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1.  INTRODUCTION 

This report discusses the theory, applications and performance of various 

stages of analysis and data processing involved in the DAASM (Doppler arrival 

angle spectral measurements) Project. The analysis can be divided into three 

stages, namely: 

1) Power spectral estimation 

2) Coherence analysis 

3) Doppler frequency - angle of arrival estimation (DAASM maps) 

The power spectral, coherence and DAASM maps are presented m the form of digi- 

coder printouts. The printouts display integers 0 to 15 in a gradation of 

increasing intensity. 

Much of the analysis pertaining to the pow jr spectra and coherence ha.?  been 

dealt with ia detail in previous AFCRL reports. Only brief and necessary 

material are discussed here. The main portion of this report ("eals witl the 

adaptive data processing aspect of the DAASM maps. Several t:st functions have 

been devised to simulate sources at different Doppler frequ- .cies and different 

arrival angles and with various levels of Isotropie white noise. The simulation 

is  performed on linear arrays of six and twelve antenna elements corresponding 

to most often used configurations for measuring and gathering real data. 

The work described here has evolved out of a need to extract the Doppler 

frequencies and the direction of arrival of high frequency radio signals propa- 

gating through the ionosphere and received on a linear array of antennas. The 

concept of a homogeneous random electromagnetic field in the sense of Yaglom[5] 

propagating across an array of sensors has been employed. If the random field 

can be considered as a wide-sense stationary process it is possible to apply a 

multi-dimensional Fourier transformation and obtain the so-called Frequency - 

Wavenumber Power Density Spectrum (1WPD). The frequency dimension resolves 

the Doppler or temporal components while the wavenumber dimension yields the 

direction of arrival or the spatial components of ihe  array data. 

The frequency-wavenumber approach has been developed and widely used in 

the processing of seismic signals by Capon et al. [1]. All spectral analysis 



techniques utilize sorae or other form of data windows either in the original 

untransfonned domain or in the transformed domain. Data windows are necessary 

to reduce the statistical variability of the spectral estimate and also to 

suppress sidelobe leakage. As a consequence the choice of data windows has to 

compromise between conflicting requirements of spectral resolution and statisti- 

cal stability.  Besides, the data windows in usual spectral analysis are of a 

fixed nature in that they do not depend on the data or noise characteristics. 

The data window is a taper function applied to the estimated correlation func- 

tion and the product is transformed to get the spectrum. Consequently, the 

estimated spectrum is smeared by the convolution of the window function and the 

true spectrum. The selection of a suitable data window becomes very critical 

when only limited data are available or cannot be processed because of station- 

arity considerations and adequate resolution has to be maintained. 

Spectral techniques which are data-adaptive and offer higher resolution 

than usual methods have been increasingly used in seismology as mentioned above. 

The maximum likelihood method of estimation of the frequency-wavenumber spectrum 

which is employed in this study belongs to the data-adaptive high resolution 

class of spectral estimators. The method as applied to multi-channel streams 

of complex valued data points from a two-dimensional array of antenr.as in the 

Doppler-arr^val-angle-spectral measurements (DAASM) experimen' has been discussed 

and derived in detail in ar AFCRL report by CPfister. Sales and Vn-ad) [2]. 

There, the method is rendered data-adaptive in both the temporal as well as the 

spatial domains.  But it suffers from the disadvantage that the core and time 

requirements for computer processing become unrealistic as the number of antennas 

and time data points are increased.  It is probably feasible on such giant 

parallel computer systems as the Iliac IV. 

Moreover, the improvement observed in the frequency dimension does not 

justify the additional complexity contrasted with simpler and much faster methods 

utilizing the Fast Fourier Transform. Therefore, the technique as employed here 

is adaptive only in the spatial domain, since it is conceivable that the number 

of available spatial data points is normally far less than the number of tiir.e 

domain data points. 



2.  DESCRIPTION OF THE EXPERIMENT 

2.1 Overall Project 

The DAASM system consists of a twenty-element array, eleven of which are 

to form a minimum redundancy (MR) configuration as described by Richards [3] in 

a previous AFCRL report. This neans that by proper selection of antennas it is 

possible to obtain spacings equal to successive multiples of an available minimum 

spacing.  It can also be used in quasi-minimum redundancy configurations where 

the available spacings are near successive multiples. The advantage of the MR 

array is that it is equivalent to a largo filled array with the same aperture 

and the same basic spacing. The signals incident on the antennas are sampled 

in time and recorded in the form of complex-valued digital data after proper IF 

conversion of the carrier frequency.  The pulses at chosen carrier frequencies 

originate either xrom a flying aircraft or from a ground-based transmitter. 

The object of subsequent processing of the recorded data is to extract the 

spatial and temporal characteristics of the signals. To describe these charac- 

teristics it is necessary to introduce the concept of a frequency-wavenumber 

power density (FWPD) spectrum.  In the case of acoustic and seismic signals, 

wavenumber is a quantity which describes waves in terms of their velocities, 

that is, speed and direction, are both variable. But for electromagnetic waves 

wavenumber is only dependent on direction since the speed is constant in a given 

homogeneous medium. 

If the time samples are understood to constitute one dimension and the 

spatial samples to be the second dimension then the two-dimensional Fourier trans- 

form yields the frequency wavenumber power density (FWPD) spectrum. 

Thus, if A.(w) and A (w) denote the discrete complex Fourier spectrum at 

radial frequency w at antennas j and m then the cross spectrum between the 

antennas j and m at frequency w 

S. (w) = A.(w)»A*(w)  . 



In general, a smoothed version of cross-spcr•ral estima;es S- (w) is used. 

The estimated FWPÜ spectrum is defined by 

Pl*'*i = SZ WJ W^J'"(WJ *cxp I11' (rrr^ {2AA) hh 
where N is the total number of antennas, r 's are the vector distances from some 

arbitrary origin, k is the wavenumber vector and the W.'s are suitable weights 

imposed on the j1*1 antenna. 

In a previous report [*], different methods of spectral analysis to extract 

frequency, phase and coherence information were described in detail.  It was 

found that the frequency-averaging technique provided a very efficient and 

reliable means of cross-spectral estimation. Although it is true that the 

maximum likelihood method of spectral analysis provides an optimal estimation 

of the spectrum, it proves to be very costly in terms of computer time and 

memory requirements and the improvement obtained thereof is not substantial. 

As the number of antennas is increased, the analysis soon becomes impractical. 

Therefore, only the frequency-averaging technique of estimating the cross- 

spectra is used in all of the data involved here.  Once the cross-spectra have 

beer, estimated, the spatial component of the FWPD spectrum can be estimated by 

various methods.  In the subsequent analysis three methods of estimation of 

the angle of arrival have been implemented. The three methods can be delineated 

in terms of the choice of the weights W; and are:  fl).  The Fast Frequency 

Wavenumber Analysis or the Conventional Analysis, which is most useful for an 

initial diagnostic scan in the frequency-wavenvnnber (f-k) space. Wavenumber 

sidelobe characteristics can be varied by proper choice of weights for the 

different cross-spectral terms. But resolution is poorer than methods 1  and 

3.  (2J. The minimum redundancy version which is only applicable to the data 

from a strict minimum redundancy configuration of the antennas. Sidelobcs 

are better but the technique suffers from grating lobes having amplitudes 

equal to the mainlobc whenever the basic antenna spacing exceeds half the 

operating wavelength.  (3J .  An adaptive method using the maximum likelihood 

principle offers high resolution in spatial characteristics and is applicable 

to any arbitrary antenna configuration.  Un'ike the other two methods, this 

method assigns adaptive weights to the different cross-spectral terms depending 

on the look-angle and the spatial characteristics of interference and noise. 



Each of these three approaches will be briefly outlined here. The common 

part of the analysis and computatior to all three methods is to obtain 

suitable cross-spectral estimates between any given pair of antennas. 

2.2 Estimation of Cross Spectra 

The recorded data consists of two sets of 25b equally spaced complex valued 

time samples from each antenna output. Although the entire 256 samples could 

be used for further processing, it was decided to treat only the middle 128 

samples in each set for reasons of economy.  Thus, the truncated sets consisting 

of 128 samples in each subcase are immediately transformed into the frequency 

domain via a Fast Fourier Transform. The resulting 128 complex-valued discrete 

Fourier spectra stretches across a bssic Doppler frequency range of 8 Hz.  The 

two sets of time samples are displaced fvom each other by an amount 3 = «f 0^ 

the sampling period. Therefore, it is possible to either align or interlace 

the resulting two sets of Fourier spectra.  If the Fourier spectra are aligned 

the signal-to-ratio can be improved but the basic Doppler frequency range is 

still 8 Hz.  On the other hand, if the two set:, arc interlaced the frequency 

range can be doubled to lb Hz without any improvement in the signal-to-noise 

ratio. 

In the case of signals transmitted by an aircraft, the basic range of 8 Hz 

is sufficient.  But ground backscatt-T signals often occupy a band wider than 

8 Hz, in which case interlacing proves to be very useful.  In any case, the 

combined or interlaced Fourier ..pectra from the starting point for further data 

processing. 

Three types of output have been designed.  These consist of (IJ power 

spectra, (^2) coherence spectra, and (5) maps of Doppler frequencyvs*arrival 

angle called DAASM maps. 

2.5 Power Spectra 

Power spectra are calculated for each antenna by taking the product of cacli 

Fourier spectral line with its own complex conjugate. Of course, the Fourier 



spectra are normalized in each channel so that the total power in each channel 

equals unity. That is, if g',,^ represents the unncnnalized m^ frequency line, 

then the normalized Fourier spectrum is simply 

*m/<-  g '«,* /J 8 7*     /' (2.3.1) 

I 

The power spectr* are smoothed by the frequency-averaging technique [2] over 

7 frequencies concurrently with the operation of evaluating the product of the 

Fourier spectra. This feature enables the cross-spectra to be estimated in an 

identical way merely by inserting the Fourier spectra of the appropriate pair of 

antennas. The power spectra and the cross-spectra are different only in a 

matter of identification of rntenna elements. 

The power spectra thus obtained are plotted on a standard digicoder format 

of logarithmically scaled numbers ranging from 1 to 15 which corresponds to a 

linear scale from 0 to 100. The exact equation defining the scales is 

DI = 2 ♦ 7 log.,, P lin        1 < P..  < 100 
lü Im 

= 2 x P.. P..  < 1 
lin lin 

where 1)1 is the digicoder output integer and Piin is the value of the power 

designed to have a maximum of 100. 

The details of the Preface and Data format are given in [4]. The power 

spectral digicoder printouts/outputs provide the basis for selection of data 

segments suitable for more complex and time consuming analysis. A representative 

segment of data is presented in Figure 11. The data as usual consists of sub- 

cases where each subcase has four different height gates and two carrier 

frequencies. Therefore, for the six antenna configuration there will be 48 

channels of power spectra for each subcase. A preface line separates each height 

gate and the subcases themselves are separated from rach other by 6 preface 

lines. 

' 



2.4    Coherence Spectra 

Coherence spectra between the ra^ and n^h channels  is defined by the 

equation 

h^mn] 
I»    (f)| '   mn       ' .m       w 

WS    (f) 8    (f) f mm nnv  ' 

(f=,—) (2.4.1) 

where Smn is the smoothed cross spectrum at frequency f between m^ and nth 

channels and S^f) would be the self power spectrum of the mth channel and so 

on. It is clear that the coherence is a number which lies between 0 and 1. 

This linear range is converted to an arc hyperbolic tangent scale and multiplied 

by a suitable scale factor to provide the digicoder output numbers. 

Table 12 shows the relationship between coherence and digicoder output num- 

bers. The coherence spectra are plotted for each available distance between the 

various pairs of antennas in order of increasing distance. Since the coherence 

is only available at specified distances the plots are backfilled at intermediate 

distances.  It was found the raw coherence thus plotted appeared sometimes to be 

a discontinuous function of distance instead of monotonically decreasing function. 

Therefore, three successive subcases have been averaged for each distance at each 

Doppier frequency to provide a much smoother picture and thus the statistical 

confidence limits which depend on any given sample size are improved (see Fig. 11). 

The coherence is a good measure of the spatial extent of the frequency- 

wavenumber spectruin, when the number of sensors is «^rnall. Looking from another 

point of view, the coherence can be interpreted as a measure of the relative 

amounts of propagating and non-propagating noise. However, direct evaluation 

of the FWPD is a superior approach and contains all the information. 

The coherence spectra are primarily useful to determine the maximum meaning- 

ful aperture in terms of operating wavelength for the type of signals involved. 

A smooth ionosphere (certain ionospheric modes) produces signals with high 

spatial stationarity.  In such a case the coherence does not decay rapidly with 

Increasing distance. On the other hand, a turbulent ionosphere displays high 

coherence over relatively smaller apertures. Digicoder plots of the coherence 

spectra are presented for various selected data segments elsewhere [4]. 



2.5    Frequency-Wavenumber Spectra 

DAASM maps consist of digicoder plots of frequency against wavenumber 

which is turn is easily related to the angle of arrival. 

A particularly efficient algorithm to calculate the f-k spectra is possible 

if the weights in Equation   (2.1.1)  are chosen to correspond to a triangular taper 

function and will be referred to as Fast Frequency Wavenumber analysis or th^ 

generalized Bartlett estimate.    In such a case, the individual  cross-spectral 

terms need not be separately calculated. 

The separate Fourier spectra from each antenna output  can be used directly 

and frequency smoothing can be applied in the final  step.    The details of the 

algorithm are as follows: 

Let  |Aj(W)I  exp i0j(w)  represent the Fourier spectral  line at frequency w 

from the jth antenna.    Then the cross-spectrum between the jth and m^" antennas 

is 

S.   (w)  =   |A.(w)|   IA  (W)|  exp if*.   - * ) (2.5.1) 

and the f-k spectrum 

N      N 

P(w,it)   = ^2^2 S.m(w)  exp    -ik.(r.-rm) (2.5.2) 

j=l m=l 

where k is the wavenumber and where w = 2i\f. 

Equation (2.5.2) can be written alternately as 

P(w.it) ■ 7] |A. (w)| exp i U. (w) - it»r. 

j = l 

N 

x ̂ >ra(w)i «p-ikw -H.I 
m=l l 



The subscripts j and m can be replaced by a single subscript n and the 

double summation can be replaced by a single summation. Thus, 

P(w.k) 

N 

^An(w) exp iUcw) - ic«r ! (2.5.3) 

n=l 

Equation (2.5.3) can be computed much faster than equation (2.5.2" . 

P(w,k) is calculated at as many points as desired in k, say with increments 

Ak. Each successive point in k can be computed from the previously computed 
-►   ->■       ->     ->■ 

point by simple complex multiplication because exp i (k + Ak) = exp ik'exp iAk. 

This step is common to all three approaches of f-k spectral calculations and 

saves considerable computer memory and time. 

Since frequency smoothing is independent of the operations on K a set o. 

weights W(w) is calculated using P(w,o) for each w and each P(w,k) is multiplied 

by the appropriate W(w) to yield P(w,k), the frequency smoothed estimate. The 

relation between the wavenumber k and the direction of arrival 8 for the case of 

a linear array is given by 

£= |k| = ^fwse 
1 '    c 

where k is now a scalar, f the operating carrier frequency and c the velocity 

of light. 

The minimum redundancy version can be treated as a special case of the 

general equation for the f-k spectra given by Equation (2.1.1).  It is assumed, 

of course, that a certain number of consecutive multiples of the basic antenna 

spacing are available by suitably placing the different antennas. Distances 

beyond the largest consecutive multiple are regarded to have zero weight, i.e., 

their contribution to the f-k spectra is nil. The non-zero weights decrease 

as a cosine squared function with distance.  In addition, the self-spectral term 

is assigned a weight of 0.5, so that the expression for the f-k spectrum can be 

written as 



L 

P(w,it) = 1/2 So »7]»A exp i (k'd^) 
Jl=l 

where S0 corresponds to the self term and S^ is the cross-spectral term corres- 

ponding to the pair of antennas separated by a distance d^.L is the largest 

successive multiple of the basic spacing and Vty is the weight given by the 

cosine-squared function.  It is well known that the cosine-squared weights result 

in good sidelobe suppression.  It can be shown that for six antennas only ten 

consecutive multiples are possible and for eleven antennas the corresponding 

number is 4S. A similar configuration for more than eleven antennas is not 

known at present.  Each distance occurs only once and hence *he name 'minimum 

redundancy' for the array.  Only those cross-spectral terms corresponding to the 

multiples of the basic spacing need be calculated. Thus, for eleven antennas 

45 of 6^« possible terms are necessary resulting in almost a 30% reduction in 

calculations. More than that, in a sense, the weights are almost optimal for 

the configuration and there is excellent sidelobe suppression. The carrier 

frequency can be chosen such that the basic spacing is a half-wave length or 

smaller, thus avoiding grating lobes. 

The maximum likelihood FWPD spectrum is derived from sets of filters which 

are data-adaptive and optimal. The filters are optimal in the sense that a unit 

plane wave propagating across the array of sensors arriving from a particular 

direction is passed undistortod while signals and noise from other directions are 

minimized in a mean square error sense. When the noise distribution is assumed 

to be multi-dimensional Gaussian, the results are identical with the maximum 

likelihood estimate of the signal calculated from the likelihood functions of 

signal plus noise. 

This method of f-k r.pectral estimation employs an adaptive scheme to gene- 

rate the set of weights in the filter given by Equation (2.1.1).  Instead of 

using a fixed set of weights for all k the adaptive scheme allows for the set 

of weights to be varied depending on the particular k as well as signal, inter- 

ference and noise characteristics.  In other words, the set of weights is dictated 

by the data sample available, subject to the constraints that a unit plane wave 

10 



signal travelling with a given wavenumber k = k0  (arriving from the direction 

towards which the antenna beam is pointed),  is passed undisturbed through the 

spatial  filter but everything else for which k ^ k0  (arriving from other direc- 

tions)  is rejected in an optimal manner.    Thus, the true spectrum is reproduced 

with high resolution and not smeared, which is the result of convolution between 

the true spectrum and the particular spectral window chosen.    TTiis choice of 

constraints results in a convenient mathematical formulation.     It is only neces- 

sary to calculate the inverse of the matrix of cross-spectral terms for each 

Doppler frequency of interest,  in order to furnish the optimal  set of weights 

automatically adapted to each k for a given data sample. 

11 



3.     MATHEMATICAL DERIVATIONS AND PROPERTIES OF THE MLM ESTIMATOR 

3.1    Minimum-Variance Unbiased Estimate 

Consider the set of measurements 

z = Hx + v 

where z is the measurement vector,  x is a constant signal vector,    v is the 

additive random noise vector and H is the signal model matrix.     If A is the filter 

set that minimizes the mean square error between the signal vector x and the 

estimated vector x then 

x = A z 

where the superscript H is the  conjugate transpose.     If A is so chosen that v is 

rejected by the filter but Hx is passed undistorted then 

Hx = HAHz = HA^x 

H H 
or 1 = HA and by symmetry AH = 1 which is the constraint expressed mathematically. 

A 
■> 

Now the variance of x can be written as 

O2  = AHRA 

*/here R is the covariance matrix of the noise process. 

If a2 is minimized under the constraint 

I^A = 1 

Then a quadratic cost function J can be written as 

J = AHRA + A(HAH-1} 

J is minimized when — =0 
9A 

12 



or 

AHR + XH" = 0 

AH =   -XHV1 

A^ = Athrh 

.X = +AX.= +. i 
}f{K'1\i        F^R"^ 

4H       I^R-1 

A    = 
iflrHi 

i= AH2 =   (H^^H)-1  I^R"1! (3.1.1) 

3.2    Properties of the Minimum Variance Estimator 

From Equation  (3.1.1) 

±.   .JL-USfc* x =   (H R AH)     If R    z 

\- ^ ^'k'V'1 hk Rk^k 

vviiere k = dimension of the. measurement vector premultiplying the equation 

zk = Hkx + vk 

by  (H^ R-j Hk)      HJ^ R-l   . one obtains 

K hi V'1 t Rkk  zk =   K \l V'1 Hk \l V 

fHK  Rkk  Hk)   J   Hk  Rk;   VK 
.H .-1  .- .       H!^"1 ^ 

13 



or 

*k = * + tf\iv' i&i 

xk * ^.J =   (H^ R-^ Hk)  H^ R"^ ^ 

xk = ^k vk 

Averaging and assuming independence of A. and v. , x. = A. v. = 0 

Hence the estimate x, is unbiased. 

3.3 Maximum Likelihood Estimate 

The previous derivation minimizes the mean-square error subject to the 

constraint that a unit plane wave be passed undistorted through the filter. But 

there is no probabilistic basis for the characteristics of the noise field. In 

other words, the least squares estimate does not assign probability density 

functions to the signal or measurement vectors. The derivations are obtained 

via deterministic arguments only. 

It is possible to establish probabilistic arguments if the random process 

involved is treated as multi-dimensional Gaussian. The corresponding likelihood 

function can be maximized and thus one arrives at the maximum likelihood prin- 

ciple. The estimated signal vector maximizes the probability of the measurement 

vector that actually occurs, taking into account the properties of tne additive 

random noise vector. 

Consider 

->■   -*■-*■ 

z = Hx + V 

14 



where z  is the measurement vector, x is the true signal vector and v is the 

random error vector and H is an appropriate dimensional matrix representing the 

transformation. 

The likelihood function 

, rl tl       nH'N   P(«.«l   P(x.Vj 3z 

But — = 1.    Therefore, 

W    3x       P(x) P(x) 

9L     Pv(z-H^      a 

The above shows that the likelihood function L(z,x) which is defined as 

the probability density function of z conditioned on x is just the density 
♦ ->■ 

function of v centered around Hx. 

If v is taken as a zero-mean-Gaussian distributed vector with covariance 

matrix R,  then 

-••l->- 1 f !-♦■-»• H-l-*--^l Kl^ = T-^W77 exp hu'Hx) R u-Hx)J 
Maximizing P(fjut) is accomplished by minimizing the exponent in brackets 

with respect to x; that is J = CJ-Hx)11 R-^t-Hx) where the superscript H denotes 

complex conjugate transpose. 

•.-H.o 
• • a?1 

or 

-HV^ ♦ \hrl& - o 

x =   (kiV1)"    HnKl'z (3.3.1) 
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and is identical to the weighted least squares estimate,  rhe equivalence of 

the maximum likelihood estimate for a multi-dimensional Gaussian distribution 

of the random noise vector and Che weighted least square estimate under the 

constraint that a unit plane wave be passed undistorted through the filter has 

-hus been established. 

3.4 Estimation of MLM FWPD Spectra 

The previous discussion showed; how in general, from a noisy measurement 

vector, an estimate of the desired signal vector can be obtained such that the 

sum of the squares of the deviations is a minimum under the "distortion free" 

constraint.  The details of application of the least squares or maximum likeli- 

hood principle to the estimation of the FKTD spectrum are set forth in the 

following. 

A unit amplitude signal model is represented by 

E = 

i2TTk»r 

i2irk»r. 

n 

where n is the number of sensors in the array rn is the vector distance to the 

nt'1 sensor from an arbitrary origin, and k is the wavenumber vector correspond- 

ing to the direction of arrival of the signal. Monochromatic operation is assumed. 

If 
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is a filter set, then the mean-square error for this filter sot is 

e =  (1-FHE)   (1-EHF)  ♦ I^SF 

E = I-E"?  - F^ + FHEEHF + FHSF (3.4.1) 

where S is the noise cross spectral matrix and the superscript H denotes the 

conjugate transpose. 

The mean-square-error (MSE) should be minimized subject to the constraint 

that 

FHEEHF = 1 

since this represents the filter power output for a unit amplitude plane wave 

signal model. 

This constraint can be incorporated if the expression 

£ =   {1-EHF)   (1-FHE)  *  FHSF + X(FHEEHF-1) (3.4.2) 

is minimized, where X is the Lagrangian multiplier. X can be determined by 

taking partial derivatives with respect to the real and imaginary components of 

F. 

Consider the m^ component of F 

;n^=-E>FHE) - V1"1^ + (SF)m 
m 

♦ (FHS)in ♦ X|E*(FHE) ♦ E (EHF) 
m   1 m       m   i 

and 

jt: -= -iE*(l-FHE) + iE (1-EHF) 
3ImF     m^    '    m m 

-i(SF)m • i(F
HS)m ♦ x[iE;(FHE) - iEm(E

HF)] 
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But for an extremum 

mr+imr=0 ^4-« in m 

e =  -2E  (1-EHF)  + 2(SF)     +  2XE   (EHF) m mm 

or 

SF = E(1-EHF  - XEHF) (3.4.4) 

F =   [1-(A+1)  E^JS^E 

FHEEHF ■   |FHE-(A+1)   (FHEEHF)J   EHS-1E 

JWH 
Since F EE F = 1 (by the constraint). 

or 

-J-T-=  FHE-(X+1) 

X+l = FHE + H  1 
E S E 

SF = E [' - & • ^ ^] 
EEHF 

EV^ 

and 

cHcr      FHEEHF    1 
-fj—f— s -n—i— 
E S" E  E S" E 
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Therefore, the expression for the MSE becomes 

t. II-EV.  l 

and is minimized obviously when E F = 1 = F n a condition consistent with 

FHEEHF ■ 1. 

Since 

II 
EE F 

SF = 
Ps'h 

from Eq. (3.4.5) the filter set which minimizes the MSE is 

F = S^E/E^-IE (3.4.6) 

and the minimized noise power 

FHSF = -n1  (3.4.7) 
E S-1E 

i6 
Also e F where 0 is an arbitrary phase factor accomplishes the same task. 

FHEEHF 
The filter F also maximizes the signal to noise ratio G = —n  

FHSF 

without being subjected to the constraint that FHEEHF =  1.    Similarly Ce1°F 

ifl 
would maximize the signal to noise ratio where Ce      is an arbitrary complex valued 

scalar. 

3.5   A Relevant Theorem and Additional Projerties 

The foregoing can be neatly summarized as a theorem involving Hermitian 

forms, 

FV G = ZJL. (3.5.1) 
FHSF 

19 



If a quantity G is expressed as a ratio of two Hennitian forms where S is 

nonsingular and positive-definite, the largest eigenvalue A., of the regular 

pencil of matrices  [U-AS] is the maximum obtainable G when F is the eigen- 

vector satisfying the homoegenous equation 

UF . A^F 

If U is expressible as U = EE" then the largest and non-zero eigenvalue of the 

regular pencil  [U-AS]  is 

XM = nMAX - ,iVlE (3-5-23 

and the eigenvector corresponding to Aw is 
M 

PMAX = S'1E C3-5-3) 

The above equations solve the problem of optimization for spatial process- 

ing of array data. 

The Herraitian form EHSE can be reduced by a unitary transformation E = Tx 

to the canonical  form 

N_ N 

(3.5.4) 
i ■   i ■ 

1*1 1=1 

_ N_ 

EA.x.x.  =7     A. Ix. 
iii     S J   i'   i 

where the   -Vs are the  eigenvalues   of S and the x. 's are the components of E 

along the eigenvectors of S. 

Therefore the  eigenvalues   of S'^ would be 

(-'—. 1 
A,   A0 A„ 

and 

P    = TT-T--  (3.5.5) L    EV^     IXJ
2
     |X2

2
| |XN

2
| 

where P.   is the maximum-likelihood filter output power. 
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If the probe vector E lies along the jth eigenvector then PL = Xj and reflects 

the correct value of the spectrum. 

If Pr is the conventional filter power output, the relative resolution can 

be found from the ratio 

Li        j  A 

2 

J 

2      X. 
(Z|x.|2) + J: D v^- Ix.l'lx |2 (3.5.6) 

(is positive real) 
Therefore, 

h- 
since 

(Elx.l2)    =  1 
i 

Thus, the MLM spectrum has lower output power off the principal axes of 

the spectral matrix S and yet PQ = P^ along the principal axes. The MLM spectrum 

exhibits sharper peaks and higher resolution. Although this result is not 

strictly applicable when the eigenvectors of S lie outside the space spmned by 

the subset of pi"»be vectors corresponding to wavenumber vectors t,  in practice 

the result is  quite robust. 

3.6 Random Noise and Two Plane Waves 

The behavior of the maximum likelihood FWPD spectrum can be analyzed when 

the noire field consists of a small number of unit plane waves and uncorrelated 

noise propagating across an array of sensors. 
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The analysis is based on the assumption that the cross spectral matrix of 

such a noise field can be represented as 

S = PI + 

N 

Vvv" / J  n n 
n=l 

(3.6.1) 

where I is the unit matrix and P the variance of the noise. V V" is the n* unit 
n n 

plane wave dyadic representation. This representation is a matrix of unit rani.. 

It does not have much physical significance when a large number of plane waves 

are present. 

Consider the case of two complex sinusoids and white noise. Then 

S = PI + uu" + V^ 

where 

and 

i2,rrk  »x.        iZtrk  »x- 
U = a x col(e        u        , e       u        ...) 

i2,iTk  »x,        i2iTk  »x- 
V = b x col(e        v        , e       v         ) 

k    and k    representing the wavenumbers for the two plane waves 

Therefore, the MLM spectrum can be shown to be 

p+Iu|2     l/V 

1 

p 
v"     p+|v|2 

K-1; |E|
2
    E'^J       E^ 

v1^    p+|u|2    u1^ 

v1^      ^u p+|v|2 
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from which lim -p—r— = 0 if E/au+ßV where a and ß are complex-valued scalars. 
p-»o    E S' E 

In particular if E = lV|u| 

ii»Vnr- |u|2 

p-»o      E S" E 

and if E = V/|v| 

lim-1        =  |V|2 

p-K)    ES    E 

Therefore, the spectrum exhit   ub   i type of pseudolinearity in the vicinity 

of the directions of U and V provided P is small.    "Hie conventional estimate 

EHSE yields 

lira EHSE =   IU|2 ♦ i^i1 

P*» |U|2 

if 

U 

and 

E = w 

Iv2| 

if 

E = 
V 

m 
The MLM spectrum gives the true value of U and V when the steering vector 

points in either of these dird tions whereas the conventional estimate is corrupted 

by the influence of U while pointed towards V and vice versa.    At all other points 

E, not a linear ombination of U and V, the spectrum tends to zero when P is 

small. 
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In the case of a single complex sinusoid if 

F - V 

then 

and 

lim-HLr-= |V|2 

p+o ES E 

lim EHSE = Ivl2 

p-»o 

whereas if E ?* aV 

I1     n lim -n—■— = 0 
ir*o E S' E 

but 

lim EHSE = lu^l2 

p-»o 

reflecting the window effect. 

3.7 Computational Procedure 

The computational procedure is set forth in the following steps. 

The normalized input Fourier spectra from the various antennas is converted 

to cross-spectral estimates S-j-Cw) by anyone of several spectral estimation pro- 

cedures, in this case by frequency averaging and smoothing with seven frequencies. 

Subscripts j and ra refer to the antennas in question. Next an NxN matrix of 

cross-spectral estimates [S(w)] is organized at each w, where N is the total 

number of antennas. Not all NxN terms need be evaluated since Sjm(w) = S*.(w), 

where the asterisk denotes complex conjugation. The sum of the diagonal elements 
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in the matrix is stored as a measure of total power at any given Doppler 

frequency and used for renormalization purposes ultimately. The matrix itself 

is normalized by replacing each element Sjm(w) by Sjm(w)/«/S..(w)S (w), a step 

which ensures sensor equalization. The normalized cross-spectral matrix is 

inverted for each Doppler frequency one at a time. The elements of the inverted 

matrix are used in the equation for f-k spectra 

P(W,k) = 

" N  N -i-l 

m=l n=l 

It is seen that the weights w.  and the straightforward cross-spectral elements 

together are replaced by the corresponding inverced matrix elements and the 

reciprocal is calculated to yield the high-resolution f-k estimate.    The incre- 

ments over k are calculated in a chain sequence from the previous values in the 

same manner as indicated before.    The final step is to restore relative power 

levels at the different Doppler frequencies.    First, the values of P(w,k) are 

summed over all k and the normalized values of P(w,k) are multiplied by the sum 

of the diagonal elements PjgCw) of the original cross-spectral matrix which have 

been stored as indicated before.    Thus, the renormalized P(w,k) are obtained 

and with an appropriate scale factor and conversion to a digicoder format are 

recorded on tape to produce the digicoder printouts. 
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4.  RESULTS 

4.1 Simulated Models of Signals and Random Noise 

This section discusses the results of the application of the maximum 

likelihood method to simulated models of signals and whit^ noise generated in 

complex valued digital form on the computer. The oignal part of the test 

function is modeled as the sum of one or more complex sinusoids with appropriate 

progressive phase shifts along the linear array. Thus, if two source« on two 

different Doppler angular frequences Wj and w2 and located in directions 9i 

and e2 from the axis of the array lave to be simulated, the expression 

sn(t) = A, exp j(Wjt + -^ dn cos 6,) 

+ A2 exp j (w2t + ~ .dn cos e2) 

is used. Here A1 and A2 are the respective amplitudes of the two sinusoids, X 

is the operating wavelength of the r-f carrier, and the subscript n is the 

antenna index, d^ being the distance of the n^ antenna from the origin. The 

value of sn(t) is calculated at discrete equally spaced time points t., t2, etc., 

to obtain the sampled data points. 

Additive white noise is introduced by appropriately scaled random numbers 

from a random function generator. The scaling determines the amount of noise 

power added. The sampled data points along with the noise is processed as 

described earlier to produce DAASM maps. 

4.2 Parameter Variations and Digicoder Displays 

The performance of the MI>1 was studied with test functions designed to vary 

the following parameters. 

1) Several noise levels (Figs. 1-10) 

2) Different number of Doppler frequencies being smoothed (Fig. 1) 

3) Numbe- of sources: a) coherent (same Doppler) (Figs. 8 § 10) 

b)  incoherent (separated Dopplers (Figs. 2, 3, 4, 5, 
6, 7 5 9) 

26 



4) Proximity of sources aj wavenumber (Figs. 4, 5) 
b) Doppler frequency (Figs. 2, 3, 9) 

5) Number of antennas either 6 or 12 § configuration 

a) uniform (Figs. 1, 2, 3, 4, 5, 6, 7) 
b) minimum redundancy (Figs. 6, 7, 9, 10) 

Salient resul_j pertaining to the above variations are presented here in 

the form of digicoder plots of Doppler frequency against wavenumber (angle of 

arrival). Tables 1 - 10, provides the details of the parameters in each plot. 

The digicoder plot is designed so that there are 128 Doppler frequency 

lines and 128 wavenumber lines. Since the width of the digicoder printout can 

accommodate 256 lines two different cases can be presented on the same plot, 

one in the left half and the other in the right half. 

The characters represent numbers from 0 to 15 in increasing order of 

intensity and as described before logarithmically scaled from the corresponding 

linear values of the spectra.  Ii. effect, the digicoder plot is also an intensity 

plot. Sixteen preface lines precede the actual plot and are utilized to code 

all relevant information about the parameters. Also, this space is divided into 

16 compartments across the full font for viewing ease. A similar compartii'er.ia- 

lization is effected along the length of the page by interrupting the plot with 

a preface line every 16 lines. 

In the plots presented here the wavenumber axis is across the width of the 

page and Doppler frequency along the length. The wavenumber axis corresponds 

to an azimuthal direction of arrival between -90° and +90° with 0° corresponding 

to boresight. Actually any sector of the azimuthal coverage can be expanded 

to occupy the full 128 lines.  Similarly, the middle of the Doppler axis   ' 

represents 0 Hz becoming increasingly negative towards the top and increasingly 

positive towards the bottom. Once again, any portion of the Doppler spectrum 

with any chosen center frequency can be accommodated. 

It should be noted that the wavenumber axis represents the sine of the 

angle away from boresight. Therefore, the angles corresponding to the horizon 

are compressed although approximately linear in the region of boresight. 
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5.  CONCLUSIONS 

5.1 Incoherent Sources 

Computations have been made with the noise levels corresponding to power 

S/N ratios of 20 dB, 10 dB, 0 dB, and -5 dB.  In the case of incoherent sources 

assuming the large aperture, the estimate is very accurate at low noise levels 

and the accuracy is maintained even at angles close to the horizon as seen in 

Figs. 6, 7 5 9d, e § f. As long as the sources do not overlap in Doppler for a 

specified smoothing they can be resolved to within 1°. As the noise level 

is increased, this resolution cannot be maintained and slight shifts in angular 

position are observed. The valleys between the peaks do not quite bottom out 

to the low value reached at angles away from the source locations. Also, as 

the noise level is increased apart from the noise appearing randomly at all 

Dopplers and all angles, the angular side lobes on the signal Doppler frequency 

form a ridge. The ridge is particularly obvious when the line source happens 

to be off the lines on the MLM spectra actually computed and is attributable 

to the procedure for renormalization of power across the Doppler frequencies 

as seen in Fig, 4.  The ridge effect vanishes when the source is distributee 

over wavenumber, since in that instance, no single line contributes inordinately 

to the total power in the Doppler line and hence, the actually computed 

adjacent lines are as effective. 

There is a definite relationship between the number of frequencies that 

are used for smoothing and the number of antennas (sensors) employed.  In 

general, no problems are encountered in the way of singular spectral matrices 

if the number of frequencies exceeds twire the number of sensors.  But for 

longer arrays this procedure is impractical. An alternate solution to avoiding 

singular spectral matrices would be to add a small correction term A to the 

diagonal terms of the normalised cross-spectral matrix. 

The above implies that resolution in Doppler has to be compromised to 

achieve improved angular resolution. As one increases the number of spatial 

points at which the incident noise field is measured, one can afford to add a 

little noise to the diagonal terms. For this reason, a 15 point smoothed 

frequency averaging is employed thus allowing adequate Doppler resolution 

(Ref. Figs. 3-10).  In fact, it was observed that 5 point frequency smoothing 
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resulted in ill conditioned matrices for the 6-antenna mode while 7-frequency 

smoothing was marginal (Ref. Fig. 2). The successful inversion of 7-frequency 

smoothed cross-spectral matrices can be attributed to the noise added in the 

original time series.  In comparison, the twelve antenna mode cross-spectral 

matrices could only be inverted for 11 or more points smoothing. 

A similar argument can be advanced as to the ideal location of the antennas. 

For instance, a small number of antennas can be placed in a minimum redundancy 

configuration provided more time samples are available to maintain a decent 

signal-to-noise ratio. A HK-e reliable estimate can then be obtained.  In a 

certain restricted sense, the spatial and temporal points are interchangeable. 

Conversely, redundancy in ivailable distances between pairs of antennas in a 

uniformly spaced array provides a better estimate in the presence of noise.  If 

angular resolution is the primary objective, it is advisable to utilize the 

maximum possible aperture consistent with requirements of spatial coherence. 

For a given amount of freoaency averaging, this would entail a sacrifice in 

the stability of the estimates. 

It is observed that there is coupling between the sources even though they 

are on different Doppler frequencies beyond the bandpass edges of the smoothing 

filter. The problem seems to be accentuated at low noise levels and small 

apertures (Ref. Fig. 5).  If the spillover pips are above the background noise 

levels the method exhibits ambiguity as to the location of the sources cor- 

responding to a particular Doppler frequency. When the background noise level 

obscures the weakly coupled source, this phenomenon vanishes. The explanation 

for the stronger coupling in the case of smaller apertures can be traced to 

the wider beamwidth, and hence decreased resolution. 

However, this coupling phenomenon does not seem to be of much concern in 

the case of actual measured data of the DAASM experiment because the noise 

levels are such as to submerge the level of the coupled signal. 

5.2 Coherent Sources 

Thus far, the results discussed pertain to the case of incoherent sources 

and the technique sufferi.- from no serious difficulties. When the input data 
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results from coherent discrete sources, the sidelobes in wavenumber space reach 

disconcerting levels (Ref. Figs. 8 § 10).  In general, it is seen that two 

sources of equal amplitudes result in an apparent sidelobe level of approxi- 

mately -6 dB or higher. This imposes quite a aogree of uncertainty in being 

able to distinguish between strong and weak sources. The sidelobes could be 

mistaken for weak sources or vice versa. Nevertheless, under similar 

circumstances the conventional FWPD spectrum behaves even worse, true to the 

theoretical predictions of tne last Chapter. The ability to discriminate 

between the two coherent sources also deteriorates as the noise increases. 

The situation is improved, but not very much when the number of antennas is 

increased from 6 to 12 (compare Fig. 8 with Fig. 10). 

The angular separation of the sources beyond the natural beamwidth for 

any given aperture does not seem to provide any readily predictable pattern of 

sidelobe location or level. The source locations are still discvrnible with 

a priori knowledge but in the case of actual data, for instance coherent 

groundscatter returns, it is extremely difficult if not impossible to locate 

the authentic reflection points. 

It is evident that the case of multiple coherent sources has to be solved 

by either imposing additional constraints or by decoupling the sources.  Ira- 

posing additional constraints would require a priori knowledge of the location 

of the sources which is impractical.  In a real environment, the location of 

interferers may change or the ionospheric conditions may result in multipach 

propagation leading to apparent multiple-source-type strongly coherent signals. 

A method of decoupling the sources utilizing adaptive feedback techniques 

can be employed. An initial run would yield the approximate location of true 

as well as virtual sources based on a decision oriented analysis. A decoupling 

matrix can then be constructed which in turn would be incorporated into the 

input cross-spectral matrix for each wavenumber of interest. The output would 

then conform to just one source location as though all the other sources were 

not present, which should resu.lt in very low sidelobe level. 

The MLM FWPD spectrum has been previously used in seismological applications. 

But the application of the technique to the analysis of ionospheric motion and 

irregularities is thought to be new.  It is a powerful technique with superior 

resolution, is data-adaptive and computationally not much more complex than 

conventional methods. 
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TABLE 1. 

Legend for Fig.  1   (Effect of Smoothing) 

Pigs. 

Antenna Array; U = uniform 

Number of Antennas 

Antenna Aperture (Wavelengthsl 

Doppler Lines (No.j 

Noise Level as % of Signal 
on Line 59 

Doppier Smoothing, No. of Points 

Spatial Angle of Source from 
Boresight. 

u U U U U U 

6 6 b 6 t 6 

<3 <3 <3 <3 <3 <3 

59 59 59 59 59 59 

10 100 300 10 100 300 

7 7 7 15 15 15 

-30° -30° -30° -30° -30° -30 
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49    SO       IS 0*        IS        SO   49 
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_•■. t :ri- 

49    JO       IS 0>        I»        M 4* 
ARRIVAL   ANGLE IOEGREESI 

«S   SO       IS 0*        19 SO   49 
ARRIVAL  ANGLE  IOEGREESI 

Fig. 1    d e f 

a b c 
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TABLE 2. 

Legend for Fig. 2 (Doppler Proximity) 

Figs. a      b      c      d      e      f 

Antenna Array; U = uniform    U      U      U      U      U      U 

Number of Antennas 6      b      b      b      b      b 

Antenna Aperture _ 
(Wavelengths) 

<3     <3      <3     <3     <5 

Doppler Lines (No.) 24,59   24,59   24,59   44,59   44,59   44,59 

10      100     300     10      100     300 
Noise Level as % of 

Signal on Line 59 

Doppler Smoothing, No. of     _      _ 
Points 

Spatial Angle of Sources 
from Boresight. 

0o,-30o 0o,-50  0o,-30o  0o,-30  0o,-30  üo,-30 
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1    JO        15 0*        IS        W    41 

ARRIVAL   ANGLE   (DEGREES) 

s» 

M* 4»   10       19 0*        19        Ml   4S 
ARRIVAL  ANGLE (DEGREES) 

'"t 
1      SO        1! O- I" 50    4 

ARRIVAL  ANOLE (OEGREESI 

It   M    "ii V        I»       M 
ARRIVAL   ANGLE (DEGREESI 

M tO' *»•     <•  io    i»     "J- ^i     » «•       to- 
ARRIVAL   ANGLE (0EGREES1 

4«    M       It 0*        It        10   4> 
i.   > IVAl   ANGLE (DEGREES) 

Fig.   2    a b c 
d e f 
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TABLt 3. 

Legend for Fig, 3 (Doppier Proximity) 

Figs. 

Antenna Array; U = uniform 

Number of Antennas 

Antenna Aperture 
(Wavelengths) 

Doppler Lines (No.) 

Noise Level as % of 
Signal on Line 59 

Doppler Smoothing, No. of    .r      .-     .r      jr      ic     te 
Points 

u u U u u U 

6 6 6 6 6 Ü 

<3 <3 <3 <3 <3 <5 

24,59 24,59 24,59 44,59 44,59 44,59 

10 100 300 10 100 300 

Spatial Angle of Sources 
from Boresight. 

0o,-30o öo,-30o Co,-30o  0o,-30o 0o,-30o 0o,-30< 
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TABLE 4. 

Legend for Fig.  4  (Angular Proximity,   Incoherent Sources) 

Figs. 

Antenna Array; 
U = uniform y u u u u u 

Number of Antennas 6 6 6 6 • 6 

Antenna Aperture 
(Wavelengths) <3 <3 <3 <3 <3 <3 

Doppler Lines (No.) 24,59 24,59 24,59 24,59 24,59 24,59 

Noise Level as i of 
Signal on Line 59 

10 100 300 10 100 300 

Doppler Smoothing, No. 
of Points 15 15 15 15 15 15 

Spatial Angle of Sources    p    #•    „•    JQ«    Q'.^O
0
    20°,-30°    20°,-30°    20°,-30' 

trom Boresight. ...» 
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TABLE 5. 

Legend for Fig. 5 (Angular Proximity, Incoherent Sources) 

Figs. 

Antenna Array; 
U = uniform 

Wumber of Antennas 

Antenna Aperture 
('Vavelengths) 

Doppler Lines (No.) 

Noise Level as % of 
Signal on Line 59 

Doppler Smoothing, No.      .      .-      .-      15      15 
of Points 

u U U u U U 

6 6 6 6 6 6 

<3 <3 <3 <3 <3 <3 

44,59 44,59 '44,59 44,59 44,59 44,59 

10 100 300 10 100 300 

15 

Spatial  Angle of Sources      p«    JQ«    O
0
.-30

0
    0o,-30o    20°,-30°    20°,-30°    20°,-30' 

from Boresight. ...» . 

40 



n Reproduced from 
best available copy 

3     f*   * 
u «4    ——^-^ 

4S    M       IS 0*        IS       M 4( 
ARHIV41   AN«t.E (DEOREtSI 

■.•**■.,.!■ - 

— 

to*        4*    M       I* 0*        I»        M  4> 
»RRIV»L   «NGLE  (DEGREES) 

i- r" 

at- 

w 
Z 

■eg». iSBpfe^J -J :i~:;?iS=iS™i«=isr 

z ■ 

■ 

MBHB ;iS: *f.ai«iiJ 

— — ■——J -J I 1 o 
o 

——> .—  ... j 

• *           1 1 '       ■    •         i 

t 
•t- 
M*        49    50       I« 0*        <»        SO   49 

ARRIVAL ANCLE (DEGREES! 

....__ 

»0-        49    10       19 0*       19        10  49 
ARRIVAL   ANSLE (DEGREES! 

Fig.  5     d e f 

a b c 

41 



TABLE 6. 

Legend for Fig.  6  (Antenna Configurations) 

Figs. 

Antenna Array; U = uniform, 
MR = minimum redundancy 

Number of Antennas 

Antenna Aperture 
(Wavelengths) 

u U u MR MR MR 

6 6 6 b 6 6 

3 <3 <3 >20 >20 >20 

Doppler Lines (No.) 24,59   24,59   24.59   24,59   24,59   24,59 

10      100     300     10      100     300 
Noi.^e Level as % of 

signal on Line 59 

Doppler Smoothing, No. of    1C      . ^      .,.     ,- 
Points lb 15     lb U 15      15 

Spatial Angle of Sources 
from Boresight. 

0o,-30o 0o,-30o 0o,-30o 0o,-30o 0o,-30o  0o,-30< 
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TABLE 7. 

Legend for Fig. 7 (Antenna Configurations) 

Figs. 

Antenna Array; U = uniform, 
MR ■ minimum redundancy 

Number of Antennas 

Antenna Aperture 
(Wavelengths) 

Doppler Lines (No.) 44,59   44,59   44,59   44,59   44,59   44,59 

u U u MR MR MR 

6 6 6 6 6 6 

<3 <3 <3 >20 >20 >20 

Noise Level as % of 
Signal on Line 59 

10      100     300     10      100     300 

Doppler Smoothing, No. of    ._     ._      .,.      ,,.     .r      1S 
Teints 

Spatial Angle of Sources    0» 30o Q"    50o    o0,-300 0o,-30o 0o,-30o 0o,-30< 

from Boresight. ' 
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TABLE 8. 

Legend for Fi-j. 8 (Cohertn*; Sources) 

Figs. 

Ant snna Array; U = uniform, 
MR ■ minimum redundancy 

Number of Antennas 

Antenna Aperture 
(Wavelengths) 

Doppler Lines (No.) 

Noise Level as % of 
Signal on Line 59 

Spatial Angle of Sources 
from Boresight. 

a b c d e f 

U u U MR MR MR 

6 6 6 6 6 6 

<3 <3 <3 >20 >20 >20 

59 59 5P 59 59 59 

10 100 300 10 100 300 

0V300    0o,-30o    0o,-30o    0V300    0o,-30o    0o,-30< 
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TABLE 9. 

Legend for Fig.  9 (Antenna Configuration) 

Figs. 

Antenna Array; U ■ uniform 
MR - minimum redundancy 

Number of Antennas 

Antenna Aperture 
(Wavelengths) 

u u U MR MR MR 

12 12 12 11 11 11 

<3 <3 <3 >20 >20 >20 

Doppler Lines (No.) 44,59   44,59   44,59   44,59   44,59   44,59 

10      100     300     10      100     300 
Noise Level as % of 

Signal on Line 59 

Spatial Angle of Sources 
from Boresight. 

0o,-30o 0o,-30o 0o,-30o 0o,-30o 0o,-30o 0o,-30< 
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TABLE  10. 

Legend for Fig.   10  (Coherent Sources) 

Figs. 

Antenna Array; U = uniform 
MR = minimum redundancy 

Number of Antennas 

Antenna Aperture 
(Wavelengths) 

Doppler Lines (No.) 

Noise Level as % of 
Signal on Line 59 

Spatial Angle of Sources 
from Boresight. 

u u u MR MR MR 

12 12 12 11 11 11 

<3 <3 <3 >20 >J0 >20 

59 59 59 59 59 59 

10 100 300 10 100 300 

0o#-30
o 0o,-30o 0o,-30o 0o,-30o 0o,-30o 0o,-30 
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TABLE 11. 

For Data Sample: Flight 4-196, 15 July 1974, UT 2100 

See: DAASM Map, p. 98 - ref. report* 

Coherence Map, p. 99 - ref. report* 

Antenna Array - Minimum Redundancy, 6 Antennas 

Antenna Aperture -- 720 Meters 

Doppler Smoothing, No. of Points -- 15 

Freq 1 (MHz) — 8.22  Figs, a, b, c 

Freq 2 (MHz) — 6.62  Figs, d, e, f 

Range (KM) — 960 

Azimuth (deg) — 349T 

Center Freq (Hz) -- +6 

Power Spectra: Figures a 5 d 

Coherence Spectra:      Figures b 6 e 

DAASM Maps, F-K Spectra:  Figures c fi f 

Sales, G.S., et al (1975) DAASM Project - High Latitude Aircraft HF 
Propagation Experiment, AFCRL-TR-75-02IÖ0, Environmental bes. Papers, No. 516 
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TABLE 12 

Digicoder Integers ♦♦ Coherence Values 

0 Coh < 0.3095 

1 0.3095 < Coh < 0.5649 

2 0.5649 < Coh < 0.7443 

3 0.7443 < Coh < 0.8565 

4 0.8565 < Coh < 0.9217 

5 0.9217 < Coh <  0.9579 

6 0.9579 < Coh <  0.9776 

7 0.9776 < Coh < 0.9881 

8 0.9881 < Coh < 0.9937 

9 0.9937 < Coh < 0.9967 

10 0.9967 < Coh < 0.9982 

11 0.9982 < Coh < 0.9991 

12 0.9991  < Coh < 0.9995 

13 0.9995  < Coh < 0.9997 

14 0.9997 < Coh < 0.9999 

15 0.9999 < Coh 
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