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Section 1

INTRODUCTION

1.1 Monte Carlo Method

With longevity or durability requirements being incorporated

in the structural design of aircraft, analysis of structural fail-

ure due to fatigue has become an important design criterion. One

aspect of structural life analysis is the growth of minute material

flaws in the stressed material which after some time grow to a

critical size due to load cycling under normal flight conditions.

This fatigue load history for an aircraft is the sum of several

load sources. Ground-air-ground cycles, wind gusts, maneuver loads

and engine noise all contribute to the fatigue loading and may cause

material flaws to grow to a dangerously critical size.

Current methods of predicting when the cracks will grow critical,

or what size they will reach after a given number of flight hours,

leave much to be desired since even the model of crack growth due

to simple constant sinusoidal amplitude fatigue is a controversial

subject. The present scheme of crack growth prediction due to

expected flight loadings is to choose a crack growth model and a

"representative" load spectrum for one or more flights. Crack

growth due to the pseudorandom history is then computed over

several flights. An example of such a digital computer program is

the Air Force CRACKS II program [1]. Results from such a scheme

can give accurate solutions for many deterministic cases, but a

more precise and truly random load history is required to properly
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predict crack growth dispersion. Such a program would require the

random generation of the load spectrum expected in real flight con-

ditions containing ground-air-ground (GAG) cycles, random or deter-

ministic maneuver loads, random gust loads, etc. This would involve

knowledge of, for example, the expected number or spectrum of maneuver

loads as well as a spectrum model for the turbulent gust loads. Com-

bined spectra which include all of these sources may be deduced from

experimental data sampled from aircraft flight histories.

Since each crack growth solution over a finite load history

would be unique, many crack growths would have to be computed to

obtain a distribution of crack size solutions which could be used

in risk assessment evaluation of the structure. In addition to the

loads being random, the sizes of the initial flaws or crack sizes

in the material are also random in nature. Introduction of the

initial crack size as an additional random variable can also be

required for more realistic growth calculations. Other random

structural properties may also be introduced into the problem, such

as construction and inspection reliability factors.

After the introduction of appropriate random variables, the

computation of crack growth due to the simulated environment can

be repeated a sufficient number of times to represent the life or

partial life of the aircraft, thus producing a final probability

distribution of crack sizes in a particular structural member from

a Monte Carlo simulation. If the computation of each growth problem

is cheap enough, the Monte Carlo technique can be used as a practical

approach to fatigue damage estimation.
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The reduced cost of the analog approach to crack growth com-

putation is considered to be most useful for trade-off studies in

which fatigue damage risks may be assessed in aircraft fleets for

which usage (spectrum) variation is considered. However, the limited

scope of the present study required restriction to one load spectrum,

the primary objective having been to demonstrate the technical

feasibility of the analog method.

1.2 Constant Sinusoidal Amplitude Problem

It is possible to obtain a closed form solution for the dis-

tribution of crack sizes in a structure after constant amplitude

fatigue, given an initial crack distribution, by making use of a

technique of variable transformation [2]. Computing crack growth

due to the sinusoidal fatigue loading will result in a shifting and

reshaping of the initial flaw distribution as a function of time.

If all cracks grew at the same rate, the crack distribution would

only shift on the crack size axis and keep its original shape, but

in reality, larger cracks grow faster than smaller ones. Hence, a

reshaping is also seen in the form of a wider dispersion at larger

crack sizes. The variable transformation is accomplished in the

following way. Let a be a random initial crack size with prob-0

ability density function f0 (a 0 ) and a = g(a ), where g(a ) is the

final size of any initial crack of size a

Then:

f(a) = f [g (a)] I da 0 I or f(a) = f [g-l (a)]iddg l- (1)
0

3



For example, if a Weibull distribution for initial crack size and

the Paris growth model [3] are assumed such that

d - - (a o/,P )4

where

a = initial crack size at N = 0
0

U,8 = given parameters for a Weibull distribution

N = number of fatigue cycles

and
rZr- r r

da /JN = CF (AK) 2' Cr A0 Z = C a (3)

and where C and r are material constants, then the Paris growthP

solution is given by

k0- [ at-+ (riCq / )(4)

Now substituting Eq. 2 and Eq. 4 into Eq. 1 we have

=-I eX{ } -
(5)

When N = 0, f(a) reduces to f (a . For N very large, f(a) -÷ 0 or

almost all cracks have grown to critical size. See Fig. 1 for typ-

ical solutions. When Au is a random variable, the variable trans-

formation becomes quite difficult to use because integration of the

growth model over the random load is tedious. Thus, when consider-

ing a more realistic loading environment, the Monte Carlo method

could be employed.
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The analog computer is a good choice to facilitate such a

scheme, provided that computation costs are reasonable. Digital

computers will suffice for numerical integration of the growth

model and random variable generation as well. However, digital

computer costs would be quite high for a full-range parameter study

of initial crack sizes, material constants and a reasonable range

of load cases. Since the growth equations are primarily nonlinear

first order differential equations, the high speed analog computer

offers a practical solution procedure at potentially only a frac-

tion of the digital computer costs. The random load simulation.

can be accomplished by introducing random noise generators with

appropriate statistics for the fatigue environment. Additional

generators can be employed for other nonrandom load sources. An

analog computer Monte Carlo scheme has been developed to calculate

the distributions of crack growth sizes due to random fatigue loads.

The resulting computational costs are several orders of magnitude

less than traditional digital schemes. The development of the

method is the significant feature and not the validity of any par-

ticular crack growth model or any specific random load model. For

illustrative purposes, the Paris crack growth equation is used

throughout with Gaussian noise as the random loading AM.

5



Section 2

ANALOG COMPUTER PROGRAMMING OF THE PARIS GROWTH EQUATION

2.1 The Analog Computer

The development of analog computer technology can be attrib-
,

uted to electronics advances during World War II [4] Because

of the tremendous popularity that digital computers have acquired

recently in terms of data handling capacity and computation speed,

the analog has been neglected altogether in many cases as an effi-

cient computing device. Today there exist many high speed repeti-

tive-operation analog computers capable of solving linear and non-

linear higher-order differential ecquations. Although digitals by

nature are capable of better computing accuracy than analog compu-

ters, the analog is capable of continuous function integration and

differentiation which digital computers find difficult to perform.

In terms of major computation costs, the analog computer's

initial machine cost must be compared with digital computation

rates and rentals. The cost of an analog computer may range from

a simple twenty-dollar circuit to a several-hundred-thousand dollar

facility, depending on the computer's capabilities. The analog

computer used in this study is an Electronic Associates, Inc.,

TR-48 PACE

Reference 4 contains an excellent analog computer method review.
**

This facility is of 1960 vintage and cost about $25,000 at that
time.
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The fundamental feature of most analog computers is the patch

board which contains an array of components which are connected by

wires in a specific sequence determined by the particular computer

program. The basic components consist of integrators, inverters,

summers, multipliers, logic circuits, etc., which determine the

overall capability of the computer. The fundamental circuit com-

ponent of the analog computer is the operational amplifier (OPAMP)

which is used in the summers, inverters and integrators, as well

as in other devices. By connecting a feedback resistor across the

OPAMP and adding an input resistor, the OPAMP becomes a summer of

all inputs into the input resistor with gain determined by the ratio

of the feedback resistor to the input resistor. The inverter is

actually a summer with only one input since the OPAMP output is the

negative of its input. Integration is accomplished by replacing the

feedback resistor with a feedback capacitor. If x(t) is the integra-

l T
tor input, the output will be -- f x(t) dt + Vo where

V0 = initial condition of the integrator = x(o)

R = input resistance

C = feedback capacitance

If RC is variable, the integration rate or time scale can be adjusted

such that a problem taking several minutes to solve in real time

requires only a few milliseconds with proper RC values (time scaling).

Table 1 summarizes some of the most common component devices used in

analog programming. Nonlinear devices such as multipliers, squares,

dividers and function generators are also available in most analog

component boards. The most common nonlinear circuits are listed in

Table 2.
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In analog programming, variable scaling is required for accu-

rate problem solutions. The independent variables of the equations

are represented on the analog computer by time. The dependent vari-

ables and their derivatives with respect to time are represented by

voltages. These signal voltages must not exceed the maximum allowed

machine voltage , nor should they change rapidly enough to exceed

the frequency limitations of the computer or recording equipment.

In addition, the voltages should not be as small as the order of

circuit errors, and the problem solution time should not be so long

as to waste computer efficiency. By scaling the problem properly,

rapid,accurate solutions can be obtained by appropriate voltage

variables and solution speeds.

2.2 Paris Equation for Constant Load

The first step in setting up the Monte Carlo method is to

choose a crack growth model. The Paris equation has been chosen

for the sake of simplicity. The Paris growth equation is given by:

ado C (A-KV)W C A 0' ' t 1S-cpc A (6)

Typical values for N and C for aluminum are N p 4 and C =

3 9xi-10 t 91x1-9
3.49 x 10 to 3.91 x 10 , where a is in inches and Au is in

**

ksi . N has been chosen as a multiple of 2 so that circuitp

squaring devices can be conveniently used in the problem patching.

*

In the case of the TR-48, +10 volts.

Parameters obtained by fitting experimental da/dN data [5].
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For a constant AG, the problem is quite trivial resulting in

the solution:

1 = 1 C Au4N (7)
a a° p

where a is the initial crack size at N = 0. The nature of this
0

family of solutions is that of an increasing exponential curve

which presents three major problems on the analog computer:

1. Without careful selection of the solution time or
length, several orders of magnitude of crack growth
can result which would obviously exceed the maximum
voltage limits.

2. Minute errors during the first portion of the solu-
tion can grow significantly by the end of the problem.

3. Since the growth rate is proportional to Au4 , very

rapid crack growths may result.

With proper time and variable scaling, all of these difficulties

can be overcome.

The symbolic analog programming diagram for the Paris growth

equation for N = 4 is given in Fig. 2. A typical analog growthP

solution recorded on chart paper is given in Fig. 3. The values

of Au and a are recorded on the same two-channel recorder for com-

parison. A quick calculation shows the exact analytical solution

for a crack to grow from 0.1 inch to 1.0 inch for C = 3.488 x 10-10

N = 4 and Aa = 50 ksi is 4128 fatigue cycles. The analog solutionP

gives 4130, verifying the accuracy of the analog program. It is

quite easy to see that Aa can now be a random variable of time rather

than just a constant.

9



2.3 Random Load Simulation

One of the advantages of using the analog rather than the

digital computer for growth calculations is the ease with which

random signals can be generated. Band-limited Gaussian white noise

can be easily generated by amplifying the potential across a Zener

diode. Ideally, white noise has a power spectrum which is constant

for all frequencies. The diode power spectrum in reality is band-

width-limited and thus the random noise can be thought of as band-

width-limited white noise. Fig. 4 illustrates a home-built circuit

used to obtain Gaussian noise for load simulation.

2.4 Track-Hold Noise

Because the Zener diode noise contains very high frequencies,

the OPAMPs in the analog computer register overloading during inte-

gration. A technique used to remedy this problem is to first pro-

cess the noise through a track-hold circuit. The track-hold cir-

cuit is designed such that the noise is tracked when a control volt-

age is positive,and the last sampled noise voltage is held constant

when the control voltage is negative. By allowing the control volt-

age to periodically jump from positive to negative, a track-hold

circuit is obtained which can hold the noise for a short time,

sample the signal, hold the new value and so on. The noise sampling

frequency is determined by the control voltage frequency. The result-

ing track-hold signal is a series of randomly occurring, short straight

lines of uniform length (Fig. 5). The track-hold signal was tested

10



to insure that the Gaussian distribution of the noise generator

was not altered by the track-hold circuit.

For the present, the Gaussian signal x(t) from the Zener diode

will be called Ao(t) for illustrative purposes. The structural stress

due to gust loading a(t) can be fitted to a Gaussian distribution,

but that is not the same as Ac(t), which is the peak-to-peak ampli-

tude difference for a fatigue cycle. The essence of the Monte Carlo

method is that its development is not dependent on the assumed

Aa(t) distribution, which is taken to be Gaussian for convenience.

It is convenient to let the computer determine the mean and

standard deviation of the random load as a check to insure that the

proper load distribution has been modeled. Since the loading signal

is known to be Gaussian, all that is necessary to describe the dis-

tribution is the mean and first moment. For continuous functions,

the mean and variance are given approximately by:

~~/' 2=~x(~4 .[1'f+)Ad+J} (8)
oo
0

The symbolic program for these circuits is shown in Fig. 6. Com-

puting the mean and standard deviation over a finite time interval

is only valid when the Aa(t) is an ergodic stationary random pro-

cess. Ergodic stationary processes are those for which each

ensemble record is statistically equivalent to all other records

and for which ensemble averages can be replaced by time averages

of a single record. The limit of the time average over a finite

interval from time 0 to T, as T tends to infinity, will be equivalent

to the ensemble average for ergodic processes.

11



The track-hold circuit serves two purposes. First, periodic

sampling and holding of the continuous Gaussian noise is needed to

reduce the high overload frequencies to a level which the analog

circuitry can tolerate. Second, the resulting blocks of Aa make

digital program verification convenient with regard to the load

description.

Inaccuracies of the crack size distribution will result

from insufficient sampling of the loading. For more realistic

load modeling, the track-hold circuitry would not be used and

either more expensive analog circuitry with wider frequency

characteristics or frequency filtering of the signal would be

necessary.

2.5 Paris Solution for Random Loading

Solving the Paris growth equation with random loading becomes

a simple matter once the appropriate material constants and load

distribution statistics are determined. A symbolic diagram of the

analog program appears in Fig. 7. The solution of the growth equa-

tion actually takes very few components compared to the load genera-

tion and statistical circuits. Fig. 8 illustrates a growth solution

in real time for an initial crack of 0.1 inch subjected to random

loading with a mean of 37 ksi and standard deviation of 3.9 ksi for

15,000 cycles. The time average and standard deviation of the loading

are computed over a 10 second interval. With the load history

recorded and inserted into the digital CRACKS II program, a solution

12



which can be considered exact verifies the accuracy of the analog

solution. This check is done to insure that the rapid changes in

the loading during the track-hold sample mode are not disturbing

the analog circuitry. It is now apparent that the time scaling

can be altered such that much faster computing is available, pro-

vided that solution accuracy is retained.

2.6 Repetitive Operation (REPOP)

High speed analog computers have the capability of repeating

a problem solution by use of the repetitive operation (REPOP) mode.

This condition provides a means of switching the integrators between

the reset (initial condition) and the operate (integration) modes.

The TR-48 10-mfd integrator feedback capacitors are replaced with

0.02-mfd capacitors to change the problem time scale by a factor

of 500. Normally the REPOP mode is used primarily for sweeping

oscilloscope output. However, for solutions in the 400 to 500

millisecond range, the REPOP mode can be used with chart recording

equipment. The REPOP mode permits the calculation of several

hundred problems in a very short time.

With such a decrease in solution time, there exist cases where

crack growth or response is so rapid that errors are induced in the

OPAMPs as well as in the chart recorder. A sample problem was run

as before, but in the REPOP mode for an accuracy check. Fig. 9

illustrates the output from the problem solution. By recording the

load history and repeating the problem on CRACKS II, two solutions

were obtained, one for a = 0.110 inch and one for a = 0.112 inch.

13



Since it is difficult to read the analog a to a third significant

figure, the two digital solutions were computed and found to bound

the analog solution within the output tolerances. Note how the

solution accuracy deteriorates with a relatively small error in the

initial crack size. The exponential nature of the growth solutions

demands careful attention when using analog circuitry, since over-

loading may occur without much disturbance. The above REPOP solu-

tion simulated crack growth over 20,000 fatigue cycles lasting 0.40

seconds, or with a time scaling of 1 second equal to 50,000 fatigue

cycles. For a series of 200 problems assuming 20,000 cycles each

and 0.50 seconds for each problem including reset time, the entire

run would last 100 seconds.

2.7 Errors and Special Circuitry

Due to the nature of the family of crack growth solutions,

several sources of error are present. Perhaps the most signifi-

cant is the potential range and frequency of the exponential solu-

tions occurring in less than one-half second of computation time.

Because the growth rates are functions of the loading A 4(t), there

exist cases where the loads will become large enough during the

problem solution time for crack sizes to grow rapidly by several

orders of magnitude. This presents a difficult problem for analog

computers since their variable range is only one order of magnitude,

or, at most, two. However, it is possible to reduce this problem

by rescaling variables internally in the program. For example, in

problems where initial flaw sizes are 0[0.005 inch] and the solution

14



time and loads are such that cracks could grow to 0[0.07 inch], the

growth equation solutions can be divided into two problems:

1. A variable scaling of 1.0 machine volt equal to
0.001 inch.

2. A rescaling of 1.0 machine volt equal to 0.01
inch when the crack grows to 0.01 inch or larger.

If the entire two-magnitude range is attempted in the scaling of

1 volt equal to 0.01 inch, the initial flaw value must be less than

1 volt. Beginning the solution at such a small voltage, especially

for an exponential solution, taxes the tolerance limits of the analog

accuracy over the 10-volt range. Observing the solutions on an

oscilloscope, it is quite easy to see the accumulation of errors

at an initial crack voltage level of, say, 0.5 volts by observing

apparent growth for no loading. More modern and sophisticated

analog computers can have a variable range of +100 volts, which

greatly reduces the problems of two-magnitude solution ranges.

However, for this study, the TR-48 has a +10 volt range and special

circuitry or programming is required.

The design of circuitry to consider both small and large cracks

is based on the availability of logic flip. flops or electronic

switches controlled by signal comparators. The flip-flops are

solenoid-controlled switches which have a propagation time of

several milliseconds and should be avoided if possible, since they

are not entirely reliable. Electronic switching devices are much

more expensive but are worth the extra cost since they are quite

fast (propagation time approximately 5 microseconds). A logic cir-

cuit can be devised with electronic switches such that when the
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crack size is below, say, 0.01 inch,the first growth circuit for

small cracks is integrating and the second circuit for large cracks

is in stand-by in the reset mode until the crack grows to 0.01 inch.

Then, with appropriate switching, the first circuit is taken out to

prevent overloading and is replaced by the rescaled second circuit

with an initial condition of 0.01 inch and allowed to continue inte-

grating the solution for the remaining computing time. A third stage

can be added if required, or an overload prevention switch can be

used to prevent growth beyond 10 volts (0.1 inch) in the new rescaled

circuit.

In the REPOP Monte Carlo program, caution must be taken to

prevent OPAMP overloading or saturation with voltages greater than

10 volts, since a few seconds are required to unsaturate the ampli-

fiers. When using loads with a large variance, many solutions might

overload the circuitry requiring shut-down and relaxation time before

continuing.

In addition to variable errors, inaccuracies in REPOP comput-

ing time are also significant. Figure 10 shows the REPOP solution

of a typical problem in which Aa is constant. The chart speed has

been reduced to show several problems. Since Aa is constant, the

computer is solving the same problem repeatedly, but the final

solution values are not consistent. Due to slight variations in

the REPOP resetting and operating switches, the exponential solu-

tions exhibit variance due to microsecond propagation-time errors

in the switches. Proper care must be taken to insure constant solu-

tion time. When chart recording equipment is used, each solution
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must be recorded by hand. In the case of digital sampling equip-

ment, care is needed to make sure that identical solutions are

recorded for constant loading.

2.8 Sample Monte Carlo Run

With the program used in Fig. 11 patched into the analog com-

puter and a constant Ac test solution made to insure correct material

constant settings, a sample Monte Carlo run was made for 250 problems.

The initial crack size remained constant at 0.1 inch with a maxi-m(im

allowed solution of 1.0 inch. Using typical Paris co'nstants feo

aluminum and Gaussian loading with a 26.7 ksi mean and 7.5 'c--i

dard deviation, crack growth distributions were recordcd at 30,00.,

15,000, and 20,000 fatigue cycles as given in Figs. 12 through 14.

Because the range of solutions was well within one magnitude, no

special switching and rescaling circuitry was required. As expected,

the distributions shift and spread out with increased fatigue.
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Section 3

EXTENDED MONTE CARLO SIMULATION

An extended Monte Carlo simulation of the Paris equation was

conducted to generate an example data base for final crack size,

in order to illustrate the use of the Monte Carlo method in risk

analysis. Typical properties for 0.09-inch thick 7075-T6 aluminum

sheet [5] were used to define the Paris equation constants and a

critical crack size. The following Gaussian distribution for stress

range Aa was assumed:

.Z (9)

where Au is in units of ksi. The simulation was repeated for

eleven initial crack sizes ranging from 0.005 to 0.07 inch. The

objective of the simulation was defined to be production of a

final crack size histogram, corresponding to each assumed initial

crack size, after growth computation over 20,000 load cycles, which

simulated approximately 4,000 flight hours. In addition, it was

hoped that this amount of growth would result in significant prob-

abilities for achieving final crack sizes greater than the critical

size. The simulation achieved the latter objective partially.

3.1 The Computation Problem and Its Solution

The Paris equation for crack growth may be integrated to the

form: N

L-NP 2, i-NP 2,/Z
- - (10)
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where a. is any given initial crack size, and where af represents1

the corresponding final crack size after N fatigue cycles. If a

risk analysis of initial flaw size variability is intended, a. is

the independent random variable in Eq. 10, and the distribution for

af can be derived in the following simple manner. Since the load

history Au is deterministic for the purpose of the analysis, Eq. 10

represents a one-to-one relationship between ai and af values.

Furthermore, the right-hand side of Eq. 10 is positive so that for

any two a. values:1

af >af if and only if a > a

In other words, the solutions do not cross over as N is varied, and

therefore:

Ff(aflai, N) = Fi(ai) (12)

where

Ff(aflai, N) = Pr{Final Crack Size < af, given ai, N} (13)

Fi(ai) = Pr{Initial Crack Size < ai} (14)

Hence, the final crack size distribution may be determined with

reasonable accuracy by repeating the growth computation (Eq. 10)

for 10 to 20 a. values.

The above direct procedure is made possible by the explicit

relation between the dependent and independent random variables

af and ai. However, the implicit relationship between af and AY

prevents the inference of a simple analytical correspondence similar
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to Eqs. 11 and 12. Also, an appeal to the central limit theorem of

probability theory offers only a crude approximation by considering

af as the sum of a large number of uncorrelated random variables.

It is therefore necessary to conduct a Monte Carlo experiment to

determine Ff where service loading is the independent random vari-

able. If no a priori assumptions are made about the form of the

final crack size distribution, 200 to 300 replicate computations

are required to obtain a good experimental histogram [2], and 2,000

to 3,000 computations are required to study 10 selected ai values.

This heavy digital computing burden is increased further if one

attempts to have the load history simulate reality more closely

by increased fineness in layering, i.e., by assigning fewer load

cycles per block and increasing the randomization of block sequence.

Analog computation was therefore examined and developed as

an alternate scheme for crack growth calculation in the present pro-

gram. A brief review of the analog scaling requirements as they

pertain to the relations between computing time, number of events,

and equivalent flight hours is given here to provide a complete

picture of the data base generation technique. The following factors

constitute of set of constraints on the Monte Carlo experiment, within

which a realistic operating point must be found.

First, efficient use of the analog computer for several hundred

or more runs requires employment of the repetitive operation mode,

in which each run consumes on the order of 0.5 second in real time.

Of this total, roughly 0.4 second is spent on computation and 0.1

second is required as reset time for the next run. The real time
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consumed for computation should correspond to the total number of

load (Aa) events expected in one service life.

Second, the load history is simulated by a random noise genera-

tor and track-hold circuit which produce a nearly square-wave signal

for Aa. Each level portion of the signal is of constant duration

(controlled by the track-hold frequency) and may be identified as

a load block representing a number of fatigue cycles at constant

stress range. The achievement of a realistic simulation requires

some care in the choice of track-hold frequency. At one extreme,

a very wide dispersion in af values results if the track-hold fre-

quency is very low. This extreme tends toward an experiment in

which constant-amplitude fatigue is simulated, with the choice of

range being a random variable at the beginning of each run.

This is obviously completely unrepresentative of fleet service

experience. At the other extreme, the random noise signal may be

input directly, without benefit of the track-hold filter. This is

desirable from a simulation viewpoint, but the high-frequency com-

ponents of the signal tend to overload the analog integrating cir-

cuits, thus making the results of questionable validity. Hence,

"a minimum track-hold frequency must be chosen, such that at least

"a few hundred samples of the random noise are obtained during each

run to insure adequate sampling of the stress range distribution.

Combination of the above requirements defines the relationships

between computing time, service life and load blocking. In the

present case, the time scaling:

N = 50,000 t (15)
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was chosen. According to Eq. 15, a 0.4-second computing time is

equivalent to 20,000 events or approximately 3,560 flight hours.

This time scaling was chosen to achieve a reasonable simulation of

one airplane service life.

Preliminary experiments with track-hold frequency indicated

that the dispersion of final crack size values changed very little

for frequencies between 200 and 1,200 Hz. The track-hold frequency

was set at 500 Hz for the Monte Carlo experiment; i.e.,

500 Hz x 0.4 sec = 200 samples per run (16)

50,000 events/sec = 100 events per block (17)
500 Hz

3.2 Description of the Monte Carlo Simulation

The objective of the Monte Carlo simulation was to grow small

initial flaws (0.005 inch < a. < 0.07 inch) to final sizes of the

order of the critical crack size (0.122 inch). This objective was

achieved for initial flaws in the range 0.03 < a. < 0.07 inch.

However, the amount of growth observed for very small flaws (0.005

< aI< 0.01 inch) was insignificant under the given load spectrum.

Approximately 200 replicate runs were made for each a. value.1

The analog output of crack size as a function of time was recorded

on a strip chart recorder. Subsequently, templates were used to

read the crack size at four points on each run, corresponding to:

N = 8,000, 10,000, 13,300, 20,000 events (18)

The crack size data were then keypunched and processed on a digital

computer to produce observed data histograms and to estimate param-

eters for various trial distributions. Data histograms for final
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crack sizes grown from 0.03 < ai < 0.07 inch are shown in Figs. 15

through 33.

The three-parameter Weibull distribution:

-e -X X (19)

was used to correlate the results. The initial flaw size is a

logical choice for the lower-bound parameter x0 in the present

case. Hence, the model becomes:

F (a; e (20)

where a,ý may be functions of a. and v, and where

S= N/20,000 (21)

defines the fraction of service. The crack size data thus corre-

spond to (see Eq. 18):

v = 0.4, 0.5, 0.667, 1 (22)

Note that v = 1 is equivalent to 3,560 flight hours.

The following maximum likelihood estimator formulas for c,I

may be derived easily for the three-parameter Weibull family under

the assumption that the lower-bound parameter is known:
N

A tf
J-L (23)

2 0 
Z & (X)

A O~ x- x0 )j6 (24)
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where xl, x21 ... ,xN are the observed data. Equation 23 may be

solved for a by iteration, after which B is obtained explicitly

from Eq. 24. Tables 3 and 4 summarize the estimates thus obtained

for a and t, respectively, by digital processing of the raw data.

The case of a. = 0.06 inch (60 mils) and v = 1 is an exception, the1

analog data having been accidentally lost. The scale parameter 8

for this case was estimated subsequently from the empirical

correlation discussed below.

In seeking to correlate the results for a and S, one must make

some approximate hypothesis which can be followed analytically to a

conclusion which will provide a guide. One possible hypothesis is

to ignore temporarily the random nature of Au, allowing analytical

integration of Eq. 10 to the form:

a. 1 14 (25)

for N = 4. If this hypothesis is combined with the furtherP

assumption that

PriFinal Crack Size < af }Pr{Load < Aa} (26)

and Aa is modeled with a Weibull distribution,

F(27)

there results:

a A 14
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2 4Finally, assuming that afai ai and replacing Cp B N by Cv, where C

is an appropriate constant, leads to:

F (29)

In other words, the shape parameter for the final crack size model

ought to be about one-fourth of the estimated loading shape param-

eter, and the final crack size scale parameter should correlate
2

with va. . One would expect this chain of argument to hold rigor-

ously for constant-amplitude fatigue with randomly chosen amplitude,

and one might apply it approximately if most of the crack growth

were confined to the last few load cycles. However, its utility

in the present case is limited to the function of a general guide.

Since the foregoing argument indicates that a constant U is

expected for final crack size when the load spectrum is kept con-
A

stant, mean and standard deviation were estimated for a from the

data in Table 3, with the results:
AA

~~~~2 9{g c~~9.9 (30)

These results may be compared with the load distribution by means

of the well-known relationship:

S1'/r/ 5 (31)

Applying Eq. 31 to Eq. 9, we find:

A = 14.25/8.25 = 1.73 (32)

Comparison of Eqs. 30 and 32 shows that the estimated mean for a

is less than but within one standard deviation of A. We may
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therefore conclude tentatively that the variability of the service

load distribution is impressed more or less directly on the final

crack size distribution.

The final crack size scale parameters a in Table 4 were sub-

jected to separate regression analyses with respect to v and ai.

These analyses indicated that:

A .Z

The final correlation for B is illustrated in Fig. 34. The correla-

tion line shown in the figure was fit by eye and gives:

A 3

/9= 2,34A0 ((34)

with a. in units of mils.1

The foregoing results show that the approximate hypothesis

based on a fully integrated growth equation does indeed provide

only a general guide. The correlation for 8 is in general agree-

ment with the hypothetical model. However, much less broadening

of the final crack size distributions, relative to the load distri-

bution, is observed in comparison with the prediction of the

hypothetical model. For the purpose of further analysis, the final

crack size distribution may be taken as:

i(af~~~ -ep~ I~XO(z: (35)

However, no special significance should be attached to Eq. 35. It

is merely the result of an empirical correlation, and is useful only

for interpolation within and near the ranges of initial flaw size a.

and service fraction v over which the Monte Carlo experiments were

conducted.
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3.3 Risk Sensitivity Assessment

The risk for a crack to exceed critical size due to the com-

bined effects of random loading and a random initial flaw popula-

tion may be assessed by combining the results of the Monte Carlo

experiment with a description of the initial flaw distribution.

Since it is logical to assume that the random variables a. and Aa1

are uncorrelated, the following simple procedure may be used to

compute mathematical risks:

S(a, /4, /T ' V)fa (36)

where Rf represents the risk of exceeding acr, given the service

fraction v, and where:

= _ I (37)

• •• =P, •il•I ; + (38)

Approximate risk assessments may be made by computing Rf(acrlai, v)

at a few equally-spaced ai values and using the trapezoid rule:

1

together with the assumption that Rf(acr10, v) =0.

The initial flaw distribution referred to in Eqs. 36, 38, and

39 must be defined to correspond to the flaw population which may

escape into the structure at the beginning of service. Models for
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this population may be constructed by combining data on the dis-

tribution of flaws created by materials processing and machining

with data on inspection reliability. Let f Mfg(ai) be the prob-

ability density function which characterizes the "as-manufactured"

flaw population, and suppose that nondestructive inspection (NDI)

data are available in the form of a detection probability curve:

Pd(a) = Pr{Initial flaws > a are detected by NDI} (40)

Some typical detection probability curves are shown in Fig. 35.

Since the events of flaw creation and detection or escape may

reasonably be assumed to be uncorrelated, the initial flaw dis-

tribution in service may be computed from:

- [(41)

The effect of Ec. 41 is illustrated scehmatically in Fig. 36, while

Fig. 37 outlines the procedure for computation of the mathematical

risks associated with exceedance of critical crack size. Since

there are commonly no data available for estimation of fmfg(a),

good statistical practice dictates that the creation of flaws of

any size be assumed equally likely up to some maximum size so large

that the risk of escape from detection is negligible. In this case,

Eq. 41 is replaced with:

-f (a) = 15 /a D
(42)

( a
S- pd_ (aa28
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An example risk sensitivity assessment has been carried out

using the critical crack size exceedance function Rf(aflai,v)

obtained from the Monte Carlo simulation in combination with several

possible assumptions about the initial flaw distribution and inspec-

tion procedures. Table 5 summarizes the critical crack exceedance

risks for a matrix of service fractions v and assumed initial crack

sizes a. The results in this table include extrapolation outside

the ai range over which the simulation was conducted. In Table 6,

the details of the computation summarized by Eq. 39 are shown, using

the equal-likelihood hypothesis for "as-manufactured" initial flaws

(Eqs. 42 and 43) and the "Mechanized Probe" detection probability

curve from Fig. 35. The summations in this table are risks associated

with equal-likelihood as-manufactured flaws, mechanized-probe NDI,

and a hypothetical proof test which positively rejects any initial

flaw larger than 100 mils. To obtain the corresponding risks for

NDI only, one need simply observe that R f(a crlaiv) 1 for a. > 100

mils. Hence, the case of NDI only may be computed by adding the

quantity

1 - Fi(100 mils) = 0.0428 (44)

to the summations in Table 6.

It is interesting to compare the mathematical risks described

above with a parallel assessment in which sensitivity to the initial

flaw population is retained, while random loading effects are ignored.

Since the random process adopted for the above examples was simply a

Gaussian-distributed stress range, one possible measure for the

corresponding deterministic loading process is constant-amplitude

29



fatigue at the spectrum mean stress range (14.25 ksi). This is

referred to as "central loading" for convenience. In this case,

the Paris equation may be integrated to:
-1

3 (45)

where af and ai are in units of inches. The results of this calcu-

lation are summarized in Table 7. Critical crack exceedance risks

for the case of central loading may be computed as follows. For a

given service fraction v, determine by interpolation from Table 7

the ai value for which af = acr = 122 mils, The risk is then
1cr c

given by 1 - Fi (a. ).
crFinally, three additional cases have been included, in which

some hypothetical assumptions have been made about the as-manufactured

flaw population and for which I'DI without a proof test has been

assumed. Hypothetical Gaussian distributions:

4: (a) e-X 01{ (46)

were assumed, with a in units of mils, and with a = 10, 15, 20 mils.

These distributions thus have coefficients of variation of 0.2, 0.3,

0.4 respectively. Table 8 summarizes the as-manufactured probability

densities and the initial flaw probability densities computed from

Eq. 41. Combined risk calculations have been carried out for each of

these distributions, as shown in Tables 9, 10, and 11.

Table 12 gives a comparative summary of the mathematical risks

computed for each of the cases described above. The first two lines

in this table assume an equal-likelihood manufactured population and
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account for random loading. The third and fourth lines correspond

to deterministic-load risk assessment with the same initial popula-

tions. The last three lines account for randomness in the loading

and the initial flaw population, and are intended to illustrate the

sensitivity of risk to dispersion in the initial population.

The mathematical probabilities in Table 12 present quite different

pictures of the risk of achieving a critical crack size. At one

extreme, two models predict small or no risk at short service times,

with the risk function rising rapidly as the service approaches one

life. These two extreme models are the central load calculation

with equal-likelihood initial population filtered by NDI and proof

test, and the random load calculation with Gaussian initial popula-

tion (CV = 0.2) filtered by NDI. At the other extreme, two models

predict rather hich risk over the entire service period considered,

with the risk function relatively insensitive to service time. These

are the random load calculation with equal-likelihood initial popula-

tion filtered by NDI, and the corresponding central load calculation.

The other cases are seen to give risk functions which lie between

these extremes.

It is apparent from these results that the procedures which

might be adopted to minimize risks for service times less than one

life depend strongly upon which model is accepted as a true descrip-

tion of nature. Thus, if the equal-likelihood population is assumed

for manufactured flaws and random load is accounted for, one is led

to strategies of either a proof test to reject initial flaws much

smaller than 100 mils or development of some NDI method which will
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give better detection probabilities. On the other hand, the given

NDI method supplemented by the 100-mil proof test appears to be a

.good strategy if the effects of random loading are ignored. Of

course, the equal-likelihood manufactured flaw population is a very

conservative assumption, even though accepted statistical practice

demands it in the absence of experimental data. The examples with

Gaussian manufactured populations demonstrate that it may be worth-

while to obtain enough data to determine at least approximately the

coefficient of variation for as-manufactured flaw populations.

Finally, it is interesting to compare these latter cases directly

with the data in Table 5. Each line in Table 5 may be treated as

a risk function which corresponds to an assumption that all initial

flaws have a common deterministic size, a view which is convenient

for design calculations. The question is whether it is possible to

choose a flaw size which leads to a risk function with behavior

similar to the risk functions based on the entire flaw population.

In the present case, the answer is affirmative if a. ! 70 mils is
11

chosen for short times and a. =55 mils is chosen for service periods

approaching one life.
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Section 4

DISCUSSION AND CONCLUSIONS

Results have been presented for a fatigue crack growth risk

analysis for which a Gaussian stress range spectrum was assumed,

and for which a critical crack size for fracture was estimated

approximately as 0.122 inch in 7075-T6 aluminum alloy. The stress

range spectrum was found to be capable of growing cracks from

initial sizes between 0.03 and 0.07 inch to the critical crack

size after 20,000 stress range events, a total which corresponds

to approximately 3,600 flight hours.

The objective of the analysis was to generate a data base for

final crack size at several fractions of service, from which the

risks of structural failure could be assessed. The risk study

focussed primarily on the contribution of dispersion in the load

spectrum to the dispersion of final crack sizes. Average service

experience for a fleet, when translated into a final crack size,

provides only limited information about fleet safety. The calcula-

tion of failure rates requires crack growth computations for non-

representative as well as average service history within a given

mission spectrum. Since no analytical derivation can be given for

the distribution of final crack sizes as a function of the stress

range distribution, a Monte Carlo simulation is required, in which

a crack growth rate equation is integrated several hundred times

from the same initial crack size. A technique of analog computer
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simulation was developed and verified for this purpose. The analog

method was shown to be cost-effective for extended Monte Carlo

simulations, in comparison to digital computation. Also, the

stress range spectrum was shown to be easily representable by input

of a filtered signal from a random noise generator. The random noise

signal automatically provides a series of load histories with con-

trolled parameters which fit the given mission spectrum (stress

range mean and standard deviation) as the analog repeatedly integrates

the crack growth rate equation. With the analog set in repetitive

operation, approximately 30 minutes were required to generate 200

curves of crack size versus equivalent flight hours for each of 11

assumed initial crack sizes. Four data points were sampled from

each curve (0.4, 0.5, 2/3 and full service period) and were processed

digitally to provide histograms for final crack size, with time and

initial size as parameters. The raw data histograms for five initial

sizes are presented in this report.

The three-parameter Weibull distribution was chosen as a logical

model for the probability distribution for final crack size. With

the lower-bound location parameter assumed equal to the initial crack

size for each histogram, the analog data were used to compute maximum

likelihood estimates for the scale and shape parameters. A regression

analysis of the scale parameters resulted in good empirical correla-

tions with (a.) , where v represents service fraction and a. is
1 1.

the initial crack size. These results agreed generally with an

approximate estimate which predicted va2 for the correlation. The

approximate estimate also predicted a final crack size dispersion
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of four times the load spectrum dispersion. However, the final

crack size shape parameters estimated from the analog data indicated

that the dispersion of final crack size is only slightly greater

than the load dispersion. Shape parameters for final crack size

were therefore defined accordingly, and were used together with

the empirical correlations for scale parameter to extrapolate the

data base to a few near-neighboring initial crack sizes which had

not been included in the simulation.

The final crack size data base was used to compute the mathe-

matical risks of exceeding the critical crack size, as a function

of service time, for several sets of assumptions about initial

flaw populations and manufacturing quality-control strategies.

For the parameters considered in the present study, the results

indicated that risk functions based on deterministic assumed initial

flaw sizes between 55 and 70 mils were similar to the risk functions

based on assumed flaw populations with a mean size of 50 mils and

coefficients of variation between 0.2 and 0.4 which were subjected

to filtering by nondestructive inspection. Risk functions were also

computed for cases which considered a flaw population but neglected

random load effects. These risk functions were observed to behave

quite differently from those calculated for corresponding cases which

included the effects of random loading. This comparison may have

a significant bearing on risk assessments of aircraft which are

fatigued primarily by gust loading, but must be considered much

less important for aircraft which are fatigued primarily by quasi-

deterministic maneuver loads.
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There appears to be no reason why the analog method cannot be

extended to more sophisticated simulations, in which the effects

of stress ratio, retardation, multiple sources of random loading,

ground-air-ground cycles, etc., are included. The feasibility of

such extensions depends, of course, upon the availability of a

sufficient amount of analog hardware, and upon calibration by

parallel digital analysis to verify computational accuracy. Given

these conditions, the most useful application of the analog approach

to crack growth simulation appears to be rapid assessment of the

sensitivity of fleet risk functions to changes in load spectra.
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TABLE 1

COMMON LINEAR ANALOG COMPONENTS

SIMPLE CIIRCUITS USING AMPLIFIERS AND POTENTIOMETERS

CIRCUiT DESCRIPTION CIRCUIT COMPUTER SYMBOL

ek

I GROUNDED POTENTIOMETER kBe e-Q------- Be

U PT ENTIOMETER
SETT I NG

2. UNGROUNDED POTENTIOMETER k eB(e,-e)e+~,- 2e2' e, e + (, 2
LO

3INVERTER e -c -

F IK

4. MUL.TIPLICATION BY -10 e I. 1ee -be

lOOK

5 MULTIPLICATION By -k B Oe - ke
for 1 5 k 5 10 -e e--~~ B

(for k <I use Circurit I feeding T"~ STTINGý-,

- CircL!i t 3_)

10OOK IOO 2

B MULTIPLICATION BY 2 e- -2e O

e2

lOOK

tlOOK

I .,ee e,
7MULTIPLICATION B( -2OO 2- 2

Courtesy of EAI-TR-48 Reference Guide
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CIRCUIT DESCRIPTION CIRCUIT COMPUTER SYMBOL
IOK

8 MULTIPLICATION BY I0e.%%•I e --- I-- o10 10

O OOK

k, e OOK k k

O< k < lO
MULTIPLICATIONl BY AN

ARBITRARY VALUE

j ~k]

lOOK

IOK

lOOK
lOOK

10. ADDITION e 2-(ee 1 e2 loe') e 2 - _(e +e2+ 13%)
10 K

1001 K 001<
e2e

ee

11, SUBTRACTIONlOO 10)K ei- e--/ I e e 2 1-/ e,-.e

0ICI1OK IOK

-V0 RS
_mfd _+ vo

12 INTEGRATION e l ,10-'1OOK C I e e+ 10,e, )d t+Vol

10K -e feIed~o
e2  .4 e= -[S~e,-oe2 ,dt vj

Courtesy of EAI-TR-48 Reference Guide
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TABLE 2

COMMON NONLINEAR ANALOG COMPONENTS

QUARTER-SQUARE MULTIPLIER CIRCUITS

L MIILTI"LICATICN

(<>7
L�U�/ �'�'

� COMPUTER DIAGRAM

2§Uf�22
CY A,--'3

-Io�x�+io
lU<Y<+lO

MUCTIrLIEn Kr
7.099 -10 -

PATCHOD LIADRAM

2. DIVISiON

�

A �
V/so.t/AJ/ ',G"/
�

7 2 /U x

o A'�-Q COMPUTER DIAGRAM

-10<5<0 OR O<X�+IO
-10< U<.IO BUT jUl <lxi

LJLTUL� CR

DIVISION CIRCUIT RESTRICTIONS
PATCHING DIAGRAIl I. u < 1.0

5-
2. K MUST BE POSITIVE, (IF K IT NEGATIVE,

CONNECTIONS TO +X AND -X SHOULD
INTERCHANGED I

3. K �' 0

Courtesy of EAI-TR-48 Reference Guide
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X' DFG CIRCUITS

3
I0

0 0  e0 B
(10 +I 20ý T l

-IaeN -1 10e

22

2000

X2 -:NjCOMPUTER DIAGRAM
43<X +10Z

10+ý 105X5+e0

-10 -- 0
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LOG X AND - LOG X DFG CIRCUITS'
2

5. -LOG. 0 X FOR +X INPUT AND + LOG, 0 X FOR -X INPUT

-5 LOG (10 XI a8 IN+ B
34ol 0XiLO X-3 ---••LOG X -5LOG (IONXI)•+ I +i° (o < x<5+ 10)L__ E ;,/

+IN e,

PATCH SAME AS+0

AMPLIFIER 35 FOR R2  
elN

SECOND +LOG X U F 0 110 0
CIRCUIT - INo 10j

PATCH SAE A_ S 0_ 
-1

AMPLIFIER 34 FOR R, +10
SECOND -LOG X + I -INI N-J

CIRCUIT 0IN0  0 -x LOG X53 4- 5 LOG (10 lxi)

+5LG(13 __B -- 101 (-10'Y<+ 0)+ LOG 1 (-,o10 .i)

S+ 10

LOG X DFG - eN
16.276 -10 +10

-I0o

ANTILOG, BASE 10

-5 LOG (10 lx)

X OUT 34 0

+IN -5 LOG (10 IxI)
-8_Bo (-I0O•LOG •g+IO)÷

R2© 
O

LO5 X 34 AN[

+B

-I 0

LOG X DEG
16.276

Courtesy of EAI-TR-48 Reference Guide
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7. MULTIPLICATION AND DIVISION (MORE THAN TWO VARIABLES)

A+B

IOC~ ~ ~ ~~t REF O: IN +B
LOGN +LO XLGG

+IN

+AN -IN 0 0 f

R21N

0 10-C

CINLOG XOF

16. 276

Corts EXOfENTAL -R4 eeec ud

4.34C 43



TABLE 3
A

WEIBULL SHAPE PARAMETER a FOR

FINAL CRACK SIZE DISTRIBUTION

a.. N = 8 Kc 10 Kc 13.3 Kc 20 Kc
(mils) v = 0.4 0.5 0.667 1

30 1.61 1.76 1.99 2.16

40 1.36 1.49 1.63 1.71

50 1.28 1.33 1.49 1.70

60 1.12 1.20 1.33 ---

70 1.41 1.45 1.15 1.00

*Data for a. = 60 mils, N = 20 Kc were lost.
1
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TABLE 4

WEIBULL SCALE PARAMETER 8 (mils) FOR

FINAL CRACK SIZE DISTRIBUTION

a. N = 8 Kc 10 Kc 13.3 Kc 20 Kc1

(mils) v = 0.4 0.5 0.667 1

30 2.71 3.38 4.58 7.55

40 4.15 5.41 8.01 13.42

50 10.17 12.72 19.12 28.63

60 12.42 15.84 23.16 43.5*

70 18.72 23.51 37.43 71.35

*Estimated from empirical correlation

ý=2.34xlO-3 (va .)12
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TABLE 5

RISK R f (a jr a.,v) FOR a cr = 122 MILS

Service Fraction v

a.i (Mils)

0.4 0.5 2/3 1

20 1.00X10- 9 1.00x10- 6 3.98xl 157 1.00X10-7

30 3.16xl1 0 1.00x10 5 7.08x10 3 3.80xl 16

40 1.26x10 2 7.94x10- 17 1.82xl 10 2.02x10-

50 1.26x10- 8.21x10- 2.63x10- 1.74x10-

60 1.74xl10 2.88xl10 2.89x10- 1.84xl 10

70 2.14x10- 7.51x10- 2.14xl 10 4.65xl 10

80 1.74xl0 3.07x10- 4.91x10- 7.08x10-

90 4.64xl 10 5.95xl 10 7.33xl 10 8.60xl 10

100 7.31xl 10 8.16x10- 1 8.85x10-1  9.41xl 10
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TABLE 6

COMBINED RISK FOR a. TO a = 122 MILS
1 cr

Products Rf(acrlai,V)fi(ai)Aa at Fraction v
a. f (ai)Aa*

(mils) 0.4 0.5 2/3 1
20 .1602 1.60x10- 3 9 2 1.60x10-262 6.38xi0-158 1.60x10-77

30 .1010 3.19x10- 8 1  1.01x10- 5 4  7.15xi0 3 4  3.84xi0-17

40 .0593 7.47xi0- 2 6  4.70x10-18 1.08x10- 1.20xi0-6

50 .0321 4.04xi0-II 2.64xi0- 8  8.44xi0-6 5.59xi0- 4

60 .0192 3.34x10- 6  5.53x10- 5  5.55xi0- 4  3.53x10-3

70 .0128 2.74xi0-4 9.61x10-4 2.74xi0-3 5.95x10-3

80 .0112 1.95x10- 3  3.44x10- 3  5.50xi0-3 7.93xi0- 3

90 .00961 4.45xi0-3 5.71xi0-3 7.04x10-3 8.26x10-3

100 .00801 5.85x10- 3  6.54xi0-3 7.09xi0-3 7.54x10-3

1.25x10-2 1.67x10-2 2.29x10-2 3.38xi0-2

Computed from "Mechanized Probe" curve (Fig. 35).
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TABLE 7

CRACK GROWTH BEHAVIOR UNDER CENTRAL LOADING

a1. af(mils) at Service Fraction V

(mils) 0.4 0.5 2/3 1

20 20.5 20.7 20.9 21.4

30 31.2 31.6 32.0 33.2

40 42.2 42.8 43.7 46.0

50 53.4 54.5 56.0 59.6

60 65.0 65.5 68.8 74.4

70 76.9 78.9 82.3 90.4

80 89.1 92.0 96.5 108.0

90 102.0 105.4 111.6 127.0

100 115.0 119.2 127.0

110 128.0 133.5
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TABLE 8

HYPOTHETICAL DISTRIBUTIONS FOR

INITIAL FLAWS

a. fmfg (ai Aa fi (ai)Aa

(mils) CV=0.2 CV=0.3 CV=0.4 CV=0.2 CV=0.3 CV=0.4

10 --- .0114 .0540 --- .0314 .1063

20 .0044 .0540 .1295 .0140 .0985 .1685

30 .0540 .1828 .2420 .1110 .2140 .2020

40 .2420 .3256 .3521 .3200 .2475 .1912

50 .3989 .3989 .3989 .3600 .2075 .1440

60 .2420 .3256 .3521 .1640 .1265 .0977

70 .0540 .1828 .2420 .0291 .0568 .0538

80 .0044 .0540 .1295 .0020 .0140 .0239

90 1.36x0-5  .0114 .0540 5.04xi0 6  .0024 .00824

100 1.49x10 7  3.28x10 6  .0175 4.50x10 8  5.74x10 7  .00217

110 --- .0044 --- .00044

120 4.38xi0- 5  3.60xi0- 6
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TABLE 9

COMBINED RISK FOR a.i TO a cr(CV=0.2)

Products R f (a Ir a1 ,v)fi(ai)Aa at Fraction v

a. f.i(a .)Aa

(mils) (Table 12) 0.4 0.5 2/3 1

40 .3200 4.03x10-2 5  2.54x10- 7  5.82xl 11 6.46xl10

- 10 -7 -5-3
50 .3600 4.54xl0 2.95xl0 9.47x10 6.26xl0

60 .1640 2.86x10- 4.72xl10 4.74x10- 3.02x10-

70 .0291 6.24x10- 2.l8xlO- 6.24x10- 1..35x10-

80 .0020 3.48x10- 6.14xl10 9.82x10- 1.42xl10

90 5.04x10 - 2.34x10- 3.00x10-6  3.69x10-6  4.34x10-

100 4.50x10- 3.29x10- 3.68x10- 3.98x10- 8 4.24x10-

1.00XlO- 3.27x10- 1.21x10- 5.14x10-
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TABLE 10

COMBINED RISK FOR a.i TO a cr(CV=0.3)

Products R f (a cIa i \)f (a .)Aa at Fraction v

a. f.i(a j Aa

(mils) (Table 12)

40 .2475 3.12x10 2 1.96x10' 7  4.50x10' 1  5.00x10-6

50 .2075 2.62xl 10 1.71x10-7  5.46x10- 3.61x10-

60 .1265 2.20x10-5  3.64xl10 4  3.66xl10 3  2.33xl10 2

70 .0568 1.21x10- 4.26x10-3  1.21x10- 2.64x10-

80 .0140 2.44xl10 4.30x10-3  6.86x10- 9.90X10-

90 .0024 1.11x10- 1.43x10-3  1.76x10- 2.06xl10

100 5.74xl10- 4.20x10-7  4.63x10-7  5.08x10- 5.41x10-

4.78x10- 1.04x10-2  2.44x10- 6.53x10-
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TABLE 11

COMBINED RISK FOR a.i TO a cr(CV=0.4)

Products R f(a Ir ai1v)fi(a,)Aa at Fraction v

a. f .(a i)Aa

(mils) (Table 12) 0.4 0.5 2/3 1

50 .1440 1.81X10-, 0  1.81-7 .9l 5 21O3

60 .0977 l.70x10-5  2. l- 4 2. l- 3 1. l- 2

70 .0381.5xO-3 4.04x10- 1.15X10- 2.50x10-2

80 .0239 4.16xl10 3  7. l- 3 1. l- 2 16xO

90 .00824 3.82xl10 3  4.90xl10 6.04xl10 3  7.09xl10 3

100 .00217 1.59xl10 3  1.77x10- 1.92x10- 2.04xl10 3

110 .00044 4.40xl10 4  4.40xl10 4  4.40x10-4  4.40xl10 4

1.12x10- 1.88x10- 3.45xl10 7.20xl10 2

52



my %D LO H- LA) C'
H o r- N H LA LA %D0 N

O3) N C'4 0 H 1;3 LA)
c\J LA) m~ t CN ~ IZ4

C N N '0 0) 0 CH C. 0

0
4.H

t12 W LA) H me 19 00
U4 LO t.0 aN H- Cf) C0 00

H- -U-) C) H'l0 l 0 H- H-

C) 0 D C)C C

(N Cl)

0

Cl)
CNLA m H- 0 co CN
H C N LA 00 H- I~ H-

H; r-H LA) 0 rr) 0 C) H-
0 C0 0 0 0 0 0D

0

4-)

0 0)

0 4-)

4.) 0
(n 0

* 4.) 4.) 10 - ~ -
C0 U)(Nn~

a) 4-1 4-)
o 4J) 0 CD0 0 0D

4.) 0 0 11 11 11

4-) 0 04 4.P U U U
U) 0 -H
CD p- +

U) 4J 04 4) 4.) 4.)
.rq~- p 4 *H q -H

1)4-4 4-) 0 0
Cd0 0 rq r-l

0 0 > > f t
p~ 4 Ms d 4-4 4-4 4-
04 -P ,4 4 . i

En - a) WD C 4-4 4-4 4-4
.H+ ~Q Q

d- rdH H C d rd
< < Cd d <1 < <

-H -4q ý4 S rq -4 q -4
44 4.4 4P 4.) 4- 4-4 4-4

4- 4-4 4 -4 LH 4

53



Ac = 30 KSI

2024-T6

0

IJOK

S., FATIG•UE
CYCLES

S~30K

0 0.1 0.2 0.3

CRACK SIZE a IN]CH

Figure 1: Weibull Distribution for Crack Size as a Function of
Constant-Amplitude Fatigue
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Figure 2: Paris Equation Analog Program Diagram
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56



4 4-

xp

C)

C)4

CC

CI + H Cý

.H

0

C:)
o) Cd

4--i

reH C)C

UU
o Cdq
C Cr14

C H H 57



7PRA cIx- /o.7)A1~ /cm' =7 I in s /t90 /-/z

.. E..EEEi~T~T~Ti.1-'
..E..EEEEE
,.-;EuEEE-

F*EEEeE5 apefTrc-odNieEE
Ehhhhhh8



T

SJt f

/

o T ,

L 0

0 o

TT

- f "

jj and a recorded at t=T

Figure 6: Analog Program Diagram for Mean and Standard Deviation
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Figure 9: Typical Analog Random-Load Solution Using REPOP
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Figure 10: REPOP switch Error
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2024-T6
30 C = 4.17 x 10-I

N =4
pNUMBER 250 data pointsOF DATA

a = 0.10 inch
0

20

10

i0

0.10 0.20

CRACK SIZE a inch

Figure 12: Histogram of Crack Size after 10,000 Fatigue
Cycles
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30

NUMBER
OF DMT

20

10

0.i0 0.20 0.30

CRhCK SIZE a inch

Figure 13: Histogram of Crack Size after 15,000 Fatigue
Cycles
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30

NUMBER
OF DATT

20

10

0.10 0.20 0.30

CRACK SIZE a inch

Figure 14: Histogram of Crack Size after 20,000 Fatigue

Cycles
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43

NUMBER
OF DATA

0.03 0.04

CRACK SIZE a inch

a= 0.03" N = 8,000 FATIGUE CYCLES
0

Figure 15: Crack Size Histogram (a. = .03, N = 8,000)
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35

NUMBER
OF DATA

Il~tl

0.03 0.04 0.05

CRACK SIZE a inch

a 0 0.03" N = 10,000 FATIGUE CYCLES
0

Figure 16: Crack Size Histogram (a. = .03, N = 10,000)
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28

NUMBER
OF DATA

0.03 0.04 0.05

CRACK SIZE a inch

a = 0.03" N = 13,300 FATIGUE CYCLES
0

Figure 17: Crack Size Histogram (a. = .03, N = 13,300)
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21

NUMBER
OF DATA

0.03 0.04 0.05

CRACK SIZE a inch
a 0 0.03" N = 20,000 FATIGUE CYCLES

Figure 18: Crack Size Histogram (a. = .03, N = 20,000)
1
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31

NUMBER
OF DATA

0.04 0.05 0.06

CRACK SIZE a inch

a 0.04" N = 8,000 FATIGUE CYCLES

Figure 19: Crack Size Histogram (a. .04, N = 8,000)

1
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22

NUMBER
OF DATA

L.,-. . Ith IIn[ul iL

0.04 0.05 0.06

CRACK SIZE a inch

a = 0.04" N = 1-0,000 FATIGUE CYCLES
0

Figure 20: Crack Size Histogram (ai = .04, N = 10,000)
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17

NUMBER
OF DATA

0.04 0.05 0.06 0.07

CRACK SIZE a inch

a = 0.04" N = 13,300 FATIGUE CYCLES
0

Figure 21: Crack Size Histogram (ai = .04, N = 13,300)
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18

NUMBER
OF DATA

0.04 0.05 0.06 0.07

CRACK SIZE a inch

a 0 0.04" N = 20,000 FATIGUE CYCLES
0

Figure 22: Crack Size Histogram (a. = .04, N = 20,000)
1
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NUMBER
OF DATA

1 nn an

0.05 0.10

CRACK SIZE a inch

a = 0.05" N = 8,000 FATI("hUE CYCLES

Figure 23: Crack Size Histogram (ai = .05, N = 8,000)
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NUMBER
OF DATA

0.05 0.10 0.15

CRACK SIZE a inch
a = 0.05" N = 10,000 FATIGUE CYCLES
0

Figure 24: Crack Size Histogram (a. = .05, N = 10,000)
7
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NUMBER
OF DATA

rn n
I I I

0.05 0.10 0.15

CRACK SIZE a inch

a 0 0.05" N = 13,300 FATIGUE CYCLES
0

Figure 25: Crack Size Histogram (a. = .05, N = 13,300)
1
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NUMBER
OF DATA

II __ _ __ _I_ _ _

0.05 0.10 0.15 0.20

CRACK SIZE a inch

a = 0.05" N = 20,000 FATIGUE CYCLES
0

Figure 26: Crack Size Histogram (ai .05, N = 20,000)
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NUMBER
OF DATA

r -" n n on ,n

0.05 0.10 0.15 0.20

CRACK SIZE a inch
a = 0.06" N = 8,000 FATIGUE CYCLES

Figure 27: Crack Size Histogram (ai = .06, N = 8,000)

8o



44

NUMBER
OF DATA

0.*05 0.10 0. 5 0.20

CRACK SIZE a inch

a = 0.06" N = 10,000 FATIGUE CYCLES
O

Figure 28: Crack Size Histogram (ai = .06, N = 10,000)
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38

FZ

_I -A afl m n HI] , n

0.05 0.10 0.15 0.20

CRACK SIZE a inch

a. 0.06" N = 13,300 FATIGUE CYCLES

Figure 29: Crack Size Histogram (ai = .06, N = 13,300)
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117

NUMBER
OF DATA

0.07 0.10 0.20 0.30 0.40

CRACK SIZE a inch

a = 0.07" N = 8,000 FATIGUE CYCLES
0

Figure 30: Crack Size Histogram (a. = .07, N = 8,000)
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148

NUMBER
OF DATA

SMmn

0.07 0.10 0.20 0.30 0.40

CRACK SIZE a inch

a = 0.07" N 1 10,000 FATIGUE CYCLES
0

Figure 31: Crack Size Histogram (a. .07, N = 10,000)
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119

NUMBER
OF DATA

0.07 0.10 0.20 0.30 0.40 0.50 0.60

CRACK SIZE a inch

a = 0.07" N = 13,300 FATIGUE CYCLES
0

Figure 32: CrackSize Histogram (a. = -07, N = 13,300)
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CRACK SIZE a inch

a = 0.07" N = 20,000 FATIGUE CYCLES

Figure 33: Crack Size Histogram (ai = .07, N 20,000)
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Figure 34: Correlation of Final Crack Size Distribution
Parameters
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fmfg (a) f (a)

~~Inspection '€
/Reliability, S

/ Pd(a)

I 
Inpcto

Risk of % mfg'(a
E Escape,
l-P d(a) v 1-p

Crack Size, a Crack Size, a

Figure 36: Reshaping of Flaw Creation Probability by
Inspection Reliability

ai Risk of
fi (a) Exceeding aRf(aflai,v) • . c

Combined
Failure
Risk

a _
cr

Final Crack Size, af Initial Crack Size, ai

Figure 37: Schematic for Computation of Combined Failure Risk
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