el P QT ERATR IR BTV Py fitru L

If the gain g is greater than 1., sufficient improvement has been

(k+1) Hence if g2 1.,

obtained and x, is accepted as the new point x
then the matrix D is updated as in Egs. (20) and (21), the trial point
becomes the new reference point, and a new value of the boundary parameter

n(k+l) is computed.

2.2.29

R T Y W P Y i £ b B bl tts

_ im
|
l
|
|
i
E
.

e DIEARRE M Fchll Aoreiag £ il

!- i N —— =i

Bl S

If g <1., then the matrix D is not updated. Instead, an attempt
is made to generate a new trial point which will show sufficient improvement. .
The basic procedure for generating a new pointis to reduce the bounding
factor 77 and then repeat the computations given in Eqs. (16) through (19). The
: reference point remains unchanged and the new point is considered to
be another trial point. The value of 7 is computed as a function of the

gain g the number of trial points generated from the current reference -

Lt s

point, and a prediction of the gain generated as a part of the least aquares

process,

2.2.3.3 USCHN Algorithm .

The basic steps of the USCHN algorithm are: =
Assume D(k)- x(k). ’l(k) are given where x(k) .

is the current reference point.

Step (1). Compute the vector p by Egs. (16) through (18) and set

X, = x(k) - (Ax)p. Go to Step (2).

Step (2). Evaluate c(xt). and test for convergence. If the convergence
criteria has been satisfied, terminate. Otherwise, go to
Step (3).

Step (3). Compute the gain by Eq. (23). If sufficient improvement
has been made to go to Step (4). Otherwise go to Step (5).

Step (4). Compute the updated difference matrix D(kﬂ) by Egs.

(20) and (21}, corapute Tl(kH) , and set x(k”) =X,
Replace k by k+l, and go to Step (1).)
Step (5). Restrict the boundary parameter 7, and leave the current 2

reference point unchanged. Go to Step (1) to generate a
new trial point.

2.2-30

RRETGE T e, s e

()

(“.

2.2.3.4 Interpretive Output from USCHN

The following set of messages appear in the nosrmal operation of the
algorithm and are designed to aid the user in following the progress of the
algorithm. These messages are printed in addition to the point-by-point

iteration print described in Section 2.4,

ON TRIAL i THE MAXIMUM INDEPENDENT VARIABLE STEP SIZE
WAS xxaxx PERTURBATION STEPS.. .. the limit on the magnitude of
the vector p (Eqsa. (16), (17) for the i-th trial).

THE ACTUAL STEP TAKEN WAS #*** xx, xxx PERTURBATION STEPS....
the actual magnitude of the vector p, Eqs. (16), (17). .

THE PREDICTED GAIN WAS *%% xx.cx...the predicted value of the
gain, Eq. (23).

THE ACTUAL GAIN WAS *¥k%% xx, xxX...the comouted value cf the gain, Eq.
(23).

LAST POINT BECOMES NEW REFERENCE POINT. UPDATE THE
DIFFERENCE MATRIX...the diMference matrix is updated, Egs. (14), (15).

2,2-31

ORI

.

S

2.3 Optimization Input

The input data required to define an optimization or search problem
is discussed in this section. All optimization input data is specified by the
GTL input language which is described in Volume 1I. Accordingly, the
description of the input data given here will usc the notation and terminology
of GTL defined in Volume 1. The optimization data is input in the model
type-model format., The model types reflect the major components of an

optimization or search problem; namely, an overall problem definition

model type, an objective function definition model type, a constraint definition

model type, and an independent variable definition model type. These model

types and the individual input models are discussed in succeeding sections.
Furthermore, these models are compatible with any of the operators dis-
cussed in Section 2, 2. Thus, the same constraint model, for example, may
define constraints for UOPTIM, UBEST, or USCHN. Unless otherwise
indicated, all input quantities are applicable to any operator. Before dis-
cussing the individual models, a summary of the optimization input format

is presented.

2.3.1 Optimization Ir,_ .t Format

The optimization data is contained in a model type data block. The
name of this data block is arbitrary, except that it must be a unique GTL
symbol. The data within this data block is in the model type-model name

format, The general format of the optimization data is the following:

5 A

OPTDATA OPTIMIZATION INPUT DATA
PROBDEF PRBDFMI data and/or tables
OBJFTN OBJFNMI data and/or tables
CONSTR CNSTRM1 data and/or tables
INDV AR VARMI1 data and/or tables
° .

@ L]

°
EXECUTE OPTSYS (OPTDATA)

i
|
|

i

Do,
PR

A o bl 2o

PN . ——

The input statement EXECUTE OPTSYS (data block name) is reqguired
to execute the optimization program. The name within the parentheses
must be the name of the data block which contains the input data that defines
the optimization problem to be solved. This format permits several
problems to be defined simultaneously by specifying a different data block
name for each problem. The program only attempts to solve those problems
which are referenced by having the corresponding data block name appear in
an EXECUTE OPTSYS (data block name) estatement.

For each model type, the optimization input data has the following
format:

Model type Model name data assignment statements
/independent slash statement/

((modified) expression statement)
TABLE 1, TABLE 2 ... TABLE n

The data assignment stream must contain data appropriate for that
model. For example, constraint model data must be input to a constraint model

and not to a problem definition model.

TABLE1l, TABLE2 ... TABLEnare general data tables. These
tables musc also contain data appropriate to the model which references the
table. A requirement unique to the optimization input models is that all
table names must appear at the end of the data assignment stream. That is,
the first table name must follow all other data. For added flexibility in
defining optimization problems, any of the data assignment statements, as
well as the components of the independent slash statements or of the expression
statements, may be equivalenced using the GTL equivalence option. The
resulting user-defined symbol may then be used to specify input for the current

problem or succeeding problems.

2.3.2 Problem Definition Models (PROBDEF)

Models associated with the model type PROBDEF define the general

it n Sk

u.mu\cj '

ot end it b s LA LS e o2 P L A

e

[F PP TPYFEUIRTAIINT, P PP\ VIS SR, SRRy PROTPN B -

e Cimiw bsei e s

P

b st

(_,) characteristics of the problem to be solved and certain optimization process

control options.

2.3,2.1 Proolem Defirition Model 1 (PRBDFMI1)

Description 2
PRBDFMI is an optimization input model which defines the overall
problem to be solved, The following types of problems may be defined by
this input model: optimization problems, search problems, root problems, 3
and least squares problems. For optimization problems either maximization)

or minimization problems may be specified.

For search problems, the objective is to satisf{y a set of equality
constraints, Consequently, all constraints defined for a gearch problem are
assumed to be equality constraints, The number of independent variables
may be greater than or equal to the number of constraints. In general, if
the number of independent variables is greater than the number of conatraints,
then the search problem may have many local solutions. For such problems

’ the user then has the option of accepting the first point the algorithm deter-
mines which satisfies the constraints,or having the algorithm establish a

further criterion to obtain a unique solution,

A restricted type of search pro.ble.m is a root problem, For root
solving problems the number of independent variables equals the number of
constraints, and a unique ponint satisfics the constraints. All constraints

defined for root solving problems are assumed to be equality constraints.

A least squares problem is actually an optimization problem,
PRBDFMILl poses such a problem as a minimization problem for which the
objective function is the sum of squares of a set of constraints (residuals).
The residuals are defined as equality constraints. The objactive is to
determine the values of the independent variables which providz a best
approximation to the solution of the constraints in the sense that the sum

of the squares of the constraints (residuals) is minimized.

All data required to exercise the restart capability (see Section 2. 1. 4)

;
t
|

should also be specified as a part of the data input to PRBDFMI1. For the
current restart capability, the problem formulation must remain unchanged
from the original problem specification for the subsequent restart. For
example, the constraints and even the constraint tolerance must rermain

the same for a restart. Furthermore, a problem can only be restarted from

the last point of a preceding run for which information was saved.

Model Inputs

The following two independent slash statements are required inputs

to PRBDFMI:
/ THE OPTIMIZATION OPERATOR IS optimization operator/
Currently, the optimization operator must be UOPTIM, USCHN, or UBEST,
/ THE FUNCTION GENERATOR IS morel name data /

The optional input "data' may be a data assignment stream or a data block
name. Within these two slash statements, neither the optimization operator

nor the model name of function generator may be equivalenced quantities.

The following quantities are input via data assignment statements.

These quantities need to be specified only if the default values are not desired.

Mnemonic Description Default Value
PROB Type of problem MIN

PROB = :MAX: - maximize the objection function
(not applicable for USCHN)

PROB = :MIN: - minimize the objection function
(not applicable for USCHN)
PROB = :SEARCH: - scarch problem
PROB = :ROOT: - root solving problem
PROB = :LSTSQ: - least squares problem
(not applicable for USCHN)
MAXCON Maximum number of constraints (integer) 25

2.5-4

ik Ll

RSV

LU SRR N

it om i,

—

T

Wy

) MAXDIM

MAXNFE

e

IOPTER

SRCHOP

PRTMAX

PRTMIN

{ .
Mnemonic

Iy XEt, TG R

Description

Maximum number of independent variables

'(integer)

Maximum number of function evaluations.
Algorithm will terminate if more than
MAXNFE function evaluaticns are requested
even though a solution has not been obtained

(integer).

Function generator error response logic flag.
(See Section 2.1.3)

IOPTER = 0, the logic outlined in Section
2.1.3 is followed.

IOPTER =1, the job is terminated it the
function generatcr is unable to complete the

function evaluation at any point. (integer)

Search option (applicable only to UOPTIM with
PROB = :SEARCH:)

SRCHOP =1 - the first point which satisfies
the constraints is retained as the solution.
SRCHOP = 2 - the operator will determine

a generalized inverse solution.

A maximum allowable perturbation size.
May be specified to limit the perturbation

sizes.

A minimum allowable perturbation size.
May be specified to limit the perturbation

sizes.

The following input quantities permit the program to sa.

R T R T O T L T T ST Sy

Default Value

15

200

1000.

=10

F T ETEE Y _w s A g R e TR T e A g Lov ¢ e . e g 12 a, 5 Sl AT~ e " S . o
R dnaasitite dnd Vo Pt e i o T .ravammﬁgaﬂ
. s . B h N %
!

for a subsequent restart or to restart using previously saved information.

Note that whenever information is stored,or saved information is accessed,

then corresponding control cards are required.

Mnemonic

ISTORE

TIMLMT

TSAVLST

2.3-6

Description Default Value
Flag to indicate information is to be stored 0

for a subsequent restart. (integer)

ISTORE = 0, no information is stored.

ISTORE = 1, then information is stored

only prior to function evaluations which

begin near the central processor (CP) time
limit of the submitted job., Specifically,
information is saved only prior to function
evaluations which occur in the CP time interval
(TIMLMT - TSAVLST, TIMLMT - TSAVDEL).
The parameters TIMLMT, TSAVLST, TSAVDEL
are defined below. Nominally these parameters
are computed by the storage algorithm and

need not be input by the user. For special
purpose applications, however, any one or all
of these parameters may be input, Those which

are not input are again computed by the algorithm,

A parameter which determines if information Computed
. by the

is to be stored (see ISTORE). TIMLMT storage
should equal the time limit of the job in algorithm

decimal seconds. TIMLMT is applicable
only if ISTORE =1, The units of TIMLMT

are seconds,

A parameter which determines if information Computed

is to be stored (see ISTORE). TSAVLST should ©Y the
storage

be larger than the computation time required algorithm

to complete one function evaluation. TSAVLST

O

-

PETPRCR SN P. N TN

it e ket BT KA A b R, 4 maimr . .

H

-%mw TR LN, I ARSI 0 a1 Uk TR A TA TR A RN S0P s By v Baneg (G R gReess -

‘!‘, L = N e oz T b Vg Sl A i B ek I 3 pAE VAN (v G ..
Mnemonic Description Default Value
is applicable only if ISTORE = 1. The =

units of TSAVLST arc seconds,

TSAVDEL A parameter which determines if information Computed
by the

storage y
positive quantity to insure that the time limit algorithm 38

is to be stored. TSAVDEL may be input as a

does not occur during the storing of informa-
tion. Thus, TSAVDEL should be larger than
the time required to store the restart informa-
tion. TSAVDEL is applicable only if ISTORE
= 1. The units of TSAVDEL are seconds.

IRSTART Restart flag. (integer)
IRSTART = 0, this problem is not a restart 0 ._;;.
of a previous problem, i
IRSTART = 1, this problem is a restart of

(- a previous problem.

NOPSTOR File number on which restart information 25
is stored (integer). If information is stored,
then file NOPSTOR must be saved in some
manner. One method is the following control
card generator option - 0,402 (TAPE25,
TAPE=SAVE) (assuming the default value of
NOPSTOR is used).

NOPRESR File number from which saved information is 26
to be read it a restart is requested (integer).
If the information on file NOPRESR is to be

accessed, then this file must be made available

R ST TR DI ST TN ST LD WA W (T ASIRAN Y YT

to the program in some manner., One method

is the control card generator option -

.37

P R TR 0 e
o~

BRI A A 4 7L 8 ol o € B R e e &R . S oy oS Ay 8 Saime < TIPS T WA W WY G ARSI ? ¢ A VS 4 = D © A M n b mam nes emim= v e

- - R . . T e . PR
GEND O3 A S L3 QT T BT NMR ! A LR SAINGR XTTUTSTI T CPL OSSR, i P ABTY ' L AR

bl L 1 ad

TR TR o

w o meee

=]

Mnemonic

Serroan xi s mér yam BaTLT ke T st o b w o e

Description Default Value

0.403 (TAPE26, TAPE=tape number) (assuming
the default value of NOPRESR is used).

The following independent slash statements are listed for completeness,

but they should not be changed from the default values without detailed know-

ledge of the progran.

/MODEL TYPE MSIEVAL EXECUTES MODEL modcl name/
/MODEL TYPE MSIEEND EXECUTES MODEL model name/

2.3.3 Cbjective Function Models (OBJFTN)

Models associated with the model type OBJFTN define the objective
funclion. If an objective function is not to be defincd (e.g., search problem),

then the OBJFTN model type should not be specified.

2.3.3.1 Objective Function Model 1| (OBJFNMI1)

Description

OBJFNMI is an optimization input model which defines the objective
function for an optimization problem. For scarch problems, root solving
problems, ard least squarcs problems, there is no explicit objective function;

conscquently, this objective function model should not be specified.
Model Inputs
The objective function must be specified with a GTL expression
statement in the following lormat:

(function name H ‘ CA)gl qualifier name units])

The function name is a required input, A qualifier is required only if further
¢ finition of the function name is required. For trajectory optimization

proble:ms with the partial trajectory option, the . AT. qualifier is required

if ""function name' is to be evaluated at an event other than the final ¢vent,

L) ‘The input ''units' is an optional input which specifies the cxternal units for the
objective function. This input is required only if the external units of the
objective function are required to be different than the preset units of the b
objective function, v
Associated with the expression statement given above, the following two
optional slash statement modifiers are available to further specify the objective
function.

+AT.

/function nameﬂ. OF.

| qualifiel]IS COMPUTED 5

BY routine name [dats]/

This input is required only if the objective function is not computed by the
normal execution of the function generator.

.AT.

oF | quauﬁer]pARTIALs ARF.

/function nameB

COMPUTED ANALYTICALLY BY routine name [data) /

This input is required only if the partial derivatives of the objectiv> function

with respect to the independent variables are to be computed analytically

by the specified routine. For both of these slash statement modifiers, the
reference to the objective function must include any subscripts and/or qualifier
given as a part of the definition of the objective function in the original

expression statement. -,

Objective function scaling is specified by the following data agssignment

gtatement,
Mnemonic Description Prcset
OBJSKL OLBJSKL = :UNSCALED: implies no :UNSCALED:

objective function scaling

OBJSKL = :SCALED: implies the objective
function is scaled and the scale weight is

computed internally

OBJSKL = n.n implies the objective function

is scaled and the scale weight is n.n

ey .

Examples of OBJFNMI input

Example 1, For a trajectory optimization problem, assume the objective

function is PAYL.OAD which is not a time dependent quantity,

|ﬂ:nl&c7) M
: : H v | ' gt

rH 1 e 1 o ch o ot shante ol RS IR SEREES Il
]‘r ‘ *";'I* Al ‘!‘*,*.'ﬂf“ﬂ*- *"i“’}"‘.‘,
R RN R SRR S e 44
: BN 10 0 O A ..H.n :.iq.} 'FFA
H rf By BN sa sl bxantuasainef dRinink
T .) IR AR EARAEEERERARRERREEE R L

FExample 2. For a trajectory optimization problem, assume the objective
function is the variable RANGZ {(evaluated at event PO60) which is computed
by subroutine GTSFTN1, Furthermore, assume the partial trajectory

option is specified,

Iixample 3. For a vchicle design problem, assuine the objective function
1+ the length of the wotal :hicle, Furthermore, assuime objective function
scaling is desired and the partial derivatives are computed analytically by
the routine DSIZ.E. It is necessary to qualify the length LVI to

specify the Jength of the vehicle.

2.3-10

2.3.4 Constraint Models (CONSTR)

Models associated with the model type (CONSTR) define constraints,
For unconstrained optimization problems, no constraints are defined, and

the CONSTR inodel type should not be specified.

2.3.4.1 Constraint Model 1 (CNSTRMI1)

Description

CNSTRM! is an optimization input model which defines one or more
constraints, The data input to CNSTRMI must conform to the optimization
input format stated in Section 2, 3.1. In addition, the following specifications
must also be followed as a part of the CNSTRMI input format. A required
input for each constraint to be defined is a GTL expression statement. Each
table listed as a part of the input data specified for CNSTRMI must contain
exactly one GTL expression statement. Also, an expression statement may

optionally be a part of the CNSTRMI input data.

If an expression statement is input with CNSTRMI1, then this expression
statement, along with any modifying slash statements or data assignment
statements input with CNSTRMI1, is assumed to define a single constraint,

All quantities not specified assume their preset values. Furthermore, each
table specified as a part of the CNSTRM] input is assumed to contain data

to define a singlc constraint. All quantities not specified as a part of the
tabular input assume their preset values. That is, no data is carried over
from one table to another nor is data input with CNSTRMI carried over to
the tables. As an illustration of this mechanism, consider Exampl: 1,

Four constraints are defined by this data spcecification--an altitude constraint,
a latitude constraint, a longitude constraint, and a reentry angle constraint.
The tolerance for the altitude constraint is 1, and the tolerance for the
reentry angle constraint is 0. 1. The tolerance for the other constraints is
the preset value of CONTOL. Also, the input INBASIS = :YES: applies only

to the reentry angle constraint,

If the data input with CNSTRMI data does not contain a GTL expression,

2.3-11

23 P Ve, 11 700 v n Y S

o

1

then this data forms a set of data that is referred to as thec model default
data. Again, each table listed with the CNSTRMI! input must contain a single
GTL expression and possibly may contain other data assignment statements
or modifying slash statements. Each table defines a single constraint with
any input quantity not specified as a part of the tabular input assuming the
value specified in the model default data, If an input quantity is not specified
cither by tabular data or by model default data, then the preset value is
assumed. Hence, if a GTL expression statement is not specified as a part
of the data input wi.ih CNSTRMI1, then such input data become the default
values for the tables listed as a part of the CNSTRMI irput data. The
individual tables are independent in that data listed within a table applies

only to the constraint defined Ly that table. As an illustration of this mecha-

Sl

nisin, consider Example 2. This data specification defines three burn rate

bt

constraints, Since the data input with CNSTRMI1 does not contain GTL

expression statements, the specified slash statement and data assignment “

statements apply to the constraints defined by tables BRATEl, BRATEZ2,
and BRATE3. Hence, the value of the quantity CONTOL is 0, 0005 for
the second and third constraints, while the input value of CONTOL = 0.3

s

)

i, specified {or the first constraint. Also, note that the input INBASIS = :YES:

applies only to the second coastraint.

All optimization and search operators assume that all constraints are
of the form

c 20 or c=0

This form, however, is not particularly uscful from a user's viewpoint.

CNSTRMI! permits the constraints to be specified in any of the following forms:

q, = constant, q, > constant, 4; < constant
! .

q; 9, q; 2 9, 9 £ q,

q; T 9 + constant, q) 29, % constant, or

BRORY. HRLVVIOPRIL IRV IV KEYS VIR Gr ey /OO urrir T par S) I S U LI T

q, € q, % constant,

[S PR _..‘.EQ

—

el S I R T I

T o

1 L..) where Q; and q, are any GTS system variables. The conversion from all
of these forms to the form ¢ 20 or ¢ =0 is performed internally in the

computer program.

The algorithms encompaseed in certain optimization and search
operators (e. g., UOPTIM and UBEST) require partial derivative information,
In this context the term partial derivative refers to the partial derivatives
of the constraints with respect to the independent variables of the current
problem, For reasons ot accuracy and efficiency, if a method for analytical
computation of the partial derivatives is available, tken this method is
advised, Otherwise, the partial derivatives are computed numerically, If
the partial derivatives are not computed by the normal execution of the
function generator, then the program permits a specizlized routine to be
executed for the computation of the partial derivatives. This routine is
independent of an auxiliary routine that may be executed to evaluate
the constraint, If numerical partiais are to be computed, then the method
(i.e., one side or two sided perturbation) and the initial perturbation size are

Lo specified as a part of the independent variable input. Obviously, the input
data concerning the generation of the partial derivatives must be consistent

between the constraints and independent variables,

Model Inputs

Each constraint is defined by an expression statement or a modified -

expression statement. The format for the expression is the following: o

o [[2] wesster 3] s [|1 7] svetser 2] consanc ity

q, and g, are any GTS system variables. q), is a required input, and either 1, "
or a constant is also a required input. The qualifiers are required only if
q, and q, are not uniquely defined. The input ''units'’ is an optional input
required only to insure that 9, 95 and/or constant term all are expressed
in the same units, The assumption is made that if a constant term is part

o) the definition of a constraint, then the unite of the constant term are

l 2.3-13

compatible with the remaining terms of the constraint or that the constant

term has the units specified by the input parameter "units'’,

The following modifying slash statements may be specified to further
define the constraints. As with all modifying slash statements, these slash
statements must immediately follow the expression statement. If a program
variable is subscripted or qualified in the expression statement, then any

reference to that program variable in a modifying slash statement must also

include the subscript and/or qualifier. The following slash statements may

reference either GTS system variable q, or q, or both, although only
3 references to g, are shown.

The first slash statement is required only if q, is not computed by the

normal execution of the function generator.

/ ql[" OF" qualifier 1]15 COMPUTED BY routine name [data}/
.AT.

The next two modifying slash statements specify the method of computation

of the partial derivatives. The default method is numerical partials.

/ ql[l'OF'I qualifier l]PARTLALS ARE COMPUTED
. AT.

ANALYTICALLY BY routine name [data]/

/ q)[l'OF" qualifier I]PARTIALS ARE COMPUTED
AT.

NUMERICALLY /

The following independent slash statements may be input to CNSTRMI
(but not in a table referenced by CNSTRMI1) as model default values, and
as such will apply to all constraints subsequently refcrenced by CNSTRML!,

RIS A T @ WY YA ST ST AN WY 8 SR VI ST S R AP = o - i

Thus, these independent slash statements eliminate the need to specify

= neens

' modifying slash statements for each constraint.

Rl TR U RVRY - 2 R 3

2.3-14

oy -

TR o Ftia Ly Ay s

IRy

o

/ALL FUNCTIONS ARE COMPUTED BY routine name [data) /

/ALL PARTIALS ARE COMPUTED ANALYTICALLY BY

routine name [data] /

/ALL PARTIALS ARE COMPUTED NUMERICALLY/

The following quantities are input via data assignment statements. The

quantities need to be input only if the default values are not desired.

Mnemonic

CONTOL

INBASIS

CONLIN

Description Default Value
Constraint tolerance 0. 001

A constraint is considered to be satisfied as

an equality constraint if {ci< CONTOL

Basis indicator :NO:
INBASIS = :YES: The constraint is placed

in the initial basis.

INBASIS = :NO: This constraint is nct in

the initial basis.

Nonlinearity factor of the constraints, 0.1
If information is available about the

linearity of the constraints, such as the

constraints are linear or the constraints

are highly nonlinear, then this information

can be incorporated into the algorithm.

0. € CONLIN £ 4.

CONLIN
CONLIN
nonlinear, (Currently only applicable to

the UODPPTI!.® operator,)

0 implies constraints are linear.

4 implies constraints are highly

2.3-15

i
3
|
1
|
;

PTG PR RGP SUFIC AR OR DRT U= FYvURPEUN Sy 7 3P SPIL IV S

, -lli

- Tww,fw-'rv—\‘jmw—.——? g gy
i e S ORI Py Bt o Wiy =22 20
i B o ——— i o - e oy 4 b= Py = N E UG W T SR L
K " ; REiA 7 -

o taia .z:kw_mMJ Gl

Mnemonic Description Default Value U

CONSKL Constraint scaling flag :SCALED:
CONSKL = :SCALED: implies the
constraints are scaled and the scale weights
are computed internally.
CONSKL = :UNSCALED: implies the constraints
are not scaled,
CONSKL = n.n implies the constraints are

scaled and the scale weight for this constraint

< snat a1t R BB sk L.

is n. n.

ST PR

Examples of CNSTRMI input

Example 1. Consider a trajectory optimization problem with four i
constraints. The impact point is corstrained to satisfy a specified latitude '
and longitude, the altitude at event PCl00 is required to be greater than

f 200,000 ft, and the reentry angle at event PO300 is required to be less
than -10 deg. Also, assume the tolerance for the altitude constraint and (')

the reentry angle constraint are different than the preset value, and assume

the reentry angle constraint is to be in the initial basis,

Fxample 4. Consider a vehicle sizing problem with a burn rate constraint
for each stage of a three stage vehicle. Further, assume that (1) the partial

~i* ntives of the constraints for the first and second stage are computed

2.3-16

| bl W

o

analytically by the routine DSIZE, but the third stage constraint requires f
numerical derivatives; (2) the tolerance for the first stage constraint is

0. 03, but the tolerance for the other two stages is 0, 0005; (3) the second

stage constraint is to be placed in the initial basis,

Assume that dat» blocks named SUBSTG1, SUBSTGZ, and SUBSTG3

contain the data corresponding to the three stages.

(}

LRSS

l - i TSy 0 H—'y -
: : IR .
4 - t . L . 14
|T] j T-1 i + -1-4 ' ! I 1 ..i_.i .:..' : + 4‘ !- -4 -.J
[T A T L
y | T . llgllll‘_pi;’li A
o S BN 20 B SR AR ;
H bR LUl L]
i . ", . e *_; ! Lt l V l T -
SRR Y | I SRR S
II, P.§ JOF. SR ST .|) _!..jia.'}.i.!i.'-i! A
i e fp “iiF . B /"
l I .l |+ . L [:
1 1 - R : .
W'H“H’ Pt 1 ! RERSESUnE **“1'17‘}" 17
.
L (3
y 2.3.5 Independent Variable Model (INDVAR)
Models associated with the model type INDVAR define independent
variables. An independent variable model is required for all optimization “
problcms, \
2.3.5.1 Independent Variable Model 1 (VARM]I) 1
Description
VARMI is an optimization input model which defines one or more
independent variables, The data input to VARMIL must conform to the)
optimization input format stated in Section 2. 3. 1. 1n addition, the following -
specifications must be followed as a part of the VARMI1 imput format. A
requircd input for each independent variable is a data assignment statement
vi the form VAR = [name of variable]. Each table listed as a part of the
input data specified for VARMI] must contain a data assignment statement
€ -
| hY - d -

Sy

.y

Pomwsemm iml A s cmm g e e i il

of the form VAR = [name of variable]. Also, a data assignment statement

of this form may be part of the input data specified for VARMI,

If a data assignment statement of this form is input as a part of the
input data specified for VARMI, then this input along with any other data
assignment statements input with VARM]I1, is assumed to be data which defines
a single independent variable. All quantities not specified assume their
preset values. Furthermore, each table specified as a part of the VARMI
input is assumed to contain Gata to define a single independent variable. All
quantities not specified as a part of the tabular input assume their preset
values. That is, data is not carried over from one table to another and data
input with VARMI is not carried over to the tables. As an illvetration of
this mechanism, consider Example 1. Three independent variables are
defined by this data specification. The three independeat variables are a
launch azimuth (AZ1), a kick angle (KICK), and payload (PAYLOAD). All
data specified via data assignment statements in the VARMI input apply only
to the independent variable AZ1l, whil: the data specified in the tables VKICK
and VPAYLD apply only to the independent variables KICK and PAYI.OAD,
respectively. That is, data specified for one independent variable is

inde pendent of the other variables.

Aitesnately, if the data input *o VARMI does not contain a data assign-
ment statement ot the form VAR 3 [name of variable] . then 21l data assign-
ment statements specitied as a part of the inpu. to VARMI forms a set of
data that is referred to as the model default data. Again, each table referenced
as a part of the VARMI input must contain a data assignment statement of
the form VAR =[name of variable} . Each table contairs data to define an
independent variable with any input quantit:- not specified withia the table
assuming the value specified by the model default data. If an input 1s not
specified by either the tabular input or the model default values, then the
presel value is assumed. Hence, if a data assignment of the formn
VA = [name of variable] is not specified as a part of the data listed with

VARMI, then all such data assignment statements apply to the independent

2,3-18

()

PO S-S P Y

LU ARSA L o0 5 LU DI A S R R

e T e — —

LT

————

EEEE R PN

g

e

A pET R - w - Y w S AermnaiiER AR S v i s cEeEr A

variables defined in the tables listed as a part of the VARMI input data.
However, the individual tables are independent in that all data specified

within a table applies only to the independent variable specified by that table.
As an illustration of this mechanism, consider example 2. In this example,
four independent variables are defined. Except for the upper and lower
bounds (UPRBND and LWRBND) of the fourth independent variable (ALF4), all
the input quantities which define the variables are identical. Hence, these
quantities are specified as model input data which then apply to all the
independent variables defined in the tables listed. Note, these model default
values can be overridden by specifying the desired values as a part of the

tabular data.

For the current implementation, all independent variable names must
be GTL user-defined symbols. That is, the independent variable names must
be defined by a GTL DEFINE statement or by the equivalence option. This
mechanism implies that the independent variables are uniquely defined when
referred to by the user-defined symbols, Thus, unlike the objective function
or constraints, the independent variables do not require a qualifier to be
uniquely defined. For trajectory optimization problems in which the partial
trajectory option is specitied, the computation time will be deereased if the
event or phase where an independent variable becomes active is specified.
This specitication permits only that portion of the trajectory in which an

independent variable is active to be simulated.

As a part of the independent variable input, the method by which the
Fartial derivatives are computed is specified. In this context, the partial
derivatives refer to the partial derivatives of the objective function and
constraints with respect to the independent variables. This input information
must be consistent with the input specified for the constraints and objective
function, Thus, for exaniple, if analytic computation of partial derivatives
is specified by the independent variable input, either the required partial
derivatives must be computed by the normal execution of the function generator
or the routine which computes the partial derivatives must be specified as a

part of the constraint and objective function input,

2.3-1%

2

st i s A oo s il s N B rmaard K i i L, .

aadnati.

T NP SNV § NSRS Y

| o

SEAEAaAT AT Tl e g AT A e e gk W e

iy ee dAaude sy Toomgtewm ¢ 2 S - -t T omm iR g SR

For the computation of partial derivatives via numerical perturb-
ations, the current implementation is that the perturbation size for two-
sided partials is determined at each point by the algorithm. For one-sided
perturbations, however, the perturbation size remains constant at the input

value,

Additional required inputs for each independent variable are upper
and lower bounds. These input quantities define a region of computability
for the optimization operator in that the iteration process will not exceed
thcse bounds. These quantities should not be confused with constraints.
In particular, the solution cannot be on a bound, Also, the bounds should
not be made restrictive in an attempt to aid the optimization algorithm in

finding a solution,

Model Inputs

Mnemonic Description Default Value
VAR Name of the independent variable. This Must be input -

-

quantity must be input for each indepen- i
dent variable. No default value is
allowed.

STARTAT Event at which variable is activated. Only Initial event

applicable if the partial trajectories option
has been specified for trajectory optimiz-

ation problems.

LWRBND Lower bound on the independent variable. Must be input
CPRBND Upper bound on the independent variable. Must be input
POTYPE Partial derivative type. :2SIDED:

PDTYPE =:1 SIDED: - one-sided

perturbations are used to compute

. et s it e 00 b S R et B AN LA Pt £

numerical partials.

2.3-20

BN &

T

|
|
|
b

58

3
L—‘) Mnemonic _D_escriplion Netault Value ’
E PDTYVE = : 2 SIDED : - two-sided i '
: perturbations arc used to compute
i numerical partials. "]'__
PDTYPE = - ANALYTIC : - the partials are
‘c':omputed anzlytically. -\
i PELVAR ' Initial verturbaticn size. Only applicable (CPRBND- I__.
if one -sided or two-sided partials | LWRBND)/1000. .
are requz2sted, ‘ ;
] B
For the following quantities, the default values are recommendec a8
unless the user has an understanding of the program and a requiremen. i .:
specify alternate input values. .
Mriemonic Description Default Value &
b EPSBND Epsilon bound for the independent variables 0.001
The upper and lcwer bounds may be :
modcified by this input. The upper and lower
bounds used by the pregram are UPRBND +
EPSBND and LWRBND - EPSBND. Thus '.{.*'
EPSBND >0 expands the region of search '
while EPSBND <0 contracts it.
i SCALE Scale flag. :SCALED: g
SCALE = : SCALED : - The independent i
wvariables are scaled, _:-
SCALE = : UNSCALED : - The independent
; variables are not scaled. '
RELTOL Relative tolerance on the independent 0.001
variables. -
B
B
H
1 b 2.3-21 i

P I e o £ - — - - - - .- "‘r

) Default Value (:)

: Mnemonic Description

; bbbl —_—

. , ABSTOL Absolute tolerance on the independent 0. 001
y ; variable,

; E
! GRADTOL Gradient tolerance. 0.1

Examples of VARMI] Input

Example 1. Consider a trajectory optimization problem with three
independent variables. The independent variables 'are the initial azimuth,

N AT WNRETY
A

the kick argle, and the payload, Assume that two-sided partial derivatives
are requested for all the variables, but the default value for the initial

AT

e "'Iv'."."l-.mr-"‘wmm ¥

peiturbation size is overridden for the azimuth and payload, and assume
an absolute tolerance of 1. is desired for the payload. Note that the

names of the independent variables are user-defined names and not program

T ST LA

variable names, and note that the upper and lower bound is specified as

R

required, for each independent variable, L

—

iy

14
3 DN 1p iy ¥
; 1 i Wt ! L] ~
é ‘ o] . ' e | ;
i o l 14 P | ! : V 1SS i
' H ! |
; L : Q. i T 2
1 - 144 - IS N S G
. [i O' i R R
. i_j_L*q +4-1 44 - i —+ . .T.‘.i — .+_

L4 L1 T S IS
: SEUNE Il ! . = EREREREENS
: Ll ! : HE M 18 ‘
i T i
: e 1
. . i 1

1 | EARERENREEA A H

Example 2. Consider a trajectory optimization problem with four incfep.ndont
variables. The independent variables are the value of the angle of attack at
four peinte along the trajectory. Assume that the partial trajectory option is
specified and the four values of angle of attack are specified at PO100, PO2CO,

2.3-22

o ——— o —

PPO300, and PO400, Also, assumc the upper and lower bounds are the
same for the first three variables, and assume that two-sided derivatives

with an initial perturbation size of 0,001 are desired for all the variables,

3 112(3]e [3N0 7 ‘
HRS i HIR
SRR AgN Li | IRpEy L I L 8 U SV B
i,lf—L |] ,I .'.' \.I ll‘;i"
i “ I -l’- |i- 1'1 3 * |— e "f%{—?‘
G | AR = TALF, T REBAN
T TR) T
-;-}~-‘+14 L ~‘ii1 =l s A { «lél%—gi-
f""f \1 ™1 |-t ag E— T P :%
siiss jiuss shnsasaniesatnininsanmninninsinnnunsiinaindnals
BRERREERERREREEREEL DR NN REREA U ! bl rrT

i

(i

i

]

3

1

]

(O

P N

]

2,3-23

£ atatd o eckibogeed -

O ML) - Bty o i s

e

o

2.4 Optimization and Search Output

Selected information is printed during the optimization process. Since
the purpose of the output is to permit the user to analyze the optimization
process, a portion of the information printed is specific to the individual
optimization or search operator being executed. This information is
discussed in Section 2.2 as a part of the description of the individual operators.
In addition, information is printed which is identical for all operators, This
information includes a summary of the input data which defines the
optimization or search problem, and a summary of the information obtained
at each point where an evaluation of the objective function, constraints, and
gradients is made. The following section describes only the output which is

common to all operators,

2.4.1 Optimization Input Summary

Initially, before the iteration process is started, a summary of the
user-defined input data is printed. All data output at this point should be the
same as input, Scaling or other internal processing is not reflected in this
print, The summary print is divided into three parts. The first block
contains a description of the objective function. The format for this informna-

tion is the following:

OBJECTIVE FUNCTION
MAXIMIZE

AT
MINIMIZE name of objective tunction l OF ' qualifier

LSRRy

The name of the objective function and the qualifier are the same¢ names as
the user has specified. If a search or root finding problem is being defined,
then one of Lhe following messages is printed, depending on the Lype of

problem the user has specified.

SEARCH PROBLEM - NO OBJECTIVE FUNCTION

OBJECTIVE FUNCTION IS THE STUJM OF THE SQUARES OF =
THE INDEPENDENT VARIABLES .

data defining the constraints in the following format:

m CONSTRAINTS

. OF,
m. (ql l.AT.I qualifier 1 {. EQ. q, I.AT.I qualifier 2 + constant) tolerance

ROOT SOLVING PROBLEM - NO OBJECTIVE FUNCTION

The second block of information contains a summary of the input

. GE.

. OF. . OF.
1, (ql I AT.‘ qualifier 1 {. EQ. 9, LAT.' qualifier 2 # constant) tolerance
. LE.
. GEO

. OF,

. LE,

The final block contains a summary of the independent variable input

in the following format:

e o ot

n VARIABLES

- DERIVATIVE
VARIABLE - INITIAL VALUE LOWER BOUND UPPER BOUND TYPE
1. name of variable x (1) 1b(1) ub(l) ONE SIDED
IN event name o TWO SIDED
: ANALYTIC
n. name of variable xo(n) 1b(n) ub{n) ONE SIDED
IN event name TWOQ SIDED
ANALYTIC
EPISILONMN
VALIABLE ABSOLUTE ERROR RELATIVE ERROR GRADIENT TEST BOUND
1. ae(l) re(l) grad. (1) eb(l)
n. ae(n) re(n) grad. (n) eb(n)
2.1.2 Iteration Summary

At cach point where an evaluation of the objcctive function constraints

i

HE e ——m—e ¢4 [RINN .. - Pl e e a E
Rntitactahertli i e ninh A e it i 4nn Citeietmeriiant i Mo b e ¢ stk e et it s -

!
(0 - —
-7 and gradients is requested, a summary of information computed at that point g
is printed. 1
The format for this information is the following: é
;
OBJECTIVE FUNCTION i
t
name of objective]
(function)= AKX, X anERTURBATIONS nZFUNCTION EVALUATIONS ;
CONSTRAINTS 3
. GE,
c(l) = value of c(1)... (name of q, = xx.x) {. EQ. ﬂ
(name of 9, = xx. x) £ constant term i
. 3
. GE. E
c(m) = value of c(m)...(name of q) = xx. x) {. EQ. g
i / . LE. §
(name of q, = xx. x) + constant term. §
: K
i .
| VARIABLES §
E ;
i i
VARIABLE NAME VALUE PERTURBATION SIZE k
1. name of variable ! value of variable ! value of perturbation size Ji
for variable 1
. :
‘ n. name of variable n value of variable n value of perturbation size i
for variable n ;
: n; is a cumulative total of the number of perturbed evaluations that j
| have been made, n, is a cumulative total of the number of points al which ;
an evaluation of objective function, constraint, or gradient information has :
been requested. No information is printed for perturbed evaluations nor is ”
0 i
Lt }
2.4-3
! |
Y e e —_ ; e e e 7 3

BT TTETRTRECA S T AUt Uy a s el

any gradient information printed. L

The value of c(I) is the value of the constraint in the form required by
the optimization operator (i,e., ¢{I)})20 or c(I)=0). Thus, for example,
if the I-th constraint is

{H.AT. PO300 .LE. HA. AT. PO200 + 10.)

and if at the current point H (at event PO300) = 100 and HA (at event P0O200)
= 80, the corresponding output at this point would bte

c(I) = -10... (H=100).LE. (HA = 80) +10.

In addition, an asterisk (*) will appear at the left of a!l constraints that are

in the current basis. Qualifiers for the objective function or the constraints

are not printed in the point-by-point output,

i SECTION 3

N, INTEGRATION OPERATORS

Consider the mathematical problem of solving a system of ordinary

TP TIEY Y

differential equations with given initial conditions

-%——d it) = f(t,y) yit) =y, (1)

o where y and f are vector valued functions. If f(t,y) is assumed to be

continuous with respectto t and y , then several numerical techniques
These numerical

FRPTIREIS VIV o A~

are available to compute a solution to the system (1).
techniques compute a solution to (1) in the sense that they provide a scheme

T

for obtaining a numerical approximation to the value of y(t) for t # ty:

The GTS system contains several methods for solving differential equations.
These techniques can be applied to any dynamic system; that is, any system
that is represented by a set of differential equations of the type (1).

B 8 TR ey b e

i
. The primary application of the integration techniques, however, is
i
for providing a trajectory simulation capability, and the integration techniques
incorporated in the GTS program were chosen for their viability for performing

trajectory simulations. Specifically, the GTS program provides the following

techniques:

et e R . D W N S YT

(i) 4-th order fixed step Runge-Kutta
(ii) m-th order (m =1 to 8) fixed step Adams-Moulton
" (iii) m-th order (m = 1 to 8) variable step Adams-Moulton

{ A brief description of these methods is contained in Sections 3.3.1,

3.3.2, and 3.3,3. A more complete mathematical description can be found
5 or Ref., 6.

B LR R R T

in any standard text on numerical analysis, such as R-{
Clearly, any one of these methods is not suitable for all applications.

Each

s e

method has advantages and disadvantages. Consequently, Section 3. 4

contains recommendations concerning the types of problems for which each

oA ey,

method may be best suited.

.-

The input data required to specify a particular method is input via

an integration model corresponding to the model type INTGRA. Currently,

Y e Friredem it S TR AR PSR Sla ey s 2y Seeliosat g aia i ik e e RSN TSR SR NIRRT LS

a single model, INTGRMI, encompasses all the available methods. This
model is discussed in Section 3,4, 1.

ocaahin i

I
|
[
I
'

|
|
|
1
3
i
¢
E
g
i
§

1

E
!)
; |
| 3
| 1
| |
i A
| 3.2 i
i :
| ,
|
! K
1

[g‘
|
3
-

598 v T Dl

BT e e it B it 2 e g oY

SWUPVDRDY R

U 3.1 Trajectory Simulations

A major requirement of a trajectory simulation capability is the
ability to solve differential equations of the type (1). Several considerations ;
must be recognized with respect to the integgation process. The evaluation ;
of the derivatives, that is,the evaluation of the function f(t,y) is accomplished

by the orderly execution of the user-specified engineering models (e. g.,

b b

propulsion, control, equations of motion). It is important to realize that it is
the model configuration which the user has specified that characterizes a

trajectory and not the integration technique that is applied.

Besides providing freedom for the user to select the models he desires,
the independence of the integration operator and engineering models also
permits new engineering models to be added to the program model library
and permits modifications to be made to the integration operators without
requiring changes to the existing engineering models. By the specification of ‘
models, the user also determines the number of equations to be integrated. ;

In addition to threc degree-of-freedom or six degree-of-freedom simulations,

-
N g

the user may request that auxiliary equations of interest, such as ideal
velocity or velocity losses, be integrated. Again, the specification of the !
number of equations to be integrated is part of the model selection process

and independent of the integration operator.
I

E In addition to the final result, discrete time points along the trajectory,
or events, may also be of interest. As is documented in Volume II, GTS
provides a flexible method for event specification. 1f such an event has been
detected, the response to this event may be to alter the model configuration
or to introduce new data to the existing models. Mathematically, these
actions may introduce discontinuities in the function f{(t,y) of Eq. (1).
Hence, the integration process cannot proceed directly, Rather, the
integration operator must essentially restart the integration process at

that point in order for the integration operator to perform correctly.

O

; 3.1-1

- - i Cu et e e . ahentaSanbnati:
.‘_A_.hr.,’ (1— s pmktoionT o A4

3.2 Intssration Methods

Assume, for definileness, a first order differential equation with

specified initial conditions of the form

F =ty yit) = v,

and assume the value of y is desired at some time te # tye Note, t, may
be less than t, Briefly, the method by which a numerical approximation
to the value of y(tf) is obtained is to make a functional approximation to

the function y. Clearly, a single approximation is not likely to be valid

for the entire interval t, to t.. Consequently, we consider an approximation §

f
over a smaller interval to to to + At. The size of the increment At

may be user-specified or may be computed within the algorithm.

The basic integration method then proceeds as follows. First,
y(to) and 9(t°) = f(to,yo) are known. Then obtain an approximation Yy
to the value of y at t =t + At {/l = {(t),y}) can then be evaluated. The
values Y and yl provide initial values to begin the process again ip
order to obtain an approximation to y at & = t + At, This process continues
until t g =t., for some N. Given values y_ and)"n' the method by
which an approximation Y41 t° the value y(th) is generated, distinguishes
the various integration schemes. A brief outline of the methods available

. GTS are given in the following sections,

3.2.1 Runge-Kutta, Fixed Step (4-th Order)

Let y_ and i’n be approximations to y(t)} and)"(tn). y, is

available either from the initial conditions or from the previous integration

step.)"n can be computed from y_ by)'rn =f(t_,y). The function of the

integration technique is to cbtain approximations Yo+l and §'n+l to the
= +

n+l tn At. One method to

obtain such an approximation is to expand y(t) in a Taylor's series. This

values of y(tn“) and 9(tn+l), wherea t

technique would require the derivatives ir(tn), 'y;(tn). ')'r'(tn) ... but this

computation may be quitc cumbersome. The Runge-Kutta method evaluates

'
"z..bb.-'.u 1T 2 PO YT S2P

.‘:‘._

the first five terms of the Taylor's series expansion, but without the
This approximation is

The

necessity of higher order derivative evaluations.
obtained by the evaluation of y ={ at selected points in the interval,

mathematical details are eliminated; however, the 4-th order Runge-Kutta

recursion formula is

Yer = Vo b g k) * 2k, +2ky + k)
where

kl = At I(tn,yn)

k, =4t - f(tn+ at > Yy +~é— kl)

ky=at - £+ Sy 4)

k4 = At - [(tn + At y o+ k3)
This method is illustrated schematically in Figure 3,2-1,

To complete one cycle of this integration scheme (i.e., to
obtain Yo+1 2nd)’rn“). it is recessary to evaluate the function f(t,y) four
times. For applications such as trajectory simulations in which this evaluation
is time consuming, the overall efficiency may be reduced when compared to

the Adams-Moulton method (see Section 3. 3,2).

An important advantage of the Runge-Kutta method is that it is self-
starting. That is, it only requires values of y and y at the point t
to obtain values of Yn+1 and ;'n+l° This characteristic implies
that the Runge-Kutta process can begin at any point, such as an event,

without requiring values from previous integration intervals.

3.2.2 Adams -Moulton, Fixed Step (m-th Order)

The Adams -Moulton method is one of the class of methods referred to as

predictor-corrector methods. Whereas the Runge-Kutta method requires

(cont. p. 3.2-4)

o '.AH.L’J'.I.AKHJ

C)'

a0 L,

[ELTPUT WIEN

P

A1) (iii
//)

(iv

\
=\

RAYSERFYS)

t t 1 t
n nt+ z— r|+l
b At . At
> -
At
(one integration interval)
1) y_ and ¥y are given, y , 1 is an estimate of y(t + At) which
n n ' Tni+ = n Z
. . . _ At -
is computed as a function of Yo and Yo by yn+%_ =V, = Yy
. N . . _)
The derivative y(t + —2—) is then estimated by yn+%_ R (L %_, Yo+ 3
. - : . . At . .
i1) yn+;_ is a refined estirnate of y(tn + T) which is computed by
5.1 =y +_2._At ¥ .1, and a refined estimate of y(t__ 1) is
n+ 2— n n+t+ 2- ' n+2-
tedby ¥ .1 =f 7
computed by y“"z (tn+é_. yn+%).
iii) Yp+l is an estimate of y(th) which is computed by Yol yn+At §n+ 1,
and the derivative)"(tnﬂ) is estimated by yn“ =f(t 10 Y41
iv) 7n+] is a final estimate of y(t_,,) which is computed by ?n+1

n At . . K2 .
2yt e (yn+2yn+% + 2yn+% +yn+1).

n

Figure 3.2-1 The 4-th Order Runge-Kutta Integration Method

3.2-3

= 241w+ o —— 8o st mr S e e = m n @ e wve Satm e e Seem—m i s e e mamsim . el oo e

it caplh It RERER

(fa ',.
,

information only at one point, te in order to proceed to the next point,]

tml’ the predictor-corrector schemes use information at more than one ,

point to obtain the approximation at tn+l'
Assume that the approximate values of y and y are known at the set

of m points t. i =na,n-1,...,n-m+l, The Adams-Moulton predictor=-

corrector scheme proceeds by determining the polynomial which inter-

i polates the values of f(t,y) at the points ti' isn,nel,...,n-m+l,

This polynomial is extrapolated to time tn and an estimate of y(tnﬂ)

+1
is obtained by integrating this extrapolating polynomial. This is the
predictor step. The corrector step then refines the estimate of y(tn+1)

by the iterative solution of an implicit function involving 9n+l'

When the time points are equally spaced, the mathematical N

formulas for the m-th order Adams-Moulton scheme are

(i) Predictor formula (Adams-Bashforth)

1)y _ . . g
Ya+l = ¥, t At (am, Oyn * m, 1 Yn-1 oot %m, m-lyn-m'ﬂ) (1) 4

(ii) Corrector formula (Adams-Moulton)

- - (1) . .
* bm,m—l yn-m+2) °
where
(1) _ (1)
Yt = Tty Yasy)

The coefficients are determined by

S 3 ()™
m,q - D e\ Tk (3)

3.2-4

|
i
|
|

vy
-

s

TSI, S FRC ST T W, TN e (Rt e

B A

wherc)‘(:) 18 generaied recursively by

(a) 1 (a) 1 {a) 1 (2) _
Yk P Vi) T3 Y teertyar Yo 7! (4)
k=0,1, 2, ...
m (b)
o q
bm, (-1) - ((%)
K3q
where 7(1\:) is generated recursively by
(b) 1 (b) 1 (b} 1 (b) 1,k=0 (&)
Yot Yk o Yz et Yo Tlolkoo

When the time points are not equally spaced, the interpolating polynomial
is integrated to obtain a_ . and b_ ., 1=0, 1,..,,m-1l. The Adams-
m, i m, i

Moulton method is illustrated in Figure 3,2-2,

A major advantage of the Adams-Moulton method is that 1t requires
only two evaluations of the function f {t, y) per integration step, Heace, for a
given step size it should be more efficient than the Runge-Kutta scheme, which
requires four such evaluations. However, {he Adams-Moulton method does
require the values of Y, and).'n at points outside the current integration
inte rvals which must he generated by some other process, Within GTS, the
Runge-Kutta method is uscd to provide the initial information required by the

Adams -Moulton scheme,

The fact that the Adams~Moulton scheme requires information
from previous integrafion intervals implize that this method is more sensitive
to changes in the derivatives from one integration intecval to the pext., Also
the dependency on past information implies that the Adams -Movlton method
must be restarted at each point wher - there is a discontinuity in the derivatives
{i.¢., the function f (t,y)). For example, at the beginning of each phase, the
Adams -Moulton method must be restarted., This situation ie illustrated in

Figure 3.2-3. Note that an extra evaiuation of the derivatives ic required at

the right side of each event which introduces discontinuities into the derivatives,

3.2-5

i

B i TP, Sprvysbgn) e iy Sy > p
BN S T M IET Y, 3 2ty eges=X 41 1853 vy 1y ML TN T

Y
Yn+l
Y+l
yn
Ya
| 1¥n-1 S'n-(m--Z)

Lyn-(m-l)

TIME
t tn+1

(1)

are available. Yntl is an

.

i) Initially, Yo' Yn' Yp-1otc Yno(m-1)

estimate of y(th) which is computed by a ''predictor" formula

using y,» Yoo Yo 1 -0 Yoo(m-1) (see Eq. (1)). An estimate
N TR m :
of the dcrivative Ynt1 - f(tn. Y+l } is then c¢valuated.
ii) Yo+l is a refined cstimate of y(ln“) which iy computed by a "corrector’
. s (1) . . .
formula using Yn’ Ynt1' Yo' Ypo1 oo Yn-(m-2)(see Eq. (2)). The
devivative estimate §rn+1 is then reevaluated,

<A Y R TINTUAS TN, TR, Wb VY /0 N, X

Figure 3.2-2 Adams -Moulton Integration Metnod

Dalail aciaanduie |

~

)

G et = omEERA sl e S R Frie s & oA

RUNGE-KUTTA METHOD EVENT

ADAMS-MOULTON METHOD

EVENT

B A\t 4t ettt am s A LN s A o B SRR il S s

Py

xitehis Mbheniie

*DERIVATIVE EVALUATION

Figure 3.2-3, Summnmary ot Derivative Evaluation

AR S i ek ok s APt i

=

SR e T A S Ay Ry $ i e S A g AR W AT et S R e SR, T ST

3.2.3 Adams -Moulton, Variable Step (m«th Order)

An advantage of the Adams-Moulton method, as contrasted with the
Runge -Kutta method, is that an error estimate is easily obtained. This

error estimate can then be examined to determine whether the current

integration step size is adequate for desired accuracy. Specifically, using
the notation of Eqs. (1) and (2), the error estimate made within GTS
for the k-th integration step is

(1)
Yas1 = Ya#)

n+l "€ mi.n(lyn+l|, Q

where ¢ is a2 computed constant.

E

.
o
L5
0y

Assume that a maximum error E and a minimum error E .
max min

have been established, and assume En+1 has been computed by Eq. (7). Then

the integration step size At is determined as follows:

i) If Emins En+1 € Emax' proceed to the next integration step.
ii) HE 1> E ax' the step size is too large to maintain the desired)
accuracy, the step size is halved, and another integration step is .,
taken from t .
iii) If En+1 <E . in’ then the step size is 80 small that more accuracy ‘
is being maintained than desired, and the step size is doubled. -
Note, however, if the step size is changed, the coefficients for the Adamns- 4
Moulton method (see Eqs. (3), (4), (5), (6)) must be recomputed.
Within GTS, Emax may be input, but Emin is computed by
Emax
Emin B m+3 (8)
2
Also, for the GTS irmnplementation, the step size is not permitted to
exceed specified upper and lower limits. That is, if E <E_. but
n+l min '
the integration step size is equ~l to the maximum permitted step size Atma.x’
then the integration step size is not increased but is maintained at the current 3
(7

————

—— e A
. TT TR w AR s Was T A iRImG- cAvEeR ceeewm

!

value. Conversely, if EnH >Em but the integration step sive is equal

to the minimum permitted value Atmin’ then the integration step size is

not reduced. Rather, the job is terminated since the error critcrion cannot

be satisfied and the step size is the minimum permitted,

3.2-9

i
K1
3
]
:
1
4
4

vl . - ORI 4 -
RN R B SN 2 L kil M D 26 a2 ki v b mi by o A an e s i sttt Y
won . L TER YR = T

Lban

o 3.3 Recommendations for Usage

The proper choice of ¢n integration method to be used depends on a
number of complex and interrelated factors. Some of these factors

are:;

1. The type of overall problem; e.g., as indicated in Section 2.1,
trajectory optimization problems may require more accurate
integration than would be required if an optimization operator

were not being executed,

2., The type of dynamics problem being simulated as defined by the
functions (model types) selected to be simulated; e.g., a
six-degree-of-freedom simulation of an RV introduces more
complex dynamics than would a point mass simulation of the

same RV,

3. The model selected to simulate a specific function; e, g., the
attitude model ATTMI introduces six fast differential equations
"~ into the system, while model ATTM3 does not introduce any

differential equations.

4, The continuity of the differential equations in the system;
e.g., some models are formulated with an iteration loop
through some of the equations in the model. This usually does
not appear as a continuous system of equations to the integration

operator,

U
.

The smoothness or continuity of the tabular data being used.

The smoothness,or lack of smoothness, in the tabular input data is
particularly important, This is because a table point which fzlls within
an integration step may introduce a discontinuity into the derivatives,

and the integration techniques available in GTS cannot be used effectively

across discontinuities in the derivalives.

bt

— ————————— . —— *AJ. ———r—

ORI e TR e et FoOTY T paaa (e e -y nes e T

For tables which contain explicit functions of time as the independent
variable the GTS system automatically forces each table point to be an end
point of an integration interval; consequently, a table point never falls
within an integration step. See Section 4,3 for the details of this table
timing mechanism, As discussed in Section 3.3.1, the Runge-Kutta
method is self-starting, so the table timing mechanism assures that such
tables will not introduce a numerical discontinuity within a given step; -
that is, derivatives will be continuous across a given step. While this is
an extremely effective mechanism when using Runge-Kutta integration, its
effectiveness is reduced when using a predictor-corrector method, since
table points can occur in the set of steps used by the predictor-corrector
method.

Experience has indicated that the following guidelines on numerical

integration are appropriate for the simulation of trajectories.

A, Powered Flight Trajectories

(1) Vehicles with tabular thrust data:
Runge-Kutta integration is suggested, and a nominal

integration interval of 1 sec is usually adeguate.

(2) Vehizles with constant thrust data and in the lbwer part
of the atmosphere; e.g., below 150,000 {t:
Runge-Kutta integration is suggested, and a nominal

integration interval of 1 sec is usually adequate.

(3) Vehicles with constant thrust data and in the upper part
cf the atmosphere; e.g., above 150,000 ft:
A 4th, 5th, or 6th order variable step predictor-corrector
method should be more effective than Runge-Kutta. An

initial integration interval of 2 sec should be adequate.

3.3-2

PRPE

Ml o

TV ST Y O M,

R kRl

e

e s

()

B. Nonpowered Flight

il) bk -

(1) Point mass and three degree-of-freedom trajectories:
A variable step predictor-corrector method should be
rnore efficient than Runge-Kutta. An 8-th order
Adarns -Moulton method is suggested. An initial
integration interval between 0.5 and 4 sec is
suggested. The integration operator will change the
value of the integration step as required. The integra-
tion interval may vary from 2%6 sec or more for .
orbital trajectories, to 0.125 sec or less for RV's
as they approach the surface of the earth. The initial
integration interval should not be greater than 4 to 10 sec.

(2) Six degree-of-freedom trajectories:
A variable step predictor-corrector method should be
more efficient than Runge-Kutta. A 4-th order method

is suggested if the vehicle is spinning or tumbling and

PO AL RIS S

tatular aerodynamic data is used; otherwise, a higher k-
order method should be more efficient., The initial A
integration interval may be obtained from the GTS model b
COMDTIN (COMpute DTIN). This model should be associated
with the initialization model type (INIT), in the first appro-
priate phase data block. This model does not require any 3

intra-model input.

As discussed in Section 3,3.3, for the variable step predictor-
corrector method, the integration step size, in part, is controlled by ;
Emax » which may be input (the mnemonic i3 ER). The preset value of]
ER is reasonable for most problems; however, it should be smaller for 2
search or optimization problems which require gradient information, '

e.g., OPTIM or BEST. A value of 1. x 1077 should be adequate.

3.3-3 z

As stated earlier, the above suggestions for integration usage are
guides and are not to be construed as absolute rules. New users of the
! GTS system, or users who are uncertain about the integration method for

a particular application, are urged to contact or consult with a cognizant
GTS programmer-analyst,

1

3.3-4

Q
%

™

3.4 Integration Input Models (INTGRA)

The input data required to specify the integration operator is input

via a model associated with the integration model type INTGRA.

For all problems which require an integration operator, e.g.,

trajectory simulations, the integration model type INTGRA and an associated

model must be specified,

3.4.1 Integration Model 1 (INTGRM1)

Description

INTGRMI1 is currently the only model available to specify the
integration operator. All the methods discussed in Section 3,2 and all

data associated with these methods are specified with this model.

Mnemonic Description Preset
METHOD Integration method :RK FIXED
=:RK FIXED STEP: specifies fixed step STEP:

Runge -Kutta integration

=:AM FIXED STEP: specifies fixed step
Adams -Moulton integration

=:AM VARIABLE STEP: specifies variable
step Adams-Moulton integration

ORDER Order of the Adams -Moulton integration-- 4
either fixed or variable step. Applicable
for Adams-Moulton integration only,
{integer input)

DTIN The input nominal At, in seconds, serves None
as the initiual integration step size over
a phase. DTIN must be input for the
initial phase. If DTIN is not input for a
subsequent phase, DTIN from the previous
phase carries over.

3. 4.1

T e R s LN K b ol L SRAL, BT

we bt

. Au.un:i‘hul JE

[T

JRR Y VIS

Preset

Description

Mnemonic

128,

Maximum allowable integration step size.

DTMAX

Minimum allowable integration step size, 217

DTMIN

5x 10'6

ER

[+ %
ey
-
[o]
=K
e..w..m
Rl
nr.m
S es
Ay
L2
oS =
4 .
nMdA
) o
iy « O
Ohet
f.ﬂms
T3k,
SoEa
o
=gy
Nk
G Mo
eOgV
e U,
Ba g o
oo I B B

Examples of INTGRMI input

113

zlplajsfe[7]e]s

4-2

LR R X

(TTIL SR
0

I SR

,!.ﬁw-'z...u..cu..;..“ -
NP T

w

Lﬁ“‘“

3.5 Integration Output

Information concerning the integration operator is printed in two forms.
The value of the integration step size (mnemonic DTNOM) is printed as part of
the standard block print. Secondly, a summary of the error computations
and integration step size is printed for the fixed step and variable step

Adams -Moulton methods.

For the Adams-Moulton fixed step method, the following information is

included in the integration summary print. The name and corresponding trajec-

tory time of each event which occurred in the simulation is printed. Between
the listing of the events, a message is printed if either the computed error

for one integration step is greater than the maximum error (the input

quantity ER) or ig less than the minimum error (see Eq. (8)). Included

in this message are the current trajectory time and the current step size.
Also, if the error is too large, the integrated variable for which the computed ¢
error was the largest for the current integrated interval is printed. This
message which indicates the step size was too large or too small is suppressed

after four successive occurrences.

The format for this integration summary is the following:

EVENT event name TIME KA. XXX event title

RK START UP

RK START UP NOT REQUIRED| DTNOM = xx. xx

. . . ERROR>ERMAX. .. variablel
time step size FIXED STEP ERROR<ERMIN
.
°
.
. . . ERROR>EPMAX, .. variable
time step size FIXED STEP ERROR<ERMIN
EVENT evenl name TIME XX, XXX event title

fyfih

| X
t

T RRL LM T AR B W PP T AR A ‘RNt R, | 4] ﬂm’%\\ 3"1. S
N '

3

e

1
e e e
1
4
¥
i
v

For the Adams-Moulton variable step method, the fnllowing information (_)
i is included in the integration summary print. The name and corresponding tra-

i jectory event time for each event which occurred in the simulation is printed., A

i message is printed every time the integration interval is halved or doubled.

, Included in these messages are the trajectory time, the current
integration interval, and an indication if a Runge-Kutta start up is required.
Also, if the integration interval is halved, the integrated variable with the

largest computed error for the current integration interval is printed,

Successive halving or doubling of the integration interval results in an
integration interval which is equal to (Z‘)DTIN. i=0, %1, %£2,..., where
DTIN is the initial integration interval. This integer i is printed for every

integration step. The format for this integra.ion summary is the following:

™
.
°
EVENT event name TIME = xx,xx event title
RK STARTUP - ‘
RK STARTUP NOT REQUIRED DTNOM = xx. xx y 4
i ()N
H time step size HALVE . . . variablcl -
® DOUBLE 2
.
time i i1 eoe i
time step size HALVE . . . variable|
t . DOUBLE
| .
L
! time i coe i y
EVENT cvent name TIME = xx.xx event title
; :
i P’
'i
| £
; .
|]
, -
]
3.5-2

Ly e e N T g e e e T R P Y S Ty

18 R R . —
: - RETHI 05 5 e Ve el i SRS

TIPS B ; el parete=

SECTION 4

INTERPOLATION OPERATORS

The interpolation operators provide a capability for solving the
following problem. Given a finite number of values of a function f(x)
corresponding to XysXy eeaX oy determine the value of f{(x) at points other
than the given points, Currently, in GTS the primary application of the
interpolation operators is for processing tabular data. As is documented
in Volume]I, the GTL tabular input format provides a convenient format for
specifying the tabular data, and a description of the input options is not
repeated here. Rather, this section contains a brief description of the
method which generates values of the function f(x). A more complete
mathematical description of the interpolation process can be found in most

texts on numerical analysis, such as Ref, 7 and Ref. 8.

-

e,

—— — e —— A ———— = ¢ —— e — - . .

.

B e e T T S N —

4.1 Interpolation Formulas E

For discussing the interpolation scheme, assume that
the values of the independent variables and dependent variables reflect any
user requested scaling or biasing. The interpolation is performed by 3
Lagrange interpolation formula. The exact form of the formula depends on

the number of independent variables and the order of interpolation.

4. 1.1 Univariate Interpolation

Consider the formula for a single independent variable, Assume
that th: order of the interpolation is m. m-th order interpolation requires
m+1 distinct values of the independent variable XgeXy -ee X and the

corresponding function values f(xi). i=0,..., m.

Al e IS P S AR AL 20)

The basic interpolation procedure is to determine the polynomial P

of degree less than or equal to m such that
P (x)=1f(x;) 1=0,1...m

The value of f at an arbitrary point x is approximated by evaluating

ts

pm(x).

1f N represents the total number of points input in the table, then N
must be greater than or equal to m+1, Otherwise, no interpolation is
performed. Assume the value of { at an arbitrary point x is requested,
then m+l points, XgrX) -ee X, TUSt be selected from the total of N
points. These points are selected as {ollows. I the order of interpolation
m is odd, then the (m+1)/2 tabular points immediately less than or equal
to x and the (m+1)/2 tabular points immediately greater than x are
selected. If the order of interpolation m is even, then m/2 tabular points
immediately less than or equal to x and the (m+2)/2 immediately greater
than x are selected for the interpolation. That is, the points XXy oee X

m
are choscn such that

XO<X1<..-<xk€ x<xk+l<1to<xm

where k = (m+tmod (m, 2)/2)

TR oFoatemestt 21wt eyl M aasy T s SEc it cegiDeT AR r28 O mmr PR | Lo R LT wr e

If x is less than the k-th point, where k is given above, of the original L}
input set of points, then the first m+l tabular points are chosen. Likewise,
if x is greater than the (N-k)th point of the original input set of points,

then the last m+l points of the table are chosen.

Given this selected set of tabular points, XgeXjaXy ece X, along
with the corresponding function values f(xi). the Lagrange interpolation

formula for the value of { at the point x is

m
f(x) = E c;(x) f(x,) '
4 i=0
where
L (x-xo) (x-xl) e (x—xi_l) (x-xH_l) e (x-xm)
E Ci(") =

i ' (xi-xo) (xi-xl) ces (xi-xi_l) (xi°xi+l) .o (xi-xm)
; If the extrapolation option is specified, and the evaluation point is \
less than the initial tabular point or is greater than the final tabular point,
then the first m+l tabular values or last m+] tabular values are specified

for the extrapolation, respectively. N

R ke o aadidl o Lot

The choice of the order of interpolation should be based on knowledge
of the actual nature of the function being interpolated. As is illustrated by
1 the following example, the interpolated value is dependent on the order of the
function and a higher order representation is not necessarily more representa-

tive than a low order interpolation,

Example: Consider the following table which gives values of
THECOM as a function of TIME

hhaaih b 2 5

Lk

TIME THECOM

0.
10.
20,
30.
32.
34,
36.
38,

L)

e

Rlead Nl Lol gl I
. - L} - . - L)
S N,

= NN -0

.

bo==) - EE - a . e
i . - e e It S T E. e

‘ In the table below are the interpolated values of THECOM at the
L values of TIME listed for the indicated orders of interpolation.
TIME 5. 15, 25, 35, 45, 55,
ORDER

1 0. 0.5 1. 2.5 1. 1.
2 -0, 125 0.625 0.0417 2,562 0.0417 4.125
3 -0.250 0,5 0,330 2 562 -1.344 13,612
4 -0.969 0.931 -0,7.% 2.562 -2.076 24,877
5 -4.506 2.267 -0,380 2.562 -2,524 38,020
6 -14.127 4. 649 -1.160 2.562 -2.815% 53.134
7 -34. 603 8. 082 -1.745 2,562 -2.815 53.134
8 -72.776 12. 543 -2.174 2.562 -2.575 24.122

4.1, 2 Multivariate Interpolation

The procedure for multivariate interpolation is analogous, Assume

that f is a function of n independent variables, XpaXy soe Xp, and assume

n
Coe that functional values of { are specified at the Ni+1 distinct points
x(i), xi1 cen x?i for the i-th variable. The multivariate interpolation

process involves (Nl+l) (N2+l). .. (Nn+1) distinct points and the corresponding
function values
il i2 in
. <
f(xl,x2 eee X), 0%5i

The current GTS implementation requires that the total number

of independent variables be less than or equal to 6. Also, the current GTS
implementation does not permit ti.e specification of an order of interpolation
or the extrapolation or extend option with respect to each individual
independent variable. Rather, the sperified order of interpolation and any

table extension option apply to all independent variables.

4,1-3

T R T Y AW YT T e N N ST

T Nreew vy v

i
|
f.
!

For the multivariate case, the interpolated values of the dependent ()
variable are obtained by the multivariate Lagrange formula, Again, assume 3
the order of interpolation is m. Then, at least m+]l points must be

i
i

specified for each independent variable (i.e., N, 2 m+l, i=1,2,...,n),

For each independent variable the m+l points used in the interpolation
formula are selected by the same procedure described for the single

independent variable case,

Assume that an interpolated value of f is desired at an arbitrary
point x = (x;,%5,... »x). With a slight abuse of notation, assume that
Xio Xy e x? represent the m+l values of the i-th independent
variable selection for the interpolation process. Thus,

f(xl. Xos eeas xn) {
/5 / £ i i
- Cl.)CZ() Cn() 1(1 2 n
i (xl i (x3)e. . Gy xn XKy s Xy heouX).
1 2 n
il=0 iz=0 in=0
where
i -1 i, +1
0 1 Y j Y/
j : (x. - xj)(xj-xj)...(xj--xj)(xj-xj)...(xj-xj)
C. (x.) = e v
lj) j 0 lj 1 lj ljj 1j+I
(xj "xj)(xj -xj)...(xj -xj)(xj-xj)...(xj-xj)
for

i) =0, l,...,f and j=1,2,...,n

—_—

L

As in single variable interpolation, the choice of the nrder of

N interpolation should be based on knowledge of the actual nature of the
Again, a higher order representation is

Y

function being interpolated.
not necessarily more representative than a low ordcr interpolation,

et s L o

T ey 1

A et

4.2 Interpolation/Intepgralion Intcraction

If the interpolation operator is executed in conjunction with an integration

operator (c.g., a trajectory simulation). then special processing related to
the interaction of these two operators may be required. The exact relation-
ship between the interpolation process and integration operator depends on
such facters as the integration method, the integration step size, the order
of interpolation, and the number of points in the table, Since both the integration
operator and interpolation process make functional approximations to the tabular
values, 1t is certainly desirable to have these approximations be similar.
If, for example, the integration step size is large in comparison to the spacing
of points in the table, then the function as represented by the interpolation
table may differ significantly from the functional representation made as a
part of the integration process, This situation may be especially troublesome
with the Adams-Moulton integration method, which makes approximations
based on information over several integration intervals. Within GTS, process
control options related to tabular input attempt to insure this compatiblity,
The table timing option attempts to alleviate this situation by requiring that

v each tabular value of the independent variable be an integration point. This
option thus requires that each integration interval may not inciude a table

interpolation point except as an end point,

The timing option does have the disadvantage of requiring that every
tabular value is an integration point. The same accuracy, however, may be
maintained by specifying the integration process include a few selected
points; thus, thc efficiency of the integration process is increased. Also,
the Adams-Moulton scheme still requires information over several integration
intervals even with the Lable timing option., That is, a Runge-Kutta restart is
[not necessarily perforrned at the tabular points. This procedure may not be
desirable for certain types of tabular data such as those with sharp peaks.

A GTL option permits the user to select individual points in the table, and the
integration scheme will integrate to these points, A Runge-Kutta restart ‘s

then performed at these points. Note that for the Runge-Kutta method, the

R -
-
-

i_}‘-,[-u. e A e we b o

Y. T LW Y

Cxae e

table timing option is equivalent to specifying every tabular point for a restart.
The current GTS implementation restricts the table timning and restart options
tables for which the independent variable is time (i.e., trajectory time or

time from an event).

Step tables require special logic distinct from the processing described
for interpolation tables. Step tables provide a discontinuous representation
of the tabular functions. Hence, if a function represented by a step table is
part of the evaluation of the derivatives, then this fumetion may introduce
discontinuities into the derivatives of the differential equations being integrated.
Consequently, the processing at tahular points of a step table is similar to
the processing at phase points. Namely, the integration method must integrate
up to such a tabular point and a Runge-Kutta restart must be made on the right
side of such a point. Furthermore, since the function represented by the step
table is discontinuous at such a point, it is necessary to evaluate the derivatives

of the differential equations on the right side of such a tabular point.

AT

REFERENCES

o
p—
.

H. E. Pickett, A Contribution to the Thaumaturgy of Non-Linear
Programming, Report No. ATR-71(59990)-1 lﬁ% Segundo, Calif, :
The Aerospace Corp., August 1970),

2. J. T. Betts, An Effective Method for Solving Constrained Parameter

Optimizaticn Problems, Report No, TR-0073(3450-10)-1 (El Segundo,
Calif, : The Aerospace Corp., 8 December 1972),

3, , Solving the Nonlinear Least Square Problem: Application
of a General Method, Report No. TR-0074(4901-03)-3 (El Segundo,
Calif. : The Aerospace Corp., 15 April 1974),

4. , An Accelerated Multiplier Method for Nonlinear
Programming, Report No. TR-0075(5901-03)-5 (El Segundo, Calif.:
The Aerospace Corp., 30 November 1974).

5. P. K, Henrici, Discrete Variable Methods in Ordinary Differential o
Equations (New York: Wiley and Sons, 1962), :

6. C. W, Gear, Numerical Initial Value Problems in Ordinary Differential I
Equations (Englewood Cliffs, New Jersey: Prentice Hall, 1971),

| - 7. S. D, Conte and C. deBoor, Elementary Numerical Analysis: An .
Algorithmic Approach (New York: McGraw, 1972),

8. E. Isaacson and H., Keller, Analysis of Numerical Methods (New

York: Wiley and Sons, 1966).

