
m mm ^mmm

I

m

f ^ ! h *
. . » "* ■

■
■
^4

?Mi

-T-P*— -■■ J"^ mvma>mn^>»m •»»'«J^ 1

■MMMMMM.

UNCLASSTFirn
SECURITY Cl /'SVHCATION OF rHl5 "AGt I'M'I^.I Rat« Knlarad

Tf-T-iTi F ^ — ^ «j..>■■'■'-■ i i ,' l| /\(t OF KLPQM > PERIOD C^ERt.r i

^y COMPUTER JCIENCE RESEARCH REVIEW 197A-75/

PORT DOCUMENTATION PAGE KIM-" INSTRUCTIONS
BEFCRG COMPLETING FORM

Interim

6. PERF OKMING ORG. REPORT NUMBLR

7. AUTHORfs) *•

Department of Computer Science

9. PERrORMING ORGANIZATION NAME AND ADDRESS

Carnegie-Mellon University
Computer Science Dept.
Pift-sburoh, PA 15213

II. CONTROLLINÜ OFFICE NAME AND ADDRESS

Air Force Office of Scientific Research (NM)
Boiling AFB, DC 20032

U. MONITORING AGENCY NAME a ADDRESSfi7 dillcrrnl Irom Conlrollint Ollice)

Defense Advanced Research Proiect Agency
1400 Wilson Blvd
Arlington, VA 22209

IF epmnACi UWL.KAH'1 rJum'Bgt

>V.4620.-?3-C-00'7 ^/5 _

FTT»-7!» •. ' UN

5i.1 JID i 61
AO 2466

1

15. SECURITY CLASS, (ol this rr;;r;0

UNCLASSIFIED

15«. DLCLASSIF1 CATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION SI ATcMENT {oi this Rrporl)

£)
V.

\i

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (ol the <ih«(rac(cnlrred in Dlock 20, il dillrrcnt from Kejjorr;

18. SUPPLEM£NTA

19. KEY WORDS fConrinue on reverse side if nece5sar>' "id idrnllly hy block number)

20. ABSTRACT (Tonl/nue on reverse side II necessary und Idenllly by block number)

A number of themes which run through the papers in this research review are
present elsewhere in ©«r research. One theme is decomposition, a second theme
is experimentation and a third theme is realism. This review contains four
papers and an annual report of the Computer Science Department, Carnegie-Mellon
Univcrsity.l

»t
\

roRM rm

1 ' i-i'HW^npipiwfpKPPipiswf

, ,i*-i-i .1 ■

AFOSR-TR-76- 60 5

JA

ii-

*
^

&a3

VV

AIR FORCE OFFICT OF SCIENTIFIC RSSEARC
NOTICE OF TRANSWITTAL TO DDü
This tech lea]
approved .c '
Dlstributio. i3 u.i:mi;er " ^ 1J0-18 W«
A. D. BLJSii
Technical Information Officer

/ D D C

wr
I i

wimmm^mmmmmi^mmmmm • ^ ^« >miiiiRi«j|Hii . HIM

•

£? hV Computer Science Research Review
1974-75

An Annual Report ..
published by the
Department of Computer Science
Carnegie-Mellon University
Pittsburgh. Pennsylvania

Graphics by Darlene Beachley
Printed by Hoechsletter Printing Co.

, ■— I - —> I 111 ■■ IIIMI

PPWiWP1»"' VP**

r

I

\

ti
The work reported here was largely supported by the
Advanced Research Projects Agency
of the Office of the Secretary of Defense
(Contract number F44620-73-C-0074)
and is monitored by the
Air Force Office of Scientific Research.
This work was also supported In part by
the National Science Foundation (Contract numbers
GJ 32111, GJ 32758, DCR 74-04187, DCR 75-07251,
DCR 74-24573, GJ 32259),
the Office of Naval Research (Contract numbers
N00014-67-A-0314-0010, N00014-67-A-0314-0018),
and numerous private grants for which
we are deepl- grateful. For a complete listing
of these grants and contracts, see page 70
of this report.

Pittsburgh, Pennsylv mla
September, 1975

■jiM mi\.!mmm*m**mi*^^mmmmmmmmmm *'""•'~-]-

i

•Ti

Contents

Annual Review Introduction
Joseph F. Traub

Bounds on the Speed-Up of
Parallel Evaluation of Recurrences
Laurent Hyafil, H. T. Kung

Overview of the Hearsay
Speech Understanding Research
Lee D. Erman

Strict Lower and Upper Bounds on
Iterative Computational Complexity
Joseph F. Traub, Henryk Woiniakowski

The CMU RT-CAD System: An Innovative
Approach to Computer Aided Design
Marie R. Barbacci, Daniel P. Siewiorek

Faculty anr' Visitors

Departmental Staff

Graduate Students

Publications

Research Reports

Colloquia

Gifts, Grants and Coniracts

Ph.D. Dissertations

15

31

39

öS

58

m "——,,u ^mm ■ wtwp

.1

K ■!

Annual Review Introduction

A number of themes which run through the papers
in this Research Review are present elsewhere in our
research.

One theme is decomposition. The decomposition
of algorithms and problems leads to new aloorithms
for parallel machines. On the other hand, for certain
problems there are theoretical limits on decomposi-
tion, leading to theoretical limits on speed-up for
synchronous or asynchronous parallel machines. In
speech understanding research, decomposition
permits processing by various knowledge sources
and facilitates implementation on our asynchronous
multi-processor machine. We see this as a cost-
effective way J obtaining large amounts of com-
puting power.

A second theme is experimentation. In computer
science we often build u system so we can
manipula'e a'id study it. This approach helps us to
incorporate the latest technology in our design ef-
forts. The system must enjoy high performance to
permit enough realistic experiments.

A third theme is realism. We are concerned with
constructing as realistic models as possible, limited
only by our current understanding of the problem
and the power of our analytical tools. For example,
this is basic in our approach to the analysis of
algorithms and complexity.

I want to turn next to some very pleasant news. In-
dividual members of the Department have received
outstanding recognition. Al Newell and Herb Simon
share the 1975 Turing Award for their joint scientific
efforts extending over twenty years during which
they made basic contributions to artificial in-
telligence, the psychology of human cognition, and
list processing. Gordon Bell has won the 1975
McDowell Award for outstanding contributions in
the areas of technical design, education, and
publication;; influential in developing the computer
field Raj Reddy has won a Guggenheim Fellowship
to work on functionally spet iaiized computer
architectures for speech and vision problems. Jack
Buchanan serves for a year as a Judicial Fellow with
the U.S. Supreme Court and the Federal Judiciary
Center to aid in modernizing the administration of
the Federal courts.

In October 1975, the Department celebrates its
tenth anniversary. Present and past members of the
Department will join in the celebration, a ttuee day
technical symposium on research at the frontiers ol
computer science. Invited and selected papers will
appear in a commemorative volume.

J. F. T.

11

I

^^M^M mtmrn

» ^ -mm WWPWIPW« J"'^™1" "^ -■%•'

^

Bounds on the Speed-up of
Parallel Evaluation of Recurrences

Laurent Hyafil and H. T. Kung

I. Introduction
To understand the performance of parallel com-

puters such as ILLIAC IV and C.mmp, we must know
the largest speed-up that can be obtained for a
given task. If there are k processors, the largest
speed-up that can be achieved is k and we call this
optimal speed-up. The speed-up in general depends
on the parallel decomposition of a particular com-
puting task and the various aspects of the multi-
processing system, including memory contention,
process communication, operating system over-
head, etc. In this paper, we concentrate on the issue
of decomposing tasks, and assume that the multi-
processing system is idealized so that it causes no
delays at all. We shall show that even under this
idealized assumption, there are problems for which,
because the parallel decompositions are inherently
difficult, the optimal speed-up can not be achieved.

This paper studies bounds on spee«--ups for a
partic ular problem, i.e., the problem of evaluating
(or solving) recurrences, which is defined as follows;

Input: XQ^,

Output: xn, which is defined by

,x „ . .. andra'ionalfunctions r, i>1. -p+1 i

xi " ri<xi-r .x.p+1),i>1.

Since the Xj are defined iteratively, the problem ap-
pears on the surface to be highly serial. Hence it is
interesting to investigate how parallel algorithms can
be designed and what are the theoretical limits of
using parallelism for the problem. We consider the
recurrence problem also because it is important in
practice and is simply stated so that we might obtain
some insight into the nature of parallel computation

by studying it. We shall survey a number of results
in connection with bounds on the speed-ups of
parallel evaluation of various kinds of recurrences,
especially when the size n of the problem is i.irge,
or when n • 0°. For simplicity we assume that eaw~
arithmetic operation takes one unit of time. Consider
a k-processor machine. We shall see, for example,
that the speed-up tor the first order linear recurrence
problem is at most {2/r,)k + (1/3) even i nder the
idealized assumption. Of course, the actual speed-
up obtained from a real k-processor machine would
be < (2/3)k + (1/3). The difference between (2/3)k
+ (1/3) and k is rather significant. For example, if
K = 16, 64, then the speed-up for the problem is at
most 11, 43, respectively, no matter how efficient
the k-processor machine is. The reason that we get
at most 7C percent of the speed-r-' we might expect
for the problem is the inherent dependence of vari-
ables in the recurrence. Nonlinear recurrences ar^
even worse. It is shown that the speed-ups for a
certain class of nonlinear recurrence problems are
always bounded by a constant no matter how many
processors are used and how large the size of the
problem is. Hence the dependency relationships
within the variables of these nonlinear recurrences
are even stronger. We believe that the study of these
dependency relationships is fundamental for under-
standing parallel computation.

The kind of results which are to be presented in
the paper could be useful in the following two ways.
First, the theoretical bounds on speed-ups provide
grounds for testing the efficiencies of algorithms and
the multiprocessing system. (For example, it would
be very helpful if tight theoretical bounds on speed-
ups are known for benchmark tasks.) Second, the
constructions of the algorithms designed for the
idealized machine are instructive and often lead to
useful insights inlo the nature of designing efficient
algorithms for real machines.

2. Definitions and Notation
An algorithm for evaluating xn is defined to be a

directed acyclic graph in a natural way. For example,
the graph of Figure 1 defines a parallel algorithm
using three processors for evaluating x which is
defined by

x0 = a1,

xi = bixi-1 + ai + V ' " ■'■2'3-

(Note that x3 = ((a1b1+a2)b2 + a3)b3+a4.)

.

•M - —
jAd

mmmmmmm mmmi^mmm^mmmmmrm "^^
tttm

mm im*-"i*mkmmmiQjm

V

m
ft" i

Tu :i

!

(alb1 +a2;b2b

Figure 1

Consider the directed graph which defines an
algorithm. We define the depth of the graph to be the
time, define

Tk(x) = minimum time needed to evaluate xn by

an algorithm using k processors.

and defin». the speed-up of the problem of evaluat-
ing xn by using k processors to be

Sk(xn)

T1<*n>

(In Hyafil and Kung 1753] these definitions are given
in a more rigorous way.)

By a simple simulation argument, one can easily
see that T1(xn)<k Tk(xn). Hence

SK(,vn)<k, Vk.Vn.

k is a trivial upper bound on Sk(xn). Bounds smaller
than k are nontriviai We shall show some nontrivial
up, bounds on SJx) in the following sections.

3. First Order Linear Recurrences

A first order linear recurrence is defined by

(DX; aixi-1 + V*1-

It is the most fundamental recurrence, in the
sense that algorithms for solving it often form basic
algorithms for solving other types of recurrences.
The trivial algorithm which computes x1,X2,..-,xn

iteratively according to (1) is the optimal sequential
algorithm, since it takes time 2n and any algorithm
has to take time at least 2n for using all the Inputs.
Hence

(2)T l(*n) 2n

The algorithm, however, is not suitable for parallel
computers because it does not provide any parallel-
ism. New algorithms are needed for parallel com-
puters. Various parallel algorithms have been de-
veloped by many people, including Brent [70, 74],
Kogge 174], Kogge and Stone [73|, Kuck and
Maruyama |73|, Kuck and Maruyama |75), Lambiotte
and Voigt 174],Stone [73, 74) and Winograd (74).
The basic idea of these algorithms can be explained
as follows:

Note that (1) is equivalent to

[1-l?WM i 81.

Hence

(3) M (MM
which can clearly be computed in parallel. Using the
fact that the multiplication of two matrices of the
formfx xl takes three operations and results in a [x xl

0 ij
ix of th

[x xlandfxlus
OlJ llj

vector of the form

matrix of the same form, while the multiplication of
jses two operations and results in a

I'l in Hyafil and Kung |75b] a

parallel algorithm based on (3) is derived and
establishes that

^ Tk<xn)5iliW + c1 l09 k

for some constant c. > 0. (4) is an improvement over
the corresponding result in Winograd [74] when n is
large and K is fixed.

ä MMM tfi^mm
,

I

mmmmmmmwmm. .umm» mmrnmrnm*""

.1

^ w

> i

In Hyafil and Kung [75al it is shown that If an
algorithm computes xn in time t with w operations,
then

(5) w>3n

Suppose that t<T1{xn) = 2n. Then by (5) w>2n.
Hence if a parallel algorithm is faster than the
optimal sequential algorithm, then it must perform
more operations than the sequential algorithm. This
turns out to be the basic reason why the optimal
speed-up cannot be achieved for the problem.
Indeed, lower bounds on Tk(xn) can be easily
derived from (5) as follows. Suppose that k proces-
sors are used. Observe that for any algorithm, kt > w.
Hence by (5) we have

(6) v^^nW •vk'vn

Suppose that w > 2l,09 k'. (This is true when, say,
n >k.) In Heller |75| it is pointed out that in this case
by the same argument as used in Munro and
Paterson |73, Theorem 1], the bound in (6) can be
slightly improved. In fact, we have

1 >w, K(t-|log k|) + 2(|09 kl

which together with (5) yields

W-kTT72 + (k!l09 kl + 1 " 2[l09 kV(k + 1/?).

Hence

3n
<7) W-k+W +c2,09k-c3'n-k

for some constants Cp >0 and c- >0. From (4) and

(7), we know that the bounds are essentially sharp
for n > k.

From (2), (4), (6) and (7) we have the following

Theorem 1
For the first order linear recurrence defined by(1),

2k + 1

3 + c^k-H^log k

n

(8) /(2/3^+ 1/3, vk, vn

<Sk(xn)< I 2k + 1

0)
(c9log k-c7) (k+1/2)

3 + _f 2 .

, vk, vn > k.

The upper bound in (8) implies that even for the
simplest recurrence defined by (1), we can get at
most 70 percent of the optimal speed-up.

The algorithm used to establish the bound in (4)
can be extended to solve first order vecfor linear
recurrences, defined by

(10)«, = A^.., +bi. 1*1,

where the x's and the b's are p-vectors and ihe As
pxp matrices. The upper bounds on time fo solving
these vector recurrences can similarly be obtained.

4. Pth Order Linear Recurrences

A pth order linear recurrence is defined by
i-1

(11) x,- 2 Y, + b,.l81.
j=l-p

The problem for solving such a recurrence in parallel
has been considered in Chen and Kuck |75], Kogge
|74| and Kogge and Stone [73].

The following theorem generalizes the upper
bound result in (8).

Theorem 2 (Hyafil and Kung |75b))
For the pth order linear recurrence defined by

(11).

(«) sk(xn)^TT k + c4' vP'*k'vn-

for some constant c.

Since 2p <1. the theorem implies that we cannot •2p+1
essentially obtain the optimal speed-up for solving
pth order linear recurrences for any p, when k Is large.

We now consider parallel algorithms for solving
the recurrence defined by (11). The idea is to convert
it into a first order vector linear recurrence of the
form (10), which can then be solved by algorithms
used in the preceding section.

The naive approach for the conversion would be
the following way: Define vectors

x =
i-l

. i-p+1

i>0

1

- - -■— —■ IM

wmmmmmmm ' Plliill.lPI^PlI Ml.. I »IJIJUI. II HI lujuiiiimnipiHiin i

I

10

:5,:

c

then (11) is equivalent to

(13)», ■ A^.. +|l,. I - 1.2 n

where the A i are certain companion matrices. Then
algorithms for solving first order vector linear
recurrences can be applied to compute xn (and
hence iu) from (13). We shall use another conver-
sion technique, which will lead us to p times faster
algorithms for the case that k, p are fixed and n ■°°.
The idea is explained in the following for the case of
p = 3. We can write a 3rd order linear recurrence as

1-1

-■1
j = i-3

ä^Xj + bj, i>1

where a,. = -aij. Then for computing, say Xg.from

;0,) xn,x ,,x_2 we have

a1,-2 a1,-1 a10
ä2,-1 §20

30 .i

-21 '
a31 ä32 1

41 "42 "43
ä52 ä53

ä63

a54 '

a64 a65 1

x.2 b1

"-I b2

»0 _b3

"l b4
x2 b5

J .:». [b6 J
«4

*5

lX6

If we partition the matrix and vectors into blocks as
indicated above, then we have

A1 T1 o 80 «»1
o Aa T? h b2

>-
*2

Hence

Si " Wo + Tl"^V

x2 = -T2-1Aa»1 + T2-1b2,

which is a first order vector linear recurrence. Using
the same idea, for general p, we have

(U)!,- (VAjtej.., +1"^, i = 1,2 m

where m = fh/pl, Tj, Aj, Xj, b| are of size p, and Tj
are triangular. We shall first compute T|-lA| and
T "1b for i < m, and then use algorithms in Section
3'^ solve the recurrence (14), Since m = In/pl, the
recurrence (14) is shorter than the recurrence (13)
by a factor of p. Thus we get faster algorithms. (It
turns out that the cost of computing T|-1A| and
T-1b is not crucial.) From this approach it is im-
mediate to prove that

D" (15)Tk(xn)<c5(^n + p^log n),

for some constant c5>0, where a = 2 when the
usual matrix multiplication algorithm is used and a
= 1.82 when the Strassens matrix multiplication
algorithm (Strassen |691) is used. (In Hyafil and Kung
|75bl it is shown that the bound in (15) also holds for
the problem of solving nxn band linear system with
bandwidth p.) Since T^x^ä (p+1)n, taking a =
1.82 in (15) we have that for any k and p,

(16)sk(xn)23:(ri2)'asn
D M

for the problem of solving pth order linear recur-
rences. Does Sk/k indeed decrease as p increases?
The question is still open. We only know that by (12)
Sk is always less than k for large k. We believe that
as p increases, more dependency relationships on
the x's defined by (11) will be introduced and hence
Sj/k will decrease.

Conjecture
Consider the problem of solving pth order linear

recurrences defined by (11). Let the maximal speed-
up ratio achievable by using k processors to be

Sk(p) ■ max Sk(xr).

Then there exists a monotonically decreasing func-
tion A such that

5k(p)<A(p)k, vk,

and HP) • 0 as p . «.
The following theorem relates our conjecture on

speed-ups to the matrix multiplication problem.

Theorem 3 (Hyafil and Kung [75bl)
If the conjecture is true then 0(n2/\(n)) is a lower

bound on the number of arithmetic operations
needed to multiply two nxn matrices.

Note that the question of whether or not matrix
multiplication can be done in 0(n2) operations l.az
been open for some years.

I

. ■.■_..
u^^^^^^^^^

wr wmm^** mumm ■ i-''i*im-^mmmm*^*™****W,-*™mmmm*fqiimammmi*m**mm

■

1

■<1

r

i i

df :

i

5. General Linear Recurrences

A general linear recurrence is defined by

i-1
(17) K,- 2 V) + bi,i-1

i-0

The problem of solving general linear recurrences is
reducible to that of solving triangular linear systems.
Heller |74a] first considered the problem of solving
(17) in parallel and gave algorithms which take time
0(log2n) and use 0(n4) processors. It was shown
later that the problem in fact could be done in time
0(log2n) with 0(n3) processors by a number of
people in at least three different ways (see, e.g.,
Borodin and Munro [75], Chen and Kuck (75|, Heller
|74b] and Orcutt [74]).

For the case of usino small parallelism it is shown
in Hyafil and Kung |74| that

+ c6n if k < n, (18)Tk(xn) . n'

Tk(xn)<^

c7n2"rlog n if k=|nr| and 1<r<3/2,

'c0n1-r/3log2n if k=|nrl and 3/2<r<3.
8

where Cg, c,, Cg are positive constants.

Since there are n(n+1)/2 inputs for the recurrence
(17), we have

while the trivial sequential algorithm establishes that

T1(xn)<n(n+1).

There is a gap between the lower and upper bounds
on T^Xp). We believe that T.|(xn) = n2 + 0(n).
Suppose that is true. Than from (18), we have
Sk(xn) -kasn -oo, i.e., opii. al speed-up is achieved
asymptotically, which woulo be in interesting con-
trast with pfh order linear recurrences, where
optimal speed-ups are not asympto:ically achieved

6. Nonlinear Recurrences

A nonlinear recurrence is defined by

•V121, (19) x, - <P{\V\2'

where<^is a nonlinear rational function. Write >P =
<£../<£> 2 where (p1 and c^j are polynomials which
are relatively prime. Define the degree of a non-
linear recurrence to be

deg if = max(deg i^^deg^g)

Hence, for example, the well known recurrence,

(20)xj+1 = (1/2) (xj +A/X,),

for approximating /Ä has degree 2. For linear
recurrences we can have unbounded speed-up
when k . °o and n • <=. For example, by Theorem 1
we know that if k = n the first order linear recur-
rence can be sped-up by a factor of n/log n, which
is unbounded as n • oo. The following theorem shows
that the theory of nonlinear recurrences of degree
* 1 is completely different from that of linear recur-
rences.

Theorem 4 (Kung [74])
For fAte recurrence defined by (79;, W deg^p > 1,

then

Sk().r) < c9, vk.vn,

for some constant Cg.
The theorem implies that, e.g. the recurrence

defined by (20) cannot essentially be sped up by
using parallelism.

The only nonlinear recurrences which can possibly
have unbounded speed-up by using parallelism are
of the form

(2i)x,-(2 YJ*6")'! ? ciix) + di)'
\j = i-p / M = i-q /

which Is of dearee one. Indeed, the recurrence

(22) x, = a, +
i i Vl

i.e., a continued fraction, can be sped up.

Theorem 5 (Hyafil a.-.d Kung [7Sb]. Kogge [74],
Kuck and Maruyama [73| and Winograd (74])

For the recurrence defined by (22),

(23)(1/2)k + c10 > Sk(xn) >
} HMoq n'

11

"i ii.iiiiiiiu ii i »,1«, WMI igjim.ii.ii ,. 1 ' ' '*>' im im i iHBBPM^' •Hi 1

;"

tor some constants c.r.. c^.

'..I

12

rr i

By Theorem 1 and (23) we note that recurrences
with division seem to be more difficult than those
without division in parallel computation. The same
observation can also be made to the problem of
evaluating arithmetic expressions (see Brent |74|
and Wlnograd |74|).

It is clear that the recurrence

aixi-1 + b,

cjxM + d,

ccn also be sped up by using parallelism, since it can
be transformed Into a continued fraction. However,
by the following theorem we know general recur-
rences defined by (21) cannot essentially be sped
up.

Theorem 6 (Hyafil and Kung [75bl)
For the recurrence defined by (21) if either

p > 1 or q > 1. then

Sk<xri) < Cjj.Wc, vn

tor some constant c-p

7. Summary and Conclusions

We have shown a number of results on the
theoretical limitation of using parallelism for solving
recurrences. For pth order linear recurrences, with k
processors the speed-up^ are shown to be bounded
by ck + d for some constants c, d, with c < 1, no
matter how large the size of the problems The sharp
upper bound is obtained for first order linear recur-
rences. For nonlinear recurrences of degree > 1,
the speed-ups are shown to be bounded by a con-
stant, no matter how many processors are used a"d
how large the size of the problems. This is probably
the first and may be the only known example of a
nontrivial problem which cannot be essentially sped
up. By these results we wish to demonstrate that
the gam from parallelism very much depends upon
the nature of individual problems, e.g., the depend-
ency relationships among the variables of the prob-
lems. We believe that to identify properties which
prevent us from gettinc good speed-ups is funda-
mental for understanding parallel computation.

;

i&t^j' dilM ,

n wmmmmmm* ..IWilMllliHIill

f

n

* s

References

Barnes |68] Barnes, G. H., et al. The ILLIAC IV com-
puter. IEEE Trans.Comp. C-J7{1968), 746-757.

Borodin and Munro |75| Borodin, A. and Munro, !.,
Computational Complexity ol Algebraic Numeric
Problems. American Elsevier, New York, NY.,
1975.

Rrent 170] Brent, R. P. On the addition ot binary
numbers. IEEE Trans. Comp. C-19 (1970), 758-
759.

Brent (74| Brent, R. P. The parallel evaluation of
general arithmetic expressions. JACM 21 (1974),
201-206

Chen and Kuck (751 Chen, S. C. and Kuck, D. J.
Time and parallel processor bounds for linear
recurrence systems. IEEE Trans. Comp. C-24
(1975), 701-717.

Heller |74a) Heller, D. A determinant theorem with
applications to parallel algorithms. SIAK' J.
Numer. Anal. 11 (1974), 559-568

Heller |74b| Heller, D. On the efficient computation
of recurrence relations. Technical report, ICASE,
NASA Langley Research Center, Hampton, Va.,
1974. Technical report. Computer Science Dept.,
Carnegie-Mellon University, Pittsburgh, Pa., 1974.

Heller |751 Heller, D. A survey of parallel algorithms
In numerical linear algebra. Technical report.
Computer Science Dept., Carnegie-Mellon Uni-
versity, Pittsburgh, Pa., 1975.

Hyafil and Kung [74] Hyafil, L. and Kung, H. T.
Parallel algorithms for solving triangular linear
systems with small parallelisms. Contributed
paper, 2nd uangley Conference on Scientific
Computing, Virginia Beach, Va., 1974. Technical
report. Computer Science Dept,, Carnegie-Mellon
University, Pittsburgh, Pa., 1974.

Hyafil and Kung [75a) Hyafil, L. and Kung, H. T.
The complexity of parallel evaluation of linear
recurrences. Proceedings 7th Annual ACM Sym-
posium on Theory of Computing. Albuquerque,
N.M., 1975, 12-22. To appear in JACM.

Hyafil and Kung 175b] Hyafil, L. and Kung, H T.
Parallel evaluation of recurrences and parallel
algorithms for solving band linear systems. Tech-
nical report. Computer Science Dept., Carnegie-
Mellon University, Pittsburgh, Pa. 1975.

Kogge (74] Kogge, P. M. Parallel solution of recur-
rence problems. IBM J. R and D 18 (1974), 138-
148.

Kogge and Stone [731 Kogge, P. M. and Stone, H. S.
A parallel algorithm for the efficient solution of a
general class of recurrence equations. IEEE
Trans. Comp. C-22 (1973), 786-793.

Kuck and Maruyama [73] Kuck, D. J. and Maruyama,
K. M. The paraHsl evaluation of arithmetic expres-
sions of special forms. I echnical report, RC-4276,
IBM Research Center, Yorktown Heights, NY.,
1973.

Kuck and Maruyama [75] Kuck, D. J. and Maruyama,
K. M, Time bounds on parallel evaluation of arith-
metic expressions. SIAM J. Computing 4 (1974).
147-162.

Kung 174) Kung, H. T. New algorithms and lower
bounds for the parallel evaluation of certain
rational expressions. Proceedings 6th Annual
ACM Symposium on Theory of Computing.
Seattle, Wa., 1974, 323-333. To appear in JACM

Lambiotte ^nd Voigt |74] Lambiotte, J. J., Jr. and
Voigt, R. G. The solution of tridiagonal linear
systems on the CDC STAR-100 computer. Tech-
nical report, ICASE, NASA Langley Research
Center, Hampton, Va., 1974.

Munro and Paterson (73] Munro, I. and Paterson, M.
Optimal algorithms for parallel polynomial evalua-
tions. JCSS 7(1973). 189-198.

Orcutt [74] Orcutt, S. E. Parallel solution methods
for triangular linear systems of equations. Tech-
nical report, 77, Digital Systems Lab., Stanford
University, Stanford, Ca., 1974.

Stone |73j Stone, H. S. An efficient parallel algorithm
for the solution of a tridiagonal system of equa-
tions. JACM 20 (1973), 27-38.

Stone 174) Stone, H. S. Parallel tridiagonal solvers.
Technical report. Digital Systems Lab., Stanford
University, Stanford, Ca., -197'..

Strassen]69] Strassen, V. Gaussian elimination is
not optimal. Numerische Mathematik 13 (1969),
354-356.

Winograd]74] Winograd, S. On the parallel evalua-
tion of certain arithmetic expressions. Technical
report, RC-4808, IBM Research Center, Yorktown
Heights, NY., 1974. To appear in JACM.

13

-

-' ■■*■ -^ --■■ *&**i~a*i»M»

-——■«—— "," ,"111 '•■ ' WWI.Ii. IIMWIII.I mimmmmmmmm

■' " i^mmt^^tmi^^mm^mm ipiiiiimiiiiiiiuwjii.i HI» "■« '■" "■" ■ vqmmmmmmm'm

^

Overview of the Hearsay
Speech Understanding Research

Lee D. Erman

Hearsay is the generic name for much of the
speech understanding research in the computer
science department at Carnegie-Mellon University
(CMU). The major goals of this research include the
investigation of computer knowledge-based prob-
lem-solving systems and the practical implementa-
tion of speech input to computers. An emphasis of
this effort is the design of system structures for ef-
ficient implementation of such systems.

We will first describe the problem of speech
understanding and (in Section 2) present the con-
text of the Hearsay effort. Section 3 describes the
Hearsay model and implementation philosophy.
Then, in Section 4, Hearsayl is described, including
some major design limitations which formed much
of the motivation for Hearsayll, described in Section
5.

I. The Problem of Speech Understanding
In order to provide a framework for discussion, a

conceptual model of speech communication is
presented:

1) The purpose of a speech utterance is to trans-
mit information from the speaker to the listener.
2) The speaker starts with some deep semantic
representation of the message. Several kinds of
transformations are applied to this representation
(syntactic, linguistic, phonological, neurological,
articulatory, acoustic, etc.). The result is an
acoustic signal.
3) The acoustic signal is detected by the listener.
The listener applies transformations which are
similar (though inverse) to those of the speaker;

the result is some semantic representation for the
listener.
4) The correctness or effectiveness of the trans-
mission is related to the correspondence be-
tween the meaning that the speaker intends and
the meaning derived by the listener; it is measured
in behavioral terms—i.e., what actions of the
listener are triggered by receipt of the message.
(Very often this behavior takes the form of an ut-
terance generated by the original listener.)

The goal of automatic speech understanding is to
produce a machine (usually in the form of a com-
puter program) which can effectively perform as the
listener.

The problem of understanding speech with the
competence of a human is formidable. A reasonable
plan is to approach the most general kinds of
solutions by designing and building a sequence of
systems, each of which is more ambitious than the
previous. There are many dimensions along which
to move to provide this graded sequence (e.g.,
requirements ol vocabulary size, speed of response,
accuracy, number of speakers). A way of capturing
these various dimensions is the concept of a task—
a well-defined domain within which the machine is to
perform some functions. For example, the task
might be to answer the users (speaker s) questions
about airline flight schedules or to provide an inter-
active computer-programming facility. In defimng-
a task, one important aspect is the spoken iuput
language. This language is pre-specificd lexically,
syntactically, and semantically; that is, descriptions
are given of the words, how they may be scquenced
to form sentences, and the meaning or the sentences
in the context of the task.1

There are two major aspects of the speech com-
munication process which generate most of the
problems in machine understandir.g;

1) The nature ol the speech signal—The trans-
formations involved in speech f.oduction are
many and complex, and they strongly interact
with each other. The result is a very large amount
of veriabllity in the signal which conveys little or
no meaning, i.e., which ^s noise in the context of
the speech understanding task. Repetitions of the
"same" utterance, spoken by one speaker under
unchanging conditions just seconds apart often

1 This use of a task to constrain the problem is not
as artificial as It may first appear. Usually human
speech understanding is also performed in "con-
strained domains"—in almost any given situation
only a small subset of all possible messages is
likely. .._..

15

MMM aHMMMM

■ii.« nw i 'i w*i**mi*r*rwmmm •nwmmanp »»■■R,'' ■

1

hll

'J i

result In significant variation of the signal. As the
various conditions (e.g.. identity, age, gender,
emotional state, and environment of the speaker)
are relaxed and allowed to change, this variability
increases significantly. Further, strong inter-
actions occur among the various elements; that Is.
words, phones, phrases, etc.. infljence and
modify nearby words, phones, phrases, etc., and
thus have differing manifestations in different con-
texts.2

2) The nature of our knowledge of the transforma-
tions—Jt\eor\es which attempt to explain the pro-
duction of speech are, in general, incomplete and
inadequate In explaining the phenomena with a
great deal of accuracy. Also, it is often difficult
to translate existing theories into the framework of
feasible recognition algorithms.

1ö Largely because of these two aspects, the kinds of
machine speech understanding systems developed
can be characterized as having several interesting
and problem-laden features:

1) The system must make use of multiple and
diverse sources of knowledge to solve the prob-
lem (e.g.. acoustic-phonetics, phonology, syntax,
semantics, pragmatics); these knowledge sources
(KSs) correspond to the different kinds of trans-
formations that generate the speech signal. De-
signing an effective control structure for these
many diverse KSs is crucial and difficult.
2) Each souro of knowledge is incomplete and
errorful. Thus, although it is used in an attempt to
further the recognition of an utterance, each KS
will also introduce errors into the analysis process.
The different sources must work to correct each
other's mistakes in order to keep errors from
propagating excessively.
3) The systems developed tend to be large and
complex. Building, debugging, understanding,
and evaluating them is difficult. In particular, many
researchers need to interact with the system over
a period of several years, both experimenting with
its operation and modifying it. An important
aspect of system modification is the ability to
modify ano replace Individual KSs.
4) Because of the effectiveness and apparent ease
of human performance In the speech understand-
ing task, a useful solution to the problem must be
a system which approaches that performance,
primarily in terms of speed, accuracy, and.
ultimately, economy.

2 We are concerned here with connected speech
input, as opposed to isolated word systems In
which the words (for short phrases treated as in-
divisible units) are spoken individually.

m ^^MHMMI

5) Because the systems tend to be highly experi-
mental, they must be exercised often and over
substantial amounts of trial data. The perform-
ance of the system while under development
(particularly in terms of speed of execution) is an
important factor in determinmr how much ex-
perimentation can occur Thus, issues of perform-
ance are crucial even in the development stage
6) Because the systems are complex and experi-
mental, the interface through which the researcher
controls and interacts with the system is crucial.
The researcher must be able to interact with the
system flexibly and at the functional level of the
system (In addition to the more traditional
machine language and programming language
levels).
This has been a short introduction into the prob-

lems of developing speech understanding systems.
A more complete analysis of the problem, including
pointers to the relevant literature, can be found In
Newell et al. [71)

2. Context ol This Work
Hearsay's direct lineage can be traced back ten

years. The work of Reddy and Reddy & Vicens at
Stanford University (Reddy |66); Reddy and Vicens
168); Vicens |691) resulted in extending the state-of-
the-art of isolated word recognition systems (e.g..
91% accuracy on a 561-word lexicon In ten times
real-time on a PDP10 and with live input). This
system differed from most earlier ones, which were
essentially pattern classifiers, in tnat it contained a
substantial amount of speech knowledge and it used
extensive heuristics In applying the knowledge to
prune the search space. In addition, one version of
the system was created which used syntactic con-
straints and operateo on connected speech
(although in a very ad hoc and unextendable manner).

The Hearsay model for speech understanding was
developed at CMU during 1970-1971 (Reddy. Er-
man. and Neely [70|; Reddy |71 j; Reddy. Erman. and
Neely |72]). This model faced the problems of
speech understanding (i.e.. in a task domain) ano
connected speech. The Hearsayl system was
designed and built as an implementation of this
model (Reddy. Erman. and Neely 173); Reddy. Er-
man, Fennell. and Neely |731; Neely (73); Erman
|74|). This system, which was the first demonstrable
live system to handle non-trivial connected speech,
became operational in June. 1972, and has been
since augmented and studied (Lowerre |75]).
Although a number of simplifying assumptions were
made In implementing the model. Hearsayl does ad-
dress the problems of connectbd speech and of the
role and interactions of different kinds of knowledge.
By exhibiting a successfully working system which is

mm

1
mmmmmmmmm ',~,w"-^^- pwij liiiliiiiip.iuui.i II*JIUI«U»W/,.I ui iiii^,iuin*nf^npn

•'■■'

V—,•

based on a model and by providing a set of solutions
to these problems (even if some of the solutions are
known to be far from optimal), Hearsayl clarified the
problems and serves as a basis, and encourage-
ment, for subsequent work.

The experience of building and experimenting
with Hearsayl, together with the other research in the
field, led to a design review which resulted in the
Hearsayll systtm (Lesser, Fennell, Erman, and Red-
dy |74|). Hearsayll is also based on the Hearsay
model; it generalizes and extends many of the con-
cepts which exist in a more sirrolified form in the
Hearsayl system.

Concurrent with the early stages of the Hearsay
development, a group was formed by the Advanced
Research Projects Agency (ARPA) to study the
feasibility of developing speech understanding
systems. .rhis group, which included researchers ac-
tive In artificial intelligence as well as those in more
traditional directions of speech reccgnition
research, produced its report in May, 1971. This
report (Newell et al. |711) provides a comprehensive
and detailed analysis of the problems involved. Part
of tMs study included the specification of a set of
nineteen dimensions for describing the capabilities
of a speech understanding system—the first column
of Figure 1 summarizes those dimensions.

On recommendation of the study group, a five-
year ARPA Speech Understanding Research effort
was launched in October, 1971. An innovative plan
with five principal contractors (including CMU) was
chosen: each was to aim to produce a complete
system meeting a set of specifications laid out by the
study group (the second column of Figure 1) and all
were to interact, exchanging ideas and data.
Although charged to meet the same set of
specifications, each group was free to choose its
own orientation (and task domains). Thus, the flavor
of each of the systems reflects the particular exper-
tises and motivation;, of the people involved.

The Hearsay reseai ;h represents CMU's major ef-
forts to meet the ARPA specifications; In particular, it
i; hoped that Hearsayll will accomplish that goal. In
addition, several other systems are being
experimented with, also aiming to meet these goals:
a version of the Dragon system (Baker [75|) being
extended by Reddy and Lowerre and a combination
of Hearsayl and Dragon (Lowerre [75|).

In this paper we will describe only the Hearsay ef-
fort. An IEEE symposium on speech recognition was
held at CMU in April, 1974, at which most workers in
the field were represented. The cont-ibuted and in-
vited papers from that symposium (trman 174b|;
Reddy |751) provide a comprehensive description of
the state-of-the-art at that time.

3. The Hearsay Model and Implementation
Philosophy

This section describes a general model of speech
understanding, the "Hearsay model", and some of
the problems implied by that model. The following
two sections provide overviews of the Hearsayl and
Hearsayll implementations of that model.

As one knowledge source (KS) makes enors and
creates ambiguities, other KSs must be brought to
bear to correct and clarify those actions. This KS
cooperation should occur as soon as possible after
the introduction of an error or ambiguity in order to
limit its ramifications. The mechanism used for
providing this high degree of cooperation is the
hypothesize-and-test paradigm. In this paradigm,
solution-finding is viewed as an iterative process.
Two kinds of KS actions occur; a) the creation of an
hypothesis, an "educated guess' about some aspect
of the problem, and b) tests of the plausibility of the
hypothesis. For both of these steps, the KS uses a
priori knowledge about the problem, as well as the
previously generated hypotSeses. This "iterative
guess-building" terminates when a consistent sub-
set of hypothesc; is generated whic i satisfies some
specified requirements for an oveall solution.

As a strategy for developing buch systems, one
needs the ability to add and replace KSs and to
explore different control strategies. Thus, such
changes must be relatively jasy to accomplish; there
must also be ways to evai iate the performance of
the system in general and the roles of the various
KSs and control strategies In particular. This ability
to experiment conveniently with the system is crucial
if the amount of knowledge is large and many people
are needed to introduce and validate it. One means
of helping to provide these flexibilities is to require
that KSs be independent; i.e., the explicit interac-
tions between KSs and their assumptions about
each other must be minimal.

Besides providing for the modification and
evaluation of KSs, decomposition of the system into
relativelv independent KSs also facilitates its Im-
plementation on an asynchronous multi-processor
machine. Such configurations seem increasingly at-
tractive as cost-effective ways of obtaining large
amounts of computing power. One problem that has
limited the development and usage of such
machines is the difficulty of decomposing large
problems for such machines. Erman, Fennell,
Lesser, and Reddy |73| describe this problem and
outline some early solutions in the Hearsay context;
Lesser |75| provides a survey of this subject.

The basic view of development of a speech un-
derstanding system includes a strong component of
experimentation: one needs to build a system and

17

I

m m m

^■■1 ■■» • ■■ III«! I ■■Pill I 1 mmmimmimm ijiiui .iMiiiiinwuiaiiii mm^fm^mmmmm^^^mi

Dimensions and Examnles

18

(1)Manner of Speech
connected? isolated words?

(2) Numberol Speakers
one? small set? open population?

(3) Dialect and Manner
cooperative? casual? single gender?
both genders? children? what dialect(s)?

(4) Environmental Conditions
quiet room? computer room? factory? public
place?

(5) Transducer
high quality microphone? telephone?

(6) Speaker Tuning
tew sentences? paragraphs? I jll vocabulary?

(7) Speaker Training
natural adaptation? elabo aVi?

(3) Vocabulary Size and Sei ction
50? 200? 1.000? 10,000'
preselected? selective rejection? tree?

(9) Grammar
fixed phrases? artificial language? free English?
adaptable?

|10) ras*
highly constrained (e.g.. simple retrieval)?
focussed (eg . numerical algorithms)?open?

(11) User Mode/
nothing? current knowledge about the user?

(12) Mode ol Interaction
response only? ask for repetitions?
explain language? discusä communications?

(13) Error Ra/e
none(<0 1%)? <10%? >20%?

(14) Response Time
no hurry? few times real-time? immediate?

(15) Processing Power
1x10'instructions/sec? 10 mips? 100 mips?
1000 mips?

(16) Memory Size
1 megabit? lOmb? lOOmb? 1000mb?

(17) Sysfem Organization
simple program? multiprocessing? parallel
processing? unidirectional processinr?
feedback? backtrack? planning?

(18)Cosr
$0.001/sec of speech? $0 01/s? $0.1/s?
$1.0/s?

(19) Operational Date

ARPA Specifications for 1976 Systems

The system should:

(1) accept connected speech

(2) from many

(3) cooperative speakers of the general American
dialect",

(4) in a quiet room

(5) over a good quality microphone

(6) allowing slight tuning of the system per speaker.

(7) but requiring only natural adaptation by the
user.

(8) permitting a slightly selected vocabularv of
1,000 words,

(9) with a highly artificial syntax.

(10) and a task with a constrained and fairly simple
semantics.

(11) with a simple psychological model of the user.

(12) providing graceful interaction.

(13) tolerating less than 10% semantic error.

(14) in a few limes real-time.

(15)

(16)

(17)

(18)

(19) and have a prototype demonstrable in 1976.

Figure 1: Dimensions ol Speech Understanding Systems and ARPA Specifications for 1976.
(After Newell et al. [71].)

^aU--..-

mmmmmmmim J'WBß mmm*

I

■.,„ I

i

then manipulate and study it. In order to provide an
environment to accomplish this, a two-level ap-
proach is taken: First, a basic set of facilities is
provided, and, second, various configurations are
built using these facilities. These facilities, which
together are called the kernel, form a problem-
dependent programming system for building and
experimenting with particular configurations. The
correct choice of kernel facilities and their im-
plementation are crucial ingredients in developing a
system.

The Blackboard—Representation of Knowledge

The requirement that KSs be independent implies
that the functioning (and very existence) of each
must not be necessary or crucial to the others. On
the other hand, the KSs are required to cooperate in
the iterative guess-building, using and correcting
one another's guesses; this implies that there must
be interaction among the processes. These two op-
posing requirements have led to a design in which
each KS interfaces to the others externally in a un-
iform way that Is Identical across KSs and in which
no knowledge source knows what or how many other
KSs exist. The interface is implemented as a
dynamic global data structure, called the
blackboard3 The primary units in the blackboard
are the guesses about particular aspects of the
problem—the hypotheses. At any time, the
blackboard holds the current state of the system; it
contains all the guesses about the problem that
exist. Subsets of hypotheses represent partial
solutions to the entire problem; these may compete
with the partial solutions represented by other
(perhaps overlapping) subsets.

Each KS may access information in the
blackboard. Each may add information to the
blackboard by creating (or deleting) hypotheses, by
modifying existing hypotheses, and by establishing
or modifying explicit structural relationships among
hypotheses. The generation and modification of
globally accessible hypotheses Is the exclusive
means of communication among the diverse KSs.
This mechanism of cooperation, which is an im-
plementation of the hypothesize-and-test paradigm,
allows a KS to contribute knowledge without being
aware of which other KSs will use the information or
which KS supplied the information that it used. It is in
this way that KSs are made independent and

3 The term "blackboard" was used by Simon |66| in
describing a mechanism in long-term memory as
part of a theory of the psychology of problem-
solving Simon |71| further develops this concept
and elaborates its uses in the context of an ab-
stract model for problem-solving.

separable. The structural relationships form a
network of the hypotheses and &, e used to represent
the deductions and inferences which caused a KS to
generate one hypothesis from others. The explicit
retention in the blackboard of these dependency
relationships is used to hold, among other things,
competing hypotheses.

Because of the central Importance of the
blackboard. Its design (i.e., the design of the struc-
ture of hypotheses and their relationships) is crucial.
This is jsually called the problem of representation.

Activation of Knowledge Sources—Focus of Atten-
tion

An action of a KS in the blackboard takes place in
the context of some hypotheses already existing in
the blackboard. For example, a KS which
hypothesizes words may require a stressed vowel
(as well as some surrounding sounds) as its context
in order tr consider generating new word
hypotheses.

At any time there may be many different contexts
which satisfy the needs of one or more KSs. The
problem of choosing the order for activating KSs on
contexts is generally called the problem of control
flow. Because there may be many such possible ac-
tivations and because each activation of a KS will, in
general, create the potential for even more ac-
tivations (e.g., the word hypothesizer, given a single
new stressed vowel context, might hypothesize five
new words as competing candidates—each of these
might provide a new context for a syntactic parser),
the number of possible activations may grow

If very, very large amounts of processing power
(and memory) were available, one could consider
actually activating all KSs in all their possible con-
texts. This would expand the blackboard with many
(competing) hypotheses. Assuming this would even-
tually terminate (i.e., at some point no new contexts
are created), a decision process could then try to
pick from all the competing hypotheses that subset
which best describes the data—this would be the
system's "solution" to the problem. Because of this
combinatoric explosion of possibilities (caused
mostly by the problems of variability and in-
completeness in the signal and errorfulness of the
KSs), this complete expansion is not feasible.
Therefore, the control strategy can pick only a small
subset of the applicable KS activations; this can be
thought of as exploring a limited portion of the
(potential) fully-expanded blackboard. The problem
of choosing a control strategy which can efficiently
reach the correct set of hypotheses is called the
attention-focusing problem. Its solution is also
critical for the success of a system. If portions of the
correct solution are pruned, the solution will never

19

HMMItfÜliHi

n ■pppmnmMMHP -"^-^ „mnmm. nw. ü , V-T- rt^-- Jl- ■ P-^^

I

',1

be found; if many incorrect portions are not pruned,
the combinatoric explosion will use large amounts of
computing resources (and may also force the
system to give up before reaching the solution).

The problems of representation of knowledge and
searching a large solution space (focus of attention)
are two of the central problems of artificial in-
telligence. The speech understanding problem, with
its requirements of high performance and the use of
diverse and errorful KSs, provides a rich field for
their study

4. Overview of Hearsayl
The blackboard of Hearsayl consists of partial

sentence hypotheses, each of which is a sequence cf
words with non-overlapping time locations In the

20 utterance. Each is a partial sentence hypothesis
because not all of the utterance need be described
by the given sequence of words. In particular, gaps
of one or more words of the utterance which have not
yet been hypothesized (In the context of the par-
ticular sentence hypothesis) are designated by

■filler" words. The partial sentence hypotheses also
contain confidence ratings for each word hypothesis
and a composite rating for the overall sequence of
words A sentence hypothesis is the focal point that
is used to invoke a KS. The sentence hypothesis also
contains the accumulation of all information that all
KSs have contributed to that hypothesis.

System activity goes through a number of cycles.
In each cycle there is one partial sentence
hypothesis on the blackboard which is the focal
point of activity; this focal hypothesis forms the con-
text for KS activity during the cycle. KSs are ac-
tivated in a lockstep sequence consisting of three
phrases per cycle: poll, hypothesize, and test. At
each phase, all KSs are activated for that phase, and
the next phase does not commence until all KSs
have completed the current one. The poll phase in-
volves determining which KSs have something to
contribute to the focal sentence hypothesis; polling
also determines how confident each KS is about its
proposed contributions. The hypothesize phase
consists of activating the KS showing the most con-
fidence about its proposed contribution of informa-
tion. This KS then hypothesizes a set of possible
words (option words) for some (one) "filler" word in
the speech utterance. The testing phase consists of
each KS evaluating (verifying) the possible option
words with respect to the given context After all KSs
have completed their verifications, the option words
which seem most likely, based on the combined
ratings of all the KSs, are then ,3ed to construct new
partial sentence hypotheses. The blackboard is then
re-evaluated to find the most promising sentence

hypothesis; this hypothesis then becomes the focal
point for the next hypothesize-and-test cycle.

A mediator module (the "recognition overlord")
is responsible for maintaining the blackboard, cal-
culating combined ratings from the ratings assigned
to hypotheses by the individual KSs, anc deciding
when to stop and accept a solution (or give up). The
rating of the sentence hypotheses is the mechanism
for attention focusing A best-first strategy is used—
the currently highest rated hypothesis is the one
used as the context for the next cycle. If an erroi is
made, the rating of the incorrect hypothesis will,
hopefully, eventually degrade and attention will be
focused to the sentence hypothesis which now has
the highest rating.

Hearsayl contains three KSs:

1) The acoustic-phonetic KS deals with the sounds
of the words of the input language and how they
relate to the speech signal. It obtains (from a pre-
processing module called EAR) a representation
of the speech signal as an errorful (or course!)
sequence of segments, each segment being
labeled with a phonetic-like label. The input lan-
guage is specified to the KS as a lexicon of words
in which each word is "spelled as a sequence of
phonemic symbols (with some alternative spel-
lings). The KS both hypothesizes words (from the
segments) and evaluates the word hypotheses of
other KSs.
2) The syntax KS deals with the orderings of words
in the utterance according to the specified gram-
mar of the input language This grammar is speci-
fied to the KS in BNF notation. Given some con-
tiguous word hypotheses, the KS can evaluate
them for consistency with the grammar and also
can hypothesize additional words which are likely
to occur contiguous to them.
3) The semantics KS deals with the meaning of
words and phrases of the input language, in the
context of the task. Only one task semantics KS
has been programmec (for "Voice-c'iess"—play-
ing a game of chess verbally); its design is highly
explicit to the one task. This KS hypothesizes and
rates sentences and portuns of sentences based
on the chess moves they represent; it uses both
the legality of the move in the current chess boaro
position as well as the "goodness" of the move (as
determined by a chess-playing program which the
KS consults).

Hearsayl Performance

The Hearsayl system first denonstrated live,
connected-speech recognition in j.ine, 1972, at a
workshop held at CMU. Since that time, about two
person-years have been spent in studying it and in

-

I

•

WiMMMM mm ■iMttMinaMH mtmm ^^tf^^^if^^^^^^^

mmm

T-*—- "' "«I"".«"1. HI ...M,.,,. ;..,.,,.

1

Improving its performance. The system has been
formally tested on a set of 144 connected speech
utterances, containing 676 word tokens, spoken by
five speakers, and consisting of four tasks (only one
of which has had a semantics component
programmed), with vocabularies ranging from 28 to
76 woros. The system locates and correctly identifies
about 93% of the words, using all three of its KSs
Without the use of the semantics KS, the accuracy
decreases to 70%. It decreases further to about 30%
when neither syntax nor semantics are used. Hear-
sayl operates in about 7 to 10 times real-time on a
PDP10-KA10 (0.3 million instructions/sec. machine),
using about 120K words (36-bits/word) for storage
and prog-ams.

Hearsay/ Design Limitations
There are four major design decisions in the Hear-

sayl implementation of knowledge representation
and cooperation which make it difficult to directly ex-
tend Hearsayl to mo: e ambitious performance goals

The first, and most important, of these limiting
decisions concerns the use of the hypothesize-and-
test paradigm. As implemented in Hearsayl, ihe
paradigm is exploited only at the word level. That is,
the information content of any hypothesis in the
blackboard is limited to a description at the word
level. The addition of non-word level KSs (i.e , KSs
cooperating via either sub-word levels, su ;h as
syllables or phones, or via supra-word levels, such
as phrases or conctpts) thus becomes cumbersome
because this knowledge must somehow be related
to hypothesizing and testing at the word level.

Secondly. Hearsayl constrains the hypothesize-
and-test paradigm to operate in a lockstep control
sequence. The effect of this decision is to limit
parallelism of execution (and thus reduce effec-
tiveness on a multi-processor configuration); this is
because the time required to complete a
hypothesize-and-test cycle is the maximum time
required by any single hypothesizer KS plus the
maxirTu.n time required by any single verifier
(testing) KS. Another disadvantage of this control
scheme is that the time increases for the system to
refocus attention, because there is no provision for
any communication of partial results among KSs.
Thus, for example, a rejection of a particular option
word by a KS will not be noticed until ail the KSs
have tested all the option words.

A third weakness in the Hearsayl implementation
concerns the structure of the blackboard: there is no
provision for specifying relationships among alter-
native sentence hypotheses. This absence has the
effect of increasing the overall computation time and
Increasing the time to refocus attention, because the
information gaintd by working on one hypothesis

cannot be shared by propagating it to other relevant
hypotheses.

A fourth limitirig design derision relates to how a
global problem-solving strategy is implemented in
Hearsayl: The policies for attention-focusing and
control are embeoded in the recognit on overlord
module In an ad hoc fashion—there is no coherent
structure for the algorithms and they are "wired In"
to the kernel of the system, rather than being
available for easy manipulation and experimenta-
tion. Thus It Is awkward to modify and evaluate
policy algorithms.

5. Overview of Hearsayll
Hearsayll represents the step following Hearsayl

in the sequence of Increasingly ambitious systems
for speech understanding. The major changes to the
system structure are a) In the representation of
knowledge in the blackboard and b) in the manner of
activation ana attention-for jr.ing of KSs.

The Blackboard of Hearsayll
The blackboard has been extended and

generalized to allow a) the representation of all levels
of information (acoustic, phonetic, syllabic, etc.) in
addition to the lexical and sentence levels of Hear-
sayl and b) the explicit representation of
relationships among hypotheses.

The blackboard is partitioned into distinct infor-
mation levels, each level is used to hold a different
(and potentially complete) representation of the
utterance. Associatrd with each level is a set of
primitive elements appropriate for representing the
problem at that level. (For example, the elements at
the lexical level are the words of th^ vocabulary to be
recognized, while the elements at the phonetic level
are the phones of English.) Each hypothesis exists al
a particular level and iT labeled as being a r irticular
element of the set of primitive elements at that level
The choice of levels (and the set of elements at each
level) Is not prespecified by the kernel of the
system. To the kernel, all levels are uniform; so new
ones can be added at any time. The configuration of
levels that is cur ently in use is shown in Figure 2.4

Parametric Le^c/—The parametric level holds the
most basic representation of the utterance that the
system has; it Is the only direct input to the
machine about the acoustic signal Several dif-
ferent sets of parameters are being used in Hear-
sayll interchangeably; 1/3-oct?ve filter-band
energies measured every 10 msec LPC-derived
vocal-tract parameters, and wide-band energies
and zoto-crossing counts.

21

4 An elaboration of the following description can be
found in Shockey and Erman |74).

mm

mm*!^^^*-* PHII.PIIUIII I ..II

■

!l

U J

22

.;

Segmental /.eve/—This level represents the ut-
terance as labeled acoustic segments. Although
the set of labels is phonetic-like, the level is not
intended to be phonetic—the segmentation and
labeling reflect acoustic manifestation and do
rot, for example, attempt to compensate for the
context of the segments or attempt to combine
acoustically dissimilar segments into (phonetic)
units.
Phonetic Level—M this level, the utterance is
represented by a phonetic description. This is a
broad phonetic description in that the size
(duration) of the units is on the order of the "size"
of phonemes; It is a tine phonetic description
to the extent that each element Is labeled with a
fai'-ly detailed allophonic classification (e.g.,
"stressed, nasalized [1]").
Surface-Phonemic Level—This level, named by
seemingly contradicting terms, represents the
utterance by phoneme-like units, with the addition
of modifiers, such as stress and boundary (word,
morpheme, syllable) markings.
Syllabic Level—The Miit of representation here is
the syllable.
Lexical Leve/—The unit of information at this level
is the word.
Phrasal Leve/—Phrases appear at this level. In
fact, since a level may contain arbitrarily many
"sub-levels" of elements (using "links", as
described below), traditional kinds of syntactic
trees are directly reprebented here.

The decomposition of the blackboard into distinct
levels of representation can also be thought of as an
a priori framework of a plan for problem-solving.
Each level is a generic stage in the plan. The goal at

each level is to create and validate hypotheses at
that level. For example, the goal at the phonetic level
is a phonetic transcription of the utterance. The
overall goal of the system is to create (using "links",
as described below) the most plausible network of
hypotheses that sufficiently covers the levels.
■Plausible and sufficient' here refer to the judgment
of the KSs; 'covering the levels' means a network
that connects hypotheses which describe the speech
signal (at the parametric level) to hypotheses which
describe the semantic content of the utterance (at
the phrasal level).

The decomposition of the problem space into
more levels than in Hearsayl parallels the desire to
decompose the KSs more finely, yielding more KSs,
each of which is simpler and smaller. The principal
resultant change in the configuration of KSs is that
the single acoustic-phonetic KS of Hearsayl is
decomposed into about six KSs currently in Hear-
sayll. For most KSs, the KS needs to deal with only
one or two levels to apply its knowledge; it need not
even be aware of the existence of other levels. Thus,
each KS can be made as simple as its knowledge
allows; its interface to the rest of the system is in un-
its and concepts which are natural to it. Also, new
levels can be added as new KSs are designed which
need to use them, (For example, the syllabic level
was a fairly late addition to the configuration—only
two KSs needed to be modified when it was added.)

Activation ot Knowledge Sources
A KS is instantiated as a knowledge-source

process whenever the blackboard exhibits
characteristics which satisfy a "precondition" of the
KS. A precondition of a KS is a description of some
partial state of the blackboard which defines when
and where the KS can contribute its knowledge by
modifying the blackboard. A KS carries out these ac-
tions with respect to a particular context, the context
being some arbitrary subsei of the previously
generated hypotheses in the blackboard. Thus, new
hypotheses or modifications to existing hypotheses
are constructed from the (static) knowledge of the
KS and the educated guesses made at some
previous time by another KSs.

The modifications made by any given KS process
are expected to trigger further KSs by creating new
conditions in the blackboard to which those KSs, in
turn, respond. The structure of a hypothesis is
designed to allow the preconditions of most KSs to
be sensitive to a single, simple change in some
hypothesis (eg., the creation of a new hypothesis of
a particular type, a change of a rating, or the creation
of a structural link between particular kinds of
hypotheses) Through this data-directed mterpreta-
liun of the hypothesize-and-test paradigm, KSs can .._.J^

WIIPIMW u^i^wmpmiffpnpinmwiPpHaiiiiM

i I

I
:.'J

• ■ -

•:»■

—Levels—

PHRASAL

LEXICAL

SYLLABIC

SURFACE-
PHONEMIC

PHONETIC

SEGMENTAL

PARAMETRIC

—Knowledge Sources—

■S/ntactic-Semantic Parser

■Syntactic-Semantic Hypothesizer

•Phoneme Hypothesizer

- Word Candidate Generator

 Phone—Phoneme Synchronizer

Phone Synthesizer

Segment Combiner

Segmenter-Classifier

Figure 3: The Current Knowledge Sources in Hearsayll.

also exhibit a high degree of asynchronous activity
and potential parallelism.5

As examples of KSs, Figure 3 shows many of the
current set. The levels are indicated by horizontal
lines in the figure and are labeled at the left. The KSs
are indicated by arcs connecting levels; the starting
point(s) of an arc indicates the level(s) of major "in-
put" for the KS, and the end point indicates the "out-
put" level where the KSs major actions occur In
general, the action of most of these particular KSs is
to create links between hypotheses on its input
level(s) and: 1) existing hypotheses on its output
level, if appropriate ones are already there or 2)
hypotheses that it creates on its output level.

5 One might think of this model for data-directed
activation of KSs as a production system (Newell
[73JJ which is executed asynchronously The pre-
conditions correspond to the left-hand sides
(conditions) of productions, and the KSs cor-
respond to the right-hand sides (actions) of the
productions. Conceptually, these left-hand sides
are evaluated continuously. When a precondition
is satisfied, an instantiation of the corresponding
right-hand side of its production is created; this
instantiation is executed at some arbitrary sub-
sequent time (perhaps subject to instantiation
scheduling constraints).

The Segmenter-Classitier KS uses the parametric
description of the speech signal to produce a
labeled acoustic segmentation. (See Goldberg et
al. [751 for a description of the algorithm used)
For any portion of the utterance, several possible
alternative segmentations and labels may be
produced.

The Segment Combiner combines similar adja-
cent ses'oents into larger units. It is triggered on
each new hypothesis at the segmental level.
The Phone Synthesizer uses labeled acoustic
segments to generate elements at the phonetic
level. This procedure is sometimes a fairly direct
renaming of an hypothesis at the segmental level,
perhaps using the context of adjacent segments.
In other cases, phone synthesis requires the com-
bining of several segments (e.g., the generation
of ft] from a segment of silence followed by a seg-
ment of aspiration) or the insertion of phones not
indicated directly by the segmentation (e.g., hypoth-
esizing the existence of an [I] if a vowel seems
velarized and there is no (1) in the neighborhood).
This KS is triggered whenever a new hypothesis is
created at the segmental level.

The Word Candidate Generator uses ohonetic
information (primarily just at stressed locations
and other areas of high phonetic reliability) to

I

23

■IPHnan im«r„

,„ llw „p..,,».,,,.,. „«.„ JIMIIIIIIIUMWBI.I I .1 . ^WW^IWWP'WWPIPIWPW^III

r

■

|

I

generate word hypotheses. This is accomplished
in a two-stage process, with a stop at the syllabic
level, from which lexical retrieval is more effective.
(In fact, there are really two separate KSs here-
one that goes from phones to syllables, and one
that goes from syllables to words.)

The Phoneme Hypothesizer KS is activated when-
ever a word hypothesis is created (at the lexical
level) which is not yet supported by hypotheses at
the surface-phonemic level. Its action is to create
one or more sequences at the surface-phonemic
level which represent alternative pronunciations
of the word. (These pronunciations are pre-
specified as entries m a dictionary.) It also creates
the syllable hypotheses for the word, if they do not
already exist.

24 The Phone—Phoneme Synchronizer is triggered
whenever an hypothesis is created at either the
phonetic or the surface-phonemic level. This KS
attempts to link up the new hypothesis with hypoth-
eses at the other level. This linking may be
many-to-one in either direction.

The Syntactic-Semantic Parser uses the syntactic
and semantic definition of the input language to
build parses at the phrasal level. It is triggered
by new word and phrasal hypotheses. This KS is
not restricted to left-to-right parsing, but rather
works piecemeal wherever hypotheses occur.
One of its resporsibilities is to identify possible
interpretations for the entire utterance. (See
Hayes-Roth and Mostow |75|.)
The Syntactic-Semantic Hypothesizer also uses
the syntactic and semantic definition of the input
language It hypothesizes phrasal and word
hypotheses which are likely to occur adjacent
to phrasal and word hypotheses already on the
blackboard. This provides "top-down" activity in
the system.
The Rating Policy KS operates at all levels of the
blackboard. Its function is to propagate evalua-
tions of hypotheses. For each hypothesis, this KS
calculates ratings which are based on a) intrinsic
ratings placed on the hypothesis by other KSs and
b) the hypothesis' relationships to other hypoth-
eses.

Hypotheses: Structure and Interrelationships

As described above, the structure of hypotheses
at each level in the blackboard is identical (i.e., the
interpretation of hypotheses at different levels is im-
posed by the KSs dealing with them.) The internal
structure of an hypothesis consists of a fixed set of
attributes (i.e., fields which are named); this set is the
same tor hypotheses at all levels of representation in

the blackboard. The values of the attributes are set
and modified by the KSs.

Besides holding ii.Iormation necessary to
describe the hypothesis, attributes also serve as
mechanisms for implementing the data-directed
hypothesize-and-test paradigm. That is, a KS can
specify particular attributes of hypotheses (usually at
particular levels) which it wants to have monitored;
whenever a change is made to one of these
monitored attributes, the KS (through its precondi-
tion) can be activated and notified of the nature of
the change.

Attributes can be grouped Into several classes:
— The first class of attrlbuteb names the hypoth-

esis: It contains the unique name of the hypoth-
esis, the name of its level, and its label from the
element set at that level.

— One very important set of attributes specifies
structural relationships with other hypotheses,
as described below.

— The next clas? of attributes is composed of
parameters which rate the hypothesis. These
include separate numerical ratings derived
from a) a priori information about the hypoth-
esis (usually placed on the hypothesis by its
creator KS), and b) information derived from its
relationships to other hypotheses.

— Another set of attributes contains information
about KS attention to the hypothesis. These in-
clude suggestions (by KSs) of what type of
funher processing should occur. These sug-
gestions are goals.

— For speech, time is a fundamental concept, so
the Hearsayll system has a class oi attributes
for describing the begin- and end-time and the
duration of the event which the hypothesis re-
presents. These attributes include ways of
explicitly representing fuzzy notions of the
limes. Besides its descriptive importance, the
time attribute class is used to partition the
blackbjard for efficient access; e.g., a KS can
retrieve hypotheses which overlap a particular
time region. Using both time and level, a two-
dimensional partitioning occurs.

— The capability for arbitrary KS-specHic attri-
butes is also included. This can be used by a KS
to hold arbitrary information about the hypoth-
esis; in this way a KS need not hold state in-
formation about the hypothesis internally across
activations of the KS and allows, for example,
the implementation of generator functions. If
several KSs share knowledge of the name of
one of these attributes, each of them can access
and modify the attribute's value and thus com-
municate just as if it were a "standard" attribute;

—- '"'' "I«" 1'' '"I-"1 "l)-"1 qm^irmmvm* mmwmmtvmmm u

.1

: i

•1

this can be used as an escape mechanism for
explicit KS intercommunication.

— A unique class of hypothesis attributes, called
processing state attributes, contains succinct
summaries and classifications of the values of
the other attributes. For example, the values of
the rating attributes are summarized and the
hypothesis is classified as either "unrated",
"neutral" (noncommittal), "verified", "guaran-
teed" (strongly verified and unique), or "re-
jected". Other processir.g state attributes sum-
marize the structural ;elationchip<5 with other
hypotheses and characterise, for oxample,
whether the hypothesis has ocsn "sufti-iently
and consistently" described as an abstraction
of hypotheses at lower levels. The processing
state attributes are especially useful .or ef-
ficiently triggering KSs; for example, a KS may
specify in its precondition that it Is to be
activated whenever a hypothesis at a particular
level becomes "verified". These attributes are
also used for the goal-directed scheduling of
KSs, as described in the next section.

Given a specific hypothesis, a KS can examine the
value of any of its attributes. A KS source also needs
the ability to retrieve sets of hypotheses whose at-
tributes satisfy conditions in which the KS is in-
tfc.ested; e.g., a KS may want to find all hypotheses
at the phonetic level which are vowels and which oc-
cur within a pa-licular time range. The system
provides an associative retrieval search mechanism
for accomplishing this. The search condition is
specified by a matching prototype which is a partial
specification of the components of a hypothesis.

Structural relationships between hypotheses in
the blackboard are represented through the use of
links; links provide a means of specifying contextual
abstractions about the relationships of hypotheses.
A link is an element of the blackboard which
associates two hypotheses as an ordered pair; one
of the nodes is termed the upper hypothesis, and the
other is called the lower hypothesis. The lower
hypothesis is said to support the upper hypothesis
while the upper hypothesis is called a use of the
lower one; In general, the lower hypothasis is at the
same or a lower level in the blackboard than the up-
per hypothesis.

There are several types of links, with the types
describing various kinds of relationships. Consider
this structure:

H1 is the upper hypothesis and H2, H3, and H4 are
the lower hypotheses of links LI, L2, and L3, respec-
tively. If the links are all of type Ofl, the interpretation
is that HI is either an H2 or an H3 or an H4. This is
one way that alternative descriptions are possible. If
the links in the figure are of type AND, the interpreta-
tion is that all of the lower hypotheses are necessary
to support the existence of H1. Variants of the AND-
and OR-links are also used. An important one is the
SEQUENCE link; it is similar to '.ne AND-link except
that a contiguous time-ordering is implied on the set
of lower hypotheses supporting the upper
nypothesis—if the links in the figure are SEQUENCE
links, then H4 follows H3 which follows H2.

Besides showing structural relationships between
hypotheses (e.g., that one hypothesis is composed
of several other units), a link is a statement about the
degree to which one hypothesis implies (i.e., "gives
evidence for the existence of") another hvpothesis.
The strength of the implication is held as attributes of
the link. The sense of the Implication may be
negative; that Is, a link may indicate that one
hypothesis is evidence for the /nvalidity of another.
This statement of implication may be bidlrectionai,
the existence of the upper hypothesis may give
credence to the existence of the lower hypothesis
and vice versa. Finally, these relationships can be
constructed In an iterative manner, links can be
added between existing hypotheses by KSs as they
discover new evidence for support.

Just as an hypothesis can have more than one
lower link, so it can have several upper links. Each of
these represents a different use of the hypothesis,
the uses may be competing or complementary. The
ability to have multiple uses and supports of the
same hypothesis, as opposed to creating duplicates
for each competing use and abstraction, serves to
keep the blackboard compact and thereby reduces
the combinatoric explosion in the search space.
Further, since all the Information about the
hypothesis is localized, all uses and supports of the
hypothesis automaticany and immediately share any
new information added to the hypothesis by any
KSs, As changes are made to a hypothesis, some of
its uses and supports may conflict with each other; if
these conflicts become too large, a KS can decide to
resolve them by either eliminating some of the con-
flicting attributes or by splitting the hypothesis Into
two or more hypotheses, each of which is more inter-
nally consistent.

Goal-Directed Scheduling of Knowledge Sources

As described earlier, the overall goal of the system
is to create the most plausible network of
hypotheses that sufficiently spans the levels. At any

26

mmimmmmmmmm***m*mmi^**m wnmuirn i Wii««*P<««H|H||pp

I

• —
•i'

instant of time, the blackboard may contain many in-
complete networks, each of which is plausible as far
as it goes. Some of these incomplete networks may
also share subnetworks. Through KS activity, in-
complete networks can be expanded (or contracted)
and may be joined together (or fragmented). At any
time, there may be many places in the blackboard
which satisfy the (precondition) contexts for the ac-
tivation of particular KSs. The task of goal-directed
scheduling is that of deciding which of these sites
should be allocated computing resources.

Several of the attribute classes of a hypothesis
can be helpful in making scheduling decisions. Par-
ticularly valuable are the values of the attention at-
tributes, which, as described earlier, are indicators
telling how much compucation has been expended
on the hypothesis and suggestions by KSs of how

?6 desiable it is to devote further effort on the
hypothesis (along with the kinds of processing that
are desirable). The processing-state attributes and
the ratings are also valuable for making scheduling
decisions.

The implementation of the goal-directed
scheduling strategy is separated from the actions of
individual KSs. That is, the decision of whether a KS
can contribute in a particular context is local to the
KS, while the assignment of that KS to one of the
many contexts on which it can possibly operate is
made more globally. The three aspects of a)
decoupling of focusing strategy from KS activity, b)
decoupling of the data environment (blackboard)
from the control flow (KS activation), and c) the
limited context in which a KS operates, together per-
mit a quick refocusing of attention of KSs. The ability
to refocus quickly is very important because the
errorful nature of the KS activity leads to many in-
complete and possibly contradictory hypothesis
networks; thus, as soon as possible after a network
no longer seems promising, the resources of the
system should be employed elsewhere.

Implementation and Current Status

Hearsay II is implemented (as was Hea.sayl) on
the PDP10 in SAIL (VanLehn |731), an extended
Algol-60 A number of language mechanisms—par-
ticularly the flrxible macro facility—are used to ex-
tend the language to include the kernel of the Hear-
sayll system; the result is a problem-oriented
programming system for writing KSs and exploring
various configurations. The major facilities provided
include:

— KS definition facilities,
— blackboard accessing routines—botl- direct

and associative retrieval,
— blackboard modification routines,

mttm

— a scheduler which activates KSs,
— an overlay facility which extends the 256K-word

address space so that large configurations can
be used,

— blackboard monitoring and tracing facilities,
— general-purpose tools for experimenter inter-

action with KSs, including breakpoints, execu-
tion tracing, examination and modification of
variables, and execution of functions of the KS,

— tools for building high-level debugging and
interactive features that are KS-specific,

— a package for graphical output of blackboard
structures,

— a timing package for determining execution
costs, and

— a means of reading "cliche" files—stored
sequences of commands used for configuring
and controlling the system.

The system that results is highly structured and has
many conventions to ;hich the participating re-
searchers must adhere. This is necessary in order
to maintain a system that many people ere modifying
and using concurrently. (There are currently about
five people maintaining and modifying the kernel
and approximately a dozen others experinenting
with various KS configurations—a usable and up-to-
date system must be operational at all times.)

The kernel has been operational since spring,
1974, and has gone through several major im-
plementation iterations. All the KSs described above
are operational; several of them represent second or
third generation versions. Because tue overlay facili-
ty has only just come up (summer, 1975), perfor-
mance of the system as a whole is still unknown; the
KSs have been developed using small con-
figurations at a time. It is expected that preliminary
over-all performance information will be available by
the end of 1975, but development will continue over
the foreseeable future—as long as progress con-
tinues to be made.

Although Hearsayll is running on a uni-processor,
it is implemented using multiple processes. The
asynchronous nature of KS activation raises a
number of issues related to interaction on the
blackboard. In particular, because the execution of a
KS may be delayed for an arbitrary period following
the blackboard modification which triggered the KS,
it is possible that intervening actiono (of other i'Ss)
may have invalidated its triggering conditions by tie
time that it actually executes. Mechanisms have
oeen developed to handle these problems. This
aspect of the research is described in Lesser,
Fennell, Erman. and Reddy |74], Fennell |751, and
Fenncll and Lesser \75\.

The Hearsayll system also contains facilities for

I 11 nil niii)^MpniHwiap«iipii«mi^^i«ilPPiipi mm- tmimmimm '» ■ ^•ppnwmiw

1

— ,—.

simulating Its execution on a multi-processor
machine. Here ;he Issues of process Interference,
resource locking (and process deadlock), and
processor utilization are met. The papers referenced
In the preceding paragraph also djscribe these
aspects In detail. The simulations, using just a subset
of the current KSs6, indicate that Hearsayll can effec-
tively utilize as many as twelve processors, with even
more likely as the other KSs are added and as the
scheduler is improved to reduce conflicts.

A preliminary implementation of the Hearsayll
kernel has been carried out on C.mmp {CMU's multi-
mini-processor). This has validated the multi-
processing design of the system. This implementa-
tion has been accomplished using the L* system
(Newell and Robertson (751). Much of the further in-
vestigation of Hearsayll will take place In this con-
text.

Acknowledgments

A significant portion of the CMU Computer
Science Department has been Involved in the Hear-
say efforts—the author is only one of many.

— Raj Reddy is responsible for a large measure of
the Ideas, energy, and vision of this work; with-
out him, the projdct would not have existed.

— Richard Fennall, Rick Hayes-Roth, Victor Les-
ser, Richard Neely, and Linda Shockey have
been instrumental in the ideas and their ex-
ploration.

— Allen Newell has provided guidance and en-
couragement.

— Greg Gill deserves special mention for his out-
standing contribution of programming the
Hearsayll kernel (several times).

— Without taking all the space needed to describe
each of their contributions, we would like to
acknowledge the efforts of all members ot the
CMU "speech group", as well as the entire com-
puter science department, for contributing to
a first-rate research environment.

I wish to thank Vic Lesser for considerable help with
this paper.

I

27

•: i

6 Only a subset of five KSs was used for these
simulations because a) the overhead of simulation
is very high and b) when the simulations began
many of the current KSs either did not exist or
were too undeveloped to use.

MUM MMMMMMMMI

mmmm^^ mmmmmmmmm

■\

References

Baker |75| Baker, J. K. Stochastic modeling as a
means of automatic speech recognition. Doctoral
Dissertation, Computer Science Depl., Carnegie-
Mellon University, Pittsburgh, PA, 1975.

Erman, Fennell, Lesser and Reddy [73| Erman, L. D.,
Ft. D rennell, V. R. Lesser, and D. R. Reddy Sys-
terri organizations for speech understanding:
lm|:lications of network and multiprocessor com-
puter architectures for Al. Proc. 3rd Inter. Joint
Cont. on Artificial Intel.. Stanford, CA, 1973, 194-
199.

Erman |74| Erman. L. D. An environment and system
for machine understanding of connected speech.
Doctoral Dissertation, Computer Science Dept.,
Stanford University; Technical Report, Computer

28 Science Dept., Carnegie-Mellon University, Pitts-
burgh, PA, 1974.

Erman |74b| Erman, L. D. (Ed.) Contributed Papers
of the IEEE Symposium on Speech Recognition.
April 15-19, 1974, Pittsburgh, Pa., IEEE Cat. No.
74CH0878-9AE. Many of these papers have been
reprinted in a special issue of IEEE Trans, on
Acoustics, Speech, and Signal Processing. ASSP-
23, 1 (1975).

Fennell |75| Fennell, R D. Multiprocess software
aichitecture for Al problem solving. Doctoral Dis-
sertation, Computer Science Dept., Carnegie-
Mellon University, Pittsburgh, PA, 1975.

Fennell and Lesser |751 Fennell, R. D. and V. R.
Lesser. Parallelism in Al problem solving; A case
study of Hearsayll. Sagamore (NY) Computer
Conf. on Parallel Processing, 1975.

Goldberg et al. |74l Goldberg, H. G., D. R. Reddy,
and R. Suslick. Parameter independent machine
segmentation and labeling. In Erman |74b|, 106-
111.

Hayes-Roth and Mostow |75| Hayes-Roth, F. and
D. J. Mostow. An automatically compilable rec-
ognition network for structured patterns. Proc. 4th
Inter. Joint Conf. on Artificial Intel., Tbilisi, USSR,
1975.

Lesser. Fennell, Erman, and Reddy [74] Lesser,
V. R., R. D. Fennell, L. D. Erman, and D. R. Reddy.
Organization of the Hearsayll speech under-
standing system. In Erman |74b|, 11-21. Also
appeared in IEEE Trans, on Acoustics, Speech,
and Signal Processing. /KSSP-23, 1,(1975), 11-23.

Lesser |75| Lesser, V. R. Parallel processing in
speech understanding systems; A survey of
design problems. In Reddy |7D1, 481-499.

Lowerre |75| Lowerre, B. T. Doctoral Dissertati« n
(in preparation). Computer Science Dept., Car-
negie-Mellon University, Pittsburgh, PA 1975.

Neely |73| Neely, R. B. On the use of syntax and
semantics in a speech understanding system.
Doctoral Dissertation, Stanford University; Tech-
nical Report, Computer Science Dept., Carnegie-
Mellon University, Pittsburgh, PA, 1973.

Newell et al. |71| Newell, A., J. Barnett, J. Forgie,
C. Green, D. Klatt, J. C. R. Licklider, J. Munson, R.
Reddy, and W Woods. Speech Understanding
Systems: Final Report of a Study Group. Com-
puter Science Dept., Carnegie-Mellon University,
Pittsburgh, PA, 1971. Also Elsevier/North-Hol-
land, Amsterdam, 1973.

Newell |73| Newell, A. Production systems; Models
of control structures. In W. C. Chase (Ed),
Visual Information Processing. Academic Press,
NY, 463-526.

Newell and Robertson |75| Newell, A. and G. Robert-
son. Some issues in programming multi-mini-
pr^cessors. Behav. Res. Methods and Instr., 7,
2, 75-86.

Reddy |66| Reddy, D. R. An approach to computer
speech recognition by direct analysis of the
speech wave. Doctoral Dissertation, Al Memo No.
43, Computer Science Dept., Stanford University,
Stanford, CA, 1966.

Reddy and Vicens |68| Reddy, D. R. and Vicens,
P. J. A procedure for segmentation of co.inected
speech. J. Audio Engr. Soc. 16. 4 (1968).

Reddy, Erman, and Neely |701 Reddy, D. R., L. D.
Erman, and R. B. Neely, The CMU speech rec-
ognition project. Proc. IEEE System Sciences and
Cybernetics Conf.. Pittsburgh, PA, 1970.

Piddy |71| Reddy, D. R. Speech recognition; Pros-
pects for the seventies. Proc. IFIP 1971. Ljubljana,
Yugoslavia, Invited paper section I-5 to 1-13.

Reddy, Erman, and Neely |72| Reddy, D. R., L. D.
Erman, and R. B. Neely, A mechanistic model of
speech perception. Computer Science Research
Review 1971-72. Computer Science Dept., Car-
negie-Mellon University. Pittsburgh, PA, 1972,
7-15.

Reddy, Erman, and Neely |73| Reddy, D. R., L. D.
Erman, and R. B. Neely, A model and a system for
machine recognition of speech. IEEE Trans. Audio
and Electroacoustics. AU-21, 3, 1973, 229-238.

Reddy, Erman, Fennell, and Neely |73j Reddy, D. R.,
L. D. Erman, R. D. Fennell, and R. B. Neely, The
Hearsay speech understanding system; An ex-
ample of the recognition process. Proc. 3rd
Inter. Joint Conf. on Artificial Intel.. Stanford, CA,
1973, 185-193.

^^ta^^M^^AMM^^k^M^

CAM

" "'"'-"-' ■■■ „ ...um. <,...,. p.... ..MUJI ,11 !:.I 1»IIII~^B(^P)»«WI ww^^W5WW^r^fflWP mmm**~~m

1

Reddy [78] Reddy, D. R. (Ed.), Speech Recognition:
Invited Papers of the IEEE Symposium. April IS-
IS, 1974, Pittsburgh, PA, Academic Press, NY,
1975.

Shockey and Erman [74) Shockey, L. and L. D.
Erman. Sub-lexical levels in the Hearsayll speech
understanding system. In Erman [74bl, 208-2 ;0.

Simon |66| Simon, H. A. Scientific discovery and the
psychology of problem solving. Mind and Cosmos:
Essays in Contemporary Science and Philosophy.
Series in Philosophy of Science, University of
Pittsburgh, Pittsburgh, PA, (1966), 3, 22-40.

Simon|71| Simon, H. A. The theory of problem
solving. In Information Processing 71. Morth-
Holland, 1971, 261-277.

VanLehn 173] VanLehn, K. A. SAIL User Manual.
Memo AIM-204. Stanford Artificial Intelligence
Laboratory, Stanford University, Stanford, CA,
1973.

Vicens |69| Vicens, P. Aspects of speech recogni-
tion. Doctoral Dissertation, Report CS-127, Com-
puter Science Dept., Stanford University, Stan-
ford. CA, 1969.

29

{

-- -■

ii(.in.ijiiin«iiiiiiiiiijjiiiiij.iaHuiipj|iinBiiiMiiui<!iniiM«iiwii mmmfm'^^^^ßmmmmm "—^^~ i^m«.iiiiii iitmnmrnmnffm

t-J

1}]

i

wfwmmmmmmrmi^mmm ■— .iniiililllU. ..vnmmmMH — ■—™vn^ "'■■'""■," ■'

1

■fr »J t-1 •■

Strict Lower and Upper Bounds
on Iterative Computational Complexity

Joseph F. Traub and Henryk Wozniakowski

1. Introduction
Complexity is a measure of cost. The relevant

costs depend on the model under analysis. The
costs may be taken as units of time (in parallel com-
putation), number of comparisons (in sorting algor-
ithms), size jf storage (in large linear systems), or
number of arithmetics (in matrix multiplication).
Of course a number of different costs may be rele-
vant to a model.

One can analyze the complexity of an algorithm, of
a class of algorithms, or of a problem. The subject
dealing with the complexity of an algorithm is usually
called "Analysis of Algorithms." The subject dealing
with the analysis of a class of algorithms or of a prob-
lem is called computational complexity.

Computational complexity comes in many flavors
depending on the class of algorithms, the problem,
ai d the costs. We limit ourselves here to mentioning
three types of computational complexity. In each of
these the costs are taken as the arithmetic opera-
tions. Algebraic computational complexity deals
with a problem and a class of algorithms which solve
the problems at finite cost. Typically the problem
belongs to a class of problems which is Indexed by
an integer n. Let comp(Pn) be the complexity of
solving the nth problem in the class. We are inter-
ested in lower bounds L(Pn) and upper bounds
U(Pn) on comp(Pn),

(11) L(Pn) < comp(Pn) < U(Pn).

The urper bounds are obtained by exhibiting an
algorithm for solving Pn with complexity U(Pn).
Lower bounds are obtained by theoretical con-

siderations and "non-trivial" lower bounds are dif-
ficult to obtain. For example if Pn is the problem of
multiplying two n by n matrices and if the cost of
each arithmetic operation is taken as unity then

0(n2) < comp(Pn) < 0(nd), ^ = Ig 7.

(We use Ig to represent log2.) Borodi 1 and Munro
|75| survey the state of knowledge in algebraic com-
plexity.

Exact solutions of "most" problems in science,
engineering, and applied mathematics cannot be
obtained with finite cost even if infinite-precision
arithmetic is assumed. Indeed linear problems and
evaluation of rational functions which can be solved
at finite cost are the exception. Even when the
problem can be solved rationally, we may choose to
solve it by iteration. An example is the solution of
large sparse linear systems. Typically, non-linear
problems cannot be solved at finite cost.

We call the branch of complex,ty theory that deals
with non-finite cost problems analytic computational
complexity. Often the algorithms are iterative and we
then refer to iterative computational complexity.
See Traub |75) for papers presented at a CMU Con-
ference on Analytic Computational Complexity.

In this paper we propose a new methodology for
iterative computational complexity. Our aim is to
create at least a partial synthesis between iterative
complexity and other types of complexity.

A basic quantity in iterative complexity has been
the efficiency index of an algorithm or class of
algorithms. In this paper we introduce a new
quantity, the complexity index, which is the recip-
rocal of the efficiency index. The complexity index
is directly proportional to the complexity of an algo-
rithm or class of algorithms. We show under what
conditions the complexity index is a good measure
of complexity. Our methodology is non-asymptotic
in the number of iterations. Earlier analyses of com-
plexity applied only as the number of iterations went
to infinity and this is not of course realistic in
practice.

We summarize the contents of this paper. In Sec-
tion 2 we analyze a sim olified model of the errors of
an iterative process and show that complexity is the
product of two factors, U e complexity index and the
error coefficient function. Bounds on the error coef-
ficient function are derived in the following Section
and used to derive rigorous cond'tlops for com-
paring tne complexity of two different algorithms. In
Section 4 we show how the results of the simple
model can be applied to a realistic model of one-
point iteration. Lower and upper bounds on the com-
plexity index for several important classes of itera-
tions appear in Section 5. In a short concluding Sec-

31

^^^^^^^^
■ ■

ligiililii i .ilw.iiiiia imuiijiu pi •iiwu m. mill m*^mrwi*i**mmmnmmmmmm.mm''*>w'> 11 ..^.JIllipjlJ^IIH.) u IIJI

!«■

i I

k- 1

■ I
■• •• ;

32

tion we state the extensions and generalizations to
be reported in future papers.

2. Basic Concepts
We analyze algorithms for the following problem.

Let f be a non-linear real or complex scalar function
with a simple zero a. Let x» be given and let an
algorithm p generate a sequence of approximations

1' ,xk to. We terminate the algorithm when xk is
a sufficiently good approximation to <«. This will be
made precise below.

The appropriate setting for this investigation is to
consider f as a non-linear operator on a Banach
space of finite or infinite dimension. Since many of
the basic ideas can be illustrated when f is a non-
l;near scalar function we shall assume throughout
this paper that this holds. We must remark however
that some of the most interesting and important
results deal with the dependence of complexity on
problem dimension and we do not deal with that
dependence here.

Let ej > 0 represent some measure of the error
of Xj. For example, e| might represent

I xi-" the absolute error

x,-o I
_! I, the relative error mi

f(X|)|, the residual.

Assume that the », satisfy the error equation

(2.1) ej - A^, p>1,i = 1.2 k.

We call p the non-asymptotic order and A| the error
coefficient. We require 0 < L < A, < U < ^ for all
values of eg including the possibility that eg be arbi-
trarily small. Then p is unique. Many iterations satisfy
the model given by (2.1). In Section 6 we mention
extensions to this model.

EXAMPLE 2.1. Let the algorithm be Newton-Raph-
son iteration and let e. denote the absolute error.
Then

p = 2, A, =
n*j)
2f(x|)

where n is in the interval spanned by « and Xj.

We simplify the model of (? t) and show what kind
of results may then be obtained. In Section 4 we
return to the analysis of (2.1). Let

(2.2) e-^ = AeP^ p>1.i = 1,

We call this the constant error coefficient model
while (2.1) Is the variable error coefficient model.

We consider first the casdp > 1. It is easy to verify
that

(2.3) ej = e0(J-)pl-1, I - 0 k,

where

(2.4) wp= —

Ap-1

< 1, and let k be the smallest index
'e-y Define < < >' so that

Choose«',0 <
for which e. <

k

(2.5) ek = (e0.

/ is a basic parameter which measures the increase
in precision to be obtained in the iteration. We
choose < to avoid ceiling and flooi functions later in
this paper. It is convenient to assume« < 2'2 (we use
this In Theorem 3.1) but this is non-restrictive in
practice.

From (2.3), (2.5),

WP
(2.6)

and it follows tha

g'wp
(2.7) k

when;

ig P

(2.8)g(wp) -|Q(1 + j^-. t = lg(1/,).

This is independent of the logarithm base but it is
convenient to take all logarithms to base 2. Then if e^
is the relative error, t measures the number of bits to
be gained in the iteration.

We denote the complexity of iteration i by a. In
this paper we assume Cj = c Is independent of i. We
defer a discussion of the estimation of c u til Section
5. The important case of variable cost «HI be con-
sidered in a future paper. We define th. complexity
of the algorithm by

(2.9) comp = ck.

Then from (2.7), (2.8),

(2.10) comp = zg(wp)

where we define
c

ig"p
(2.11) z

as the complexity index.

«limi ..u.».. .ii i. """ '■•", J.l IMIimilllMHIimil BPPPWSWifpPWi PPM

• I

11

We call g the error coefficient function. Equation
(2.10) will be fundamental in our further analysis.

We have decomposed complexity into the product
of two factors. The complexity index, which is in-
dependent of both the error coefficient and the start-
ing error, is relatively easy to compute for any given
algorithm. (However, lowe' bounds on the com-
plexity index for classes o« algorithms require upper
bounds on order which is a difficult problem only
solved for special cases (Kung and Traub [73],
Meersman |75l and Wozniakowski I75bl).) We shall
show, In a sense to be made precise in the next sec-
tion, that the error coefficient is insensitive for a
large portion of Its domain and that complexity is
determined primarily by the complexity index. We
shall also show there are cases where complexity
is determined primarily by the error coefficient

function.
The complexity index is the reciprocal of a quan-

tity called the efficiency index which has played an
important role in iterative complexity. See, for
example, Traub |64, Appendix C], Traub [72],
Paterson [72] and Kung |73al. Since complexity
varies directly with the complexity Index we feel that
the complexity index rather than the efficiency index,

should be basic.
We have been considering the case p > 1. For

completeness we write down the case p = 1 Then
». ■ A«, *, I • 1, 2,...,k and ek= Ake0= ieQ. Hence

(2.12) k
t

lg(1/A)
comp

We shall not pursue the case p = 1 further and shall
assume for the remainder of this paper that p > 1,
unless we state otherwise.

3. Bounds on the Error Coefficient Function
We turn to an analysis o' the error coefficient

function which is one of the two factors which deter-
mines the complexity in (2.10). To see which values
of Wp are of interest, note that from (2.3), e^ < eQ if*

wr 1 From the definition of k it is clear thai k > 1

and hence from (2.7), (2.8),

w < (1/()1/(p"1). Hence we assume

1/(P-1) ,t/(p-1)
(3.1) 1 < wp < (1/.)

Generally w depends on p. For many classes of

iterations

(3.2) aP"1 < A < bp'1.

Then

1/(ae0)>wp> 1/(be0)

and the bounds on Wp are independent of p. If (3.2)
holds for a class of iterations 0 we shall say the class is
normal. An example of a normal class of iterations
may be found in Wozniakowski 175bl. To simplify
notation we shall henceforth write wp as w whether
or not we are dealing with a normal class.

Now, g(w) is a monotonically decreasing function

and

lim g(w) = m, lim g(w) = 0.

w •1+ w •00

To study the size of g(w) we somewhat arbitrarily
divide the range of w, given by (3.1), into three sub-

ranges. The bounds are not the sharpest we can

obtain,

T < w < 2. Since g(w) = ig(t + lg w) - igig w and
0 < Ig w < 1, we conclude

ig t-'glg w < g(w) < ig(i+t)-igig w.

2 < w < f. Since g(w)., g(2) = lg(1+t), g(t) > Ig •

-Iglg t, we conclude

Ig t-lglg t < g(w) < lg(i+t).

f < ^ < 2t/(P-l), 2t/(p-1) > t. Then

ig p < g(w) < 1 + Ij t-lglg I.

To get some feel for the length of these sub-
ranges, observe that if e, represents relative error
then in single-precision computation on a "typical"
digital computer we might take . = 2"32. Then

,t/(p-1)_ ,32
t = 32 and if p = 2, then 2 '- 2 .

From the bounds on the error coefficient function
and (2.10) we immediately obtain the following

bounds on complexity.

THEOREM 3.1. If 1 < w < 2,

(3.3) z(lg t-lglg w) < comp < z(lg(1+t)-lglg w).

If 2 < w < t,

(3.4) z(lg t-lglg t) < comp < zlg(1 + t).

If t<w s^P"1), (with2,/(P-1'>t),

(3.5) c < comp < z(1 + Ig t - Iglg t).

We discuss some of the implications of this
Theorem. As w approaches unity, then for » fixed,
comp •" - zlglg w. In this case the effect of the error
coefficient A and the initial error e0 cannot be

33

neglected

u

PPPIIPIPIPP« •mm^m^mmmi*, ■ n ■(Jinwwi Nl U.UIWIWWWIIH

r

34

Complexity depends more on the nearness of w
to unity than of» to zero. To see this, observe that if
2 < w < t, comp - zlglg(1/<) = comp1 while if 1 <

w < 2, pomp - z(,lglg(l/() - Iglg w) ■ comp g- Let
, = 2-2', w-1=2-2'ln2. Then comp1 = jz, compg
-. z(j + 2i).

Note that for any p > 1 the complexity of an itera-
tion can be greater than if p = 1 (see (2.12)) provided
w is sufficiently close to unity.

For any w > 2, complexity is 'xiunded from above
by zlg(1 +t) and is therefore independent of the error
coefficient A and the imtial error e0 For w > 2, com-
plexity is insensitive tc w and we need only crude
bounds on w.

For 2 < w < t,

1-lglgt/lgt < comp/(zlg t) < 1+lg(1+f1)/lg t

Therefore

1+0(1) < comp/(zlg t) < 1+o(1)
and we conclude that on 'he interval [2,1] we have,
for t large, very tight hounds on comp with

(3.6) comp - zlglg 1/«.

This should be compared with the case p = 1 (see
(2.12)) where comp varies as Ig 1/«.

We have taken w = 2 as one of our endpoints for
convenience but this is of course arbitrary. Any value
of w sufficiently far from unity will do. If w = 2
then g(w) = lg(1 + <'t). Then the effect of the nearness
of w to unity and of < to zero are equal if c = t. that is
If w = 21/t. For this choice of w, comp = zlg(1+t)
- 2zlg t = 2zlglg 1/<.

We have chosen the sub-ranges of w so that the
endpoints are simple. We could also cnoose values
of w that make the complexity formula simple, if

w = 2t/'t "1*, u > 1, then comp
while if

uzlglg(1/.).

w = 2 ,1/(1 ^/i

'*),¥ > 1, then comp = (i/1.)zlglg(1/<)

We now consider the methodology for comparing
two iterations which are governed by the constant
error coefficient model (2.2) and decrease the final error
by the same «. Let w^ z^ compi, i = 1,2 denote the
parameters of the two iterations. Then

comp1 ,z1vg(w1)

compg Vz^/g^)

Clearly if z1 < Z2 and w1 > wg then comp1 <
compj We obtain bounds on comp., /compp for sub-
ranges of the w. Using the bounds on complexity
from the previous theorem we obtain

THEOREM 3.2. If 1 < w.,, w2 < 2, then

(3.7)
,1.,^ lgt-lglgw1 ^ comp1 ,z1 igli+t^l.-'qw^

AzÜVig^g^wp >
/ziw igt-'gigwi v

lz9Aig(i+t)-igigV 2/ comp2

If 1 < w2 < 2 < w < t, then

(38)
c1

Ig t-lglg t v comp1 ,z1v , lg(1+f)

\T2A lg(1 +t)-lglg w2P comp2
<Vz2Alg t-lglg w^

If 2 w^ w« ^ t, then

/z wig t-lglg K comp1 (z^, lg(1+t).

We discuss some of the implications of this
theorem. As t •<», compi/comp2 •z1/z2 for r..->y
fixed values of w^ w2. The ratio z1/z2 'las been the
way that iterations have been compared (see Traub
[64, Appendix C] where efficiency indices are used).
Theorem 3.2 shows that z^Zg can be a very poor
measure of comp1/comp2; see for example (3.7).

Finally we observe that inequalities (3.7)-(3.9) can
be rewritten to show when comp-| < comp2 or
comp2 < comp^ For example, if 2 < w.,, w2 5 t,

(3.10) z. < zf'g t"lgl9 ^V then comp. < comp2.
1 2V lg(1+t) / 1

4. The Variable Error Coefficient Model

We turn to the variable error coefficient model,

A complete analysis of this model is beyond the
scope of this paper. Here we confine ourselves to
the very simple assumption

(4.2) A. < A. < A... i = 1 k.

let

w.

.P-1

eo

1
&P-1
AU eo

■-

J UIIWIWWI II .! « Jl JlUl^WWl^WiWIiWIpiPP ^m*^*mimmm^' nii>:.>mmim • . ■"

1'
■A :

'1

Then

(4.3) zg(wL) < comp < zglwy)

Note that w,. < wL and therefore (4.3) is compatible
with g being a monotonically decreasing function.
We can now draw conclusions from the constant
coefficient model with A replaced by AL or Ay.

EXAMPLE 4.1. Let a be a real zero and let J denote
an interval centered at <(. Assume f does not vanish
in J and let x0t J and such that

eo =lxo-

min |f'(x)|
x6J
max|f"(x)|
xCJ

2A,

Then by Example 2.1, for Newton-Raphson iteration,
w U 2 and a priori

(4.4) comp < c lg(1+t) ■

The value of c is discussed in Section 5. Note that a
sufficient condition for convergence is

e0 < I/Ay

but with only this condition, complexity could be
extremely large.

EXAMPLE 4.2. We seek to calculcts a1 , that 's
sol/ef(x) = x2-a. Let a = 2mX2, m even, 1/2 < X2 <
2. Then a1/2= 2m/2A, (1/2)1/2 < X < 21/2. We use
Newton-Raphson iteration,

xi+i= Hxi+Jir)
Then A, = 1/(2xj.1). If x0 > X, then

'L
Hence

AL =1/(2x0)< A, < 1/(2X) = Ay, i " 1,

1-X/x, WU =

2X/x0

1-X/xr

Let <0 = 2 . Then Wy > 2 and comp < c lg(1 +t).
Tc derive a lower bound on complexity one must
make an assumption about the closest machine-
representable number to 21/2. We do not pursue
that here.

5. Bounds on the Complexity Index

We have shown that provided w is not too close
to unity, then for fixed (, complexity depends only
on the complexity index z. In this section we turn our
attention to the complexity index.

Recall that z = c/lg p. We begin our anal 'sis of z
by considering the cost per step, c. We di£.,::iguish
between two kinds of problems.

We say a problem is explicit if the formula for f
is given explicitly. For example, the calculation of a
by solving f = x2-a is an explicit problem. The
complexity of explicit problems has been studied by
Paterson [72] and Kung [73a], [73D]. (Paterson and
Kung take the efficiency index as be- c.) We do not
treat explicit problems here.

We say a problem is implicit if all we know about f
are certain functionals of f. Classically the func-
tionals are f and its derivatives evaluated at certain
points. These functionals may be thought of as black
boxes which deliver an output for any input.
Kacewicz [75] has shown that integral functionals are
of interest. The question of what functionals may be
used in the solution of a problem are beyond the
scope of this paper. We confine ourselves to implicit
problems for the remainder of this paper.

We assume the same set of functionals is used at
each step of the iteration. The set of functionals
used by an iteration algorithm 0 is called the in-
formation set N. Wozniakowski [75a] gives many
examples of N. Let the information complexity u =
u(f,A/)be the cost of evaluating functionals in the
information set N and let the combinatory complexity
d ■ di0) be the cost of combining functionals (see
Kung and Traub [74b]). We assume that each
arithmetic operation costs unity and denote the
number of operations for one evaluation of I«' by
c(f())). The following simple example may serve to
illustrate the definition.

EXAMPLE 5.1. Let 0 be Newton-Raphson iteration

Ki + 1 0(X|) f(x,)/f(Xi), i ,k-1. Then

N = [f^M'tXi)!, u(f,N)= c(f) + c(f'), d(0) = 2.

Up to this point we have illustrated the concepts
with algorithms. Computational complexity deals
with classes of algorithms and we turn to our central
concern, lower and upper bounds on classes of
algorithms. As usual the difficult problem is obtain-
ing lower bounds. Good lower bounds may be
obtained from good lower bounds on cost and good
upper bounds on order. The problem of maximal
order is a difficult one about which a great deal has
been recently learned (Meersman [75], Woinia-
kowski [75al, [75b]). Part of the mathematical dif-
ficulty of the subject deals with the problem of
maximal order. Note however that maximal order

35

MflMHi MMMMkMittiHHiiiiiiii

«^^■mpMi 11 n JU upppiwp^- iViuunwiiUHP ui •iiiij>iffiJiiii|^iijupiiauu

T» i i

36

does not necessarily minimize complexity; we deal
with this in a future paper. Upper jounds are
obtained from algorithms. An interesting question
here is a good upper bound on the oombinatory
complexity of a class of alQorithms. Brent and Kung
[75] have obtained a surprising new upper bound,
0(r Ig n), on the combinatory complexity on a family
of nth order one-point iterations based on inverse
interpolation.

It is convenient to index our algorithms by n, »he
number of elements in the information set N. We
illustrate the issues with two examples.

EXAMPLE 5.2. Let 0n denote any one-point itera-
tion with N = If^M'tXi) f(n-1) (Xi)|. Let cf = m|n

c(f(')) Then u(f,/V) ^ "Cf. For simplicity we use the
linear lower bound d(0n) > n-1. (No non-linear
lower bound is known.) A sharp upper bound on the
order of one-point iteration (Traub [64], Kung and
Traub I74al) is p < n. Hence

nCf+n-1
2(</.n,f) --

z^n.') * -iifT

Ig n

ncf+n-1 3CJ-I-2

ig3

provided only that c, > 4 (Kung and Traub 174bl).
Hence for any one-point iteration with wL < t

(5.1) comp >
3c(+2

Ig 3
(Ig t - Iglg t).

On the other hand thero jxists a one-point iteration
which uses f, f, f" and such that p = 3. Hence if

vu > 2,

(5.2) comp <
c(f)+c(f)+c(f)

igd+t).
Ig 3

For problems such that c(f) m c(f') ^ c(f") * cf the
lower and upper bounds of (5.1) and (5.2) are close
together.

EXAMPLE 5.3. Kung and Traub [74a) show there
exists an iteration \in for which the information set r n n H

N consists of n evaluation of f with p(^n) = 2"'' and

d^n) = (3/2)n2 + (3/2)n - 7. Hence
3 2 1

nc(f)+ 2n +f n-7

n^l
The complexity index is minimized (Kung and Traub
(■/•4b]) at n* = round[1 + {Ä{c(i)-A))y2] = 0(c(f))1/2

and 3

zUn)

o
(c(f))1

It would only be reasonable to use this high an
order iteration for very small (. Assume t » p*
_ 2" -1

Observe that z(\;n) is a very 'flat" function of n.
Thus z(^3) = (3/2)c(f) +11/2 and comparing this
with z(i/n.) shows we can gain only another(l/2)c(f).

Let 'I' denote the class of all multipoint iterations
for which Wy > 2. Then

comp(.|>) < c(f)lg(1+t)/(l + ^ryA
V (c(f))1/2/

We can obtain a lower bound on the complexity of
the class of multipoint iterations by using an upper
bound on the maximal order of any multipoint itera-
tion and a lower bouno on the combinatorial com-
plexity. Kung and Traub [74a) conjecture that any
iteration without memory which uses n pieces of
information per step has order p < 2n . This con-
jecture seems difficult to prove in general (Woznia-
kowski [75b]) but has been established for many
important cases (Kung and Traub [73], Meersman

]75], and Wozniakowski [75b]).

6. Summary and Extensions to the Model

We have constructed a non-asymptotic theory of
iterative computational complexity with strict lower
and upper bounds. In order to make the complexity
ideas as accessible as possible we have limited our-
selves to scalar non-linear problems. Tne natural
setting for this work is in a Banach space of finite or
infinite dimension and we i.iall do our analysis in
this setting in a future paper. We have focused on

Aef More realistic the simplified model ej - "«j.i
models include some of the following features;

l.e = AeP

■ Miei-1
structure of A:

under various assumptions on the

Jm 2. e, = A|e: 1. ...e^'' . This is the appropriate
model for iterations with memory.

3. Variable cost per iteration, Cj.

4. Include round-off error. Then e| will not converge
to zero.

We plan to analyze these more realistic models in the
future. We also intend to investigate additional basic
properties of complexity. Our various results will be
used to analyze the complexity of important prob-
lems in science and engineering.

mm

Acknowldgement
We thank H. T.

paper.

Kung for his comments on this

^^l^^-t^^^^

mmmm
JJ

HMMpfov 11 ■wiJuiiiMWHmwippn^.iip.upi """••

I

References

Borodin and Munro (75) Borodin, A. and Munro, I.
The Computational Complexity of Algebraic and
Numeric Probhms. American Elsevier, New York,
N.Y., 1975.

Brent and Kung 175] Brent, R. P. and Kung, H. T.
In preparation.

Kacewicz [75] Kacewicz, B. The use of integrals in
the solution of non-linear equations in N dimen-
sions. To appear in analytic Computational Com-
plexity. Traub, J. F. (ed.). Academic Press, New
York, N.Y., 1975.

Kung [73al Kung, H. T. A bound on the multiplicative
efficiency of iteration. Journal ol Computer and
System Sciences 7 (1973), 334-342.

Kung |73bl Kung, H. T. The computational com-
plexity of algebraic numbers. SIAM J. Numer
Anal. 12 (1975), 89-96.

Kung and Traub [73] Kung, H. T. and Traub, J. F.
Optimal order and efficiency for iterations with
two evaluations. Technical report. Computer
Science Dept., Carnegie-Mellon University, Pitts-
burgh, Pa. 1973. To appear in SIAM J. Numer.
Anal.

Kung and Traub [74al Kung, H. T. ar,d Traub, J. c.
Optimal order of one-point and multipoint itera-
tion. Journal ot the Association for Computing
Machinery 21 (1974) 643-651.

Kung and Traub [74bl Kung, H. T. and Traub, J. F.
Computational complexity of one-point and multi-
point iteration. Complexity of Computation. Karp,
R. (ed.). American Mathematical Society, Prov-
idence, R.I., 1974, 149-160.

Meersman |751 Meersman, R. Optimal use of in-
formation in certain iterative processes. To appear
in Analytic Computational Complexity. Traub, J. F.
(ed). Academic Press, New York, N.Y., 1975.

Paterson [72] Paterson, M. S. Efficient iterations for
algebraic numbers. Complexity of Computer
Computations, Miller, R. and Thatcher, J. W.
(eds). Plenum Press, New York, N.Y., 1972,41-52.

Traub 164) Traub, J. F. Iterative Methods for the
Solution of Equations. Prentice-Hall, Englewood
Cliffs, N.J., 1964.

Traub |721 Traub,.). F. Computational complexity of
iterative processes. SIAM Journal of Computing
1 (1972), 167-179.

Traub |75| Traub, J. F. (ed.). Analytic Computational
Complexity. Academic Press, New York, NY.,
1975.

Woiniakowski |75a| Woiniakowski, H. Generalized
information and maximal order of iteration for
operator equations. SIAM J. Numer. Anal. 12
(1975), 121-135.

Wozniakowski [75bl Woiniakowski, H. Maximal
order of multipoint iterations using n evaluations.
To appear in Analytic Computational Complexity.
Traub, J. F. (ed.). Academic Press, New York
N.Y., 1975.

37

■11-"
,. . .„ .. .!. M .. „

■t

\ ,

•

St'

*W—mmpp mm m^m*m* <mmm ■^^"^■PPBP »^iPP^liiiPPPIPPPBi n »^ii« 1

' I

The CMU RT-CAD System: An Innovative
Approach to Computer Aided Design

Mario R. Barbacci and Daniel P. Siewiorek

I. Introduction and Motivation
As technology has evolved the primitive com-

ponents available to a digital system designer have
changed dramatically. Twenty-five yeais ago the
designer constructed his systems out of circuit level
components such as resistors and diodes. Sub-
sequently switching circuit level components, as
represented by gates and flip-flops, became avail-
able as small scale integration (SSI) components.
With the Introduction of medium scale integration
(MSI) register transfer level components appeared:
arithmetic and logic units registers, shift registe ;.,
etc. The advent of large scale integration 'LSI) has
made memories and even processors primtive com-
ponents from which systems are desijned. Two
trends can be observed from this technological
evolution: 1.) primitive comporc-.'.o continue to
increase in complexity and 2.) the rate of introduc-
tion of new components continues to increase.

In response to the first trend, designers have been
limiting their excursions into switching circuit level
design to only small portions of the system (e.g.. bus
controllers, etc.). In some register transfer level
module sets (Bell |72|, Clark |67|) these excursions
have been completely eliminated.

Because of the second trend, rapid technology
evolution, there is a need to shorten the delay time
between the Introduction of a technology and its
effoctlve use in new computing systems. Also, as
technology changes so does its cost. The design
process must, theiefore, be accelerated if the poten-
tiality of the Improving technology is to be realized.

This peper describes a set of design programs
developed at Carnegie-Mellon. The ultimate goal is
to minimise the effect of changing technology by
building a Computer Aided Design System that
implements a technology-relative design process.

II. Overview of the Automatic Design Process
Given the complexity of a digital system, design-

ers have sought to develop automatic means to
reduce the cost and time of the design process. The
objective was to relieve engineers of repetitive, time
consuming tasks such as:
(1)The generation of detailed design information

(gate and chip types, etc.)
(2) The control of changes in the design documents
(3) The checking of the system for electrical, logical,

and physical compatibility (fan-out limits, etc.)
(4) The generation of detailed manufacturing in-

formation (chip placement, board layout, etc.)
This early view of design automation limited itself

to filling the gap between the low-level design
specifications and ihe manufacturing data Behav-
ioral specifications were in the form of Boolean
equations and the design programs translated them
into their equivalent logic diagrams and wiring listf.
Mosst of the synthesis algorithms at this level dealt
with the problem of reducing or simplifying the
Boolean equations (Breuer |72|).

Subsequent efforts were directed towards a sys-
tem capable of accepting a higher level of behavioral
description, although still oriented towards r gate
level implementation (Darringer 169), Friedman
169|).

Current design automation effort is shifting from
implementation in terms of the switching circuit
level to implementation In terms of the Register
Transfer level. Register Transfer level simulators
have preceded this trend by several years (Dar-
ringer |69|. Mesztenyi |68|, Parnas |67|, Rozenberg
|711). The closeness of RT level descriptions to con-
ventional programming accounts for this early
success. Register Transfer level descri^'ions are
easy to transliterate into executable programs in a
conventional programming language (e.g., FOR-
TRAN, Algol, etc.), thus providing inexpensive and
fast simulation (although in many cases RT lan-
guages are compiled directly). Register Transfer
level synthesis algorithms have been less success-
ful. A few programs have been develoj 9d that take
an RT level description as input and compile It
directly into a known set of RT level hardware
modules (Chartran, AHPL). Figure 1 depicts a typical
RT design automation system. The RT level descrip-
tion serves as input to several software modules.
Syntax checking insures a well formed description.
Static checking attempts to locate logical design

39

■MMMM^MI M

. 1

*.l

■ 1

j i
I

errors (such as deadlocks, redundancy, etc.)- The
simulator is used to debug the design dynamically.
Finally, the description is cast into hardware via the
wiring list generator.

The essential feature lacking in conventional RT
Design Automation (DA) systems, and DA systems in
general, is the exploitation of alternative implemen-
tations derived from the initial behavioral specifica-
tion. Consider the augmented DA system depicted
in Figure 2. The inputs are the RT level description
and designer given constraints. The output is the
specification/simulation of the hare «are that at-
tempts to optimize the system according to the
design constraints. By allowing the description of
various module sets the system can perform design
relative to technology thus speeding up the incor-
poration of new technology into the design process.
Also, such a system will allow experimentation with
multiple module sets, each tailored to a specific
class of problems. The system would also facilitate
the design of the module sets themselves. Since the
system operates on a symbolic description of the
modules, a non-existing module set can be fed to the
system for experimentation purposes. Such experi-
ments will point out the advantages and disadvan-
tages of the proposed module set.

At this point it would be instructive to describe
the order in which the DA programs are typically
used in the design process. This will serve to place
subsequent discussions in perspective. Given a
computational task, there are usually several algori-
thms that can be employed. The algorithm that is
selected by the designer is described to the design
automation system (Figure 3) and placed in a data
base. Subsequently all design automation pre ams
will use this data base. A high level simulator can
execute from the data base to facilitate user de-
bugging of the initial description.

Next some evaluation and reshaping of the
algorithm is undertaken. Analysis tools have been
developed to check the algorithm for well-formness
(e.g., deadlock conditions, etc.) (Huen [75]). Pertur-
bations of the basic algorithm can also be attempted
such as: series-to-parallel transformations, replac-
ing loop counters by wired-in control, and using
table look-up in lieu of computing the value of func-
tions. Thus attempts are made to first bind those
design decisions with global implications. While
these perturbations can be performed independent
of the physical design, the evaluation of their
ultimate desirability may depend upon the module
set used to implemeni (he final, physical design.

Finally, the actual physical design is performed
in terms of RT level modules. The module set can
be selected from a library of module sets or a user
described set. At this level several forms of alloca-

tion variations are encountered:
• Registers. Determine the allocation of the abstract

variables to registers and memory.
• Data operators. Determine the number of opera-

tors of each type in the design.
• Control. Select control schema from among unary

state encoding, binary state encoding, micro-
program control, etc.

• Bus-Link clustering. Many RT designs start with a
set of registers tor variables and interconnect
them with links to operators (add, shift, multiply,
etc.). After a point the interconnections between
certain registers and operators become numerous
enough to warrant replacement by a bus.

• Operator interconnection. The interconnection of
operators has been shown to have a significant
effect on the test generation effort required for the
physical implementation (Stephenson (74]).
The signal level design verifier can be used to

analyze the intermodule signal relationships in pro-
posed module sets. Even well-established module
sets have exhibited deadlock behavior in what
appear to be straightforward interconnections (Huen
1751).

A first version of the above system has been im
plemented at Carnegie Mellon and is shown in
Figure 4. The behavioral specifications of the system
to be designed are provided in terms of the ISP
language (Bell 171], Barbacci [75]). The compiler
produces an "object"1 program which is then loaded
into the data base and manipulated by different
design programs.

The next five sections will treat the applications
programs in detail. Section III described EXPL, a
module independent design program that examines
series-parallel variations in the original algorithm.
The following section presents the physical alloca-
tors for two existing RT module sets—RTMs and
Macromodules. Section V discusses the heuristics
used by EXPL to explore the design space. Sample

1 The compiler produces an object" program in
terms of a set of Register Transfer level primitive
operations. This program appears m the form of an
executable BLISS (Wulf [71]) program where each
Register Transfer operation is represented by a call
to a user-provided subroutine. By changing the set
of subroutines, the compiler can support many
diverse activities. The creation of the data base is, in
fact, done by a specific set of subroutines. The
compiler and the ./'.nguage are therefore indepen-
dent of the applications. The uniform compiler output
and the flexibility of the subroutine-call mechanism
has simplified the interfacing to other application
programs.

41

>'J

design spaces, examples of the application of the
heuristics, and some observations are presented
in section VI. Section VII concludes the discussion
of the existing system by briefly outlining the remain-
ing applications programs.

III. Automatic Design Space Exploration
EXPL (Barbacci (73]) takes as input the object

code produced by the ISP compiler, together with a
set of user given speed/cost constraints/tradeoffs.
The compiler output is used to generate a graph
representation of the behavior of the system.
Subsequently, various series-to-parallel and
parallel-to-series transforms on the graph are
attempted to establish a new design. Several alter-
native designs are generated and passed to module
set evaluators which complete and evaluate the

42 design in terms of its hardware module set. Using
this evaluation and a set of heuristics, EXPL decides
which solutions should be kept to generate other
solutions by yet another application of the graph
transformations.

Figure 5 is the ISP description of an 8-bit mul-
tiplier that will be used as a running example to il-
lustrate various aspects of EXPL. The algorithm is a
variant of the shift-and-add algorithm. The multiplier
is in the P register and the multiplicand is in the MPD
register and is assumed to occupy the leftmost 8 bits
of the register. The product will be in the P register.
The partial products are formed in the left hand side
of the P register and shifted to their appropriated
position in the final product. A counter, C, is used to
keep track of the number of times the basic mul-
tiplication step has been performed. Additional
details about the algorithm can be found in (Bell
172]).

The description begins with the specification of
the label for the program (MULTIPLIER). Labels are
used in ISP to identify activities so that they can be
branched to, or used as subroutines.

MULTIPLIERS
(DECLARE MPD < 15:0> ; P < 15:0> ; C < 15x v

ERALCED
C. 8 NEXT
LI:- (
(DECODE P<0> = > P. P SROI;

P. (P + MPD) SRO 1)
NEXT C C-1NEXT
(IF C NEQ 0 = > LI)

Figure 5.
The ISP Description of the Multiplier.

The program itself is enclosed in parenthesis, and
consists of two parts. The declarations and the
specification of the behavior. The former are
specified as a list of individual component
declarations (multiplicand, multiplier/product, and
step counter), using the reserved identifiers
DECLARE and ERALCED as brackets. The
specification of the activities of the system is given as
a list of two sequential steps. The first step (C- 8) in-
itializes the counter and the second is given by a
labeled (LI) block of activities. These consist of a
sequence of three steps. The first one performs the
basic multiplication operation; the second step
decrements the counter; the third step tests the
counter to see if the operation has been completed.
If the value of the counter has not reached 0 then a
jump to the label is indicated by using the label as an
activity. If the counter is 0 then control flows out of
the labeled statement and reaches the end of the
program.

The basic multiplication operation is described
using the DECODE control operation. It implements
an n-way branch depending on the value of the
expression following the operator. The alternative
paths selected by this operation are given as a list
using the";" as delimiter. The first path (P- P SRO
1) is selected if the value of the controlling expres-
sion (P< 0>) is 0; the second path (P. (P + MPD)

' SRO 1) is selected if the value is 1. The operator
' SRO repiesents a shift right inserting zeroes. The

number of shifted positions is given by the second
operand (in this case the integer 1).

Figure 6 shows the graph representation of the
ISP description. The mapping from the ISP descrip-
tion to the graph form is apparent from the example.
The system graph contains a unique entry point (the
START operation) and a unique exit point (the STOP
operation). In addition to these two operations, there
can be five other types of operations in the graph
model:
• branch, activates one of the output paths depend-

ing upon the value of some operand.
• serial-merge, activates its output path when any of

its input signals arrive.
• diverge, activates concurrently all of its output

paths.
• parallel-merge, activates its output path when all

of its input signals arrive.
• data-operation (other).

Examination of the graph for the multiplier
example Indicates several possible alternative de-
signs. For instance, the computation of the loop
count (C- C-1) does not depend on the shifting and
adding steps (P. P SRO 1 and P- (P + MPD)

' SRO 1); the two sets of operations do not have
variables in common. Thus the decrement of the

■

1

.

two registers of an arithmetic unit. There are certain
trade-offs that can be achieved between the time
taken to move variables in and out of these special
registers versus the cost of adding txtra arithmetic
units in order to use their registers. In
macromodules the critical choices are associated
with the binding of data operations to data
operators. For instance, we can opt to implement all
data operators in terms of an auxilliary register, used
as an accumulator. There are trade-offs between the
time needed to route the data to and from the ac-
cumulator versus the cost of having more
specialized data operators, associated with the in-
dividual registers.

An important distinction between macromodules
and RTM is the degree and flexibility with which con-
currency of operations can be implemented. As we

46 mentioned before, RTM operands (registers,
memories, etc.) are physically connected to a single
bus. This implies that variables can not be readily
shared by concurrent computations. Common
variables must be copied and allocated
separately—a process which degrades both the cost
and speed of the design. Macromodules on the other
hand allow almost unlimited concurrency; variableb
are accessible directly from any part of the system
and there is no need to allocate extra copies. These
properties of the module sets imply that, while in
macromodules the intuitive feeling that parallelism
implies extra cost and extra speed holds true, in
RTM's the need to allocate and transfer variables
between the buses may so degrade the performance
that for certain systems more concurrency implies
more cost and less speed.

V. Heuristics and Design Space Trade-Offs
Due to the interaction between series/parallel

transformations in EXPL it is a difficult task to for-
malize the optimization (improvement of alternative
structures) as a mathematical optimization problem.
The main difficulty is the fact that transformations
apply to subgraphs of arbitrary size and, as a con-
sequence transformations in a given alternative
structure may or may not be feasible or desirable in
structures derived from it. It is also the case that new
cases of transformations become feasible or
desirable only after a specific sequence of transfor-
mations has been applied.

Two parameters will be used to describe the
design space: The cost of the hardware involved and
the operational time. The former is obtained by ad-
ding the costs of the components used in both the
data and control structures. The latter is obtained
from the average speed of the operations involved

For a straight sequence of operations the time
required is the sum of the individual times. Figure

12.a. In the presence of concurrent activities, the
operation time is that of the longest (timewise)
sequence. Figure 12.b.

When computing the times required by the alter-
native paths of a branch operaton EXPL assumes,
by default, that all such paths have equal
probabilities of being executed (the probability
being 1/n for n-way branches). This default can be
overruled by the user by specifying the branching
probabilities for the individual paths. The computa-
tion of the times required by the paths is then
weighted by the branching probability associated
with the path. Figure 12.c. The execution time is then
the sum of these weighted path times.

The presence of cycles (loops) adds some com-
plexity to the estimation of the operation time. In this
case the level of nesting is assumed to be propor-
tional to the frequency of execution of the
operations. Conceptually this is equivalent to
replacing the cyclt, by a sequence of multiple copies
of the individual operations. Since the number of
times a loop is executed (i.e., the number of copies)
is usually unknown, a default (2) is assumed (this is a
consequence of the default 50% probability of
branching back to the loop head). This default may
be overruled by the designer by specifying an es-
timate loop count or, alternatively, simply the
branching probabilities if the loop count is not
known. Figure 12.d.

Having defined the parameters of the design
space we can now describe the trade-offs Involved in
the transformation rules. Connectivity and data
dependency are used in the system to indicate the
feasibility of a transformation. Feasible transfor-
mations, however, do not imply necessarily any ad-
vantage in their application and the desirability of
such a trarsformation is indicated by a different set
of conditions.

The exploration of the design space in our system
is performed by a group of heuristic routines that
produce alternative designs in a goal oriented
fashion; the goal being specified by the designer.
Ideally, the goal is to find an alternative structure
whose position in the design space is as close as
possible to the origin (0 cost and 0 time). This idea
case is. however, not easily found in real solution s.
The usual case is that the least expensive solution is
not the fastest and vice versa. This characteristic
provides a rough classification of the design objec-
tives into two classes: minimal cost and minimal
time.

Although a designer's aim can be classified accord-
ing to these objective functions, it may be the case
that the real objective is more complicated in nature,
namely, some combination of time and cost. For in-
stance, the objective could be something like: "the

—

^1
X

.. fe.

fastest alternative structure not costing more than x
dollars."

For simplicity, the subspace of acceptable
solutions will be defineu by a set of straight-nne
segments whose slopes reflect the objective func-
tions. In the example above a single straight line,
parallel to the cost axis, would be used to divide the
space in two halves. Only those solutions that lie in
the semispace containing the origin are considered
acceptable. These solutions represent im-
provements along the design goal.

More complex constraints can be described by
using lines of the form C = -m*T + b, where m is a
parameter indicating how many dollars the designer
is willing to pay for each time unit saved (if time is the
primary goal) or how rrnny time units the designer is
willing to sacrifice for et ch dollar saved (if cost is the
objective). An example Figure 13, will clarify this
description.

Assume that the .^rirnaiy objective is a reduction
in time and that the designer wants a time/cost
trade-off of at most m dollars for each time unit im-
provement. Furthermore, assume that the original
design is characterized by C1 and T1. The "accept-
able trade-off" subspace would thus be delineated
by two line segments: one parallel to the cost axis
starting from (T1 ,C1) to (T1,0), and the other through
(T1,C1) with slope -m. By studying the control flow
and data dependencies in this original structure,
four transformations are available which yield four
alternative solutions derived from the original one
A,B,C,D.

By dividing the space according to the trade-cff
lines alternatives B. C, and D can be rejected
because their characteristics are not within the
acceptable subspace (i.e., they take more time or the
decrease in time costs too much). The alternative
left. A, represents improvement in time while the
cost to achieve the improvement is under the
designer's threshold.

The process can now be applied to A in an iden-
tical manner. Design A is taken as the new initial
solution and a new "acceptable trade-off" subspace
is defined by a line segment (T2,C2) to (T2,0) and a
line with slope -m through (T2,C2). Since in some
cases more than one alternative can be left for
further exploration, this process takes the form of a
tree walk where the nodes represent alternative
solutions and the edges are the transformations
applied. In some instances, identical structures can
be obtained by different sequences of transfor-
mations and the exploration of the design space is a
praph-walking orocess. In any event, a path ends
when no alternative solutions worth exploring can be
reacned from a given point. When all possible paths
have been explored the end nodes are measured

47

Figure 12
Time Estimation

COtl A

Figure 13
Design Space Reduction

I

against the primary objective and the best one
chosen.

In general, the space of alternative solutions looks
more like a graph than a tree. Several paths (i.e.,
sequences of transformations) may lead to the same
solution. Thus, it is important to detect points in the
space that have already been examined. Other
problems that arise in the exploration process have
to do with the cost of the process itself. EXPL does
not perform a brute force search. Accepting an alter-
native solution for further exploration depends upon
the goals indicated by the user. Besides the main
goals (speed, cost, and a trade/off factor) mentioned
before, the user 'an also specify a minimum percent-
age gain for a transformation-derived solution to be
acceptable. If the gain falls below this threshold the
new design is rejected. This pruning process, when

48 applied indiscriminately, can lead to an incomplete
exploration. It may be the case that although, a
derived solution is wcrse (according to the goals)
than its parent solution, solutions derived from the
former could in fact be better than the parent. EXPL
hf ndles the detection of this type of local optimality
by allowing the user to specify a rejection level. The
rejection level indicates whether or not non-
improving solutions are to be further explored. The
user specifies the maximum length of such non-
improving paths.

The following section briefly presents several
examples of design spaces. The examples illustrate
some of the points discussed previously.

VI. Sample Design Spaces
In this section we will present three examples of

the design spaces explored by EXP! . We will not dis-
cuss the specific systems whose design spaces are
depicted in Figures 14,15, and 16. The examples will
be used to show the characteristics of the design
spaces and the exploration procedures.

Figure 14 shows the design space for a RTM
system that is used as a controller for the X- and Y-
plates of an oscilloscope. The system is used at CMU
for RTM demonstrations (the "Munching Squares
Generator"). The first characteristic that can be
noticed is the stratification of the alternative designs.
The solutions appear in horizontal bands represent-
ing solutions of similar cost. This is due to the high
cost of the RTM buses compared with the cost of the
other modules in the RTM set. The space is divided
into bands corresponding to the 1, 2, 3, and 4 bus
solutions.

The figure shows the degrading effect in RTMs of
sharing variables between concurrent computations.
The best solution (in terms of speed) used 3 buses
and is faster than the 4 bus solutions. The algorithm
is such that, although it allows a high degree of con-

currency, when this degree exceeds a certain
threshold there is a loss of speed in the total system.
The path followed to find the best solution is in-
dicated in the figure. It is interesting to observe the
transition from solution 2 to solution 3. There is a
substantial gain in speed together with a reduction in
cost. The explanation is that once the cost of a bus
has been accepted as a reasonable price to pay for a
given gain in speed it does not cost much to spread
the load and perform more operations concurrently.
I.ideed, as the example shows, alternative allocation
of the computations to the buses, for a fixed number
of buses, io crucial.

F jure 15 depicts a feature of the search
procedure used in EXPL. When a solution Is
analyzed the set of feasible transformations that can
be applied to its graph is tabulated. The improve-
ment factor specified by the designer is then used to
prune this table. Th'p pruning takes place before a
transformation is applieu and is based on a
preliminary "best case" analysis of a candidate
transformation. The solution derived by applying the
transformation may or may not realize the potential
gain indicated by the preliminary analysis. This
reduction in the predicted gain is due to several
causes. If the goal is a reduction of cost, performing
two concurrent operations in sequence may not in
the case of RTMs result in a reduction in the number
of buses (other computations may require the bus
that was thought to be expendable). If the goal is a
gain in speed, adding buses may result in a loss of
speed due to the time required to copy and move
variables between the buses in the system. Similar
considerations can be applied to the case of
macromodules.

Figures 14 and 15 correspond tothedej gn spaco
for the same RTM system explored using different
improvement thresholds. In the space shown In
Figure 15, the preliminary improvement threshold
was set to a higher level (20%) than in the space
shown in Figure 14 (10%). An interesting
phenomenon occurred. The transformation in-
dicated by the directed line in Figure 15 had a very
promising preliminary evaluation (over 30%
predicted gain). When the transformation was
applied, the new solution did not realize the
predicted gain. It was, nevertheless, better than the
original solution and was later chosen by the system
as the best solution. All feasible (i.e., applicable)
transformations to this new solution were then
examined and none of them promised to be better
than the threshold. All of these transformations were
then rejected and the exploration path was ter-
minated. When the same situation appeared in the
example of Figure 14, there were several transfor-
mations that were better than the new, lower.

!

< J

mmmmmvmmw

■rJ

120 000 140 000 160 000 180 00O 200 000 220 000 240 000

mL

Figure 14
RTM Design Space (MSG System with 10% Improvement Factor)

threshold. One of them led in fact to the best solution
of the space of Figure 14. It is interesting to observe
in Figure 14 that the slope of the transformation from
solution 1 to solution 2 indicates a better cost/speed
trade-off than the transformation for thr original

iiimiiiiii i iiiMMi—ii i

solution -point 0 - to solution 1. The gain in speed
produced by the transformation, although smaller
than the threshold used in Figure 15, was achieved
completely; there was no overhead added to the
system by the extra concurrency.

m

xiii>.uMiiiiV:V«pi.i>ii^.npijii|i,.iiMiL..i|qpiHinnKII!HP^W

50

Cost
1800 _

1750 _

1700 _

1600 _

1500 _

1400 _

1300 _

1200 _

1100 _

1000 _

900 _

BOO

100 000 120 000 ^000 160 000 180 000 200 000 220 000 240 000 260 000 280 000

■ _ .: Time

300 000

.11
17400 _

17300 _

Figure 15
RTM Design Space (MSG System with 20% Improvement Factor)

145000 147000 149000 151000 153000 155000 157 000 169000 161000 163000

„; Tim«

165 000

Figure 16
Macromodule Design Space (Conveyor-Bin System)

Wi

f

jiiwumi.jm ..-mmm*m^*mmm

I

I

I

■ •

This type of anomalies is not uncommon in the
modular design spaces explored so far, if anything,
they tend to be the rule rather than the exception.
The p.uning of the applicable transformations,
based on a preliminary analysis, can lead us to ig-
nore certain transformation paths that may yield
better solutions. EXPL is, in this sense, not very
smart. Better heuristics are needed and research in
this area is actively pursued by the implementors of
the system. It is valid to ask, "why thno should the
system do any pruning at all?". The omy reason we
can provide is based on the analysis of the cases
studied so far. Applying a transformation without any
considerations to its possible gain is an expensive
proposition. For any solution, branching factors (i.e.,
number of feasible transformations) of 30 to 50 are
not uncommon. Applying a transformation implies a
reconfiguration of the graph and the recomputation
of several associated tables—an expensive opera-
tion in the current implementation. Applying each
feasible t/ansformation can lead to a very expensive
design process. The system as implemented allows
the designer to guide the exploration via an interac-
tive command language, in this interactive mode,
EXPL does not perform any pruning and the
designer is free to order the system to perform any
feasible transformation, regardless of its predicted
gain. The automatic mode of exploration can
therefore be used selectively under user guidance.

Figure 16 shows the design space for a system
designed is a controller for a conveyor-bin unit. The
design spacv. corresponds to the alternative designs
implemented using macromodules. The figure is a
good example of a design space with multiple paths
leading to the same solution. The space configura-
tion also indicates the charcteristic of macromodular
systems. Once a basic design is implemented,
variations in the levoi of concurrency do not present
the radical changes in cost typical of RTM system.
The basic costs of the macromodular system are
given by the memory and data operation modules
(the "stacks"). Variations in concurrency only imply
adding or eliminating control modules and cables, a
minor fraction of the total cost.

VII. Other Design Tools
Another application is design verification. It is

possible to develop an ISP description that is syntac-
tically correct but that does not make sense logically.
Figure 17.a depicts a syntactically correct ISP while
Figure 17.b illustrates the corresponding graph. The
graph is essentially the same one produced by the
ISP compiler. The data operations have been
deleted as a notational convet.ience (we can think of
the data operations as being assimilated into the
arcs connecting the control operations).

In the case of x = 1 the right half of the parallel
merge in the graph woulr receive two control signals
(one from the right half c the diverge, the other from
the left half via the branch). The other input to the
parallel merge would not receive a control signal and
the system would deadlock at the parallel merge.
Analytical tools based on the vector addition system
(VAS) (Huen 175|) have been programmed to detect
such design flaws.

The VAS is best introduced by example. Consider
Figure 17.b. The arcs in the graph represent register
transfers while the vertices represent control
primitives. Each arc may contain tokens repre-
senting evocation of the associated register transfer.
Graphically a token is represented by a dot on an
arc. A marking of a graph with r arcs is a mapping
from the set of r arcs to an r-dimensional vector of
nonnegative integers, each of which represents the
number of tokens on the corresponding arc.

A vertex with a token on its single input arc is said
to be enabled. Only enabled vertices can fire. The
firing of a vertex removes a token from the input arc
and deposits a token on its output an.. For the case
of multiple input arcs there is an associated logic
condition, either disjunctive (signified by a +) or
conjunctive (*). A vertex with disjunctive input arcs is

T»t: = (declare A<16;0>. BO5:0>; C<16:0>. XO; N<15:0>

eralced
(N-2 next LABEL, = A- B + C),
(A-A+C next (decode X= C-0; (C-l next LABEL)!)

)

Arc

0

1

2

3

4

5

Operation

A- A + C

N-2

A- B + C

C- 0

(a) ISP Description

| Stan

Divrrge

2

Branch >k) %ti»\ Mvrg«

ParalUI Mtre«

o
Slop

b) Graph Model Illustrating Deadlock (
D-lndex

in

M
03
1)4

M
M

Associated

Vertex in (b)

Displacement

Vectors

Diverge -1 t 10 0 0 0

Serial Merge 0 0 0 10 0-1

Serial Merge 0 0-1 10 0 0

Parallel Merge 0 0 0-11-10

Branch 0-100010

Branch 0-100001

Initial Marking M0 ' 1 0 0 0 0 0 0

arc 0 arc 6

(c) The Vector Addition System in (b)

Figure 17

51

I

^^m^zm^mmmmmmmmmmmm mmmmm
mm

ppp

r-

1

.. I

& i

enabled when any input arc has a token. Firing the
vertex removes a token from one input arc. This cor-
responds to a serial merge in the compiler produced
graph. A conjunctive input condition requires tokens
on ail input arcs before the vertex is enabled
'parallel merge). Firing the vertex removes a token
from all the input arcs. Likewise a set of ontnut arcs
can be disjunctive or conjunctive. When a vert, x with
disjunctive output condition fires it places a token on
one of the output arcs (branch). The conjunctive
condition places a token on all the output arcs
(diverge). A simulation is a sequence of permissible
vertex firings.

Simulations are conveniently represented by the
Vector Addition System (VAS) (Huen [75]), Figure
17.c depicts the VAS for the graph in Figure 17.b.
The VAS consists of an initial marking vector Mo and

52 a set of displacement vectors which correspond to
vertices. Each component of the vector corresponds
to an arc. All valid firings (new markings) of the
graph can be determined by adding a displacement
vector to the current marking Mi. Those additions
which result in all marking vector components being
nonnegative are valid markings and can be used to
establish subsequent valid markings. For example,
the only valid marking from the initial marking Mo
resulting from the addition of a single displacement
vector (e.g., D1) in Figure 17.c is (0,1,1,0,0,0,0). The
displacement vector D2 does not lead to a valid
marking since the result of its addition to Mo is
(1,0,0,1,0,0,-1).

A control flow tree depicting all possible markings
(or states) of the VAS can be constructed. A portion
of that tree for our example is shown in Figure 18.
Nodes are appended to the tree unit, for each leaf,
either its marking is identical to that of one of its
ancestors or no displacement vectors can be
applied. In either ca; the node is called a leaf

Properties of this tree can be used to detect
properties of the graph. For example, the leaf (0,0,0,-
0,1,0,0) represents a properly terminating sequence
since there is a single token on arc 4. By contrast,
leaf (0,0,0,2,0,0,0) represents two .okens on arc 3.
No tokens are on the exit arc. This is the deadlock
situation alluded to earlier. Furthermore, depending
on the actual physical implementation of the graph,
this leaf may indicate a lost signal.

Another obvious application is a simulator. The
subroutine calls produced by the ISP compiler make
the generation of a simulator particularly easy. Data
subroutines update the data structures and control
subroutines direct the flow of the simulation. A com-
mand language allows the user to direct the simula-
tion and examine the state of various data struc-
tures. It is also desirable to produce designs accord-
ing to criteria other than the traditional cost/speed

criteria. One such criterion is testability. The struc-
ture of the final design substantially determines the
ease with which tests can be generated for the
design. A testability measure (Stephenson |74]) has
been developed that correlates well with actual test
generation effort. It is important to note that the com-
mon representation used as input to the various
design programs is a critical feature that insures thai
the algorithm being evalua'.ed is actually the one
being implemented, verified, or simulated by the
other design programs.

0 10 10 0 0

D8

0 1 0 0 0 0 1 0 1 0

11!

0 0 0 0 10 0

1000000

Dl

V
0 110 0 0 0

D6

V
0 0 10 0 0 1

D3

V7 V
0 0 0 10 0 1

D2

V
0 0 0 2 0 0 0

Figure 18
Portion of the Control Flow Tree for the Example
of Figure 17

Computer Description
Language

System Program
Generator

Simulator

Hardware Design

Manual Generator

Microcode Generator

Design Venficalion

Compile'-Compiler

Figure 19 — SMCD
The Symbolic Manipulation of Computer Descrip-
tions

MjM^i^fcg^^ite^^

wim i...I« i M,Mi.«...MmH IHl.lt UIHWII ^

;!

i

v. '

'1

VIII. Future Directions
To achieve the goal of automatic jesign relative to

technology a mechanism is requireo that would take
the description of a module set and create the
equivalent of the ad hoc module set evaluators
currently in use. It was also noted in section IV that
the order of physical allocation (registers, buses,
operators, etc.) is a strong funciion of the design
style imposed by the module set. This information
would also have to be extracted from the module set
description.

The preliminary design automation system and a
machine relative optimizing compiler-comp ler
project serve as a stepping stone to an even more
ambitious project termed the Symbolic Manipulation
of Computer Descriptions (SMCD) (Barbacci |74]),
depicted in Figure 19. There is a continual stream of
new machines spurred by the advent of minicom-
puters and microprocessors. Each machine has a
different instruction set. The emergence of
microcoded systems with the option of user-defined
instruction sets has increased this flow of instruction
sets. Each new system requires supporting software
and the amount of software grows for any individual
system as user requirements grow.

One direction in which to seek a solution to ease
the burden of software development is to relativize
the production of software to the description of the
machine. The central ingredi->rt of this approach is
the description of computei stems in a symbolic
form, such that a range of proolems can be solved
by manipulation of these descriptions.

Figure 19 depicts the scope of the SMCD project.
The ultimate goal would be to produce and evaluate a
computer system from its behavioral specifications,
together with the documentation and system
programs. Thus the delay from the coiception of a
new architecture to the time it is implemented and
ready for users can be significantly reduced

References

Barbacci |73a| Barbacci, M. R—Automated ex-
ploration of the design space for register transfer
(RT) systems. Doctoral dissertation. Computer
Science Dept., Carnegie-Mellon University, Pitts-
burgh, Pa., 1973.

Barbacci |73bl Barbacci, M. R. and Siewioek. D.
P —Automated exploration of the desigr, space
for register transfer systems. Proceedings of the
First Annual Symposium on Computer Archi-
tecture. University of Florida, Gainesville, Fl.,
1973. ACM SIGARCH, Computer News 2, 4 (1973).

Barbacci |74| Barbacci, M. R. and Siewiorek, D. P.—
Some aspects of the symbolic manipulation of
computer descriptions. Technical report. Com-
puter Science Dept., Carnegie-Mellon University,

Pittsburgh, Pa.. 1974.
Barbacci 175] Barbacci. M. R —A users guide to the

ISP compiler. Technical report. Computer Science
Dept.. Carnegie-Mellon University, Pittsburgh,

Pa., 1975.
Bell|711 Bell, C G. and Newell, A —Computer

Structures, Reading's and Examples. McGraw Hill
Book Company, Nc« York, N.Y. 1971.

Bell |72a| Bell, C. G. Eggert, J. L, Grason, J. and
Williams, P.—The description and use of register
transfer modules (RTM). IEEE-TC C-21, 5 (1972).

495-500.
Bell |72b| Bell. C. G., Grason, J. and Newell, A.—

Designing Computers and Digital Systems. Digital
Press, Digital Equipment Corp., Maynard, Ma.,

1972.
Breuer [72] Breuer. M. A—Recent developments in

the automated design and analysis of digital sys-
tems. Proceedings of the IEEE 60, 1 (1972), 12-27.

Clark |67| Clark, W. A—Macromodular computer
systems. AFIPS Conference Proceedings 30,
SJCC. Atlantic City, N.J., 1967. 335-402.

Darringer |69| Darrmger, J. A.—The description,
simulation, and automatic implementation of
digital computer processors. Doctoral disserta-
tion. Electrical Engineering Dept., Carnegie-
Mellon University, Pittsburgh, Pa. 1969.

Friedman |69| Friedman, T. D. and Yang, S —
Methods used in an automatic logic design gener-
ator (ALERT). IEEE-TC C-18, 7 (1969). 593-614.

Huen |75| Huen, W. H. and Siewiorek, D. P.—Inter-
module protocol for register transfer level
modules: taxonomy and Analytic tools. Proceed-
ings of the Second Annual Symposium on Com-
puter Architecture. Houston, Tx., 1975.

Mesztenyi |68| Mesztenyi, C. K—Computer it» lign
language. Simulation and Boolean translation.
Technical report, 63-72, Computer Science Cen-
ter, University of Maryland, College Park, Md., 1968.

Parnas |67| Parnas, D. L. and Darringer, J. A —
SODAS and a methodology for systems design.
AFIPS Conference Proceedings. FJCC. Anaheim,

Ca., 1967.
Rozenberg [71 j Rozenberg, D. P. and Savage.R. L—

A proposal for the computer design process
based on multi-level simulation. IFIPS Congress,
Ljubljana, Yugoslavia, 1971.

Stephenson |74| Stephenson, J.—A testabilitv meas-
ure for register-transfer level digital Circuits.
Doctoral dissertation. Electrical Engineering Dept.,
Carnegie-Mellon University. Pittsburgh, Pa. 1974.

53

1

■ - - mm

— "i ■ I mwmmmimmm^m^mmmrm.

: i

i

1

Faculty and Visitors

Mario Barbaccl
Research Associate
B.S., Universidad Nacional de

Ingenieria, Lima, Peru (1966)
Engineer, Universidad Nacional de

Ingenieria, Lima, Peru (1968)
Ph.D., Carnegie-Mellon University

(1974)
Carnegie. 1969: Design Automation,

Computer Architecture, Automatic
Programming

C. Gordon Bell
Professor of Computer Science and

Electrical Engineering
S.B., Massachusetts Institute of

Technology (1956)
S.M.. Massachusetts Institute of

Technology (1957)
Carnegie. 1966: Computers and

Computer Networks

Hans Berliner
Research Associate
B.A., George Washington Universi y

(1954)
Carnegie, 1969: Artificial Intelligence

Richard P. Brent
Visiting Researcher
B.S., Monash University (1968)
M.S., Stanford University (1970)
Ph.D., Stanford University (1971)
Carnegie, 1975: Numerical Analysis, Analysis

of Algorithms, Compitational Complexity

Jack R Buchanan
Assistant Professor of Computer Science

and Industrial Administration
B.S., University of Utah (1965)
M.A., University of Utah (1967)
Ph.D., Stanford University (1973)
Carnegie, 1972; Automatic Programming,

Complex Information Processing, MIS

John Bürge
Visiting Scholar
B.Sc, Sussex University (1970)
Dip. Computer Science, Cambridge

University (1971)
Ph.D., Durham University (1975)
Carnegie, 1974: Artificial Intelligence

Alan Cole
Visiting Researcher
B.A., Hope College (1966)
M.A.. University of Michigan (1967)
M.S., University of Michigan (1970)
Carnegie, 1975. Speech

Ludwik Czaja
Visitir.g Assistant Professor
M.3., University of Warsaw (1960)
Ph.D., University of Warsaw (1972)
Carnegie, 1975: Programming

Languages, Semantic and Syntactic
Models of Programming Languages.
Compilers

Charles M. Eastman
Associate Professor of Architecture,

Computer Science, and Urban and
Public Affairs

B. Arch., University of California at
Berkeley (1964)

M. Arch., University of California at
Berkeley (1966)

Carnegie, 1967: Computer-Aided Design
Cognitive Processes in Design,
Urban Models

Lee D. Erman
Research Computer Scientist
B.S., University of Michigan (1966)
M.S., Stanford University (1968)
Ph.D., Stanford University (1974)
Carnegie, 1970: Artificial Intelligence.

Speech Understanding

Samuel H. Fuller
Assistant Professor of Computer Science

and Electrical Engineering
B.S.E., University of Michigan (1968)
M.S., Stanford University (1969)
Ph.D., Stanford University (1972)
Carnegie, 1972: Performance Evaluation,

Measurement of Computer Systems.
Computer Architecture

Robert G. Goodman
Visiting Scientist
B.S., Oklahoma State University (1963)
M.S., Oklahoma State University (1965)
M.S., Stanford University (1969)
Carnegie, 1974: Artificial Intelligence

55

*

mmmmmmms m*m» ~m~m mmmm
«MB

56

I i

A. Nico Habermann
Professor of Computer Science
B.S., Hree University, Amsterdam (1953)
M.S., Free University, Amsterdam (1957)
Ph.D., Technological University,

Eindhoven, The Netherlands (1967)
Carnegie, 1968: Operating Systems and

Programming Languages

Louis Hageman
Senior Lecturer
B.A., DePauw University (1955)
B.S., Rose-Hulman Institute of

Technology (1955)
M.S., University of Pittsburgh (1959)
Ph.D., University of Pittsburgh (1962)
Carnegie, 1973: Numerical Analysis

Frederick Hayes-Roth
Research Associate
B.A., Harvard University (1969)
M.S., University of Michigan (1972)
Ph.D., University of Michigan (1974)
Carnegie, 1974: Artificial Intelligence,

Pattern Recognition, Cognitive Psychology

Laurent Hyafil
Visiting Researcher
M.S., Ecole Polytechnique (1972)
Ph.D., Universife de Paris (1974)
Carnegie. 1975: Computational Complexity

Anita K. Jones
Assistant Professor of Computer Science
B.A., Rice University (1964)
M.A., University of Texas (1966)
Ph.D.. Carnegie-Mellon University (1973)
Carnegie, 1968: Programmed Systems

Boleslaw Kacewicz
Visiting Researcher
M.S., University of Warsaw (1974)
Carnegie, 1975: Computational Complexity

and Numerical Mathematics

Masahiko Kida
Visiting Scholar
B.S., Waseda University (1968)
Carnegie, 1974: Multiprocessor Systems

H. T. Kung
Assistant Professor of Computer Science
Q.S., National Tsing Hua University,

Taiwan (1968)
Ph.D., Carnegie-Mellon University (1973)
Carnegie, 1973: Computational Complexity,

Parallel Computation, Numerical Mathematics

Victor R. Lesser
Research Computer Scientist
A.B., Cornell University (1966)
M.S., Stanford University (1970)
Ph.D., Stanford University (1972)
Carnegie, 1972: Parallel Systen

Organization for Artificial In.elligence
(e.g.. Speech Understandint), Computer
Architecture (Micro-programming,
Multiprocessor systems). Operating
Systems and Problem Decomposition for
Multiprocessors

John W. McCredie
Lecturer in Computer Science
Head of Computation Center
B.E., Yale University (1962)
M.S.E.E., Yale University (1964)
Ph.D., Carnegie-Mellon University (1972)
Carnegie, 1968: Analytical Modeling,

Simulation, and System Performance
Evaluation

Robert Meersman
Visiting Researcher
Ph.D., Vrije Universiteit Brüssel (1975)
Carnegie, 1975: Parallel Computation

John McDermott
Visiting Research Associate
B.A., St. Louis University (1966)
M.A., St. Louis University (1967)
Ph.D., University of Notre Dame (1969)
Carnegie, 1974: Artificial Intelligence,

Production Systems

James Moore
Research Associate
B.S., Massachusetts Institute of

Technology (1964)
Ph.D., Carnegie-Mellon University (1971)
Carnegie, 1971: Artificial Intelligence and

Semantic Nets

i

WPÜPWP^P^"*-- ■"■-—'■■.■■'

■PPWUP^WfW mmm mmmimimm mm&mß 1

I

A

Ian Munro

Visiting Researcher

B.A.. University of New Brunswick (1968)
M Sc , University of British Columbia (1969)
Ph.D., University of Toronto (1971)

Carnegie, 1975: Computational Complexity

Joseph Newcomer
Researcf, Associate
B.A., St. Vincent College (1967)
Ph.D., Carnegie-Mellon University (1975)
Carnegie, 1975: Operating Systems,

Programming Languages

Allen Newell

University Professor
B.S., Stanford University (1949)

Ph D., Carnegie Institute of Technology
(1957) yy

Carnegie. 1961: Artificial Intelligence
Psychology of Human Thinking
Programming Systems, and Computer
Structures

D. Raj Reddy

Professor of Computer Science
BE., University of Madras (1958)

M Tech., University of New South Wales (1961)
MS, Stanford University (1964)
Ph.D., Stanford University (1966)
Carnegie, 1969: Artificial Intelligence

Computer Graphics, and Man-Machine
Communications

Mario Schkolnlck

Assistant Professor of Computer Science
Electoral Engineer. Unive.sity of Chile

(1965)

M.S., University of California (1967)

PhMDQ«QL!niVerSI,y 0i Call,omla a' Berkeley

Carnegie, 1973: Data Base Design,
Complexity Theory

Daniel Serain
Visiting Scholar

M.S., LUmverslte de Grenoble (1972)
Carnegie, 1974: Multiprocessor

Structure, Operating Systems

Mary Shaw

Assistant Professor of Computer Science
B.A., Rice University (1965)

Ph.D., Carnegie-Mellon University (1972)
Carnegie, 1971: Programming Systems

Software Tools, the Programming
Environment, and Concrete
Computational Complexity

Linda Shockey
Research Associate
B.S.. Ohio State University (1967)
Ph.D.. Ohio State University (1973)
Carnegie. 1972: Linguistics and

Automatic Speech Recognition

Daniel P. Siewiorek

Assistant Professor of Computer Science
ind Electrical Engineering

B.S.. University of Michigan (1968)
M.S.. Stanford University (1969)
Ph.D.. Stanford University (1972)
Carnegie. 1972: Computer Architecture

Automatic Design Exploration.
Computer Descriptive Languages
Modeling. Fault Tolerant
Computer Design

Herbert A. Simon

Richard King Mellon Professor of
Computer Science and Psychology

A.B.. Universitv of Chicago (1936)
Ph D.. Unlversi y of Chicago (1943)
D.S.c. (Hon.), Case Institute of

Technology (1963),
D.Sc. (Hon). Vale University (1Q63)
LL.U. (Hon.). University of Chicago'(1964)
LL.D. (Hon.). McGill University (1970)

Fll.il (Hon.), University of Lund, Sweden (1968)
DEcon.Sci., Erasmus University of

Rotterdam (1973)

Carnegie, 1949: Computer Simulation of
Cognitive Processes, Artificial
Intelligence, and Management Science

Shigeharu Sugita
Visiting Researcher
Ph D., Kyoto University (1968)
Carnegie, 1975: Artificial Intelligence

Yoshiro Tochio
Visiting Scholar

B.S., Osaka University, Japan (1969)
Carnegie, 1974: Artificial Intelligence

57

- ' ■■■
~- ■^— ■ -■ -

^^*^*™mi***^mmmmm. w»™»—WPP»W

V

b8

Joseph F Traub
Professor of Computer Science and

Mathematics, and Head of the
Department of Computer Science

B.S., City College of New York (1954)
Ph.D., Columbia University (1959)
Carnegie, 1971: Numerical Mathematics,

Computational Complexity. Parallel
Computation. Algorithmic Analysis

Henryk Wozniakowski
Visiting Assistant Professor
MS.. University of Warsaw (1969)

Ph.D.. University of Warsaw (1972)
Carnegie. 1973; Numerical Mathematics,

Computational Complexity

William A. Wulf
Associate Professor of Computer Science
B.S.. University of Illinois (1961)
M.S.E.E.. University of Illinois (1963)
D.Sc, University of Virginia (1968)
Carnegie, 1968: Programming Systems.

Compiler Optimization. Operating
Systems. Systems Programming
Languages, and Multiprocessor Systems

Departmental Staff

Engineering
Mark Adam—Technician
William Broadley—Manager of Engineering Design
Paolo Coraluppi—Research Engineer
Mike Keegan—Draftsman
Tim Kirby—Staff Engineer
Stan Knz—Engineer
Rich Lang—Technician
Mike Powell—Engineer
Brian Rosen—Staff Engineer
Ken Stupak—Technician
Jim Teter—Manager of Engineering Production
Nancy Whitaker—Technical Clerk

Office Staff
Nancy Barron—Secretary to Department head
Mildred Black—Secretary to Professor Newell
Judith Brantley—Secretary to Business Manager
Beverly Howell—Secretary to Dr. Reddy
Dorothy Josephson—Faculty Secretary
Deborah Lemmon—Department Secretary
Paul Newbury —Business Manager
Ruth Ann Seilhamer—Assistant Business Manager
Susan Sevigny—Documentation Librarian

Programming and Operations
Patrick Banwell—Research Programmer
Christopher Cooper—Programmer
Robert Cronk—Research Programmer
Gregory Gill—Visiting Research Associate
John Godfrey—Programmer
Ralph Guggenheim—Technician/Research Assistant
Hank Mashburn—Senior Systems Analyst
Eric Ostrom—Programmer
Chuck Plerson—Research Programmer
Brian Reid—Research Programmer
George Robertson—Senior Research Programmer
Jim Skees—Operator
Howard Susman—Research Programmer
Harold Van Zoeren—Senior Research Programmer
Dave Vavra—Operator/Programmer
Howard Wactlar—Manager of Progiammmg and

Operations

—mmmmmm^mmm^** ,*««...... i IM ■wiii^niwiiiimia.ii IM m~*wmmmm*m*^iF*m

\\

M

I
•■

Graduate Students

Guy T Almes
B.A., Rice University (1972)

Mathematics and Electrical Engineering
M.S., Rice University (1972)

Electrical Engineering

Gideon Ariely
B.A., Hebrew University (1969)

Mathematics. Philosophy, Compiler Science

Gerard M. Baudet
Diplome dingenieur, Ecole P iiytechnique (1970)

Mathematics
Diplome d'Etudes Approfondies, Universite Paris IV
(1971)

Computer Science
Doctoral de 3eme cycle. Universite Paris VI (1973)

Computer Science

Madeline Bauer
AB, Cornell University (1968)

Mathematics
M.A., University of Michigan (1970)

Computing and Communications Sciences

Andrew P. Buchalter
B.S., Yale University (1974)

Physics

Roderic G. Cattell
B.S., University of Illinois (1974)

Computer Science

Robert J. Chansler. Jr.
B.S., California Institute of Technology (1974)

Mathematics-IS

Douglas W. Clark
B.S., Yale University (1972)

Engineering and Applied Science

Donald N. Cohen
B.S., Carnegie-Mellon University (1973)

Mathematics

Ellis Cohen
B.S., Drexel Institute of Technology (1970)

Mathematics

Lee W. Cooprider
B.A.. Oberlin College (1969)

Mathematics

William M. Corwin
B.S., Carnegie-Mellon University (1972)

Physics

Achim Eckert
Diplom Ingenieur, Technische Universität Berlin
(1974)

Electrical Engineering

David C. Eklund
B.A . Harvard University (1968)

Applied Mathematics

Craig F. Everhart
B.A., Wesleyan University (1974)

Physics

Peter Fe.ler
Abitur, Gymnasium Bad Toelz (1971)

Mathematics
Vordiplom, Technical University of Munich (1973)

Computer Science

Richard Fennell
B.S., Rensselaer Polytechnic Institute (1969)

Physics

Lawrence E. Flon
B.S., SUNY at Stony Brook (1972)

Physics

Charles L. Forgy
B.S., University of Texas at Arlington (1972)

Mathematics

John G. Gaschnig
B.S.E.E.. Massachusetts Institute of
Technology (1972)

Computer Science

Henry Goldberg
S.B., Massachusetts Institute of Technology
(1968)

Mathematics

Richard H. Gumpertz
SB.EC, Massachusetts Institute of
Technology (1973)

Electrical Engineering

Samuel P. Harbison III
A.B., Princeton University (1974)

Mathematics

59

5

.1 liUUIIilll. IIUUII,IJIII| lllllUUPI|^«^^P^IIMP«MW<IIOT«^l wmmm

■ i

60

Don Heller
B.S., Carnegie-Mellon University (1971)

Mathematics

Paul N. Hiifinger
A.B., Princeton University (1973)

Mathematics

Steven O. Hobbs
A.B., Dartmouth College (1969)

Mathematics
B.A., University of Michigan (1972)

Mathematics (Computer Science Option)

David Ft. Jefferson
B.S., Yale University (1970)

Mathematics

Richard Johnsson
B.E., Vanderbilt University (1970)

Electrical Engineering

Philip Karlton
B.A., Universiiy of California, Santa Barbara
(1971)

Mathematics

John Ft. Kender
B.S., University of Detroit (1970)

Mathematics
M.S., University of Michigan (1972)

Mathematics

Paul J. Knueven
Sc.B., Brown University (1969)

Applied Mathematics

Donald W. Kosy
B.S., University of Michigan (1967)

Science Engineering
M S., Stanford University (1968)

Electrical Engineering
M.S., Stanford University (1969)

Computer Science

David A. Lamb
B.S., University of Waterloo (1974)

Computer Science

Bruce W. Leverett
A.B., Harvard University (1973)

Physics and Chemistry

Roy Levin
B.S., Yale University (1970)

Mathematics

Bruce Lowerre
B.S., Case Institute of Technology (1965)

Chemistry
B.S., Case Western Reserve (1970)

Mathematics

Madhav Marathe
B.S., University of Bombay (1971)

Physics
M.S., Indian Institute of Technology, Kanpur
(1972)

Physics

Karla F. Martin
B A., Western Washington State College (1967)

Mathematics, Physics
M.A., University of Oregon (1969)

Mathematics
M.A., University of Oregon (1972)

Computer Science

Philip H. Mason
B.S., Carnegie-Mellon University (1967)

Mathematics

Donald L. McCracken
B.S., Carnegie-Mellon University (1968)

Mathematics

Patrick F. McGehearty
B.A., University of Texas at Austin (1972)

Mathematics and Computer Science
M.A., University of Texas at Austin (1974)

Computer Science

Rajan S. Modi
D.Tech., Indian Institute of Technology (1971)

Electrical Engineering

David J. Mostow
A.B., Harvard University (1974)

Applied Mathematics

Joseph Newcomer
B.A., St. Vincent College (1967)

Mathematics

John D. Oakley
S., Harvey Mudd College (1970)
Physics

M.S., University of Wisconsin (1972)
Computer Science

I

- — mmi

mmmmm iiii.iiiuiin .1111111,11 •i.p.miiaamni Wm mmmmmmmnm

1

i

-3

Ronald Ohlander
B.S., St. Marys College (1962)

Psychology

Crispin S. Perdue
A.B., Princeton University (1973)

Independent Program

Frederick Pollack
B.S., University of Florida (1970)

Mathematics

Keith Price
B.S., Massachusetts Institute of Technology
(1971)

Electrical Engineering

Kamesh Ramaknshna
B.S., Indian Institute of Technology, Kanpur (1974)

Electrical Engineering

Elaine Rich
A.B., Brown University (1972)

Formal Language Theory

George Rolf
B.S., University of Nymejen (1966)

Mathematics
M.S., University of Nymejen (1970)

Numerical Analysis

Steven M. Rubin
B.S., Carnegie-Mellon University (1974)

Mathematics

Michael Rychener
A.B., Oberlm College (1969)

Mathematics
M.S., Stanford University (1971)

Computer Science

Steven Saunders
S.B., Massachusetts Institute of Technology
(1972)

Computer Science

Edward Schneider
B.S., Car' ;yle-Mellon University (1970)

Mathe atics

Robert W. Schwanke
B.S., Carnegie-Mellon University (1974)

Mathematics and Computer Science

Richard Smith
B.S., Houghton College (1971)

Physics and Mathematics

David K. Stevenson
B.A., Wesleyan University (1969)

English and Mathematics
M.A., University of Oregon (1972)

Mathematics

Mark Stickel
B.S., University of Washington (1969)

Mathematics
M.S., University of Washington (1971)

Computer Science

Richard J. Swan
B.A., University of Essex (1972)

Computing Science

Walter F. Tichy
Reifezeugnis, Karlsgymnasium Bad Reichenhall
(1971)
Diplom-Vorprufung, Technical University Munich
(1973)

Mathematics and Computer Science

Bruce W. Weide
B.S., University of Toledo (1974)

Electrical Engineering

Charles Weinstock
B.S., Carnegie-Mellon University (1970)

Mathematics

61

p imim^mmmmmmmimmmmmim^*^*** wmß^^^mfmKm^^ nmitu i i •I'V■,-"M, ' " ' 1

-

1

62

Publica'itns

Ju/y7, 1974 to June 30, 1975

These publications are given in alphabetical order
according to the name of the first author listed for
each publication. In cases of multiple authorship
where more than one author is in the Computer
Science Department, a cross-reference is made to
that first listing under the name of each departmental
author.

No cross-references are made for non-depart-
mental authors.

Barbacci, M. R. and D. P. Siewiorek, "Some Aspects
of the Symbolic Manipulation of Computer De-
scriptions". Second Annual Workshop on Com-
puter Hardware Description Languages, Tech-
nische Hochschule, Darmstadt, West Germany,
July 1974.

Barbacci, M. R. and D P. Siewiorek, "Some Obser-
vations on Modular Design Technology and the
Use of Microprogramming", Infotech State of the
Art Report on Microprogramming and Systems
Architecture. Berkshire, UK, (to appear In 1975).

Barbacci, M. R., "A Comparison of Register Transfer
Languages for De cribing Computers and Digital
Systems", IEEE Transactions on Computers, Vol.
c-24. No. 2, February 1975, 137-150. PB 221591

Berliner, H. J., "A Representation of Some Mecha-
nisms for a Problem Solving Chess Program", to
appear in Recent Advances in Computer Chess.
Edinburgh University Press.

For references by W. Broadley, see D. R. Reddy.

Cohen, E. S., "A Semantic Model for Parallel Sys-
tems with Scheduling", SeconcMCM Symposium
on Principles of Programming Languages. Palo
Alto, Ca., January 1975.

Cooprider, L. W., F. Heymans, R. J. Courto:s and
D. L. Parnas, "Information Streams Sharing a
Fmite Buffer: Othei Solutions", Information Pro-
cessing Letters, 3:1 July 1974, 16-21.

Eastman, C. M., J. Lividini and D. Stoker, "A Data-
base for Designing Large Physical Systems",
7975 National Computer Conference Proceed-
ings. Anahe.m. Ca., 1975.

Eastman, C. M and J. Lividini, "System Design for a
Building Description System", C1B W52 Sym-
posium on Computer Languages in Building.
Budapest, Hungary, April 1975.

Eastman, C. M., J. Lividini and D. Stoker, "A Data
Structure for Building Elements", C1B W52 Sym-
posium on Computer Languages in Building.
Budapest, Hungary, April 1975.

Eastman, C. M. and J. Lividini, "Spatial Search"
(revised). Institute of Physical Planning, Research
Report No. 55, CMU, April 1975.

Fuller, S. H., V. R. Lesser, C. G. Bell and C Kaman,
"Microprogramming and Its Relation to Emulation
and Technology", Seventh Annual Microprogram-
ming Conference. Palo Alto, Ca., October 1974.

For other references by S. H. Fuller, see M. V.
Marathe.

Gaschnig, J. G., "A Constraint Satisfaction Method
for Inference Making", Proc. Twelfth Annual
Allerton Conference on Circuit and System
Theory. University of Illinois at Urbana-Cham-
paign, October 1974.

Gilmartin, K. J., A. Newell and H. A. Simon, "A Pro-
gram Modeling Short-Term Memory Under Strategy
Control", Psychology Dept.. CIP Working Paper
No. 293, CMU, March 1975.

Godfrey, J. D., J. M. Powell, and E. A. Snow, "A
Cardiac Arrhythmia Monitoring System", I.E.E.E.
Compntpr Snriety Conference, Washington. D C
September 1974.

Grason, J. and D. P. Siewiorek, "A Modular Ap-
proach to Prototype System Construction in Real-
Time Minicomputer Laboratory", COMP CON 74,
Ninth Annual IEEE Computer Society International
Conference. Washington, D.C., September 1974,
139-143.

Hayes-Roth, B. and F. Hayes-Roth, "Plasticity in
Memorial Networks", Journal of Verbal Learning
and Verbal Behavior, (to appear)

Hayes-Roth, F., "Schematic Classification Problems
and Their Solution", Pattern Recognition, 1974,
6, 105-114.

I 1

" " '— ' " ■'■ " m'1 ■~^-

>!l
■ I

Hayes-Roth, F., "Representation of Structured Events
and Efficient Proo 'ures for Their Recognition",
Pattern Recognition, (to appear).

Hayes-Roth, F., "An Optimal Network Representa-
tion and Other Mechanisms for the Recognition
of Structured Events", Proc. Second International
Joint Conference on Pattern Recognition, 1974.

Hayes-Roth, r. and D. J. Mosto v, "An Automatically
Compilable Recognition Network for Structured
Patterns", Proc. Fourth International Joint Con-
ference on Artificial Intelligence, (to appear).

Heller, D., "A Determinant Theorem with Applica-
tions to Parallel Algorithms", SIAM J. Num. Anal..
Vol. II, No. 3, June 1974, 559-568.

Heller, D., "On the Efficient Computation of Recur-
rence Relations", The Institute for Computer Ap-
plications in Science and Engineering, NASA
Langley Research Center, Hampton, Vs., June
1974.

Huen. W. H. and D. P. Siewiorek, "Intermodule
Protocol for Register Transfer Level Modules:
Taxonomy and Analytic Tools". Proc. Second
Annual Symposium on Computer Architecture,

Houston, Tx., February 1975.

Hyafil, L. and H. T. Kung, "The Complexity of Parallel
Evaluation of Linear Recurrences", Proc. Seventh
Annual ACM Symposium on Theory of Com-

puting. May 1975.

Jenkins, M. A. and J. F. Traub, "Principles for Test-
ing Polynomial Zerofinding Programs", ACM
Trans, on Mathematical Software 1. 1975, 26-34.

Jones, A. K. and W. A. Wulf, "Towards the Design
of Secure Systems", Proc. of the International
Workshop on Protection in Operating Systems.
IRIA, Rocquencourt, France, August 1974, 121-

135.

Knueven, P., "The Foundation of a Flexible Run-Time
System for Algol 68S", Proc. International Con-
ference on Experience with Algol 68. University of
Liverpool Press, Liverpool, UK, April i975.

Kung, H. T., "The Computational Complexity of
Algebraic Numbers", SIAM J. Num. Anal. 12,
1975, 89-96.

Kung. H. T., "On the Computational Complexity of
Finding the Maxima of a Set of Vectors", Proc.
Fifth Annual IEEE Symposium on Switching and
Automata Theory. 1974, 117-121.

For other references by H. T. Kung, see L. Hyafil.

Lesser, V. R., "HSII: A Multiprocess Multiprocessor
Speech Understanding System", Interface Work-
shop on Interprocess Communication, 1975.

For other references by V. R. Lesser, see S. H. Fuller.

Marathe. M. V. and S. H. Fuller, "Hardware Aids to
Performance Evaluation", Proc. Tenth Annual
Convention of the Computer Society of India.

January 1975.

Newell. A. and G. Robertson, "Some Issues in Pro-
gramnrng Multi-Mini-Processor", 1974 Confer-
ence on the On-Line Use of Computers in Psy-
chology. Journal of Behavior Research Methods
and Instrumentation, Psychonomic Society, Inc.,
Austin (in press).

New ill. A.. "A Tutt'ial on Speech Understanding
Systems", Invited Papers of IEEE Symposium on
Speech Understanding, Academic Press, NY (in

press).

For other references by A. Newell, see H. A. Simon.

Parnas, D. L. and D. P. Sidwiorek, "Use of the Con-
cept of Transparency in the Design of Hier-
-irchcially Structured Systems", Communications
of the ACM.Vol 18, No 5, May 1975.

Reddy, D. R., "Computer as a Research Tool in
Speech Understanding Research", Fed. of Am.
Soc. for Exp. Biology. Vol. 33, No. 12, 1974, 2347-

2351.

Reddy, D. R.. B. Rosen, S. Kriz and W. Broadley,
"Computer Graphics in Research: Some State-of-
the-Art Systems", American Psychologist, Vol. 30,

No. 3, 1975, 239-246.

For other references by D. R. Reddy. see L. Shockey.

Saunders, S. t., "Improved FM Audio Synthesis
Methods for Real-Time Digital Music Generation",
ACM Computer Science Conference 75, 1975,

(abstract).

63

mm mmmm mun

mmmmmmnm*ni^m^*'***^**mim HI i um.Klip ■iii,i»ww"i"."i. IJ«WHIIIH«II,JWIJII , i »jiii.MiMi..n na n iiginiiiijjfi

■

1-

64

:

1

Schkolnick, M., "The Equivalence of Reducing
Transition Languages and Deterministic Lan-
guages", Communication ACM, September 1974,
517-519.

Schkolnick, M., "Secondary Index Optimization",
Proc. ACM-SIGMOD Inwrnational Conference on
Management of Data. San Jose, Ca., May 1975.

Schkolnick, M., "The Optimal Selection of Secon-
dary Indices for Files", Proc. International Com-
puting Symposium 1975, Juan-Les-Puines, France,
June 1975.

Schkolnic!,, M., "On a Covering Problem for Partially
Specified Switching Functions", /£££ Tnnsac-
fions on Electronic Computers, (to appear).

Shaw, M. and J. F. Traub, "On the Number of Multi-
plications for the Evaluation of a Polynomial and
Some of Its Derivatives", Journal of the ACM 21,
1974, 161-167.

Shockey, L. and D. R. Reddy, "Transcription of Un-
familiar Language Material", Paper presented at
the 87th Meeting, Acoustical Society of America,
NY, 1974, (abstract).

Siewiorek, D. P., "Modc'-'ity and Multi-Micro-
processor Structures", Proc. Seventh Annual
Workshop on Microprogramming, Palo Alto, Ca.,
October 1974, 186-193.

Siewiorek, D. P., "Introducing ISP", Computer,
Vol. 7, No. 12, December 1974, 39-41.

Siewiorek, D. P., "Introducing PMS", Comouter,
Vol. 7, No. 12, December ''974, 42-44.

Siewiorek, D. P., "Process Coordination in Multi-
Microprocessor Systems", Proc. of Workshop on
the Microarchitecture of Computer Systems, Nice,
France, June 1975.

Siewiorek, D. P., "Reliability Modeling of Com-
pensating Module Failures in Majority Voted Re-
dundancy", IEEE Transactions of Computers,
Vol. c-24, No. 5, May 1975, 525-533.

For other references by D. P. Siewiorek, see M. R.
Barbacci, J. Grason, W. H. Huen, D. L. Parnas
and H. S. Stone.

Simon. H. A. and A. Newell, "Thinking Processes",
D. H. Krantz, R. C. Atkinson, R. D. Luce and P.
Suppes, (ed.). Contemporary Developments in
Mathematical Psychology, 1, San Francisco,
1974, 101-104.

Stone, H. S. and D. P. Siewiorek, "Introduction to
Computer Organization and Data Structures:
PDP-11 Edition", McGraw-Hill, April 1975, 363.

Traub, J. F., "An Introduction to Some Current
ReFearch in Numerical Computational Complex-
ity", Proc. of the Influence of Computing on
Mathematical Research and Education Cont.,
American Mathematical Society, 1974, 47-55.

Traub, J. F., "Parallel Algorithms and Parallel Com-
putational Complexity", Proc. IFIP Congress.
1974, 685-687.

Traub, J. F. and H. Wozniakowski, "Strict Lower
and Upper Bounds on Iterative Complexity",
Analytic Computational Complexity, Academic
Presr, 1975 (to appear)

Traub, J. F. (ed.), "Analytic Computational Com-
plexity", Academic Press, 1975.

For other references by J. F. Traub, see M. A.
Jenkins and M. Shaw.

For references by H. Wozniakowski, see J. F. Traub.

Wulf, W. A., "More Cost Effective Computing
Through Minicomputers", SIAM News, Vol. 7,
No. I, February 1975.

Wulf, W. A. and R. Levin, "A Local Network", Dafa-
mation, 21, 2, February 1975.

Wulf, W. A., "Reliable Hardware/Software Architec-
ture". International Conference on Reliable Soft-
ware. Los Angeles, Ca., April 1975.

Wulf, W. A., R. K. Johnsson, C. B. Weinstock, S. 0.
Hobbs and C. M. Geschke, "The Design of an
Optimizing Compiler", American Elsevier, NY,
1975.

For other references by W. A. Wulf, see A. K. Jones.

r-— —--——■ WlUlil II. "11 . . J|.|P1|,1I.1.»IJP>^I>'HP^«'"'|"I"|»

-

1

i

Research Reports

July 1, 1974 to June 30, 1975

These reports are registered with the Defense
Documentation Center. Accession numbers as-
signed as of July 75, are listed after the report titles.

In cases of multiple authorship where more than
one author Is a Faculty member or Research As-
sociate, a cross-reference is made to the listing
under the name of the principal author.

No cross-references are made for non-depart-
mental authors.

Ariely, G., "Verification of System Programs", Ph.D.
Dissertation, 1975.

Flaker, J. K., "Stochastic Modeling as a Means of
Automatic Speech Recognition", Ph.D. Disserta-
tion, April 1975.

Baker, J. M., "A New Time-Domain Analysis of
Human Speech and Other Complex Waveforms',
Ph.D. Dissertation, May 1975.

Barbacci, M. R. and D. P. Siewiorek, "Some Aspects
of the Symbolic Manipulation of Computer De-
scriptions", July 1974. AD A004092

For other references by M. R. Barbacci, see P L.
Karlton and D. P. Siewiorek.

Baudet, G. and D. Stevenson, "Optimal Sorting
Algorithms for Parallel Computers", May 1975.

Berliner, H. J., "A Representation and Some Mech-
anisms for a Problem Solving Chess Program",
May 1975.

Bihary, D., "Graphic Display System Monitor
Manual", July 1974. AD 785410

Brent, R., "Efficient Methods for Finding Zeros of
Functions Whose Derivatives Are Easy to Eval-
uate", December 1974.

Brent, R., "A Class of Optimal-Order Zero-Finding
Methods Using Derivative Evaluations", June
1975.

Brent, R. and H. T. Kung., "0((n log n)2/3) Algorithms
for Composition and Reversion of Power Series",
June 1975.

Brooks, R., "A Model of Human Cognitive Behavior
in Writing Code for Computer Programs", Volume
I and II, Ph.D. Dissertation, May 1975.

For references by J. Buchanan, see M.Shaw.

Chang, H., "Analysis of Deadlock Avoidance Schemes
and Resource Utilization for Non-Preemptible
Resources". Ph.D. Dissertation, June 1975.

Cohen, E. S., "Semantic Models for Parallel Sys-
tems", 1975.

Erman, L. D. and V. R. Lesser, "A Multi-Level Organ-
ization for Problem Solving Using Many Diverse,
Cooperating Sources of Knowledge", March 1975.

Feldstein, A. and J. F. Traub, "Order of Vector Re-
currences with Applications to Nonlinear Iteration,
Parallel Algorithms, and the Power Method",
January 1975.

Fennell, fl. D., "Multiprocess Software Architecture
for Al Problem Solving", Pii.D. Dissertation, May
1975.

Fennell, R. D. and V. R. Lesser, "Parallelism in Al
Problem Solving: A Case Study of HEARSAY 11",
May 1975.

Flon, L., "Program Design with Abstract Data
Types", June 1975.

Fuller, S. H., V. R. Lesser, C. G. Bell and C. Kaman,
"Microprogramming and Its Relation to Emulation
and Technology", July 1974. AD 784822

For other references by S. H. Fuller, see R. J. Swan.

Gerritsen, R., "Understanding Data Structures",
Ph.D. Dissertation, February 1975.

Habermann, A. N., "The Correctness Proof of a
Quadratic-Hash Algorithm", March 1975.

Habermann, A. N., "Path Expressions", June 1975.

Hayes-Roth, F., "Uniform Representation of Struc-
tured Patterns and an Algorithm for Grammatical
Inference", January 1975.

Hedrick, C. L., "A Computer Program to Learn
Production Systems Using a Semantic Net", Ph.D.
Dissertation, July 1974. AD A009142

65

b ^^^^^^M MM

iwmmvmm« wmmmm* m**,^rmr********tlQ

6L

Heller, D. E., "Ori the Efficient Computation of Recur-
rence Relations", June 1974. AD A002248

Heller, D. E., D. K. Stevenson and J. F. Traub,
"Accelerated Iterative Methods for the Solution of
Tridiagonal Systems on Parallel Computers",
December 1974. AD A006868

Heller, D. E., "Some Aspects of the Cyclic Reduction
Algorithm for Block Tridiagonal Linear Systems',
January 1975.

Hyafil, L. and H. T. Kung, "Parallel Algorithms for
Solving Triangular Linear Systems with Small
Parallelism", October 1974. AD A001376

Jones, A. K. and R. J. Lipton, "The Enforcement of
Security Policies for Computation", May 1975.

Kacewicz, B., "An Integral-lnterpolatory Iterative
Method for the Solution of Non-Linear Scalar
Equations", January 1975. AD A008811

Kacewicz, B., "The Use of Integrals in the Solution
of Nonlinear Equations in N Dimensions", June
1975.

Perdue, C, "Users Introauction to UCI LISP",
August 1974.

Schkoinick, M., "The Optimal Selection of Secon-
dary Indices for Files", November 1974. AD
AOC'692

Schkoinick, M., On a Covering Problem for Partially
Specified Switching Functions", December 1974.
AD A005691

Shaw. M. and J. F. Traub, "Analysis of a Family of
Algorithms for the Evaluation of a Polynomial and
Some of Its Derivatives", February 1975. AD
A009250

Shaw, M. (ed.), "IC Study Problems: Solution Collec-
tion", July 1974.

Shaw, M. and J. Buchanan, "Immigration Course in
Computer Science", September 1974.

Siewiorek, D. P. and M. R. Barbacci, "Some Obser-
vations of Modular Design Technology and the
Use of Microprogramming", July 1974. AD
A004093

» ■

Karlton, P. L. and M. R. Barbacci, "IGRAPH: An
Interactive Graphics Editor", September 1974.

For references by H. T. Kung, see R. Brent and L.
Hyafil.

For references by V. R. Lesser, see L. D. Erman,
R. D. Fennell and S. H. Fuller.

O

Lunde, A., "Evaluation of Instruction Set Processor
Architecture by Program Tracing", Ph.D. Disserta-
tion, July 1974. AD A004824

Newcomer, J. M., "Machine-Independent Ccera-
tion of Optimal Local Code", Ph.D. Dissertation,
May 1975.

Newell, A. and G. Robertson, "Some issues in Pro-
gramming Multi-M ni Processors" January 1975.
AD A008858

Oakley, J., "A Comparison of Two Microprogram-
mable Processors: MLP-900 and PDP-11/40E",
May 1975.

Ohlander, R., "Analysis of Natural Scenes", Ph.D.
Dissertation, April 1975.

Siewiorek, D. P., "Reliability Modeling of Compensa-
ting Module Failures in Majority Voted Redun-
dancy", October 1974. AD A004336

For other references by D P Siewiorek, see M. R.
Barbacci.

Simon, H. A. and J. B. Kadane, "Optimal Problem-
Solving Search: AII-or-None Solutions", Decem-
ber iy/4. AD AÜÜ9141

Stickel, M. E., "The Prog' immable Strategy", July
1974. AD A004474

Stickel, M. E., "A Complete Unification Algorithm tor
Associative-Commutative Functions1.2", June
1975.

Swan, R. J. and S. H. Fuller, ' K.mon: The C.mmp
Hardware Monitor. A Programmers Manual",
June 1975.

Traub, J. F. (ed.), "Symposium on Analytic Computa-
tional Complexity Program and Abstracts", April
1975.

For other refc ences by J. F. Traub. see A. Feldstein,
D. E. Heller and M. Shaw.

""■•"" —--. mmmm^m^m ..piiiiMii.iiiii

■ ■■■■ i

:

Waterman. D. A., "Adaptive Production Systems",

December 1974.

Waterman, D. A., "Serial Pattern Acquisition: A
Production System Approach", February 1975.

Wozniakuwski, H., "Numerical Stability for Solving
Nonlinear Equations", February 1975. AD A006862

Wozniakowski, H., "Numerical Stability of the Cheby-
shev Method for the Solution of Large Linear
Systems", March 1975. AD A006863

Wozniakowski, H., "Numerical Stability of Iterations
for Solution of Nonlinear Equations ?id Large

Linear Systems", June 1975.

Wozniakowski, H., "Maximal Order of Multipoint
Iterations Using n Evaluations", July 197L.

Wulf, W. A., "ALPHARD: «Toward a Language to
Support Structured Programs", 1974.

Colloquia

September

John McCarthy, Stanford University, "Extensions of
Predicate Calculus to Covrr Common Sense
Reasoning", September 12, I974.

Harlan, D. Mills. International Business Machines,
"How to Write Correct Programs and Know It",

September 16, 1974,

James E. Thornton, Network S^tems Corporation,
"LSI for Super Computers—Problems and Is-

sues", September 19, 1975.

James L. McKenney, Harvard University, "Five
Unsolved Management Problems of Conputer
Systems", September 23, 1974.

William M. Kahan, University of California, "Do You
Trust Your Calculator?", September 26, 1974.

October

Albert Meyer, Massa-husetts Institute of Tech-
nology, "Some Computational Hopeless Prob-

lems", October 1, 1974.

67

Jurg Nievergelt, University of Illinois, "ACSE*5, An
Automated Computer Science Education Sys-

tem", October 4, 1974.

Michael Rabin, Hebrew University, "CompleMty of
Computations; Its Uses and Misuses", October 8,

1974.

J T. Godfrey, On-Line Systems. Inc., "The New
Computer Service Industry , October 9, 1974.

Donald E. Knuth, Stanford University, "Fast Pattern
Matching in Strings" and "Ccmputer Program-
ming as an Art", October 11, 1974.

Kenneth M. Colby, Stanford University, "Simulation
of Paranoid Processes", October 15, 1974.

,

Thomas G. Price, Naval Postgraduate School, "Per-
formance Models of Multiprogram Computer
Systems", October 24, 1974.

^^^^^^^•w^^^^^^^M^^Aai*!

mm

w^mm^iiff^i^m!9mmim^mmmm^m^mmmmmmim^^'imimi .\ \ m

'

,

November

J. W. de Bakker, Mathematics Center and Free Uni-
versity, Amsterdam, Lecture Series on Fixed Point
Theory, November 11-21, 1974, 6 lectures pre-
sented.

Forest Baskett, Stanford University, "A Stochastic
Model of Program Paging Behavior", November
20, 1974.

Richard Sites, Stanford University, "Proving That
Computer Programs Terminate Cleanly", Novem-
ber 27, 1974.

Norihisa Suzuki, Stanford University, Automatic
Verification of Programs", February 12, 1975.

Klaus Berkling, Gesellschaft fuer Mathematik und
Dataverarbeitung, "Reduction Languages for Re-
duction Machines", February 13, 1975.

David Dobkin, Yale University, "On Some Fast
Algorithms for Matrix Multiplication", February 14,
1973.

Michael Fischer, Massachusetts Institute of Tech-
nology, "Design of Small Logical Networks from
Fast Turing Machines", February 26, 1975.

December March

68

ill

James C. King, IBM T. J. Watson Research Center,
"Program Testing Using Interactive Symbolic
Execution", December 9, 1974.

Gerald J. Popek, University of California at Los
Angeles, "Some Recent Activity in Protection",
December 9, 1975.

Philip Meir Merlin, University of California at Irvine,
"A Study of the Recoverability of Computing
Systems', December 11, 1974.

Thomas Cheatham, Harvard University, "A Look at
Programming Languages and Systems', Decem-
ber 11, 1974.

January

Peter Lauer, University of Newcastle-upon-Tyne,
"An Extension of Methods for Guaranteeing Syn-
tactic Correctness to Semantics of Concurrent
Processes", January 16, 1975.

H. W. Lawson Jr., Linköpings University, "Proposal

for a System Machine" and "A Flexible Asyn-
chronous Microprocessor", January 27-28, 1975.

L. Hyafil, IRIA, France, "Design of Optimal Merge on
Direct Access Devices", January 29, 1975.

February

Andrew C. Yao, University of Illinois, "Two Problems
in Computational Complexity", February 5, 1975.

Carver A. Mead, California Institute of Technology,
"ESP, A Distributed Architecture LSI Machine",
February 11, 1975.

Michael Harrison, University of California at Berkeley,
"Protection Systems", March 3, 1975.

Patricia Griffiths. Harvard University, "SYNVER: A
System for the Automatic Synthesis and Verifica-
tion of Synchronous Processes", March 5, 1975.

Cf.ul E. Kim, University of Minnesota, "Approximation
A'gorithms for Some NP-Complete Problems",
Ma'ch 19, 1975.

Leoniaas Guibas, Stanford University, "The Analysis
of Double Hashing", March 11, 1975.

Douglas Jensen, "Distributed Processing in a Real-
Time Environment", March 13, 1975.

Irene Greif. Massachusetts Institute of Technology,
"Semantics of Communicating Parallel Proces-
ses", March 17, 1975.

David Milgram, University of Maryland, "Picture
Processing with Histograms", March 18, 1975.

Michael Shamos, Yale University, "Fast Geometric
Algorithms", March 19, 1975.

Raphael Rom, University of Utah, "Image Coding
Based on Humar Vision", March 31, 1975.

April

John Guttag. University of Toronto, "Specification of
Abstract Data Types", April 2, 1975.

A. V. Aho, Bell Laboratories, Compiler Compilers
and Code Generation for Expressions", April 7,
1975.

*im*m****mmmmimimmm wmmmmmmmm ,1 I I HHWIIIIII »IHK ^^^^^<^mm^mmfimiir^mm9w

William Lynch, Case V/estern Reserve University,
"Performance Measurements at CWRU: The PDP-
10/TOPS-10 System", April 9, 1975.

Gerald Belpaire, University of Wisconsin, "Toward a
Synthesis of Synchronization Problems", April 9,
1975.

Brian Randall, University of Newcastle-upon-Tyne,
"Comouting System Reliability", April 11, 1975.

Ian Munro, University of Waterloo, "Searching and
Sorting in Multisets", April 21, 1975.

Marvin Solomon, Cornell University, "The Semantics
of Data Types", April 22, 1975.

Theodore H. Kehl, University of Washington, "A
Logic Machine Multiprocessor", April 24, 1975.

John Darlington, University of Edinburgh, "Trans-
forming High Level Programs", April 25, 1975.

W. M. Turski, University of Warsaw, "Informatics
(Computing Science?)—As A Natural Science",
April 29, 1975.

May

Yuri Breitbart, Technion-lsrael Institution of Tech-
nology, "Analysis of Algorithms for the Evaluation
of Monotonie Boolean Function", May 5, 1975.

Erik Sandehall, Uppsala University, Visiting Profes-
sor at MIT, "Structured Programming a la Artificial
Intelligence", May 7, 1975.

Axel van Lamsweerde, MBLE Research Laboratory,
"Derivation of Correct and Efficient Concurrent
Programs", May 13, 1975.

69

(

f i

^^y^f^ffclfll^tf^^W^^U

"■■llllll-ll"->1 ■ " »* mnmmmmiigmm^***'*

1

70

Gifts, Giants, And Contracts

Advanced Research Projects Agency, Pro' A.
Newell and Prof. J. F. Traub, Research in Informa-
tion Processing, July 1, 1974—June 30, 1975.

Alcoa Foundation, Department, 2 partial scholar-
ships, 1974-75.

Defense Communication Agency, Prof. S. H. Fuller,
The Application of Multiple Processor Computer
Systems to Digital Communications Networks,
June 30, 1975.

Ford Motor Company, Prof. W. A. Wulf, unrestricted,
1974-75.

International Business Machines, Department, 1 full
fellowship, 1974-75.

International Business Machines, Department, un-
restricted, 1974-75.

Rome Air Development Center, Prof. M. Shaw,
Tools for Good Structure, March 1, 1975—June
30, 1975.

Shell Companies Foundation, Department, Com-
puter Science Research, 1974-75.

Xerox Corporation. Prof. A. Newell, Research in
Cognitive Processes, 1974-1975.

Xerox Corporation, Prof. D. R. Reddy, 1 full fellow-
ship, 1974-75.

i

> •»

;

Mellon Computer Research Funds, Department,
Computer Research, unrestricted.

National Science Foundation, Prof. J. F. Traub,
Research in Parallel Algorithms and Computa-
tional Complexity, January 15, 1972—December
31, 1975.

National Science Foundation, Prof A. N. Haber-
mann. Type Definitions and Path Expressions as
Design Tools, April 15, 1975—June 30, 1975.

National Science Foundation, Prof. A. N. riaber-
mann. System Family Concept, July 1, 1972—
December 31, 1974.

National Science Foundation, Prof. A. Jones, A
Formal Theory of the Controlled Dissemination of
Information, January 1, 1975—lune 30, 1975.

National Science Foundation, Prof. M. Shaw, Soft-
ware to Support Well-Structured Programming,
November 15, 1974—June 30, 1975.

National Science Foundation, Prof. D. P. Slewiorek,
Register Transfer Level Computer Systems De-
sign, July 1, 1972—June 30, 1975.

Office of Naval Research, Prof J. F. Traub, Analysis
of Algorithms, July 1, 1971—August 31, 1975.

-

lOTnanntin.mnmiiuiHi ■•JILiHIIIJJIIIJIIUII \mi i ■ linn . I

I

I

v.'

it* ■

Ph.D. Dissertations

The following persons have been awarded Ph.D.'s
In Computer Science and related areas since the
establishment of the Computer Science Department
in 1965. The department or program from which
each received his Ph.D. is followed by his most
recent position.

The accession numbers follow In parentheses
after those dissertations which are registered as
reports with the Defense Documentation Center.

Aygun. Birol (Computer Science), Staff Program-
mer, IBM Corooratlon Advanced Systems De
velopment Div. ion, Yorktown Heights, New York,
"Dynamic Analysis of Execution Possibilities,
Techniques and Problems", 1974, Professor J. W.
McCredie.

Baker, James K. (Computer Science and Speech),
IBM Thomas J. Watson Research Center, York-
town Heights, New York, "Stochastic Modeling as
a Means of Automatic Speech Research", 1975,
Professor R. Reddy.

Baker, Janet M. (Biocommunication and Computer
Science), IBM Thomas J. Watson Research
Center, Yorktown Heights, New York, "A New
Time-Domain Analysis of Human Speech and
Other Complex Wave Forms", 1975, Professor R.
Reddy.

Balzer, Robert M. (Systems and Communication
Sciences), Staff Member, University of Southern
California, Information Sciences Institute, Marina
Del Rey, California, "Studies Concerning Minimal
Time Solutions to the Firing Squad Synchroniza-
tion Problem", 1966, Professor A. Newell. (AD
635056)

Barbacci, Mario R. (Computer Science), Research
Associate, Department of Computer Science, Car-
negie-Mellon University, Pittsburgh, Pennsylva-
nia, "Automated Exploration of the Design Space
for Register Transfer Systems", 1974, Professor
C. G. Bell

Berglass, Gilbert R. (Systems and Communication
Sciences), Assistant Manager, Computing Center,
State University of New York at Buffalo, Buffalo,
New York, "A Generalization of Macro Process-
ing", 1970, Professor A. J. Perils.

Berliner, Hans J. (Computer Science), Research
Associate, Carnegie-Mellon University, Pittsburgh,
Pennsylvania, "Chess as Problem Solving: The
Development of a Tactics Analyzer", 1975, Profes-
sor A. Newell. (AD 784881)

Cavlness, B. F. (Mathematics), Assistant Professor of
Computer Scleni-e, University of Wisconsin. Madi-
son, Wisconsin, "On Canonical Forms and Simpli-
fication", 1967, Professor A. J. Perils. (AD 671938)

Charon, Robert N. (Computer Science), Assistant
Professor of Computer Science, Department of
Computer Science, University of Texas, Austin,
Texas, "On a Measure of Program Structure ,
1974, Professor D. L. Parnas.

Chen, Robert C. (Computer Science), Assistant
Professor, Department of Computer and Informa-
tion Sciences, University of Pennsylvania, Phila-
delphia, Pennsylvania, "Bus Communications
System", 1974, Professor C. G. Bell.

Coles, L. Stephen (Systems and Communication
Sciences), Senior Research Mathematician, Stan-
ford Research Institute, Menlo Park, California,
"Syntax Directed Interpretation of Natural Lan-
guage", 1967, Professor H. A. Simon. (AD 655923)

Darrlnger, John A. (Systems and Communications
Sciences), IBM T. J. Watson Research Center,
Yorktown Heights, New York, "The Description,
Simulation, and Automatic Implementation of
Digital Computer Processors", 1969, Professor
D. L. Parnas. (AD 700144)

Earley, Jay (Computer Science), Research Associ-
ate, Department of Computer Science, University
of California, Berkeley, Callforria, "An Efficient
Context-Free Parsing Algoilthm", 1968, Professor
R. W. Floyd.

Ernst, George (Systems and Communication Sci-
ences), Associate Professor, Department of Com-
puter Science, Computer Engineering Division,
Case Western Reserve University, Cleveland,
Ohio, "Generality and GPS", 1966, Professor A.
Newell. (AD 809354)

Evans, Arthur, Jr. (Mathematics), Lincoln Labora-
tory, Lexington, Massachusetts, "Syntax Analysis
by a Production Language", 1G35, Professor A. J.
Perils. (AD 625465)

71

"«,",PJ",IU" "l ,l,u •"' mm '■"> .niiimiiwupwi^^F^w ■IPIl^iP«P"WPBIIiWiPWWi^"^W*«Vliiiii 11

:

72

Farley, Arthur, M. (Computer Science [Systems
and Communication Sciences)), "VIPS: A Visual
Imagery and Perception System; the Results of a
Protocol Analysis", 1974, Professor A. Newell.

Feldman, Jerome A. (Mathematics), Professor and
Chairman, Department of Computer Science, Uni-
versity of Rochester, Rochester, New York, "A
Formal Semantics for Computer Oriented Lan-
guages", 1964, Professor A. J. Perlis. (AD 462935)

Fennell, Richard D. (Computer Science), Systems
Programmer, Judicial Court System, Washington,
D.C., "Multiprocess Software Architecture for Al
Problem Solving", 1975, Professor R. Reddy.

Fikes, Richard E. (Computer Science), Senior Re-
search Mathematician, Stanford Rsearch Institute,
Menlo Park, California, "A Heuristic Program for
Solving Problems Stated as Nondeterministic
Procedures", 1969, Professor A. Newell. (AD
688604)

Fisher, David (Computer Science), Member of Re-
search Staff, Science and Technology Division,
Institute for Defense Analyses, Arlington, Virginia,
"Control Structures for Programming Languages",
1970, Professor A. J. Perlis. (AD 708511)

Freeman, Peter A. (Computer Science), Assistant
Professor of Systems and Information Science,
University of California, Irvine, California, "Source-
book for OSD—An Operating System Designer",
1970, Professor A. Newell.

Gerhart, Susan L. (Computer Science), Duke Uni-
versity, Durham, North Carolina, "Verification of
APL Programs", 1973, Professor D. Loveland. (AD
754856)

Geschke, Charles M. (Computer Science), Xerox
Research Center, Palo Alto, California, "Global
Program Optimization", 1973, Professor W. Wulf.

G'bbons, Gregory D. (Computer Science), System
Control Incorporated, Palo Alto, California,
"Beyond REF-ARF: Toward an Intelligent Pro-
cessor for a Nondeterministic Language", 1973,
Professor A. Newell. (AD 755811)

Grason, John (Electrical Engineering [Systems and
Communication Sciences]), Assistant Professor of
Electrical Engineering, Carnegie-Mellon Univer-
sity, Pittsburgh, Pennsylvania, "Methods for the
Computer-Implemented Solution of a Class of
Floor Plan" Design Problems", 1970, Professor
H. A. Simon. (AD 717756)

Haney, Frederick M. (Computer Science), Manager,
Technical Integration and Planning, Xerox Corpo-
ration, El Segundo, California, "Using a Computer
to Design Computer Instruction Sets", 1968, Pro-
fessor C. G. Bell. (AD 671939)

Hansen, Gilbert J. (Computer Science), Assistant
Professor, Department of Computer and Informa-
tion Science, University of Florida, Gainesville,
Florida. "Adaptive Systems for the Dynamic Run-
Time Optimization of Programs", 1974, Professor
W. A. Wulf.

Huen, Wing Hing (Computer Science), Visiting As-
sistant Professor, Illinois Institute of Technology,
Chicago, Illinois, "A Unifying Notation an j Anal-
ysis of Modular, Register Transfer (RT) Control",
1974, Professor C. G. Bell.

Iturriaga, Renato (Computer Science), Director of
the Computation Center and of the Center for Re-
search on Applied Mathematics, University of
Mexico, Mexico City, "Contributions to Mechani-
cal Mathematics", 1967, Professor A. J. Perlis.
(AD 660127)

Jones, Anita (Computer Scienre), Assistant Profes-
sor, Department of Computer Science, Carnegie-
Mellon University, Pittsburgh, Pennsylvania, "Pro-
tection in Programmed Systems", 1974, Professor
A. N. Habermann. (AD 765535)

King, James C. (Computer Science), Research Staff,
IBM T. J. Watson Research Center, Yorktown
Heights, New York, "A Program Verifier", 1970,
Professor R. W. Floyd. (AD 699248)

Knudsen, Michael J. (Computer Science), Bell
Laboratories, Naperville, Illinois, "PMSL, An
Interactive Language for System-Level Descrip-
tion and Analysis of Computer Structures", 1973,
Professor C. G. Bell.

MI mi iiHiniu .-r^. J«V''1-a m "'I'W, 'JWMUPHIIHWII PWWBPPPiPliPi

■ i 1

; I
-Jf
•v ■

■rW-

Ladron DeCegama, Angel (Electrical Engineering
[Systems and Communication Sciences]), Senior
Research Engineer, National Cash Register Com-
pany Hawthorne, California, "Performance Op-
timization of Multiprogramming Systems", 1970,
Professor A. J. Perils.

Lauer, Hugh C. (Computer Science), Lecturer, Com-
puting Laboratory, University of Newcastle, New-
castle Upon Tyne, England, "Correctness in
Operating Svstems", 1973, Professor W. A. Wulf.
(AD 753122)

Lindstrom, Gary (Computer Science), Assistant Pro-
fessor of Computer Science, University of Pitts-
burgh, Pittsburgh, Pennsylvania, "Variability In
Language Processors", 1970, Professor A. J.
Perils. (AD 714695)

Lipton, Richard (Computer Science), J Willard
Gibbs, Instructor, Department of Computer
Science, Yale University, New Haven, Connecticut,
"On Synchronization Primitive Systems", 1974, Pro-
fessor D. L. Parnas. (AD 764782)

London, Ralph L. (Mathematics), Information Sci-
ences Institute, University of Southern California,
Marina Del Rey, California, "A Computer Program
for Discovering and Proving Sequential Recogni-
tion Rules for Well-Formed Formulas Defined by a
Backus Normal Form Grammar", 1964, Professor
A. Newell. (AD 840036)

o

Lunde, Amund, (Computer Science), University of
Oslo, Norway, "Evaluation of Instruction Set
Processor Architecture by Program Tracing",
1975, Professor W. Wulf. (AD A004824)

Mann, William C. (Computer Science), Project
Leader, University of Southern California, In-
formation Sciences Ins'itute, Marina Del Ray,
California, "Memory Processes for Information
Assimilation", 1974, piofesscr A. Newell.

Manna, Zohar (Computer Science), Associate Pro-
fessor, Applied Mathematics Department, Welz-
mann Institute of Science, Rehovot, Israel,
"Termination of Algorithms", 1968, Professor R.
W. Floyd. (AD 670558)

McCredle, John W. (Systems and Communication
Sciences from Graduate School of Industrial
Administration), Director of Computation Serv-
ices, Lecturer in Computer Science, Carnegie-
Mellon University, Pittsburgh, Pennsylvania, "Ana-
lytic Models of Time-Shared Computing Systems;
New Results, Validations, and Uses'. 1972, Pro-
fessor C. Kriebel.

McCreight, Edward M. (Computer Science), Re-
search Scientist, Xerox Research Center, Palo
Alto, California, "Classes of Computable Func-
tions Defined by Bounds on Computation", 1970,

rofessor A. R. Meyer. (AD 693327)

Mitchell, James G. (Computer Science), Xerox Re-
search Center, Palo Alto, California, "The Design
and Construction of Flexible and Efficient Inter-
active Programming Systems", 1970, Profassor A.
J. Perils. (AD 712721)

Moore, James A. (Computer Science), University of
Southern California, Information Sciences Insti-
tute, Marina Del Ray, California, "The Design and
Evaluation of a Knowledge Net for MERLIN", 1971,
Professor A. Newell.

Moran, Thomas P. (Computer Science), Research
Scientist, Xerox Research Center, Palo Alto,
California, "The Symbolic Imagtsry Hypothesis; An
Empirical Investigation via a Product System
Simulation of Human Behavior in a Visualization
Task", 1974, Professor A. Newell.

Mullln, James K. (Systems and Communication Sci-
ences), Associate Professor, Computer Science
Department, University of Western Ontario, Lon-
don, Ontario, Canada, "A Computer Optimized
Question Asker for Aiding Bacteriological Species
Identification COQAB", 1967. Professor B. Green.

Newcomer, Joseph M. (Computer Science), Re-
search Associate, Carnegie-Mellon University,
Pittsburgh, Pennsylvania, "Machine-Independent
Generation of Optimal Local Code", 1975, Pro-
fessor W. Wulf.

Ohlander, Ronald B. (Computer Science), Chief
Engineer, U.S. Navy, "Analysis of Natural Scenes",
1975, Professor R. Reddy.

73

Mttlb^MHHMi aämä
^^^^W^^^j^M^I^ .__

mwMmf*iftw*mm*immm*'*m*mm**m*mmm*mi'****^*i™*'*' mmvmniumuM.v. ixnmmv

smm 1

::;l

■

Parnas, David L. (Systems and Communication
Sciences), Professor, Technical University of
Darmstadt, West Germany, "System Function
Description ALGOL—A Language for the Descrip-
tion of the Functions of Finite State Systems, the
Simulation of Finite Systems, and the Automatic
Production of the State Tables of Such Systems'
1965, no advisor. (AD 467633)

Pfefferkorn, Charles (Computer Science), ILLIAC-IV
Project Manager, Evans and Sutherland Com-
puter Corp., Sunnyvale, California, "Computer
Design of Equipment Layouts Using the Design
Problem Solver (DPS)", 1971, Professor H. A.
Simon.

Price, William R. (Computer Science), Computer
74 Systems Design Engineer, Hq. ESD/MCI, L. G.

Hanscom Field, Massachusetts, "Virtual Memory
Mechanism for Implement Protection in a Family
of Operating Systems", 1974, Professor D. L.
Parnas. (AD 766292)

Quatse, Jeose T. (Electrical Engineering and Sys-
tems and Communication Sciences), Telemech-
anique, Rue De Provence, 38 Echirolles, France,
"A Highly-Modular Organization of General Pur-
pose Computers", 1969, Professor C. G. Bell.

Quilllan, M. Ross (Psychology), Associate Professor,
Social Sciences Department, University of Califor-
nia, Irvine, California, "Semantic Memory", 1967,
Professor H. A. Simon.

Reeker, Larry H. (Systems and Communication
Sciences), Assistant Professor, Oregon University,
Ejgene, Oregon, "A Problem-Solving Theory of
Syntactic Acquisition", 1974, Professor A. Newell.

Richardson, Leroy (Systems and Communicat on
Sciences), Staff Scientist, Information Sciences
Institute, University of Southern California, Marina
Del Rey, California, "Specification Techniques for
Interactive Computer Systems", 1972, Professor
D. L. Parnas.

Shaw, Mary M. (Computer Science), Assistant Pro-
fessor of Computer Science, Carnegie-Mellon
University, Pittsburgh, Pennsylvania, "Language
Structures for Contractiblo! Compilers", 1972,
Professor A. J. Perils. (AD '44117)

Shoup, Richard (Computer Science), Xerox Re-
search Center, Palo Alto, California, "Program-
mable Cellular Logic Arrays", 1970, Professor C.
G. Bell. (AD 706891)

Siklossy, Laurent (Computer Science), Computer
Sciences Department, University of Texas, Austin,
Texas, "Natural Language Learning by Com-
puter", 1968, Professor H. A. Simon. (AD 671937)

Snyder, Lawrence (Computer Science) Assistant
Professor of Computer Science, Yale University,
New Haven, Connecticut, "An Analysis of Param-
eter Evaluation for Recursive Procedures", 1973,
Professor A. N. Habermann.

Standish, Thomas A. (Computer Science), Depart-
ment of Information and Computer Science, Uni-
versit; of California, Irvino, California, "A Data
Definition Facility for Programming Languages",
1967, Professor A. J. Perils. (AD 658042)

Strauss, Jon C. (Systems and Communication Sci-
ences), Professor and Director of Computing
Activities, Office of Computing Activities, Uni-
versity of Pennsylvania, Philadelphia, Pennsyl-
vania, "Identification of Continuous Dynamic Sys-
tems by Parameter Optimization", 1965, Pro-
fessor A, Lavi. (AD 660887)

Strecker, William D. (Electrical Engineering), Re-
search and Development Group, Digital Equip-
ment Corporation, Maynard, Massachusetts, "An
Analysis of the Instructio.i Execution Rate in
Certain Computer Structures", 1970, Professor C.
G. Bell. (AD 711408)

Wagner, Robert A. (Computer Science), Associate
Professor, Department of Systems and Informa-
tion Science, Vanderbilt University, Harr 'ille,
Tennessee, "Some Techniques for Algorithm Op-
timization with Application to Matrix Arithmetic
Expres£;ons", 1969, Professor A. J. Perils. (AD
678629)

Waldinger, Richard J. (Computer Science), Re-
search Mathematician, Artificial Intelligence Cen-
ter, Stanford Research Institute, Menlo Park,
California, "Constructing Programs Automatically
Using Theorem Proving", 1969, Professor H. A.
Simon. (AD 6970''1)

— —■- - ■ ■ ■

!W»BWpip|pPifiPPi|piW««BIIiP||PPPi|l«piiPWIW»»^Wi^PWW ""•l"1 ^*^mmmmmm v\.ni.rv\iuf^mwmmmmmm

} '

Wile, David D. (Computer Science), Staff Member,
University of Southern California, Information
Sciences Institute, Marina Del Rey, California, "A
Generative, Nested Sequential Basis for General
Purpose Programming Languages", 1974, Pro-
fessor W. A. Wulf. (AD 773839)

Williams, Donald S. (Systems and Communication
Sciences), Member Technical Staff, Jet Propul-
sion Laboratory, California Institute of Tech-
nology, Pasadena, California "Computer Pro-
gram Organization Induced by Problem Exam-
ple", 1969, Professor H. A. Simon. (AD 688242)

Winikoff, Arnold W. (Systems and Communication
Sciences), F- «?sident, Q.E.D., Inc., Minneapolis,
Minnesota, 'Eye Movement a an Aid to Protocol
Analysis of Problem Solving Behavior", 1967,
Professor A. Mewell.

: I

75

»- .. !

: ^

