
REPORT SAMSO-TR-75-255, VOL. IV

C'ý

Gjfl
sci" ir f

Volume IV: Numerical Operators

___ J TRAJECTORY ANALYSIS '?ROGRAMMING DEPARTMENT
SInformation 7•roeessing Division

- Engineering Science Operations
The Aeroipace Corporation

El Segundo, Calif. 90245

Final Report D D (
-JUNi JU 1

'Yt ..- A PPRO VED FO R , PUBLIC RELEA SE; f l-
-Sti •,DISTRIBUTION UNLIMITED U

.$.. , ..- ,-. .: .

Prepared for
"" ::-".':: . 4.. .. A..IR FORCE ROCKET PROPULSION LABORATORY

"-,AIR FORCE SYSTEMS COMMAND I
-' Edwards Air Force Base. CalU. 98623

and J'ill:1 A]I.AOSlAAL (CO!{ PO1A'Ii)'N

SPACE AND MISSILE SYSTEMS ORGANIZATION
AIR FORCE SYSTEMS COMMAND

Los Angeles Air Force Station
P-0. Box 92960, Worldway Postal Center

Los Angpies, Calif. 90009

DIN CLAIME1
.) \

•'Th cfrta*'\

'\ ,6'c-•'•

THIS CUMENT IS BEST

QUALITY AVAILABLE. TRJTh COPY

FURNIStED TO DTIC CONTAD{ED

A S.IGNIFICANT NUMBER OF

FACS WICH DO NOT

REPRODUCED FROM
BEST AVAILABLE COPY

This final report was submitted by The Aerospace Corporation,

El Segundo CA 90245, under Contract F04701-75-C-0076 with the Space and

Missile Systems Organization, P.O. Box 92960, Worldway Postal Center,

Los Angeles CA 90009. It was reviewed and approved for The Aerospace

Corporation by D.A. Schermerhorn and A. R. Sims, Engineering Science

Operations. The Air Force Project Engineer was Lt. Joe Hildreth,

AFRPL/MKCD.

This technical report has been reviewed and is approved for publica-

tion. Publication of this report does not constitute Air Force approval of

the report's findings or conclusions. Jt is published only for the exchange

and stimulation of ideas.

Thit report has been reviewed by the Information Office (01) and is

releasable to the National Technical Information Service (NTIS). At NTIS,

it will be available to the general public, Including foreign nations.

Gerhard E. Aichinger
T echnica! &.4-d;a. "

Contracts Management Office

FOR THE COMMANDLR

T iaK J.' B an -

Chief, Contrat Management Office

- .r-~ - -- ----

UNCLASSIFIED '
SECUiRITY CýIAS4FICATION of' THItS PAGC ("on. Data Snfe,.d,

j'),-'PR WUETTNPG BEFORE COMPLETING FOR6E

>3ASOT1-7525~Xol2 GOVT AC.CESSION NO. I ~IPIENT'S CATALOG NUMBER

orySlru~t~o Sste * Final ep~t. .777 _____

Trajectr Analysis-ýe PTractogramming--- Deparmenta
InformationProce~sion imuision Systeml75C-~7

Engineering Science Operation,

The Aerospace Corporation- AE8
El Segundo, California 902.45 /

Space and Missile System Oranztin15__i 7
Air Force Systems Command 1COP rref
Los Angeles, California 90045 104 _____

14 MONITORimG AGENCY NAME &AOORESS111 ditf.rw~r f,oin ronfroiiIl.g Office) 15 SECURITY CLASS. t.1 thi. o.po,r)

Air Force Rocket Proplion L~aboratory Ucasfe
Air Force Systemns Command Ucasfe
Edwxards A~r Force Base, Cal-If. 93523 15o. DECLASSIVICATION DOWNG.RADINGi

SCMEOUL6k

6 ITljTION STATEMENT (of thie Report)

A n-(ved for public release; distribution unlimited.

'7 DIST A, 9U Tl I) N srrr) F. m h *k.rA.L porf,)

II SUPPLEMENTARY~ NOTES

') -KEY -WORDS (o i. .e~... aid. If -.. e..ry *a dIdentify by block nýttlt*,)

CD.C 6000/7000 Nonlinear Constrained Para- %Optimal Co)ntrol
Modular zed Program rneterizaticni Optimization Constraint Solving
Softwarc Systern Optimization 'lechniques
Numerical Operators Nonl Inear Least Squares Traiectory Optimizat~o
No.nlinear Programming Search 'Techniques Per-formance Analysis

AeSTA AC? (Co-'l,-.o o idds if neeofery twd ldontiy by lc t.nb)

TIhe Gene raliý.C d Trajectory Simulation (GTIS) system provides a vehicle
designý arid trajectory simu~ation capability. G'i S is written in VORIRTAN and is
comnpatible with CDC 6000/7000 series c;omputer systems. User-oriented
inlput data specifications, computational efficiency, diversýe program
ap-. -i-ity an, -I rnmVý-nlent provram mnodifications hav~e beeiipimr

considlerations in the dt1 ign of the G015 systeim. The tra ectory biiiiLt7

F O ~ 1413i,ASSlI I- IE)
SEC.-'RIiTY CLASIFICATION OF THIS 5AGV (when Dot. 5.uIt~dj.1

UNC LA\S51F IE D
SECUIITyI CLASIIFSr A' ION OF THtS PAOiR(lW%., Dedi Utleo4)

19 KCVY "OROS (Cofinu.od)

Vehicle Sizing Dynamic System Simulation
Vehicle Dce:ign Pos, Ylight Reconstruction
Vehicte/Trajectory Optimization hIt- rpolation -.

Numrerical Integration
l'rdjectory Sinmulation
PBoost Vehicle Simulation
Reentry Vehicle Simulation

SAbSTRACT (Conltlnued)

Aapability can accommodate diverse types of vel-icle configurations, flight
profiles, and mission objectives. Additionally, the GTS system contains an
extensive vehicle sizing capability and a state -of-the-art optimization
capability.

This volume docun-ients the GTS library of optimization, integration, and
intcrpolation operatot-6. Included \with th,: description ot each operator is
a description of the input data required to execute the operators and
recommendations concerning the type-- of problems for which each operator
is best suitecd.

-JJ

JNC LASSI YI.E 1.)

SECURITY' CLASSIFiC.ATICN Of TY14t$ PAORI•hb Donle Briterd)

- I ----- -.--

Cr PRE~FACE

This volume, the fourth of five volumes that describe the Generalized Tra-
jectory Simulation (GTS) system, concerns the GTS library of numerical
operators, including integration, optimization, and interpolation operators.
The remaining volumes are:

Volume 1: GTS Overview. This volurr. trovides the potential user
with an overview of GTS, including a sti,..mary of the major opera-
tional capabilities and structural design of the GTS system.

Volume II: GTS Usage Guide. This volume serves as a general usage
guide for GTS and includes a set of example problems, a compre-
hensive description of the Generalized Trajectory Language, and a
discussion of the trajectory simulation control. In addition, a set of
appendices contains a master reference list for all volumes and
supplementary information to aid the user in defining his problem.

Volume III: GTS Flight Dynamic Models. This volume concerns the
GTS library of flight mechanics and flight dyTiamics models utilized
for trajectory simulations.

I-' Volume V: GTS Weight Estimation Models for Sizing Applications.L: This volume documents the GTS library of weight estimation models
utilized for sizing applications.

This report was prepared by J. L. Searcy. The author acknowledges the
beneficial contributions and suggestions made by D.S. Meder, J. T. Betts,
and G.B. Green.

lilt WNlU Sel

~D DC

. L
I VA LflUI CODES JUN 14 1978

, I WMAL

iv

PR(CEDIM PA34aBL•l•Ipr F-

CONTENTS

Page

1. INTRODUCTION -

2. OPTIMIZATION AND SEARCH CAPABILITY 2. 1-1

2. 1 Overview 2. 1-1
Z.1. 1 Problem Formulation 2.1-1

2.1.2 Data Specification 2. 1-3

2. 1.3 Function Generator Error Response 2. 1-4

2.1.4 Restart Capability 1-5

2. 1. 5 Optimal Control Problems 2. 1-6
2.1.6 Recommendations for Usage 2. 1-7

Z. 2 Optimization and Search Operators2. 2-1

2. 2. 1 UOPTIM Z. Z-1
2.2. 1. 1 General Description2. 2-2I2.2. 1.2 Equality Constrained Algorithm 2. 2-3

2.2. 1. 3 Basis Determination 2. 2-6

2.2.1.4 Example2. 2-6
2. 2. 1. 5 Special Usage 2. 2-7

2. 2. 1. 6 Interpretive Output from UOPTIM 2. 2-9

2. 2. 1.7 Diagnostic Output 2.2-10

2. 2.2 UBEST 2. 2-12
Z. 2. 2. I Preliminary Dvvelopments 2.2-13

2. 2.2. 2 Unconstrained Optimization Algorithm . . . 2. 2-14

2. 2. 2. 3 Determination of the Basis 2.2-15

2.2.2.4 Constraint Phase 2.2-16
2. 2. Z. 5 The Nonlinear Programming Algorithm. - . . 2. 2-17

2.2.2. 6 Example2. 2-18
2. 2. Z. 7 Special Usage 2. 2-20

2.2. 2.8 Interpretive Output from UBEST 2. 2-22

2. 2. 2. 9 Diagnostic Output from UBEST 2. 2-23

2. 2 3 USCHIN 2. 2-25

2. 2. 3. 1 Basic Procedure 2. 2-26

t

2. 2. 3. 2 Update Logic 2-29

2.2. 3.3 USCHN Algorithm 2.2-30

2. 2. 3.4 Interpretive Output from USCHN 2. 2-31

Z. 3 Optimization Input 2.3-1

2. 3. 1 Optimization Input Format 2.3-1

2. 3. 2 Problem Definition Models (PROBDEF) 2. 3-2

2.3.2.1 Problem Definition Model I (PRBDFMI) . . . 2.3-3

2.3.3 Objective Function Models (OBJFTN)2.3-8

2.3. 3. 1 Objective Function Model I (OBJFNMI). . .. 2. 3-8

2. 3.4 Constraint Models (CONSTR) 2.3-11

2.3.4. 1 Constraint Model 1 (CNSTRMI) 2.3-11

2.3.5 Independent Variable Models (INDVAR)2.3-17

2. 3. 5. 1 Independent Variable Model 1 (VARMI) . . . 2.3-17

2. 4 Optimization and Search Output 2.4-1

2. 4. 1 Optimization Input Summary 2.4-1

2. 4.2 Iteration Summary 2.4-2

3. 1NTEGRAT1ON OPERATORS. 3-1 (7
3. 1 Trajectory Simulation 3.1-1

3. 2 Integration Methods 3. 2-1

3. 2. 1 Runge-Kutta, Fixed Step (4-th Order) 3. 2-1

3. 2. 2 Adams-Moulton, Fixed Step (m-th Order) 3.2-2

3. 2. 3 Adams-Moulton, Variable Step (m-th Order) . . . 3.2-8

3.3 Recommendations for Usage 3.3-1 !
3. 4 Integration Input Models (INTGRA) 3.4-1

3.4. 1 Integration Model 1 (INTGRMI) 3.4-1

3. 5 Integration Output 3. 5-1

4. INTERPOLATION OPERATORS 4-1

4.1 Interpolation Formulas 4.1-1

4. 1. 1 Univariate Interpolation 4.1-1

4. 1.2 Multivariate Interpolation 4.1-3

4.-2 Inte rpolation/Integration Interaction 4.2-1

1' ERENCES R-1

0

-. -.. "-.- ".--__---

FIGURES

2.2-1 UOPTIM Example 2.2-1

2.2-2 UBEST Example 2.2-19

3.2-1 The 4-th Order Runge-Kutta Integration Method 3.2-3

3.2-2 Adams-Moulton Integration Method 3.2-6

3.2-3 Summary of Derivative Evaluation 3.2-7

vii

SECTION 1

, INTRODUCTION

This volume documents the GTS library of numerical operators.

These operators are distinguished from the engineering models documented
in Volumes Ilil and V in that they imrplement a numerical algorithm for the-

solution of a mathematical problem rather than modeling a physical phenomenon.

j The three major categories of operators are optimization and search operators,

integ ration operators, and interpolation operators.

To provide the user with an effective and efficient method for

solving his individual problem, several operators are available within each

category. Furthermore, no a priori restrictions are made concerning the

operator that may be selected for a given application. That is, any numerical

operator may be specified in conjunction with any particular model configura-

tion that the user has specified.

This independence of the operators and models allows the user

considerable flexibility in defining problems for solution. For example, the
optimization operýLtors may be specified in conjunction with an integration .

t operator for a trajectory optimization problem, or the same optimization

operator may be specified for a vehicle design problem which does not require

a trajectory simulation. All the numerical operators are compatible with

the GTS input language. Thus, any Generalized Trajectory Language (GTIL)

capability such as GTL FORTRAN routines, tabular input, or the equivalence op-

tion may be specified at the user's convenience to define an optimization problem.

This volume documents the operators that are available within each

category. The discussion of each operator contains a user-oriented

description of the algorithm that is embodied in the operator. A more

complete mathematical description of each algorithm can be found in the

listed references. Clearly, within each category not all operators are equally

well suited for all applications. Consequently, included with the description

of each operator is an indication of the types of problems for which each

operator might be best suited. Also included with the discussion of each

operator is a description of the input data required to execute the operator

and a description of any output obtained from the operator.

1-1

t

SECTION 2

OPTIMIZATION AND SEARCH CAPABILITY

fhe OTS optimization and search capability is described in this section.

rst, an overview of the capability is presented. A description of the

individual operators, the input data required to execute these operators, and

the output obtained as a part of the optimization process are then presented

in succeeding sections. Examples of the application of the optimization and

search capability are presented in Volume II.

2. 1 Overview

The GTS optimization and search capability is a valuable analytical

tool which is an integral part of the GTS system. This capability can be applied

to a diverse set of problems. This diversity of application is achieved by

permitting the complete library of flight dynamics models and weight estima-

tion models to be available as a part of the definition of an optimization or

search problem. Furthermore, the GTS system provides several optimization

and search operators, each of which may be applied to several types of

S-. problems. Thus, the user is able to specify the problem formulation and

operator which best satisfies his requirements for accuracy and efficiency.

The information contained in this section is applicable to all operators

and is intended to enable the user to apply effectively the GTS optimization

and 3earch capability to his individual application. Included is . complete

list of the optimization and search operators which are available in the GTS

system and recommendations concerning the class of problems for which

each operator is best suited.

2. 1. 1 Problem Formulation

The GTS optimization capability may be applied to solving general

nonlinear constrained parameter optimization problems, search problems,

or nonlinear least squares problems. Optimal control problems which can

be posed as parameter optimization problems can also be solved. For

I
2.11

- - -.

I

purposes of definition, a parameter optimization problem can be described

as iollows: determine the values of n parameters, or independent variables
(Xx .. n), such that the scalar function f (x,, ... xn) f(x) is optimized (i.e.,
maximized or minimized). The function f(x) is referred to, among other

names, as the objective function, the performance index, performance cri-

teria or cost function. Additional restrictions may be imposed on the prob-

lem so that the variables are to be determined not only to optimize the

objective function, but also to satisfy equality constraints of the form

ci(xI' xn)= 0 i=1. . .ki

ii n
and/or inequality constraints of the form

c Ix ,.. .x) 0 i--k+l,.. . m

Example 3 of Volume Ii illustrates these concepts. In this example, the

objective function is vehicle weight; the independent variables are three burn

times, four reorientation angles, and two pitch rates; and the constraints are

four equality constraints which define a final orbit. Thus, the problem is to

minimize the vehicle weight as a function of the nine specified parameters

subject to a set of four equality constraints which define a final orbit.

Search problems are a special case of parameter optimization problems

for which an objective function is not explicitly defined. Rather, for search

problems the intent is to determine the values of n parameters which satisfy

a set of constraints. The number of independent variables may be greater

than or equal to the number of constraints. Root solving problems are a sub- F

class of search problems for which the number of variables equals the number

of ccnstraints. Example 2 of Volume II is an example of a root solving prob-

lerr.. The constraints are that the longitude and latitude of impact should be

equal to specified values. The independent variables or targeting parameters

are the launch azimuth anc a pitch rate.

An optimization problem whose objective function can be written as the

sum of squares of the constraints (residuals) is called a least squares problem.

In general, the number of constraints is greater than or equal to the number of

variables, and it is not expected that the residuals will be zero at the solution.

2. 1-2

iI
I

A Iast sqtiar.-i probhlm of this type can be solved using the optimization

ope-rators, by posing a problem with equality constraints and no explicit

objective function. Hlence, the GTS optimization and search capability may

be applied to several types of problems. These options are discussed in

more detail in Section 2. 3.2.

All the optimization and search operators discussed in Section 2. 1 are

operational as a part of the GTS system. Thus, the complete GTS model
library, the GTL input language, and the CTS process control capability may

be employed to define optimization and search problems. This flexibility

permits many diverse types of problems to be posed for solution within the

GTS system. Potential problems include boost trajectory problems (see

example 3 of Volume 1), orbital transfer problems (see example 4 of

Volume II), or trajectoric s that include both boost and reentry phases.
Vehicle design problems (see example 9 of Volume II) illustrate that an

optimization problem need not require a trajectory simulation. Furthermore,

as illustrated by example 10 of Volume II, problems may be formulated

independent of any flight dynainics models.

2, 1.2 Data Specification
A

The data required to define an optimization or search problem is
specified via GTL. A specific format for the definition of optimization and

search problems is part of GTL. A complete description of this input format is ,
given in Section 2. 2. In addition, all GTL capabilities (see Volume II), such as

the tabular input format, event specification, and GTL FORTRAN routines,
may be utilized for defining an optimization or search problem. Briefly, the 4

input for optimization and search problems is in the mnodel type--model format.

These optimization input model types reflect the major components of an
optimization problem (i.e. , objective function, constraints and independent

variables), and consequently, these model types are independent of a particular

operator requested to solve the problem. That is, all the optimization input ,

models described in Section Z. I are compatible with all of the optimization

2 1

_ _ _ __ _. _ _3ii

I
operators described in Section 2. 2. Furthermore this independence of input

models and operators implir-s that the user may choose the input format which

is most convenient for his particular problem, regardless of the operator

requested to solve the problem. Also, once a problem has been defined, a

different operator may be requested to solve the problem without redefining

the input data.

2. 1. 3 Function Generator Error Response I
As a part of an optimization application, the condition may be encountered

that the GTS system is unable to compute the values of the constraints or the

objective function for a specified set of values of independent variables. For

example, consider a trajectory optimization application for which the values of

the independent variables are such that an abnormal trajectory termination

(e. g. , a negative altitude) occurs. From the user's viewpoint, this situation

may be tolerable if the optimization process can recover from the current

difficulty, continue the optimization process, and ultimately obtain a solution.

Alternately, the user may feel that the inability of the program to compute all

desired quantities is symptomatic of a fundamental error in the problem

formulation. For this case the user would prefer that the optimization process

be terminated and that the problem be studied before continuing the optimization I
process. -

The GTS optimization system is cognizant of these potential situations,

and the following logic concerning the inability of the function generator to

complete a function or gradient evaluation has been implemented into the

GTS optimization system. First, there are two situations which result in the

program terminating when such a point is encountered. One is that the user

requests, -ia input, that the job be terminated whenever the program is

unable to complete an evaluation of the objective function or constraints. The

second such situation is that the initial point is not a computable point. That

is, the system does not attempt to determine a feasible point if the first point

is not feasible; rather, it terminates and requests that the user provide such

i

2.1-4

information. Here a feasible point is defined to be a point where all desired

evaluations can be made.

Otherwise, the program will attempt to continue if a nonfeasible point

is encountered. Except for the initial point, a nonfeasible point can occur

in two different circumstances, and the program response is different in each

case. First, the nonfeasible point is a prediction made by the optimization

operator. For thi.s case, a message is printed indicating the situation and

a return is made to the optimization operator with the information that an

evaluation was not possible at the last point. The optimization operator must

then provide a new prediction. Second, the nonfeasible point is a perturbed

trajectory requested in the process of providing numerical derivative information.-

For this case, the current perturbation size is changed and a new set of

perturbed evaluations are attempted. A message indicating the situation and

the new values of the perturbation size is printed.

Finally a note of caution-this error response capability is available for

the user's convenience in situations where a nonleasible point is a temporary

anomaly and the rather simple logic described above is sufficient to overcome

the difficulty. The logic is probably inadequate to handle more complicated

situations such as a problem in which the solution lies near a region of non-

feasibility. Furthermore, this capability should not be a substitute for an

adequate problem formulation.

2. 1.4 Restart Capability

The algorithms embodied in the UOPTIM and UBEST operators are

recursive in nature. That is, successive estimates of the solution are based

not only on the information obtained at the most recent evaluation, but on

information obtained at all previous evaluations. Consequently, the algorithms

are generally more efficient if they are allowed to continue uninterrupted to a

solution rather than requiring the program to begin anew at a set of inter-

mcdiate points. It is not always practical to permit the program to proceed

2-

L 2.1-5

t o - §

uninterrupted to a solution, or the user may want to analyze intermediate

results. For these situations a restart capability has been incorporated

into the program. This restart capability permits recursively generated

information to be saved at the completion of a job if a solution has not been

obtained. A subsequent run may access the information generated by the

original run, thereby eliminating the need to regenerate this information.

The input data required to save this information and subsequently access this

information is discussed in Section 2.3.2 .

2.1. 5 Optimal Control Problems

In addition to the nonlinear programming problems and search problems

previously discussed, optimal control problems may be posed for solution on

GTS. For purposes of definition, assume a set of state equations of the form

dx f(t,x, u) - xS= f~~) X(to) o

where x and f are n-vectors and u is an m-vector. Also, assume a

performance index of the form

J(u) = G(to, tf x(t),X(tf))

+ ft g (t, x, u) dt

0

The problem is to choose the set of functions u , referred to as

the control functions, such that the functional J(u) is minimized. In addition,

constraints of the form

ci(t,x,u) = 0 i 1,....j

c i(t, x, u) 3ý 0 i j j+ 1 k

may be imposed on the system. For optimal control problems, as contrasted

with optimization and search problems, the problem solution requires the

2.1-6

L determination of a time dependent function u(t) rather than a finite set of

parameters. Moreover, the constraints are time dependent functions. In

addition, the initial time t, or final time tf may be parameters to be

decermined. Example 10 of Volume U1 is an illustration of an optimal control

problem. The control functions are the rates of change of mechanical power

u. of the individual power plants. The objective is to minimize the function

J , subject to the constraint that the total power produced equal the demanded

load.

A general method that may be implemented within the GTS system for

the solution of optimal control problems is to approximate the control functions

by a finite set of parameters and then to apply the existing nonlinear program-

ming operators to this resulting finite dimensional optimization problem,

Again, example 10 of Volume U illustrates this technique. For this example,

the set of parameters which approximate the rate of change of mechanical

power is the value of these rates at a specified set of time points. This

approximation technique is easily implemented via GTL tabular input and the

II-) GTL equivalence option. The constraint

Slu i(t)[I ' U i

is approximated by a finite set of constraints that require each of the tabular

values of the rate of change of mechanical power to satisfy the above constraints.

Thus, a time varying constraint has been replaced by a discrete set of

constraints.

Certainly, different techniques for approximating the control functions

and specifying the constraints may be more desirable for specLfic problems,

and the user has the option of designing a parameterization technique which

suits his problem,

Z. 1.6 Recommendations for Usage

Potential difficulties common to all optimization and search operator!

are mentioned prior to presenting specific recommendations concerning

the individual operators. When defining the input data for a search oi

Z.l1-7

*I_
' 'mm Im _____

optimization problem, t•e user must insure that the particular model config-

uration specified does compute the objective function and the constraints. In

addition, the user must insure that the independent vari.7bles are valid inputs

for the models that are to be executed. For example, for prublem number 9

of Volume H1, RANGLS is not a valid objective function for the specified model

configuration since a trajectory simulation is not being performed.

All the optimization and search operators implicitly assume that the

computed quantities (i.e., the objective function and constraints) satisfy

continuity and convexity requirements. These requirements are generally

very difficult to verify analytically, and it is not expected that the user do so.

The user should, however, formulate his problems such that known discon-

tinuities in the function and derivatives are avoided.

For trajectory simulations, the user must accept some inaccuracy

associated with the integration process. A given integration accuracy that

may be acceptable for the user's analysis, however, may not be acceptable

for a simulation which is a part of an optimization or search problem. This

situation is especially true for optimization and search problems which obtain •-ii

derivative information via numerical perturbations. Recommendations for

the usage of integration operators are given in Section 4. 3.

In addition, for trajectory cases the user should realize that an

optimization or search operator may, potentially, request a trajectory

simulation with values of the independent variables which results in an event

s.equence that is different from the one encountered in the nominal case.

The user must either formulate the problem in such a manner that this

situation presents no difficulty or he must eliminate this problem by the I

bpecification of the range of the independent variables or by the specification ,

of thp event criteria.

For the convenience of the user, a list of the optimization and search

operators available in GTS is given below. Recommendations concerning

the types of applications to which each operator might be best applied are

2. 1-s

1

also presented. These recommendations are only to serve as general guides,

not absolute rules. Specific knowledge or experience that a user may have

concerning an individual problem would supersede these recommendations.

The algorithms are undergoing a continuing process of modification and

improvement. Furthermore, new algorithms may be introduced into GTS.

Consequently, the user should be sure that his selection of an operator is

based on the most recent information that is available.

1. USCHN -- USCHN is only applicable to search problems. Further-

more, its effectiveness is generally limited to smaller dimensional problems,

roughly less than 10 variables and 10 constraints. USCHN does not require

an evaluation of partial derivatives at each point. Consequently, it is more

efficient than the other algorithms for those problems where it is applicable.

2. UOPTIM -- UOPTIM is applicable to general nonlinear constrained

parameter optimization problems, search problems, least squares problems,

and root solving problems. For constrained parameter optimization problems,

the UOPTIM algorithm generates a set of intermediate points which satisfy

the constraints. Consequently, UOPITIM is preferred for those problems in

which it is useful to obtain intermediate points that satisfy the constraints.

For all problems the UOPTIM algorithm requires gradient information at

every point; consequently, it will be less efficient than USCHN for problems

for which USCIIN is applicable.

3. UBEST -- UBEST is applicable to general nonlinear constrained

parameter optimization problems, search problems, least squares problems,

and root solving problems. For constrained parameter optimization problems,

UBEST generates a set of intermediate points which are near the optimum of

the objective function but which violate the constraints. Consequently,

UBEST is preferred for those problems in which it is useful to obtain inter-

mediate points near the optimum of the objective function. For search or

least squares problems, the UBEST operator is preierred to UOPTIM,

especially for cases which have a nonzero minirnurn. UBEST requires

2.1-9

gradient information at every point and is less efficient than USCHN for

problems for which USCHN is applicable.

.
2. I-I10

iI
2. 2 Optimization and Search Operators

All of the optimization and search operators available in the GTS

program are discussed in this section, The description of each operator

includes a brief, heuristic outline of the optimization or search algorithm

and a list of the informative and diagnostic messages that are output by the

operator. These messages are intended to permit the user to follow the

progress of the algorithm and to analyze the results that are obtained.

2. Z. I UOPTIM

The optimization operator UOPTIM is described in the following

sections. This operator is designed to solve the following problem. Determine

the n-vector x that optimizes (i.e., maximize or minimize) the scalar function

f(x) = f(xlFx 2 ,. . X) (1)

subject to the equality constraints

- (/ ci(x) = 0 i 1,2,... k (2)

and the inequality constraints

ci(x) ? 0 i = k+l,k+2,.,.,m 13)

The functions f(x) and ci(x) are assumed to be twice continuously

differentiable in the region

XL * x * xU (4)

where xL and are specified upper and lower bounds. These bounds

determine a region of computability and unlike constraints cannot be violated

during the iterati,'e process.

As special cas2s of this problem, the UOPTIM operator is designed

to solve unconstrained optimization problems in which there are no constraints

(m = 0), nonlinear root solving problems, search problems,and nonlinear

least squares problems.

' I

2.2-I J

The following sections give a brief, user-oriented description of the

UOPTIM algorithm. A more complete development of the algorithm may be

found in Ref. 1.

2. 2. 1. 1 General Description

Assume the optimization problem defined by Eqs. (1), (Z), and (3) has a

solution x'. At x" the following conditions hold:

ci(x'*) = 0 i = 1,2,.... k

and for
i = k+l,k+Z,...,m

e ithe r

c.(x') 01

or

c.i(x.c) > 0

That is, at tie 6olution an inequality constraint is either satisfied as an

equality constraint, or it is satisfied as a strict inequality constraint and,

as such, imposes no restrictions on the problem. For definiteness, we

shall refer to the set of constraints B"; that is satisfied as equality

constraints at the solution as the basic set of constraints.

B :! Ici I ci(x'*) = 0 i l,2,... ,=-al

Clearly, B'* contains all equality constraints and a subset of the inequality

constraints. Hence, the optimization problem defined above can be solved

if the following two subproblems can be solved. First, determine the basic

set of constraints B*'. Second, solve the following equality constraint

problem:

?.. h-Z

,. -.

optimize f(x)

subject to

cix) = 0 c. 4 B*

To solve the first problem, a sequence of estimates of the

basic set of constraints is made. Each of these estimates of the basic set

of constraintF is referred to as a basis. Each basis contains all equality

constraints and a subset of the inequality constraints. The total number of

constraints in each basis is restricted to be less than or equal to n. As

each basis, B, is specified, an associated equality constrained optimization

problem is posed. After a solution to this equality constrained problem is

found, a new basis estimate is made by adding and/or deleting inequality

constraints from the existing basis. The constraint addition and deletion

logic is formulated such that if at the solution of a posed equality constrained

problem no constraints can be added to or deleted from the current basis,

then the current basis is the basic set of constraints. Therefore, the current

point is the solution to the overall optimization problem.

Z. 2. 1. 2 Equality Constrained Algorithm

Assume a basis estimate has been determined. This section describes

the associated equality constrained optimization problem that is posed and

the method used to solve this problem. The next section describes the

constraint addition and deletion logic used to obtain a new basis estimate.

Consider the function

f(x) = f(x) + rP(x) (5)

where f(x) is the objective function, r is a nonnegative scalar referred

to as the penalty parameter, and the function P(x) is defined by

P~x W F: (x)] 2(6)

cif B

2. 2-3

I

whe re

c (x) min1 0, cx)]

The UOPTIM algorithm poses the following constrained problem

for solution:

optimize i(x)

subject to

ci(x) 0 c.E B

This equality constrained problem is solved by the following elimination
of variables technique. Assume that c. , i = 1,2,... r n are the constraints

1

in the current basis. Then define a new set of variables u. , i = 1,2,..., n,

in the following manner. For i = 1,..., r let u. = c.(x). For i = r+l,.... n,

set u. x' , where x. is chosen among the original set xI ... Xn. Hence,

we have defined a set of functions Y.(x), i = 1,... ,n, such that u. Y'.(x),

whe re

u Y (x) = c.(x) i l,Z,...,r II
U. = i(x)= xi i= r+l n

If we require that the Jacobian matrix J = is nonsingular, then

there is an implicitly defined family of functions ri, i = 1,.. n, such that

x= ri(Ul U2 ,'...U) i= 1 ... ,n. Now consider the function g defined by

g(u nu)

The problem of optimizing f(x) subject to ci(x) = 0, i 1,... r is

equivalent to optimizing g(ul,u 2 ... ,un) subject to u1 -U2 - r .

Equivalently, this problem reduces to optimizing

h(Ur+ . . n g(OO' ,' Ur+ . .. u)
r+l1 'n l Y

2.2-4

_ _

() Thus, the equality constrained optimization problem with n independent

variables has been reduced to optimizing a function h of n-r variables

with no constraints.

Note that the n-r optimization variables ui, i = r+l, , n, are

a subset of the original set of independent variables. The remaining r

variables from the set xi ... xn are determined so that the r constraints

ui -= ci(x) = 0 i = 1,2,... r

are satisfied. This completely defines the vector x.

Therefore, the equality constrained optimization problem has

been "factored" into the two problems of an unconstrained optimization

problem of n-r variables and a root solving problem for a system of r

variables and r constraints. Currently, the root solving problem is

accomplished by minimizing the associated function

O~)C i,(=1 2

Consequently, the equality constrained problem has been reduced to two

lower dimensional unconstrained minimization problems.

The following basic technique is used tt- solve both of these unconstrained

minimization problems. Let f represent the function to be minimized. That

is, f = h for the unconstrained minimization problem and f =0 for the root

solving problem. The algorithm then minimizes f by making a series of
0

iterative improvements to an initial estimate x , according to the formula

i+l i isi
x =x -s i = 0, 1,2,....

The search vector si is computed by

sI = - 1 Vf(x) i = 1,2

where Vf(xi) is the gradient of f at xi and Ki is an i-th approximation

of the inverse of the Hessian matrix, or matrix of second partial derivatives

of f. The scalar Pi is determined by a one dimensional search procedure.

2.2-5

At the point x , a new estimate of the inverse of the Hessian matrix
ifl- i+l i i+1 j

K is made based on the values of f(xl), f(x), 17f(xi), Vf(x) and
i i~l-

K . Once K is determined, the procedure is to be repeated until the

specified convergence criteria are satisfied. This scheme is quasi-second

order, in that convergence is quadratic if the objective function is quadratic

near the solution.

2. .. 1.3 Basis Determination

Assuming that the equality constrained optimization algorithm described

in the previous section obtains a solution to the posed problem, we describe

the method by which constraints are added to, or deleted from, the current

basis to form a new basis, If the current point is a solution to

the posed problem, an attempt is made to add ail violated constraints to the

basis. If this is not possible, then the constraints are ranked in order of

their "violation. " For the UOPTIM algorithm, the "violation" of a constraint

is defined to be a linear estimate of the distance from the current point to

the nearest point where the constraint is satisfied. Recalling that a basis

may contain at most n constraints, as many constraints as possible are

added to the basis in order of their "violation. "

The constraint deletion logic attempts to determine the one constraint

that,if released from the basis, will result in the greatest improvement in

the function f consistent with the requirement that the other constraints

in the current basis remain satisfied. The current logic permits only one

constraint to be released. Furthermore, the constraint deletion logic is

consistent with the Kuhn-Tucker necessary condition for a solution. If at

the solution to an equality constrained problem there are no violated constraints

and no constraints can be deleted from the current basis, then the current

basis is the basic set of constraints and the current point is a solution.

2.2. 1.4 Example

As an illustration of the UOPTIM algorithm, consider the following

simple problem:

2. 2-6

2
minimize f(x1, x 2) = x I x x2

subject to: cl(x 1 , x) = -(x,)/4 + x + 4 ý0 0

c,(x 1 , x 2) = ZxI + x- 80 :_--

Figure ý.Z-I illustrates the contours of the objective function, as

well as the constraint boundaries. The violated regions for the constraints

have been crosshatched. For this problem assume that constraint c 1 (x1 , x)

is in the initial basis. Assume the initial point was specified to be x = (4, 4)

(labeled (1) in the figure). Initially, a factorization is obtained which specifies

that the variable x1 is the constraint solving variable and variable number 2

is the optimization variable. Then a solution of the constraints is found as a
function of the constraint solving variable. The point (5. 6568, 4. 0) (labeled (2))
is such a point. Next, the function f(x) is minimized subject to the constraints

in the basis, cI in this case. The point (3. 6673,-0. 6377) (labeled (3)) satisfies

this condition. Now constraints are added and/or deleted from the current

basis. Clearly, c 2 (x) must be added to the basis, and the algorithm determines

that c (x) can be released from the basis. Thus, a new equality constrained

problem of optimizing f(x) subject to c 2 (x) = 0 is posed for solution. The point

(3. 2, 1.6) (labeled (4)) i! then determined to be the solution to this problem.

At this point there are no violated constraints, and, furthermore, no constraint

can be released from the basis. Thus, the basic set of constraints has been

determined, and the point (3. 2, 1.6) is the solution to the problem.

2.2. 1. 5 Special Usage

The following input quantities which are specific to the operator UOPTIM

can be specified as a part of the problem definition model PRBDFMI input

(Section 2. 3. 2. 1). However, it is recommended that these quantities not

be changed from the preset values without knowledge of the algorithm and a

demonstrated requirement for an alternate input value.

2.2-7

2no

S 2 c2x AX) =
f(X 64--clX 0•

Figure 2.2-1. UOPTIM Example

2.2-P

(9 Mnemonic Description Default Value

PENLTY Value of the penalty parameter 1.

ITC Problem number for analytic test 0
problem (integer)

MAXITC Iteration limit for the constraint solving 99
process

MAXITS Iteration limit for the unconstrained 99optimization process

MAXITP Limit on the number of equality 20
constrained problems that may be posed

2. 2. 1. 6 Interpretive Output from UOPTIM

The following set of messages appear during the normal operation

of the algorithm and are designed to aid the user in following the progress

of the algorithm. These messages are printed in addition to the point-by-

point iteration print described in Section 2. 3.

OBJECTIVE FUNCTION + PENALTY z xxxxx... the value of f(x) (Eq. (41).

DEFINE EQUALITY CONSTRAINED PROBLEM N JMBER n... (see
Section 2. 2. 1. 2).

FOR THIS SUBPROBLEM THE VALUE OF THE PENALTY PARAMETER
IS xxxxx... (see Eq. (4)).

BEGIN EQUALITY CONSTRAINED OPTIMIZATION ALGORITHM IN ORDER
TO OPTIMIZE THE OBJECTIVE FUNCTION SUBJECT TO THE CONSTRAINTS
IN THE CURRENT BASIS. (see Section 2.2. 1.2)

CONSTRAINT SOLVING VARIABLES... a list of the independent variables
specified by the factorization to solve the constraints. (Section 2. Z. 1.2)

OPTIMIZATION VARIABLES... a list of the independent variables specified
by the factorization to optimize the objective function. (Section 2... 1. 2)

BEGIN CONSTRAINT SOLVING ALGORITHM. (Section 2.2. 1.2)

2.2a-9

CONSTRAINT SOLVING ALGORITHM ITERATION NUMBER n.
(Section 2.2. l.Z)

UNCONSTRAINED OPTIMIZATION ALGORITHM ITERATION NUMBER n.
(Section 2.2. 1.2)

END CONSTRAINT SOLVING ALGORITHM. THIS POINT SATISFIES THE
CONSTRAINTS IN THE BASIS. (Section 2. 2. 1.2)

END UNCONSTRAINED OPTIMIZATION ALGORITHM. THJS POINT
OPTIMIZES THE OBJECTIVE FUNCTION SUBJECT TO THE CONSTRAINTS
IN THE BASIS.

NO CONSTRAINT CAN BE DELETED FROM THE CURRENT BASIS
(CASE 1) . . constraint deletion logic to attempt to form a new basis.

NO CONSTRAINT CAN BE DELETED FROM THE CURRENT BASIS
(CASE 2)... constraint deletion logic to attempt to form a new basis.

THE FOLLOWING INEQUALITY CONSTRAINT HAS BEEN RELEASED
FROM THE CURRENT BASIS (CASE 1) n... constraint deletion logic to
attempt to form a new basis.

THE FOLLOWING INEQUALITY CONSTRAINT HAS BEEN RELEASED
FROM THE CURRENT BASIS (CASE 2) n... constraint deletion logic to
attempt to form a new basis.

THE FOLLOWING n. VIOLATED INEQUALITY CONSTRAINTS HAVE
BEEN ADDED TO THE CURRENT BASIS... a list of the constraints added
to form a new basis. (see Section Z.2. 1.3)

THE BASIS CONSISTS OF THE FOLLOWING n CONSTRAINTS... a list
of constraints in the current basis. (see Section 2. Z. 1. Z)

2.2. 1.7 Diagnostic Output

Any one of the following set of messages may appear if the UOPTIM

algorithm is not progressing in a nominal manner. The appearance of

one or more of these messages should serve as an indication of a possible

problem; however, it does not necessarily imply that the algorithm will

be unable to obtain a solution.

IN THE CONSTRAINT SOLVING ALGORITHM THE CURRENT POINT IS
ON THE BOUNDARY AND THE CONSTRAINTS ARE NOT SATISFIED. The
constraint solving algorithm has terminated on a bound defined by Eq. (4). This

2.2-10

II
(condition may be an i-idication of an unrealistic specification of the bounds

or an inadequately definec prc-blem.

REQUEST A NEW SET OF CONSTRAINT SOLVING VARIABLES. In an
attempt to solve the constraints in the basis, a new set of constraint solving
variables is requested.

THE CONSTRAINTS IN THE BASIS CANNOT BE SATISFIED WITH THE
CURRENT SET OF CONSTRAINT SOLVING VARIABLES. The constraint
solving algorithm is unable to satisfy the constraints. The algorithm will
attempt to formulate a new problem by changing the constraint solving
variables or by altering the basis.

IN THE OPTIMIZATION ALGORITHM THE CURRENT POINT IS ON THE
BOUNDARY AND THE ALGORITHM CAN DO NO MORE PROCESSING.
The unconstrained optimization algorithm has terminated on a bound
definedby Eq.(4). This conditionrnay be an indication of an unrealistic
specification of the bounds or an inadequately defined problem.

END EQUALITY CONSTRAINED OPTIMIZATION PROCESS. THE
CONSTRAINTS IN THE BASIS ARE INCONSISTENr OR INDETERMINATE
AND CANNOT BE SATISFIED. The algorithm will attempt to formulate
a new basis by deleting a satisfied inequality constraint.

NO INEQUALITY CONSTRAINT IN THE BASIS IS SATISFIED. No equality
•__.constraint can be deleted. The jalgorithm will terminate.

IN AN ATTEMPT TO FIND A BASIS THAT CAN BE SATISFIED, THE
FOLLOWING INEQUALITY CONSTRAINT IS BEING RELEASED FROM
THE CURRENT BASIS n. If a solution to the conatraints in the new oasis is

found, then the algorithm will continue as outlined in Sections 2. 2. 1. 3 and 2. 2. 1. 2.

IMPOSSIBLE INCONSISTENCY ERROR CONDITION. The constraints are

probably inconsistent. This may indicate an ill-posed problem.

THE ALGORITHM TERMINATED ON A MAXIMUM NUMBER OF
ITERATIONS COUNT AND MAY NOT HAVE CONVERGED TO A PROPER
SOLUTION. Further iteration will probably not yield any further
improvement. An alternate problem formulation may be desirable.

THE PROGRAM DETECTED A PROBABLE CYCLING BEHAVIOR IN THE

BASIS SELECTION PROCESS. The basis selection process is unable to
determine the basic set of constraints. An alternate problem formulation
may be desirable.

A PROBABLE ESSENTIAL INCONSISTENCY IN THE CONSTRAINTS HAS
BEEN ENCOUNTERED. The algorithm has determined that the constraints
do not have a solution, at least locally. A different starting point or an
alternate problem formulation may be desirable.

t 2.2-I1

I

I
THIS POINT IS ON A BOUNDARY AND THE ALGORITHM MAY NOT HAVE
CONVERGED TO A PROPER SOLUTION. The algorithm is unable to find a
solution that is interior to the region defined by Eq. (4). A larger value of the
input value of PENLTY, or an alternate problem formulation, may be desirable.

.2.Z UBEST

The optimization operator UBEST is described in the following

sections. The operator is designed to solve the following problem. Determine

the n-vector x that optimizes (i. e., maximizes or minimizes) the scalar
function

f(x) = f(xI, ... xn) (1)

subject to the equality constraints

c.(x) = 0 i = 1,2,... k (,)
i

and the inequality constraints

cix) >0 i k+l,k+2,. m (3)

The functions f(x) and ci(x) are ; dsumed to be twice continuously

differentiable in the region 4
XL :5 x xU (4) -

where xL and x are specified lower and upper bounds. These bounds
L U

determine a region of computability and unlike constraints cannot be violated

during the iterative process.

As special cases of this problem, the UBEST operator is designed to

solve unconstrained optimization problems in which there are no constraints

(m = 0), nonlinear root solving problems, search problems, and nonlinear

least squares problems.

The following sections give a brief, user-oriented description of the
UBEST algorithm. A more complete development of the algorithm may be
found in Refs. 2, 3, and 4.

2.2-12

(__.2.2. 2. 1 Preliminary Developmentb

Define the Lagrangian function

L(x,X) = f(x) + cT 1 (5)

where c(x) is the rn-vector of all constraints and X is the m-vector of

Lagrange multipliers. At the optimum point (x*, X*)

VL(x*, .*) = g(x*) + G(x*)X* = 0 (6)

where VL is the gradient of the Lagrangian function with respect to x,

g(x) is the gradient of the objective function, and the n x m Jacobian

matrix is given by
~-co 8c I oCm

mll
(x) ;[Vc1 ... vca] = (7)

I n

Furthermore, at the solution

C(X) = 0 = , ,m (8)

whe re

X. : 0 for i (k+l),... ,m (9)

To distinguish the constraints that are satisfied as equality

constraints at a solution, define the basic set of constraints,

B* --- Jcilc i x* 0 i- =l.... m 10

An estimate of B* shall be referred to as a basis, B. If the gradients of

the constraints in B* are linearly independent at x*, then Eqs. (6), (8), and (9)

2.2-13

I -

constitute the Kuhn-Tucker necessary conditions for the existence of an

optimum.

Assume a basis estimate has been made. The basic philosophy used

by the optimization operator UBEST is to find a point where the Lagrangian

condition, Eq. (6), is satisfied and then to estimate a point where the constraints

are satisfied. At such a point a new basis estimate can be made, and the

process can be repeated. In contrast, for a given basis, the operator

UOPTIM first satisfies the constraints and then follows the constraint

surface to a point where the Lagrangian condition is met.

2. 2. 2. Z Unconstrained Optimization Algorithm

It can be demonstrated that the Lagrangian condition, Eq. (6), is satisfied

at points which minimize the augmented penalty function.

J(x,A.,r) = f(x) + c T(x)Ak+ rP(x) = L(x,X) + rP(x) (11)

where r is a scalar referred to as the penalty weight, A is an rn-vector of

spccified estimates of the Lagrange multipliers, and Px) is the penalty

function

P(x) = IcZ(x) + E I[c.(x)] c ?-(X) (12)
ifB if B

with the indicator I defined by

I if c.<O
I [ci(x)] == 1,0 i ... &m (13)

For specified values of X and r , the minimization of J is an unconstrained

optimization problem.

The basic procedure used to solve this unconstrained problem is to

make a series of iterative improvements to an initial estimate of the

solution, xO, according to the formula

i+I i i i
x = x - ps i 0, I,2 ... (14)

2. 4-14

!'

- --- ~--.------ -- t

S~i
'-_ The search direction 51.s computed by solving the augmented system

(H)(G (V8i,

^T 1 (5

G' 0

where VJ is the gradient of J) is the Jacobian n-aLrix of the active

.onstraints, and an i-th estimate of the Hessian matrix or matrix of second

partial derivatives of J is defined by V2 J = H + ArGT. The scalar P is

chosen using a cubic search procedure so that

J (x i+l) < J(x i

At the point x a new estimate of the Hessian matrix can be constructed
based on the values Hi0 J (xil, J(x) , J(xil, and V7${x). This

procedure can then be repeated to obtain a new estimate of the solution. If

tqe uearch direction vector computed by Eq. (15) violates the bounds, Eq. (4), a
quadratic programming algorithm is employed to compute s .This iterative

process continues until

(16)

or

r ix - X 11(lIxix + W' S6 (17)

where 61 and 62 are specified tolerances on the gradient norm and the

resolution norm. If J is a quadratic function of the independent variables

x, convergence will occur after n-iterations, i.e. the process is quasi-

second order.

2.2. 2. 3 Determination of the Basis

The unconstrained optimization algorithm is applicable for a

fixed basis and corresponding fixed values for the Lagrange multipliers.

Estimates of the Lagrange multipliers are determined at a fixed point x

to be the values of , which minimize the error in Kuhn-Tucker conditions

2.2-15

• " I • " • i- ; " • • ,+ -'' • . . .;•....,

e(X A = lAX + bi (18)

whe re

A c 1 0 b 0 b (19)

•~0"

0 ~cm

The minimization of e as a function of A. subject to the negativity constraints,

Eq. (9), is solved using a quadratic programming algorithm.

The estimates of the multipliers and the values of the constraints are

used to determine a new basis B from the old basis B according to the

following rules:

Rule 1. If i!k, then ie ; (ZO)

Rule Z. If ifB, then i 1f if (fiCO or ci!l (21)

Rule 3. If i4B, then ieB iff (X.<O and c <61) (22)

Rule I requires that all equality constraints be in the basis. Rule 2 gives

the conditions for deleting a constraint; namely the i-th constraint is deleted

if it is satisfied and has a nonnegative multiplier. According to Rule 3, a

constraint is added if its multiplier is negative and the constraint is violated.

It is possible that there is no point which satisfies the constraints in

which case the constraints are called inconsistent. If there is an indication

of constraint inconsistency, then B is constructed from B by deleting all

satisfied inequality constraints.

2. 2. 2. 4 Constraint Phase

The purpose of the constraint solving phase is to predict a point

where the constraints are satisfied, while keeping the Lagrangian condition, Eq.

(6), satisfied. An estimate of the basis is required and the previously

Z. Z-16

ri_

described unconstrained optimization algorithm is applied to the penalty

function alone, ignoring the contribution of L(x,X) to J(x,X, r). The procedure

assumes the objective function is quadratic and the constraints are linear.

In particular, a direction is obtained by solving Eq. (15) in its limiting form
= g (23)

where • denotes the rrI constraints in the current basis and any other violated
A

constraints& G denotes the Jacobian matrix of the active constraints, and A

denotes che corresponding multipliers. The search step is then given by

R = x -Bsi (Z4)

where the scalar step length P is chosen such that P(R)< Pix). Nominally

= 1, and a cubic interpolation procedure is used if necessary.

At the end of the constraint phase, the penalty weight is increased

according to the computation

r k+l "L LTp VP1,a rk (Z 5)
r = max [, l0maxTK (P5

where K is an input quantity. When the basis is unchanged from the

Lagrangian phase to the constraint phase, K is set to one, i. e. , there is no

increase in the penalty weight.

Z.2.2. 5 The Nonlinear Programming Algorithm

The basic steps of the algorithm are:

kStep 1. (Lagrangian Phase) For a fixed basis B , fixed multipliers
k . kX , and fixed penalty weight r , minimize the augmented

penalty function, Eq. (11), using the unconstrained optimization

algorithm given in Section 2. Z. 2. 2. Call the solution R.

Step Z. (Basis Determination) Keeping R fixed, compute a new

2.2-17

oI
basis B and multipliers X, using the procedure in Section

2.2.2.3.

Step 3. (Constraint Phase) Beginning ar 5 , with fixed basis BF

minimize P , using the unconstrained algorithm given in
k+l k+l

Section 2.2.2.4. Call the solution x . If P 0,

constraints may be inconsistent.

k+l

Step 4. (Basis Determination) Keeping x fixed, determine a

new basis B k+ and multipliers Xk+l using the procedure

given in Section 2. 2. 2. 3. When checking for inconsistent I
constraints, if B B , terminate the algorithm.

Step 5. (Convergence Tests) Terminate if e(A,) <61 and ar <"62 I
from Eqs. (16) and (17). I

Step 6. (Define Penalty Weight) Compute new penalty weight 1

using Eq. (Z5).

k k+l k k+l
Step 7. (Update Information) Set k = k+l , x = x , r = r

Lk = ,k+I, Bk = B k+l, etc. Return to Step 1.

2.2.2.6 Example

As an illustration of the behavior of the algorithm, consider the

following example:

minimize f(x) = lO0(x 2 - x 1 + (!-x 1

subject to

C (X) -x2 + XI ?t0

c2(x) xI + x12'O0

c3(x) -xI + > 0

"*1

2.2-18

_ ... I"

N (2)

OBJECTIVEc 3 x
FUNCTI ON
CONTOURS

Fcr 22 W-Z 0JETExm

Figure~~~2 Z.Z-19BSTEaml

c 4 (x) xI + > 0

c 5 (x) = -x 2 + 1 Z 0

Figure Z. Z-2 illustrates the contours of the objective function as

well as the constraint boundaries. The violated regions for the constraints

have been croashatched. For this example there were no constraints in the

initial basis, so the initial multipliers were set to zero. A penalty weight
1 0

of r = I was used and at the initial point, x = (-Z, I); the value of the
0

augmented index J(x , X, r) = 915. 25. The first iteration of the unconstrained

minimization produced the point (1. 027, 3. 614), which is labeled (2) in the

Figure 2. 2-2 and at this point J = 662. 03. After 32 function evaluations

(27 iterations), the unconstrained minimnum of J was located at
1

x (0. 75, 0. 5625), labeled (3), completing Step 1. of the algorithm-n.

Observe that for this problem the Lagrangian condition VTL = 0, is
2 1satisfied when x 2 - xI = 0, for 0. 5< x - 1 , and clearly x lies on this

curve. The basis was determined as described in Step 2. Constraint c

was added to the basis, with the multiplier estimate A 3 - 0.4705. Beginning

at x , an estimate of the constrained solution was made, assuming c 3

was in the final basis. The point R = (0. 5,. 0. 1873) is shown with a (4) on

the figure. Note that the point satisfies the constraint, since c 3 is linear.

After making a new estimate of the basis in Step 4, and increasing the

penalty weight in Step 6, the algorithm returns to Step 1, with r = 10.

The unconstrained minimum of J was located at x 2 = (0. 545, 0.297) labeled

(5). Two more constraint phases and two more unconstrained minimizations

were performed before the solution at x* = X0, 5, 0.25) was obtaiued. A total

of 47 function evaluations were required to guarantee five place accuracy.

2. 2. 2.7 Special Usage

The following quantities which are specific to the operator UBEST

may be specified as a part of the problem definition model, PRBDFMI input.

(See Section 2. 3. 2. 1.)

2. 2-20

..- ~ - --.. ..--

However, it is recommended that these quantities not be changed from their

(.9 preset values without knowledge of the program and a demonstrated requirement

for an alternate input valun.

Mne monic Description Default Value

DELTAI dependent variables convergence tolerance 10.3

(see Step 5, and Eq. (16)); i. e., acceptable

error in Kunn-Tucker conditions.

DELTA2 independent variable resolution convergence l--

tolerance (see Step 5, and Eq. (17)); guarantees

log I significant figures accuracy in the

independent variables.

CONLIM convergence limit. 1 10

EUSE typically EUSE>DELTA2, determines when 10"2

to use the U matrix in the Hessian comput-

ations. (see Ref. 3)

ITMAX the numiiber of improving steps taken in an 1

unconstrained search iteration. An improved

step decreases the augmented objective

function.

PERSNT percentage of the range of the variables to be 0.01

permitted on first -;earL~h evaluation.

ZERO floating point numbers whose absolute values 10-12

are less than ZERO treated as 0.

DELTR K in Eq. (25), smallest penalty increment per 10
cycle.

PENLTY the scalar Yin Eq. (It). If PENLTY ! 0, a I

2.2-21

. -- -

0
Mnemonic De sc ription Default Value

basis estimate is made at the initial point

and r = max (IPENLTfI, 1.).

MODEOP Mode of operation. When MODEOP 1,

begin with Lagrangian phase (Step 1.).

When MODEOP = 2, begin with constraint

phase (Step 3). When MODEOP z 3, begin

with Step 4.

2. 2.2. 8 Interpretive Output from UBEST

The following set of messages appear in the normal operation of the

algorithm and are designed to aid the user in following the progress of the

algorithm. These messages are printed in addition to the point by point

iteration print described in Section Z. 3.

OBJECTIVE FUNCTION SCALE WEIGHT. . . the objective

function scale factor.

CONSTRAINT SCALE WEIGHTS . . . the constraint scale factors.

VARIABLE SCALE WEIGHTS.. independent variable scale

frictors.

CONVERGENCE TOLERANCES DELTAI

DELTA2 __ Eqs. (16) and (17)

ITERATION NUMBER , GRADIENT NORM -

AUGMENTED INDEX ... display 11VJ1 and J. (Section Z)

SEARCH . . . STEP _ INDEX REDUCTION = . . . display

one-dimensional search information, p and J(xi+1) - J(i).

(Section 2. 2, 2. 2)

2. 2-22:

CONVERGENCE GRADNM= , RESNOR

SOLUTION HAS BEEN OB'TAINED WITH R . .. convergence

of unconstrained algorithm, display 1I VJ i , art and r. (Section 2. 2. 2. Z)

SEARCH VECTOR COMPUTED USING Q. P. ALGORITHM.

quadratic programming algorithm was used to compute the s

vector. (Section 2. 2.2.2)

U MATRIX USED FOR ALL SUBSEQUENT ITERATIONS . . . U

matrix used in the Hessian matrix approximation. (see Ref. 2)

LEAST-SQUARES SOLUTION OBTAINED . . . unconstrained

optimization algorithm used to minimize penalty only, i. e.,

J = P. (Section Z.Z.Z. Z)

CONSTRAINTS IN BASIS. . . display basis constraint indices in

order of violation. (Section 2. 2. 2. 3)

LAGRANGE MULTIPLIERS.. display estimates of Lagrange
multipliers, X.. (Section 2.2. 2. 3)

ERROR IN GRADIENT . . . the error in the Lagrangian condition,

liVL(x*•,A*)I in Eq. (6).

ERROR IN CONSTRAINTS . . . the error in the constraints,

[P('x*)] /

INDEPENDENT VARIABLE RESOLUTION ERROR . . . error in

the variables, x and k.

Z. 2. 2. 9 Diagnostic Output from UBEST

The following list contains messages which may appear if the algorithm

is behaving in an abnormal fashion. The appearance of one or more of these

messages should serve as an indication of a possible problem. It does not

j 2. 2-23

necessarily imply that the algorithm will be unable to terminate normally.

CONVERGENCE TOLERANCES CHANGED. . . DELTAI =

DELTAZ --'_ Internal convergence tolerances changed, usually

because one but not both of the input tolerances are satisfied, The

input convergence tolerances may be inconsistent or nreallstic.

PSEUDORANK LESS THAN . . . Possible numerical

difficulties in the linear least squares process used to compute

the pseudoinverse. The problem may be poorly scaled.

SOLUTION MAY BE A DEGENERATE LOCAL MINIMUM . ..

Possible numerical difficulties in the quadratic programming

algorithm. The problem may be poorly scaled. This message

often occurs in conjunction with the previous message.

HESTENES ESTIMATE OF MULTIPLIERS USED . .. Numerical

difficulties computing the Lagrange multipliers. The approximation

Ai 2rciI [ci] is used.

CONSTRAINTS MAY BE LINEARLY DEPENDENT . . . The g.'adients

of the constraints may not be linearly independent at the solution,

in which case the Kuhn-Tucker conditions are not applicable. One

may expect deterioration in the performance of the algorithm, as

well as other indications of numerical problems. An alternate

formulation of the problem may be appropriate.

THE FOLLOWING CONSTRAINTS ARE INCONSISTENT. . The

penalty function has a nonzero value at its minimum. No constraint

could be deleted from the current basis. There may not be a point

which satisfies the constraints, in which case the problem should be

reformulated. The constraints may be locally inconsistent, in

which case restarting the algorithm from the initial point with a

iarger penalty weight may lead to a solution.

C
Z. Z2Z4

6L-4

I
NUMBER OF EQUALITY CONSTRAINTS = , GREATER THAN N.

Unless this is a search problem (PROB = :SEARCH:), it may be poorly

formulated.

TERMINATION BECAUSE POINT IS ON BOUNDARY . . . the

unconstrained algorithm has terminated with one of the variables on

the boundary. The point may not be on the VL = 0 surface. This

may imply a poor problem formulation and/or incorrect use of the

bounds. The solution may be nonoptimal.

Z. 2. 3 USCHN

The search operator USCHN is described in the following sections.

This operator determines the values of a set of n variables

I(I
x (

L n

which satisfy the m equality constraints

ci(x) : 0 i = 1,2,...,m (2)

where m n. The region of search is limited by

XL! x 5 xU (3)

where x L and xU are specified lower and upper bound vectors. These

bounds determine a region of computability and, unlike constraints, cannot

be violated during the iteration process.

2.2-25

, . • .

0

2. 2.3. 1 Basic Proceduret

(0)
The user specifies an initial point x(0 In addition, he must specify

a perturbation step size Ax. for each of the n variables.

(0)
Nominally, an initial difference matrix D is computed at the

initial point by (4(4) .

(0) (0) (0) -AX
, (x .(x -Ax) i 1,... m; j = 1,... n

where A.x is a vector whose components are zero except for the j-th

component which is Ax.. Optiondlly, D(0) may be specified by the user
J •

or may be generated in the previous case.

USCHN generates an estimate x of the solution by

x() = x) - 6x (5)

where 6x is to be determined. Two requirements are enforced or

First, x(11 must be within the region defined by Eq. (3). Secondly,)
the change in any of the variables in going from x(to x must be no

more than a multiple 77(0) of the input perturbation size, where 7(0) is a

scalar. That is,6x is required to satisfy

xL (x10) - 6 x<xU 1 -6)

and

1(6x).I X -) 1 (0) Ax. j - 1,2,..., n (7)

USCHN accomplish-'ý this in the following manner. Define a trial bounding

vector .3 tby

(minIn(o) IAx. IIx(0) - (xL)jI l(Xu). - x0)} (8).-

Z. 2-26

u~ vi

Define the diagonal matrix AX by

(AX). Ax 1 (9)

Let the n-dimensional vector p minimize

icl(0) (0)(
*c(x)D PI (10)

subject to the constraint

E : 1 011)
j=12

Then dx defined by

6x = (AX)p (12)

satisfies (6) and (7), and we generate the trial point xt by

xt - (AX)p (13)

•_y) We comment at this point that if the matrix J* is defined by

j* D DO)(AX)"I
then -

(t*) c (x(°)) - c (x() - A.X)

A xi

Thus, J* z D(0)(AX) I" is an approximation to the Jacobian matrix
J = (•c/6x). Equations (10), 41Z), and (13) are then seen to represent a Newton-

like method for determining a solution to the set of constraints using J* as

an approximation to the Jacobian matrix. The restriction Eq. (11) ensures that

Eqs. (6) and (7) are satisfied,

Before the trial point xt is accepted as the point x the algorithm must

determine whether "sufficient improvement" in the constraints has been

obtained at xt. The method for this decision is explained in Section Z. 2. 3. 2.

If sufficient improvement has been obtained, xt is accepted as the new point

x(I) and the difference matrix D(0) is updated by

2.2-27

DO) D(0) - ADM (14)

where the matrix ADO) is computed by
cx(1))

' -lj X , i = 1, -.. ,m; j : 1,... n (15)

In addition, an 37(l) is computed from 40) and the amount of gain. This

procedure is repeated untl a solution is found or an unsatisfactory

condition occurs.

Hence, the general iteration scbLeme for the USCHN algorithm is

as follows. Assume x(k), c((k)), D(k), and 1(k) have been determined.

Calculate the solution p which minimizes

IIc(x (k)) - Dp(k)p (16)

subject to the constraint

S AX(17).(\2

j=l i,

where

J(k) min I 17(k)Ix., xI(k) - (x) I, (xu). -x .(k),• (18)

j 1, ,n-

Compute the trial point

x t = x(k) _ (4xlp (19)

If "sufficient improvement" in c(x *) tachieved as defined by Section 2. 2. 3. 2,
isacepeda te ewý+l) as k)

X1 is accepted as the new point x . The matrix D is updated by

D(k+l) = D(k) . AD(k+1) (20)

whe re Ci(x(k+ I)) P.21

wh e (A D (k+ l)) = i~ (k21)
.ij -- 2

2. 2-28

and the sicalar 17(k) •. updated to 17(k+I) by determining how much gain

in the constraints I.as been made.

This procedure is continued 'until either the convergence criteria has

been satisfied or a maximum number of predictions has been made. The

convergence criteria is that

Ici(X(k)}) < e. i - (, Z)

where the tolerances ei are specified by the user. Currently, no resolution

test Is made on the independent variables.

2.2.S. 2 Update Logic

The purpose of the update logic is to determine if sufficient improvement

has been obtained at U trial point. Also, if sufficient improvement has not

been obtained, then the update logic specifies a procedure for generating a

new trial point. Specifically, t he gain g is defined to be the square root

of the ratio of the sum of the squares of the constraints at a previous or

"reference point x (k) to the sum of the squares of constraints at a trial point

xt. That is

g i~l _-- (23)F, (c i(x))

or diverging (g < 1).

If the gain g is greater than 1. , sufficient improvement has been

obtained and xt is accepted as the new point xkl. Hence if g 1 .,

then the matrix D is updated as in Eqxs. (R0) and (Z-I), the trial pointi

becomes the new reference point, and a new value of the boundary parameter

r(l)is computed.

2. 2-29

S.1

If g < 1., then the matrix D is not updated. Instead, an attempt

is made to generate a new trial point which will show sufficient improvement.

The basic procedure for generating a new point is to reduce the bounding

factor 77 and then repeat the computations given in Eqs. (16) through (19). The

reference point remains unchanged and the new point is considered to

be another trial point. The value of 17 is computed as a function of the

gain g the number of trial points generated from the current reference

point, and a prediction of the gain generated as a part of the least squares

process.

2.2.3.3 USCHN Algorithm

The basic steps of the USCHN algorithm are:

Assume D(k), x(k), 17(k) are given where x(k)

is the current reference point.

Step (1). Compute the vector p by Eqs. (16) through (18) and set

= x(k) _ (Ax)p. Go to Step (2).

Step (2). Evaluate c(xt), and test for convergence. If the convergence

criteria has been satisfied, terminate. Otherwise, go to

Step (3).

Step (3). Compute the gain by E q. (23). If sufficient improvement

has been made to go to Step (4). Otherwise go to Step (5).

Step (4). Compute the updated difference matrix D (k+l) by Eqs.

(20) and (21), compute k+l) and set x xt.

Replace k by k+l, and go to Step (1).

Step (5). Restrict the boundary parameter 17, and leave the current

reference point unchanged. Go to Step (1) to generate a

new trial point.

2.2.-30

. 2. 3. 4 Interpretive Output from USCHN

The following set of messages appear in the normal operation of the

algorithm and are designed to aid the user in following the progress of the

algorithm. These messages are printed in addition to the point-by-point

iteration print described in Section 2.4.

ON TRIAL I TKE MAXIMUM INDEPENDENT VARIABLE STEP SIZE
WAS xx,-cx PERTURBATION STEPS.... the limit on the magnitude of
the vector p (Eq&. (16), (17) for the i-th trial).

6 THE ACTUAL STEP TAKEN WAS *** xx.xoxx PERTURBATION STEPS....
I the actual magnitude of the vector p, Eqs. (16), (17).

THE PREDICTED GAIN WAS *** xx.xxx... the predicted value of theI gain, Eq. (23).

THE ACTUAL GAIN WAS **** xx. xxx... the computed value of the gain, Eq.
(23).

I LAST POINT BECOMES NEW REFERENCE POINT. UPDATE THE
DIFFERENCE MATRIX... the dUlerence matrix is updated, Eqs. (14), (15).

'.c-

I 2.2-31

I _ _t

(9 a. 3 Optimization Input

The input data required to define an optimization or search problem

is discussed in this section. All optimization input data is specified by the

GTL input language which is described in Volume II. Accordingly, the

description of the input data given here will use the notation and terminology

of GTL defined in Volume II. The optimization data is input in the model

type-model format. The model types reflect the major components of an

optimization or search problem; namely, an overall problem definition

model type, an objective function definition model type, a constraint definition

model type, and an independent variable definition model type. These model

types and the individual input models are discussed in succeeding sections.

Furthermore, these models are compatible with any of the operators dis-

cussed in Section 2. Z. Thus, the same constraint model, for example, may

define constraints for UOPTIM, UBEST, or USCHN. Unless otherwise

indicated, all input quantities are applicable to any operator. Before dis- I
cussing the individual models, a summary of the optimization input format

(._ is presented.

2. 3. 1 Optimization Ir .E Format

The optimization data is contained in a model type data block. The

name of this data block is arbitrary, except that it must be a unique GTL

symbol. The data within this data block is in the model type-model name

format. The general format of the optimization data is the following:

®4

OPTDATA OPTIMIZATION INPUT DATA

(a @I
PROBDEF PRBDFMI data and/or tables

OBJFTN OBJFNMI data and/or tables

CONSTR CNSTRMI data and/or tables

INDVAR VARMI data and/or tables
OB

10
EXECUTE OPTSYS (OPTDATA)

2.3-1

The input statement EXECUTE OPTSYS (data block name) is required

to execute the optimization program. The name within the parentheses

must be the name of the data block which contains the input data that defines

the optimization problem to be solved. This format permits several

problems to be defined simultaneously by specifying a different data block
name for each problem. The program only attempts to solve those problems

which are referenced by having the corresponding data block name appear in

an EXECUTE OPTSYS (data block name) statement.

For each model type, the optimization input data has the following

format:

Model type Model name data assignment statements

/independent slash statement/

((modified) expression statement)

TABLE 1, TABLE Z ... TABLE n

The data assignment stream must contain data appropriate for that

model. For example, constraint model data must be input to a constraint model

and not to a problem definition model.

TABLE 1, TABLEZ ... TABLEn are general data tables. These

tables musc also contain data appropriate to the model which references the

table. A requirement unique to the optimization input models is that all

table names must appear at the end of the data assignment stream. That is,

the first table name rmnst follow all other data. For added flexibility in

defining optimization problems, any of the data assignment statements,as

well as the components of the independent slash statements or of the expression

statements, may be equivalenced using the GTL equivalence option. The

resulting user-defined symbol may then be used to specify input for the current

problem or succeeding problems.

Z. 3. 2 Problem Definition Models (PROBDEF)

Models associated with the model type PROBDEF define the general

2. 3-2

- I - - II - I.. .

characteristics of the problem to be solved and certain optimization process

control options.

2.3.2. 1 Proolem Definition Model I (PRBDFMI)

Description

PRBDFM1 is an optimization input model which defines the overall

problem to be solved. The following types of problems may be defined by

this input model: optimization problems, search problems, root problems,

and least squares problems. For optimization problems either maximization

or minimization problems may be specified.

For search problems, the objective is to satisfy a set of equality

constraints. Consequently, all constraints defined for a search problem are

assumed to be equality constraints. The number of independent variables

may be greater than or equal to the number of constraints. In general, if

the number of independent variables is greater than the number of constraints,

then the search problem may have many local solutions. For such problems

the user then has the option of accepting the first point the algorithm deter-

mines which satisfies the constraints,or having the algorithm establish a

further criterion to obtain a unique solution.

A restricted type of search pro'blem is a root problem. For root

solving problems the number of independent variables equals the number of

constraints, and a unique point satisfies the constraints. All constraints

defined for root solving problems are assumed to be equality constraints.

A least squares problem is actually an optimization problem.

PRBDFMI poses such a problem as a minimization problem for which the

objective function is the sum of squares of a set of constraints (residuals).
The residuals are defined as equality constraints. The objective is to
determine the values of the independent variables which provide a best

approximation to the solution of the constraints in the sense that the sum

of the squares of the constraints (residuals) is minimized.
All data required to exercise the restart capability (see Section 2. 1. 4)

2.3-3

]C

should also be specified as a part of the data input to PRBDFMl. For the

current restart capability, the problem formulation must remain unchanged

from the original problem specification for the subsequent restart. For

example, the constraints and even the constraint tolerance must remain

the same for a restart. Furthermore, a problem can only be restarted from

the last point of a preceding run for which information was saved.

Model Inputs

The following two independent slash statements are required inputs

to PRBDFMI:

/THE OPTIMIZATION OPERATOR IS optimization operator/

Currently, the optimization operator must be UOPTIM, USCHN, or UBEST.

/THE FUNCTION GENERATOR IS model name data /

The optional input "data" may be a data assignment stream or a data block

name. Within these two slash statements, neither the optimization operator

nor the model name of function generator may be equivalenced quantities.

The following quantities are input via data assignment statements.

These quantities need to be specified only if the default values are not desired.

Mnemonic Description Default Value

PROB Type of problem MIN

PROB = :MAX: - maximize the objection function
(not applicable for USCHN)

PROB = :MIN: - minimize the objection function
(not applicable for USCHN)

PROB = :SEARCH: - search problem

PROB = :ROOT: - root solving problem

PROB = :LSTSQ: - least squares problem
(not applicable for USCHN)

MAXCON Maximum number of constraints (integer) 25

2.j-4

- "" *

-r.

Mnemonic Description Default Value

MAXD1M Maximum number of independent variables 15

"(integer)

MAXNFE Maximum number of function evaluations. 200

Algorithm will terminate if more than

MAXNFE function evaluations are requested

even though a solution has not been obtained

(integer).

IOPTER Function generator error response logic flag. 0

(See Section 2. 1.3)

IOPTER = 0, the logic outlined in Section

2. 1. 3 is followed.

IOPTER = 1, the job is terminated it the

function generator is unable to complete the

function evaluation at any point. (integer)

SRCHOP Search option (applicable only to UOPTIM with

PROB = :SEARCH:)

SRCHOP = I - the first point which satisfies

the constraints is retained as the solution.

SRCHOP = 2 - the operator will determine

a generalized inverse solution.

PRTMAX A maximum allowable perturbation size. 1000.

May be specified to limit the perturbation

sizes.

PRTMIN A minimum allowable perturbation size.

May be specified to limit the perturbation

sizes.

The following input quantities permit the program to sa ... -on

2

L 2.3-5

for a subsequent restart or to restart using previously saved information.

Note that whenever information is stored,or saved information is accessed,

then corresponding control cards are required.

Mnemonic Desc ription Default Value

ISTORE Flag to indicate information is to be stored 0

for a subsequent restart. (integer)

ISTORE = 0, no information is stored.

ISTORE = 1, then information is stored

only prior to function evaluations which

begin near the central processor (CP) time

limit of the submitted job. Specifically,

information is saved only prior to function

evaluations which occur in the CP time interval

(TIMLMT - TSAVLST, TIMLMT - TSAVDEL).

The parameters TIMLMT, TSAVLST, TSAVDEL

are defined below. Nominally these parameters

are computed by the storage algorithm and

need not be input by the user. For special

purpose applications, however, any one or all

of these parameters may be input. Those which

are not input are again computed by the algorithm.

TIMLMT A parameter which determines if information Computed

is to be stored (see ISTORE). TIMLMT by thes to rage
should equal the time limit of the job in algorithm

decimal seconds. TIMLMT is applicable

only if ISTORE = 1. The units of TIMLMT

are seconds.

TSAVLST A parameter which determines if information Computed
is to be stored (see ISTORE). TSAVLST should by the

storage
be larger than the computation time required algorithm

to complete one function evaluation. TSAVLST

z. 3-6

C) Mnemonic Description Default Value

is applicable only if ISTORE 1. The

units ol TSAVLST are seconds.

TSAVDEL A parameter which determines if information Computed
by theis to be stored. TSAVDEL may be input as a b the
s torage

positive quantity to insure that the time limit algorithm

does not occur during the storing of informa-

tion. Thus, TSAVDEL should be larger than

the time required to store the restart informa-

tion. TSAVDEL is applicable only if ISTORE

= 1. The units of TSAVDEL are seconds.

IRSTART Restart flag. (integer)

IRSTART = 0, this problem is not a restart 0

of a previous problem.

IRSTART = 1, this problem is a restart of

a previous problem.

NOPSTOR File number on which restart information 25

is stored (integer). If information is stored,

then file NOPSTOR must be saved in some

manner. One method is the following control

card generator option - 0.40Z (TAPE25,

TAPE-SAVE) (assuming the default value of

NOPSTOR is used).

NOPRESR File number from which saved information is 26

to be read it a restart is requested (integer).

If the information on file NOPRESR is to be

accessed, then this file must be made available

to the program in some manner. One method

is the control card generator option -

2.3-7

I M

Mnemonic Description Default Value

0.403 (TAPEZ6, TAPE=tape number) (assuming

the default value of NOPRESP is used).

The following independent slash statements are listed for completeness,

but they should not be changed from the default values without detailed know-

ledge of the program.

/MODEL TYPE MSIEVAL EXECUTES MODEL model name/

/MODEL TYPE MSIEEND EXECUTES MODEL model name/

2. 3. 3 Objective Function Models (OBJFTN)

Models associated with the model type OBJFTN define the objective

function. If an objective function is not to be defined (e.g., search problem),

then the OBJFTN model type should not be specified.

2.3. 3. 1 Objective Function Model 1 (OBJFNMI)

Description

OBJFNMI is an optimization input model which defines the objective

function for an optimization problem. For search problems, root solving

problems, and least squares problems, there is no explicit objective function;

consequently, this objective function model should not be specified.

Model Inputs

The objective function must be specified with a GTL expression

statement in the following iormat:

(function name ATF: 1 qualifier name units])

The function name is a required input. A qualifier is required only if further

, finition of the function name is required. For trajectory optimization

proble:1ms with the partial trajectory option, the .AT. qualifier is required

i ''function name" is to be evaluated at an event other than the final vvent.

S.3-8

.) 'rhc input "units" is an optional input which specifies the external units for the

objective function. This input is required only if the external units of the

objective function are required to be different than the preset units of the

objective function.

Associated with the expression statement given above, the following two

optional slash statement modifiers are available to further specify the objective

function.

/function name O. I qualifier] IS COMPUTED

BY routine name[datz/-

This input is required only if the objective function is not computed by the

normal execution of the function generator.

/function namej F. I qualifie PARTIALS ARE

COMPUTED ANALYTICALLY BY routine name [data) /

This input is required only if the partial derivatives of the objecti%,:. function

with respect to the independent variables are to be computed analytically

by the specified routine. For both of these slash statement modifiers, the

reference to the objective function must include any subscripts and/or qualifier

given as a part of the definition of the objective function in the original

expression statement.

Objective function scaling is specified by the following dat:t assignment

statement.

Mnemonic Description Pre set

OD3JSKL ObJSKL = :UNSCALED: implies no :UNSCALED:

objective function scaling

OBJSKL = :SCALED: implies the objective

function is scaled and the scale weight is

computed internally

03JSKL = n.n implies the objecttive function

is scaled and the *;cal: weight is n. n

Z. 3-9

Examples of OBJFNM%1 inputo

Example 1. For a trajectory optimization problem, assume the objective

function is PAYLOAD wbich is not a time dependent quantity.

4'4
Example Z. For a trajectory optimization problemi, atssume the objective

function is the variable RANGZ (evaluated at event P060) which is computed

by~ subroutine GTSFTNI. Furthermore, assume the partial trajectory

option is specified.

lEx.imple 3. For a vehicle design problem, assume the objective fiwctiun

i.- the Itcngth of the totail ýhiclc. Furthermore, assuinc obje~ctive Junction)

.- caling ib desired and the partial derivatives are- computed analytically by

thp routine DSI7.E. It is necessary to qualify the length LVII to

spu-cify the length of the vehicle.

U3 1 0-61 1I

IIL

2.3.4 Constraint Models (CONSTR)

Models associated with the model type (CONSTR) define constraints.

For unconstrained optimization problems, no constraints are defined, and

the CONSTR model type should not be specified.

2. 3.4. 1 Constraint Model I (CNSTRMI)

Description

CNSTRMI is an optimization input model which defines one or more

constraints. The data input to CNSTRMI must conform to the optimization

input format stated in Section Z. 3. 1. In addition, the following specifications

must also be followed as a part of the CNSTIRMI input format. A required

input for each constraint to be defined is a GTL expression statement. Each

table listed as a part of the input data specified for CNSTRMI must contain I
exactly one GTL expression statement. Also, an expression statement may

optionally be a part of the CNSTRMI input data.

If an expression statement is input with CNSTRMI, then this expression
statement, along with any modifying slash statementb or data assignment

statements input with CNSTRMI, is assumed to define a single constraint.

All quantities not specified assume their preset values. Furthermore, each

table specified as a part of the CNSTRMI input is assumed to contain data

to define a single constraint. All quantities not specified as a part of the

tabular input assume their preset values. That is, no data is carried over
from one table to another nor is data input with CNSTRMI carried over to

the tables. As an illustration of this mechanism, consider Exampl,: 1.

Four constraints are defined by this data spccification--ain altitude constraint,

a latitude constraint, a longitude constraint, and a reentry angle constraint.

"Thhe tolerance for the altitude constraint is 1. and the tolerance for the

reentry angle constraint is 0. 1. The tolerance for the other constraints is

the preset value of CONTOL. Also, the input INBASIS = :YES: applies only

to the reentry angle constraint.

If the data input with CNSTRMI data does not contain a GTL exprebsion,

- I

2.3-I

then this data forms a set of data that is referred to as the model default

data. Again, each table listed with the CNSTRMI input must contain a single

GTL expression and possibly may contain other data assignment statements

or modifying slash statements. Each table defines a single constraint with

any input quantity not specified as a part of the tabular input assuming the

value specified in the model default data. R' an input quantity is not specified

either by tabular data or by model default data, then the preset value is

assumed. Hernce, if a GTL expression statement is not specified as a part

of the data input wi i CNSTRMI, then such input data become the default

values for the tables listed as a part of the CNSTRMI input data. The

individual tables are independent in that data listed within a table applies

only to the constraint defined by that table. As an illustration of this mecha-

nisin, consider Examvle 2. This data specification defines three burn rate

constraints. Since the data input with CNSTRMI does not contain GTL

expression statements, the specified slash statement and data assignment

statements apply to the constraints defined by tables BRATEI, BRATE2,

and BRATE3. Hence, the value of the quantity CONTOL is 0. 0005 for

the second and third constraints, while the input value of CONTOL = 0. 3

iL specified for the first constraint. Also, note that the input INBASIS = :YES:

applies only to the second co,,straint.

All optimization and search operators assume that all constraints are

of the form

c :r 0 or c=O

'Fhis form, however, is not particularly useful from a user's viewpoint.

CNSTRMI permits the constraints to be specified in any of the following forms-

q! constant, q, constant, ql 5 constant

q, = q?. cl, q•' q 1 1 :q 2

q, q2 constant, ql , qZ constant, or

q q*. constant,

2. 3-i2 7
_ _ _ _

where q, and q2 are any GTS system variables. The conversion from all

of these forms to the form c rO or c = 0 is performed internally in the

computer program.

The algorithms encompassed in certain optimization and search

operators (e. g., UOPTIM and UBEST) require partial derivative information.

In this context the term partial derivative refers to the partial derivatives

of the constraints with respect to the independent variables of the current

problem. For reasons ot accuracy and efficiency, if a method for analytical

computation of the partial derivatives is available, then this method is

advised. Otherwise, the partial derivatives are computed numerically. If

the partial derivatives are not computed by the normal execution of the

function generator, then the program permits a specialized routine to be

executed for the computation of the partial derivatives. This routine is

independent of an auxiliary routine that may be executed to evaluate

the constraint. If numerical partials are to be computed, then the method

(i.e. , one side or two sided perturbation) and the initial perturbation size are

specified as a part of the independent variable input. Obviously, the input

data concerning the generation of the partial derivatives must be consistent

between the constraints and independent variables.

Model Inputs

Each constraint is defined by an expression statement or a modified

expression statement. The format for the expression is the following:

(qE OF. qualifie[Iq OF.1 qualifier Z+constant [units)).
'LI.AT.I~~~ qulfe AT.1

q, and q 2 are any GTS system variables. q, is a required input, and either q 2

or a constant is also a required input. The qualifiers are required only if

q, and q 2 are not uniquely defined. The input "units" is an optional input

required only to insure that q,, q,, and/or constant term all are expressed

in the same units. The assumptioii is made that if a constant term is part

oi the definition of a constraint, then the units of the constant term are

2.3-13

compatible with the remaining terms of the constraint or that the constant

t,.rm has the units specified by the input parameter "units".

The following modifying slash statements may be specified to further

define the constraints. As with all modifying slash statements, these slash

statements must immediately follow the expression statement. If a program

variable is subscripted or qualified in the expression statement, then any

reference to that program variable in a modifying slash statement must also

include the subscript and/or qualifier. The following slash statements may

reference either GTS system variable q, or q. or both, although only

references to q1 are shown.

The first slash statement is required only if q, is not computed by the

normal execution of the function generator.

/q qualifier IS COMPUTED BY routine name [data]/
S~AT.

The next two modifying slash statements specify the method of computation

of the partial derivatives. The default method is numerical partials.

qj[1- JF- qual.ifier PARTIALS ARE COMPUTED
AT.

ANALYTICALLY BY routine name [data]/

qj/ F qualifier 1 PARTIALS ARE COMPUTED
ql[[AT.

NUMERICALLY /

The following independent slash statements may be input to CNSTRMII-! (but not in a table referenced by CNSTRM1) as model default values, and

as such will apply to all constraints subsequently referenced by CNSTRMI.

Thus, these independent slash statements eliminate the need to specify

inodifyirig slash statements for each constraint.

Z. 3-14

/ALL FUNCTIONS ARE COMPUTED BY rouitine name (data]/

/ALL PARTIALS ARE COMPUTED ANALYTICALLY BY

routine name [data] /

/ALL PARTIALS ARE COMPUTED NUMERICALLY/

"The following quantities are input via data assignment statements. The

quantities need to be input only if the default values are not desired.

Mnemonic Description Default Value

CONTOL Constraint tolerance 0. 001

A constraint is considered to be satisfied as

an equality constraint if IcI< CONTOL

INBASIS Basis indicator :NO:

INBASIS = :YES: The constraint is placed

in the initial basis.

INBASIS = :NO: This constraint is not in

the initial basis.

CONLIN Nonlinearity factor of the constraints. 0.1

If information is available about the

linearity of the constraints, such as the

constraints are linear or the constraints

are highly nonlinear, then this information

can be incorporated into the algorithm.

0. < CONLIN 5 4.

CONLIN = 0 implies con&.traints are linear.

CONLIN = 4 implies constraints are highly

nonlinear. (Currently only applicable to

the UOPTI', operator.)

2.3-15 1

I - -- - - -

Mnemonic Description Default Value C)
CONSKL Constraint scaling flag :SCALED:

CONSKL = :SCALED: implies the

constraints are scaled and the scale weights

are computed internally.

CONSKL = :UNSCALED: implies the constraints

are not scaled.

CONSKL = n. n implies the constraints are

scaled and the scale weight for this constraint

is n. n.

Exampleb of CNSTRMI input

Example 1. Consider a trajectory optimization problem with four

constraints. The impact point is constrained to satisfy a specified latitude

and longitude, the altitude at event P0100 is required to be greater than

200, 000 ft, and the reentry angle at event P0300 is required to be less

than -10 deg. Also, assume the tolerance for the altitude constraint and
'_ ,

the reentry angle constraint are different than the preset value, and assume

the reentry angle constraint is to be in the initial basis.

f-xample Z. Consider a vehicle sizing problem with a burn rate constraint

for e nch stage oi a three stage vehicle. Further, assume that (1) the partial

-;itive" of the constraints for the first and second stuge are computed

2. 3-lb

Canalytically by the routine DSIZE, but the third stage constraint requires

numerical derivatives; (2) the tolerance for the first stage constraint is

0. 03, but the tolerance for the other two stages is 0. 0005; (3) the second

stage constraint is to be placed in the initial basis.

Assume that dat', blocks named SUBSTG1, SUBSTGZ. and SUt3STG3

contain the data corresponding to the three stages.

Modells asoitdwt h oe typeI_•LkL•-• 'INDARdei_ ne•,!!, ' indpnet!I P:

"-•' 2. . 5 Independent Variable Model (INDVAIR)

Models associated with the model type IND'¢AR defirne independent •

variables. An independent variable model is required for all optimization

problc ins.

2.3.5. 1 Independent Variable Model 1 (VARMI)

Description

VARMI is an optimization input model which defines one or more

independent variables. The data input to VARMI must conform to the

optimization input format stated in Section 2. 3. 1. In addition, the following
specifications m~ust be followed as a part of the VARMI input format. A

required input for each independent variable is a data assignment statement

ui the form VAR = [name of variable]. Each table listed as a part of the

input data specified for VARMI must contain a data assignment statement

2. -5-17

of the form VAR = [name of variable] Also, a data assignment statement (j~j
of this form may be part of the input data specified for VARMI.

If a data assignment statement of this form is input as a part of the

input data specified for VARMI, then this input along with any other data

assignment statements input with VARMI, is assumed to be data which defines

a single independent variable. All quantities not specified assume their

preset values. Furthermore, each table specified as a part of the VARM1

input is assumed to contain data to define a single independent variable. All

quantities not specified as a part of the tabular input assume their preset

values. That is, data is not carried over from one table to another and data

input with VARMI is not carried over to the tables. As an illvetration of

this mechanism, consider Example I. Three independent variables are

defined by this data specification. The three independent variables are a

launch azimuth (AZI), a kick angle (KICK), and pF.iload (PAYLOAD). All

data specified via data assignmnernt statements in the VARMI input apply only

to the independent variable AZI, whi1P- the data specified in the tables VKICK

and VPAYLD apply only to the independent variables KICK and PAYLOAD,

respectively. That is, data specified for one independent variable ip

independent of the other variables.

Aite.nateiv, if the data input to VARMI does not contain a data assign-

nment statement oi the form VAR = (name cf variable] , then all data assign-

ment statements specified as a part of the inpu, to VARMI forms a set of

data that is referred to as the model default data. Again, each table referenced

as a part of the VARMI input must contain a data assignment statement of

the form VAR =[name of variable] . Each table contains data to define an

independent variable with any input quantit,- not specified within the table

assuming the value specified by the model default data. If an input is not

specified by either the tabular input or the model default values, then the

preset value is assumed. Hence, if a data assignment of the form

/,-- [name of variable] is not specified as a part of the data listed with

VA iMl, then all such data assignment statements apply to thu independent

(~~)

~. 3-l

variables defined in the tables listed as a part of the VARM1 input data.

However, the individual tables are independent in that all data specified

within a table applies only to the independent variable specified by that table.

As an illustration of this mechanism, consider example Z. In this example,

four independent variables are defined. Except for the upper and lower
bounds (UPRBND and LWRBND) of the fourth independent variable (ALF4), all

the input quantities which define the variables are identical. Hence, these

quantities are specified as model input data which then apply to all the

independent variables defined in the tables listed. Note, these model default

values can be overridden by specifying the desired values as a part of the

tabular data.

For the current implementation, all independent variable names must

be GTL user-defined symbols. That is, the independent variable names must

be defined by a GTL DEFINE statement or by the equivalence option. This

mechanism implies that the independent variables are uniquely defined when

referred to by the user-defined symbols. Thus, unlike the objective function

or constraints, the independent variables do not require a qualifier to be

uniquely defined. For trajectory optimization problems in which the partial

trajectory option is specified, tne computation time will be decreased if the

event or phase where an independent variable becomes active is speciiied.
This specification permits only that portion of the trajectory in which an

independent variable is active to be simulated.

As a part of the independent variable input, the method by which the

paztial derivatives are computed is specified. In this context, the partial

derivatives refer to the partial derivatives of the objective function and

constraints with respect to the independent variables. This input information

must be consistent with the input specified for the constraints and objective

function. Thus, for example, if analytic computation of partial derivatives

is specified by the independent variable input, either the required partial

derivatives must be computed by the normal execution of the function generator

or the routine which computes the partial derivatives must be specified as a

part of the constraint and objective functior, input.

2.3-19L I _ __ _

•1
For the computation of partial derivatives via numerical perturb-

ations, the current implementation is that the perturbation size for two-

sided partials is determined at each point by the algorithm. For one-sided

perturbations, however, the perturbation size remains constant at the input

value. I
Additional required inputs for each independent variable are upper

and lower bounds. These input quantities define a region of computability

for the optimization operator in that the iteration process will not exceed

thcse bounds. These quantities should not be confused with constraints.

In particular, the solution cannot be on a bound. Also, the bounds should

not be made restrictive in an attempt to aid the optimization algorithm in

finding a solution.

Model Inputs

Mnemonic Description Default Value

VAn Name of the indepcndent variable. This Must be input

quantity must be input for each indepen-

dent variable. No default value is

allowed.

ZYIARTAT Event at which variable is activated. Only Initial event

applicable if the partial trajectories option

has been specified for trajectory optimiz-

ation problems.

LWRBND Lower bound on the independent variable. Must be input

UPRBNJ) Upper bound on the independent variable. Must be input

l')TIYPE Partial derivative type. :ZSIDED:

PD TYPE :1 SIDED: - one-sided

perturbations are used to compute

numerical partials.

2. 3-ZO

-., . - -. --- re ia n mn mm• m . . . -....... .. a

I 9M~l~nionic Desc ription feleault Value

PDLYYPE Z SIDED - two-sided

perturbations arc used to compute

numerical partials.

PDTYPE z ANALYTIC - the partials are

computed analytically.

DELVAR Initial perturbaticn size. Only applicable (tUPRBND-

if'one-sided or two-sided partials LWRBND)/1000.

are requzated.

For the following quantities, the default values are recormmendee'

unless the user has an understanding of the program and a requiremen.. tc

specify alternate input values.

Mt.emonic Description Default Value

EPSBND Epsilon bound for the independent variables 0.001

The upper and lcwer bounds may be

modified by this input. The upper and lower

bounds used by the program are UPRBND +

EPSB•ND and LWRBND -EPSBND. Thus

EPSBND >0 expands the region of search

while EPSBND < 0 contracts it.

S(CALE Scale flag. :SCA LE D:

SCAI.E = : SCALED - The independent

,variables are scaled.

SCALE = : UNSCALED - The independe-nt
variables are not scaled.

P1, 1,TOL Rela•tive tolerance on the independent 0.001

variables.

J 2. 3- 1

Mnemonic Description Default Value ()
ABSTOL Absolute tolerance on the independent 0. 001

variable.

GRADTOL Gradient tolerance. 0.1

Examples of VARMI Input

Example 1. Consider a trajectory optimization problem with three

independent variables. The independent variables'are the initial azimuth,

the kick aagle, and the payload. Assume that two-sided partial derivatives

are requested for all the variables, but the default value for the initial

perturbation aize is overridden for the azimuth and payload, and assume

an absolute tolerance of 1. is desired for the payload. Note that the

names of the independent variables are user-defined names and not program

variable names, and note that the upper and lower bound is specified as

required, for each independent variable.

1• :. II' ll!_T ! L t] I -
IIT i;W Pffle II , •

Example 2. Constider a trajectory optimization problem with four indepomdnt

variables. The independent variables are the value of the angle of attack at

four points along the trajectory. Assume that the partial trajectory option is

specified and the four values of angle of attack are specified at P0100, PO200,

. ()

Z. 3-Z2

P0300, and P0400. Also, assume thc upper and lower bounds are the

same for the first three variables, aid assume that two-sided derivatives

with an initial perturbation size of 0. 001 are desired for aU the variables.

IITI

11 1 t
fill

I .j

I

V 2. 3-Z3

7]

...) 2.4 Optimization and Search Output

Selected information is printed during the optimization process. Since

the purpose of the output is to permit the user to analyze the optimization

process, a portion of the information printed is specific to the individual

optimization or search operator being executed. This information is

discussed in Section 2. Z as a part of the description of the individual operators.

In addition, information is printed which is identical for all operators. This

information includes a summary of the input data which defines the

optimization or search problem, and a summary of the information obtained

at each point where an evaluation of the objective function, constraints, and

gradients is made. The following section describes only the output which is

common to all operators.

2.4. 1 Optimization Input Summary

Initially, before the iteration process is started, a summary of the

user-defined input data is printed. All data output at this point should be the

same as input. Scaling or other internal processing is not reflected in this

print. The summary print is divided into three parts. The first block

contains a description of the objective function. The format for this inforina-

tion is the following:

OBJECTIVE FUNCTION

MINIMIZE name of objective function AOF qualifier

The name of the objective function and the qualifier are the same na±rnes as

the user has specified. If a search or root ti!tding problem is being defined,

then one of the following messages is printed, depending on the type of

problem the user has specified.

SEARCH PROBLEM - NO OBJECTIVE FUNCTION

OBJECTIVE FUNCTION IS THE SUM OF THE SQUARES OF4 THE INDEPENDENT VARIABLES

LI
Ii 2. ' - 1

, *,- - _ _ _ _ _ _ _ _ _ ,-, , .i

ROOT SOLVING PROBLEM - NO OBJECTIVE FUNCTION

The second block of information contains a summary of the input

data defining the constraints in the following format:

m CONSTRAINTS

OF G1q2OF-qulfe Acosattlrne
1. IqF [AT.-I qualifier ~ I EQ. t AT. ulfe osat oeac

LE.

OF G O

(~ q *AT qualifier I [EQ.1 q? j ATI qualifier 2 .-t constant) tolerance

The final block contains a summary of the independent variable input

in the following format:

n VARI.ABLES !
-- ~D ERIVA TfVE "VARABLE -INITIAL VALUE LOWER BOUND UPPER BOUND TYPE

I. name of variable x (1) lb(l) ub(1) ONE SIDED
IN event name TWO SIDED

1ANALYTIC
n. name of variable x (n) lb(n) ub(n) ONE SIDED

IN event name TWO SIDED
ANALYTIC

E PISILON
VAIIABLE ABSOLUTE ERROR RELATIVE ERROR GRADIENT TEST BOUND

1. ae(l) re(l) grad. (1) eb(1)

n. ae(n) re(n) grad. (n) eb(n)

2.1.. 2 Iteration Summary

At cich point whert zin evaluation of the objective function constraints

-..T--

and gradients is requested, a summary of information computed at that point

is printed.

The format for this information is the following:

OBJECTIVE FUNCTION

name of objective)

fc ob xx.x nIPERTURBATIONS n 2 FUNCTION EVALUA1TINE

CONSTRAINTS

c(l) value of c(1)... (name of ql = xx.x)

(name of q2 = xx. x) * constant term

c(m) value of c(rnr)... (name of qI xx. x)

(name of q2 = xx. x) * constant term.

VARIABLES

VARIABLE NAME VALUE PERTURBATION SIZE

1. name of variable I value of variable I value of perturbation size

for variable I

n. name of variable n value of variable n value of perturbation size

for variable n

nI is a cumulative total of the number of perturbed evaluations that

have been made. n2 is a cumulative total of the number of points at which

an evaluation of objective function, constraint, or gradient information has

been requested. No information is printed for perturbed evaluations nor is

2.4-3

IIv'kAA

any gradient information printed.

The value of c(I) is the value of the constraint in the form required by

the optimization operator (i.e., c(I) ?0 or c(I)- 0). Thus, for example.

if the I-th constraint is

(H. AT. P0300 . LE. HA. AT. PO200 + 10.)

and if at the current point H (at event P0300) = 100 and HA (at event POZOO)

80, the corresponding output at this point would be

c(I) = -10 ... (H = 100) . LE. (HA = 80) + 10.

In addition, an asterisk (*) will appear at the left of a!' constraints that are

in the current basis. Qualifiers for the objective function or the constraints

are not printed in the point-by-point output.

Z. 4-4

SECTION 3

j K) INTEGRATION OPERATORS

Consider the mathematical problem of solving a system of ordinary

differential equations with given initial conditions

f(ty) Y(to) = Yo" (1)

where y and f are vector valued functions. If f(t,y) is assumed to be

continuous with respect to t and y , then several numerical techniques

are available to compute a solution to the system (1). These numerical

techniques compute a solution to (1) in the sense that they provide a scheme

for obtaining a numerical approximation to the value of y(t) for t A t 0 .

The GTS system contains several methods for solving differential equations.

These techniques can be applied to any dynamic system; that is, any system

that is represented by a set of differential equations of the type (1).

The primary application of the integration techniques, however, is

for providing a trajectory simulation capability, and the integration techniques

* incorporated in the GTS program were chosen for their viability for performing

trajectory simulations. Specifically, the GTS program provides the following

techniques:
k (i) 4-th order fixed step Runge-Kutta

(ii) m-th order (m = I to 8) fixed step Adams-Moulton

(iii) m-th order (m = 1 to 8) variable step Adams-Moulton

A brief description of these methods is contained in Sections 3.3. 1,

3.3.2, and 3.3.3. A more complete mathematical description can be found

in any standard text on numerical analysis, such as R-: -5 or Ref. 6.

Clearly, any one of these methods is not suitable for all applications. Each

method has advantages and disadvantages. Consequently, Section 3. 4

contains recommendations concerning the types of problems for which each

method may be best suited.

The input data required to specify a particular method is input via

an integration model corresponding to the model type INTGRA. Currently,

1-

S~3-1

a single model, INTGRM1D encompasses all the available methods. This

model is discussed in Section 3. 4. 1.1

!I I

iI

(i 3. 1 Trajectory Simulations

A major requirement of a trajectory simulation capability is the

ability to solve differential equations of the type (1). Several considerations

must be recognized with respect to the integjation process. The evaluation

of the derivatives, that is, the evaluation of the function f(t, y) is accomplished

by the orderly execution of the user-specified engineering models (e. g.

propulsion, control, equations of motion). It is important to realize that it is

the model configuration which the user has specified that characterizes a

trajectory and not the integration technique that is applied.

Besides providing freedom for the user to select the models he desires,

the independence of the integration operator and engineering models also

permits new engineering models to be added to the program model library

and permits modifications to be made to the integration operators without

requiring changes to the existing engineering models. By the specification of

models, the user also determines the number of equations to be integrated.

In addition to three degree.of-freedom or six degree-of-freedom simulations,

K. t the user may request that auxiliary equations of interest, such as ideal

velocity or velocity losses, be integrated. Again, the specification of the

number of equations to be integrated is part of the model selection process

and independent of the integration operator.

In addition to the final result, discrete time points along the trajectory,

or events, may also be of interest. As is documented in Volume I1, GIS

provides a flexible method for event specification. If such an event has been

detected, the response to this event may be to alter the model configuration

or to introduce new data to the existing models. Mathematically, these

actions may introduce discontinuities in the function f(t, y) of Eq. (1).

Hence, the integration process cannot proceed directly, Rather, the

integration operator must essentially restart the integration process at

that point in order for the integration operator to perform ..orrectly.

3.1-1

3.2 Integration Methods

Assume, for definiteness, a first order differential equation with

specified initial conditions of the form

f(t,y) Y(to)

and assume the value of y is desired at some time tf ý to. Note, tf may

be less than t . Briefly, the method by which a numerical approximation

to the value of y(tf) is obtained is to make a functional approximation to

the function y. Clearly, a single approximation is not likely to be valid

for the entire interval t to tf. Consequently, we consider an approximation

over a smaller interval t to t + At. The size of the increment At0 0

may be user-specified or may be computed within the algorithm.

The basic integration method then proceeds as follows. First,

y(t 0) and 9(to) = f(to,yo) are known. Then obtain an approximation y,

to the value of y at t, = t + At. Yl = f(t 1 ,y 1) can then be evaluated. The

values yl and ýl provide initial values to begin the process again in

order to obtain an approximation to y at t = tI +At. This process continues

until tN = tf, for some N. Given values y and Yn the method by

which an approximation yn+l to the value y(tn+1) is generated, distinguishes

the various integration schemes. A brief outline of the methods available

,n GTS are given in the following sections.

3. Z. I Runge-Kutta, Fixed Step (4-th Order)

Let y and jr be approximations to y(tn) and '(t). yn is
nn n

available either from the initial conditions or from the previous integration

step. n can be computed from yn by n = f(t n yn). The function of the

integration technique is to obtain approximations yn+l and yn+l to the

values of y(tn+l) and Y(t n+), where tn+l tn + At. One method to

obtain such an approximation is to expand y(t) in a Taylor's series. This

technique would require the derivatives n(tn), t), ",(tn) ... but this
computation may be quite cumbersome. The Runge-Kutta method evaluates

3.2-1

kI.

rI

the first five terms of the Taylor's series expansion, but without the

necessity of higher order derivative evaluations. This approximation is (j
obtained by the evaluation of j f at selected points in the interval. The

mathematical detaiLs are eliminated; however, the 4-th order Runge-Kutta

recursion formula is

n = y + I (k + 2k + 2k 3 + k4)

where

kI = At £ (in, yn)

AtAtt ½
k? =At f(t + at Y + Ik

3n n

k3 = At f(t + ty + k2)

k4 = At f(tn + at, y + k 3)

This method is illustrated schematically in Figure 3.2-1.

To complete one cycle of this integration scheme (i.e., to (i•
obtain yn+I and Yn+l)' it is necessary to evaluate the function f(t, y) four
times. For applications such as trajectory simulations in which this evaluation

is time consuming, the overall efficiency may be reduced when compared to

the Adams-Moulton method (see Section 3.3. Z).

An important advantage of the Runge-Kutta method is that it is self-

starting. That is, it only requires values of y and , at the point t

to obtain values of yn+l and in+l. This characteristic implies
that the Runge-Kutta process can begin at any point, such as an event,

without requiring values from previous integration intervals.

3. Z. Z Adams-Moulton, Fixed Step (m-th Order)

The Adams-Moulton method is one of the class of methods referred to as

predictor-corrector methods. Whereas the Runge-Kutta method requires

(cont. p. 3. 2-4)

3. Z-2

t n (i n(liiAt At
"a)

/ n are given, y 1 is an estimate of y(t --) which

isch pue as a function of y and by y 1 y + at

n/ nY'n n+ nn T- Yn+

Tederivative y*t+A sthen etmtdb ~

2-A -

Iii) 1n is a refined estim~ate of y(t n+ - .1-) whc scomputed by

nt + At I , and a refined estimate of (t 1) is

non Tnerain + ntena+

computed by n+ 1 f(t n+ 7+1)

Iii) Yn-'-l is an estimate of y(tn +-) which is computed by Yn Y+At Y 1

and the derivative r(t+-) is estimated by f(tn+i- ½ n+)

n• 1~ = f' tn+ ,

iv) 1n+l is a final estimate of y(tnl +-) which is computed by T

Sii} + (nn 4 Zeta 1 + 1c I + b n Y+ +

F Figure 3. Z- 1 The 4-th Order Runge-Kutta Integration Method

3. Z-3

L

information orLxy at one point, t n in order to proceed to the next point,

t Xi, the predictor-corrector schemes use information at more than one

point to obtain the approximation at t n+l.

Assume that the approximate values of y and y are known at the set

of m points t., i = n,n-l,... , n-m+l. The Adams-Moulton predictor-

corrector scheme proceeds by determining the polynomial which inter-

polates the values of f(t,y) at the points tV, i n,nl...,. n-m+l.

This polynomial is extrapolated to time tn 1 and an estimate of y(tn+I)

is obtained by integrating this extrapolating polynomial. This is the

predictor step. The corrector step then refines the estimate of y(tn+ 1)

by the iterative solution of an implicit function involving jn+l*

When the time points are equally spaced, the mathematical

formulas for the m-th order Adams-Moulton scheme are

(i) Predictor formula (Adams -Bashforth)

(I).
Yn+ Yn +t(am,00 n a nl in"" , m-lyn-m+l) (1)

(ii) Corrector formula (Adams-Moulton)

yn+b Yn +At+(b M. + + b..+b(2)

n nOn+l m, In m,+ b n-I +

b, m-I Yn-n-i+2.

whe re
•(1) =ft(1)

n+l nl'n+

The coefficients are determined by

m (3)a (lY (3) .
m, q k=q qi

3. 2-4

where"-k is generated recursively by

(SD ,(a) ~.I 1a) (~a) + + 1 aL (4)
k 7- k_2Tr7 0

i, 0, 1, 2,

I(~)q
(5)kY b

nMq 1:q k (5)• .• :.k=q

where)I (k) is generated recursively by

(6)
(b) + I (b) + I ,.(b. + + I Y (b)= l,k-O

k 2 k-I 3- k-2 "'V 0 - 0, k >c

When the time points are not equally spaced, the interpolating polynomial

is integrated to obtain a and b i = 0, 1,... m-1. The Adams-

Moulton mrathod is illustrated in Figure 3. Z-2.

A major advantage of the Adams-Moulton method is that it requires

only two evaluations of the function f (t, y) per integration step. Hence, for a

given step size it should be more efficient than the Runge-Kutta scheme, which "A
requires four such evaluations. Howeve~r, Lhe Adaims-Moulton method does ,

require the values of yn and yn at points• outside the current integration A;':i

an ound

intervals which Must be generated by some other process. Within G'TS, the

SRznge-Kutta method is used to provide the initial information required by the

Adams -Moulton scheme.

The fact that the Adams-Moulton scheme reouires information

from previous integration intervals implies that this method is more sensitive

to changes in the derivatives from one integration interval to -the next. Also

the dependency on past information implies that the Adarns-Moulton method

must be restarted at each point wher' there is a discontinuity in the derivatives

(i. c. , the function f (t,y) y. For exampl.c, at the beginning of each phase, the

Adams-Moulton method must be restarted. This situation is illustrated in

Figure 3.Z-3. Note that an extra evaluation of the derivatives is required at

the right side of each event which introduces discontinuities into the derivatives.

3.2-5

y0

1+ 1

: Yn+I

Yn () •n

(i Ai)jr•

•n-(m-1)

TIME
tn tn+l

Si) :Initially, : n' Yn')t-I .. n-m1) are available n an

estimate of Y(t n+I which is computed by a "predictor" formula

using y no Yn' Yn-"'" Yn-(m-l) (see Eq. (1)). An estimate

of the deriv;ative Yn = f(tn ()) is then evaluated.

ii) Y is a refined estimate of y(tn 1) which is computed by a "corrector"

formula using Yn' Yn+' n' Yn-I " n-(m-Z)(see Eq. (2)). The

derivative estimate Yn+l is then reevaluated.

Figure 3. Z-2 Adams-Moulton Integration Metnod

3.Z-6

• -I

(9 EVENT

RUG-KUTTA METHOD

P"SF

EVENT 0

*0

ADAMS-MOULTON METHOD2

EVENT .

1,VIASE ,

*DERIVATIVE EVALUATION

Figure 3. 2-3, Summary of Derivative Evaluation

3. 2-7

3.2.3 Adams-Moulton, Variable Step (m-th Order)

An advantage of the Adams-Moulton method, as contrasted with the

Runge-Kutta method, is that an error estimate is easily obtained. This

error estimate can then be examined to determine whether the current

integration step size is adequate for desired accuracy. Specifically, using

the notation of Eqs. (1) and (2), the error estimate made within GTS

for the k-th integration step is
i (1) -

En+l = C n+l " Yn+ll (7)
minYn+lI, L1)

where c is a computed constant.

Assume that a maximum error E and a minimum error E
max min

have been established, and assume En+1 has been computed by Eq. (7). Then

the integration step size At is determined as follows:

i) If E E E proceed to the next integration step.

ii) If E > Emax the step size is too large to maintain the desired

accuracy, the step size is halved, and another integration step is __

taken from t
n

iii) If En+1 < Emin, then the step size is so small that more accuracy

is being maintained than desired, and the step size is doubled.

Note, however, if the step size is changed, the coefficients for the Adams-

Moulton method (see Eqs. (3), (4), (5), (6)) must be recomputed.

Within GTS, Emax may be input, but Emin is computed by

EE - max (8)
min 2 m+4 (8)

Also, for the GTS implementation, the step size is not permitted to

exceed specified upper and lower limits. That is, if En+1 < Emin but

the integration step size is equ'1 to the maximum permitted step size At

then the integration step size ib not increased but is maintained at the current

3.2-8 k!

value. Conversely, if En >mE but the integration step size is equal I
to the minimum permitted value Atm, then the integration step size is

not reduced. Rather, the job is terminated since the error criterion cannot

be satisfied and the step size is the minimum permitted.

-3

*1
3.•-9'I

j

"I

3. 3 Recommendations for Usage

The proper choice of itn integration method to be used depends on a

number of complex and interrelated factors. Some of these factors

are:

1. The type of overall problem; e.g. , as indicated in Section 2. 1,

trajectory optimization problems may require more accurate

integration than would be required if an optimization operator

were not being executed.

2. The type of dynamics problem being simulated as defined by the

functions (model types) selected to be simulated; e.g., a

six-degree-of-freedom simulation of an RV introduces more

complex dynamics than would a point mass simulation of the

same RV.

3. The model selected to simulate a specific function; e. g. , the

attitude model ATTMI introduces six fast differential equations

into the system, while model ATTM3 does not introduce any

differential equations.

4. The continuity of the differential equations in the system;

e. g., some models are formulated with an iteration loop

through some of the equations in the model. This usually does

not appear as a continuous system of equations to the integration

operator.

5. The smoothness or continuity of the tabular data being used.

The smoothnessor lack of smoothness, in the tabular input data is

particularly important. This is because a table point which ftlls within

an integration step may introduce a discontinuity into the derivatives.

and the integration techniques available in GTS cannot be used effectively

across discontinuities in the deri,,a~ives.

3. 3

I _ _ _ _ _-____ _ _ _.-. _ _ _ - .

I '4•d_

For tables which contain explicit functions of time as the independent 0
variable the GTS system automatically forces each table point to be an end

point of an integration interval; consequently, a table point never falls

within an integration step. See Section 4. 3 for the details of this table

timing mechanism. As discussed in Section 3.3. 1, the Runge-Kutta

method is self-starting, so the table timing mechanism assures that such

tables will not introduce a numerical discontinuity within a given step;

that is, derivatives will be continuous across a given step. While this is

an extremely effective mechanism when using Runge-Kutta integration, its

effectiveness is reduced when using a predictor-corrector method, since

table points can occur in the set of steps used by the predictor-corrector

me thod.

Experience has indicated that the following guidelines on numercal

integration are appropriate for the simulation of trajectories.

A. Powered Flight Trajectories

(1) Vehicles with tabular thrust data:)

Runge-Kutta integration is suggested, and a nominal

integration interval of I sec is usually adequate.

(2) Vehic:les with constant thrust data and in the lower part

of the atmosphere; e.g. , below 150,000 ft-

Runge-Kutta integration is suggested, and a nominal

integration interval of 1 sec is usually adequate.

(3) Vehicles with constant thrust data and in the upper part

cf the atmosphere; e.g., above 150,000 ft:

A 4th, 5th, or 6th order variable step predictor-corrector

method should be more effective than Runge-Kutta. An

initial integration interval of 2 sec should be adequate.

3. 3-Z

L[

B. Nonpowered Flight

(1) Point mass and three degree-of-freedom trajectories:

A variable step predictor-corrector method should be

more efficient than Runge-Kutta. An 8-th order

Adams-Moulton method is suggested. An initial

integration interval between 0. 5 and 4 sec is

suggested. The integration operator will change the

value of the integration step as required. The integra-

tion interval may vary from 26 sec or more for

orbital trajectories, to 0. 125 sec or less for RV's

as they approach the surface of the earth. The initial

integration interval should not be greater than 4 to 10 sec.

(2) Six degree-of-freedom trajectories:

A variable step predictor-corrector method should be

more efficient than Runge-Kutta. A 4-th order method

is suggested if the vehicle is spinning or tumbling and

(9 tabular aerodynamic data is used; otherwise, a higher

order method should be more efficient. The initial

integration interval may be obtained from the GTS model

COMDTIN (COMpute DTIN). This model should be associated

with the initialization model type (INIT). in the first appro-

priate phase data block. This model does not require any

intra-model input.

As discussed in Section 3.3. 3, for the variable step predictor-

corrector method, the integration step size, in part, is controlled by

Ermax' which may be input (the mnemonic ii ER). The preset value of
ER is reasonable for most problems; however, it should be smaller for

search or optimization problems which require gradient information,

e.g., OPTIM or BEST. A value of 1. x 109 should be adequate.

3.3-3

- ' . ' x. r i- I

As stated earlier, the above suggestions for integration usage are --

guides and are not to be construed as absolute rules. New users of the

GTS system, or users who are uncertain about the integration method for

a particular applicatior,, are urged to contact or consult with a cognizant

GTS programmer-analyst.

3.3-4

I

I
I •

3.3-4 I
t: ,I

! | • *1

fN

vs

3.4 Integration Input Models (INTGRA)

The input data required to specify the integration operator is input

via a model associated with the integration model type INTGRA.

For all problems which require an integration operator, e. g.,

trajectory simulations, the integration model type INTGRA and an associated

model must be specified.

It

3.4. 1 Integration Model 1 (INTGRMI)

Description

INTGRMI is currently the only model available to specify the

integration operator. All the methods discussed in Section 3. 2 and all

data associated with these methods are specified with this model.

Mnemonic Description Preset

METHOD Integration method :RK FIXED
-:RK FIXED STEP: specifies fixed step STEP:
Runge-Kutta integration
=:AM FIXED STEP: specifies fixed step
Adams -Moulton integration
=:AM VARIABLE STEP: specifies variable
step Adarns-Moulton integration

ORDER Order of the Adams-Moulton integration-- 4
either fixed or variable step. Applicable
Lor Adams-Moulton integration only.
(integer input)

DTIN The input nominal At, in seconds, serves None
as the initial integration step size over
a phase. DTIN must be input for the
initial phase. If DTIN is not input for a
subsequent phase, DTIN from the previous
phase carries over.

3.4-1

§'Z!jjr7

Mnemonic Description Preset

DTMAX Maximum allowable integration step size. 128.

DTMIN Minimum allowable integration step size. 2- 7

ER Upper bound for integration error 5 x 10-
associated with the AM variable step
integration method. Applicable only
for variable step AM.

Examples of INTORMI input

3. 4--N1Z

I-~.ti

- - - - - - - - - -- - - H . - -I-

3. 5 Integration Output

Information concerning the integration operator is printed in two forms.

The value of the integratio., step size (mnemonic DTNOM) is printed as part of

the standard block print. Secondly, a summary of the error computations

and integration step size is printed for the fixed step and variable step

Adams -Moulton methods.

For the Adams-Moulton fixed step method, the following information is

included in the integration summary print. The name and corresponding trajec-

tory time of each event which occurred in the simulation is printed. Between

the listing of the events, a message is printed if either the computed error

for one integration step is greater than the maximum error (the input

quantity ER) or is less than the minimum error (see Eq. (8)). Included

in this message are the current trajectory time and the current step size.

Also, if the error is too large, the integrated variable for which the computed*

error was the largest for the current integrated interval is printed. This

message which indicates the step size was too large or too small is suppressed

after four successive occurrences.

The format for this integration summary is the following:

EVENT event name TIME xx. xxx event title

RK START UP NO EURD DTNOM = xx. xx

iERROR>ERM.\AX.., variable1
time step size FIXED STEP IRO<RI

• [JERROR>EP MAX... variableI
time step size FIXED STEP ERROR<ERMIN

EVENT event name TIME xx. xxx event title

3. 5

J ~3. 5-1

L

For the Adams-Moulton variable step method, the following information)
is included in the integration summary print. The name and corresponding tra-

jectory event time for each event which occurred in the simulation is printed. A
t7

message is printed every time the integration interval is halved or doubled.

Included in these messages are the trajectory time, the current

integration interval, and an indication if a Runge-Kutta start up is required.

Also, if the integration interval is halved, the integrated variable with the

largest computed error for the current integration interval is printed.

Successive halving or doubling oi the integration interval results in an

integration interval which is equal to (Z i)DTIN, is0, *1, * Z, where

DTIN is the initial integration interval. This integer i is printed for every

integration step. The format for this integra:ion summary is the following:

0

EVENT event name TIME = xx. xx event title

IR K ST A R T U P D T O = x.x

RK STARTUP NOT REQUIREDI DTNOM xx.xo

time step size HALVE . . . variablr(

time i i i 000 i

time step size IHALVE . . . variable
* I DOUBLE I

time i i i 00* i

E VENT evcnt name TIME = xx. xx ,vent title

3. 5~-2

SECTION 4

INTERPOLATION OPERATORS

The interpolation operators provide a capability for solving the

following problem. Given a finite number of values of a function f(x)

corresponding to x 1 ,x 2 .*. . x, determine the value of f(x) at points other

than the given points. Currently, in GTS the primary application of the

interpolation operators is for processing tabular data. As is documented

in Volume II, the GTL tabular input format provides a convenient format for

specifying the tabular data, and a description of the input options is not

repeated here. Rather, this section contains a brief description of the

method which generates values of the function f(x) . A more complete

mathematical description of the interpolation process can be found in most

texts on numerical analysis, such as Ref. 7 and Ref. 8.

717-1

4. 1 Interpolation Formulas

For discussing the interpolation scheme, assurne that

the values of the independent variables and dependent variables reflect any

user requested scaling or biasing. The interpolation is performed by a

Lagrange interpolation formula. The exact form of the formula depends on

the number of independent variables and the order of interpolation.

4. 1.1 Univariate Interpolation

Consider the formula for a single independent variable. Assume

that the order of the interpolation is m. m-th order interpolation requires

m+l distinct values of the independent variable x 01 x1 ... xM and the

corresponding function values f(xi), i = 0 .. , m.

The basic interpolation procedure is to determine the polynomial pm

of degree less than or equal to m such that

Pm(Xi) f(xi) i = 0, 1... ..m

The value of f at an arbitrary point x is approximated by evaluating
" prPo(x).

If N represents the total number of points input in the table, then N

must be greater than or equal to m+l. Otherwise, no interpolation is

performed. Assume the value of f at an arbitrary point x is requested,

then m+l points, x 0 ,x 1 -. xm, must be selected from the total of N

points. These points are selected as follows. If the order of interpolation

m is odd, then the (m+l)/2 tabular points immediately less than or equal

to x and the (m+l)/2 tabular points immediately gr-ater than x are

selccted. If the order of interpolation m is even, then m/2 tabular points

immediately less than or equal to x and the (m+Z)/2 immediately greater

than x are selected for the interpolation. That is, the points x 0 ,x ... x

are choscn such that

Xo0< X1< ... < Xk C X <X k+1< 1,,,t< xm

where k z (m+mod (m,2)/2)

4. 1-1

If x is less than the k-th point, where k is given above, of the original L
input set of points, then the first m+l tabular points are chosen. Likewise,

if x is greater than the (N-k)th point of the original input set of points,

then the last m+l points of the table are chosen.

Given this selected set of tabular points, x 0 ,xlx 2 . .. x, along

with the corresponding function values f(xi). the Lagrange interpolation

formula for the value of f at the point x is
In

f(x) F, ci(x) f(xi)
i=O

whe re
(x-x 0) (x-x I) . (x-xiI) (x-xi+I) ... (X-xrn)

c i(x) =

(xi-xO) (xI-xl)... (xi-xiI) (xixi+I) ... (xi-xM)

If the extrapolation option is specified, and the evaluation point is

less than the initial tabular point or is greater than the final tabular point,

then the first m+l tabular values or last rn+l tabular values are specified

for the extrapolation, respectively.

The choice of the order of interpolation should be based on knowledge

of the actual nature of the function being interpolated. As is illustrated by

the following example, the interpolated value is dependent on the order of the

function and a higher order representation is not necessarily more representa-

tive than a low order interpolation,

Example: Consider the following table which gives values of

THECOM as a function of TIME

TIME THEGOM

0. 0.
10. 0.
20. 1.
30. 1.
32. 2.
34. 2.5
36. 2.5
38. Z.
40. I
50. 1.

iL .

('[.. - ---IS I , • . .- =.

In the table below are the interpolated values of THECOM at the

values of TIME listed for the indicated orders of interpolation.

"TIME 5. 15. 25. 35. 45. 55.

ORDER

1 0. 0.5 1. 2.5 1. 1.

2 -0. 125 0.625 0.0417 2.562 .0.0417 4.125

3 -0.250 0.5 . .33-0 2 562 -1.344 13.612
4 -0.969 0.931 -0.7 2. 562 -2. 076 24. 877

5 -4. 506 2. 267 -0. 380 2. 562 -2. 524 38.020

6 -14. 127 4.649 -1.160 2. 562 -Z. 815 53.134

7 -34. 603 8.082 -1. 745 2. 562 -2. 815 53. 134

8 -72. 776 12. 543 -2. 174 2. 562 -2. 575 24. 122

4. 1. 2 Multivariate Interpolation

The procedure for multivariate interpolation is analogous. Assume

that f is a function of n independent variables, XlX. .* xnP and assume

that functional values of f are specified at the N1 +1 distinct points
xi0 x1i ... x i for the i-th variable. The multivariate interpolation

process involves (N 1 +1) (N 2 +1)... (Nn+l) distinct points and the corresponding

function values
jI i i

xI 2
... x), 0-<i f Nl0 -i 2 <N 2 ...S1 n 1 n)

0 < i n _< N n

The current GTS implementation requires that the total number

of independent variables be less than or equal to 6. Also, the current GTS

implementation does not permit tLe specification of an order of interpolation
or the extrapolation or extend option with respect to each individual
independent variable. Rather, the spe.-ified order of interpolation and any

table extension option apply to all independent variables.

4.1-3

,• -t'. -.. - -v.

For the multivariate case, the interpolated values of the dependent ()
variable are obtained by the multivariate Lagrange formula. Again, assume

the order of interpolation is m. Then, at least m+l points must be

specified for each independent variable (i. e. , N. • m+l, i = 1. 2,.. n).

For each independent variable the m+l points used in the interpolation

formula are selected by the same procedure described for the single

independent variable case.

Assume that an interpolated value of f is desired at an arbitrary

point x (xx ... xn). With a slight abuse of notation, assume that

xl, xi ... xi represent the m+l values of the i-th independent
variable selection for the interpolation process. Thus,

k. k. +I
x9 < x. Xk... < x i <. 1, i n

The value of f(x) is computed by

f(XI' x I x (
2• 1

C 1 C.:•,(? .. n" cx•,c 2n ix in
* i) (x 2)''" (xn)f(xl 2 n

il=O i2=0 i =0

where 0
0i. -1 i.+l1

_x 0 _ -x j)(x .x. X

i. 0, 1,... Iand j 1, 2,..., n

4.1-4

I~t .! .•. .

As in single variable interpolation, the choice of the order of

interpolation should be based on knowledge of the actual nature of the

function being interpolated. Again, a higher order representation is

not necessarily more representative than a low order interpolation.

41

* I

4.1-5

4.2 Interpolation/IntegraLion Interaction

If the interpolation operator is executed in conjunction with an integration

operator (e.g., a trajectory simulation). then special processing related to

the interaction of these two operators may be required. The exact relation-

ship between the interpolation process and integration operator depends on

such factors as the integration method, the integration step size, the order

of interpolation, and the number of points in the table. Since both the integration

operator and interpolation process make functional approximations to the tabular

values, it is certainly desirable to have these approximations be similar.

If, for example, the integration step size is large in comparison to the spacing

of points in the table, then the function as represented by the interpolation

table may differ significantly from the functional representation made as a

part of the integration process. This situation may be especially troublesome

with the Adams-Moulton integration method, which makes approximations

based on information over several integration intervals. Within GTS, process

control options related to tabular input attempt to insure this compatiblity.

The table timing option attempts to alleviate this situation by requiring that

I \ ~each tabular value of the independent variable be an integration point. This

option thus requires that each integration interval may not inciude a table

interpolation point except as an end point.

The timing option does have the disadvantage of requiring that every

tabular value is an integration point. The same accuracy, however, may be

maintained by specifying the integration process include a few selected

points; thus, the efficiency of the integration process is increased. Also,

the Adams-Moulton scheme still requires information over several integration

intervals even with the table timing option. That is, a Runge-Kutta restart is

not necessarily performed at the tabular points. This procedure may not be

desirable for certain types of tabular data such as those with sharp peaks.

A GTL option permits the user to select individual points in the table, and the

integration scheme will integrate to these points. A Runge-Kutta restart is

then performed at these points. Note that for the Runge-Kutta method, the

4.2-1

I .. . - 1. ..I I--. I ii-- - - . z - .-" iaI II lI l n il Ll I~t , 'n •IBp

tabl" timing option is equivalent to specifying every tabular point for a restart. ._

The current GTS implementation restricts the table timing and restart options

tables for which the independent variable is time (i. e., trajectory time or

time from an event).

Step tables require special logic distinct from the processing described

for interpolation tables. Step tables provide a discontinuous representation

of the tabular functions. Hence, if a function represented by a step table is

part of the evaluation of the derivatives, then this fuaction may introduxce

discontinuities into the derivatives of the differential equations being integrated.

Consequently, the processing at tabnular points of a step table is similar to

the processing at phase points. Namely, the integration method must integrate

up to such a tabular point and a Runge-Kutta restart must be made on the right

side of such a poirtt. Furthermore, since the function represented by the step

table is discontinuous at such a point, it is necessary to evaluate the derivatives

of the differential equations on the right side of such a tabular point.

4. Z-Z

WLV

Ii
R EFERENCES

1. H. E. Pickett, A Contribution to the Thaurmaturgy of Non-Linear
Programming, Report No. ATR-71(59990)-l (El Segundo, Calif.T:
The Aerospace Corp., August 1970).

Z. J. T. Betts, An Effective Method for Solving Constrained Parameter
Optimization Problems Report No. TR-0073(3450-l0)-l (El Segundo,
Calif. : The Aerospace Corp., 8 December 1972).

3. , Solving the Nonlinear Least Square Problem: Application
of a General Method, Report No. TR.0074(4901-03)-3 (El Segundo,
Calif. : The Aerospace Corp., 15 April 1974).

4. _, An Accelerated Multiplier Method for Nonlinear
Programming, Report No. TR-0075(5901-03)-5 (El Segundo, Calif.:
The Aerospace Corp., 30 November 1974).

5. P. K. Henrici, Discrete Variable Methods in Ordinary Differential
Equations (New York: Wiley and Sons, 1962).

6. C. W. Gear, Numerical Initial Value Problems in Ordinary Differential
Equations (Englewood Cliffs, New Jersey: Prentice Hall, 1971).

7. S.D. Conte and C. deBoor, Elementary Numerical Analysis: An -
Algorithmic Approach (New York: McGraw, 1972).

8. E. Isaacson and H. Keller, Analysis of Numerical Methods (New
York: Wiley and Sons, 1966).

R-I

