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1. Introduction.

Recently, N. N. Bojarski {1974) conjectured that inverse
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source problems for the wave equation could be investigated

ERIKTI o AT

by means of a rredholm integral equation of first kind which

took the form,

SV

FRT SR

(1.1) [pk - £") p(x") d&*' = 0(D).

Here, p(r') denoted the unknown source whose support, however,
was a.sumed a priori to be located withir a domain D. Further-
more, O(r) denoted a function determined by observations of the
field on the boundary of D.

Later that year, N. Bleistein and N. N. Bojarski (1974)

| . . . .
A e 0 o DA 3T ek s e F AN A fra ATF B AL st Y

presented an invited talk at the Summer Institute on Inverse

Ywd i btk S

Problems at the University of California at Irvine, in which

they gave a rigorous derivation of (1.1), identifying the

PR SR SNIP TP

kernel K as the difference of the free space outgoing and
incoming Green's functions. The equation as thus formulated i
has a unique solution, but it was soon realized that the source

function p, which arose from a time transform of the wave

A e

equation, would in general depend on the transform variable,

w. Thus, the treatment and numerical results presented by

M\ 2 e wa kw2

these authors only applied to the case in which the time-

o wer

S ares

dependent source had the form, p(r) 6§(t), where 8(t) represents

the Dirac delta function.

o DL WS S % Dt

Accordingly, the present authors (1975) gave a derivation

of the iIntegral equation valid for general time-dependent sources

BT R R ITD

and showed that in this general case, the source cannot be deter-

mined uniquely. We gave several characterizations of the
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non-uniqueness and also gave illustrations of some type of
additional a priori information about the source, which would
allow its unique determination. Furthermore, we extended the
theory to the Maxwell Equation system,

In a sequel, now in preparation, we will present additional
examples of both the source determination and source synthesis.
Many of these applications proceed most easily by treating the
spatial Fourier transform of the integral equation. However,
we decided that, since the integral equation is of quite clas-
sical type, a study of its eigenfunction structure from the

Hilbert Space viewpoint would be illuminating and it is that

study we present here.
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2. Notation and Derivation of the Integral Equation.

We deal with functions of space and time denoted by

F(r,t), where

(2.1) r= (x,y,z), r= I}‘_i’ ; = .E./r’

EORE A

The time transforms of such functions are denoted by the

BT AR R I L A N 7 e ST TS WPt St i v et e

2R

corresponding lower case letters,

3Z35

T S
WEr

v M A % b

+
T (2.2) f(x,w) = [ e F(z,t)dt
ELifs ‘ -
5;?. : and we shall occasionally also have reference to the time-

space transform, denoted by a tilde as,

‘.

AN RS NIRRT,

¥ ol

(2.3) F,0) = [[fE@we K Iady,

RN

FERY

We consider the wave equation,

2

ANy s B e s e B BARR

bera B b e

(2.4) (v2 - 12 T2 V@) = (L0

and assume that we know a prtort that the source F has spatial

support within a sphere of radius a and also that the source

has temporal support in the interval¥, “t0< t <t . We assume that
0

(2.5) U(z,t) =0 for £ < -t .

Upon time transformation, we obtain

Son s § LedOA st i v N TE PRI T T F e 2 T

W
, (2.6) [v2 + ©F u(r,w) = ~f(z,w) ;
]
i
with u satisfying the outgoing radiation condition, ?
. W - :
Q.7 u(r,w) N A oTIEE, (r,w) as r + ® , :
== 4nr 0 X
|
g * This can be weakened somewhat.
‘:‘;x;' 7 ; - : <“€—\’w S ‘3‘3““1 &\’x' ‘T :;.\‘E»,, T o =
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Here, uo is a quantity analogous to the scattering cross section
called the phase and range normalized scattering amplitude.

We now preseant a simplified derivation of the generalized
Bojarski integral equation which proceeds immediately from the

Green's Identity,

(2.8) fffD u(r',w) Lv(z',r,w) - v(r',r,w) Lu(gf,m)} adc’
‘”aDn° [qu—vVu] ds’.
Here

(2.9) L=v24+ @72

3D denotes an (observation) boundary which lies outside
the sphere r < a (the support of the source). D is the interior
of 3D and n' is the unit outward normal to D. We choose v as a

solution of the homogeneous Helmholtz equation.

(2.10) 72 + ©7] v(z,x',w) =0

which is regular at its source point r = x'. The simplest

choice of v is

in
A

(2.11) v=j0(-‘::_’R),R= |z -

. _sin %
JO(X) = —.

Here, j0 is the spherical Bessel Function of first kind and

order zero.

On using (2.10) and (2.6) in the Green's Identity (2.8),

we have at once the integral equation
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(2.12) Kf = 6(z,w)

where

(2.13) Kf = [[ijO(E’-Z-) £(x',w) d3r’

and

(2.14) 9=”3Dﬁ' . [u(g',w)v'jo(ﬂz-)

J'O(E’—E) V'u(x',w)]ds'

The integral equation (2.12) is valid for all r, and since f
has support in a sphere of radius a, the integration in (2.13)
can be regarded as extending either over all space or just over
the a-sphere as we find conceptually convenient.

The integral equation (2.12) differs only slightly from
Bojarski's original conception. The kernel and 6 differ only
by a common multiplicative factor from his, and most importantly
O is still an observable quantity computed from observations of
u and 3u/3dn on the single surface 3D.

As mentioned in the introduction, most of the practical
applications of the integral equation follow most easily from

its spatial Fourier Transform, which we remark in passing, is

given by

(2.15) ¥(k,ck) = B(K)

where
A — “ik.r Ay 1
(2.16) 8(k) = '”ane ='Zn' « [iku(c',ck)

+ V'u(£',ck)]ds' a uo(lz,ck) as r +» o,
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3. Eigenfunction Analysis of the Integral Equation.

We study the problem

SN
x, N
A A

,
et it

FranY

(3.1 Kp(x',w) = AW, |zl <a, |zr'l <a,

A
\

.
7

EX,

e

i

where K is defined by (2.13). and ¢ is a i2gular function.

s

Since the kernel, jo(%lg - '), of K is a symmetric, continuous

function on a compact product space, we are dealing with the

T vk

most classic case of symmetric Hilbert-Schmidt theory. Below, ;

Tyar

e

Shet

;0 statements 1 7, we shall summarize the principal conclusions

RETY

;
B

¢ -.ls theor; and, when appropriate, give the specializations

T
T 5
CTL TN A 4
e
&
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SR

Vi vsh\
AR
Bt

. i these results to our kernel. Note that our eigenfunctions

5

4t
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exist only in the a-<phere and that the precise value of a is

S LR
Fn i

o
L

somewhat arbitrary. Also, we assume that

g

R e R
i

(3.2) b (r,w) c ;z[a], %

where the notation indicates that ¢ is square-integrable on the E §

a-sphere. : g

We begin our review of the theory with the following E %

X definitions. } g

3 b 35

1 ﬁ 1. E = linear manifold generated by the eigenfunctions % ]
g'ﬂ e 3
bisd for X $ 0. 4]
3 S 5 “‘E

LA &
TS

T

7. N = null space of K (i.e., the solutions of Kf = 0).

s YR s e PR a8

SeaRd
122 4

5
: &
5$£ 3. E and N are subspaces; in fact, L Eﬂ = E & N. This s
T 2 i
‘-!f;i ‘f:% s
i result means that for any £ ¢ L [ﬁ], [ .
b1 S . 4 -3
Hiss 4, f=2If ¢y +h, where the f are the unique Fourier % 2
s nn n g3
S P M
5% . . 1
(S Coefficients of the eigenfunctions which generate E, %% &
hat) £ %
o while h is an arbitrary element of N. P
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For our kernel, the eigenfunctions generating E are

G r s vtk o Ty 23 I

explicitly given by

L vt et

(3.3) b, (2,0) =1 LD, (0,0), i
m
g =0,1,2 ... ; |m|] < 2. -

The corresponding eigenvalues are given by

LA kR AV D s

= = 2
(3.4) Ny = A, = 4nNy

and the normalization factor, Nz, is given by

2 a . 2,Wry._.2
(3.5) N, 2(w,2) f j 2@ rr

0

3
a’ [y 2@ay _ 5 ways  wa
2 {JQ, ( c 39,—1( C)JS?,+1( c)}.

To establish (3.3), recall that the kernel, jo, was chosen

L R R IR T S R S )

st .

= as a regular solution to the homogeneous Helmholtz Equation. Thus, Lo
§%f upon applying the operation, V2 + (%)2, to both sides of (3.1), i
= we have at once :

Ad
e
s

P

G

(3.6) A2+ @y =0.

DO,

prrevr e

3

R
K

In determining E, we assume A % 0, so it is clear that any

eigenfunction in E is a regular solution to the homogeneous

B O T S T FUTPs S e

Helmholtz equation. If we expand ¢ in the complete set,

o

YQm(e,¢), of regular spherical harmonics as

CI )
3.7 Y(r,w) = 2 ¢ £ (r,w)Y (8,4),
2=0 m=-g M m ]

we find that fzm(r,m) satisfies the second order spherical

Bessel or. wmary differential equation. The only L [a]
2
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solution is jz(% r), so that Y, (r,w) = jz(g%)Yzm(8,¢), which
concludes the proof of (3.3).
If we expand our kernel in spherical harmonics as
I wr wr'
(3.8) § & lr-x'l) = dn S T3, 009, G

. wzm (9,¢)¢2m* (6,9,

(see Jackson, 1962), it is easy to compute szm , and hence
obtain the eigenvalues Alm given in (3.4).
To any function £ in Lz[?], we can associate both

an expansion in spherical harmonics and an eigen-expansion.

To distinguish these, we henceforth use fzm to denote the
spherical harmonic coefficients and ?&m to denote the eigen-
coefficients. Thus,

o 2
(3.9) f(r,w) = QEO m£~l flm (r,m)Yzm(6,¢)
and

© 2
(3.10) f(r,w) = £ T E, (0¥, (r,0).

2=0 m=-¢

The relation between these coefficients is

foegit:

,

-{v‘
£y

34

20 —
¥y = (8 s (WEY .2
: (3.11) fgm(w) IO flm(r’w)Jl(_E'r dr,
also
S (3..2) £, (r0) = [[ £(x,w)Y, *(0,4)d0
i
et and
F = % 2
(3.13) £, (@ Iff £(z,0)¥, *(r,w)r?drd.

Here, d@ denotes an integration over the unit sphere.
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The general expansion result (4) can now be explicitly

expressed for ou. kernel as

© 2 —_
(3.14) f= 1 I f2m¢gm + h, feLz(a)
=0 m=-4

where the E;m are the unique eigen-coefficients (3.13), and h
is an arbitrary element of N.
We now turn to the characterization of the range of K.

We write
(3.15) R(K) = range of K,
and have

5. R(K) is a linear manifold in E, which is not closed.

Furthermore, we have
6. geR(K) + the eigen-series associated with g is uniformly

convergent (instead of merely L2 convergent).

This latter result requires that the iterated kernel be
bounded and continuous, which is certainly true here since we
deal with a continuous kernel on a compact set. The second
part of (5) requires only that the kernel be Hilbert-Schmidt
and there exist infinitely many eigenfunctions (i.e., that K
be ncn-degenerate).

The fact that R(K) is not closed means that the alternative
theorem does not apply, but since N = ®! always holds, we do

have

7. E = closure (R).
Using our eigenfunctions, we see at once that the solutions
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(3.16) Kf = g(x.w), geR(K), r <a

are
o L g&m %fﬁ

(3.17) f(r,w) = I I X""'wz 4+ h
=0 m=-2 "% m

ettt ia e s ng 235,

b

= where h 1is an arbitrary element of N. Thus, the range may

%

;j’ be characterized by

= % B
(3.18) geR(K) < I I By el [a]
g=0 m=—g *g M2

D21t DL e WAata s P eten Toaut i 2T $ente by siads

q
-, ey
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Achien
o
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oL

3
e,

a5

or by

‘ (3.19) geR(K) < I T o= <+ o, :

£

-
&

2=0 m=-% Ag

2
et

SR

% where the'_g—2 are the eigen-coefficients of g. The existence
% m
Ly
g5 . . . . s s
o criterion (3.19) is quite stringent for,while it is also true

&3

’..
3 e

L
s
b

for non-degenerate symmetric compact operations that the sequence

i

o2 BV 2 e e e ST L ad e W0 @ 2 A Lt

of eigenvalues, An , satisfy A + 0 as n > = , we have for
n

s
)\}ﬂ,

T T

our operation extremely rapid convergence to zero. In fact, the

)

oy,
LORN n :
KA AR I S

explicit expressions (3.4) and (3.5) for the eigenvalues yield

R
5
N3

i,

_ mad ,wae, 2% 10 DA S o
(3.20) N, =GPl o] - 0(225“3), g > o,

Thus, in a sense, R(K) is much smaller than E.

In the following table, we give some typical values for

A2/2na3 so that the reader can judge the noise amplification

e A e O R P T P -

inherent in an eigenfunction solution such as (5.17).
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W= conclude this section by providing several characterizations
of the null space N ., Aside from the obvious characterizations,

Kf = 0 and feEl , we have

(3.21) feN « £, =0; 2 =10,1,2, ... ; |[m] <2,

m

(3.22) £eN < F(k,ck) = 0,

and

(3.23) feN <> £ is a non-radiating source

By the phrase 'non-radiating source", we mean one whose field,
outside the source region r < a , vanishes identically. This

last characterization identifies the mathematical concept of a
null space with those sources which are physically undetectable
outside the source region. The proofs of statements (3.21)-(3.23)
appear in Bleistein and Cohen (1975). Here, we show in a con-
structive way that (3.21) implies that N is infinite dimensional.
Consider the functions

@Dy [2 £t w3y @E)r 2ar

(3.24) h(zr,w) = {f(r,w) - } ngmv(9,¢)-

a ., 2"\ 1241
jo JQ'(—_E‘ )r dr

For these functions, we have
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Hence, for each f(r,w) and each harmonic &,m, there is a
solution in the null space. For example, if we choose the (0,0)

harmonic and f = rk, k=0,1,2, ...,

we obtain an infinite ;
family for which the quadratures can be explicitly performed. We

also note that if f(r,w) is an entire function of order one :

in w, so is h(r,w). Thus, the inverse transform H(x,t)

would have compact support in time and would, thus, be a legitimate ;
45 source if only f(r,w) vanishes for r > a. :
271 B
FEL Z
55 {
4
ot :
' ;
% -
M

A

R

T
i
BPRAT

Cevevyre R

P T A




ot A s AT YT oy B e e gt ...
- - © e e sm Bt L IT v - g T e b = .

S e e T T T R e M I T R e R R e

’ H

TSR Lo g

K w AR bl "Mm i - T A M e . b ¢y e+ i aTims & e v .

v

)

N

2

3

15 P

it

%

"3

4 %

5

4. Existence and Uniqueness for the Inverse Source Integral Equation.

We can now state the fundamental existence theorem for the

SR 1 e Pt B 5 B SN F 5 e R e Y

integral equation (2.12)

2 Theorem i: The equation Kf =6 has solutions if and only if
; ~ 2' IJ,] A' [ ' * *'] 'lz

22 (4.1 I n' + juV'y - ¢ *V'ulds < o,

E: 2=0 m=-2 3p m m

Moreover, if the equation has solutions, then it has the infinite

family of solutions,

SO LA T D 25 L baede e Bt A aata s 152

«© 9' -~
h+ £ £ [fn" « [ui'y * -y *V'ulds'y , heN.
2=0 m=-2 3D Im  Am o

(4.2) £

Proof: Kf =6 has solutions if and only if ©¢eR(X), herce, by

(3.18), if and only if
- L 2

(4.3) 5 3 |2m o e,
2=0 m=—2 |

N R R L R R G O e

If it does have solutions, then by (3.17) they are given by

S—

© & E&m
(4.4) f=h+ I I =4V, heN.
2=0 m=—g g T

Thus, to establish the theorem, we need only show that

S b e e L A T RS

P = A'. ] * - *ut t
(4.5) 0, Ag glj; n'e [uv wm b, 7 ulds'.

kDL > e e mhrd o o Tat sl PNk £t p s ATEN T T Y el AL

Ry

This can be done by recalling the definition of © in (2.14)

Py

sar

and realizing that the expansion (3.8) for jo(% R) can be

NN N S
RHIARTMERINIb T B TR

”g' written in terms of the eigenfunction as, é
o
L1 % :
L . 0T bt 3
Bl (4.6) j =) = I AP, W R 3
s c £78m" Lm 3
1 0 =0 m=—g :
& ¢
Using this, we obtain cf ;
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which immediately gives (4.5) and establishes the theorem.

a i,

e 00
N 0

Ve remark that if © 1is computed from data from an actual .
source fel [a], then the existence criterion in Theorem 1
2

is always satisfied because the integral equation itself

0 a2t e AN

11 implies that

el - (4.8) 0, = Azf

m im

.

3
BB IR MR

and hence

© % e, |2 © L
(4.9) : oz M o= 3z oz [Enl? <=
=0 m=-2 2 =0 m=-%

>

LTRSS R \‘7&3--4‘-;-',“".“:
o coprns b S N R S R

7,

since feLz[a].

EaTE o

We further point out that because of the uniform convergence

s Wi L

of the eigen-expansion of functions in the range and the final

unh w2 i el

remark made at the end of the last section, infinitely many

o
S ——

PN

solutions of the form (4.2) can be found which will give rise

to physical space-time sources F(r,t) if the hypothesis of

ekt e B O vt st g
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the theorem is met.
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5. An Application.

AT

As mentioned in the introduction, we plan a sequel in which

PR

various applications of equation (2.12) will be presented. Natu-

rally, the key to these applications is the restriction of f to

: 3755 s e

subsets M of L &ﬂ, such that the problem
2

R

SRAILY

L

(5.1) Kf =0  feM

has a unique solution. We have already given some examples of

2,

HE RS NN e

suitable choices of M 1in Bleistein and Cohen, 1975. Here, we

i

confine ourselves to mentioning just one such application. Namely, %
we point out that if O satisfies the existence criterion and, £
by
<9
furthermore, if we impose a priori that feE, then clearly the 3%
unique solution is 405
PE. il
T I
3 Pod
" Py
(5.2) f(r,w) = £ z Y EE
2= m=-2 "% m . 3
1 3
The restriction fe¢E 1is not devoid of interest, for by E' %
-
the characterization (3.23) of the null space, any component 3 3
3
of fecE! does not radiate. Thus, any energy used in producing £
L
such a component is "wasted". 1In this sense, the soiution (5.2) ?
is the most economical of the family of solutions (4.2) and, thus, :
is of particular interest in the synthesis problem. %
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