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ABSTRACT 

The  Hearsay   II  speech-understanding system  (HSII) (Lesser, et   al.,   1974; 

Fennell,  1975; Erman and Lesser,  1975) is an implementation of  a knowledge-based 

multiprocessing   Al   problem-solving   organization.    HSII   is   intended   to   represent   a 

problem-solving organization which is applu able for implementation in a multiprocessing 

environment,   and   is,   in   particular,   currently   being   implemented   on   the   Cmmp 

multiprocessor system (Bell, et ai., 1971) at Carnegie-Mellon University.   The object of 

this   paper   is   to   explore   several   of   the   ramifications   of   such   a   problem-solving 

orgiiniz?tion  by  examining  the   mrxhamsms   and policies   underlying   KSH   which   are 

necessary for supporting its organization as a multiprocessing problem-solving system. 

First, an abstract description of a class of problem-solving systems is given using the 

Production System model of Newell (1973).   Then, the HSII problem-solving organization 

is described in terms of thir model.   The various decisions made during the course ot 

design   necessitated   the   introduction   of   various   multiprocessing   mechanisms   (e.g., 

mechanisms for maintaining data localizatior and data integrity), and these mechanisms 

are discussed.   Finally, a simulation -♦■jjy is presented which details  the effects of 

actually   implementing   such  a   problem-solving  organization   for   use   in   a   particular 

application area, thct of speech understanding. 

This research was supported in part by the Defense Advanced Research Projects 
Agency of the Office of the Secretary of Defense (Contract F44620-73-C-G074) and 
monitored by the Air Force Office of Scientific Research 
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INTRODUCTION 

Many AI problem-solving tasks require large amounts of processing power in 

order to achieve solution in any given computer implementation of a problem-solving 

strategy.   The amount of processing power required is directly related to the si?e of 

the search space which is examined during the course of problem solution.   Exhaistive 

■ earch of the state space associated with almost any problem of interest is preceded 

cue to the sheer size of the state space.1   In most problem-solving attempts, heuristics 

a e employed which prune the search space to a more manageable size.    However, 

searching even the reduced state space often requires large amounts of processing 

power.   The demand for sufficient computing power becomes critical in tasks requiring 

real-time solution, as if the case in the speech-understanding task with which this paper 

is primarily concerned.   For example. | speech-understanding system capable of reliably 

understanding connected speech involving a large vocabulary and spoken by multiple 

speakers is likely to require from 10 to 100 million instructions per second of computing 

power, if the recognition i- to performed in real time.2 Recent trends  in technology 

suggest that this computing power can be economically obtained through  a closely- 

coupled network of asynchronous "simple" processors (involving perhaps 10 to 100 of 

these processors). (Bell. * <U., 1973, and Heart, * ol, 1973).   The major problem (from 

the   problem-solving   point  o'  view)  with  this  network   multiprocessor   approach  for 

generating computing power  is  in devising the various  problem-solving  algorithms  in 

such a way as to exhibit a structure appropriate for exploiting the parallelism available 

in  the multiprocessor  network, for  it is only by taking advantage of  this  processing 

parallelism that the desired effective computing power will be achieved. 

The Hearsay II speech-understanding system (HSII) (Lesser, et aL 1974; 

Fennell, 1975; and Erman 2-d Lesser, 1975) currently under development at Carnegie- 

Mellon University represents a problem-solving organization that can effectively exploit 

a multiprocessor system. HSII has been designed as an AI system organization suitable 

for   expressing   knowledge-based   problem-solvent   strategies   in   which   appropriately 

As an example, consider the chess-playing task. In an end game situation, there are 
typically 20 legal moves at each ply (half move); so for a search depth of 6 plies, the 
sear-.h space will have 64 million branches. 

The Hearsay I (Reddy, et ai., 1973a,b,c and Erman. 1974) and Dragon (Baker, 1975) 
speech understanding systems require approximately 10 to ?0 mips of computing 
power for real-time recognition when handling small vocat"'    es. 
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orgamzed cubject-matter Knowledge may be represented as fcnW^e »ourc« capable 

of contnbutmg the.r knowledge in a parallel data-d.rected fashion.   A klMwMp ^rct 

may be described as an agent that embod.es the knowledge of a part-cular aspect of a 

problem  domain  and It useful  in solving a problem from that domain  by  performing 

actions based upon its knowledge so as to further the progress of the overall solut.on. 

It is felt that the knowledge source is an appropriate unit for use m the decomposition 

of a Knowledge-intensive task domain.   Knowledge sources, being suitably organiZed 

capsules  of  sub)ect-matter  knowledge, may  be mdependently  formulated  as  vanous 

pieces  of   the   knowledge relevant  to  a task doma.n become crystallized.    The  HSU 

system organ.zat.on allows these various independent and diverse sources of knowledge 

to be specified *d their interactions coordinated so they might cooperate with one 

another (perhaps asynchronously and m parallel) to effect a problem solut.on.   M an 

example of the decomposition of a task domam mto knowledge sources, in the speech 

task doma.n there NfM be distinct knowledge sources to deal with acoustic, phonetic, 

lexical, syntactic, and semantic information.  While the speech task is the f.rst test of the 

multiprocessing problem-solv.ng organization of  HSU. it is  believed that   the  system 

organization   provided  by   HSU   is  capable  of  expressing  other   knowledge-based   AI 

problem solving strategies, as might be found m vision, robotics, chess, natural language 

understanding,  and  protocol  analysis.    In fact, proposals  are  under   way   which  will 

further   test   the   applicab lity of  HSH by  implementing  a system  for   the   analysis  of 

natural scenes usmg the HSI! problem-solv.ng organization (Ohlander. 1975). 

The rest of this paper  will explore several of the ramifications of  such  a 

problem so'vmg organization by examining the mechamsms and polices underlying HS1I 

which  are  necessary  for  supporting its orgamzat.on  as  a multiprocessing  problem- 

solving system.   First, an abstract description of a class of problem-solving systems is 

given Ming the Production System model of Newell (1973).   Then, the  HS11 problem- 

solving organization ,s desenbed m terms of this model.   The various decisions made 

durmg  the  course of design necessitated the  introduction of various  multiprocessing 

mechanisns (e.g., mechanisms for maintaining data localization and data mteg ity), and 

these mechanisms are discussed    Finally, a simulation study is presented whicn details 

the   effects   of   actually   implementing   such   a   problem-solving   organization   m    a 

multiprocessor environment. ' 
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THE MODEL 

An Abstract Model for Problem Solving 

In  the  abstract, the  problem-solving organization underlying  HSII  may  be 

modeled in terms of a "production system." (Newell, 1973),   A production system is a 

scheme for specifying an information processing system in which the control structure 

of the system is defined by operations on a set of productions of the form 'P -. A', 

which operate from and on a collection of data structures.   'P1 represents  a logical 

antecedent, called a precondition, which may or may not be satisfied by the information 

encoded within the dynamically current set of data structures.   If 'P' is found to be 

satisfied by some data r.fructure. then the associated action 'A1 may be executed, which 

presumably will have some alt -ing effect upon the data base such that some other (or 

the MM») precondition becomes satisfied.   This paradigm for sequencing of the actions 

can be  thought of as a data-directed control structure, since the satisfaction of the 

precondition is dependent upon the dynamic state of the data structure.   Productions 

are executed as long as their antecedent preconditions are satisfied, and the process 

halts either when no precondition is found to be satisfied or when an action executes a 

stop operation (thereby signalling problem solution or failure, in the case of problem- 
solving systems). 

The HSII Problem-Solving Organization:   A Production System Approach 

The HSII system organization, which can be characterized as a "parallel" 

production system, has a centralized data base which represents the dynamic problem 

solution state. This data base, which is known as the blackboard, is a multidimensional 

data structure which is readable and writable by any precondition or knowledge-source 

process (where a Knowledge-source process is the embodiment of a production 

action). Preconditions are procedurally oriented and may specify arbitrarily complex 

tests to be performed on the data structure in order to decide precondition satisfaction. 

As an example, the dimensions of the HSII speech-understanding system data base 
are informational level (e.g acoustic level, phonetic level, and word level), utterance 
time (speech time measur d from the beginning of the input utterance), and data 
alternatives (where multiple hypotheses are permitted to exist simultaneouslv at the 
same level and utterance time). For additional details, see Appendix A. 

! 
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Preconditions are themselves data-directed m that they are tested for satisfaction 

whenever relevant changes occur in the data base;1 and simultaneous precondition 

satisfaction is permitted. Testing for precondition satisfaction is not presumed to be an 

instantaneous or even an indivisible operation, and several such precondition tests may 

proceed concurrently. 

The Knowledge-source processes representing the production actions are also 

procedurally oriented and may specify arbitrarily complex sequences of operations to 

be performed upon the data structure. The overall effect of any given knowledge- 

source process is usually either to hypothesize new data which is to be added to the 

data base or to verify (and perhaps modify) data oreviously placed in the data base. 

This follows the general hypothesue-and-test problem-solving paradigm wherein 

hypotheses representing partial problem solutions are generated and then tested for 

validity; this cycle continues until the verification phase certifies the completion of 

processing (and either the problem is solved or failure is indicated). The execution of a 

Knowledge-source process is usually temporally disjoint from the satisfaction of its 

precondition; the execution of any given Knowledge-source process is not presumed to 

be indivisible; and the concurrent execution of multiple Knowledge-source processes is 

permitted. In addition, a precondition process may invoKe multiple instantiations of a 

Knowledge source to worK on the different parts of the blacKboard which independently 

satisfy the precondition's pattern. Thus, the independent data-directed nature of 

precondition evaluation and Knowledge-source execution can potentially generate a 

significant amount of parallel activity through the concurrent execution of different 

preconditions, different Knowledge sources, and multiple instantiations of a single 

Knowledge source. 

1 In effect, preconditions themselves have preconditions, call them "pre-preconditions." 
In HSII, Knowledge-source preconditions (which correspond to action preconditions in 
the production system model) may be arbitrarily complex. In order to avoid executing 
these precondition tests unnecessarily often, they in turn have pre-preccnditions 
which are essentially monitors on relevant primitive data base events (e.g., monitoring 
for a change to a given field of a given node in the data ba^e, or a given fiele of any 
node in the data bar.e). Whenever any of these primitive events occurs, those 
preconditions monitoring such events are awaKened and allowed to test for full 
precondition satisfaction. These data events are used by the precondition process as 
pointers to the specific parts of the data base which may now satisfy the pattern the 
precondition is monitoring for. During the period between when the precondition 
process has been first awakened and the time it is executed, the monitoring for 
relevant data base events continues. Thus, a precondition process, when finally 
executed, may checK more than one part of the data base tor satisfaction. 

-- ■ 
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The basic structure ar»d components of the HSII organization may be depicted 

as shown in the message transaction diagram of Figure 1.   The diagram indicates the 

paths  of   active  information  flow between the various components  of  the  problem- 

solving system M solid arrows; paths indicating control activity are shown as broken 

arrows.   The major components of the diagram include a passive global data structure 

(the blackboard) which contains the current state of the problem solution.  Access to the 

blackboard  is   conceptually  centralized  in  the blackboard  handier   module,   1   whose 

primary function is to accept and honor requests from the active processing elements to 

read and write parts of the blackboard.   The active proceso.ng elements which pose 

these data access requests consist of knowUdae-soarce process«: and their associated 

precondtHons.    Preconditions   are   activated   by   a  blackboard  momtonng   mechanism 

wtveh monitors the various write-actions of the blackboard handler; whenever an event 

occurs which is of interest to a particular precondition process, that precondition is 

ac.ivated.   If upon further examination of the blackboard, the precondition finds itself 

"fatisfied," the precondition may then request a process instantiation of its associated 

knowledge source to be established, passing the details of how the precondit.on was 

satisfied as parameters to this instantiation of the knowledge .ource.   Once instantiated, 

the knowledge-source process can respond to the blackboard data condition which was 

detected by its precondition, possibly requesting further modifications be made to the 

blackboard, perhaps thereby triggering further preconditions to respond to the latest 

modifications.   This particular characterization of the HSII organization, while certainly 

overly simplif ed, shows the data-driven nature of the knowledge source activations and 
interactions 

The following sections of this paper will attempt to refine this diagram of the 

HSII orgamzation by pointing out the difficulties that arise from this oversimplified 

representation of the organization and by supplementing the various components of this 

simple dMgram to resolve these problems and result in a more complete organization for 

AI problem-solving in multiprocessing environments. A more complete message 

transaction diagram for HSII will be presented in a subsequent section. 

The blackboard handler module could be implemented either as a procedure which is 
called as a subroutine from precondition and knowledge source processes, or as a 
process which contains a queue of requests for blackboard access and modification 
sent by precondition and knowledge source processes. In the implementation 
discussed in this paper, (he blackboard handler module is implemented as a 
subroutine. 

ft         - ■-■^~- - 
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HEARSAY II MULTIPRXESS1NG MECHANISMS 

Given the decision that multiple preconditions may be simultaneously satisfied 

and that multiple knowledge-source processes may execute concurrently, various 

mechanisms must be provided to accommodate such a multiprocessing environment. 

Mechanisms must be provided to support the individual localized executions of the 

various active and ready processes and to keep the processes from interfering with one 

another, either directly or indirectly. On the other hand, mechanisms must also be 

provided so that the various active processes may communicate with one another so as 

to achieve the desired process cooperation. Since the various constituent knowledge 

sources are assumed to be independently developed and are not to presume the explicit 

existence of other knowledge sources, communication among these knowledge sources 

must necessarily be indirect. The desire for a modular knowledge source structure 

arises from the fact that usually many different people are involved in the 

implementation of the set of knowledge sources, and, for purposes of experimentation 

and knowledge source performance analysis, the system should be able to be easily 

reconfigured with alternative subsets of knowledge sources. This communication takes 

two primary forms: data base monitoring for collecting pertinent data event information 

for future use {tocal contexts and precondition activation), -md data base monitoring for 

the occurrence of data events which violate prior data assumptions {tags and messages). 

The following paragraphs will discuss these forms of data base monitoring and their 

relationship to the data access synchronization mechanisms required in a multiprocess 

system organization. 

t 

Local Contexts 

interprocess communication (and interference) among knowledge sources and 

their associated preconditions occurs mainly via the global data base, as a result of the 

design decisions involved in trying to maintain process independence. It is therefore 

not surprising that the mechanisms necessary to bring about the desired process 

cooperation and independence are based on global data base considerations. The glooal 

data base (the blackboard) is intended to contain only dynamically current information. 

Since preconditions (being data-directed) are to be tested for satisfaction upon the 

occurrence of relevant data base changes (which are historical rfata events), and since 

neither precondition testing nor action execution (nor the sequential combination of the 

  -    I 
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,wo) ,5 assumed to be an mdiv.s.ble operate, located data bases must be prov,ded 

.or   each  process   unit  (precondit.on  or  action)  which  needs  to  remember   relevant 

H.stor.cal data events.   These localized databases, called local context, m HSU. wh.ch 

record the changeo to the blackboard s.nce the precond.t.on process was last executed 

or   the   KnowledSe   source   process   was   created   provide   personalized   operat.ng 

environments for  the various precond.t.on and Knowledge-source processes.    A local 

context preserves only those data events^ and state changes relevant to .ts owner. 

The creat.on time of the local context (i.e.. the time from wh,ch it begins collechng data 

events) ,s al.o dependent upon the context owner.   Any given local context .s bu It up 

incrementally:   when a mod^cation occurs to the global data base, the resultmg data 

event is d.stributed to the vanous local contexts -nterested m such events.   The vanous 

primitive data modification routines (or node creation routines) are respons.ble for the 

distribution   of   the   data  events  which  result   from  the   modification,  just   as   these 

rr.odif.cafon  routmes   are   also  respons.ble  for   send.ng  wam.ng  messages   to  those 

processes which want to be not.f.ed when specihc characteristics of a part.cular node 

are altered.2   ThuS| the vari0Us local contexts retain a h.story of relevant data events. 

while the global data base contains only the most current information. 

Data Integrity 

Since precondition and Knowledge-source processes are not guaranteed to be 

executed un.nterruptedly. these processes often need to assure the integrity of vanous 

assumphons they  are maK.ng about the contents of the data base; for should these 

assumphons become violated due to the act.ons of an intervening process, the further 

computat.on of the assuming process may have to be altered (or terminated).   One way 

to   approach   the   problem   of   data   integrity   is   to  guarantee   the   validity   of   data 

mumptkm. by disallow^ mtervening processes the ability to modify (or perhaps even 

,o  examme) critical  data.    In order  to guarantee  the  integrity of  data through  the 

mechamsm of exclus.ve access, the HSU system provides two forms of locKmg pr.rmt.ves. 

We-   and re^on-iock^.   Node-locKing guarantees exclusive access to  an explicitly 

1 The informafon which defines • ^ata event consists of the ,^u\j
0' ^.^^ ^'^ 

data node name and a held name w.th.n that node) and the old value of the held (the 

new value being stored in the global data base). 
2 The use of these wam.ng messages as way of preserving dat. mtegr.ty w.ll be 

discussed in the next sect on. 
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spec.f.ed node in the blackboard, whereas reg.on-lockmg guarantees exclusive access to 

a collection of nodes that are speeded impl.c.tly based on a set of node characteristics. 

In the current  implementation of HSII, the regton characteristics are specified  by  a 

particular information level and time period of a node.   If the blackboard is considered 

as   a  two-dimensional  structure  w-th coordinates  of  information-level  and  time,  then 

region-locking permits the locking of an arbitrary rectangular area   in the blackboard. 

Region-locking has the additional property of preventing the creation of any new node 

that would be placed in the blackboard area specified by the region by other than the 

process which had requested the region-lock.   Additional locking flexibility is introduced 

by allowing processes to request read-only access to data fields; this reduces possible 

contention by permitting multiple readers of a given field to coexist, while excluding any 

writers of that field until all readers are finished,   The system also provides a "super 

lock," which allows an arbitrary group of nodes and regions to be locked at the same 

lime.   A predefined linear ordenng strategy for non-preemptive data access allocation 

(Coffman, et aL, 1971) is applied by the "super lock" primitive to the desired node- and 

region-locks so as to avoid the possibility of data base deadlock. 

However, this technique of guaranteeing data integrity through exclusive 

access is only applicable if all the nodes and regions to be accessed and modified are 

known ahead of time. The sequential acquisition of exclusive access to nodes and 

region, without intervening unlocks, can result in the possibility of deadlock. In the HSII 

blackboard, nodes are interconnected to form a directed graph structure; because it is 

possible to establish an arbitrarily complex interconnection structure, it is often very 

difficult for a knowledße-sourc.» process to anticipate the sequence of nodes it will 

desire to access or modify. Thus, the mechanisms of exclusive access cannot always be 

used to guarantee data integrity in a system with a complex data structure and a set of 

unknown processes. Further, even if the knowledge source can anticipate the area in 

the blackboard w.fhm which it will work and thereby request exclusive access to this 

area, the area may be very large, thus leading to a significant decrease in potential 

parallel activity ca^eo by other processes waiting for this locked area to become 

available. 

An alternative approach to guaranteeing data integrity is to provide a means 

by which a process (precondition or knowledge source) may place data assumptions 

about the particular state of a node or group of nodes in the data base (the action of 

putting these assumptions in the blackboard is called ta8Bcna).   If these assumptions art 

10 
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invalidated by a subsequent blackboard modification operation of another process, then 

a message indicating this violation is sent to the process making the assumption. In the 

meantime, the assuming process can proceed without obstructing other processes, until 

such time as it intends to modify the data base (since data base modification is the only 

way one process can affect the execution of another). The process must then acquire 

exclusive access to the parts of the data base involved in its prior assumptions (which 

parts will have been previously tagged in the data base to define a cräied. data set)1 

and check to see whether the assumptions have been violated (in which case, messages 

indicating those violations would have been sent to the process). If a violation has 

occurred, the assuming process may wish to take alternative action; otherwise, the 

intended data base modifications may be made as if the process had had exclusive 

access throughout its imputation. This tagging mechanism can also be used to signal 

the knowledge-source process that the initial conditions in the blackboard (i.e., the 

precondition pattern) that caused the precondition to invoke it have been modified; this 

is accomplished by havi.ig the precondition tag these initial conditions on behalf of the 

knowledge-source process prior to the instantiation of the knowledge source. 

In summary, the HSIi organization provides mechanisms to accomplish both of 

these forms of data integrity assurance: the various data base locking mechanisins 

described previously provide several forms of exclusive or read-only data access; and 

the data tagging facility allows data assumptions to be placed in the data base without 

interfering with any process' ability to access or modify that area of the data base (with 

data invalidation warning messages being sent by data base monitors whenever the 

assumptions are violated). 

To provide a basis for the discussion in the subsequent sections of this paper, 

Figure 2, depicting the various components of the HSII organizational structure is 

offered. The diagram is a more dstailed version of the message transaction model 

presented previously. The new components of this diagram are primarily a result of 

addressing multiprocessing considerations. 

As in the earlier, more simplified organizational diagram, the dynamically 

current state of the problem solution is contained in a centralized, shared data base, 

called the blackboard.   The blackboard not only contains data nodes, but it also records 

Actually, the requirement is that no other process be able to write to these parts of 
the data base. 

11 
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data monitonng mformation (fags) and data access synchronization information (locks). 

Access to the blackboard is conceptually cen«'alized in three modules.   As before, the 

blackboard  handler  module  accepts  and honors  read and write  data-access  requests 

from   the   active   processing   elements   (the   knowledge-source   processes    and   their 

precoruiLtion    processes).     A   lock    handler   coordinates   data-access   synchronization 

requests from the knowledge-source processes and preconditions, with \U ability to 

block the progress of the requesting process until the synchronisation recuest may be 

satisfied.    A monaonnS mechanism is responsible for accepting data tagging requests 

from the knowledge source processes and preconditions, and for sending mtssages to 

the   tagging   processes  whenever   a  tagged  data  field  is   modified.    It   is   also   the 

re-ponsibility of the monivonng mechanism to distribute data events to the venous local 

contexts of the knowledge-rource processes and preconditions, as well as to activate 

precondition    processes   whenever   sufficient   data   events   of   interest    to   those 

preconditions have occurred in the blackboard. 

Associated with each active processing element is a local data base, the local 

context, which records data everts that have occurred in the blackboard and are of 

interest to that particular process The local contexts may be read by their associated 

processes in order to find out which data nodes have been modified recently and what 

the previous values of particular data fields were. The local contexts are automatically 

maintained by the blackboard rromtoring mechanism. 

Upon being activated and satisfied, precondition processes may instantiate a 

knowledge source (thereby creating a knowledst-source process), pasting along the 

reasons for this instantiation as parameters to the new know'edge-source process and 

at the same time establishing the appropriate data monitoring connections necessary for 

the new process. The uo<U-direcfd scheduler retains the actual control over allocating 

hardware processing capability to those knowlodge-source processes and precondition 

processes which can best serve to promote the progress of the problem solution. 
1 

1 One way a scheduler might help in reducing (or eliminating) global data base access 
interference is to schedule to run concurrently only processes whose global data 
demands are disjoint. Such a scheduling policy could even be used to supplant an 
explicit locking scheme, since the global data base locking would be effectively 
handled by the scheduler (albeit probably on a fairly gross level). Of course, other 
factors may rule out such an approach to data access synchronization, such as an 
inability to make maximal use of the available processing resources if only data- 
disjoint  processes  are permitted to run concurrently, or the inability  to know in 

13 
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EXPERIMENTS WITH AN IMPLEMENTATION 

The   precedmg   sect.ons   of   th,S   paper   have   presented   various   of   the 
mechanl5ms y „ (mplement(ng a kri0wledBe.based prob(em.so|v.ng ^ ^ 

HSH -n a .numprocess.ng env.ronmenf. The present sect.ons w.ll d.scuss the vanous 

exper^ents IM have b-. perform .n an atte.pt ,o character.ze the .umprocessing 

performance of the HSH o-an.zat.on In the speech-understand.ng task 

HSII Multiprocess Performance Analysis throußh Simulation 

In order to gam .ns.ght -nto the vanous eff.cency .ssues mvolving 

"ult.process problem-solv.ng organ.zations. a s.mulat.on model was mcorporated within 

the un.proce. sor ver.on of the HSII speech-understand.ng system. The HSII problem- 

solv.ng organ.zat.on was not .tself modeled and s.mulated. but rather the actual HSII 

-plementafon  (wh.ch  ,s  a mult.process.ng organ.zation even  when executing  on   a 

un,prOCesSor,  was  mod.f.ed to permit  the station o dware  multiprocessor 
env.ronment. 

There  were  four  pr.mary objectives  of  the s.mulation experiments:    a) to 

mm** the software overheads .nvo.ved .n the des.gn and execut.on of a compl.cated. 

data-d.rected mu.t.proces.(or) control structure, b) to determ.ne whether there rea.,y 

ex.sts a s.gn.f.cant amount of parallel act.vly .n the speech-understand.ng task, c) ,o 

understand  how   the  vanous  forms  of  .nterprocess communicat.on  and interference 

especally that from data access synchron.zat.on .n the b.acKboard. affect the .-..ount of' 

ef ecnve para.lel.s « reaSzed. a.d d, to ga.n .ns.ght .nto the des.gn of an approbate 

-hedu ^   algonth.   for   a   mult.process   problem-solv.ng   structure.    Certa.nly.   any 

results presented w.l, reflect the deta.le^ eff.cienc.es and .neff.c.enc.es of the part.cu.ar 

system   .mplementat-on   be.ng   measured,  but   hopefully   the   organ.zation   of   HSH   is 
su   cently   Ben     ,   ,hat   the   vari0us   ^^^^   wi|| ^   ^^^ 

appl.cab.l.ty for those cons.dering similar multiprocess control structures. 

By  way of  summary, the primär, characterises  of  the  HSII organization 

H 
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include: a) multiple, diverse, independent and asynchronously executing knowledge 

sources, b) cooperating (in terms of control) via a generalized form of the hypothesize- 

and-test paradigm involving the data-directed invocation of ki owledge-source 

processes, ?nd c) con municating (in terms of data) via a shared blackbojrd-liKe data 

base in which the current data state is held in a homogeneous, multidimensional, 

directed-graph data structure. 

The HSII Speech Understanding System:  The Simulation Configuration 

The configuration of the HSII speech-understanding system, upon which the 

following simulation results were based, consists of eight separate generic knowledge 

sources (each of which may be realized by several active instantiations at any given 

moment during the problem solution), each of which represents some body of knowledge 

relevant to the speech-understanding task. Due to the excessive cost of the simulation 

effort (and due to the limited stages of development of some available knowledge 

sources), only a subset of the available knowledge sources was actually used in the 

simulation experiments. Appendix A (which was extracted from (Lesser, ef al., 1974)) 

contains a more detailed description of the blackboard and the various knowledge 

sources for the more complete HSII speech-understanding system. Tt ■• knowledge 

sources used in the simulation were: the Segment Classifier, the Phone Synthesizer 

(consisting of two knowledge sources), the Phoneme Hypothesizer, the Phone-Phoneme 

Synchronizer (consisting of three knowledge sources), and the Rating PoUcy Module. 

These knowledge sources are activated by half a dozen precondition processes (which 

are permanently instantiated in the system), which are continuously monitoring the 

blackboard data base for events and data patterns relevant to their associated 

knowledge sources. Both knowledge sources and preconditions may freely access the 

centralized blackboard data base, which consists of nine lexicon levels. The particular 

levels used were chosen so as to facilitate the information exchange between the 

various component knowledge sources. 

This set of knowledge sources and preconditions and the associated operating 

system facilities provided by the HSII organization were first implemented to execute on 

r While there are eight conceptual information levels within the HSII speerh- 
understanding system (see Appendix A), the blackboard is abstractly .egmen'ed 
according to lexicons, rather than information levels, since lexicons alle w ; finer 
abstract decomposition of the blackboard 
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«  uniprocessor  DECsystem-lO computer.   The particular  implementation represented 

here was programmed m the Alsol-like language. SAIL (Cwinehart and SprouH, 1971), 

using SAIL'S mult.processmg facilities (Feldman, * ed., 1972) anH making extensive use 

of its LEAP associative data storage facility (Feldman and Rovner, 1969).   Thus, while 

the hardwaro environment of this version of the HSU speectvundersfandmg system is 

thai of a single procesror, the software environment is the multiprocessing structure 

described throughout this paper.   The simulation experiments were then run usinR this 

HSII    conf.guration.    simulating    the    h?rdware    environment    of    a    closel- .oupled 

multiprocessor  whore  procescors can directly communicate w.th each other  through 

shared memory.   The size of the HSII conf.guration used in the s.mulat.ons was about 

180K. 36-b.t  words;  70K of this total  was  the HSII operatmg system plus  the  SAIL 

runtime routines. 73K was precondition and knowledge source code plus variables, and 

the remainder (which varli?d from 20K to /J5K depending on the number of processors 

being   simulated   and  the   number  of  processes  being  instantiated)  represented  the 

blackboard data base plus process activation records and other SAIL working space. 

The  simulations  were carried out  to determine  the efficiencies of  the  various  HSII 

multiprocessing mechanisms discussed previously, as well as to gain some insight into 

any   problems   that   might   arise  in   the   ensuing   implementation   of   a   HSII   speech- 

understanding system for the Carneg.e-Mellon C.mmp multiprocessor.1    The following 

sections w.ll dfccUM the results of the various experiments which have been performed 

using the multiprocessor-simulation version of the HSII speech-understanding system 

Simulation Mechanisms and Simulation Experiments 

The various multiprocessor simulation results were obtained by modifying the 

flow of control through the usual HSII multiprocessing orgamzation to allow simulation 

scheduling points every time a running process could interact in any way with some 

other concurrently executing process. Such points included blackboard data base 

accesses and data base access synchronization points (including attempts to acquire 

data base resources, both at the system and user levels, and any resulting points of 

The implementation of the C.mmp version of the HSII speech-understanding system 
tnus far has been, m fact, essentially a di.ect mapping of the DECsystem-10 
implcmentaf.on, w.th addiliona design being done as necessary to solve the particular 
problems of running ,n the C.mmp environment (such as having to resolve the small 

rSST* r'P!C<? problem' whore,n W g,ven process may have at any one moment only 
a JZK-word window into the centrally located mam memory). 
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process suspen.on due to the un.va.lab.l.ty of the requesteo resource, .s well as .he 

subsequent  po.nts of process waKe-up for retrying the access request),   S.m.lat.on 

KtaduNn. pcnts were aiso .nserted whenever a data .od.f.cat.on waning message 

(tri6eered by .od.fy.ng . tagged data held) was to be sent, as weli as w enever . 

process attempted to recede such a message.  The schedule .echan.sm .tse.f was a so 

mod(f(PJ  to   al,ow   for   the   s.muiated  scheduhng of   mult p.e   processing   un s   wh.le 

.a.ta.n.ng the st.te -nfor.at.on assorted w.h each processor be.ng ^**^ 

as the processor clocK hme of that simulated processor and the state of the part.cul r 

process bemg run on that processor).   The s.mulat.on runs were performed so as to 

Keep the processor docK-hmes of each processor being s.mulated in step w.th one 

another (the s.mulat.on be.ng event-awn, rather than san^ä), thereby aliow.ng for 

the accurate measurement and comparison of concurrent events across processors.   By 

.elects the number of processors to be simulated and choos.ng the usual sc edu„ng 

parameters and precond.t.on and Knowledge-source parameters, a chronolog.cal trace of 

the active of each process and processor could be obtained.  By accumulate stat.s -cs 

during the trace per.od and by perform.ng vanous post-process.ng operat.ons upon th.s 

active trace record, the s.mulat.on results presented m the follow.ng sect.ons were 

obtained. 

Most of the results presented here were achieved by using a single set of 

Know.edge sources (as described above), w.th a s.ngle speech-data .nput utterance 

Keepmg the data base locK.ng structure and schedule algorithm essent.ally f.xed. 

wh-e vary.ng the number of simulated (.dent.cal) processors Several runs were also 

performed to te t the effects .f altering the Knowledge-source set. altering the locKmg 

structure, and altenng the mode of data input (the normal .nput mode be.ng a utter.nce- 

time-ordered introduction of input data which simulates red-t.me speech mput). 

Measures of Multiprocessing Overhead: Primiiive Ooeration Timings 

T.r>,e measurements of various pr.m.t.ve operations were mads using a 10- 

microsecond hardware .nterval timer. Some of the t.med primitive operations (such as 

those involvng simple data base access and mod.f.cation) were not especially sublet to 

the fact that the prcblem-solv.ng orgamzation .nvolved multiple parallel processes, 

whereas others (such as those involv.ng process .nstantiation and process 

synchron.Zat.on) were d.rectly related to the multiprocess aspects of the organ.zat.on 
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(and might even be taken in part as overhead when compared to alternative single- 

process system organizations). The times for the various system operations, as shown 

in Table I, should be read as relative values, comparing the multiprocess-oriented 

operations with the data accessing operations to get a relative feel for the overheads 

involved in supporting and maintaining the multiprocess organization of HSU. Keep in 

mind that such time measurements are highly dependent on the particular 

implementation and can change fairly radically when implemented differently. In fact, a 

primary use of such timings is in determining operating system bottlenecks so that such 

code sections can be rewritten in a more optimal way. As a result, some primitive 

operations reflect execution times which ate a result of extensive optimization attempts, 

while other operations (in particular, the "super lock" operations, lock! and unlock!) 

have not yet been subjected to this optimization 

Table I |ivM timing statistics relating to the costs involved in maintaining the 

shared, centralized blackboard data base.   Two sets of statistics are given, one set 

showing   the  operation   times  without   the  influence  of  data   access   synchronization 

(blackboard locking) and one set with the locking structures in effect.   These two sets 

of   times   give   a   quantitative   feeling  for   the   cost   of   data   access  synchronization 

mechanisms  in this particular  implementation of  HS11.   The  figures given include the 

average runtime cost per operation, the number of calls (in this particular timing run) to 

each operation (thereby showing the relative frequencies of operation usage), and the 

percentage of the overall runtime consumed by each operation.   With respect to the 

individual entries, create.node is a composite operation (involving many field-writes and 

various local context updates) for creating blackboard nodes.   The rtad.node.fceld and 

wnte.noda.ficld operations are used in accessing the individual   fields of a node.   Note 

that included in any given field-read rr -write operation is the cost of perhaps tagging 

(or   untajgmg)   that   particular   field  (or   its   node).    The   various   functions   of   the 

blackboard momfonng mechanism are contiiined within the field-write operations.   Thus, 

also included in the field-write operation is the cost of distributing the data event 

resulting from the write operation to all relevant precondition and knowledge-source 

process local contexts, as well as the cost of se ding tag messages to all processes 

which   may   have   tagged   the   field  being   modifie Ij  these   additional   costs   are   also 

aicounted for  independently in the send.nisssanr. events  and notify.sttt  table entries. 

Field-write   operations   are   also   responsible   for   evaluating   any   pre-preconditions 

associated with the field being modified and activating any precondition whose pre- 
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Blackboard Accessing: 

create.node 
read.node.field 
write.node.field 

Blackboard Associative Retrieval: 

retrieve 
get.time.adjacent 
get.struct.adjacent 
get.nodes.in.rgn 

Process Handling: • 

invoke.ks 
create.ks.prcs 
ks.cleanup 
invoke.pre 
create.pre.prcs 

Local Context Maintenance: 

transfer.tags 
delete.all.tags 
notify.sset 
send.msgs.and.events 
receive.msg 
read.cset.or.sset 

Data Access Synchronization: 

lock!(overhead) 
unlock!(overhead) 
lock.node 
exam.node 
lock.rgn 
write.access.chk 
read.access.chk 

7. total runtime mean time (ms) number of calls 

w/o w/ w/o w/ w/o w/ 

lock lock lock lock lock lock 

6.96 4.15 35.81 50.77 287 287 

5.06 15.68 0.31 2.03 23577 25279 

14.13 • 7.75 13.96 18.44 1493 1476 

etneval: 

2.72 4.98 25.07 109.45 160 160 

9.31 15.33 23.44 92.00 586 586 

3.99 6.31 43.35 163.20 136 136 

2.05 0.87 2.98 3.00 1015 1015 

5.29 2.30 22.64 23.64 345 

0.75 0.31 3.21 3.22 345 

8.20 5.24 35.06 53.94 345 

0.10 1.04 10.44 10.59 14 

0.42 0.40 ' 8.53 19.57 72 

7.78 
3.22 
2.32 
9.34 
0.11 
0.41 

14.45 

57.47 
23.78 

2.94 
2.40 
1.77 
0.98 
1.60 

342 
342 
342 

14 
72' 

7.12 2.99 9.12 9.17 1152 1149 

0.52 0.22 2.01 2.03 383 380 

6.52 3.01 2.63 2.92 3665 3626 

4.04 2.12 3.68 4.68 1021 1594 

0.36 0.15 1.00 1.01 531 530 

0.11 0.05 0.84 0.84 •      1S2 192 

476 
476 

2770 
13675 

227 
1470 

31761 

l 

Table 1.  Primitive Operation Times 
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precondition is satisfied. Included in the cost of reading a data field (e.g., 

rccul.node.fteld) is the cost of verifying the access right of the calling process to the 

node being read (which could involve a temporary-locking operat.on.1 the cost of which 

is also g.ven independently m the U>ck,node table entry); this access-right checkmg cost 

is also separately accounted for by the reaxi.acce5s.chk operation. It should be noted 

that because mott of the mechanisms required to implement a data-directed control 

structure are embedded in the blackboard writ« operations, the t.mo to execute a write 

operat.on is significantly more expensive than a read operat.on. However, the Ktlltl 

cost in terms of total run time of implementing a data-directed control structure is 

comparatively small in the HSII speech-understanding system, because the frequency »I 

read operations is much higher than that of wnte operations. If this relative frequency 

for read and wnte operations holds for other task domains (e.g., vision, robotics), then a 

data-directed contro, structure (which is a very general and modular type of sequencing 

paradigm) seems to be a very reasonable framework wtthm which to implement such 

tasks. 

Additional olackboard operat.on costs are described in the Associative 

Retrieval section of Table 1. Associative retrieval is based on specifying partial node 

descriptions (called matcliing prototypes) which serve as a means of retrieving the set 

of blackboard nodes fitting that partial description. Retneue represents the various 

retrieval operations possible using these matching prototypes. Retrieval from the 

blackboard may also be done by requesting the nodes which are time-adjacent 

(according to the utterance-time dimension of HM spoech-jnderstanding blackboard) or 

structurally adjacent (according to the blackboard graph structure) to a given node (or 

set of nodes); get.time.ndjatent and set.stract.adjajcent perform these operations. 

Furthermore, retrieval may be done by requesting the set of nodes contained within a 

certain region of the blackboard (by Bet.riodes.cn.rBn). 

Tfble 1 also relates the costs of process handling within HSII. Process 

invocation and process creator are separated (the former being a request from a 

precondition or knowledge-source process to the scheduler to perform the latter), and 

the costs are accounted separately, as in crwoke.ks and create.ks.prcs.   Ks.cleanup is the 

r 
If a process has not prev.ously locked the node to which it desires access and the 
process does not have any other node locked, then the system will temporarily lock 
the node for the durat.on of the smgle read or wnte operation, w.thout the process 
having explicitly to request access to the node. 
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cost of terminating a knowledge-source process; preconditions never get terminated. 

The cost of initializing and terminating a knowledge-source process (i.e., invoke.kr and 

Ksxleanup) is due to the overheads involved m maintaining local ccr.texts, locking 

structures, and data base monitoring (tagging), all uf which are necessitated by the 

multiprocess nature of the HSII organ.zation. However, in a relative sense, this is not 

expensive, since the total overhead associated with process handling amounts to only 

about 97. of the overall execution time. 

Additionally, local context maintenance costs are given in Table 1, since they 

are also a cost of having asynchronous parallel processes. While individual tag creation 

and deletion is handled by the primitive field-read and -write operations, tags may be 

transferred from a precor.dition to the knowledge source it has invoked via transfer.tags 

and destroyed at termination of a process via delete.alUaqs. As noted above, notify.sset 

and send.msg.and.evenxs are sub-operations of the field-write operations and represent 

the cost of distributing data event notificat.ons to all relevant local contexts. 

Recetve.msB is the operation used by precondition or knowlt 'ge-source processes to 

receive a tagging message (or perhaps wait for o ic, if one does not yet exist); and 

reatl.cset.or.fttt is the operation for retrieving the information from a local context. 

Finally, Table 1 gives the costs associated with the data access 

synchronization mechanism. Lock! and unlock! represent the overhead costs of lockin- 

and unlocking ; group of nodes specified by the process requesting access rights. 

These two operations are anong the most complex routines in thrf HSII operating 

system, the complexity arising from having to coordinate the allocation of data base 

resources by two independent access allocation schemes (node-locking and region- 

locking). This coordination is necessary in order to avoid any possibility of data base 

deadlock by ma ntaining a homogeneous linear ordering among all data resources fnodes 

and regions). The costs of lock! and unlock! do not include the time spen* in performing 

the actual primitive locking operations. The primitive lock costs are given by lock.node 

(lock a node for exclusive access), exanunode dork a node for read-only access), and 

U>ck.rBn (lock a region for exclusive access). The access-checking operations 

(.wn.te.access.chk and read.access.chk) are ! öed by the blackboard accessing routines 

discussed above. 

These  timing  statistics can  be   used to  determine   the   amount   of  system 

overhead incurred   n running precondition and knowledge-source processes under the 

1 
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HSU operating system. The following summary statistics are offered, given as 

percen'aßes of the total execution time, the percentages being calculated so as to avoid 

overlapping between categories (as, for example, factoring blackboard reading costs out 

of blackboard access synchronization): 

Blackboard reading 
Blackboard writing 
Associative retrieval 
Internal computations of processes 

Local context maintenance 
Blackboard access synchronization 
Process handling 

157 

n. 
277. 

107. 
177. 

97 

Another way of viewing these figures is that approximately half of the execution time 

involves multiprocessor overheads (i.e., local context maintenance, blackboard access 

synchronization, and process handing). Based on the assumption that this multiprocess 

overhead is independent of the parallelism factor achieved,1 then a parallelism factor of 

2 or greater is required in order to recover the multiprocess overhead. 

Effective Parallelism ar.d Processor Utilization 

The problem-solving organization underlying HSII was designed to take 

maximum advantage of any separability of the processing or data components available 

within that organization. Knowledge sources were intended to be largely independent 

and capable of asynchronous execution in the form of knowledge-source piocesses. 

Overall system control was to be distributed and primarily data-directed, being based on 

events occurring in a globally shared blackboard data base. The intercommunication 

(and interdependence) of the various knowledge-source processes was to be minimized 

by making the blackboard data base the primary means of communication, thereby 

exhibiting an indirection with respect to communication similar to the indirect ds(a- 

directed form of process control. Such a problem-solving organization was believed to 

be particularly amenable to implementation m the hardware environment of a network 

Of  closely-coupled  asynchronous  processors which  share  a common   memory.    Given 

I 

This assumption, based on timing statistics from a series of runs with different 
numbers of processors, seems valid except for the cort of context swapping and 
process suspension, which depends upon the amount of da'a base interference and 
the number of p'Ocessors. 

HMMM 
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first satisfied: th* longer a precondition is delayed, the more data events it is likely to 

accumulate in the meantime, and the mo.-«» knowledge-source processes it is likely to 

instantiate once it does get executed; hence the ^oiked nature of the resultant ready- 

processes plots for configurations of few processors. As parallel processing power 

increases, preconditions can mon often be run as soon as their pre-preconditions are 

initially satisfied, and the spiking phenomenon subsides. 

As an example of how these activity plots have been used in upgrading the 

performance of the implementation, compare Figure 4 to Figure 3c. Figure 4 depicts the 

process activ.ty under the control of a scheduler which did not attempt to perform load 

balancing w.th respect to ready preconditions; and as a result of not increasing the 

relative scheduling priority of preconditions as they received more and more data 

events, the activity spike phenomenon referred to above became predominant, to the 

extent of reducing process activity to a synchronous system while the long-time waiting 

precondition instantiates a great many knowledge-source processes all at once.1 Figure 

3c shows the activity on the same number of processors, but using a somewhat more 

intelligent scheduling algorithm, with a resulting reduction in the observed spiking 

phenomena. This improved scheduling strategy is the one used for all plots presented 
herein. 

In addition to the plots descrtbed above, various other measures were made 

to allow an explicit determination of processor utilization and effective parallelism for 

varying numbers of processors. Referring to Table 2, one can get a feeling for the 

activity generated by employing increasing numbers of processors. All simulations 

represented in Table 2 were run for equivalent amounts of processing effort with 

respect to Ihe results created in the blackboard data base by the knowledge source 

activity. The final clock time of the multiprocessor configuration being simulated is 

given h simulated real-time seconds, and fho accumulated processor idle and lost times 

are also given. Idle time is attributed to a processor when it has no process assigned 

to it and there are no r-.^y processes to be run; tost time is attributed when the 

process on a processor is suspended for any reason and there are no ready processes 

r 
This can bo inferred from Figure 4 by noting that the sample points (vertical tick 
marks) are taken af earh simulation scheduling point, and the lack of samples between 
times 220 and 380 indicates that the process that started running at 220 had no 
concurrently running processes competing with it until time 380, when there were 
suddenly 25 new processes contending for computing resources. 
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number of prcrs 
(all times in sees) 

I 2 4 8 16 32 
(special*) 

KS instantiations 3D5 401 423 421 415 434 

PRF activations 82 126 173 213 200 229 

multiprcr clock time 1076 634 389 350 351 43 

total idle time 9 15 37 380 2608 867 

total lost time 0 5 34 900 1546 0 

avg cxt swaps 0 309 942 368 9 0 

avg prcr utilization 997 987. 957. 547 267 377. 

effective • prcrs 0.99 1.96 3.80 4.32 4.16 11.84 

utilization speed-up 1.00 1.98 3.84 4.36 4.20 11.96 

» The 32-processor column represents an experiment which 
was run under speaal conditions, to be explained below, 
and should not be compared Erectly to the other columns 
of the table. 

Table 2.  Processor Utilization 

which could be swapped in to replace the suspended process. Processor utilization 

(calculated using the fmal clock time and processor idle and lost times) is given in Table 

2; Figure 5 shows the corresponding effective parallelism (speed-up), based on the 

processor utilization factors of Table 2. 

The speed-up for this particular selection of knowledge sources is 

appreciable up to four processors, but drops off substantially as one approaches 

sixteen processors In fact, a rather distressing feature of this effective parallelism plot 

is that the speed-up actually decreases slightly in going from eight processors to a 

sixteen-processor configuration (from a speed-up of 436 over the uniprocessor case, 

down to 4.20) This may be explained by noting that both the eight- and sixteen- 

processor runs had approximately equal final clock times; but in the sixteen-processor 
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case, the number of runnable processes never exceeded sixteen processes, so any 

ready process could always be accommodated immediately. As a result, the number of 

Knowledge-source instantiations and precondition activations fell off a bit from the 

eight-processor case, because the preconditions were more likely to b« fully satisfied 

the first time they wpro activated (since all ready-processes. Knowledge-source 

processes in particuUr, could be executed immediately and complete their intended 

actions sooner, so that when a precondition came to be activated, it would more liKely 

find its full data pattern to be satisfied); thus, preconditions would not often be aborted, 

having to be re-tested upon receiving a subsequent d,ita event. However, running 

'■■wer preconditions resulted in much more idle time for the sixteen-processor 

configuration (the increase in lost time indicated m Table 2 is an artifact of having too 

many processors available, since suspended processes would tend to remain on 

otherwise idle processors rather than being swapped off the processor -- note the 

rather dramatic decrease in context swaps indicated by Table 2 for the sixteen- 

processor case) The result is a lower proportionate utilization of the processor 

configuration, and hence a decrease in the effective parallelism from the eight- 

processor configuration to the sixteen-processor configuration. 

Due to the limited state of development of the total set of Knowledge sources, 

the set of knowledge sources used in the simulation was necessarily limited; so the fact 

that these plots indicate thai not more than about four to eight processors are being 

effectively utilized is not to say that the full HSU speech-understanding system needs 

only eight processors. One might ask that if only 4,16 processors of the sixteen- 

processor configuration are being totally utilized (see Table 2), what is the maximum 

potential effective parallelism, given this set oi knowledge sources? To answer this 

question, an experiment was performed in which effectively infinite processing power 

was provided to this knowledge-source set and all data access interference was 

eliminated (by removing the locking structure overheads and blocking actions); the 

scheduling algorithm was kept unchanged, as was the input data, although the input data 

stream was entered so as to be instantaneously available in its entirety (rather than 

being introduced in a simulated real-time, "left-to-right" manner). The results of this 

experiment are summarised by the 32-processor column of Table 2 (32 processors was 

an effective infinite computing resource in this case, since eight of the processors were 

never used during the simulation). Notice that no lost time was attributed to the run, 

due to the lack of locking interference; and the resultant processor utilization was 372 
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of 32 processors, or 1184 totally ut.lized processors Thus, data base mterference 

caused by particular data base accessing patterns and aj>ociated lockmg structures of 

the knowledge source set used in the experiment significantly affected processor 

utilization; if the use of the locking structures could be accomplished in a more non- 

interfenng manner, the speed-up indicated by the eight- or sixteen-processor 

configurations could be increased substantially. The next section will analyze in detail 

the exact causes for this data base inteference, and propose changes to the knowledge- 

source locking structure so as to reduce potential inteference. 

Tahle   3   presents   some   other   system   configurations   to   show   effective 

processor utilizations under varying conditions.   The first row repeats the statistics of 

the  sixteen-processor   case  of  Table  2;  the second row  is   a  summary  of   the  32- 

processor case of Table 2, as described above.   Three further data points are offered 

to indicate the effects of increasing the size of the knowledge-source set.    The last 

throe rows of Table 3 involve experiments using an expanded knowledge-source set 

consisting of the knowledge sources of all the previous runs plus the Syntactic Word 

Hypothesizei  (see Appendix A) and its precondition.   Using this expanded knowledge- 

source set, simulations wore performed to evaluate the effects of this knowledge-source 

set on a sixteen-processor configuration with the locking structure in effect, presenting 

the   input  data in  the   usual  "lefl-to-nghf manner, as well  as  in the  instantaneous 

manner used in the infinite-processor test.   Comparing the results (in Table 3) to the 

orig.nal «.ixteon-processor run, the "left-to-right" input scheme achieved « processor 

utilization of 337, up 77. from the smaller knowledge-source set case; and by presenting 

ail   input  data simultaneously, the utilization rose to 35Z.    The fifth row of  Table 3 

represents   the   results   of   providing  effectively  infinite  computing   power   (only   25 

processors were ever used during the run) to the expanded knowledge-source set and 

eliminating ail data access interference, in the same manner as for the experiment of the 

second   row.    In   this   "optimal"  situation   for   the   expanded   knowledge-source   set, 

processor utilization was measured at 467., or 14.72 totally utilized processors.   Again, It 

may be noted !l>at a more effective (less interfering) use of the locking structures Chn 

result in substantial increases in processor utilization and effective parallelism. 

The addition of the Syntactic Word Hypdhesizer was able to achieve the 

increases in utilisation noted in Table 3 because it operates on lexicons that are used 

by only one other knowledge source (the Phoneme Hypothesi'«»r) in the basic 

knowledge-source   set;   hence,   the   process   interference   introduced   by   adding   this 
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experiment 
description 

multiprcr total total t util      effective 
clock idle lost • prcrs 

8 KS's, 6 PRE's 351 2608 
16 prcrs, w/ lock 
l-to-r input 

8 KS's, 6PRE's 43 867 
32 prcrs, w/o lock 
instantaneous input 

1546 26^ 

0 377. 

4.16 

11.84 

R KS's, 7 PRE's 148 854 
lb prcrs, w/ lock 
l-to-r input 

9 KS's, 7 PRE's 155 839 
16 prcrs, w/ lock 
instantaneous input 

9 KS"s, 7 PRE's 13 226 
32 prcrs, w/o lock 
instantaneous input 

726 337. 

784 35^ 

5.28 

5.60 

0 46X 14.72 

Table 3.  System Configuration Variations 

knowledge source was minimal. Unfortunately, the development of knowledge sources 

at lexicoi levels which more directly conflict with those of existing knowledge sources 

has been limited, so direct experimentation on the interfering effects of such knowledge 

sources could not be performed; but based on the observations comparing the 32- 

processor without-lock experiments to the original sixteen-processor with-lock runs, 

substantial inteiference due to ineffective use of the locking structure would be 

expected in such cases of adding "competing" knowledge sources. One mitigating 

circumstance which could alleviate such interference was noted in the "instantaneous" 

input case of the expanded Knowledge-source set case, as compared to the "left-to- 
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nsW" input case: if process activ.ty can be spre;,d across the utterance-time dimens^n 

of the blackboard, process interference would decrease -- but interference due to data 

access synchronization interference can easily overwhelm this improvement. Further 

experiments along these lines will be attempted as the appropriate Knowledge sources 
become available for use. 

Execution Interference Measurements 

In   addition   to   the   primitive   operation   timings   and   achieved   parallelism 

measurements given above, various other measurements were made to determine the 

various aspects of system performance as related to multiprocessing.   As has already 

been mentioned, a major concern in a multiprocess environment in which the various 

processes  are not entirely independent is that of execufioa cnterfrrftc*.   Execution 

interference  may arme whenever  any given process enters a critical  section within 

which   it   requires  the  integrity   of   a  given  data  structure  be   maintained  (thereby 

necessitating a mean, by which to disallow access to Dttwn until the critical section is 

exited).   Execution interference may also anse whenever processes must synchronize 

the.r activities i nd perhaps cause themselves to wait on an event based on an action 

which is to be performed by some external process.   Thus execution interference may 

arise due to causes external to the process being delayed (as in the csse of trying to 

access   a   data   strurfuro   which  is  currently   held  for  exclusive   access   by   another 

process), or  the interference may arise due to causes internal to the process being 

delayed (as when a process delays itself by waiting for the occurrence of an externally 

caused event)   As a result of the HSH design philosophy, vhich states that the various 

knowledge-source processes should be as independent e. possible in specification and 

execution, most of the execution interference experienced in HSII is of the external 

variety, wherein a process is delayed due to external causes unknown to itself (and the 

delay itself is transparent to the process being delayed). 

As previously described, there are two methods in the HSII system for 

preserving data integrity: a) guaranteeing exclusive access through the use of node- 

and region-locking pnmitives, and b) placing data assumptions in the blackboard, 

through tagging primitives, which when violated cause a signal to be sent to the process 

making the assumption. There is an interesting balance in terms of execution overhead 

and   execution   interference   between   these   two   techniques.     The    region-locking 

32 

-   -  L'' 



"^ T •- ■ ■ --■— 

techn.que is least costly m terms of execution overhead and is the eas.est to embed in a 

program but causes the most execution interference. This is in contrast to the use of 

taggmc wh.ch is the most costly in terms of execution overhead and is the most diff.cult 

to embed in a program but causes the least execution interference. Both these methods 

were used for guaranteeing data integrity in the precond.t.on and Knowledge-source set 

that was used in the simulation experiments. 

In structuring each knowledge source so as to preserve .ts data integrity, no 

a pnori, assumptions were made about the non-mod.f.ability of any blackboard data that 

Knowledge source used in .ts processing (i.e.. it was assumed that any blackboard 

informat.on that the knowledge source read could perhaps be modified by some other 

concurrent knowledge-source). This self-contained approach to the design of a 

Knowledge source's locking and tagging structure is required if the modularity of the 

system, w.th respect to deletion or addition of knowledge sources, is to be preserved. 

The knowledge sources that were used in the simulation experiments were 

not orirrinally designed so that they could be interrupted at arbitrary points in their 

processing, and consequently they lacked the appropriate locking and taggmg structure 

to  guarantee  data  integrity in a multiprocess(or) environment.   The  addition,  as  an 

afterthought, of  the   appropriate locking  and tagging  structure to  these  knowledge 

sources was someumes quite difficult.   This was an especially serious problem when an 

attempt was made to put tagging primitives into knowledge sources which had internal 

backtracKing   control   structures   for   searching   the   node   graph   structure   in   the 

blacKboard.  This difficulty arises because previously made data assumptions (tags in the 

blackboard) associated with a partial path (sequence of nodes in the blacKboard) must 

be removed upon discover.ng that the path cannot be successfully completed.   Thus, 

most of the knowledge sources in the experiment did not use tag mg as a method of 

guaranteeing  integrity, but rather  used  a combination of  node-  and  region-locking. 

However, precondit.ons. which have a much simpler structure and generally do not write 

in the blackboard, were modified to use the tagging mechanism.   In addition, to further 

simplify   knowledge-source   locking   structures,   region-locking   was   used   wherever 

possible.   This excessive use of region-locking was mainly responsible for the significant 

amount   of   interference   amonp,   processes   which   caused   the   effective   processor 

utilization to go from an optima   12 to a realized 4 (see Table 2). 

Figure 6 shows an interesting case demonstrating that the indiscriminate use 
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of reg.on-lockmg can obstruct the execu .on progress of many processes and thereby 

temporarily reduce the eftect.ve parallelism of the system   It represents a snapshot of 

the blackboard lock.ng structure taken during the execution of the simulation.   The gnd 

structure represents the two-d.mensional abstract data structure, the dimensions bemg 

lexicon   level   and   reg.on   element   number   (corresponding   to   the   .tterance-t.me 

dimension).   At the pom» of each snapshot, the outstanding node and region locks are 

indicated,   as   well   as   the   areas   requested   'but   not   yet   obtained)   by   suspended 

processes.   The various (non-interfer,nf.) tags placed throughout the data base are also 

indicated.   The key indicates the sets of active and suspended processes (the names 

referring to the precondition and knowledge source names, and the numbers  in the 

names indicating « process instantiation .ndex un.que to that particular process).   This 

particular   snapshot   was  taken  from  the  sixteen-processor  simulation  run   with   the 

smaller knowledge-source set.   Not.ce that PSYN263 has locked regions at the PHON. 

MXN. and PSEG lexicon levels for its exclusive access; the nodes locked by PSYN263 

(hypotheses being .ndicaied by ^sequence number>. and links by ^sequence number» 

w.th.n these regions are those being created by PSYN263. hence the reason for the 

region locks.   Unfortunately, this locking action resulted in the suspension of s.x other 

processes awaiting access to parts of the PHON and PSEG lexicon levels which 0 erlap 

PSYN'^S's   region-locks.   Each of  these  suspet.ded processes  is waiting   to  acquire 

access-rights to a node -n these locked regions; in fact. PRE!PSYN!PSYN .nd CSEG259 

are both waiting on the same node (H141).   The diagram also shows the various (non- 

interfering) Us which were placed on the vanous nodes at the PHON and PSEG lexicon 

levels by three of the processes at some previous time.   Figure 7. which is another 

snapshot of lockmg structure, shows a case ^here execution interference was not so 

sigrificant. 

The reason the locking structure plots are localized in the lower left-hand 

corner of the blackboard structure is that the construction of the data base in the 

speech-processing task is initially left-to-nght due to the time-sequential nature of the 

•pMCh input. Also, the part.cular set of knowledge sources chosen for use .n the 

simulation experiments happened to be an effectively bottom-up speech recogmt.on 

system (some of the top-down knowledge sources havin'. not yet been devetooed to a 

stable enough state to have been used m »he simulations): hence, activity starts in the 

lower left-hand corner of the blackboard. Further simulations are planned which w.ll 

work in a combined top-down and bottom-up fashion, thereby increasing the potent.al 
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parallelism (since the fop-down knowledge sources will presumably not intenere with 

the execution of the bottom-up knowledge sources as much as additional competing 

bottom-up knowledge sources would). The expanded knowledge-source set experiments 

presented above were a first step in introducing such top-down knowledge; as more 

knowledge sources become available, their various interference effects will be 

investigated. Also, other tasks which could use the HSII organization might not 

necessarily have the left-to-right input characteristics of speech, so future simulations 

will also test a more distributed input pattern, thereby also increasing the potential 

parallelism by spreading the process activity across the breadth of the blackboard; the 

several experiments presented above which introduced the input in an "instantaneous- 

manner were the initial attempts in this direction. 

A more analytic approach to analyzing the data access interference 

expenenced by precondition and knowledge source processes, for varying numbers of 

proce^o-r.. is given in Table 4. 

i 

number of prcrs 
(all times in sees) 

16 

avg BB accesses/KS 
avg BB accesses/PRE 

avg prim locks/KS 
avg prim locks/PRE 

avg dsched, prim lock(KS) 
avg dsched/prim lock(PRE) 

avg dsched duration/KS 
avg dsched duration/PRE 

avg cxt swaps 
avg cxt sw?ps/dsched 

54.4 52.8 54.5 53.9 56.4 
96.7 68.7 55.7 48.2 51.1 

27.9 27.4 28.0 25.7 26.9 
96.7 687 55.7 48.2 51.1 

0 0.020 0.050 0.055 0.053 
0 0.009 0.026 0.045 0.040 

0 5.08 5.69 1.75 1.90 
0 3.95 1.91 1.35 1.86 

0 309 942 368 9 
0 1.03 0.97 0.36 0.01 

Table 4.  Data Access Characteristics 
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Essentially, Table 4 is an extension of Table 2, which was discussed in the 

previous section (i.e., the underlying simulation runs wc.e the same for both tables). 

Execution interference was measured by recording the amount of process suspension 

(also called dtscheduUng), which results from processes being temporarily blocked in 

their attempts to gam access to some oart of the blackboard data base.1 As might be 

expected, as process activity increases with increasing numbers of processors, the 

possibility of execution interference increases (see table entries on 

"deschedules/pnmitive lock"). This pheno; .enon stops at eight processors because in 

these simulation expenme.its there were rarely more than eight processes executing at 

any given moment. At the same time, with more and more processing power available, 

the likelihood of suspended processes being unblocked and becoming available for 

further processing increases as the number of processors increases (see table entries 

on "deschedule duration"). This phenomenon is also indicated by the significant 

decrease in processor context swaps per deschedule (i.e., with more processors, if 

becomes less likely that when a process is suspended there will be another process 
ready to execute) 

The major point tl-at can be drawn from this table is that the decrease in 

processor utilization caused by the locking structure is not due to the high rate of data 

accesr interference (i.e., at most only 67, of the primitive locks result in deschedules) 

but rather from the long duration over which descheduled processes are blocked. This 

deschedule duration, in the optimal case of 16 processors, where processes do not have 

to wait for for an available processor, is approximately 2 seconds, which is very close 

The number of deschedules attributed to a process is related to the inner workings 
of the locking mechanism. Not only is the granularity of the locking structure 
important (i.e., how small a piece of the blackboard data base can be requested for 
access allocation), but the granularity of the process blocking mechanism is important. 
For example, processes could be blocked upon trying to gam access to a node and 
then relegated to wftmg m a set of processes which are waiting on an^ node at the 
level of the requeued node; or the wait set could be divided accordng to the 
individual nodes being waited upon. If, in an attempt to conserve semaphore 
structures, the former strategy is chosen, it could become quite expensive tc 
determine whether, upon receiving an unlock wake-up signal for the wait set, a 
particular member of the wait set is really re-schedulable as a result of that wake-up 
signal; hence, it may be cheaper to release all waiting processes in the set, even 
though all but one will just become descheduled again. If the single-node wait set is 
used, the costs of maintaining separate semaphores for every possible data object 
may become prohibitively expensive, although process re-scheduling would not be 
done unnecessarily in such a scheme. 

■ 
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to the average run time of a knowledge source. This long duration occurs because the 

knowledge-source locking structures involve executing region locks at the beginning of 

the knowledge source execution. These region-locks define the entire blackboard area 

(and perhaps even more) that the knowledge source will either examine or modify 

during its entire execution.1 These locks are then released only a*, the termination of 

the knowledge source execution. Thus, if data accecs interference (i.e., a primitive lock 

deschedule) occurred because of a previously executed region-lock, then the suspended 

process would very likely not be unblocked until the knowledge source executing the 

region-lock had completed its processing. 

Finally, it is once again admitted that the reiulfs presented here are derived 

from a rather limited selection of knowledge-source processes, the coding style of 

which may be affected by the various efficiencies and inefficiencies of the particular 

implementation of the HSU system organization. In particular, since the HSU speech- 

understanding system is under constant development, various code sections involving 

the system operations have been subject to extensive optimization attempts, while other 

sections have not yet had the benefit of such optimization. Additionally, the results are 

biased by the task domain (viz., speech understanding) and the data structure chosen to 

represent the dynamic solution state of the task. However, it is hoped that the system 

organization (including the data base design) is of sufficiently general character that 

these particular results at least give a feeling for the results that might be expected 

using a different cet of knowledge-?.ource processes to solve the same or different 

problems. 

SUMMARY AND CONCLUSIONS 

This paper has presented a design for the organization of knowledge-based 

Al problem-solving strategies which is felt to be particularly applicable for 

implementation on clocely-coupled multiprocessor computer systems. The method of 

design  is  a  result  of  formulating the problem-solving organization  in  terms  of  the 

1 Note that the number of primitive lock operations for preconditions is equal to the 
number of b'ackboard accesses (from the precondition process averages of Table 4): 
preconditions do not usually need a long-lasting locked environment (since they do 
not modify the blackboard except to place tags into it), thus each access is 
individually protected by the HSU operating system (via temporary-locking), rather 
than having the precondition perform an explicit LOCK.' operation before each access. 

.1 
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hypothcs(ze-and-test paradigm for heuristic search, where the various hypothesirers 

and testers are represented as Knowledge sources applicable to the tasK domain ot the 

problem being solved. A knowUdSe source may be described as an agent that embodies 

the knowledge of a particular aspect of the problem domain and is useful in solving a 

problem from that domain by performing actions based on its knowledge so as to 

further the progress of the overall problem solution. The hypothesize-and-test 

paradigm provides the conceptual means of coordinating these various knowledge 

source activities by suggesting that it is the function of some knowledge sources to 

create hypotheses representing a possible (perhaps partial) solution state for the given 

problem. Hypotheses are created in a global data base and are available for inspection 

by all knowledge sources. It is the responsibility of other knowledge sources to 

evaluate these hypotheses in light of their own knowledge of the task domain, and 

either accept or reject the hypotheses, or propose their own alternative hypotheses 

(by *ither modifying the existing hypotheses or creating entirely new ones). 

The Hearsay II speech-understanding system (HSII), which has been 

developed at Carnegie-Mellon University using the techniques for system organization 

described here, has provided a context for evaluating this system architecture. The 

HSII organization provides the facilities necessary for knn^(edge-source cooperation 

through the hypothesize-and-test paradigm to be carried out in a highly asynchronous 

and Hata-directed manner, where knowledge sources are specified as independent 

processing entities capable of parallel execution; the activities of any given collection of 

such knowledge sources are coordinated by the hypothesize-and-test paradigm through 

the use of a shared clobal data base called the blackboard. 

In specifying the blackboard as the primary means of interprocess 

communication, particular attention has been paid to resolving the data access 

synchronization problems and data integnty issues arising from the asynchronous data 

access patterns possible from the various independently executing parallel knowledge- 

source processes. A non-preemptive data access allocation scheme was devised in 

which the units of allocation could be linearly ordered and hence allocated according to 

that ordering so as to avoid data deadlocks. The particular units of data allocation 

(locking) were chosen as being either blackboard nodes (node-lockinB) or abstract 

regions in the blackboard {region-locking). Bhckboard nodes also represent the units 

of data creation within the blackboard. The region-locking mechanism views the 

potential  blackboard  as  an abstract  data space  in  which access  rights   to  abstract 
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regions could be granted without regard to the actual data content of these regions. 

Another area ot concern relating to the use of a shared blackboard-like data 

facility relates to the assumptions made by the various executing knowledge sources 

concerning issues of data integrity and localized data contexts. Since the blackboard is 

intended to represent only the most current glob*! «status of the problem solution state, 

mechanisms were introduced to allow inH;,/tdual knowledge sources to retain recent 

histories of modifications made to ♦f'ie dynamic blackboard structure in the form ot local 

contezti. Knowledge sources are also permitted to mark (fag) arbitrary fields (or nodes 

or regions) of the blackboard itself (without requiring continuing access rights to the 

field being tagged) and thereby monitor (in a non-mterfenng way) those locations for 

subsequent changes; the knowledge source will then be sent messages should any 

modifications be performed upon a tagged field Local contexts provide knowledge 

sources with the ability to create a local data state which reflects the net effects of 

data events which have occurred in the data base since the time of the knowledge 

source's activation. Combined with the blacKboard data ta?finR capabilifes, local 

contexts also provide a means by which knowledge sources can execu e quite 

independently of any other concurrently executing knowledge sources (and without 

interfering with the execution progress of any of these processes). 

In an attempt to improve the problem-solving efficiency of a multiprocessor 

implementation of the system by increasinp the amount of potential parallelism from 

knowledge source activity, the logical functions of precondition evaluation and 

knowledge source execution are split into separate processing entities (called, of course, 

precondition and knowledse-source processes). A precondition process is responsible for 

monitoring and accumulating blackboard data events which might be of interest to the 

knowledge source associated with the precondition; and when the approonate data 

conditions for the activation of the knowlectg« source exist in the blackboard, the 

precondition will instantiate a knowledge-source process based on its associated 

knowledge source, giving to the new process the data context in which the precondition 

was satisfied. 

The process activity of HSU is intended to be very data-directed in nature, 

basing the decisions as to whether a knowledge sourc.» action can be performed on the 

dynamic data state represented in the blackboard data base. It is the responsibility of a 

precondition to '.esf tins data state for conditions which would warrant the instantiation 

üi 
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Apperxiix A: 
HSII BLACKBOARD AND KS DECOMPOSITION 

Conceptual 
Phrasal 
Lexical 
Syllabic 
Surface-phonemic 
Phonetic 
Segmental 
Parametric 

Figure 1.  The Levels in Hearsay It 

Figure 1 shows a schematic of the information levels of Hearsay 11. 

Parametnc Level - The pprametric level holds the most basic representation of the 
utterance that the system has; it is the only direct input to the machine about the 
acoustic signal. Several different sets of parameters are being used in Hearsay 11 
interchangeably; 1/3-octave filter-band energies measured every 10 msec, LPC- 
denved vocal-tract parameters, and wide-band energies and zero-ciossing counts. 

Segmental Level - This level represents the utterance as labeled acoustic segmLnts. 
Although the set of labels may be phonetic-like, the level is not intended to be 
phonetic -- the segmentation and labeling reflect acou:tic manifestations and do 
not, for example, attempt to compensate for the context of the segments or 
attempt to combine acoustically dissimilar segments into (phonetic) units. As with 
all levels, any particular portion of the utterance may be represented by more 
than one competing hypothesis (i.e., multiple segmentations and labelmgs may 
coexist). 

Phonetic Level - At this level, the utterance is represented by a phonetic description. 
This is a hroacl phonetic description in that the size (duration) of the units is on ;he 
order of the "size" of phonemes; it is a fine phonetic description to the extent that 
each   element   ir   labeled   with   ?   fairly   detailed   allophonic   classification   (e.g., 
"stressed, nasalised [I]"). 

Surface Phonemic   Level   -   This   level,   named   by   seemingly   contradicting   terms, 
represents the utterance by phoneme-like units, with the addition of modifiers such 
as stress and boundary (word, morpheme, syllable) markings. 

Syllabic Level - The unit of representation here is the syllable 
Lexical Level - The unit of information at this level is the word. 
Phrasal Level  - Syntactic elements appear at this level.   In fact, since a level may 

contain  arbitrarily  many  "sub-levels" of elements using  the  AND and OR links, 
traditional kinds of syntactic trees can be directly represented here. 

Conceptual Level - The units at this level are "concepts"  As with the phrasal level, it 
rnay  be  appropriate  to use the graph structure of  the data base  to  indicate 
relationship-, among different concepts. 
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Levels - Knowledge Sources 

CONCtPTUAL 

PHRASAL 

LEXICAL 

SYLLABIC 

SURFACE- 
PHONEMIC 

PHONETIC 

SEGMENTAL 

PARAMETRIC 

 «Semanlic Word Hypothesizer 

— Syntactic Parser 

-Syntactic Word Hypothesizer 

 Phoneme Hypothesizer 

 Word Candidate Generator 

Phonological Rule Applier 

 Phone—Phoneme Synchroniser 

s-Phone Synthesizer 

Segment—^hone Synchronizer 

Parameter—Segnen» 
Synchronizer 

 Segmenter-CIassifier 

Figure 2.   A Set of Knowledge Sources for Heörsayll. 

As examples of Knowledge sources, Figure 2 shows the first set implemented 
for Hearsay II. Tne levels are indicated as horizontal lines in the figure and are labeled 
at the left. The knowledge sources are indicated by arcs connecting levels; the starting 
point(s) of an arc indicates the level(s) of major "input" for the Knowledge source, and 
the end point indicates the "output" level where the Knowledge source's major actions 
occur In general, th- action of most of these particular Knowledge sources is to create 
linKs between hypotheses on its input level(s) and: a) existing hypotheses on its output 
level, if appropriate ones are already there, or b) hypotheses that it creates on its 

output level. 
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The Segmenter-Classifter knowledge source uses the description of the speech signal 
to produce a labeled acoustic segmentation. For any portion of the utterance, 
several possible alternative segmentations and labels may be produced. 

The Phone Synthesizer uses labeled acoustic segments to generate elements at the 
phonetic level. This procedure is sometimes a fairly direct renaming of an 
hypothesis at the segmental level, perhaps using the context of adjacent segments. 
In other cases, phone synthesis requires the combining of several segments (e.g., 
the generation of [t] from a segment of silence followed by a segment of 
aspiration) or the insertion of phones not indicated directly by the segmentation 
(e.g., hypothesizing the existence of an [I] if a vowel seems velanzed and there is 
no [I] in the neighborhood). This knowledge source is triggered whenever a new 
hypothesis is created at the segmental level. 

The Word Candidate Generator uses phonetic information (primarily just at stressed 
locations and other areas of high phonetic reliability) to generate word hypotheses. 
This is accomplished in a two-stage process, with a stop at the syllabic level, from 
which lexical retrieval is more effective. 

The Semantic Word Hypothcsizer uses semantic and pragmatic inforrmiion about the 
task 'e.g., news retrieval or chess) to predict words at the lexical lev -I. 

The Syntactic Word Hypothcsizer uses knowledge at the phrasal level to predict 
possible new words at the lexical leve' which are adjacent (left or right) to words 
previously generated at the lexical level This knowledge source is activated at the 
beginning of an utterance recognition attempt and, subsequently, whenever a new 
word is created at the lexical level. 

The Phoneme Hypothcsizer knowledge source is activated whenever a word 
hypothesis is created (at the lexical level) which is not yet supported by 
hypotheses at the surface-phonemic level. Its action is to create one or more 
si-quences at the surface-phonemic level which represent alternative 
pronunciations of the word. (These pronunciations are currently pre-specified as 
entries in a dictionary.) 

The Phonological Rule AppUer rewrites sequences at the surface-phonemic level. 
This knowledge source is used: a) to augment the dictionary lookup of the 
Phoneme Hypothesizer, and b) to handle word boundary conditions that can be 
predicted by rule. 

The Phone-Phoneme Synchronizer is triggered whenever an hypothesis is created at 
either the phonetic or the surface-phonemic level. This knowledge source 
attempts to link up the new hypothesis with hypotheses at the other level. This 
linking may be many-to-one in either direction. 

The Syntactic Parser uses a syntactic definition of the input language to determine if 
a complete sentence may be assembled from words at the lexical level. 

1 
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The primary duties of the Segment-Phone Synchronizer and the Parameter-Segment 
Synchronize1- are similar: to recover from mistakes made by the (bottom-up) 
actions of the Phone Synthesizer and Segmenter-Ciascifier, respectively, by 
allowing feedback from the higher to the lower level. 

In addition to the knowledge source modules described above, all of which 
embody speech knowledge, several poncy modules exist. These modules, which 
interface to the system in a manner identical to the speech modules, execute policy 
decisions, e.g., propagation of ratings and calculation of processing-state attributes. 
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