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Abstract.

"An integral equation elsewhere employed to solve inverse

source problems is discussed from the viewpoint of Hilbert

[i,:i•'•Space theory. The eigenfunctions and eigenvalues are determined i

and the null space is explicitly shown to be infinite dimensional.

An existence criterion is established and an application is made

to the problem of determining sources which radiate maximum power

for given input power.
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1. Introduction.

Recently, N. N. Bojarski (1974) conjectured that inverse

source problems for the wave equation could be investigated

by means of a Fredholm integral equation of first kind which

took the form,

f ( )(r r') p(r') d 3 r' =O(r).

Here, p(r') denoted the unknown source whose support, however,

Swas a-umed a priori to be located within a domain D. Further-

more, ((r) denoted a function determined by observations of the

field on the boundary of D.

Later that year, N. Bleistein and N. N. Bojarski (1974)

presented an invited talk at the Summer Institute on Inverse

Problems at the University of California at Irvine, in which

they gave a rigorous derivation of (1.1), identifying the

kernel K as the difference of the free space outgoing and

incoming Green's functions. The equation as thus formulated

has a unique solution, but it was soon realized that the source

function p, which arose from a time transform of the wave

equation, would in general depend on the transform variable,

w. Thus, the treatment and numerical results presented by

these authors only applied to the case in which the time-

dependent source had the form, p(r) 6(t), where 6(t) represents

the Dirac delta function.

Accordingly, the present authors (1975) gave a derivation

of the integral equation valid for general time-dependent sources

and showed that in this general case, the source cannot be deter-

mined uniquely. We gave several characterizations of the
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non-uniqueness and also gave illustrations of some type of

additional a priori information about the source, which would

allow its unique determination. Furthermore, we extended the

theory to the Maxwell Equation system.

In a sequel, now in preparation, we will present additional

examples of both the source determination and source synthesis.

Many of these applications proceed most easily by treating the

spatial Fourier transform of the integral equation. However,

we decided that, since the integral equation is of quite clas-

sical type, a study of its eigenfunction structure from the

Hilbert Space viewpoint would be illuminating and it is that

study we present here.
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2. Notation and Derivation of the Integral Equation.

We deal with functions of space and time denoted by

F(r,t), where

(2.1) r (x,y,z), r =_, r = r/r.

The time transforms of such functions are denoted by the

N corresponding lower case letters,

(2.2) f(r,w) f eiw'F(r,t)dt

and we shall occasionally also have reference to the time-

space transform, denoted by a tilde as,

Sf (__,•) -ik

(2.3) f(k,w) = ffff(rw)e-k'd3r.

We consider the wave equation,

(2.4)(V 2 -2 2 U(r,t) = -F(-.,t)

and assume that we know a py-iori that the source F has spatial

support within a sphere of radius a and also that the source

has temporal support in the interval*, -t < t < t . We assume that
0 0

2H
(2.5) U(r,t) 0 for t < -t •

-- 0

Upon time transformation, we obtain

"(2.6) IV2 + (w)2J u(r,w) =-f(r,w)

with u satisfying the outgoing radiation condition,

(2.7) u(r, w) n - e- u (r,w) as r ÷ --- 4Tr 0

• This can be weakened somewhat.
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Here, u is a quantity analogous to the scattering cross section
0

called the phase and range normalized scattering amplitude.

We now present a simplified derivation of the generalized

Bojarski integral equation which proceeds immediately from the

Green's Identity,

(2.8) ff1 {u(r',w) Lv(r',r,w)- v(r',r,w) Lu(r'f,)} d 3 r'

= 1' D EuV'v- vVWu] ds'.

Here

(2.9) L V'2 + 2

aD denotes an (observation) boundary which lies outside

the shere r < a (the support of the source). D is the interior

of DD and n' is the unit outward normal to D. We choose v as a

solution of the homogeneous Helmholtz equation.

(2.10) [v2 
+ (--3)2] v(r,r',w) = 0

which is regular at its source point r = r'. The simplest

choice of v is

-Yo

(2.31) v=J 0 (-R) , R= Ir-r'I;

sin xJ0(x W x •

Here, j0 is the spherical Bessel Function of first kind and

order zero.

On using (2.10) and (2.6) in the Green's Identity (2.8),

we have at once the integral equation

low-

M- ME
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(2.12) Kf = O(r,w)

where

(2.13) Kf j() f(r',w) d 3r'(2.13) Kf f fff 0 c -i

and

(2.14) ,9(- = fr'• r,)V'j (ý.Lr).

DD 0 C

- J (•() V'u(r',w)]ds'.

The integral equation (2.12) is valid for all r, and since f

has support in a sphere of radius a, the integration in (2.13)

can be regarded as extending either over all space or just over

the a-sphere as we find conceptually convenient.

The integral equation (2.12) differs only slightly from

Bojarski's original conception. The kernel and ( differ only

by a common multiplicative factor from his, and most importantly A,

e is still an observable quantity computed from observations of

u and au/Dn on the single surface DD.

S~As mentioned in the introduction, most of the practical

applications of the integral equation follow most easily from

its spatial Fourier Transform, which we remark in passing, is

given by

(2.15) '(k,ck) = (k)

where

(2.16) G(k) = De-k ' [iku(r',ck)

+ V'u(r',ck)]ds' L u (k,ck) as r

0
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3. Eigenfunction Analysis of the Integral Equation.

We study the problem

(3.1) K'(r',) = •X(r,w), Inr < a, Ir'I < a,

where K is defined by (2.13). and ' is a -,ýgular function.

Since the kernel, j (-ý!r_ - r'I), of K is a symmetric, continuous
0 c

function on a compact product space, we are dealing with the

most classic case of symmetric Hilbert-Schmidt theory. Below,

.n statements 1 i, we shall summarize the principal conclusions

".is theox/ and, when appropriate, give the specializations

- these results to our kernel. Note that our eigenfunctions -4-

exist only in the a-.phere and that the precise value of a is

somewhat arbitrary. Also, we assume that I
(3.2) ' (r, w) c [a]

where the notation indicates that P is square-integrable on the

a-sphere. 3j

We begin our review of the theory with the following 0

definitions.

1. E = linear manifold generated by the eigenfunctions

for X + 0.

o. N null space of K (i.e., the solutions of Kf = 0).

3. E and N are subspaces; in fact, L [a] = E * N. This
2

result means that for any f c L [a],2

4. f = ýfn'n + h ,where the f are the unique Fourier
n n n

Coefficients of the eigenfunctions which generate E, I

while h is an arbitrary element of N.
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For our kernel, the eigenfunctions generating E are

explicitly given by

(3.3) km(r,)= 1 j(r)y (O,4),N- c jm

Z : 0,1,2 ... ; Iml < 9

The corresponding eigenvalues are given by

(3.4) X Z =4mrN

and the normalization factor, N., is given by

[• (3.5) N 2 (w,a) fa j.2rZ 0 32-c~rd

_ { 2(( (j a j (wa)
2 Z c Z-1- c Z-+1 C

To establish (3.3), recall that the kernel, j0' was chosen

as a regular solution to the homogeneous Helmholtz Equation. Thus,

upon applying the operation, V2 + (A)2, to both sides of (3.1),
c4: we have at once

(3.6) X[V2 + (w) 2  = 0

In determining E, we assume A + 0, so it is clear that any

eigenfunction in E is a regular solution to the homogeneous

Helmholtz equation. If we expand i in the complete set,

SYm(O,ý), of regular spherical harmonics as

00 Z(3.7) •(,)=Z Z f m(r, w)Y Zm(O,•),

-£=0 m=-9

we find that f9 r(r,w) satisfies the second order spherical

Bessel or-,'nary differential equation. The only L [a]
"41 ~ 2
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sol ision (is r), so that i.(r~w) 4 w\Y (e,~ which

concludes the proof of (3.3).

If we expand our kernel in spherical harmonics as

(3.8)~ H rI 4w E E j u).(
0~" *c £-*- z.c

zm Zm

I~(see Jackson, 1962), it is easy to compute Kiý and hence

1~obtain the eigenvalues X~ given in (3.4).

To any function f in L [a], we can associate both

~ an expansion in spherical harmonics and an eigexn-expansion.

To distinguish these, we henceforth use f to denote the

spherical harmonic coefficients and f9  to denote the eigen-

coefficients. Thus,

6ý(3.9) f(r,w) E E f (rw)

and

(3.10) f(r,w) E zm ()ý~~u

SThe relation between these cofiinsis

(3.11) f9. Mw = 1  f(r w)j(9 r dr,

also

~~c~ (3~)f . (r,w)) ff f(r,w)Yk.*(O,4)dQ

and

~& '~i 3.1) f (w) fff f(r,w)ý 9 *(r,w)r 2drdQ.

Here, dQ denotes an integration over the unit sphere.
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The general expansion result (4) can now ba explicitly A,

expressed for ou: kernel as

(3.14) f E E fEm'km + h, feL (a)
.=0 m=-k 2

where the f are the unique eigen-coefficients (3.13), and h
k.m

is an arbitrary element of N.

We now turn to the characterization of the range of K.

We write

(3.15) R(K) = range of K,

and have

5. ¶(K) is a linear manifold in E, which is not closed.

Furthermore, we have

6. geR(K) -÷ the eigen-series associated with g is uniformly

convergent (instead of merely L convergent).
2

This latter result requires that the iterated kernel be

bounded and continuous, which is certainly true here since we

deal with a continuous kernel on a compact set. The second

part of (5) requires only that the kernel be Hilbert-Schmidt

and there exist infinitely many eigenfunctions (i.e., that K

be non-degenerate).

The fact that ¶(K) is not closed means that the alternative

theorem does not apply, but since N = ¶.L always holds, we do

have

7. E = closure (R).

Using our eigenfunctions, we see at once that the solutions

of
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(3.16) Kf = g(r,w), geR(K), r < a

are

(3.17) f(r,w) = Z ---- + h

where h is an arbitrary element of N. Thus, the range may

be characterized by

S£ gm

0.0 mZ X9.  m(3.18) g R(K) Z E -- eL2 s]

or by

(3.19) gcR(K) E• < + C

==o m=--Z XP

where the g are the eigen-coefficients of g. The existence

criterion (3.19) is quite stringent for, while it is also true

for non-degenerate symmetric compact operations that the sequence

of eigenvalues, X , satisfy X ÷ 0 as n -- ,we have for
n n

our operation extremely rapid convergence to zero. In fact, the

explicit expressions (3.4) and (3.5) for the eigenvalues yield

(3.20) X 3 -= " " 2 + - )
S4Vc. 2Z+3 9

Thus, in a sense, R(K) is much smaller than E.

In the following table, we give some typical values for

kX /27ra 3  so that the reader can judge the noise amplification

inherent in an eigenfunction solution such as (ý.17).

4~
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z.1 1 10 100

F0 .6653 .5454 .9544xl10--

1 .4438x10-3  .3850x10-1 .1040x10-1

2 .4122xl107  .1136x10-2  .9174x10-2

3 .2014xI0 1  .1840x10O .9452x102 --

5 .1423x10-18  .1332x10-9  .7783x10-2  .9950xI104

10 ----. 6130x10-3  .9943xl0-'

115 .8437x107  .9929xl10'

Table of values for 2 .ý) j ajlwa

2 ra
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Wc conclude this section by providing several characterizations

of the null space N . Aside from the obvious characterizations,

Kf =0 and feeI ,we have

(3.21) feN +-+ f£m = 0; £ = 0,1,2, ... ; jm[ <

(3.22) feN -+ f(k,ck) = 0,

and

(3.23) fcN •-+ f is a non-radiating source :i
By the phrase "non-radiating source", we mean one whose field,

outside the source region r < a , vanishes identically. This

last characterization identifies the mathematical concept of a

null space with those sources which are physically undetectable

outside the source region. The proofs of statements (3.21)-(3.23) 4

appear in Bleistein and Cohen (1975). Here, we show in a con-

structive way that (3.21) implies that N is infinite dimensional. j
Consider the functions

j,,ýLr fa f(' , w j r't "ar
(3.24) h(r,) = f(r, 0 fc 'Yfa 2£ -•ý r'2dr' J•

0 9.1 c

For these functions, we have

(3.25) h9.m fa h(r'w)ýkm~r'•')r~dldr

N c fa j 2 wr
k I {f(rw) - 2f(r',,2dr' dr

wr0 X1' c

U11 mm, f f oa J.2r2dr fo fJpr 2dr
______ •- 0o 9.• •t

9 f fj~r2dr
N 0 f1a j 

2r2dr

-009
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Hence, for each f(r,w) and each harmonic ^,m, there is a

solution in the null space. For example, if we choose the (0,0)

harmonic and f = r, k = 0,1,2 ... , we obtain an infinite

family for which the quadratures can be explicitly performed. We

also note that if f(r,w) is an entire function of order one

in w, su is h(r,w). Thus, the inverse transform H(r,t)

would have compact support in time and would, thus, be a legitimate

source if only f(r,w) vanishes for r > a.

{£'X4

Ai.

:1
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4. Existence and Uniqueness for the Inverse Source Integral Equation.

We can now state the fundamental existence theorem for the

integral equation (2.12)

Theorem 1: The equation Kf =0 has solutions if and only if

(4.1) E E 1ff nt  [uV'~ J *Vu~ds'12  < ~
R=0 m-2 YD k.m km

Moreover, if the equation has solutions, then it has the infinite

family of solutions,

44 Ik
(4.2) f =h + E E fJ n' .[uvOp* ý *Vfu]ds'ip heN.

9=0 m-2.Z 3D 9'm 9.m

Proof: Kf E 0 has solutions if and only if 0ER(K), hence, by

(3.18), if and only if

(4.3) 2= .A . 2<~

If it does have solutions, then by (3.17) they are given by

(4.4) f h + E E A~' ' hE:N.

Thus, to establish the theorem, we need only show that

(4.5) X = ff n'* [uV t~p - *Vtu] dst.
2.m 91 n 9.mj

This can be done by recalling the definition of 0 in (2.14)R

and realizing that the expansion (3.8) for j (-Iý R) can be

3-1 written in termfs of the eigenfunction as, o

(4.6) c Wr
j (!~ Y 2. m-2.

Uigthis, we obtai
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(4.7) e(r, W) = z A ff n' * [u * V'tp *(r',w)
&0=0 m=- aDm

- )m(_r',)V'u]ds' • £(r,wo)

which immediately gives (4.5) and establishes the theorem.

We remark that if e is computed from data from an actual

source feL , then the existence criterion in Theorem 12

is always satisfied because the integral equation itself

implies that

(4.8) Xm f

and hence

Z 1-eml 2 9(4.9) E z Z 17 [J2 <

9=O m=- I9TI z=0 m- z m

since fel [a].
2

We further point out that because of the uniform convergence

of the eigen-expansion of functions in the range and the final

remark made at the end of the last section, infinitely many

solutions of the form (4.2) can be found which will give rise

to physical space-time sources F(r,t) if the hypothesis of

the theorem is met.

4•
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5. An Application.

various applications of equation (2.12) will be presented. Natu-

"rally, the key to these applications is the restriction of f to

subsets M of L [a], such that the problem
2

(5.1) Kf =0 f cM

has a unique solution. We have already given some examples of

suitable choices of M in Bleistein and Cohen, 1975. Here, we

confine ourselves to mentioning just one such application. Namely,

we point out that if 0 satisfies the existence criterion and, A

furthermore, if we impose a priori that feE, then clearly the

unique solution is

(5.2) f(r,w) = Z -

- =Z m=- Z P .m

The restriction feE is not devoid of interest, for by

the characterization (3.23) of the null space, any component

of fcE' does not radiate. Thus, any energy used in producing

such a component is "wasted". In this sense, the solution (5.2)•I
is the most economical of the family of solutions (4.2) and, thus, i

is of particular interest in the synthesis problem.

V-N1
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