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Annual Review Introduction 

A number of themes which run through the papers 
in this Research Review are present elsewhere in our 
research. 

One theme is decomposition. The decomposition 
of algorithms and problems leads to new aloorithms 
for parallel machines. On the other hand, for certain 
problems there are theoretical limits on decomposi- 
tion, leading to theoretical limits on speed-up for 
synchronous or asynchronous parallel machines. In 
speech understanding research, decomposition 
permits processing by various knowledge sources 
and facilitates implementation on our asynchronous 
multi-processor machine. We see this as a cost- 
effective way J obtaining large amounts of com- 
puting power. 

A second theme is experimentation. In computer 
science we often build u system so we can 
manipula'e a'id study it. This approach helps us to 
incorporate the latest technology in our design ef- 
forts. The system must enjoy high performance to 
permit enough realistic experiments. 

A third theme is realism. We are concerned with 
constructing as realistic models as possible, limited 
only by our current understanding of the problem 
and the power of our analytical tools. For example, 
this is basic in our approach to the analysis of 
algorithms and complexity. 

I want to turn next to some very pleasant news. In- 
dividual members of the Department have received 
outstanding recognition. Al Newell and Herb Simon 
share the 1975 Turing Award for their joint scientific 
efforts extending over twenty years during which 
they made basic contributions to artificial in- 
telligence, the psychology of human cognition, and 
list processing. Gordon Bell has won the 1975 
McDowell Award for outstanding contributions in 
the areas of technical design, education, and 
publication;; influential in developing the computer 
field Raj Reddy has won a Guggenheim Fellowship 
to work on functionally spet iaiized computer 
architectures for speech and vision problems. Jack 
Buchanan serves for a year as a Judicial Fellow with 
the U.S. Supreme Court and the Federal Judiciary 
Center to aid in modernizing the administration of 
the Federal courts. 

In October 1975, the Department celebrates its 
tenth anniversary. Present and past members of the 
Department will join in the celebration, a ttuee day 
technical symposium on research at the frontiers ol 
computer science. Invited and selected papers will 
appear in a commemorative volume. 

J. F. T. 
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Bounds on the Speed-up of 
Parallel Evaluation of Recurrences 

Laurent Hyafil and H. T. Kung 

I. Introduction 
To understand the performance of parallel com- 

puters such as ILLIAC IV and C.mmp, we must know 
the largest speed-up that can be obtained for a 
given task. If there are k processors, the largest 
speed-up that can be achieved is k and we call this 
optimal speed-up. The speed-up in general depends 
on the parallel decomposition of a particular com- 
puting task and the various aspects of the multi- 
processing system, including memory contention, 
process communication, operating system over- 
head, etc. In this paper, we concentrate on the issue 
of decomposing tasks, and assume that the multi- 
processing system is idealized so that it causes no 
delays at all. We shall show that even under this 
idealized assumption, there are problems for which, 
because the parallel decompositions are inherently 
difficult, the optimal speed-up can not be achieved. 

This paper studies bounds on spee«--ups for a 
partic ular problem, i.e., the problem of evaluating 
(or solving) recurrences, which is defined as follows; 

Input: XQ^, 

Output: xn, which is defined by 

,x „ . .. andra'ionalfunctions r, i>1. -p+1 i 

xi " ri<xi-r .x.p+1),i>1. 

Since the Xj are defined iteratively, the problem ap- 
pears on the surface to be highly serial. Hence it is 
interesting to investigate how parallel algorithms can 
be designed and what are the theoretical limits of 
using parallelism for the problem. We consider the 
recurrence problem also because it is important in 
practice and is simply stated so that we might obtain 
some insight into the nature of parallel computation 

by studying it. We shall survey a number of results 
in connection with bounds on the speed-ups of 
parallel evaluation of various kinds of recurrences, 
especially when the size n of the problem is i.irge, 
or when n • 0°. For simplicity we assume that eaw~ 
arithmetic operation takes one unit of time. Consider 
a k-processor machine. We shall see, for example, 
that the speed-up tor the first order linear recurrence 
problem is at most {2/r,)k + (1/3) even i nder the 
idealized assumption. Of course, the actual speed- 
up obtained from a real k-processor machine would 
be < (2/3)k + (1/3). The difference between (2/3)k 
+ (1/3) and k is rather significant. For example, if 
K = 16, 64, then the speed-up for the problem is at 
most 11, 43, respectively, no matter how efficient 
the k-processor machine is. The reason that we get 
at most 7C percent of the speed-r-' we might expect 
for the problem is the inherent dependence of vari- 
ables in the recurrence. Nonlinear recurrences ar^ 
even worse. It is shown that the speed-ups for a 
certain class of nonlinear recurrence problems are 
always bounded by a constant no matter how many 
processors are used and how large the size of the 
problem is. Hence the dependency relationships 
within the variables of these nonlinear recurrences 
are even stronger. We believe that the study of these 
dependency relationships is fundamental for under- 
standing parallel computation. 

The kind of results which are to be presented in 
the paper could be useful in the following two ways. 
First, the theoretical bounds on speed-ups provide 
grounds for testing the efficiencies of algorithms and 
the multiprocessing system. (For example, it would 
be very helpful if tight theoretical bounds on speed- 
ups are known for benchmark tasks.) Second, the 
constructions of the algorithms designed for the 
idealized machine are instructive and often lead to 
useful insights inlo the nature of designing efficient 
algorithms for real machines. 

2. Definitions and Notation 
An algorithm for evaluating xn is defined to be a 

directed acyclic graph in a natural way. For example, 
the graph of Figure 1 defines a parallel algorithm 
using three processors for evaluating x which is 
defined by 

x0 = a1, 

xi = bixi-1 + ai + V ' " ■'■2'3- 

(Note that x3 = ((a1b1+a2)b2 + a3)b3+a4.) 

. 
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Figure 1 

Consider the directed graph which defines an 
algorithm. We define the depth of the graph to be the 
time, define 

Tk(x ) = minimum time needed to evaluate xn by 

an algorithm using k processors. 

and defin». the speed-up of the problem of evaluat- 
ing xn by using k processors to be 

Sk(xn) 

T1<*n> 

(In Hyafil and Kung 1753] these definitions are given 
in a more rigorous way.) 

By a simple simulation argument, one can easily 
see that T1(xn)<k Tk(xn). Hence 

SK(,vn)<k,    Vk.Vn. 

k is a trivial upper bound on Sk(xn). Bounds smaller 
than k are nontriviai We shall show some nontrivial 
up,      bounds on SJx ) in the following sections. 

3. First Order Linear Recurrences 

A first order linear recurrence is defined by 

(DX; aixi-1 + V*1- 

It is the most fundamental recurrence, in the 
sense that algorithms for solving it often form basic 
algorithms for solving other types of recurrences. 
The trivial algorithm which computes x1,X2,..-,xn 

iteratively according to (1) is the optimal sequential 
algorithm, since it takes time 2n and any algorithm 
has to take time at least 2n for using all the Inputs. 
Hence 

(2)T l(*n) 2n 

The algorithm, however, is not suitable for parallel 
computers because it does not provide any parallel- 
ism. New algorithms are needed for parallel com- 
puters. Various parallel algorithms have been de- 
veloped by many people, including Brent [70, 74], 
Kogge 174], Kogge and Stone [73|, Kuck and 
Maruyama |73|, Kuck and Maruyama |75), Lambiotte 
and Voigt 174],Stone [73, 74) and Winograd (74). 
The basic idea of these algorithms can be explained 
as follows: 

Note that (1) is equivalent to 

[1-l?WM i 81. 

Hence 

(3) M (MM 
which can clearly be computed in parallel. Using the 
fact that the multiplication of two matrices of the 
formfx xl takes three operations and results in a [x xl 

0 ij 
ix of th 

[x xlandfxlus 
OlJ llj 

vector of the form 

matrix of the same form, while the multiplication of 
jses two operations and results in a 

I'l in Hyafil and Kung |75b] a 

parallel algorithm   based   on   (3)   is  derived   and 
establishes that 

^ Tk<xn)5iliW + c1 l09 k 

for some constant c. > 0. (4) is an improvement over 
the corresponding result in Winograd [74] when n is 
large and K is fixed. 

*ä* MMM tfi^mm 
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In Hyafil and Kung [75al it is shown that If an 
algorithm computes xn in time t with w operations, 
then 

(5) w>3n 

Suppose that t<T1{xn) = 2n. Then by (5) w>2n. 
Hence if a parallel algorithm is faster than the 
optimal sequential algorithm, then it must perform 
more operations than the sequential algorithm. This 
turns out to be the basic reason why the optimal 
speed-up cannot be achieved for the problem. 
Indeed, lower bounds on Tk(xn) can be easily 
derived from (5) as follows. Suppose that k proces- 
sors are used. Observe that for any algorithm, kt > w. 
Hence by (5) we have 

(6) v^^nW •vk'vn 

Suppose that w > 2l,09 k'. (This is true when, say, 
n >k.) In Heller |75| it is pointed out that in this case 
by the same argument as used in Munro and 
Paterson |73, Theorem 1], the bound in (6) can be 
slightly improved. In fact, we have 

1 >w, K(t-|log k|) + 2(|09 kl 

which together with (5) yields 

W-kTT72 + (k!l09 kl + 1 " 2[l09 kV(k + 1/?). 

Hence 

3n 
<7) W-k+W +c2,09k-c3'n-k 

for some constants Cp >0 and c- >0. From (4) and 

(7), we know that the bounds are essentially sharp 
for n > k. 

From (2), (4), (6) and (7) we have the following 

Theorem 1 
For the first order linear recurrence defined by(1), 

2k + 1 

3 + c^k-H^log k 

n 

(8) /(2/3^+ 1/3, vk, vn 

<Sk(xn)<  I 2k + 1 

0) 
(c9log k-c7) (k+1/2) 

3 + _f 2 . 

, vk, vn > k. 

The upper bound in (8) implies that even for the 
simplest recurrence defined by (1), we can get at 
most 70 percent of the optimal speed-up. 

The algorithm used to establish the bound in (4) 
can be extended to solve first order vecfor linear 
recurrences, defined by 

(10)«, = A^.., +bi. 1*1, 

where the x's and the b's are p-vectors and ihe As 
pxp matrices. The upper bounds on time fo solving 
these vector recurrences can similarly be obtained. 

4. Pth Order Linear Recurrences 

A pth order linear recurrence is defined by 
i-1 

(11) x,- 2   Y, + b,.l81. 
j=l-p 

The problem for solving such a recurrence in parallel 
has been considered in Chen and Kuck |75], Kogge 
|74| and Kogge and Stone [73]. 

The following theorem generalizes the upper 
bound result in (8). 

Theorem 2 (Hyafil and Kung |75b)) 
For the pth order linear recurrence defined by 

(11). 

(«) sk(xn)^TT k + c4' vP'*k'vn- 

for some constant c. 

Since 2p <1. the theorem implies that we cannot •2p+1 
essentially obtain the optimal speed-up for solving 
pth order linear recurrences for any p, when k Is large. 

We now consider parallel algorithms for solving 
the recurrence defined by (11). The idea is to convert 
it into a first order vector linear recurrence of the 
form (10), which can then be solved by algorithms 
used in the preceding section. 

The naive approach for the conversion would be 
the following way: Define vectors 

x = 
i-l 

.   i-p+1 

i>0 

1 

-      -  -■— —■  IM 
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then (11) is equivalent to 

(13)», ■ A^..   +|l,. I - 1.2 n 

where the A i are certain companion matrices. Then 
algorithms for solving first order vector linear 
recurrences can be applied to compute xn (and 
hence iu) from (13). We shall use another conver- 
sion technique, which will lead us to p times faster 
algorithms for the case that k, p are fixed and n ■°°. 
The idea is explained in the following for the case of 
p = 3. We can write a 3rd order linear recurrence as 

1-1 

-■1 
j = i-3 

ä^Xj +  bj, i>1 

where a,. = -aij. Then for computing, say Xg.from 

;0,) xn,x ,,x_2 we have 

a1,-2 a1,-1 a10 
ä2,-1 §20 

30 .i 

-21   ' 
a31 ä32 1 

41 "42 "43 
ä52 ä53 

ä63 

a54  ' 

a64 a65 1 

x.2 b1 

"-I b2 

»0 _b3 

"l b4 
x2 b5 

J .:». [   b6  J 
«4 

*5 

lX6 

If we partition the matrix and vectors into blocks as 
indicated above, then we have 

A1 T1 o 80 «»1 
o Aa T? h b2 

>- 
*2 

Hence 

Si " Wo + Tl"^V 

x2 = -T2-1Aa»1 + T2-1b2, 

which is a first order vector linear recurrence. Using 
the same idea, for general p, we have 

(U)!,- (VAjtej.., +1"^, i = 1,2  m 

where m = fh/pl, Tj, Aj, Xj, b| are of size p, and Tj 
are triangular. We shall first compute T|-lA| and 
T "1b for i < m, and then use algorithms in Section 
3'^ solve the recurrence (14), Since m = In/pl, the 
recurrence (14) is shorter than the recurrence (13) 
by a factor of p. Thus we get faster algorithms. (It 
turns out that the cost of computing T|-1A| and 
T-1b is not crucial.) From this approach it is im- 
mediate to prove that 

D" (15)Tk(xn)<c5(^n + p^log n), 

for some constant c5>0, where a = 2 when the 
usual matrix multiplication algorithm is used and a 
= 1.82 when the Strassens matrix multiplication 
algorithm (Strassen |691) is used. (In Hyafil and Kung 
|75bl it is shown that the bound in (15) also holds for 
the problem of solving nxn band linear system with 
bandwidth p.) Since T^x^ä (p+1)n, taking a = 
1.82 in (15) we have that for any k and p, 

(16)sk(xn)23:(ri2)'asn 
D    M 

for the problem of solving pth order linear recur- 
rences. Does Sk/k indeed decrease as p increases? 
The question is still open. We only know that by (12) 
Sk is always less than k for large k. We believe that 
as p increases, more dependency relationships on 
the x's defined by (11) will be introduced and hence 
Sj/k will decrease. 

Conjecture 
Consider the problem of solving pth order linear 

recurrences defined by (11). Let the maximal speed- 
up ratio achievable by using k processors to be 

Sk(p) ■ max Sk(xr). 

Then there exists a monotonically decreasing func- 
tion A such that 

5k(p)<A(p)k, vk, 

and HP)   • 0 as p   . «. 
The following theorem relates our conjecture on 

speed-ups to the matrix multiplication problem. 

Theorem 3 (Hyafil and Kung [75bl) 
If the conjecture is true then 0(n2/\(n)) is a lower 

bound on the number of arithmetic operations 
needed to multiply two nxn matrices. 

Note that the question of whether or not matrix 
multiplication can be done in 0(n2) operations l.az 
been open for some years. 

I 
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5. General Linear Recurrences 

A general linear recurrence is defined by 

i-1 
(17) K,- 2 V) + bi,i-1 

i-0 

The problem of solving general linear recurrences is 
reducible to that of solving triangular linear systems. 
Heller |74a] first considered the problem of solving 
(17) in parallel and gave algorithms which take time 
0(log2n) and use 0(n4) processors. It was shown 
later that the problem in fact could be done in time 
0(log2n) with 0(n3) processors by a number of 
people in at least three different ways (see, e.g., 
Borodin and Munro [75], Chen and Kuck (75|, Heller 
|74b] and Orcutt [74]). 

For the case of usino small parallelism it is shown 
in Hyafil and Kung |74| that 

+ c6n if k < n, (18)Tk(xn) . n' 

Tk(xn)<^ 

c7n2"rlog n        if k=|nr| and 1<r<3/2, 

'c0n1-r/3log2n    if k=|nrl and 3/2<r<3. 
8 

where Cg, c,, Cg are positive constants. 

Since there are n(n+1 )/2 inputs for the recurrence 
(17), we have 

while the trivial sequential algorithm establishes that 

T1(xn)<n(n+1). 

There is a gap between the lower and upper bounds 
on T^Xp). We believe that T.|(xn) = n2 + 0(n). 
Suppose that is true. Than from (18), we have 
Sk(xn) -kasn -oo, i.e., opii. al speed-up is achieved 
asymptotically, which woulo be in interesting con- 
trast with pfh order linear recurrences, where 
optimal speed-ups are not asympto:ically achieved 

6. Nonlinear Recurrences 

A nonlinear recurrence is defined by 

•V121, (19) x, - <P{\V\2' 

where<^is a nonlinear rational function. Write >P = 
<£../<£> 2 where (p1 and c^j are polynomials which 
are relatively prime. Define the degree of a non- 
linear recurrence to be 

deg if  = max(deg i^^deg^g) 

Hence, for example, the well known recurrence, 

(20)xj+1 = (1/2) (xj +A/X,), 

for approximating /Ä has degree 2. For linear 
recurrences we can have unbounded speed-up 
when k . °o and n • <=. For example, by Theorem 1 
we know that if k = n the first order linear recur- 
rence can be sped-up by a factor of n/log n, which 
is unbounded as n • oo. The following theorem shows 
that the theory of nonlinear recurrences of degree 
* 1 is completely different from that of linear recur- 
rences. 

Theorem 4 (Kung [74]) 
For fAte recurrence defined by (79;, W deg^p > 1, 

then 

Sk().r)  < c9, vk.vn, 

for some constant Cg. 
The theorem implies that, e.g. the recurrence 

defined by (20) cannot essentially be sped up by 
using parallelism. 

The only nonlinear recurrences which can possibly 
have unbounded speed-up by using parallelism are 
of the form 

(2i)x,-( 2  YJ*6")'! ? ciix) + di)' 
\j = i-p /      M = i-q / 

which Is of dearee one. Indeed, the recurrence 

(22) x, = a, + 
i        i Vl 

i.e., a continued fraction, can be sped up. 

Theorem 5 (Hyafil a.-.d  Kung  [7Sb].  Kogge  [74], 
Kuck and Maruyama [73| and Winograd (74]) 

For the recurrence defined by (22), 

(23)(1/2)k + c10  > Sk(xn) > 
}    HMoq n' 

11 
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By Theorem 1 and (23) we note that recurrences 
with division seem to be more difficult than those 
without division in parallel computation. The same 
observation can also be made to the problem of 
evaluating arithmetic expressions (see Brent |74| 
and Wlnograd |74|). 

It is clear that the recurrence 

aixi-1 + b, 

cjxM + d, 

ccn also be sped up by using parallelism, since it can 
be transformed Into a continued fraction. However, 
by the following theorem we know general recur- 
rences defined by (21) cannot essentially be sped 
up. 

Theorem 6 (Hyafil and Kung [75bl) 
For the recurrence defined by (21) if either 

p   >  1 or q  >  1.   then 

Sk<xri)  < Cjj.Wc, vn 

tor some constant c-p 

7. Summary and Conclusions 

We have shown a number of results on the 
theoretical limitation of using parallelism for solving 
recurrences. For pth order linear recurrences, with k 
processors the speed-up^ are shown to be bounded 
by ck + d for some constants c, d, with c < 1, no 
matter how large the size of the problems The sharp 
upper bound is obtained for first order linear recur- 
rences. For nonlinear recurrences of degree > 1, 
the speed-ups are shown to be bounded by a con- 
stant, no matter how many processors are used a"d 
how large the size of the problems. This is probably 
the first and may be the only known example of a 
nontrivial problem which cannot be essentially sped 
up. By these results we wish to demonstrate that 
the gam from parallelism very much depends upon 
the nature of individual problems, e.g., the depend- 
ency relationships among the variables of the prob- 
lems. We believe that to identify properties which 
prevent us from gettinc good speed-ups is funda- 
mental for understanding parallel computation. 

; 
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Overview of the Hearsay 
Speech Understanding Research 

Lee D. Erman 

Hearsay is the generic name for much of the 
speech understanding research in the computer 
science department at Carnegie-Mellon University 
(CMU). The major goals of this research include the 
investigation of computer knowledge-based prob- 
lem-solving systems and the practical implementa- 
tion of speech input to computers. An emphasis of 
this effort is the design of system structures for ef- 
ficient implementation of such systems. 

We will first describe the problem of speech 
understanding and (in Section 2) present the con- 
text of the Hearsay effort. Section 3 describes the 
Hearsay model and implementation philosophy. 
Then, in Section 4, Hearsayl is described, including 
some major design limitations which formed much 
of the motivation for Hearsayll, described in Section 
5. 

I. The Problem of Speech Understanding 
In order to provide a framework for discussion, a 

conceptual model of speech communication is 
presented: 

1) The purpose of a speech utterance is to trans- 
mit information from the speaker to the listener. 
2) The speaker starts with some deep semantic 
representation of the message. Several kinds of 
transformations are applied to this representation 
(syntactic, linguistic, phonological, neurological, 
articulatory, acoustic, etc.). The result is an 
acoustic signal. 
3) The acoustic signal is detected by the listener. 
The listener applies transformations which are 
similar (though inverse) to those of the speaker; 

the result is some semantic representation for the 
listener. 
4) The correctness or effectiveness of the trans- 
mission  is related to the correspondence  be- 
tween the meaning that the speaker intends and 
the meaning derived by the listener; it is measured 
in   behavioral  terms—i.e.,  what  actions  of  the 
listener are triggered by receipt of the message. 
(Very often this behavior takes the form of an ut- 
terance generated by the original listener.) 

The goal of automatic speech understanding is to 
produce a machine (usually in the form of a com- 
puter program) which can effectively perform as the 
listener. 

The problem of understanding speech with the 
competence of a human is formidable. A reasonable 
plan is to approach the most general kinds of 
solutions by designing and building a sequence of 
systems, each of which is more ambitious than the 
previous. There are many dimensions along which 
to move to provide this graded sequence (e.g., 
requirements ol vocabulary size, speed of response, 
accuracy, number of speakers). A way of capturing 
these various dimensions is the concept of a task— 
a well-defined domain within which the machine is to 
perform some functions. For example, the task 
might be to answer the users (speaker s) questions 
about airline flight schedules or to provide an inter- 
active computer-programming facility. In defimng- 
a task, one important aspect is the spoken iuput 
language. This language is pre-specificd lexically, 
syntactically, and semantically; that is, descriptions 
are given of the words, how they may be scquenced 
to form sentences, and the meaning or the sentences 
in the context of the task.1 

There are two major aspects of the speech com- 
munication process which generate most of the 
problems in machine understandir.g; 

1) The nature ol the speech signal—The trans- 
formations involved in speech f.oduction are 
many and complex, and they strongly interact 
with each other. The result is a very large amount 
of veriabllity in the signal which conveys little or 
no meaning, i.e., which ^s noise in the context of 
the speech understanding task. Repetitions of the 
"same" utterance, spoken by one speaker under 
unchanging conditions just seconds apart often 

1 This use of a task to constrain the problem is not 
as artificial as It may first appear. Usually human 
speech understanding is also performed in "con- 
strained domains"—in almost any given situation 
only a small subset of all possible messages is 
likely. .._.. 
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result In significant variation of the signal. As the 
various conditions (e.g.. identity, age, gender, 
emotional state, and environment of the speaker) 
are relaxed and allowed to change, this variability 
increases significantly. Further, strong inter- 
actions occur among the various elements; that Is. 
words, phones, phrases, etc.. infljence and 
modify nearby words, phones, phrases, etc., and 
thus have differing manifestations in different con- 
texts.2 

2) The nature of our knowledge of the transforma- 
tions—Jt\eor\es which attempt to explain the pro- 
duction of speech are, in general, incomplete and 
inadequate In explaining the phenomena with a 
great deal of accuracy. Also, it is often difficult 
to translate existing theories into the framework of 
feasible recognition algorithms. 

1ö Largely because of these two aspects, the kinds of 
machine speech understanding systems developed 
can be characterized as having several interesting 
and problem-laden features: 

1) The system must make use of multiple and 
diverse sources of knowledge to solve the prob- 
lem (e.g.. acoustic-phonetics, phonology, syntax, 
semantics, pragmatics); these knowledge sources 
(KSs) correspond to the different kinds of trans- 
formations that generate the speech signal. De- 
signing an effective control structure for these 
many diverse KSs is crucial and difficult. 
2) Each souro of knowledge is incomplete and 
errorful. Thus, although it is used in an attempt to 
further the recognition of an utterance, each KS 
will also introduce errors into the analysis process. 
The different sources must work to correct each 
other's mistakes in order to keep errors from 
propagating excessively. 
3) The systems developed tend to be large and 
complex. Building, debugging, understanding, 
and evaluating them is difficult. In particular, many 
researchers need to interact with the system over 
a period of several years, both experimenting with 
its operation and modifying it. An important 
aspect of system modification is the ability to 
modify ano replace Individual KSs. 
4) Because of the effectiveness and apparent ease 
of human performance In the speech understand- 
ing task, a useful solution to the problem must be 
a system which approaches that performance, 
primarily in terms of speed, accuracy, and. 
ultimately, economy. 

2 We are concerned here with connected speech 
input, as opposed to isolated word systems In 
which the words (for short phrases treated as in- 
divisible units) are spoken individually. 
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5) Because the systems tend to be highly experi- 
mental, they must be exercised often and over 
substantial amounts of trial data. The perform- 
ance of the system while under development 
(particularly in terms of speed of execution) is an 
important factor in determinmr how much ex- 
perimentation can occur Thus, issues of perform- 
ance are crucial even in the development stage 
6) Because the systems are complex and experi- 
mental, the interface through which the researcher 
controls and interacts with the system is crucial. 
The researcher must be able to interact with the 
system flexibly and at the functional level of the 
system (In addition to the more traditional 
machine language and programming language 
levels). 
This has been a short introduction into the prob- 

lems of developing speech understanding systems. 
A more complete analysis of the problem, including 
pointers to the relevant literature, can be found In 
Newell et al. [71) 

2. Context ol This Work 
Hearsay's direct lineage can be traced back ten 

years. The work of Reddy and Reddy & Vicens at 
Stanford University (Reddy |66); Reddy and Vicens 
168); Vicens |691) resulted in extending the state-of- 
the-art of isolated word recognition systems (e.g.. 
91% accuracy on a 561-word lexicon In ten times 
real-time on a PDP10 and with live input). This 
system differed from most earlier ones, which were 
essentially pattern classifiers, in tnat it contained a 
substantial amount of speech knowledge and it used 
extensive heuristics In applying the knowledge to 
prune the search space. In addition, one version of 
the system was created which used syntactic con- 
straints and operateo on connected speech 
(although in a very ad hoc and unextendable manner). 

The Hearsay model for speech understanding was 
developed at CMU during 1970-1971 (Reddy. Er- 
man. and Neely [70|; Reddy |71 j; Reddy. Erman. and 
Neely |72]). This model faced the problems of 
speech understanding (i.e.. in a task domain) ano 
connected speech. The Hearsayl system was 
designed and built as an implementation of this 
model (Reddy. Erman. and Neely 173); Reddy. Er- 
man, Fennell. and Neely |731; Neely (73); Erman 
|74|). This system, which was the first demonstrable 
live system to handle non-trivial connected speech, 
became operational in June. 1972, and has been 
since augmented and studied (Lowerre |75]). 
Although a number of simplifying assumptions were 
made In implementing the model. Hearsayl does ad- 
dress the problems of connectbd speech and of the 
role and interactions of different kinds of knowledge. 
By exhibiting a successfully working system which is 
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based on a model and by providing a set of solutions 
to these problems (even if some of the solutions are 
known to be far from optimal), Hearsayl clarified the 
problems and serves as a basis, and encourage- 
ment, for subsequent work. 

The experience of building and experimenting 
with Hearsayl, together with the other research in the 
field, led to a design review which resulted in the 
Hearsayll systtm (Lesser, Fennell, Erman, and Red- 
dy |74|). Hearsayll is also based on the Hearsay 
model; it generalizes and extends many of the con- 
cepts which exist in a more sirrolified form in the 
Hearsayl system. 

Concurrent with the early stages of the Hearsay 
development, a group was formed by the Advanced 
Research Projects Agency (ARPA) to study the 
feasibility of developing speech understanding 
systems. .rhis group, which included researchers ac- 
tive In artificial intelligence as well as those in more 
traditional directions of speech reccgnition 
research, produced its report in May, 1971. This 
report (Newell et al. |711) provides a comprehensive 
and detailed analysis of the problems involved. Part 
of tMs study included the specification of a set of 
nineteen dimensions for describing the capabilities 
of a speech understanding system—the first column 
of Figure 1 summarizes those dimensions. 

On recommendation of the study group, a five- 
year ARPA Speech Understanding Research effort 
was launched in October, 1971. An innovative plan 
with five principal contractors (including CMU) was 
chosen: each was to aim to produce a complete 
system meeting a set of specifications laid out by the 
study group (the second column of Figure 1) and all 
were to interact, exchanging ideas and data. 
Although charged to meet the same set of 
specifications, each group was free to choose its 
own orientation (and task domains). Thus, the flavor 
of each of the systems reflects the particular exper- 
tises and motivation;, of the people involved. 

The Hearsay reseai ;h represents CMU's major ef- 
forts to meet the ARPA specifications; In particular, it 
i; hoped that Hearsayll will accomplish that goal. In 
addition, several other systems are being 
experimented with, also aiming to meet these goals: 
a version of the Dragon system (Baker [75|) being 
extended by Reddy and Lowerre and a combination 
of Hearsayl and Dragon (Lowerre [75|). 

In this paper we will describe only the Hearsay ef- 
fort. An IEEE symposium on speech recognition was 
held at CMU in April, 1974, at which most workers in 
the field were represented. The cont-ibuted and in- 
vited papers from that symposium (trman 174b|; 
Reddy |751) provide a comprehensive description of 
the state-of-the-art at that time. 

3.   The   Hearsay   Model   and   Implementation 
Philosophy 

This section describes a general model of speech 
understanding, the "Hearsay model", and some of 
the problems implied by that model. The following 
two sections provide overviews of the Hearsayl and 
Hearsayll implementations of that model. 

As one knowledge source (KS) makes enors and 
creates ambiguities, other KSs must be brought to 
bear to correct and clarify those actions. This KS 
cooperation should occur as soon as possible after 
the introduction of an error or ambiguity in order to 
limit its ramifications. The mechanism used for 
providing this high degree of cooperation is the 
hypothesize-and-test paradigm. In this paradigm, 
solution-finding is viewed as an iterative process. 
Two kinds of KS actions occur; a) the creation of an 
hypothesis, an "educated guess' about some aspect 
of the problem, and b) tests of the plausibility of the 
hypothesis. For both of these steps, the KS uses a 
priori knowledge about the problem, as well as the 
previously generated hypotSeses. This "iterative 
guess-building" terminates when a consistent sub- 
set of hypothesc; is generated whic i satisfies some 
specified requirements for an oveall solution. 

As a strategy for developing buch systems, one 
needs the ability to add and replace KSs and to 
explore different control strategies. Thus, such 
changes must be relatively jasy to accomplish; there 
must also be ways to evai iate the performance of 
the system in general and the roles of the various 
KSs and control strategies In particular. This ability 
to experiment conveniently with the system is crucial 
if the amount of knowledge is large and many people 
are needed to introduce and validate it. One means 
of helping to provide these flexibilities is to require 
that KSs be independent; i.e., the explicit interac- 
tions between KSs and their assumptions about 
each other must be minimal. 

Besides providing for the modification and 
evaluation of KSs, decomposition of the system into 
relativelv independent KSs also facilitates its Im- 
plementation on an asynchronous multi-processor 
machine. Such configurations seem increasingly at- 
tractive as cost-effective ways of obtaining large 
amounts of computing power. One problem that has 
limited the development and usage of such 
machines is the difficulty of decomposing large 
problems for such machines. Erman, Fennell, 
Lesser, and Reddy |73| describe this problem and 
outline some early solutions in the Hearsay context; 
Lesser |75| provides a survey of this subject. 

The basic view of development of a speech un- 
derstanding system includes a strong component of 
experimentation: one needs to build a system and 
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(1)Manner of Speech 
connected? isolated words? 

(2) Numberol Speakers 
one? small set? open population? 

(3) Dialect and Manner 
cooperative? casual? single gender? 
both genders? children? what dialect(s)? 

(4) Environmental Conditions 
quiet room? computer room? factory? public 
place? 

(5) Transducer 
high quality microphone? telephone? 

(6) Speaker Tuning 
tew sentences? paragraphs? I jll vocabulary? 

(7) Speaker Training 
natural adaptation? elabo aVi? 

(3) Vocabulary Size and Sei ction 
50? 200? 1.000? 10,000' 
preselected? selective rejection? tree? 

(9) Grammar 
fixed phrases? artificial language? free English? 
adaptable? 

|10) ras* 
highly constrained (e.g.. simple retrieval)? 
focussed (eg . numerical algorithms)?open? 

(11) User Mode/ 
nothing? current knowledge about the user? 

(12) Mode ol Interaction 
response only? ask for repetitions? 
explain language? discusä communications? 

(13) Error Ra/e 
none(<0 1%)? <10%?   >20%? 

(14) Response Time 
no hurry? few times real-time? immediate? 

(15) Processing Power 
1x10'instructions/sec? 10 mips? 100 mips? 
1000 mips? 

(16) Memory Size 
1 megabit? lOmb? lOOmb? 1000mb? 

(17) Sysfem Organization 
simple program? multiprocessing? parallel 
processing? unidirectional processinr? 
feedback? backtrack? planning? 

(18)Cosr 
$0.001/sec of speech? $0 01/s? $0.1/s? 
$1.0/s? 

(19) Operational Date 

ARPA Specifications for 1976 Systems 

The system should: 

(1) accept connected speech 

(2) from many 

(3) cooperative speakers of the general American 
dialect", 

(4) in a quiet room 

(5) over a good quality microphone 

(6) allowing slight tuning of the system per speaker. 

(7) but requiring only natural adaptation by the 
user. 

(8) permitting a slightly selected vocabularv of 
1,000 words, 

(9) with a highly artificial syntax. 

(10) and a task with a constrained and fairly simple 
semantics. 

(11) with a simple psychological model of the user. 

(12) providing graceful interaction. 

(13) tolerating less than 10% semantic error. 

(14) in a few limes real-time. 

(15) 

(16) 

(17) 

(18) 

(19) and have a prototype demonstrable in 1976. 

Figure 1:  Dimensions ol Speech Understanding Systems and ARPA Specifications for 1976. 
(After Newell et al. [71].) 
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then manipulate and study it. In order to provide an 
environment to accomplish this, a two-level ap- 
proach is taken: First, a basic set of facilities is 
provided, and, second, various configurations are 
built using these facilities. These facilities, which 
together are called the kernel, form a problem- 
dependent programming system for building and 
experimenting with particular configurations. The 
correct choice of kernel facilities and their im- 
plementation are crucial ingredients in developing a 
system. 

The Blackboard—Representation of Knowledge 

The requirement that KSs be independent implies 
that the functioning (and very existence) of each 
must not be necessary or crucial to the others. On 
the other hand, the KSs are required to cooperate in 
the iterative guess-building, using and correcting 
one another's guesses; this implies that there must 
be interaction among the processes. These two op- 
posing requirements have led to a design in which 
each KS interfaces to the others externally in a un- 
iform way that Is Identical across KSs and in which 
no knowledge source knows what or how many other 
KSs exist. The interface is implemented as a 
dynamic global data structure, called the 
blackboard3 The primary units in the blackboard 
are the guesses about particular aspects of the 
problem—the hypotheses. At any time, the 
blackboard holds the current state of the system; it 
contains all the guesses about the problem that 
exist. Subsets of hypotheses represent partial 
solutions to the entire problem; these may compete 
with the partial solutions represented by other 
(perhaps overlapping) subsets. 

Each KS may access information in the 
blackboard. Each may add information to the 
blackboard by creating (or deleting) hypotheses, by 
modifying existing hypotheses, and by establishing 
or modifying explicit structural relationships among 
hypotheses. The generation and modification of 
globally accessible hypotheses Is the exclusive 
means of communication among the diverse KSs. 
This mechanism of cooperation, which is an im- 
plementation of the hypothesize-and-test paradigm, 
allows a KS to contribute knowledge without being 
aware of which other KSs will use the information or 
which KS supplied the information that it used. It is in 
this  way  that  KSs  are   made   independent  and 

3 The term "blackboard" was used by Simon |66| in 
describing a mechanism in long-term memory as 
part of a theory of the psychology of problem- 
solving Simon |71| further develops this concept 
and elaborates its uses in the context of an ab- 
stract model for problem-solving. 

separable. The structural relationships form a 
network of the hypotheses and &, e used to represent 
the deductions and inferences which caused a KS to 
generate one hypothesis from others. The explicit 
retention in the blackboard of these dependency 
relationships is used to hold, among other things, 
competing hypotheses. 

Because of the central Importance of the 
blackboard. Its design (i.e., the design of the struc- 
ture of hypotheses and their relationships) is crucial. 
This is jsually called the problem of representation. 

Activation of Knowledge Sources—Focus of Atten- 
tion 

An action of a KS in the blackboard takes place in 
the context of some hypotheses already existing in 
the blackboard. For example, a KS which 
hypothesizes words may require a stressed vowel 
(as well as some surrounding sounds) as its context 
in order tr consider generating new word 
hypotheses. 

At any time there may be many different contexts 
which satisfy the needs of one or more KSs. The 
problem of choosing the order for activating KSs on 
contexts is generally called the problem of control 
flow. Because there may be many such possible ac- 
tivations and because each activation of a KS will, in 
general, create the potential for even more ac- 
tivations (e.g., the word hypothesizer, given a single 
new stressed vowel context, might hypothesize five 
new words as competing candidates—each of these 
might provide a new context for a syntactic parser), 
the number of possible activations may grow 

If very, very large amounts of processing power 
(and memory) were available, one could consider 
actually activating all KSs in all their possible con- 
texts. This would expand the blackboard with many 
(competing) hypotheses. Assuming this would even- 
tually terminate (i.e., at some point no new contexts 
are created), a decision process could then try to 
pick from all the competing hypotheses that subset 
which best describes the data—this would be the 
system's "solution" to the problem. Because of this 
combinatoric   explosion   of   possibilities   (caused 
mostly  by  the  problems of variability  and   in- 
completeness in the signal and errorfulness of the 
KSs),   this   complete   expansion   is   not  feasible. 
Therefore, the control strategy can pick only a small 
subset of the applicable KS activations; this can be 
thought of as exploring a limited portion of the 
(potential) fully-expanded blackboard. The problem 
of choosing a control strategy which can efficiently 
reach the correct set of hypotheses is called the 
attention-focusing   problem.   Its   solution   is   also 
critical for the success of a system. If portions of the 
correct solution are pruned, the solution will never 
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be found; if many incorrect portions are not pruned, 
the combinatoric explosion will use large amounts of 
computing resources (and may also force the 
system to give up before reaching the solution). 

The problems of representation of knowledge and 
searching a large solution space (focus of attention) 
are two of the central problems of artificial in- 
telligence. The speech understanding problem, with 
its requirements of high performance and the use of 
diverse and errorful KSs, provides a rich field for 
their study 

4. Overview of Hearsayl 
The blackboard of Hearsayl consists of partial 

sentence hypotheses, each of which is a sequence cf 
words with non-overlapping time locations In the 

20 utterance. Each is a partial sentence hypothesis 
because not all of the utterance need be described 
by the given sequence of words. In particular, gaps 
of one or more words of the utterance which have not 
yet been hypothesized (In the context of the par- 
ticular sentence hypothesis) are designated by 

■filler" words. The partial sentence hypotheses also 
contain confidence ratings for each word hypothesis 
and a composite rating for the overall sequence of 
words A sentence hypothesis is the focal point that 
is used to invoke a KS. The sentence hypothesis also 
contains the accumulation of all information that all 
KSs have contributed to that hypothesis. 

System activity goes through a number of cycles. 
In each cycle there is one partial sentence 
hypothesis on the blackboard which is the focal 
point of activity; this focal hypothesis forms the con- 
text for KS activity during the cycle. KSs are ac- 
tivated in a lockstep sequence consisting of three 
phrases per cycle: poll, hypothesize, and test. At 
each phase, all KSs are activated for that phase, and 
the next phase does not commence until all KSs 
have completed the current one. The poll phase in- 
volves determining which KSs have something to 
contribute to the focal sentence hypothesis; polling 
also determines how confident each KS is about its 
proposed contributions. The hypothesize phase 
consists of activating the KS showing the most con- 
fidence about its proposed contribution of informa- 
tion. This KS then hypothesizes a set of possible 
words (option words) for some (one) "filler" word in 
the speech utterance. The testing phase consists of 
each KS evaluating (verifying) the possible option 
words with respect to the given context After all KSs 
have completed their verifications, the option words 
which seem most likely, based on the combined 
ratings of all the KSs, are then ,3ed to construct new 
partial sentence hypotheses. The blackboard is then 
re-evaluated to find the most promising sentence 

hypothesis; this hypothesis then becomes the focal 
point for the next hypothesize-and-test cycle. 

A mediator module (the "recognition overlord") 
is responsible for maintaining the blackboard, cal- 
culating combined ratings from the ratings assigned 
to hypotheses by the individual KSs, anc deciding 
when to stop and accept a solution (or give up). The 
rating of the sentence hypotheses is the mechanism 
for attention focusing A best-first strategy is used— 
the currently highest rated hypothesis is the one 
used as the context for the next cycle. If an erroi is 
made, the rating of the incorrect hypothesis will, 
hopefully, eventually degrade and attention will be 
focused to the sentence hypothesis which now has 
the highest rating. 

Hearsayl contains three KSs: 

1) The acoustic-phonetic KS deals with the sounds 
of the words of the input language and how they 
relate to the speech signal. It obtains (from a pre- 
processing module called EAR) a representation 
of the speech signal as an errorful (or course!) 
sequence of segments, each segment being 
labeled with a phonetic-like label. The input lan- 
guage is specified to the KS as a lexicon of words 
in which each word is "spelled as a sequence of 
phonemic symbols (with some alternative spel- 
lings). The KS both hypothesizes words (from the 
segments) and evaluates the word hypotheses of 
other KSs. 
2) The syntax KS deals with the orderings of words 
in the utterance according to the specified gram- 
mar of the input language This grammar is speci- 
fied to the KS in BNF notation. Given some con- 
tiguous word hypotheses, the KS can evaluate 
them for consistency with the grammar and also 
can hypothesize additional words which are likely 
to occur contiguous to them. 
3) The semantics KS deals with the meaning of 
words and phrases of the input language, in the 
context of the task. Only one task semantics KS 
has been programmec (for "Voice-c'iess"—play- 
ing a game of chess verbally); its design is highly 
explicit to the one task. This KS hypothesizes and 
rates sentences and portuns of sentences based 
on the chess moves they represent; it uses both 
the legality of the move in the current chess boaro 
position as well as the "goodness" of the move (as 
determined by a chess-playing program which the 
KS consults). 

Hearsayl Performance 

The Hearsayl system first denonstrated live, 
connected-speech recognition in j.ine, 1972, at a 
workshop held at CMU. Since that time, about two 
person-years have been spent in studying it and in 
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Improving its performance. The system has been 
formally tested on a set of 144 connected speech 
utterances, containing 676 word tokens, spoken by 
five speakers, and consisting of four tasks (only one 
of which has had a semantics component 
programmed), with vocabularies ranging from 28 to 
76 woros. The system locates and correctly identifies 
about 93% of the words, using all three of its KSs 
Without the use of the semantics KS, the accuracy 
decreases to 70%. It decreases further to about 30% 
when neither syntax nor semantics are used. Hear- 
sayl operates in about 7 to 10 times real-time on a 
PDP10-KA10 (0.3 million instructions/sec. machine), 
using about 120K words (36-bits/word) for storage 
and prog-ams. 

Hearsay/ Design Limitations 
There are four major design decisions in the Hear- 

sayl implementation of knowledge representation 
and cooperation which make it difficult to directly ex- 
tend Hearsayl to mo: e ambitious performance goals 

The first, and most important, of these limiting 
decisions concerns the use of the hypothesize-and- 
test paradigm. As implemented in Hearsayl, ihe 
paradigm is exploited only at the word level. That is, 
the information content of any hypothesis in the 
blackboard is limited to a description at the word 
level. The addition of non-word level KSs (i.e , KSs 
cooperating via either sub-word levels, su ;h as 
syllables or phones, or via supra-word levels, such 
as phrases or conctpts) thus becomes cumbersome 
because this knowledge must somehow be related 
to hypothesizing and testing at the word level. 

Secondly. Hearsayl constrains the hypothesize- 
and-test paradigm to operate in a lockstep control 
sequence. The effect of this decision is to limit 
parallelism of execution (and thus reduce effec- 
tiveness on a multi-processor configuration); this is 
because the time required to complete a 
hypothesize-and-test cycle is the maximum time 
required by any single hypothesizer KS plus the 
maxirTu.n time required by any single verifier 
(testing) KS. Another disadvantage of this control 
scheme is that the time increases for the system to 
refocus attention, because there is no provision for 
any communication of partial results among KSs. 
Thus, for example, a rejection of a particular option 
word by a KS will not be noticed until ail the KSs 
have tested all the option words. 

A third weakness in the Hearsayl implementation 
concerns the structure of the blackboard: there is no 
provision for specifying relationships among alter- 
native sentence hypotheses. This absence has the 
effect of increasing the overall computation time and 
Increasing the time to refocus attention, because the 
information gaintd by working on one hypothesis 

cannot be shared by propagating it to other relevant 
hypotheses. 

A fourth limitirig design derision relates to how a 
global problem-solving strategy is implemented in 
Hearsayl: The policies for attention-focusing and 
control are embeoded in the recognit on overlord 
module In an ad hoc fashion—there is no coherent 
structure for the algorithms and they are "wired In" 
to the kernel of the system, rather than being 
available for easy manipulation and experimenta- 
tion. Thus It Is awkward to modify and evaluate 
policy algorithms. 

5. Overview of Hearsayll 
Hearsayll represents the step following Hearsayl 

in the sequence of Increasingly ambitious systems 
for speech understanding. The major changes to the 
system structure are a) In the representation of 
knowledge in the blackboard and b) in the manner of 
activation ana attention-for jr.ing of KSs. 

The Blackboard of Hearsayll 
The blackboard has been extended and 

generalized to allow a) the representation of all levels 
of information (acoustic, phonetic, syllabic, etc.) in 
addition to the lexical and sentence levels of Hear- 
sayl and b) the explicit representation of 
relationships among hypotheses. 

The blackboard is partitioned into distinct infor- 
mation levels, each level is used to hold a different 
(and  potentially  complete)  representation  of  the 
utterance. Associatrd with each level is a set of 
primitive elements appropriate for representing the 
problem at that level. (For example, the elements at 
the lexical level are the words of th^ vocabulary to be 
recognized, while the elements at the phonetic level 
are the phones of English.) Each hypothesis exists al 
a particular level and iT labeled as being a r irticular 
element of the set of primitive elements at that level 
The choice of levels (and the set of elements at each 
level)   Is  not  prespecified   by  the  kernel  of the 
system. To the kernel, all levels are uniform; so new 
ones can be added at any time. The configuration of 
levels that is cur ently in use is shown in Figure 2.4 

Parametric Le^c/—The parametric level holds the 
most basic representation of the utterance that the 
system  has;  it Is the only direct input to the 
machine about the acoustic signal   Several dif- 
ferent sets of parameters are being used in Hear- 
sayll    interchangeably;    1/3-oct?ve    filter-band 
energies measured every 10 msec LPC-derived 
vocal-tract parameters, and wide-band energies 
and zoto-crossing counts. 

21 

4 An elaboration of the following description can be 
found in Shockey and Erman |74). 

mm   



mm*!^^^*-* PHII.PIIUIII I  ..II 

■ 

!l 

U J 

22 

.; 

Segmental /.eve/—This level represents the ut- 
terance as labeled acoustic segments. Although 
the set of labels is phonetic-like, the level is not 
intended to be phonetic—the segmentation and 
labeling reflect acoustic manifestation and do 
rot, for example, attempt to compensate for the 
context of the segments or attempt to combine 
acoustically dissimilar segments into (phonetic) 
units. 
Phonetic Level—M this level, the utterance is 
represented by a phonetic description. This is a 
broad phonetic description in that the size 
(duration) of the units is on the order of the "size" 
of phonemes; It is a tine phonetic description 
to the extent that each element Is labeled with a 
fai'-ly detailed allophonic classification (e.g., 
"stressed, nasalized [1]"). 
Surface-Phonemic Level—This level, named by 
seemingly contradicting terms, represents the 
utterance by phoneme-like units, with the addition 
of modifiers, such as stress and boundary (word, 
morpheme, syllable) markings. 
Syllabic Level—The Miit of representation here is 
the syllable. 
Lexical Leve/—The unit of information at this level 
is the word. 
Phrasal Leve/—Phrases appear at this level. In 
fact, since a level may contain arbitrarily many 
"sub-levels" of elements (using "links", as 
described below), traditional kinds of syntactic 
trees are directly reprebented here. 

The decomposition of the blackboard into distinct 
levels of representation can also be thought of as an 
a priori framework of a plan for problem-solving. 
Each level is a generic stage in the plan. The goal at 

each level is to create and validate hypotheses at 
that level. For example, the goal at the phonetic level 
is a phonetic transcription of the utterance. The 
overall goal of the system is to create (using "links", 
as described below) the most plausible network of 
hypotheses that sufficiently covers the levels. 
■Plausible and sufficient' here refer to the judgment 
of the KSs; 'covering the levels' means a network 
that connects hypotheses which describe the speech 
signal (at the parametric level) to hypotheses which 
describe the semantic content of the utterance (at 
the phrasal level). 

The decomposition of the problem space into 
more levels than in Hearsayl parallels the desire to 
decompose the KSs more finely, yielding more KSs, 
each of which is simpler and smaller. The principal 
resultant change in the configuration of KSs is that 
the single acoustic-phonetic KS of Hearsayl is 
decomposed into about six KSs currently in Hear- 
sayll. For most KSs, the KS needs to deal with only 
one or two levels to apply its knowledge; it need not 
even be aware of the existence of other levels. Thus, 
each KS can be made as simple as its knowledge 
allows; its interface to the rest of the system is in un- 
its and concepts which are natural to it. Also, new 
levels can be added as new KSs are designed which 
need to use them, (For example, the syllabic level 
was a fairly late addition to the configuration—only 
two KSs needed to be modified when it was added.) 

Activation ot Knowledge Sources 
A KS is instantiated as a knowledge-source 

process whenever the blackboard exhibits 
characteristics which satisfy a "precondition" of the 
KS. A precondition of a KS is a description of some 
partial state of the blackboard which defines when 
and where the KS can contribute its knowledge by 
modifying the blackboard. A KS carries out these ac- 
tions with respect to a particular context, the context 
being some arbitrary subsei of the previously 
generated hypotheses in the blackboard. Thus, new 
hypotheses or modifications to existing hypotheses 
are constructed from the (static) knowledge of the 
KS and the educated guesses made at some 
previous time by another KSs. 

The modifications made by any given KS process 
are expected to trigger further KSs by creating new 
conditions in the blackboard to which those KSs, in 
turn, respond. The structure of a hypothesis is 
designed to allow the preconditions of most KSs to 
be sensitive to a single, simple change in some 
hypothesis (eg., the creation of a new hypothesis of 
a particular type, a change of a rating, or the creation 
of a structural link between particular kinds of 
hypotheses) Through this data-directed mterpreta- 
liun of the hypothesize-and-test paradigm, KSs can .._.J^ 
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—Levels— 

PHRASAL 

LEXICAL 

SYLLABIC 

SURFACE- 
PHONEMIC 

PHONETIC 

SEGMENTAL 

PARAMETRIC 

—Knowledge Sources— 

■S/ntactic-Semantic Parser 

■Syntactic-Semantic Hypothesizer 

•Phoneme Hypothesizer 

- Word Candidate Generator 

 Phone—Phoneme Synchronizer 

Phone Synthesizer 

Segment Combiner 

Segmenter-Classifier 

Figure   3:   The   Current   Knowledge   Sources   in  Hearsayll. 

also exhibit a high degree of asynchronous activity 
and potential parallelism.5 

As examples of KSs, Figure 3 shows many of the 
current set. The levels are indicated by horizontal 
lines in the figure and are labeled at the left. The KSs 
are indicated by arcs connecting levels; the starting 
point(s) of an arc indicates the level(s) of major "in- 
put" for the KS, and the end point indicates the "out- 
put" level where the KSs major actions occur In 
general, the action of most of these particular KSs is 
to create links between hypotheses on its input 
level(s) and: 1) existing hypotheses on its output 
level, if appropriate ones are already there or 2) 
hypotheses that it creates on its output level. 

5 One might think of this model for data-directed 
activation of KSs as a production system (Newell 
[73JJ which is executed asynchronously The pre- 
conditions correspond to the left-hand sides 
(conditions) of productions, and the KSs cor- 
respond to the right-hand sides (actions) of the 
productions. Conceptually, these left-hand sides 
are evaluated continuously. When a precondition 
is satisfied, an instantiation of the corresponding 
right-hand side of its production is created; this 
instantiation is executed at some arbitrary sub- 
sequent time (perhaps subject to instantiation 
scheduling constraints). 

The Segmenter-Classitier KS uses the parametric 
description of the speech signal to produce a 
labeled acoustic segmentation. (See Goldberg et 
al. [751 for a description of the algorithm used ) 
For any portion of the utterance, several possible 
alternative segmentations and labels may be 
produced. 

The Segment Combiner combines similar adja- 
cent ses'oents into larger units. It is triggered on 
each new hypothesis at the segmental level. 
The Phone Synthesizer uses labeled acoustic 
segments to generate elements at the phonetic 
level. This procedure is sometimes a fairly direct 
renaming of an hypothesis at the segmental level, 
perhaps using the context of adjacent segments. 
In other cases, phone synthesis requires the com- 
bining of several segments (e.g., the generation 
of ft] from a segment of silence followed by a seg- 
ment of aspiration) or the insertion of phones not 
indicated directly by the segmentation (e.g., hypoth- 
esizing the existence of an [I] if a vowel seems 
velarized and there is no (1) in the neighborhood). 
This KS is triggered whenever a new hypothesis is 
created at the segmental level. 

The Word Candidate Generator uses ohonetic 
information (primarily just at stressed locations 
and other areas of high phonetic reliability) to 
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generate word hypotheses. This is accomplished 
in a two-stage process, with a stop at the syllabic 
level, from which lexical retrieval is more effective. 
(In fact, there are really two separate KSs here- 
one that goes from phones to syllables, and one 
that goes from syllables to words.) 

The Phoneme Hypothesizer KS is activated when- 
ever a word hypothesis is created (at the lexical 
level) which is not yet supported by hypotheses at 
the surface-phonemic level. Its action is to create 
one or more sequences at the surface-phonemic 
level which represent alternative pronunciations 
of the word. (These pronunciations are pre- 
specified as entries m a dictionary.) It also creates 
the syllable hypotheses for the word, if they do not 
already exist. 

24 The Phone—Phoneme Synchronizer is triggered 
whenever an hypothesis is created at either the 
phonetic or the surface-phonemic level. This KS 
attempts to link up the new hypothesis with hypoth- 
eses at the other level. This linking may be 
many-to-one in either direction. 

The Syntactic-Semantic Parser uses the syntactic 
and semantic definition of the input language to 
build parses at the phrasal level. It is triggered 
by new word and phrasal hypotheses. This KS is 
not restricted to left-to-right parsing, but rather 
works piecemeal wherever hypotheses occur. 
One of its resporsibilities is to identify possible 
interpretations for the entire utterance. (See 
Hayes-Roth and Mostow |75|.) 
The Syntactic-Semantic Hypothesizer also uses 
the syntactic and semantic definition of the input 
language It hypothesizes phrasal and word 
hypotheses which are likely to occur adjacent 
to phrasal and word hypotheses already on the 
blackboard. This provides "top-down" activity in 
the system. 
The Rating Policy KS operates at all levels of the 
blackboard. Its function is to propagate evalua- 
tions of hypotheses. For each hypothesis, this KS 
calculates ratings which are based on a) intrinsic 
ratings placed on the hypothesis by other KSs and 
b) the hypothesis' relationships to other hypoth- 
eses. 

Hypotheses: Structure and Interrelationships 

As described above, the structure of hypotheses 
at each level in the blackboard is identical (i.e., the 
interpretation of hypotheses at different levels is im- 
posed by the KSs dealing with them.) The internal 
structure of an hypothesis consists of a fixed set of 
attributes (i.e., fields which are named); this set is the 
same tor hypotheses at all levels of representation in 

the blackboard. The values of the attributes are set 
and modified by the KSs. 

Besides holding ii.Iormation necessary to 
describe the hypothesis, attributes also serve as 
mechanisms for implementing the data-directed 
hypothesize-and-test paradigm. That is, a KS can 
specify particular attributes of hypotheses (usually at 
particular levels) which it wants to have monitored; 
whenever a change is made to one of these 
monitored attributes, the KS (through its precondi- 
tion) can be activated and notified of the nature of 
the change. 

Attributes can be grouped Into several classes: 
— The first class of attrlbuteb names the hypoth- 

esis: It contains the unique name of the hypoth- 
esis, the name of its level, and its label from the 
element set at that level. 

— One very important set of attributes specifies 
structural relationships with other hypotheses, 
as described below. 

— The next clas? of attributes is composed of 
parameters which rate the hypothesis. These 
include separate numerical ratings derived 
from a) a priori information about the hypoth- 
esis (usually placed on the hypothesis by its 
creator KS), and b) information derived from its 
relationships to other hypotheses. 

— Another set of attributes contains information 
about KS attention to the hypothesis. These in- 
clude suggestions (by KSs) of what type of 
funher processing should occur. These sug- 
gestions are goals. 

— For speech, time is a fundamental concept, so 
the Hearsayll system has a class oi attributes 
for describing the begin- and end-time and the 
duration of the event which the hypothesis re- 
presents. These attributes include ways of 
explicitly representing fuzzy notions of the 
limes. Besides its descriptive importance, the 
time attribute class is used to partition the 
blackbjard for efficient access; e.g., a KS can 
retrieve hypotheses which overlap a particular 
time region. Using both time and level, a two- 
dimensional partitioning occurs. 

— The capability for arbitrary KS-specHic attri- 
butes is also included. This can be used by a KS 
to hold arbitrary information about the hypoth- 
esis; in this way a KS need not hold state in- 
formation about the hypothesis internally across 
activations of the KS and allows, for example, 
the implementation of generator functions. If 
several KSs share knowledge of the name of 
one of these attributes, each of them can access 
and modify the attribute's value and thus com- 
municate just as if it were a "standard" attribute; 
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this can be used as an escape mechanism for 
explicit KS intercommunication. 

— A unique class of hypothesis attributes, called 
processing state attributes, contains succinct 
summaries and classifications of the values of 
the other attributes. For example, the values of 
the rating attributes are summarized and the 
hypothesis  is classified  as either "unrated", 
"neutral" (noncommittal), "verified", "guaran- 
teed" (strongly verified and unique), or "re- 
jected". Other processir.g state attributes sum- 
marize the structural ;elationchip<5 with other 
hypotheses   and   characterise,   for   oxample, 
whether the hypothesis has ocsn "sufti-iently 
and consistently" described as an abstraction 
of hypotheses at lower levels. The processing 
state attributes are especially useful  .or ef- 
ficiently triggering KSs; for example, a KS may 
specify  in   its  precondition  that  it  Is to  be 
activated whenever a hypothesis at a particular 
level becomes "verified". These attributes are 
also used for the goal-directed scheduling of 
KSs, as described in the next section. 

Given a specific hypothesis, a KS can examine the 
value of any of its attributes. A KS source also needs 
the ability to retrieve sets of hypotheses whose at- 
tributes satisfy conditions in which the KS is in- 
tfc.ested; e.g., a KS may want to find all hypotheses 
at the phonetic level which are vowels and which oc- 
cur  within  a  pa-licular time  range.  The  system 
provides an associative retrieval search mechanism 
for  accomplishing  this.  The search  condition  is 
specified by a matching prototype which is a partial 
specification of the components of a hypothesis. 

Structural relationships between hypotheses in 
the blackboard are represented through the use of 
links; links provide a means of specifying contextual 
abstractions about the relationships of hypotheses. 
A link is an element of the blackboard which 
associates two hypotheses as an ordered pair; one 
of the nodes is termed the upper hypothesis, and the 
other is called the lower hypothesis. The lower 
hypothesis is said to support the upper hypothesis 
while the upper hypothesis is called a use of the 
lower one; In general, the lower hypothasis is at the 
same or a lower level in the blackboard than the up- 
per hypothesis. 

There are several types of links, with the types 
describing various kinds of relationships. Consider 
this structure: 

H1 is the upper hypothesis and H2, H3, and H4 are 
the lower hypotheses of links LI, L2, and L3, respec- 
tively. If the links are all of type Ofl, the interpretation 
is that HI is either an H2 or an H3 or an H4. This is 
one way that alternative descriptions are possible. If 
the links in the figure are of type AND, the interpreta- 
tion is that all of the lower hypotheses are necessary 
to support the existence of H1. Variants of the AND- 
and OR-links are also used. An important one is the 
SEQUENCE link; it is similar to '.ne AND-link except 
that a contiguous time-ordering is implied on the set 
of lower hypotheses supporting the upper 
nypothesis—if the links in the figure are SEQUENCE 
links, then H4 follows H3 which follows H2. 

Besides showing structural relationships between 
hypotheses (e.g., that one hypothesis is composed 
of several other units), a link is a statement about the 
degree to which one hypothesis implies (i.e., "gives 
evidence for the existence of") another hvpothesis. 
The strength of the implication is held as attributes of 
the link. The sense of the Implication may be 
negative; that Is, a link may indicate that one 
hypothesis is evidence for the /nvalidity of another. 
This statement of implication may be bidlrectionai, 
the existence of the upper hypothesis may give 
credence to the existence of the lower hypothesis 
and vice versa. Finally, these relationships can be 
constructed In an iterative manner, links can be 
added between existing hypotheses by KSs as they 
discover new evidence for support. 

Just as an hypothesis can have more than one 
lower link, so it can have several upper links. Each of 
these represents a different use of the hypothesis, 
the uses may be competing or complementary. The 
ability to have multiple uses and supports of the 
same hypothesis, as opposed to creating duplicates 
for each competing use and abstraction, serves to 
keep the blackboard compact and thereby reduces 
the combinatoric explosion in the search space. 
Further, since all the Information about the 
hypothesis is localized, all uses and supports of the 
hypothesis automaticany and immediately share any 
new information added to the hypothesis by any 
KSs, As changes are made to a hypothesis, some of 
its uses and supports may conflict with each other; if 
these conflicts become too large, a KS can decide to 
resolve them by either eliminating some of the con- 
flicting attributes or by splitting the hypothesis Into 
two or more hypotheses, each of which is more inter- 
nally consistent. 

Goal-Directed Scheduling of Knowledge Sources 

As described earlier, the overall goal of the system 
is to create the most plausible network of 
hypotheses that sufficiently spans the levels. At any 
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instant of time, the blackboard may contain many in- 
complete networks, each of which is plausible as far 
as it goes. Some of these incomplete networks may 
also share subnetworks. Through KS activity, in- 
complete networks can be expanded (or contracted) 
and may be joined together (or fragmented). At any 
time, there may be many places in the blackboard 
which satisfy the (precondition) contexts for the ac- 
tivation of particular KSs. The task of goal-directed 
scheduling is that of deciding which of these sites 
should be allocated computing resources. 

Several of the attribute classes of a hypothesis 
can be helpful in making scheduling decisions. Par- 
ticularly valuable are the values of the attention at- 
tributes, which, as described earlier, are indicators 
telling how much compucation has been expended 
on the hypothesis and suggestions by KSs of how 

?6 desiable it is to devote further effort on the 
hypothesis (along with the kinds of processing that 
are desirable). The processing-state attributes and 
the ratings are also valuable for making scheduling 
decisions. 

The implementation of the goal-directed 
scheduling strategy is separated from the actions of 
individual KSs. That is, the decision of whether a KS 
can contribute in a particular context is local to the 
KS, while the assignment of that KS to one of the 
many contexts on which it can possibly operate is 
made more globally. The three aspects of a) 
decoupling of focusing strategy from KS activity, b) 
decoupling of the data environment (blackboard) 
from the control flow (KS activation), and c) the 
limited context in which a KS operates, together per- 
mit a quick refocusing of attention of KSs. The ability 
to refocus quickly is very important because the 
errorful nature of the KS activity leads to many in- 
complete and possibly contradictory hypothesis 
networks; thus, as soon as possible after a network 
no longer seems promising, the resources of the 
system should be employed elsewhere. 

Implementation and Current Status 

Hearsay II is implemented (as was Hea.sayl) on 
the PDP10 in SAIL (VanLehn |731), an extended 
Algol-60 A number of language mechanisms—par- 
ticularly the flrxible macro facility—are used to ex- 
tend the language to include the kernel of the Hear- 
sayll system; the result is a problem-oriented 
programming system for writing KSs and exploring 
various configurations. The major facilities provided 
include: 

— KS definition facilities, 
— blackboard   accessing   routines—botl-   direct 

and associative retrieval, 
— blackboard modification routines, 

mttm 

— a scheduler which activates KSs, 
— an overlay facility which extends the 256K-word 

address space so that large configurations can 
be used, 

— blackboard monitoring and tracing facilities, 
— general-purpose tools for experimenter inter- 

action with KSs, including breakpoints, execu- 
tion tracing, examination and modification of 
variables, and execution of functions of the KS, 

— tools for building high-level debugging and 
interactive features that are KS-specific, 

— a package for graphical output of blackboard 
structures, 

— a timing package for determining execution 
costs, and 

— a means of reading "cliche" files—stored 
sequences of commands used for configuring 
and controlling the system. 

The system that results is highly structured and has 
many conventions to ;hich the participating re- 
searchers must adhere. This is necessary in order 
to maintain a system that many people ere modifying 
and using concurrently. (There are currently about 
five people maintaining and modifying the kernel 
and approximately a dozen others experinenting 
with various KS configurations—a usable and up-to- 
date system must be operational at all times.) 

The kernel has been operational since spring, 
1974, and has gone through several major im- 
plementation iterations. All the KSs described above 
are operational; several of them represent second or 
third generation versions. Because tue overlay facili- 
ty has only just come up (summer, 1975), perfor- 
mance of the system as a whole is still unknown; the 
KSs have been developed using small con- 
figurations at a time. It is expected that preliminary 
over-all performance information will be available by 
the end of 1975, but development will continue over 
the foreseeable future—as long as progress con- 
tinues to be made. 

Although Hearsayll is running on a uni-processor, 
it is implemented using multiple processes. The 
asynchronous nature of KS activation raises a 
number of issues related to interaction on the 
blackboard. In particular, because the execution of a 
KS may be delayed for an arbitrary period following 
the blackboard modification which triggered the KS, 
it is possible that intervening actiono (of other i'Ss) 
may have invalidated its triggering conditions by tie 
time that it actually executes. Mechanisms have 
oeen developed to handle these problems. This 
aspect of the research is described in Lesser, 
Fennell, Erman. and Reddy |74], Fennell |751, and 
Fenncll and Lesser \75\. 

The Hearsayll system also contains facilities for 
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simulating Its execution on a multi-processor 
machine. Here ;he Issues of process Interference, 
resource locking (and process deadlock), and 
processor utilization are met. The papers referenced 
In the preceding paragraph also djscribe these 
aspects In detail. The simulations, using just a subset 
of the current KSs6, indicate that Hearsayll can effec- 
tively utilize as many as twelve processors, with even 
more likely as the other KSs are added and as the 
scheduler is improved to reduce conflicts. 

A preliminary implementation of the Hearsayll 
kernel has been carried out on C.mmp {CMU's multi- 
mini-processor). This has validated the multi- 
processing design of the system. This implementa- 
tion has been accomplished using the L* system 
(Newell and Robertson (751). Much of the further in- 
vestigation of Hearsayll will take place In this con- 
text. 
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6 Only a subset of five KSs was used for these 
simulations because a) the overhead of simulation 
is very high and b) when the simulations began 
many of the current KSs either did not exist or 
were too undeveloped to use. 
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Strict Lower and Upper Bounds 
on Iterative Computational Complexity 

Joseph F. Traub and Henryk Wozniakowski 

1. Introduction 
Complexity is a measure of cost. The relevant 

costs depend on the model under analysis. The 
costs may be taken as units of time (in parallel com- 
putation), number of comparisons (in sorting algor- 
ithms), size jf storage (in large linear systems), or 
number of arithmetics (in matrix multiplication). 
Of course a number of different costs may be rele- 
vant to a model. 

One can analyze the complexity of an algorithm, of 
a class of algorithms, or of a problem. The subject 
dealing with the complexity of an algorithm is usually 
called "Analysis of Algorithms." The subject dealing 
with the analysis of a class of algorithms or of a prob- 
lem is called computational complexity. 

Computational complexity comes in many flavors 
depending on the class of algorithms, the problem, 
ai d the costs. We limit ourselves here to mentioning 
three types of computational complexity. In each of 
these the costs are taken as the arithmetic opera- 
tions. Algebraic computational complexity deals 
with a problem and a class of algorithms which solve 
the problems at finite cost. Typically the problem 
belongs to a class of problems which is Indexed by 
an integer n. Let comp(Pn) be the complexity of 
solving the nth problem in the class. We are inter- 
ested in lower bounds L(Pn) and upper bounds 
U(Pn) on comp(Pn), 

(11) L(Pn) < comp(Pn)  <  U(Pn). 

The urper bounds are obtained by exhibiting an 
algorithm for solving Pn with complexity U(Pn). 
Lower  bounds are obtained  by theoretical  con- 

siderations and "non-trivial" lower bounds are dif- 
ficult to obtain. For example if Pn is the problem of 
multiplying two n by n matrices and if the cost of 
each arithmetic operation is taken as unity then 

0(n2)  < comp(Pn)   < 0(nd), ^ = Ig 7. 

(We use Ig to represent log2.) Borodi 1 and Munro 
|75| survey the state of knowledge in algebraic com- 
plexity. 

Exact solutions of "most" problems in science, 
engineering, and applied mathematics cannot be 
obtained with finite cost even if infinite-precision 
arithmetic is assumed. Indeed linear problems and 
evaluation of rational functions which can be solved 
at finite cost are the exception. Even when the 
problem can be solved rationally, we may choose to 
solve it by iteration. An example is the solution of 
large sparse linear systems. Typically, non-linear 
problems cannot be solved at finite cost. 

We call the branch of complex,ty theory that deals 
with non-finite cost problems analytic computational 
complexity. Often the algorithms are iterative and we 
then refer to iterative computational complexity. 
See Traub |75) for papers presented at a CMU Con- 
ference on Analytic Computational Complexity. 

In this paper we propose a new methodology for 
iterative computational complexity. Our aim is to 
create at least a partial synthesis between iterative 
complexity and other types of complexity. 

A basic quantity in iterative complexity has been 
the efficiency index of an algorithm or class of 
algorithms. In this paper we introduce a new 
quantity, the complexity index, which is the recip- 
rocal of the efficiency index. The complexity index 
is directly proportional to the complexity of an algo- 
rithm or class of algorithms. We show under what 
conditions the complexity index is a good measure 
of complexity. Our methodology is non-asymptotic 
in the number of iterations. Earlier analyses of com- 
plexity applied only as the number of iterations went 
to infinity and this is not of course realistic in 
practice. 

We summarize the contents of this paper. In Sec- 
tion 2 we analyze a sim olified model of the errors of 
an iterative process and show that complexity is the 
product of two factors, U e complexity index and the 
error coefficient function. Bounds on the error coef- 
ficient function are derived in the following Section 
and used to derive rigorous cond'tlops for com- 
paring tne complexity of two different algorithms. In 
Section 4 we show how the results of the simple 
model can be applied to a realistic model of one- 
point iteration. Lower and upper bounds on the com- 
plexity index for several important classes of itera- 
tions appear in Section 5. In a short concluding Sec- 
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tion we state the extensions and generalizations to 
be reported in future papers. 

2. Basic Concepts 
We analyze algorithms for the following problem. 

Let f be a non-linear real or complex scalar function 
with a simple zero a. Let x» be given and let an 
algorithm p generate a sequence of approximations 

1' ,xk to. We terminate the algorithm when xk is 
a sufficiently good approximation to <«. This will be 
made precise below. 

The appropriate setting for this investigation is to 
consider f as a non-linear operator on a Banach 
space of finite or infinite dimension. Since many of 
the basic ideas can be illustrated when f is a non- 
l;near scalar function we shall assume throughout 
this paper that this holds. We must remark however 
that some of the most interesting and important 
results deal with the dependence of complexity on 
problem dimension and we do not deal with that 
dependence here. 

Let ej > 0 represent some measure of the error 
of Xj. For example, e| might represent 

I xi-" the absolute error 

x,-o I 
_! I, the relative error mi 

f(X|)|, the residual. 

Assume that the », satisfy the error equation 

(2.1) ej - A^, p>1,i = 1.2 k. 

We call p the non-asymptotic order and A| the error 
coefficient. We require 0 < L < A, < U < ^ for all 
values of eg including the possibility that eg be arbi- 
trarily small. Then p is unique. Many iterations satisfy 
the model given by (2.1). In Section 6 we mention 
extensions to this model. 

EXAMPLE 2.1. Let the algorithm be Newton-Raph- 
son iteration and let e. denote the absolute error. 
Then 

p = 2, A, = 
n*j) 
2f(x|) 

where n is in the interval spanned by « and Xj. 

We simplify the model of (? t) and show what kind 
of results may then be obtained. In Section 4 we 
return to the analysis of (2.1). Let 

(2.2) e-^ = AeP^   p>1.i = 1, 

We call this the constant error coefficient model 
while (2.1) Is the variable error coefficient model. 

We consider first the casdp > 1. It is easy to verify 
that 

(2.3) ej = e0(J-)pl-1, I - 0 k, 

where 

(2.4) wp= — 

Ap-1 

< 1, and let k be the smallest index 
'e-y Define <  < >' so that 

Choose«',0 < 
for which e.   < 

k 

(2.5) ek = (e0. 

/ is a basic parameter which measures the increase 
in precision to be obtained in the iteration. We 
choose < to avoid ceiling and flooi functions later in 
this paper. It is convenient to assume« < 2'2 (we use 
this In Theorem 3.1) but this is non-restrictive in 
practice. 

From (2.3), (2.5), 

WP 
(2.6) 

and it follows tha 

g'wp 
(2.7) k 

when; 

ig P 

(2.8)g(wp) -|Q(1 + j^-.   t = lg(1/,). 

This is independent of the logarithm base but it is 
convenient to take all logarithms to base 2. Then if e^ 
is the relative error, t measures the number of bits to 
be gained in the iteration. 

We denote the complexity of iteration i by a. In 
this paper we assume Cj = c Is independent of i. We 
defer a discussion of the estimation of c u til Section 
5. The important case of variable cost «HI be con- 
sidered in a future paper. We define th. complexity 
of the algorithm by 

(2.9) comp = ck. 

Then from (2.7), (2.8), 

(2.10) comp = zg(wp) 

where we define 
c 

ig"p 
(2.11) z 

as the complexity index. 
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We call g the error coefficient function. Equation 
(2.10) will be fundamental in our further analysis. 

We have decomposed complexity into the product 
of two factors. The complexity index, which is in- 
dependent of both the error coefficient and the start- 
ing error, is relatively easy to compute for any given 
algorithm. (However, lowe' bounds on the com- 
plexity index for classes o« algorithms require upper 
bounds on order which is a difficult problem only 
solved for special cases (Kung and Traub [73], 
Meersman |75l and Wozniakowski I75bl).) We shall 
show, In a sense to be made precise in the next sec- 
tion, that the error coefficient is insensitive for a 
large portion of Its domain and that complexity is 
determined primarily by the complexity index. We 
shall also show there are cases where complexity 
is  determined   primarily  by the error  coefficient 

function. 
The complexity index is the reciprocal of a quan- 

tity called the efficiency index which has played an 
important role in iterative complexity. See, for 
example, Traub |64, Appendix C], Traub [72], 
Paterson [72] and Kung |73al. Since complexity 
varies directly with the complexity Index we feel that 
the complexity index rather than the efficiency index, 

should be basic. 
We have been considering the case p > 1. For 

completeness we write down the case p = 1 Then 
». ■ A«, *, I • 1, 2,...,k and ek= Ake0= ieQ. Hence 

(2.12) k 
t 

lg(1/A) 
comp 

We shall not pursue the case p = 1 further and shall 
assume for the remainder of this paper that p > 1, 
unless we state otherwise. 

3. Bounds on the Error Coefficient Function 
We turn to an analysis o' the error coefficient 

function which is one of the two factors which deter- 
mines the complexity in (2.10). To see which values 
of Wp are of interest, note that from (2.3), e^ < eQ if* 

wr 1 From the definition of k it is clear thai k > 1 

and hence from (2.7), (2.8), 

w     < (1/()1/(p"1). Hence we assume 

1/(P-1) ,t/(p-1) 
(3.1) 1   <  wp  < (1/.) 

Generally w   depends on p. For many classes of 

iterations 

(3.2) aP"1 <  A  < bp'1. 

Then 

1/(ae0)>wp> 1/(be0) 

and the bounds on Wp are independent of p. If (3.2) 
holds for a class of iterations 0 we shall say the class is 
normal. An example of a normal class of iterations 
may be found in Wozniakowski 175bl. To simplify 
notation we shall henceforth write wp as w whether 
or not we are dealing with a normal class. 

Now, g(w) is a monotonically decreasing function 

and 

lim    g(w) = m,   lim   g(w) = 0. 

w •1+ w •00 

To study the size of g(w) we somewhat arbitrarily 
divide the range of w, given by (3.1), into three sub- 

ranges. The bounds are not the sharpest we can 

obtain, 

T < w < 2. Since g(w) = ig(t + lg w) - igig w and 
0 < Ig w  < 1, we conclude 

ig t-'glg w < g(w)  < ig(i+t)-igig w. 

2 < w < f. Since g(w)., g(2) = lg(1+t), g(t) > Ig • 

-Iglg t, we conclude 

Ig t-lglg t < g(w) < lg(i+t). 

f < ^  < 2t/(P-l), 2t/(p-1) >  t. Then 

ig p < g(w) < 1 + Ij t-lglg I. 

To get some feel for the length of these sub- 
ranges, observe that if e, represents relative error 
then in single-precision computation on a "typical" 
digital computer we might take    . = 2"32.    Then 

,t/(p-1)_ ,32 
t = 32 and if p = 2, then   2 '- 2    . 

From the bounds on the error coefficient function 
and (2.10) we immediately obtain the following 

bounds on complexity. 

THEOREM 3.1. If 1 <   w  <   2, 

(3.3) z(lg t-lglg w) <  comp < z(lg(1+t)-lglg w). 

If 2  < w < t, 

(3.4) z(lg t-lglg t) < comp < zlg(1 + t). 

If t<w s^P"1), (with2,/(P-1'>t), 

(3.5) c < comp < z(1 + Ig t - Iglg t). 

We discuss some of the implications of this 
Theorem. As w approaches unity, then for » fixed, 
comp •" - zlglg w. In this case the effect of the error 
coefficient A and the initial error e0 cannot be 

33 
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Complexity depends more on the nearness of w 
to unity than of» to zero. To see this, observe that if 
2 < w < t, comp - zlglg(1/<) = comp1 while if 1  < 

w < 2, pomp - z(,lglg(l/() - Iglg w) ■ comp g- Let 
, = 2-2', w-1=2-2'ln2. Then comp1 = jz, compg 
-. z(j + 2i). 

Note that for any p > 1 the complexity of an itera- 
tion can be greater than if p = 1 (see (2.12)) provided 
w is sufficiently close to unity. 

For any w > 2, complexity is 'xiunded from above 
by zlg(1 +t) and is therefore independent of the error 
coefficient A and the imtial error e0 For w > 2, com- 
plexity is insensitive tc w and we need only crude 
bounds on w. 

For 2 < w < t, 

1-lglgt/lgt  < comp/(zlg t) < 1+lg(1+f1)/lg t 

Therefore 

1+0(1) < comp/(zlg t) < 1+o(1) 
and we conclude that on 'he interval [2,1] we have, 
for t large, very tight hounds on comp with 

(3.6) comp - zlglg 1/«. 

This should be compared with the case p = 1 (see 
(2.12)) where comp varies as Ig 1/«. 

We have taken w = 2 as one of our endpoints for 
convenience but this is of course arbitrary. Any value 
of w sufficiently far from unity will do. If w = 2 
then g(w) = lg(1 + <'t). Then the effect of the nearness 
of w to unity and of < to zero are equal if c = t. that is 
If w = 21/t. For this choice of w, comp = zlg(1+t ) 
- 2zlg t = 2zlglg 1/<. 

We have chosen the sub-ranges of w so that the 
endpoints are simple. We could also cnoose values 
of w that make the complexity formula simple, if 

w = 2t/'t "1*, u  > 1, then comp 
while if 

uzlglg(1/.). 

w = 2 ,1/(1 ^/i 

'*),¥ > 1, then comp = (i/1.)zlglg(1/<) 

We now consider the methodology for comparing 
two iterations which are governed by the constant 
error coefficient model (2.2) and decrease the final error 
by the same «. Let w^ z^ compi, i = 1,2 denote the 
parameters of the two iterations. Then 

comp1     ,z1vg(w1) 

compg    Vz^/g^) 

Clearly if z1  <   Z2 and w1  >   wg then comp1  < 
compj We obtain bounds on comp., /compp for sub- 
ranges of the w. Using the bounds on complexity 
from the previous theorem we obtain 

THEOREM 3.2. If 1   < w.,, w2  <  2, then 

(3.7) 
,1.,^   lgt-lglgw1   ^  comp1    ,z1    igli+t^l.-'qw^ 

AzÜVig^g^wp    > 
/ziw igt-'gigwi v 

lz9Aig(i+t)-igigV 2/   comp2 

If 1 <  w2 <  2  < w    < t, then 

(38) 
c1 

Ig t-lglg t    v    comp1   ,z1v ,   lg(1+f) 

\T2A lg(1 +t)-lglg w2P comp2
<Vz2Alg t-lglg w^ 

If 2 w^ w«  ^  t, then 

/z wig t-lglg K      comp1     (z^,   lg(1+t). 

We discuss some of the implications of this 
theorem. As t •<», compi/comp2 •z1/z2 for r..->y 
fixed values of w^ w2. The ratio z1/z2 'las been the 
way that iterations have been compared (see Traub 
[64, Appendix C] where efficiency indices are used). 
Theorem 3.2 shows that z^Zg can be a very poor 
measure of comp1/comp2; see for example (3.7). 

Finally we observe that inequalities (3.7)-(3.9) can 
be rewritten to show when comp-| < comp2 or 
comp2 < comp^ For example, if 2 < w.,, w2 5  t, 

(3.10) z. < zf'g t"lgl9 ^V then comp. < comp2. 
1      2V lg(1+t) / 1 

4. The Variable Error Coefficient Model 

We turn to the variable error coefficient model, 

A complete analysis of this model is beyond the 
scope of this paper. Here we confine ourselves to 
the very simple assumption 

(4.2) A.   <   A.  < A... i = 1 k. 

let 

w. 

.P-1 

eo 

1 
&P-1 
AU   eo 

■- 
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Then 

(4.3) zg(wL)  < comp < zglwy) 

Note that w,. < wL and therefore (4.3) is compatible 
with g being a monotonically decreasing function. 
We can now draw conclusions from the constant 
coefficient model with A replaced by AL or Ay. 

EXAMPLE 4.1. Let a be a real zero and let J denote 
an interval centered at <(. Assume f does not vanish 
in J and let x0t J and such that 

eo =lxo- 

min |f'(x)| 
x6J 
max|f"(x)| 
xCJ 

2A, 

Then by Example 2.1, for Newton-Raphson iteration, 
w U 2 and a priori 

(4.4) comp < c lg(1+t) ■ 

The value of c is discussed in Section 5. Note that a 
sufficient condition for convergence is 

e0  < I/Ay 

but with only this condition, complexity could be 
extremely large. 

EXAMPLE 4.2. We seek to calculcts a1 , that 's 
sol/ef(x) = x2-a. Let a = 2mX2, m even, 1/2 < X2 < 
2. Then a1/2= 2m/2A, (1/2)1/2 < X < 21/2. We use 
Newton-Raphson iteration, 

xi+i= Hxi+Jir) 
Then A, = 1/(2xj.1). If x0 >  X, then 

'L 
Hence 

AL =1/(2x0)< A, < 1/(2X) = Ay, i " 1, 

1-X/x, WU = 

2X/x0 

1-X/xr 

Let <0 = 2 . Then Wy > 2 and comp < c lg(1 +t). 
Tc derive a lower bound on complexity one must 
make an assumption about the closest machine- 
representable number to 21/2. We do not pursue 
that here. 

5. Bounds on the Complexity Index 

We have shown that provided w is not too close 
to unity, then for fixed (, complexity depends only 
on the complexity index z. In this section we turn our 
attention to the complexity index. 

Recall that z = c/lg p. We begin our anal 'sis of z 
by considering the cost per step, c. We di£.,::iguish 
between two kinds of problems. 

We say a problem is explicit if the formula for f 
is given explicitly. For example, the calculation of a 
by solving f = x2-a is an explicit problem. The 
complexity of explicit problems has been studied by 
Paterson [72] and Kung [73a], [73D]. (Paterson and 
Kung take the efficiency index as be- c.) We do not 
treat explicit problems here. 

We say a problem is implicit if all we know about f 
are certain functionals of f. Classically the func- 
tionals are f and its derivatives evaluated at certain 
points. These functionals may be thought of as black 
boxes which deliver an output for any input. 
Kacewicz [75] has shown that integral functionals are 
of interest. The question of what functionals may be 
used in the solution of a problem are beyond the 
scope of this paper. We confine ourselves to implicit 
problems for the remainder of this paper. 

We assume the same set of functionals is used at 
each step of the iteration. The set of functionals 
used by an iteration algorithm 0 is called the in- 
formation set N. Wozniakowski [75a] gives many 
examples of N. Let the information complexity u = 
u(f,A/)be the cost of evaluating functionals in the 
information set N and let the combinatory complexity 
d ■ di0) be the cost of combining functionals (see 
Kung and Traub [74b]). We assume that each 
arithmetic operation costs unity and denote the 
number of operations for one evaluation of I«' by 
c(f())). The following simple example may serve to 
illustrate the definition. 

EXAMPLE 5.1. Let 0 be Newton-Raphson iteration 

Ki + 1 0(X|) f(x,)/f(Xi), i ,k-1. Then 

N = [f^M'tXi)!, u(f,N)= c(f) + c(f'), d(0) = 2. 

Up to this point we have illustrated the concepts 
with algorithms. Computational complexity deals 
with classes of algorithms and we turn to our central 
concern, lower and upper bounds on classes of 
algorithms. As usual the difficult problem is obtain- 
ing lower bounds. Good lower bounds may be 
obtained from good lower bounds on cost and good 
upper bounds on order. The problem of maximal 
order is a difficult one about which a great deal has 
been recently learned (Meersman [75], Woinia- 
kowski [75al, [75b]). Part of the mathematical dif- 
ficulty of the subject deals with the problem of 
maximal order. Note however that maximal order 
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does not necessarily minimize complexity; we deal 
with this in a future paper. Upper jounds are 
obtained from algorithms. An interesting question 
here is a good upper bound on the oombinatory 
complexity of a class of alQorithms. Brent and Kung 
[75] have obtained a surprising new upper bound, 
0(r Ig n), on the combinatory complexity on a family 
of nth order one-point iterations based on inverse 
interpolation. 

It is convenient to index our algorithms by n, »he 
number of elements in the information set N. We 
illustrate the issues with two examples. 

EXAMPLE 5.2. Let 0n denote any one-point itera- 
tion with N = If^M'tXi) f(n-1) (Xi)|. Let cf = m|n 

c(f(')) Then u(f,/V) ^ "Cf. For simplicity we use the 
linear lower bound d(0n) > n-1. (No non-linear 
lower bound is known.) A sharp upper bound on the 
order of one-point iteration (Traub [64], Kung and 
Traub I74al) is p < n. Hence 

nCf+n-1 
2(</.n,f) -- 

z^n.') *   -iifT 

Ig n 

ncf+n-1       3CJ-I-2 

ig3 

provided only that c, >  4 (Kung and Traub 174bl). 
Hence for any one-point iteration with wL <  t 

(5.1) comp  > 
3c(+2 

Ig 3 
(Ig t - Iglg t). 

On the other hand thero jxists a one-point iteration 
which uses f, f, f" and such that p = 3. Hence if 

vu >   2, 

(5.2) comp  < 
c(f)+c(f)+c(f) 

igd+t). 
Ig 3 

For problems such that c(f) m c(f') ^ c(f") * cf the 
lower and upper bounds of (5.1) and (5.2) are close 
together. 

EXAMPLE 5.3. Kung and Traub [74a) show there 
exists an iteration \in for which the information set r n n H 

N consists of n evaluation of f with p(^n) = 2"'' and 

d^n) = (3/2)n2 + (3/2)n - 7. Hence 
3   2     1 

nc(f)+ 2n  +f n-7 

n^l 
The complexity index is minimized (Kung and Traub 
(■/•4b]) at n* = round[1 + {Ä{c(i)-A))y2] = 0(c(f))1/2 

and 3 

zUn) 

o 
(c(f))1 

It would only be reasonable to use this high an 
order iteration for very small (. Assume t » p* 
_ 2" -1 

Observe that z(\;n) is a very 'flat" function of n. 
Thus z(^3) = (3/2)c(f) +11/2 and comparing this 
with z(i/n.) shows we can gain only another(l/2)c(f). 

Let 'I' denote the class of all multipoint iterations 
for which Wy >   2. Then 

comp(.|>)  <  c(f)lg(1+t)/(l +  ^ryA 
V       (c(f))1/2/ 

We can obtain a lower bound on the complexity of 
the class of multipoint iterations by using an upper 
bound on the maximal order of any multipoint itera- 
tion and a lower bouno on the combinatorial com- 
plexity. Kung and Traub [74a) conjecture that any 
iteration without memory which uses n pieces of 
information per step has order p < 2n . This con- 
jecture seems difficult to prove in general (Woznia- 
kowski [75b]) but has been established for many 
important cases (Kung and Traub [73], Meersman 

]75], and Wozniakowski [75b]). 

6. Summary and Extensions to the Model 

We have constructed a non-asymptotic theory of 
iterative computational complexity with strict lower 
and upper bounds. In order to make the complexity 
ideas as accessible as possible we have limited our- 
selves to scalar non-linear problems. Tne natural 
setting for this work is in a Banach space of finite or 
infinite dimension and we i.iall do our analysis in 
this setting in a future paper. We have focused on 

Aef More realistic the simplified  model ej  -  "«j.i 
models include some of the following features; 

l.e = AeP 

■      Miei-1 
structure of A: 

under various assumptions on the 

Jm 2. e, = A|e: 1.     ...e^'' .    This is the appropriate 
model for iterations with memory. 

3. Variable cost per iteration, Cj. 

4. Include round-off error. Then e| will not converge 
to zero. 

We plan to analyze these more realistic models in the 
future. We also intend to investigate additional basic 
properties of complexity. Our various results will be 
used to analyze the complexity of important prob- 
lems in science and engineering. 
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The CMU RT-CAD System: An Innovative 
Approach to Computer Aided Design 

Mario R. Barbacci and Daniel P. Siewiorek 

I. Introduction and Motivation 
As technology has evolved the primitive com- 

ponents available to a digital system designer have 
changed dramatically. Twenty-five yeais ago the 
designer constructed his systems out of circuit level 
components such as resistors and diodes. Sub- 
sequently switching circuit level components, as 
represented by gates and flip-flops, became avail- 
able as small scale integration (SSI) components. 
With the Introduction of medium scale integration 
(MSI) register transfer level components appeared: 
arithmetic and logic units registers, shift registe ;., 
etc. The advent of large scale integration 'LSI) has 
made memories and even processors primtive com- 
ponents from which systems are desijned. Two 
trends can be observed from this technological 
evolution: 1.) primitive comporc-.'.o continue to 
increase in complexity and 2.) the rate of introduc- 
tion of new components continues to increase. 

In response to the first trend, designers have been 
limiting their excursions into switching circuit level 
design to only small portions of the system (e.g.. bus 
controllers, etc.). In some register transfer level 
module sets (Bell |72|, Clark |67|) these excursions 
have been completely eliminated. 

Because of the second trend, rapid technology 
evolution, there is a need to shorten the delay time 
between the Introduction of a technology and its 
effoctlve use in new computing systems. Also, as 
technology changes so does its cost. The design 
process must, theiefore, be accelerated if the poten- 
tiality of the Improving technology is to be realized. 

This peper describes a set of design programs 
developed at Carnegie-Mellon. The ultimate goal is 
to minimise the effect of changing technology by 
building a Computer Aided Design System that 
implements a technology-relative design process. 

II. Overview of the Automatic Design Process 
Given the complexity of a digital system, design- 

ers have sought to develop automatic means to 
reduce the cost and time of the design process. The 
objective was to relieve engineers of repetitive, time 
consuming tasks such as: 
(1)The generation of detailed design information 

(gate and chip types, etc.) 
(2) The control of changes in the design documents 
(3) The checking of the system for electrical, logical, 

and physical compatibility (fan-out limits, etc.) 
(4) The generation  of detailed  manufacturing  in- 

formation (chip placement, board layout, etc.) 
This early view of design automation limited itself 

to filling the gap between the low-level design 
specifications and ihe manufacturing data Behav- 
ioral specifications were in the form of Boolean 
equations and the design programs translated them 
into their equivalent logic diagrams and wiring listf. 
Mosst of the synthesis algorithms at this level dealt 
with the problem of reducing or simplifying the 
Boolean equations (Breuer |72|). 

Subsequent efforts were directed towards a sys- 
tem capable of accepting a higher level of behavioral 
description, although still oriented towards r gate 
level implementation (Darringer 169), Friedman 
169|). 

Current design automation effort is shifting from 
implementation in terms of the switching circuit 
level to implementation In terms of the Register 
Transfer level. Register Transfer level simulators 
have preceded this trend by several years (Dar- 
ringer |69|. Mesztenyi |68|, Parnas |67|, Rozenberg 
|711). The closeness of RT level descriptions to con- 
ventional programming accounts for this early 
success. Register Transfer level descri^'ions are 
easy to transliterate into executable programs in a 
conventional programming language (e.g., FOR- 
TRAN, Algol, etc.), thus providing inexpensive and 
fast simulation (although in many cases RT lan- 
guages are compiled directly). Register Transfer 
level synthesis algorithms have been less success- 
ful. A few programs have been develoj 9d that take 
an RT level description as input and compile It 
directly into a known set of RT level hardware 
modules (Chartran, AHPL). Figure 1 depicts a typical 
RT design automation system. The RT level descrip- 
tion serves as input to several software modules. 
Syntax checking insures a well formed description. 
Static checking attempts to locate logical design 
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errors (such as deadlocks, redundancy, etc.)- The 
simulator is used to debug the design dynamically. 
Finally, the description is cast into hardware via the 
wiring list generator. 

The essential feature lacking in conventional RT 
Design Automation (DA) systems, and DA systems in 
general, is the exploitation of alternative implemen- 
tations derived from the initial behavioral specifica- 
tion. Consider the augmented DA system depicted 
in Figure 2. The inputs are the RT level description 
and designer given constraints. The output is the 
specification/simulation of the hare «are that at- 
tempts to optimize the system according to the 
design constraints. By allowing the description of 
various module sets the system can perform design 
relative to technology thus speeding up the incor- 
poration of new technology into the design process. 
Also, such a system will allow experimentation with 
multiple module sets, each tailored to a specific 
class of problems. The system would also facilitate 
the design of the module sets themselves. Since the 
system operates on a symbolic description of the 
modules, a non-existing module set can be fed to the 
system for experimentation purposes. Such experi- 
ments will point out the advantages and disadvan- 
tages of the proposed module set. 

At this point it would be instructive to describe 
the order in which the DA programs are typically 
used in the design process. This will serve to place 
subsequent discussions in perspective. Given a 
computational task, there are usually several algori- 
thms that can be employed. The algorithm that is 
selected by the designer is described to the design 
automation system (Figure 3) and placed in a data 
base. Subsequently all design automation pre ams 
will use this data base. A high level simulator can 
execute from the data base to facilitate user de- 
bugging of the initial description. 

Next some evaluation and reshaping of the 
algorithm is undertaken. Analysis tools have been 
developed to check the algorithm for well-formness 
(e.g., deadlock conditions, etc.) (Huen [75]). Pertur- 
bations of the basic algorithm can also be attempted 
such as: series-to-parallel transformations, replac- 
ing loop counters by wired-in control, and using 
table look-up in lieu of computing the value of func- 
tions. Thus attempts are made to first bind those 
design decisions with global implications. While 
these perturbations can be performed independent 
of the physical design, the evaluation of their 
ultimate desirability may depend upon the module 
set used to implemeni (he final, physical design. 

Finally, the actual physical design is performed 
in terms of RT level modules. The module set can 
be selected from a library of module sets or a user 
described set. At this level several forms of alloca- 

tion variations are encountered: 
• Registers. Determine the allocation of the abstract 

variables to registers and memory. 
• Data operators. Determine the number of opera- 

tors of each type in the design. 
• Control. Select control schema from among unary 

state encoding, binary state encoding, micro- 
program control, etc. 

• Bus-Link clustering. Many RT designs start with a 
set of registers tor variables and interconnect 
them with links to operators (add, shift, multiply, 
etc.). After a point the interconnections between 
certain registers and operators become numerous 
enough to warrant replacement by a bus. 

• Operator interconnection. The interconnection of 
operators has been shown to have a significant 
effect on the test generation effort required for the 
physical implementation (Stephenson (74]). 
The signal level design verifier can be used to 

analyze the intermodule signal relationships in pro- 
posed module sets. Even well-established module 
sets have exhibited deadlock behavior in what 
appear to be straightforward interconnections (Huen 
1751). 

A first version of the above system has been im 
plemented at Carnegie Mellon and is shown in 
Figure 4. The behavioral specifications of the system 
to be designed are provided in terms of the ISP 
language (Bell 171], Barbacci [75]). The compiler 
produces an "object"1 program which is then loaded 
into the data base and manipulated by different 
design programs. 

The next five sections will treat the applications 
programs in detail. Section III described EXPL, a 
module independent design program that examines 
series-parallel variations in the original algorithm. 
The following section presents the physical alloca- 
tors for two existing RT module sets—RTMs and 
Macromodules. Section V discusses the heuristics 
used by EXPL to explore the design space. Sample 

1 The compiler produces an object" program in 
terms of a set of Register Transfer level primitive 
operations. This program appears m the form of an 
executable BLISS (Wulf [71]) program where each 
Register Transfer operation is represented by a call 
to a user-provided subroutine. By changing the set 
of subroutines, the compiler can support many 
diverse activities. The creation of the data base is, in 
fact, done by a specific set of subroutines. The 
compiler and the ./'.nguage are therefore indepen- 
dent of the applications. The uniform compiler output 
and the flexibility of the subroutine-call mechanism 
has simplified the interfacing to other application 
programs. 
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design spaces, examples of the application of the 
heuristics, and some observations are presented 
in section VI. Section VII concludes the discussion 
of the existing system by briefly outlining the remain- 
ing applications programs. 

III. Automatic Design Space Exploration 
EXPL (Barbacci (73]) takes as input the object 

code produced by the ISP compiler, together with a 
set of user given speed/cost constraints/tradeoffs. 
The compiler output is used to generate a graph 
representation of the behavior of the system. 
Subsequently, various series-to-parallel and 
parallel-to-series transforms on the graph are 
attempted to establish a new design. Several alter- 
native designs are generated and passed to module 
set evaluators which complete and evaluate the 

42 design in terms of its hardware module set. Using 
this evaluation and a set of heuristics, EXPL decides 
which solutions should be kept to generate other 
solutions by yet another application of the graph 
transformations. 

Figure 5 is the ISP description of an 8-bit mul- 
tiplier that will be used as a running example to il- 
lustrate various aspects of EXPL. The algorithm is a 
variant of the shift-and-add algorithm. The multiplier 
is in the P register and the multiplicand is in the MPD 
register and is assumed to occupy the leftmost 8 bits 
of the register. The product will be in the P register. 
The partial products are formed in the left hand side 
of the P register and shifted to their appropriated 
position in the final product. A counter, C, is used to 
keep track of the number of times the basic mul- 
tiplication step has been performed. Additional 
details about the algorithm can be found in (Bell 
172]). 

The description begins with the specification of 
the label for the program (MULTIPLIER). Labels are 
used in ISP to identify activities so that they can be 
branched to, or used as subroutines. 

MULTIPLIERS 
(DECLARE MPD < 15:0> ; P < 15:0> ; C < 15x v 

ERALCED 
C. 8 NEXT 
LI:- ( 
(DECODE P<0>   = > P. P     SROI; 

P. (P + MPD)     SRO 1) 
NEXT C  C-1NEXT 
(IF C NEQ 0 =  > LI) 

Figure 5. 
The ISP Description of the Multiplier. 

The program itself is enclosed in parenthesis, and 
consists of two parts. The declarations and the 
specification of the behavior. The former are 
specified as a list of individual component 
declarations (multiplicand, multiplier/product, and 
step counter), using the reserved identifiers 
DECLARE and ERALCED as brackets. The 
specification of the activities of the system is given as 
a list of two sequential steps. The first step (C- 8) in- 
itializes the counter and the second is given by a 
labeled (LI) block of activities. These consist of a 
sequence of three steps. The first one performs the 
basic multiplication operation; the second step 
decrements the counter; the third step tests the 
counter to see if the operation has been completed. 
If the value of the counter has not reached 0 then a 
jump to the label is indicated by using the label as an 
activity. If the counter is 0 then control flows out of 
the labeled statement and reaches the end of the 
program. 

The basic multiplication operation is described 
using the DECODE control operation. It implements 
an n-way branch depending on the value of the 
expression following the operator. The alternative 
paths selected by this operation are given as a list 
using the";" as delimiter. The first path (P- P SRO 
1) is selected if the value of the controlling expres- 
sion (P< 0>) is 0; the second path (P. (P + MPD) 

' SRO 1) is selected if the value is 1. The operator 
' SRO repiesents a shift right inserting zeroes. The 

number of shifted positions is given by the second 
operand (in this case the integer 1). 

Figure 6 shows the graph representation of the 
ISP description. The mapping from the ISP descrip- 
tion to the graph form is apparent from the example. 
The system graph contains a unique entry point (the 
START operation) and a unique exit point (the STOP 
operation). In addition to these two operations, there 
can be five other types of operations in the graph 
model: 
• branch, activates one of the output paths depend- 

ing upon the value of some operand. 
• serial-merge, activates its output path when any of 

its input signals arrive. 
• diverge, activates concurrently all of its output 

paths. 
• parallel-merge, activates its output path when all 

of its input signals arrive. 
• data-operation (other). 

Examination of the graph for the multiplier 
example Indicates several possible alternative de- 
signs. For instance, the computation of the loop 
count (C- C-1) does not depend on the shifting and 
adding steps (P. P SRO 1 and P- (P + MPD) 

' SRO 1); the two sets of operations do not have 
variables in common. Thus the decrement of the 
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two registers of an arithmetic unit. There are certain 
trade-offs that can be achieved between the time 
taken to move variables in and out of these special 
registers versus the cost of adding txtra arithmetic 
units in order to use their registers. In 
macromodules the critical choices are associated 
with the binding of data operations to data 
operators. For instance, we can opt to implement all 
data operators in terms of an auxilliary register, used 
as an accumulator. There are trade-offs between the 
time needed to route the data to and from the ac- 
cumulator versus the cost of having more 
specialized data operators, associated with the in- 
dividual registers. 

An important distinction between macromodules 
and RTM is the degree and flexibility with which con- 
currency of operations can be implemented. As we 

46 mentioned before, RTM operands (registers, 
memories, etc.) are physically connected to a single 
bus. This implies that variables can not be readily 
shared by concurrent computations. Common 
variables must be copied and allocated 
separately—a process which degrades both the cost 
and speed of the design. Macromodules on the other 
hand allow almost unlimited concurrency; variableb 
are accessible directly from any part of the system 
and there is no need to allocate extra copies. These 
properties of the module sets imply that, while in 
macromodules the intuitive feeling that parallelism 
implies extra cost and extra speed holds true, in 
RTM's the need to allocate and transfer variables 
between the buses may so degrade the performance 
that for certain systems more concurrency implies 
more cost and less speed. 

V. Heuristics and Design Space Trade-Offs 
Due to the interaction between series/parallel 

transformations in EXPL it is a difficult task to for- 
malize the optimization (improvement of alternative 
structures) as a mathematical optimization problem. 
The main difficulty is the fact that transformations 
apply to subgraphs of arbitrary size and, as a con- 
sequence transformations in a given alternative 
structure may or may not be feasible or desirable in 
structures derived from it. It is also the case that new 
cases of transformations become feasible or 
desirable only after a specific sequence of transfor- 
mations has been applied. 

Two parameters will be used to describe the 
design space: The cost of the hardware involved and 
the operational time. The former is obtained by ad- 
ding the costs of the components used in both the 
data and control structures. The latter is obtained 
from the average speed of the operations involved 

For a straight sequence of operations the time 
required is the sum of the individual times. Figure 

12.a. In the presence of concurrent activities, the 
operation time is that of the longest (timewise) 
sequence. Figure 12.b. 

When computing the times required by the alter- 
native paths of a branch operaton EXPL assumes, 
by default, that all such paths have equal 
probabilities of being executed (the probability 
being 1/n for n-way branches). This default can be 
overruled by the user by specifying the branching 
probabilities for the individual paths. The computa- 
tion of the times required by the paths is then 
weighted by the branching probability associated 
with the path. Figure 12.c. The execution time is then 
the sum of these weighted path times. 

The presence of cycles (loops) adds some com- 
plexity to the estimation of the operation time. In this 
case the level of nesting is assumed to be propor- 
tional to the frequency of execution of the 
operations. Conceptually this is equivalent to 
replacing the cyclt, by a sequence of multiple copies 
of the individual operations. Since the number of 
times a loop is executed (i.e., the number of copies) 
is usually unknown, a default (2) is assumed (this is a 
consequence of the default 50% probability of 
branching back to the loop head). This default may 
be overruled by the designer by specifying an es- 
timate loop count or, alternatively, simply the 
branching probabilities if the loop count is not 
known. Figure 12.d. 

Having defined the parameters of the design 
space we can now describe the trade-offs Involved in 
the transformation rules. Connectivity and data 
dependency are used in the system to indicate the 
feasibility of a transformation. Feasible transfor- 
mations, however, do not imply necessarily any ad- 
vantage in their application and the desirability of 
such a trarsformation is indicated by a different set 
of conditions. 

The exploration of the design space in our system 
is performed by a group of heuristic routines that 
produce alternative designs in a goal oriented 
fashion; the goal being specified by the designer. 
Ideally, the goal is to find an alternative structure 
whose position in the design space is as close as 
possible to the origin (0 cost and 0 time). This idea 
case is. however, not easily found in real solution s. 
The usual case is that the least expensive solution is 
not the fastest and vice versa. This characteristic 
provides a rough classification of the design objec- 
tives into two classes: minimal cost and minimal 
time. 

Although a designer's aim can be classified accord- 
ing to these objective functions, it may be the case 
that the real objective is more complicated in nature, 
namely, some combination of time and cost. For in- 
stance, the objective could be something like: "the 
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fastest alternative structure not costing more than x 
dollars." 

For simplicity, the subspace of acceptable 
solutions will be defineu by a set of straight-nne 
segments whose slopes reflect the objective func- 
tions. In the example above a single straight line, 
parallel to the cost axis, would be used to divide the 
space in two halves. Only those solutions that lie in 
the semispace containing the origin are considered 
acceptable. These solutions represent im- 
provements along the design goal. 

More complex constraints can be described by 
using lines of the form C = -m*T + b, where m is a 
parameter indicating how many dollars the designer 
is willing to pay for each time unit saved (if time is the 
primary goal) or how rrnny time units the designer is 
willing to sacrifice for et ch dollar saved (if cost is the 
objective). An example Figure 13, will clarify this 
description. 

Assume that the .^rirnaiy objective is a reduction 
in time and that the designer wants a time/cost 
trade-off of at most m dollars for each time unit im- 
provement. Furthermore, assume that the original 
design is characterized by C1 and T1. The "accept- 
able trade-off" subspace would thus be delineated 
by two line segments: one parallel to the cost axis 
starting from (T1 ,C1) to (T1,0), and the other through 
(T1,C1) with slope -m. By studying the control flow 
and data dependencies in this original structure, 
four transformations are available which yield four 
alternative solutions derived from the original one 
A,B,C,D. 

By dividing the space according to the trade-cff 
lines alternatives B. C, and D can be rejected 
because their characteristics are not within the 
acceptable subspace (i.e., they take more time or the 
decrease in time costs too much). The alternative 
left. A, represents improvement in time while the 
cost to achieve the improvement is under the 
designer's threshold. 

The process can now be applied to A in an iden- 
tical manner. Design A is taken as the new initial 
solution and a new "acceptable trade-off" subspace 
is defined by a line segment (T2,C2) to (T2,0) and a 
line with slope -m through (T2,C2). Since in some 
cases more than one alternative can be left for 
further exploration, this process takes the form of a 
tree walk where the nodes represent alternative 
solutions and the edges are the transformations 
applied. In some instances, identical structures can 
be obtained by different sequences of transfor- 
mations and the exploration of the design space is a 
praph-walking orocess. In any event, a path ends 
when no alternative solutions worth exploring can be 
reacned from a given point. When all possible paths 
have been explored the end nodes are measured 
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Figure 12 
Time Estimation 

COtl A 

Figure 13 
Design Space Reduction 
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against the primary objective and  the best one 
chosen. 

In general, the space of alternative solutions looks 
more like a graph than a tree. Several paths (i.e., 
sequences of transformations) may lead to the same 
solution. Thus, it is important to detect points in the 
space that have already been examined. Other 
problems that arise in the exploration process have 
to do with the cost of the process itself. EXPL does 
not perform a brute force search. Accepting an alter- 
native solution for further exploration depends upon 
the goals indicated by the user. Besides the main 
goals (speed, cost, and a trade/off factor) mentioned 
before, the user 'an also specify a minimum percent- 
age gain for a transformation-derived solution to be 
acceptable. If the gain falls below this threshold the 
new design is rejected. This pruning process, when 

48 applied indiscriminately, can lead to an incomplete 
exploration. It may be the case that although, a 
derived solution is wcrse (according to the goals) 
than its parent solution, solutions derived from the 
former could in fact be better than the parent. EXPL 
hf ndles the detection of this type of local optimality 
by allowing the user to specify a rejection level. The 
rejection level indicates whether or not non- 
improving solutions are to be further explored. The 
user specifies the maximum length of such non- 
improving paths. 

The following section briefly presents several 
examples of design spaces. The examples illustrate 
some of the points discussed previously. 

VI. Sample Design Spaces 
In this section we will present three examples of 

the design spaces explored by EXP! . We will not dis- 
cuss the specific systems whose design spaces are 
depicted in Figures 14,15, and 16. The examples will 
be used to show the characteristics of the design 
spaces and the exploration procedures. 

Figure 14 shows the design space for a RTM 
system that is used as a controller for the X- and Y- 
plates of an oscilloscope. The system is used at CMU 
for RTM demonstrations (the "Munching Squares 
Generator"). The first characteristic that can be 
noticed is the stratification of the alternative designs. 
The solutions appear in horizontal bands represent- 
ing solutions of similar cost. This is due to the high 
cost of the RTM buses compared with the cost of the 
other modules in the RTM set. The space is divided 
into bands corresponding to the 1, 2, 3, and 4 bus 
solutions. 

The figure shows the degrading effect in RTMs of 
sharing variables between concurrent computations. 
The best solution (in terms of speed) used 3 buses 
and is faster than the 4 bus solutions. The algorithm 
is such that, although it allows a high degree of con- 

currency, when this degree exceeds a certain 
threshold there is a loss of speed in the total system. 
The path followed to find the best solution is in- 
dicated in the figure. It is interesting to observe the 
transition from solution 2 to solution 3. There is a 
substantial gain in speed together with a reduction in 
cost. The explanation is that once the cost of a bus 
has been accepted as a reasonable price to pay for a 
given gain in speed it does not cost much to spread 
the load and perform more operations concurrently. 
I.ideed, as the example shows, alternative allocation 
of the computations to the buses, for a fixed number 
of buses, io crucial. 

F jure 15 depicts a feature of the search 
procedure used in EXPL. When a solution Is 
analyzed the set of feasible transformations that can 
be applied to its graph is tabulated. The improve- 
ment factor specified by the designer is then used to 
prune this table. Th'p pruning takes place before a 
transformation is applieu and is based on a 
preliminary "best case" analysis of a candidate 
transformation. The solution derived by applying the 
transformation may or may not realize the potential 
gain indicated by the preliminary analysis. This 
reduction in the predicted gain is due to several 
causes. If the goal is a reduction of cost, performing 
two concurrent operations in sequence may not in 
the case of RTMs result in a reduction in the number 
of buses (other computations may require the bus 
that was thought to be expendable). If the goal is a 
gain in speed, adding buses may result in a loss of 
speed due to the time required to copy and move 
variables between the buses in the system. Similar 
considerations can be applied to the case of 
macromodules. 

Figures 14 and 15 correspond tothedej gn spaco 
for the same RTM system explored using different 
improvement thresholds. In the space shown In 
Figure 15, the preliminary improvement threshold 
was set to a higher level (20%) than in the space 
shown in Figure 14 (10%). An interesting 
phenomenon occurred. The transformation in- 
dicated by the directed line in Figure 15 had a very 
promising preliminary evaluation (over 30% 
predicted gain). When the transformation was 
applied, the new solution did not realize the 
predicted gain. It was, nevertheless, better than the 
original solution and was later chosen by the system 
as the best solution. All feasible (i.e., applicable) 
transformations to this new solution were then 
examined and none of them promised to be better 
than the threshold. All of these transformations were 
then rejected and the exploration path was ter- 
minated. When the same situation appeared in the 
example of Figure 14, there were several transfor- 
mations  that  were   better  than  the  new,   lower. 

! 
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Figure 14 
RTM   Design   Space   (MSG   System   with   10%  Improvement Factor) 

threshold. One of them led in fact to the best solution 
of the space of Figure 14. It is interesting to observe 
in Figure 14 that the slope of the transformation from 
solution 1 to solution 2 indicates a better cost/speed 
trade-off than the transformation for thr original 
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solution -point 0 - to solution 1. The gain in speed 
produced by the transformation, although smaller 
than the threshold used in Figure 15, was achieved 
completely; there was no overhead added to the 
system by the extra concurrency. 

m 



xiii>.uMiiiiV:V«pi.i>ii^.npijii|i,.iiMiL..i|qpiHinnKII!HP^W 

50 

Cost 
1800 _ 

1750 _ 

1700 _ 

1600 _ 

1500 _ 

1400 _ 

1300 _ 

1200 _ 

1100 _ 

1000 _ 

900 _ 

BOO 

100 000      120 000 ^000     160 000     180 000     200 000     220 000     240 000      260 000      280 000 

■ _ .: Time 

300 000 

.11 
17400 _ 

17300 _ 

Figure 15 
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Figure 16 
Macromodule Design Space (Conveyor-Bin System) 
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This type of anomalies is not uncommon in the 
modular design spaces explored so far, if anything, 
they tend to be the rule rather than the exception. 
The   p.uning   of  the  applicable  transformations, 
based on a preliminary analysis, can lead us to ig- 
nore certain transformation paths that may yield 
better solutions. EXPL is, in this sense, not very 
smart. Better heuristics are needed and research in 
this area is actively pursued by the implementors of 
the system. It is valid to ask, "why thno should the 
system do any pruning at all?". The omy reason we 
can provide is based on the analysis of the cases 
studied so far. Applying a transformation without any 
considerations to its possible gain is an expensive 
proposition. For any solution, branching factors (i.e., 
number of feasible transformations) of 30 to 50 are 
not uncommon. Applying a transformation implies a 
reconfiguration of the graph and the recomputation 
of several associated tables—an expensive opera- 
tion in the current implementation. Applying each 
feasible t/ansformation can lead to a very expensive 
design process. The system as implemented allows 
the designer to guide the exploration via an interac- 
tive command language, in this interactive mode, 
EXPL  does not  perform  any  pruning  and  the 
designer is free to order the system to perform any 
feasible transformation, regardless of its predicted 
gain.  The  automatic  mode  of exploration  can 
therefore be used selectively under user guidance. 

Figure 16 shows the design space for a system 
designed is a controller for a conveyor-bin unit. The 
design spacv. corresponds to the alternative designs 
implemented using macromodules. The figure is a 
good example of a design space with multiple paths 
leading to the same solution. The space configura- 
tion also indicates the charcteristic of macromodular 
systems.   Once  a  basic  design   is  implemented, 
variations in the levoi of concurrency do not present 
the radical changes in cost typical of RTM system. 
The basic costs of the macromodular system are 
given by the memory and data operation modules 
(the "stacks"). Variations in concurrency only imply 
adding or eliminating control modules and cables, a 
minor fraction of the total cost. 

VII. Other Design Tools 
Another application is design verification. It is 

possible to develop an ISP description that is syntac- 
tically correct but that does not make sense logically. 
Figure 17.a depicts a syntactically correct ISP while 
Figure 17.b illustrates the corresponding graph. The 
graph is essentially the same one produced by the 
ISP compiler. The data operations have been 
deleted as a notational convet.ience (we can think of 
the data operations as being assimilated into the 
arcs connecting the control operations). 

In the case of x = 1 the right half of the parallel 
merge in the graph woulr receive two control signals 
(one from the right half c the diverge, the other from 
the left half via the branch). The other input to the 
parallel merge would not receive a control signal and 
the system would deadlock at the parallel merge. 
Analytical tools based on the vector addition system 
(VAS) (Huen 175|) have been programmed to detect 
such design flaws. 

The VAS is best introduced by example. Consider 
Figure 17.b. The arcs in the graph represent register 
transfers while the vertices represent control 
primitives. Each arc may contain tokens repre- 
senting evocation of the associated register transfer. 
Graphically a token is represented by a dot on an 
arc. A marking of a graph with r arcs is a mapping 
from the set of r arcs to an r-dimensional vector of 
nonnegative integers, each of which represents the 
number of tokens on the corresponding arc. 

A vertex with a token on its single input arc is said 
to be enabled. Only enabled vertices can fire. The 
firing of a vertex removes a token from the input arc 
and deposits a token on its output an.. For the case 
of multiple input arcs there is an associated logic 
condition, either disjunctive (signified by a +) or 
conjunctive (*). A vertex with disjunctive input arcs is 

T»t: = ( declare A<16;0>. BO5:0>; C<16:0>. XO; N<15:0> 
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enabled when any input arc has a token. Firing the 
vertex removes a token from one input arc. This cor- 
responds to a serial merge in the compiler produced 
graph. A conjunctive input condition requires tokens 
on ail input arcs before the vertex is enabled 
'parallel merge). Firing the vertex removes a token 
from all the input arcs. Likewise a set of ontnut arcs 
can be disjunctive or conjunctive. When a vert, x with 
disjunctive output condition fires it places a token on 
one of the output arcs (branch). The conjunctive 
condition places a token on all the output arcs 
(diverge). A simulation is a sequence of permissible 
vertex firings. 

Simulations are conveniently represented by the 
Vector Addition System (VAS) (Huen [75]), Figure 
17.c depicts the VAS for the graph in Figure 17.b. 
The VAS consists of an initial marking vector Mo and 

52 a set of displacement vectors which correspond to 
vertices. Each component of the vector corresponds 
to an arc. All valid firings (new markings) of the 
graph can be determined by adding a displacement 
vector to the current marking Mi. Those additions 
which result in all marking vector components being 
nonnegative are valid markings and can be used to 
establish subsequent valid markings. For example, 
the only valid marking from the initial marking Mo 
resulting from the addition of a single displacement 
vector (e.g., D1) in Figure 17.c is (0,1,1,0,0,0,0). The 
displacement vector D2 does not lead to a valid 
marking since the result of its addition to Mo is 
(1,0,0,1,0,0,-1). 

A control flow tree depicting all possible markings 
(or states) of the VAS can be constructed. A portion 
of that tree for our example is shown in Figure 18. 
Nodes are appended to the tree unit, for each leaf, 
either its marking is identical to that of one of its 
ancestors or no displacement vectors can be 
applied. In either ca;    the node is called a leaf 

Properties of this tree can be used to detect 
properties of the graph. For example, the leaf (0,0,0,- 
0,1,0,0) represents a properly terminating sequence 
since there is a single token on arc 4. By contrast, 
leaf (0,0,0,2,0,0,0) represents two .okens on arc 3. 
No tokens are on the exit arc. This is the deadlock 
situation alluded to earlier. Furthermore, depending 
on the actual physical implementation of the graph, 
this leaf may indicate a lost signal. 

Another obvious application is a simulator. The 
subroutine calls produced by the ISP compiler make 
the generation of a simulator particularly easy. Data 
subroutines update the data structures and control 
subroutines direct the flow of the simulation. A com- 
mand language allows the user to direct the simula- 
tion and examine the state of various data struc- 
tures. It is also desirable to produce designs accord- 
ing to criteria other than the traditional cost/speed 

criteria. One such criterion is testability. The struc- 
ture of the final design substantially determines the 
ease with which tests can be generated for the 
design. A testability measure (Stephenson |74]) has 
been developed that correlates well with actual test 
generation effort. It is important to note that the com- 
mon representation used as input to the various 
design programs is a critical feature that insures thai 
the algorithm being evalua'.ed is actually the one 
being implemented, verified, or simulated by the 
other design programs. 
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Portion of the Control Flow Tree for the Example 
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VIII. Future Directions 
To achieve the goal of automatic jesign relative to 

technology a mechanism is requireo that would take 
the description of a module set and create the 
equivalent of the ad hoc module set evaluators 
currently in use. It was also noted in section IV that 
the order of physical allocation (registers, buses, 
operators, etc.) is a strong funciion of the design 
style imposed by the module set. This information 
would also have to be extracted from the module set 
description. 

The preliminary design automation system and a 
machine relative optimizing compiler-comp ler 
project serve as a stepping stone to an even more 
ambitious project termed the Symbolic Manipulation 
of Computer Descriptions (SMCD) (Barbacci |74]), 
depicted in Figure 19. There is a continual stream of 
new machines spurred by the advent of minicom- 
puters and microprocessors. Each machine has a 
different instruction set. The emergence of 
microcoded systems with the option of user-defined 
instruction sets has increased this flow of instruction 
sets. Each new system requires supporting software 
and the amount of software grows for any individual 
system as user requirements grow. 

One direction in which to seek a solution to ease 
the burden of software development is to relativize 
the production of software to the description of the 
machine. The central ingredi->rt of this approach is 
the description of computei stems in a symbolic 
form, such that a range of proolems can be solved 
by manipulation of these descriptions. 

Figure 19 depicts the scope of the SMCD project. 
The ultimate goal would be to produce and evaluate a 
computer system from its behavioral specifications, 
together with the documentation and system 
programs. Thus the delay from the coiception of a 
new architecture to the time it is implemented and 
ready for users can be significantly reduced 
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S.M.. Massachusetts Institute of 

Technology (1957) 
Carnegie. 1966: Computers and 

Computer Networks 

Hans Berliner 
Research Associate 
B.A., George Washington Universi y 

(1954) 
Carnegie, 1969: Artificial Intelligence 

Richard P. Brent 
Visiting Researcher 
B.S., Monash University (1968) 
M.S., Stanford University (1970) 
Ph.D., Stanford University (1971) 
Carnegie, 1975: Numerical Analysis, Analysis 

of Algorithms, Compitational Complexity 

Jack R Buchanan 
Assistant Professor of Computer Science 

and Industrial Administration 
B.S., University of Utah (1965) 
M.A., University of Utah (1967) 
Ph.D., Stanford University (1973) 
Carnegie, 1972; Automatic Programming, 

Complex Information Processing, MIS 

John Bürge 
Visiting Scholar 
B.Sc, Sussex University (1970) 
Dip. Computer Science, Cambridge 

University (1971) 
Ph.D., Durham University (1975) 
Carnegie, 1974: Artificial Intelligence 

Alan Cole 
Visiting Researcher 
B.A., Hope College (1966) 
M.A.. University of Michigan (1967) 
M.S., University of Michigan (1970) 
Carnegie, 1975. Speech 

Ludwik Czaja 
Visitir.g Assistant Professor 
M.3., University of Warsaw (1960) 
Ph.D., University of Warsaw (1972) 
Carnegie, 1975: Programming 

Languages, Semantic and Syntactic 
Models of Programming Languages. 
Compilers 

Charles M. Eastman 
Associate Professor of Architecture, 

Computer Science, and Urban and 
Public Affairs 

B. Arch., University of California at 
Berkeley (1964) 

M. Arch., University of California at 
Berkeley (1966) 

Carnegie, 1967: Computer-Aided Design 
Cognitive Processes in Design, 
Urban Models 

Lee D. Erman 
Research Computer Scientist 
B.S., University of Michigan (1966) 
M.S., Stanford University (1968) 
Ph.D., Stanford University (1974) 
Carnegie, 1970: Artificial Intelligence. 

Speech Understanding 

Samuel H. Fuller 
Assistant Professor of Computer Science 

and Electrical Engineering 
B.S.E., University of Michigan (1968) 
M.S., Stanford University (1969) 
Ph.D., Stanford University (1972) 
Carnegie, 1972: Performance Evaluation, 

Measurement of Computer Systems. 
Computer Architecture 

Robert G. Goodman 
Visiting Scientist 
B.S., Oklahoma State University (1963) 
M.S., Oklahoma State University (1965) 
M.S., Stanford University (1969) 
Carnegie, 1974: Artificial Intelligence 
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A. Nico Habermann 
Professor of Computer Science 
B.S., Hree University, Amsterdam (1953) 
M.S., Free University, Amsterdam (1957) 
Ph.D., Technological University, 

Eindhoven, The Netherlands (1967) 
Carnegie, 1968: Operating Systems and 

Programming Languages 

Louis Hageman 
Senior Lecturer 
B.A., DePauw University (1955) 
B.S., Rose-Hulman Institute of 

Technology (1955) 
M.S., University of Pittsburgh (1959) 
Ph.D., University of Pittsburgh (1962) 
Carnegie, 1973: Numerical Analysis 

Frederick Hayes-Roth 
Research Associate 
B.A., Harvard University (1969) 
M.S., University of Michigan (1972) 
Ph.D., University of Michigan (1974) 
Carnegie, 1974: Artificial Intelligence, 

Pattern Recognition, Cognitive Psychology 

Laurent Hyafil 
Visiting Researcher 
M.S., Ecole Polytechnique (1972) 
Ph.D., Universife de Paris (1974) 
Carnegie. 1975: Computational Complexity 

Anita K. Jones 
Assistant Professor of Computer Science 
B.A., Rice University (1964) 
M.A., University of Texas (1966) 
Ph.D.. Carnegie-Mellon University (1973) 
Carnegie, 1968: Programmed Systems 

Boleslaw Kacewicz 
Visiting Researcher 
M.S., University of Warsaw (1974) 
Carnegie, 1975: Computational Complexity 

and Numerical Mathematics 

Masahiko Kida 
Visiting Scholar 
B.S., Waseda University (1968) 
Carnegie, 1974: Multiprocessor Systems 

H. T. Kung 
Assistant Professor of Computer Science 
Q.S., National Tsing Hua University, 

Taiwan (1968) 
Ph.D., Carnegie-Mellon University (1973) 
Carnegie, 1973: Computational Complexity, 

Parallel Computation, Numerical Mathematics 

Victor R. Lesser 
Research Computer Scientist 
A.B., Cornell University (1966) 
M.S., Stanford University (1970) 
Ph.D., Stanford University (1972) 
Carnegie, 1972: Parallel Systen 

Organization for Artificial In.elligence 
(e.g.. Speech Understandint), Computer 
Architecture (Micro-programming, 
Multiprocessor systems). Operating 
Systems and Problem Decomposition for 
Multiprocessors 

John W. McCredie 
Lecturer in Computer Science 
Head of Computation Center 
B.E., Yale University (1962) 
M.S.E.E., Yale University (1964) 
Ph.D., Carnegie-Mellon University (1972) 
Carnegie, 1968: Analytical Modeling, 

Simulation, and System Performance 
Evaluation 

Robert Meersman 
Visiting Researcher 
Ph.D., Vrije Universiteit Brüssel (1975) 
Carnegie, 1975: Parallel Computation 

John McDermott 
Visiting Research Associate 
B.A., St. Louis University (1966) 
M.A., St. Louis University (1967) 
Ph.D., University of Notre Dame (1969) 
Carnegie, 1974: Artificial Intelligence, 

Production Systems 

James Moore 
Research Associate 
B.S., Massachusetts Institute of 

Technology (1964) 
Ph.D., Carnegie-Mellon University (1971) 
Carnegie, 1971: Artificial Intelligence and 

Semantic Nets 
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Ian Munro 

Visiting Researcher 

B.A.. University of New Brunswick (1968) 
M Sc , University of British Columbia (1969) 
Ph.D., University of Toronto (1971) 

Carnegie, 1975: Computational Complexity 

Joseph Newcomer 
Researcf, Associate 
B.A., St. Vincent College (1967) 
Ph.D., Carnegie-Mellon University (1975) 
Carnegie, 1975: Operating Systems, 

Programming Languages 

Allen Newell 

University Professor 
B.S., Stanford University (1949) 

Ph D., Carnegie Institute of Technology 
(1957) yy 

Carnegie. 1961: Artificial Intelligence 
Psychology of Human Thinking 
Programming Systems, and Computer 
Structures 

D. Raj Reddy 

Professor of Computer Science 
BE., University of Madras (1958) 

M   Tech., University of New South Wales (1961) 
MS, Stanford University (1964) 
Ph.D., Stanford University (1966) 
Carnegie, 1969: Artificial Intelligence 

Computer Graphics, and Man-Machine 
Communications 

Mario Schkolnlck 

Assistant Professor of Computer Science 
Electoral Engineer. Unive.sity of Chile 

(1965) 

M.S., University of California (1967) 

PhMDQ«QL!niVerSI,y 0i Call,omla a' Berkeley 

Carnegie, 1973: Data Base Design, 
Complexity Theory 

Daniel Serain 
Visiting Scholar 

M.S., LUmverslte de Grenoble (1972) 
Carnegie, 1974: Multiprocessor 

Structure, Operating Systems 

Mary Shaw 

Assistant Professor of Computer Science 
B.A., Rice University (1965) 

Ph.D., Carnegie-Mellon University (1972) 
Carnegie, 1971: Programming Systems 

Software Tools, the Programming 
Environment, and Concrete 
Computational Complexity 

Linda Shockey 
Research Associate 
B.S.. Ohio State University (1967) 
Ph.D.. Ohio State University (1973) 
Carnegie. 1972: Linguistics and 

Automatic Speech Recognition 

Daniel P. Siewiorek 

Assistant Professor of Computer Science 
ind Electrical Engineering 

B.S.. University of Michigan (1968) 
M.S.. Stanford University (1969) 
Ph.D.. Stanford University (1972) 
Carnegie. 1972: Computer Architecture 

Automatic Design Exploration. 
Computer Descriptive Languages 
Modeling. Fault Tolerant 
Computer Design 

Herbert A. Simon 

Richard King Mellon Professor of 
Computer Science and Psychology 

A.B.. Universitv of Chicago (1936) 
Ph D.. Unlversi y of Chicago (1943) 
D.S.c. (Hon.), Case Institute of 

Technology (1963), 
D.Sc. (Hon ). Vale University (1Q63) 
LL.U. (Hon.). University of Chicago'(1964) 
LL.D. (Hon.). McGill University (1970) 

Fll.il (Hon.), University of Lund, Sweden (1968) 
DEcon.Sci., Erasmus University of 

Rotterdam (1973) 

Carnegie, 1949: Computer Simulation of 
Cognitive Processes, Artificial 
Intelligence, and Management Science 

Shigeharu Sugita 
Visiting Researcher 
Ph D., Kyoto University (1968) 
Carnegie, 1975: Artificial Intelligence 

Yoshiro Tochio 
Visiting Scholar 

B.S., Osaka University, Japan (1969) 
Carnegie, 1974: Artificial Intelligence 
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Joseph F   Traub 
Professor of Computer Science and 

Mathematics, and Head of the 
Department of Computer Science 

B.S., City College of New York (1954) 
Ph.D., Columbia University (1959) 
Carnegie, 1971: Numerical Mathematics, 

Computational Complexity. Parallel 
Computation. Algorithmic Analysis 

Henryk Wozniakowski 
Visiting Assistant Professor 
MS.. University of Warsaw (1969) 

Ph.D.. University of Warsaw (1972) 
Carnegie. 1973; Numerical Mathematics, 

Computational Complexity 

William A. Wulf 
Associate Professor of Computer Science 
B.S.. University of Illinois (1961) 
M.S.E.E.. University of Illinois (1963) 
D.Sc, University of Virginia (1968) 
Carnegie, 1968: Programming Systems. 

Compiler Optimization. Operating 
Systems. Systems Programming 
Languages, and Multiprocessor Systems 

Departmental Staff 

Engineering 
Mark Adam—Technician 
William Broadley—Manager of Engineering Design 
Paolo Coraluppi—Research Engineer 
Mike Keegan—Draftsman 
Tim Kirby—Staff Engineer 
Stan Knz—Engineer 
Rich Lang—Technician 
Mike Powell—Engineer 
Brian Rosen—Staff Engineer 
Ken Stupak—Technician 
Jim Teter—Manager of Engineering Production 
Nancy Whitaker—Technical Clerk 

Office Staff 
Nancy Barron—Secretary to Department head 
Mildred Black—Secretary to Professor Newell 
Judith Brantley—Secretary to Business Manager 
Beverly Howell—Secretary to Dr. Reddy 
Dorothy Josephson—Faculty Secretary 
Deborah Lemmon—Department Secretary 
Paul Newbury —Business Manager 
Ruth Ann Seilhamer—Assistant Business Manager 
Susan Sevigny—Documentation Librarian 

Programming and Operations 
Patrick Banwell—Research Programmer 
Christopher Cooper—Programmer 
Robert Cronk—Research Programmer 
Gregory Gill—Visiting Research Associate 
John Godfrey—Programmer 
Ralph Guggenheim—Technician/Research Assistant 
Hank Mashburn—Senior Systems Analyst 
Eric Ostrom—Programmer 
Chuck Plerson—Research Programmer 
Brian Reid—Research Programmer 
George Robertson—Senior Research Programmer 
Jim Skees—Operator 
Howard Susman—Research Programmer 
Harold Van Zoeren—Senior Research Programmer 
Dave Vavra—Operator/Programmer 
Howard Wactlar—Manager of Progiammmg and 

Operations 
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Graduate Students 

Guy T Almes 
B.A., Rice University (1972) 

Mathematics and Electrical Engineering 
M.S., Rice University (1972) 

Electrical Engineering 

Gideon Ariely 
B.A., Hebrew University (1969) 

Mathematics. Philosophy, Compiler Science 

Gerard M. Baudet 
Diplome dingenieur, Ecole P iiytechnique (1970) 

Mathematics 
Diplome d'Etudes Approfondies, Universite Paris IV 
(1971) 

Computer Science 
Doctoral de 3eme cycle. Universite Paris VI (1973) 

Computer Science 

Madeline Bauer 
AB, Cornell University (1968) 

Mathematics 
M.A., University of Michigan (1970) 

Computing and Communications Sciences 

Andrew P. Buchalter 
B.S., Yale University (1974) 

Physics 

Roderic G. Cattell 
B.S., University of Illinois (1974) 

Computer Science 

Robert J. Chansler. Jr. 
B.S., California Institute of Technology (1974) 

Mathematics-IS 

Douglas W. Clark 
B.S., Yale University (1972) 

Engineering and Applied Science 

Donald N. Cohen 
B.S., Carnegie-Mellon University (1973) 

Mathematics 

Ellis Cohen 
B.S., Drexel Institute of Technology (1970) 

Mathematics 

Lee W. Cooprider 
B.A.. Oberlin College (1969) 

Mathematics 

William M. Corwin 
B.S., Carnegie-Mellon University (1972) 

Physics 

Achim Eckert 
Diplom Ingenieur, Technische Universität Berlin 
(1974) 

Electrical Engineering 

David C. Eklund 
B.A . Harvard University (1968) 

Applied Mathematics 

Craig F. Everhart 
B.A., Wesleyan University (1974) 

Physics 

Peter Fe.ler 
Abitur, Gymnasium Bad Toelz (1971) 

Mathematics 
Vordiplom, Technical University of Munich (1973) 

Computer Science 

Richard Fennell 
B.S., Rensselaer Polytechnic Institute (1969) 

Physics 

Lawrence E. Flon 
B.S., SUNY at Stony Brook (1972) 

Physics 

Charles L. Forgy 
B.S., University of Texas at Arlington (1972) 

Mathematics 

John G. Gaschnig 
B.S.E.E.. Massachusetts Institute of 
Technology (1972) 

Computer Science 

Henry Goldberg 
S.B., Massachusetts Institute of Technology 
(1968) 

Mathematics 

Richard H. Gumpertz 
SB.EC, Massachusetts Institute of 
Technology (1973) 

Electrical Engineering 

Samuel P. Harbison III 
A.B., Princeton University (1974) 

Mathematics 
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Don Heller 
B.S., Carnegie-Mellon University (1971) 

Mathematics 

Paul N. Hiifinger 
A.B., Princeton University (1973) 

Mathematics 

Steven O. Hobbs 
A.B., Dartmouth College (1969) 

Mathematics 
B.A., University of Michigan (1972) 

Mathematics (Computer Science Option) 

David Ft. Jefferson 
B.S., Yale University (1970) 

Mathematics 

Richard Johnsson 
B.E., Vanderbilt University (1970) 

Electrical Engineering 

Philip Karlton 
B.A., Universiiy of California, Santa Barbara 
(1971) 

Mathematics 

John Ft. Kender 
B.S., University of Detroit (1970) 

Mathematics 
M.S., University of Michigan (1972) 

Mathematics 

Paul J. Knueven 
Sc.B., Brown University (1969) 

Applied Mathematics 

Donald W. Kosy 
B.S., University of Michigan (1967) 

Science Engineering 
M S., Stanford University (1968) 

Electrical Engineering 
M.S., Stanford University (1969) 

Computer Science 

David A. Lamb 
B.S., University of Waterloo (1974) 

Computer Science 

Bruce W. Leverett 
A.B., Harvard University (1973) 

Physics and Chemistry 

Roy Levin 
B.S., Yale University (1970) 

Mathematics 

Bruce Lowerre 
B.S., Case Institute of Technology (1965) 

Chemistry 
B.S., Case Western Reserve (1970) 

Mathematics 

Madhav Marathe 
B.S., University of Bombay (1971) 

Physics 
M.S., Indian Institute of Technology, Kanpur 
(1972) 

Physics 

Karla F. Martin 
B A., Western Washington State College (1967) 

Mathematics, Physics 
M.A., University of Oregon (1969) 

Mathematics 
M.A., University of Oregon (1972) 

Computer Science 

Philip H. Mason 
B.S., Carnegie-Mellon University (1967) 

Mathematics 

Donald L. McCracken 
B.S., Carnegie-Mellon University (1968) 

Mathematics 

Patrick F. McGehearty 
B.A., University of Texas at Austin (1972) 

Mathematics and Computer Science 
M.A., University of Texas at Austin (1974) 

Computer Science 

Rajan S. Modi 
D.Tech., Indian Institute of Technology (1971) 

Electrical Engineering 

David J. Mostow 
A.B., Harvard University (1974) 

Applied Mathematics 

Joseph Newcomer 
B.A., St. Vincent College (1967) 

Mathematics 

John D. Oakley 
S., Harvey Mudd College (1970) 
Physics 

M.S., University of Wisconsin (1972) 
Computer Science 

I 
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Ronald Ohlander 
B.S., St. Marys College (1962) 

Psychology 

Crispin S. Perdue 
A.B., Princeton University (1973) 

Independent Program 

Frederick Pollack 
B.S., University of Florida (1970) 

Mathematics 

Keith Price 
B.S., Massachusetts Institute of Technology 
(1971) 

Electrical Engineering 

Kamesh Ramaknshna 
B.S., Indian Institute of Technology, Kanpur (1974) 

Electrical Engineering 

Elaine Rich 
A.B., Brown University (1972) 

Formal Language Theory 

George Rolf 
B.S., University of Nymejen (1966) 

Mathematics 
M.S., University of Nymejen (1970) 

Numerical Analysis 

Steven M. Rubin 
B.S., Carnegie-Mellon University (1974) 

Mathematics 

Michael Rychener 
A.B., Oberlm College (1969) 

Mathematics 
M.S., Stanford University (1971) 

Computer Science 

Steven Saunders 
S.B., Massachusetts Institute of Technology 
(1972) 

Computer Science 

Edward Schneider 
B.S., Car' ;yle-Mellon University (1970) 

Mathe   atics 

Robert W. Schwanke 
B.S., Carnegie-Mellon University (1974) 

Mathematics and Computer Science 

Richard Smith 
B.S., Houghton College (1971) 

Physics and Mathematics 

David K. Stevenson 
B.A., Wesleyan University (1969) 

English and Mathematics 
M.A., University of Oregon (1972) 

Mathematics 

Mark Stickel 
B.S., University of Washington (1969) 

Mathematics 
M.S., University of Washington (1971) 

Computer Science 

Richard J. Swan 
B.A., University of Essex (1972) 

Computing Science 

Walter F. Tichy 
Reifezeugnis, Karlsgymnasium Bad Reichenhall 
(1971) 
Diplom-Vorprufung, Technical University Munich 
(1973) 

Mathematics and Computer Science 

Bruce W. Weide 
B.S., University of Toledo (1974) 

Electrical Engineering 

Charles Weinstock 
B.S., Carnegie-Mellon University (1970) 

Mathematics 
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Publica'itns 

Ju/y7, 1974 to June 30, 1975 

These publications are given in alphabetical order 
according to the name of the first author listed for 
each publication. In cases of multiple authorship 
where more than one author is in the Computer 
Science Department, a cross-reference is made to 
that first listing under the name of each departmental 
author. 

No cross-references are made for non-depart- 
mental authors. 

Barbacci, M. R. and D. P. Siewiorek, "Some Aspects 
of the Symbolic Manipulation of Computer De- 
scriptions". Second Annual Workshop on Com- 
puter Hardware Description Languages, Tech- 
nische Hochschule, Darmstadt, West Germany, 
July 1974. 

Barbacci, M. R. and D P. Siewiorek, "Some Obser- 
vations on Modular Design Technology and the 
Use of Microprogramming", Infotech State of the 
Art Report on Microprogramming and Systems 
Architecture. Berkshire, UK, (to appear In 1975). 

Barbacci, M. R., "A Comparison of Register Transfer 
Languages for De cribing Computers and Digital 
Systems", IEEE Transactions on Computers, Vol. 
c-24. No. 2, February 1975, 137-150. PB 221591 

Berliner, H. J., "A Representation of Some Mecha- 
nisms for a Problem Solving Chess Program", to 
appear in Recent Advances in Computer Chess. 
Edinburgh University Press. 

For references by W. Broadley, see D. R. Reddy. 

Cohen, E. S., "A Semantic Model for Parallel Sys- 
tems with Scheduling", SeconcMCM Symposium 
on Principles of Programming Languages. Palo 
Alto, Ca., January 1975. 

Cooprider, L. W., F. Heymans, R. J. Courto:s and 
D. L. Parnas, "Information Streams Sharing a 
Fmite Buffer: Othei Solutions", Information Pro- 
cessing Letters, 3:1 July 1974, 16-21. 

Eastman, C. M., J. Lividini and D. Stoker, "A Data- 
base for Designing Large Physical Systems", 
7975 National Computer Conference Proceed- 
ings. Anahe.m. Ca., 1975. 

Eastman, C. M and J. Lividini, "System Design for a 
Building Description System", C1B W52 Sym- 
posium on Computer Languages in Building. 
Budapest, Hungary, April 1975. 

Eastman, C. M., J. Lividini and D. Stoker, "A Data 
Structure for Building Elements", C1B W52 Sym- 
posium on Computer Languages in Building. 
Budapest, Hungary, April 1975. 

Eastman, C. M. and J. Lividini, "Spatial Search" 
(revised). Institute of Physical Planning, Research 
Report No. 55, CMU, April 1975. 

Fuller, S. H., V. R. Lesser, C. G. Bell and C Kaman, 
"Microprogramming and Its Relation to Emulation 
and Technology", Seventh Annual Microprogram- 
ming Conference. Palo Alto, Ca., October 1974. 

For other references by S. H. Fuller, see M. V. 
Marathe. 

Gaschnig, J. G., "A Constraint Satisfaction Method 
for Inference Making", Proc. Twelfth Annual 
Allerton Conference on Circuit and System 
Theory. University of Illinois at Urbana-Cham- 
paign, October 1974. 

Gilmartin, K. J., A. Newell and H. A. Simon, "A Pro- 
gram Modeling Short-Term Memory Under Strategy 
Control", Psychology Dept.. CIP Working Paper 
No. 293, CMU, March 1975. 

Godfrey, J. D., J. M. Powell, and E. A. Snow, "A 
Cardiac Arrhythmia Monitoring System", I.E.E.E. 
Compntpr Snriety Conference, Washington. D C 
September 1974. 

Grason, J. and D. P. Siewiorek, "A Modular Ap- 
proach to Prototype System Construction in Real- 
Time Minicomputer Laboratory", COMP CON 74, 
Ninth Annual IEEE Computer Society International 
Conference. Washington, D.C., September 1974, 
139-143. 

Hayes-Roth, B. and F. Hayes-Roth, "Plasticity in 
Memorial Networks", Journal of Verbal Learning 
and Verbal Behavior, (to appear) 

Hayes-Roth, F., "Schematic Classification Problems 
and Their Solution", Pattern Recognition, 1974, 
6, 105-114. 
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Hayes-Roth, F., "Representation of Structured Events 
and Efficient Proo 'ures for Their Recognition", 
Pattern Recognition, (to appear). 

Hayes-Roth, F., "An Optimal Network Representa- 
tion and Other Mechanisms for the Recognition 
of Structured Events", Proc. Second International 
Joint Conference on Pattern Recognition, 1974. 

Hayes-Roth, r. and D. J. Mosto v, "An Automatically 
Compilable Recognition Network for Structured 
Patterns", Proc. Fourth International Joint Con- 
ference on Artificial Intelligence, (to appear). 

Heller, D., "A Determinant Theorem with Applica- 
tions to Parallel Algorithms", SIAM J. Num. Anal.. 
Vol. II, No. 3, June 1974, 559-568. 

Heller, D., "On the Efficient Computation of Recur- 
rence Relations", The Institute for Computer Ap- 
plications in Science and Engineering, NASA 
Langley Research Center, Hampton, Vs., June 
1974. 

Huen. W. H. and D. P. Siewiorek, "Intermodule 
Protocol for Register Transfer Level Modules: 
Taxonomy and Analytic Tools". Proc. Second 
Annual Symposium on Computer Architecture, 

Houston, Tx., February 1975. 

Hyafil, L. and H. T. Kung, "The Complexity of Parallel 
Evaluation of Linear Recurrences", Proc. Seventh 
Annual ACM Symposium on Theory of Com- 

puting. May 1975. 

Jenkins, M. A. and J. F. Traub, "Principles for Test- 
ing Polynomial Zerofinding Programs", ACM 
Trans, on Mathematical Software 1. 1975, 26-34. 

Jones, A. K. and W. A. Wulf, "Towards the Design 
of Secure Systems", Proc. of the International 
Workshop on Protection in Operating Systems. 
IRIA, Rocquencourt, France, August 1974, 121- 

135. 

Knueven, P., "The Foundation of a Flexible Run-Time 
System for Algol 68S", Proc. International Con- 
ference on Experience with Algol 68. University of 
Liverpool Press, Liverpool, UK, April i975. 

Kung, H. T., "The Computational Complexity of 
Algebraic Numbers", SIAM J. Num. Anal. 12, 
1975, 89-96. 

Kung. H. T., "On the Computational Complexity of 
Finding the Maxima of a Set of Vectors", Proc. 
Fifth Annual IEEE Symposium on Switching and 
Automata Theory. 1974, 117-121. 

For other references by H. T. Kung, see L. Hyafil. 

Lesser, V. R., "HSII: A Multiprocess Multiprocessor 
Speech Understanding System", Interface Work- 
shop on Interprocess Communication, 1975. 

For other references by V. R. Lesser, see S. H. Fuller. 

Marathe. M. V. and S. H. Fuller, "Hardware Aids to 
Performance Evaluation", Proc. Tenth Annual 
Convention of the Computer Society of India. 

January 1975. 

Newell. A. and G. Robertson, "Some Issues in Pro- 
gramnrng Multi-Mini-Processor", 1974 Confer- 
ence on the On-Line Use of Computers in Psy- 
chology. Journal of Behavior Research Methods 
and Instrumentation, Psychonomic Society, Inc., 
Austin (in press). 

New ill. A.. "A Tutt'ial on Speech Understanding 
Systems", Invited Papers of IEEE Symposium on 
Speech Understanding, Academic Press, NY (in 

press). 

For other references by A. Newell, see H. A. Simon. 

Parnas, D. L. and D. P. Sidwiorek, "Use of the Con- 
cept of Transparency in the Design of Hier- 
-irchcially Structured Systems", Communications 
of the ACM.Vol   18, No  5, May 1975. 

Reddy, D. R., "Computer as a Research Tool in 
Speech Understanding Research", Fed. of Am. 
Soc. for Exp. Biology. Vol. 33, No. 12, 1974, 2347- 

2351. 

Reddy, D. R.. B. Rosen, S. Kriz and W. Broadley, 
"Computer Graphics in Research: Some State-of- 
the-Art Systems", American Psychologist, Vol. 30, 

No. 3, 1975, 239-246. 

For other references by D. R. Reddy. see L. Shockey. 

Saunders, S. t., "Improved FM Audio Synthesis 
Methods for Real-Time Digital Music Generation", 
ACM Computer Science Conference 75, 1975, 

(abstract). 
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Schkolnick, M., "The Equivalence of Reducing 
Transition Languages and Deterministic Lan- 
guages", Communication ACM, September 1974, 
517-519. 

Schkolnick, M., "Secondary Index Optimization", 
Proc. ACM-SIGMOD Inwrnational Conference on 
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For other references by S. H. Fuller, see R. J. Swan. 

Gerritsen, R., "Understanding Data Structures", 
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