of Computer Sciencel |

ie-Mellon University ‘

gh, Peunsylvania 15213 f

i

October, 1975 |

3 y={ !

:) |

i |
o
<T

i DEPARTMENT
of

COMPUTER SCIENCE

Carnegie-Mellon University

INCCESSION tor V

ms White Soctiog 4
e Wt Section [
Vasknginesy r
Menkicanon
o PARALLELISM IN Al PROBLEM SOLVING:
sty o A CASE STUDY OF HEARSAY II
A A gy el
! R. D. Fennell and V. R. Lesser
B I Depa tment of Computer Science D D C {
| Carnegie-Mellon University
- Pittsburgh, Pennsylvania 15213 DJ?@I?'TD f]f? '}{
JUN 3 1976 }_'
October, 1975 1

u IBE%U‘U'[BW

ABSTRACT

i

"""‘I“The Hearsay [l speech-understanding system (HSII) (Lesser, et al, 1974
Fenrell, 1975; Erman and Lesser, 1975) is an implementation of a knowledge-based
multiprocessing Al problem-solving organization. HCIl is intended to represent a
problem-solving organization which is applic able for implementation in a multiprocessing
environment, and is, in particular, currently being implemented on the Cmmg
multiprocessor system (Bell, et al., 1971) at Carnegie-Mellon University. The object of
this paper ic to explore several of the ramifications of such a problem-solving

organization by examining the mechanisms and policies underlying KSIl which are

necessary for supporting its organization as a multiprocessing problem-solving system,

First, an abstract description of a class of problem-solving systems is given using the

Production System mode! of Newell (1973). Then, the HSII problem-solving organization

is described in terms of thic model. The various decisions made during the course of

design necessitated the in‘roduction of various multiprocessing mechanisms (e.g.,

mechan.sms for maintaining data localization and data integrity), and these mechanisms {
3 are discussed. Finally, a simulation “tudy is presented which details the effects of

actually implementing such a problem-solving organization for use in a particular
. application area, that of speech understanding. i

\

L This research was supported in part by the Defense Advanced Research Projects
Agency of the Office of the Secretary of Defense (Contract F44620-73-C-0074) and
monitored by the Air Force Office of Scientific Research.

———

INTRODUCTION

Many Al problem-solving tasks require large amounts of processing power in
order to achieve solution in any given computer implementation of a problem-solving
strategy. The amount of processing power required is dizectly related to the size of
the search space which is examined during the course of problem solution. Exhaistive
tearch of the state space associated with almost any problem of interest is prec..ded
tue to the sheer size of the state space.l In most problem-solving attempts, heuristics
a'e employed which prune the search space to a more manageable size. However,
searching even the reduced state space often requires large amounts of processing
power. The demand for sufficient computing power becomes critical in tasks requiring
real-time solution, as is the case in the speech-understanding task with which this paper
is primarily concerned. For example, @ speech-understanding system capable of reliably
undersianding connected speech involving a large vocabulary and spoken by multiple
speahers is likely to require from 10 to 100 million instructions per second of computing
power, it the recognition is to performed in real time.2 Recent trends in technology
suggest that this computing power can be economically obtained through a closely-
coupled network of asynchronous "simple” processors (involving perhaps 10 to 100 of
these processors), (Bell, et al.,, 1973, and Heart, et al, 1673). The major problem (from
the problem-solving point o* view) with this network multiprocessor approach for
generating computing power is in devising the various problem-solving algorithms in
such a way as to exhibit a structure appropriate for exploiting the parallelism available
in the muitiprocessor network, for it is only by taking advantage of this processing

parallelism that the desired effective computing power will be achieved.

The Hearsay || speech-understanding system (HSII) (Lesser, et al 1974;
Fennell, 1975; and Erman z~d Lesser, 1975) currently under development at Carnegie-
Mellon University represents a problem-solving organization that can effectively exploit
a multiprocessor system. HSII has been designed as an Al system organization suitable
for expressing knowledge-based problem-solving strategies in which appropriately
1

As an example, consider the chess-playing task. In an end game situation, there are
typically 20 legal moves at each ply (half-move); so for a search depth ot 6 plies, the
search space will have 64 million branches.

The Hearsay 1 (Reddy, et al., 1973a,b,c and Erman, 1974) and Dragon (Baker, 1975)
speech understanding systems require approximately 10 to 20 mips of computing
power for real-time recognition when handling small vocab' s,

s

-l

R N

organized subject-matter knowledge may be represented as knowledge sources capable
of contributing their knowledge in a parallel data-directed fashion. A knowledge source
may be described as an agent that embodies the knowledge of a particular aspect of a
problem domain and is useful in solving a problem from that domain by performing
actions based upon its knowledge so as to further the progress of the overall solution.
It is felt that the knowledge source is an appropriate unit for use in the decomposition
of a knowledge-intensive task domain. Knowledge sources, being suitably organized
capsules of subject-matter knowledge, may be independently formulated as various
pieces of the knowledge relevant to a task domain become crystallized. The HSTI
system organization allows these various independent and diverse sources of knowledge
to be specified and their interactions coordinated so they might cooperate with one
another (perhaps asynchronously and in parallel) to effect a problem solution. Ac an
example of the decomposition of a task domain into knowledge sources, in the speech
task domain there might be distinct know'edge sources to deal with acoustic, phonetic,
lexical, syntactic, and semantic information. While the speech task is the first test of the
raulliprocessing problera-solving organization of HSIlL, it is believed that the sysiem
organization provided by HSII is capable of expressing other knowledge-based Al
problem-solving strategies, as might be found in vision, robotics, chess, natural language
understanding, and protocol analysis. In fact, proposals are under way which will

further test the applicabiity of HSIl by implementing a system for the analysis of

natural scenes using lhe HSIl problem-solving organization (Ohlander, 1975).

The rest of this paper will explore several of the ramifications of such a
problem-so'ving organization by examining the mechanisms and policies underlying HSII
which are necessary for supporting ils organization as a multiprocessing problem-
solving system. First, an abstract description of a class of problem-solving systems is
given using the Production System model of Newell (1973). Then, the HSIl problem-
solving organization 1s described in terms of this model. The various decisions made
during the course of design necessitated the introduction of various multiprocessing
mechanisris (e.g., mechanisms for maintaining data localization and data integ ity), and
these mechanisms are discussed. Finally, a simulation study is presented whicn details
the effects of actually implementing such a problem-solving organization in a

multiprocessor environment.

fh“:'n:-- Sl --!- _‘— . ’

THE MOODEL

An Abstract Mode! for Problem Solving

In the abstract, the problem-solving organization underlying HSII may be
modeled in terms of a “"production system," (Newell, 1973). A preduction system is a
scheme for specifying an information processing system in which the control s*ructure
of the system is defined by operations on a set of productions of the form ‘P - A’
which operate from and on a collection of data structures. 'P' represents a logical
antecedent, called a precondition, which may or may not be satisfied by the information
encoded within the dynamically current set of data structures. 1f ‘P* is found to be
satisfied by some data structure, then the associated action ‘A’ may be executed, which
presumably will have some alt. -ing effect upon the data base such that some other (or
the same) precondition becomes satisfied. This paradigm for sequencing of the actions
can be thought of as a data-directed control structure, since the satisfaction of the
precondition is dependent upon the dynamic state of the data structure. Productions
are executed as long as their antecedent preconditions are satisfied, and the process
halts either when no precondition is found to be satisfied or when an action executes a
stop operation (thereby signalling problam solution or failure, in the case of problem-
solving systems).

The HSII Problem-Solving Organization: A Production System Approach

The HSII system organization, which can be characterized as a “parallel”
production system, has a centralized data base which represents the dynamic problem
solution state. This data base, which is known as the blackboard, is a multidimensional
data structure which is readable and writable by any precondition or knowledge-source
process (where a knowledge-scurce process is the embodiment of a preduction
action).! Preconditions are procedurally oriented and may specify arbitrarily complex
tests to be performed on the data structure in order to decide precondition satisfaction.

L' As an example, the dimensions of the HSI] speech-understanding system data base
are informational leve! (e.g acoustic level, phonetic level, and word level), utterance
time (speech time measur .d from the beginning of the input utterance), and data
alternatives (where multiple hypotheses are permitted to exist simultaneously at the
same level and utterance time). For additional details, see Appendix A.

P

R N - T e T

Preconditions are themselves data-directed in that they are tested for satisfaction
whenever relevant changes occur in the data base;l and simultaneous precondition
satisfaction is permitted. Testing for precondition satisfaction is not presumed to be an
instantaneous or even an indivisible operation, and several such preconditicn tests may
proceed concurrently.

The knowledge-source processes representing the production actions are also
procedurally oriented and may specify arbitrarily complex sequences of operations to
be performed upon the data structure. The overall effect of any given knowledge-
source process is usually either to hypothesize new data which is to be added to the
data base or to verify (and perhaps modify) data previously placed in the data base.

This follows the general hypothesize-and-test problem-solving paradigm wherein
hypotheses representing partial problem solutions are generated and then tested for
validity; this cycle continues until the verification phase certifies the completion of
processing (and either ‘the problem is solved or failure is indicated). The execution of a
knowledge-source process is usually temporally disjoint from the satisfaction of its
precondition; the execution of any given knowledge-source process is not presumed to
be indivisible; and the concurrent execution of multiple knowledge-source processes is
permitted. In addition, a precondition process may invoke multiple instantiations of a
knowledge source to work on the different parts of the blackboard which independently

satisfy the precondition’s pattern. Thus, the independent data-directed nature of
precondition evaluation and knowledge-source execution can potentially generate a
significant amount of parallel activity through the concurrent execution of different
preconditions, different knowledge sources, and multiple Instantiations of a single
knowledge source.

L In effect, preconditions themselves have preconditions, call them "pre-preconditions.”
In HSII, knowtedge-source preconditions (which correspond to action preconditions in
the production system model) may be arbitrarily complex. In order to avoid executing
these precondition tests unnecessarily often, they in turn have pre-preccnditions
which are essentially monitors on relevant primitive data base events (e.g., monitoring
for a change to a given field of a given node in the data base, or a given fielc of any
node in the data base). Whenever any of these primitive events occurs, those
preconditions monitoring such events are awakened and allowed to test for full
precondition satisfaction. These data events are used by the precondition process as
pointers to the specific parts of the data base which may now satisty the pattern the
precondition is monitoring for. During the period between when the precondition
process has been first awakened and the time it is executed, the monitoring for
relevant data base events continues. Thus, a precondition process, when finally
executed, may check more than one part of the data base for satisfaction.

The basic structure and components cf the HSII orgadization may be depicted
as shown in the message transaction diagram of Figure 1. The diagram indicates the
paths of active information flow between the various components of the problem-
solving system as solid arrows; paths indicating control activity are shown as broken
arrows. The major components of the diagram include a passive global data structure
(the blackboard) which contains the current state of the problem solution. Access to the
blackboard is conceptually centralized in the blackboard handler module, 1 whese
primary function is to accept and honor requests from the active Lrocessing elements to
read and write parts of the blackboard. The active processing elements which pose
these data access requests consist of knowledge-source processes and their associated
preconditions. Preconditions are activated by a blackboard monitoring mechanism
which monitors the various write-actions of the blackboard handler; whenever an event
occurs which is of interest to a particular precondition process, that precondition is
aclivated. If upon furlher examination of the blackboard, the precondition finds itself
"eatisfied," the precondition may then request a process instantiation of its associated
knowledge source 1o be established, passing the details of how the precondition was
satisfied as parameters to this instantiation of the knowledge source. Once instantiated,
the knowledge-source process can respond to the blackboard data condition which was
detected by its precondition, possibly requesting further modifications be made to the
blackboard, perhaps thereby triggering further preconditions to respond to the latest
modifications. This particular characterization of the HSII organization, while certainly
overly simplified, shows the data-driven nature of the knowledge source activations and

interactions.

The following sections of this paper will atlempt to refine this diagram of the
HSII organization by pointing out the difficulties that arise from this oversimplified
representation of the organization and by supplementing the various components of this
simple diagram to resolve these problems and result in a more complete organization for
Al problem-solving in multiprocessing environments. A more complete message

transaction diagram for HSII will be presented in a subsequent section.

' The blackboard handler module could be implemented either as a procedure which is
called as a subroutine from precondition and knowledge source processes, or as a
process which contains a queue of requests for blackboard access and modification
sent by precondition and knowledge source processes. In the implementation
discussed in this paper, the blackboard handler module is implemented as a
subroutine.

uoneziue81Q waysAS IISH payldwig T 3in3did

paijsies
siajewesed pue 1 pa— _u.n_.h-hﬂh._.wviiulﬂhhle.. wsiueysaw
SWEU 5 3 Bunsojiuow

|
)
dd
S
@jejueisul « Blep/isanhal y > Ja|puey |J4njand}s
ejep/isanbai g - f=1z] apou
‘es

£58204d
S) ®je@Jd

I

I
~ ejepfisanbau y
ejep/isanbads g

B

HEARSAY 11 MULTIPROCESSING MECHANISMS

Given the decision that multiple preconditions may be simultaneously satisfied
and that multiple knowledge-source processes may execute concurrently, various
mechanisms must be provided to accommodate such a multiprocessing environment.
Mechanisms must be provided to support the individual localized executions of the
various active and ready processes and to keep the processes from interfering with one
another, either directly or indirectly. On the other hand, mechanisms must aiso be
provided so that the various active prucesses may communicate with one another so as
to achieve the desired process cooperation. Since the various constituent knowledge
sources are assumed to be independently developed and are not to presume the explicit
existence of other knowledge sources, communication among these knowledge sources
must necessarily be indirect. The desire for a modular knowledge source structure
arises from the fact that usually many different people are involved in the
implementation of the set of knowledge sources, and, for purposes of experimentation
and knowledge source performance analysis, the system should be able to be easily
reconfigured with alternative subsets of knowledge sources. This communication takes
two primary forms: data base monitoring for collecting pertinent data event information
for future use (local contexts and precondition activation), and data base monitoring for
the occurrence of data events which violate prior data assumptions (tags and messages).
The following paragraphs will discuss these forms of data base monitoring and their
relationship to the data access synchronization mechanisms required in a multiprocess

system organization.

Local Contexts

Interprocess communication (and interference) among knowledge sources and
their associated preconditions occurs mainly via the global data base, as a result of the
design decisions involved in trying to maintain process independence. It is therefore
not surprising that the mechanisms necessary to bring about the desired process
cooperation and independence are based on global data base considerations. The glooal
data base (the blackboard) is intended to contain only dynamically current information.
Since preconditions (being data-directed) are to be tested for satisfaction upon the
occurrence of relevant data base changes (which are historical data events), and since

neither precondition testing nor action execution (nor the sequential combination of the

e B & -s.rf_.“;‘, g SN TR —

two) is assumed to be an indivisible operation, locali~ed data bases must be provided
tor each process unit (precondition or action) which needs to remember relevant
historical data events. These localized databases, called local contexts in HSII, which
record the changes to the blackboard since the precondition process was Jast executed
or the knowledge source process was created provide personalized operating
environments for the various precondition and knowledge-source processes. A local
context preserves only those data events1 and state changes relevant to its owner.

The creation time of the local context (ie., the time from which it begins collecting data

events) is also dependent upon the context owner. Any given local context is bult up
incrementally: when a modification occurs to the global data base, the resulting data
event is distributed to the various local contexts interested in such events. The various
orimitive cata modification routines (or node creation routines) are responsible for the
distribution of the data events which result from the modification, just as these
modification routines are also responsible for sending warning messages to those
processes which want to be notified when specific characteristics of a particular node
are altered.2 Thus, the various local contexts retain a history of relevant data events,

while the global data base contains only the most current information.

Data Integrity

Since precondition and knowledge-source processes are not guaranteed to be
executed uninterruptedly, these processes often need to assure the integrity of various
assumptions they are making about the contents of the data base; for should these
assumptions become violated due to the actions of an intervening process, the further
computation of the assuming process may have to be altered (or terminated). One way
to approach the problem of data integrity is to guarantee the validity of data
assumptions by disallowing intervening processes the ability to modity (or perhaps even
to examine) critical data. In order to guarantee the integrity of data through the

mechanism of exclusive access, the HSII system provides two forms of locking primitives,

node- and region-loching. Node-locking guarantees exclusive access to an explicitly

T The information which defines a data event consists of the locus of the event (i.e, a
data node name and a field name within that node) and the old value of the field (the
new value being stored in the global data base).

2 The use of these warning messages as way of preserving data integrity will be
discussed in the next sect:on.

specified node in the blackboard, whereas region-locking guarantees exclusive access to
a collection of nodes that are specified implicitly based on a set of node characteristics.
In the current implementation of HSIL, the region characteristics are specified by a
particular information level and time period of a node. If the blackboard is considered
as a two-dimensional structure with coordinates of information-level and time, then
region-locking permits the locking of an arbitrary rectangular area in the blackboard.
Region-locking has the additional property of preventing the creation of any new node
that would be placed in the blackboard area specified by the region by other than the
process which had requested the region-lock. Additional locking flexibility is introduced
by allowing processes to request read-only access to data fields; this reduces possible
contention by permitting multiple readers of a given field to coexist, while excluding any
writers of that field until all readers are finished. The system also provides a "super
lock,” which allows an arbitrary group of nodes and regions to be locked at the same

time. A predefined linear ordering strategy for non-preemptive data access allocation

(Coftman, et al, 1971) is applied by the “super lock" primitive to the desired node- and
region-locks so as to avoid the possibility of data base deadlock.

However, this technique of guaranteeing data integrity through exclusive
access is only applicable it all the nodes and regions to be accessed and modified are
known ahead of time. The sequential acquisition of exclusive access to nodes and
region, without intervening unlocks, can result in the possibility of deadlock. In the HS1I
blackboard, nodes are interconnected to form a directed graph structure; because it is
possible to establich an arbitrarily ccmplex interconnection structure, it is often very
ditficult for a knowledge-source process to anticipate the sequence of nodes It will
desire to access or modifly. Thus, the mechanisms of exclusive access cannot always be
used to guarantee data integrity in a system with a complex data structure and a set of
unknown processes. Further, even if the knowledge source can anticipate the area in
the blackboard within which it will work and thereby request exclusive access to this
area, the area may be very large, thus leading to a significant decrease in potential
parallel activity caused by other processes waiting for this locked area to become
available.

An allernative approach to guaranteeing data integrity is to provide a means
by which a process (precondition or knowledge source) may place data assumptions
about the particular state of a node or group of nodes in the data base (the action of
putting these assumptions in the blackboard is called tagging). If these assumptions ar¢

invalidated by a subsequent blackboard modification operation of another process, then
a message indicating this violation is sent to the process making the assumption. In the
meantime, the assuming process can proceed without obstructing other processes, until
such time as it intends to modify the data base (since data base modification is the only
way one process can affect the execution of another). The process must then acquire
exclusive access to the parts of the data base involved in its prior assumptions (which
parts will have been previously tagged in the data base to define a critical data set)}
and check to see whether the assumptions have been violated (in which case, messages
indicating those violations would have been sent to the process). If a violation has
occurred, the assuming process may wish to take alternative action; otherwise, the
intended data base modifications may be made as if the process had had exclusive
access throughout its computation. This tagging mechanism can also be used to signal
the knowledge-source process that the initial conditicns in the blackboard (i.e., the
precondition pattern) that caused the precondition o invoke it have been modified; this
is accomplished by havi.g the precondition tag these initial conditions on behalf of the
knowledge-source process prior o the instantiation of the knowledge source.

In summary, the HSII organization provides mechanisms to accomplish both of
these forms of data integrity assurance: the various data base locking mechanisms
described previously provide several forms of exclusive or read-only data access; and
the data tagging facility allows data assumptions to be placed in the datz base without
intertering with any process’ ability to access or modify that area of the data base (with
data invalidation warning messages being sent by data base monitors whenever the

assumptions are violated).

To provide a basis for the discussion in the subsequent sections of this paper,
Figure 2, depicting the various components of the HSII organizational structura, is
offered. The diagram is a more detailed version of the message transaction model
presented previously. The new components of this diagram are primarily a result of

addressing multiprocessing considerations.

As in the earlier, more simplified organizational diagram, the dyramically
current state of the problem solution is contained in a centralized, shared data base,
called the blackboard. The blackboard not only contains data nodes, but it also records

1 Actually, the requirement is that no other process be able to write to these parts of
the data base.

uoijeziuediQ waysAg IISH "Z 24n314

sananb
i@npayas

«SH Sjruiwia)fejenijoe
1senbaJs Jyd-ojeaijse-

D> R

i

~3Jld Sleuiwia)/ajeai)oe P 3kd 40 mx"
isenbaJ gy-ejeAi}jIE~ S|npayasa.
/enpayasap,
paysijes i
Uoljipuoissd-aid i
(]
]

] < +¥420! peaJ

.J.J_Wm.m.ww._ W20 uhyao) HI0| Ju
jsanbali ¥agjunfyio| >
]

+

Bsw Jo
juesa elep g /Esw puss 1SS

ssed

WSIUR Y oaw 3= > |

Buiojiuow -
ey

elep M
/8sw puas

data monitoring information (tags) and data access synchronization information (locks).
Access to the blackboard is conceptually cent-alized in three mocules. As before, the
blackboard handler module accepts and honors read and write data-access requests
from the active processing elements (the knowledge-source processes and their
precondition processes). A lock handler coordinates data-access synchrorization
requests from the knowledge-source processes and preconditions, with tte ability to
block the progress of the requesting process until the synchronization recuest may be
satisfied. A monitoring mechanism is responsible for accepling data tagging requests
from the knowledge-source processes and preconditions, and for sending messages to
the tagging processes whenever a ‘agged data field is modified. It is also the
re- ponsibility of the moni.oring mechanism to distribute data events to the various local
contexts of the knowledge-zource processes and preconditions, as well as to aclivate
precondition processes whenever sufficient data events of interest to those

preconditions have occurred in the blackboard.

Associated with each active processing element is a local data base, the local
context, which records data everts that have occurrad in the blackboard and are of
interest to that particular process. The local contexts may be read by their associated
prccesses in order to find out which data nodes nave been mocitied recently and what
the previous values of particular data fields were. The local contexts are automatically

maintained by the blackboard monitoring mechanism.

Upon being activated and salistied, prccc;ndition processes may instantiate a
knowledge source (thereby creating a knowledge-source process), pasting along the
reasons for this instantiation as parameters to the new knowledge-source process and
at the same time establishing the appropriate data monitoring connections necessary for
the new process. The goal-directed scheduler retains the actual control over allocating
hardware processing capability to those knowledge-source processes and precondition

processes which can best serve to promote the progress of the problem solution. !

T One way a scheduler might help in reducing (or eliminating) global data base access
interference is to schedule to run concurrently only processes whose global data
demands are disjoint. Such a scheduling policy could even be used to supplant an
explicit locking scheme, since the global data base locking would be effectively
handled by the scheduler (albeit probably on a fairly gruss level). Of course, other
factors may rule out such an approach to data access synchronization, such as an
inability to make maximal use of the available processing resources if only data-
disjoint processes are permitted to run concurrently, or the inability to know in

13

e

EXPERIMENTS WITH AN IMPLEMENTATION

The preceding sections of this paper
mechanisms neces

have presented various of the

ssary in implementing a knowledge -based problem-solving cvstem such
as HSH in a mulliprocessing environment.

experiinents that have hee

The present sections will discuss the various

N performed in an atlempt to characterize the multiprocessing
performance of the HSI| orranization in the speech-understanding task,

HSII Multiprocess Performance Analysis through Simulation

In order to gain insight into the various efficiency issues involving

mulliprocess problem-solving organizations, a simulation mode! was incorporated within

-understanding system. The HSII problem-
itself modeled and simulated, but rather the actual HSI
implementation (which is a multiprocessing organization even when executing on a
uniprocessor) was modified to permit the simulation of a h
environment,

the uniprocersor version of the HSIl speech

solving organization was not

ardware multiprocessor

There were four primary objectives of the simulation experiments: a) to
measure the software o\erheads involved in the design and execution of a complicated,

data-directed multiprocess(or) control structure, b) to determine whether there really

exists a significant amount of parallel activity in

the speech-understanding task, ¢) to
unders

tand how the various forms of interprocess communication and interference,

especially that from data access synchronization in the blackboard, affect the »-

mount of
effeciive parallelis n realized, and d) to gain insight into the design of an appropriate

schedu'~o algoritbm for a multiprocess problem-solving structure. Certainly, any
results presented will reflect the detaile ¥ efficiencies and inefiiciencies of
system implementation being measured, but

sufficiently general thal

the particular
hopefully the organization of HSII is
the various statements will have a wider quantitative
applicability for those considering similar multiprocess control structures.

By way of summary, the primar, characteristics of the HSIl organization

advance the precis_e blackboard demands
Nonetheless, the information relating to

references is useful in scheduling processe

of each knowledge-source instantiation.
the locality of knowledge-source data
$ 50 as to avoid excessive deia access

interference (thereby improving the effective parallelism of the system).

e

e e = el e i PN e |

-—

include: a) multiple, diverse, independent and asynchronously executing knowledge

sources, b} cooperating (in terms of control) via a generalized form of the hypothesize-
and-test paradigm involving the data-directed invocation of ki‘owledge-source
processes, and c) conmunicating (in terms of data) via a shared blackboaird-like data
base in which the current data state is held in a homogeneous, multidimensional,
directed-graph data structure.]

The HSII Speech Understanding System: The Simulation Configuration

The configuration of the HSIl speech-understanding system, upon which the
following simulation results were based, consists of eight separate generic knowledge
sources (each of which may be realized by several active instantiations at any given
moment during the problem solutibn). each of which represents some body of knowledge
relevant to the speech-understanding task. Due to the excessive cost of the simulation
effort (and due to the limited stages of development of some available knowledge
sources), only a subset of the available knowledge sources was actually used in the !
simulation experiments, Appendix A (which was extracted from (Lesser, et al., 1974))
contans a more detailed description of the blackboard and the various knowledge
sources for the more complete HSIl speech-understanding system. Tha knowledge
sources used in the sinulation were: the Segment Classifier, the Phone Synthesizer
(consisting of two knowledge sources), the Phoneme Hypothesizer, the Phone-Phoneme]

y Synchronizer (consisting of three knowledge sources), and the Rating Policy Module.

| These knowledge sources are activated by half a dozen precondition processes (which
i are permanently instantiated in lhe system), which are continitously monitoring the
blackboard data base fcr events and data patterns relevan! to their associated
knowledfr,e sources. Both knowledge sources and preconditions may freely access the
centralized blackhoard data base, which consists of nine lexicon |eve|s.l The particular
levels used were chosen so as to facilitate the information exchange between the

various component knowledge sources.

This set of knowledge sources and preconditions and the associated operating

system facilities provided by the HSII organization were first implemented to execute on

L While there are eight concepival information levels within the HSII spee<h-
understanding system (see Appendix A), the tlackboard is abstractly segmen’ed
according to lexicons, rather than information levels, since lexicons allcw = finer
abstract decompaoasition of the blackboard.

15

a uniorocessor DECsystem-10 computer. The particular implementation represented
here was programmed in the Algol-like language, SAIL (Swinehart and Sproull, 1971),
using SAIL's multiprocessing facilities (Feldman, et al., 1972) and making extensive use
of its LEAP associative data storage facility (Feldman and Rovner, 1969). Thus, while
the hardware environment of this version of the HS|| speech-understanding system is
that of a single procescor, the software environment is the multiprocessing structure
described throughout this raper. The simulation experiments were then run using this
HSII contfiguration, simulating the hzrdware environment of a closely coupled
multiprocessor where processors can directly communicate with each other through
shared memory. The size of the HSII configuration used in the simulations was about
180K, 36-bit words; 70K of this total was the HSII operating system plus the SAJ.
runtime routines, 73K was precondition and knowledge source code plus variables, and
the remainder (which varied from 20K to 45K depending on the number of processors
being simulated and the number of processes being instantiated) represented the
blackboard data base plus process activation records and other SAIL working space.
The simulations were carried out to determine the efficiencies of the various HS]!
multiprocessing mechanisms discussed previously, as well as to gain some insight into
any problems that might arise in the ensuing implementation of a HSII speech-
understanding system for the Carnegie-Mellon C.mmp multiprocessm.l The following
sections will (iscuss the results of the various experiments which have been performed

using the multiprocessor-simulation version of the HSII speech-understanding system.

Simulation Mechanisms and Simulation Experiments

The various multiprocessor simulation results were oblained by modifying the
flow of control through the usual HSII multiprocessing organization to allow simulation
scheduling points every time a running process could interact in any way with some
other concurrently executing process. Such points included blackboard data base

accesses and data base access synchronization points (including attempts to acquire

data base resources, both at the system and user levels, and any resulting points of

I The implementation of the C.mmp version of the HSII speech-understanding system
thus far has been, in fact, essentially a dicect mapping of the DECsystem-10
implementation, with additiona: design being done as necessary to solve the particular
problems of running in the C.mmp environment (such as having to resolve the small
address space problem, wherein any given process may have at any one moment onty
a 32K-word window into the centrally located main memory).

process suspension due to tha unavailability of the requested resource, as well as the
subsequent points of process wake-up for retrying the access request). Simulation
scheduling points were also inserted whenever a data modification warning mescage
(triggered by moditying 2 tagged data field) was to be sent, as weli as whenever a
process attempted to receive such a message. The scheduling mechanism itselt was also
modified to allow for the simulated scheduling of mult:ple processing units, while
maintaining the state information associated with each processor being simulated (such
as the processor clock time of that simulated processor and the state of the garticular
process being run on that processor). The simulation runs were performed so as to
keep the processor clock-times of each processor being simulated in step with one
another (the simulaticn being event-driven, rather than sampled), thereby allowing for
the accurate measurement and comparison of concurrent events across processors. By
selecting the number of processors to be simulated and choosing the usual scheduling
parameters and precondition and knowledge-source parameters, a chronological trace ot
the activity of each process and processor could be obtained. By accumulating statistics
during the trace period and by performing various post-processing operations upon this
activity trace record, the simulation results presented in the following sections were
obtained.

Most of the results presented here were achieved by using a single set of
knowledge sources (as described above), with a single speech-data input utterance,
keeping the data base locking structure and scheduling algorithms essentially fixed,
while varying the number of simulated (identical) processors. Several runs were also
performed to te:t the etfects af altering the knowledge-source set, altering the locking
structure, and altering the mode of data input (the normal input mode being a utterance-

time -ordered introduction of input data which simulates real-time speech input).

Measures of Multiprocessing Overhead: Primitive Oneration Timings

Time measurements of various primitive operations were made using a 10-
microsecond hardware interval timer. Some of the timed primitive operations (such as
those involving simple data base access and modification) were not especially subject to
the fact that the prublem-solving organization involved multiple parallel processes,
whereas others (such as those involving process instantiation and process

synchronization) were directly related to the multiprocess aspects ot the organization

rd

5 - i i W 7|=-;f'-.-f" T

(and might even be taken in part as overhead when compared to alternative single-
process system organizations). The times for the various system operations, as shown
in Table 1, should be read as relative values, comparing the multiprocess-oriented
operations with the data accessing operations to get a retative feel for the overheads
involved in supporting and maintaining the multiprocess organization of HSIl. Keep in
mind that such time measurements are highly dependent on the particular
implementation and can change fairly radically when implemented differently. In fact, a
primary use of such timings is in determining operating system bottlenecks so that such
code sections can be rewritlen in a more optimal way. As a result, some primitive
operations reflect execution times which are a result of extensive optimization attempts,
while other operations (in particular, the "super lock” operations, lock! and unlock!)

have not yet been subjected to this optimization.

Table 1 gives timing statistics relating to the costs involved in maintaining the
shared, centralized blackboard data base. Two sets of statistics are given, one set
showing the operation times without the influence of data access synchronization
(blackboard locking) and one set with the locking structures in effect. These two sets
of times give a quantitative feeling for the cost of data access synchronization
mechanisms in this particular implementation of HSIl. The figures given include the
average runtime cost per operation, the number of calls (in this particular timing run) to
each operation (thereby showing the relative frequencies of operation usage), and the
percentage of the overall runtime consumed by each operation. With respect to the
individual entries, create.node is a composite operation (involving many field-writes and
various local context updates) for creating blackboard nodes. The read.node.field and
write.node.field operations are used in accessing the individual fields of a node. Note
that included in any given field-read or -write operation is the cost of perhaps tagging
(or untagging) that parlicutar field (or its node). The various functions of the
blackboard monitoring mechanism are contuined within the field-write operations. Thus,
also included in the field-write operation is the cost of distributing the data event
resulting from the write operation to all relevant precondition and knowledge-source
process local contexts, as well as the cost of se-ding tag messages to all processes

which may have tagged the field being modifiect; these additional costs are also

aicounted for independently in the send.msgs.and.events and notify.sset table entries.
Field-write operations are also responsible for evaluating any pre-preconditions

associated with the field being modified and activating any precondition whose pre-

e e - T ——— DR

7 total runtime mean time (ms) number of calls
w/o w/ w/o w/ w/o w/
lock lock lock lock lock lock

Blac kboard Accessing:
create.node 6.96 415 35.81 50.77 287 287
read.node.field 5.06 15.68 031 2.03 23577 25279
write.node.field - 14.13 7.7 13.96 18.44 1493 1476

Blackboard Associative Retrieval:

retrieve) 2.72 498 25.07 109.45 160 160
get.time.adjacent 9.31 16.33 23.44 92.00 586 586
get.struct.adjacent 3.99 6.31 43.35 163.20 136 136
get.nodes.in.rgn 2.05 0.87 298 3.00 1015 1015
Process Handling: .

invoke.ks 5.29 2.30 22.64 22.€4 345 342
create.ks.prcs 0.75 0.31 3.21 3.22 345 342
ks.cleanup 820 5.24 35.06 53.94 345 342
\nvoke.pre 0.10 1.04 10.44 1059 14 i4
create.pre.prcs . 0.42 0.40 * 853 1957 72 72

Local.Context Maintenance: '

transfer.tags 7.12 2.99 9.12 9.17 1152 1149
delete.all.tags 0.52 0.22 2.01 2.03 383 380
notify.sset 6.52 301 2.63 2.92 3665 3626
send.msgs.and.events 4.04 2.12 3.68 4.68 1021 1594
receive.msg 0.36 0.15 1.00 1.01 531 530
read.cset.or.sset 0.11 0.05 0.84 084 - 192 192

Data Access Synchronization:

lock! (overhead) --- 7.78 --- 57.47 --- 476
unlock! (overhead) --- 3.22 -- 23.78 --- 476
lock.node --- , 232 --- 2.94 --- 2770
exam.node --- 9.34 -- 2.40 --- 13675
lock.rgn --- 0.11 --- 1.77 --- 227
write.access.chk --- 0.41 --- 0.98 --- 1470
read.access.chk -- 14.45 --- 1.60 --- 31761

Table 1. Primitive Operation Times

19

i ey Ll ' po o e s : -
e i e S © " g - S ———

precondition s satisfied. Included in the cost of reading a data field (e.g,
read.node.field) is the cost of veritying the access right of the calling process to the
node being read {which cou'd involve a temporary-locking Operation,l the cost of which

is also given independently in the lock.node tabte entry); this access-right checking cost
is also separately accounted for by the read.access.chk operation. It should be noted
that because most of the mechanisms required to implement a data-directed control
structure are embedded in the blackboard write operations, the time to execute a write
operation is significantty more expensive than a read operation. However, the ac'ual
- cost in terms of total run time of implementing a data-directed control structure is
comparztively small in the HSII speech-understanding system, because the frequency of
read operations is much higher than that of write operations. It *his relative frequency
for read and write operations holds for other task domains (e.g., vision, robotics), then a
| data-directed contro structure (which is a very general and modular type of sequencing
paradigm) seems to be a very reasonable framework within which to implement such
tasks.

' Additional olackboard operation costs are described in the Associative
Retrieval section of Table 1. Associative retrieval is based on specitying partial node
descriptions (called matching prototypes) which serve as a means of retrieving the set
of blackboard nodes fitting that partial descriplion. Retrieve represents the various

retrieval operations possible using these matching prototypes. Retrieval from the

blackboard may also be done by requesting the nodes which are time-adjacent

(according to the utterance-time dimension of tho speech-understanding blackboard) or

structuraily adjacent (according to the blackboard graph structure) to a given node (or
set of nodes); get.time.adjacent and get.struct.ad jacent perform these operations.
Furthermore, retrieval may he done by requesting the set of nodes contained within a
certain region of the blackboard (by get.nodes.in.rgn).

Teble 1 also relates the costs of process handling within HSII. Process

invocation and process creator are separated (the former being a request from a

; precondition or knowledge-source process to the scheduier to perform the latter), and
¢ the costs are accounted separately, as in invoke.ks and create.ks.pres. Ks.cleanup is the
i Ly a process has not previously locked the node to which it desires access and the

process does not have any other node locked, then the system will temporarily lock
the node for the duration of the single read or write operation, without the process
having explicitly to request access to the node.

20

R e SRR A

cost of terminating a knowledge-source process; preconditiunc never get terminated.
The cost of initializing and terminating a knowledge-source process (l.e., invoke.k: and
ks.cleanup) is due to the overheads involved in maintaining local ccrtexts, locking
structures, and data base monitoring (tagging), all ot which are necessitated by the
multiprocess nature of the HSII organization. However, in a retative sense, this 1s not
expensive, since the total overhead associated with process handling amounts to only

about 97 of the overall execution time.

Additionally, local context maintenance costs are given in Table 1, since they
are also a cos! of having asynchronous paralle! processes. While individual tag creation
and deletion is handled by the primitive tield-read and -write operations, tags may be
transferred from a precondition to the knowledge source it has invoked via transfer.tags
and destroyed at termination of a process via delete.alltags. As noted above, nott[y.sset
and send.msg.and.events are sub-operations of the field-write operations and represent
the cost of distributing data event notifications to all relevant local contexts.
Receive.msg is the operation used by precondition or knowl ‘ge-source processes to
receive a tagging message (or perhaps wait for oqe, if one does not yet exist); and

read.cset.or.sset is the operation for retrieving the information from a local context.

Finally, Table 1 gives the costs associated with the data access
synchronization mechanism. Lock! and unlock! represent the overhead costs of lockiny
and unlocking ¢ group of nodes specified by the process requesting access rights.
These two operations are among the most complex routines in the HSIl operating
system, the complexity arising from having to coordinate the allocation of data base
resources by two independent access allocation sthemes (node-locking and region-
locking). This coordinalion is necessary in order to avoid any possibility of data base
deadlock by ma‘ntaining a homogeneous linear ordering among all data resources (nodes
and regions). The zosts of lock! and unlock! do not include the time spen’ in performing
the actual primitive locking operations. The primitive lock costs are given by lock.node
(lock a node for exclusive access), exam.node (lock a node for read-only access), and
lock.rgn (lock a region for exclusive access). The access-checking operations
(write.access.chk and read.accesschk) are ied by the blackboard accessing routines

discussed above.

These timing statistics can be used to determine ihe amount of system

overhead incurred ‘n running precondition and knowledge-source processes under the

wls

R e e I s T
-

HSII operating system. The following summary statistics are offered, given as
percentages of the total execution time, the percentages being calculated sc as to avoid
overlapping between categories (as, for example, factoring blackboard reading costs out
of blackboard access synchronization):

Blackboard reading 167
Blackboard writing 47
Associative retrieval 77
Internal computations of processes 277
Local context maintenance ' 107
Blackboard access synchronization 277
Process handling 97

Another way of viewing these figures is that approximately half of the execution time
involves multiprocessor overheads (ie., local context maintenance, blackboard access
synchronization, and process handling). Based on the assumption that this multiprocess
overhead is independent of the parallelism factor achieved,1 then a parallelism factor of

2 or greater is required in order to recover the multiprocess overhead.

Effective Parallelism and Processor Utilization

The preblem-solving organization underlying HSIl was designed to take
maximum advantage of any separability of the processing or data components available
within that organization. Knowledge sources were intended to be largely independent
and capable of asynchronous execution in the form of knowledge -source piocesses,
Overall system control was to be distributed and primarily data-directed, being based on
events occurring in a globally shared blackboard data base. The intercommunication
(and interdependence) of the various knowledge-source processes was to be minimized
by making the blackboard data base the primary means of communication, thereby
exhibiting an indirection with respect to communication similar to the indirect data-
directed form of process control. Such a problem-solving nrganization was believed to
be particularly amenable to implementation in the hardware environment of a network

of closely-coupled asynchronous processors which share a common memory. Given

1 This assumption, based on timing statistics from a series of runs with different
numbers of processors, seems valid except for the coct of context swapping and
process suspension, which depends upon the amount of ¢a‘a base interference and
the number of p-ocessors.

22

R

-

e . i 4,_-~—-——

This n~cessary cooperatio « (and the various forms of execution interference resulting
from i) was expected) resylt in the achieved parallelism in q multiprocessor
environment being somewhat less than 'he potential parallelism without interference.

Several experiments were ryn to measure the parallelism achieved in this
particular implementation of the HS] problem~solving organization using varying
numbers of idenﬁcal'processors‘ Each of these experiments was run with the
knowledge -source set described previously, using the same input data (introduced into
the data base S0 as to simulate real-time speech input), the same blackboard locking
structure, and the same scheduling algorithm, while varying the number of (identical)
Processors. An example of the grapnical output produced by the simulation, for the

: case of eight processors, is displayed in Figure 3. To comment on these activity plots,
the “# runnable Processes” plot gives the number of processes either running or ready
to run at each simulation scheduling point; the "« running processes" plot gives the
number of actively exe.uting processes at each scheduling point; the "u ready

plot shows the number of processes awaiting assignment to a processor at
each scheduling point; and the “u suspended processes"” plot gives the number of

Processes blocked from executing because of data access interference or because they

are waiting on the veceipt of a tagging message.

Referring to Figure 3¢, notice the spiked nature of the ready-processes plot,
This is a resylt of delaying the execution of a precondition (due to the limited
Processing power available) beyond the point in time at which its pre-precondition is

{ " Note that the size of the HSIl blackboarg is expected to grow to only several
| thousand nodes (hypotheses and links), at, say, 25 field entries apiece, depending, of
Course, on the task domain, Thus, it is assumed (for the purposes of the current
investigations, at least) that the blackboard is entirely resident in primary memory;
thus, input foutput Operations are not an issue hcre, the system being essentially
tompute-bound,

23

runnable ? # running
processes processes

U‘ e i #’Lﬂf 4]

Il)

] S8 100 158 209 250 300 358 400

time (sec)

4 ready # suspended
processes s b processes

)
PPp——d
108 150 200 250 3w 299 400

tima (sec)

Figure 3a-d. 8 Processors

sﬂ"ﬂ s' e "Ff

1

1

gl 7

[\

S0

$9

100

100

150 200 250 308 350 40

time(soc)

b

159 20 350 390 350 +e0

time (gsac)

d

tirst satisticd: the longer a precondition is delayed, the more data events it is likely to
accumulate in the meantime, and the mure knowledge-source processes it is likely to
instantiate once it does get executed; hence the soiked nature of the resuitant ready-
processes plots for configurations of few processors. As parallel processing power
increases, preconditions can more often be run as soon as their pre-preconditions are
initially satistied, and the spiking phenomenon subsides.

As an example of how these activity plots have been used in upgrading the
performance of the implementation, compare Figure 4 to Figure 3c. Figure 4 depicts the
process activity under the control of a scheduler which did not attempt to perform load
balancing with respect to ready preconditions; and as a result of not increasing the
relative scheduling priority of preconditions as they received more and more data
events, the activity spike phenomenon referred to above became predominant, to the
extent of reducing process activity to a synchronous system while the long-time waiting
precondition instantiates a great many knowledge-source processes all at once.,! Figure
3¢ shows the activity on the same number of processors, but using a somewhat more
intelligent scheduling algorithm, with a resulting reduction in the observed spiking
phenomena. This improved scheduling strategy is the one used for all plots presented
herein.

In addition to the plots described above, various other measures were made
to allow an explicit determination of processor utilization and effective parallelism for
varying numbers of processors. Referring to Table 2, one can get a feeling for the
activity generated by employing increasing numbers of processors. All simulations
represented in Table 2 were run for equivalent amounts of processing effort with
respect to the results created in the blackboard data base by the knowledge source
activity. The final clock time of the multiprocessor configuration being simulated is
given i1 simulated real-time seconds, and the accumulated processor idle and lost times
are also given. Idle rime is atlributed to a processor when it has no process assigned
to it and there are no r~.dy processes to be run; lost time is attributed when the

process on a processor is suspended for any reason and there are no ready processes

1 This can be inferred from Figure 4 by noting that the sample points (vertical tick
marks) are taken at each simulation scheduling point, and the lack of samples between
times 220 and 380 indicates that the process that started running at 220 had no
concurrently running processes competing with it until time 380, when there were
suddenly 25 new processes contending for computing resources.

f ready processes

- e e il o N

15

40

[y

Iy

4!1.7(" LIRS 3 e 4

on e I W0 Sve (1L 00

time (sec)

.

Figure 4. 8 Processors-old scheduling straiegy

0o

EAY

1000

i e e = S I -
e e
number of prcrs 1 2 q 8 16 32
(all times in secs) (specials)
KS instantiations 355 401 423 421 41% 434
PRE activations 82 126 173 213 200 229
multiprer clock time 1076 634 389 350 351 43
total idle time 9 15 37 380 2608 867
total lost time 0 5 34 900 1546 0o
avg cxt swaps 0 309 942 368 9 0
avg prer utilization 997 987 957 547 267 377
effective » prers 0.99 1.96 3.80 432 4.16 11.84
utilization speed-up 1.00 1.98 3.84 4.36 420 11.96

* The 32-processor column represents an experiment which
was run under special conditions, to be explained below,
and should not be compared cirectly to the other columns
of the table.

Table 2. Processor Utilization

which could be swapped in to replace the suspended process. Processor utilization
(calculated using the final clock time and processor idle and lost times) is given in Table
2; Figure 5 shows the corresponding eftective parallelism (speed-up), based on the
.processor utilization factors of Table 2.

The speed-up for this particular selection of knowledge sources is
appreciable up to four processors, but drops off substantially as one approaches
sixteen processors. In fact, a rather distressing feature of this effective parallelism plot
is that the speed-up actually decreases slightly in going from eight processors to a
sixteen-processor configuration (from a speed-up of 4.36 over the uniprocessor case,
down to 4.20). This may be explained by ncting that both the eight- and sixteen-

processor runs had approximately equal final clock times; but in the sixteen-processor

27

speed up » 100

4 processorse

Figure 5. Effective Parallelism According to Processor Utilization

case, the number of runnable processes never exceeded sixteen processes, sO any
ready process could always be accommodated immediately. As a result, the number of
knowledge-source instantiations and precondition activations fell off a bit from the
eight-processor case, because the preconditions were more likely to be fully satisfied
the first time they were activated (since all ready-processes, knowledge-source
processes in particular, could be executed immediately and complete their intended
actions sooner, so that when a precondition came to be activated, it would more likely
find its full data pattern to be satisfied); thus, preconditions would not often be aborted,
having to be re-tested upon receiving a subsequent data event. However, running
tewer preconditions resulted in much more idle time for the sixteen-processor
contiguration (the increase in lost time indicated in Table 2 is an artifact of having too
many processors available, since suspended processes would tend to remain on
otherwise idle processors rather than being swapped off the processor -- note the
rather dramatic decrease in context swaps indicated by Table 2 for the sixteen-
processor case). The result is a lower proportionate utilization of the processor
configuration, and hence a decrease in the effective parallelism from the eight-

processor configuration to the sixteen-processor configuration.

Due to the limited state of development of the tolal set of knowledge sources,
the set of knowledge sources used in the simulation was necessarily limited; so the fact

that these plots indicate that not more than about four to eight processors are being

effectively utilized is not to say that the full HSII speech-understanding system needs

only eight processors. One might ask that if only 4.16 processors of the sixteen-
processor configuration are being totally utilized (see Table 2), what is the maximum
potential effective parallelism, given this set oi knowledge sources? To answer this
question, an experiment was performed in which effectively infinite processing power
was provided to this knowledge-source set and all data access interference was
eliminated (by removing the locking structure overheads and blocking actions); the
scheduling algorithm was kept unchanged, as was the input data, although the input data
stream was entered so as to be instantaneously available in its entirety (rather than
being introduced in a simulated real-time, “left-to-right” manner). The results of this
experiment are summarized by the 32-processor column of Table 2 (32 processors was
an effective infinite computing resource in this case, since eight of the processors were
never used during the simulation). Notice that no lost time was attributed to the run,

due to the lack of locking interference; and the resultant processor utilization was 377

¢
1

e i - = =i

of 32 processors, or 11.84 lotally utilized processors. Thus, data base interference
caused by particular data hase accessing patterns and as ociated loching structures of
the knowledge source set used in the experiment significartly affected processor
utilization; if the use of the locking structures could be accomplished in a more non-
interfering manner, the speed-up indicated by the eight- or sixteen-processor
configurations could be increased substantially. The next section will analyze in detail
the exact causes for this data base inteference, and propose changes to the knowledge-

source locking structure so as to reduce potential inleference.

Table 3 presents some other system configurations to show effective
processor utilizations under varying conditions. The first row repeats the statistics of
the sixteen-processor case of Table 2; the second row is a summary of the 32-
processor case of Table 2, as described above. Three further data points are offered
to indicate the effects of increasing the size of Ihe knowledge-source set. The last
three rows of Table 3 involve experiments using an expanded knowledge-source set
consisting of the knowledge sources of all the previous runs plus the Syntactic Word
Hypothesizer (see Appendix A) and its precondition. Using this expanded knowledge-
source set, simulations were performed to evaluate the effects of this knowledge -source
set on a sixteen-processor configuration with the locking structure in effect, presenting
the input data in the usual “left-to-right" manner, as well as in the instantaneous
manner used in the infinite-processor test. Comparing the results (in Table 3) to the
original sixteen-processor run, the “left-to-right" input scheme a:hieved a processor
utilization of 337, up 77 from the smaller knowledge-source set case; and by presenting
all input data simullaneously, the utilization rose to 357. The fifth row of Table 3
represents the results of providing effectively infinite computing power (only 25
processors were ever used during the run) to the expanded knowledge-source set and
eliminating a. data access interference, in the same manner as for the experiment of the
second row. In this “optimal" situation for the expanded knowledge-source set,
processor utilization was measured at 467, or 14.72 totally utilized processors. Again, it
may be noted 'inat a more effective (less interfering) use of the locking structures can

result in substantial increases in processor wutilization and e‘fective parallelism.

The addition of the Syntaclic Word Hypothesizer was able to achieve the
increases in utilization noted in Table 3 because it operates on lexicons that are used
by only one other knowledge source (the Phoneme Hypothesizer) in the basic
knowledge-source set; hence, the process interference introduced by adding this

30

[

s il e € ol e e i i,

experiment multiprer 7 util effective
description clock @ prers

8 KS’s, 6 PRE’s 351 4.16
16 prers, w/ lock
1-to-r input

8 KS’s, 6PRE’s
32 prers, w/o lock
instantaneous input

9 KS’s, 7 PRE’s
16 prers, w/ lock
i-to-r input

9 KS’s, 7 PRE’s
16 prers, w/ lock
instantaneous input

9 KS’s, 7 PRE’s

32 prers, w/o lock
instantaneous input

Table 3. System Configuration Variations

knowledge source was minimal. Unfortunately, the development of knowledge sources
at lexico levels which more directly conflict with those of existing knowledge sources
has been limited, so direct experimentation on the interfering effects of such knowledge
sources could not be performed; but based on the observations comparing the 32-
processor without-lock experiments to the original sixteen-processor with-lock runs,
substantial interference due to ineffective use of the locking structure would be
expected in such cases of adding "competing” knowledge sources. One mitigating
circumstance which could alleviate such interference was noted in the "instantaneous”

input case of the expanded knowledge-source set case, as compared to the "“left-to-

A e e ui.a-m.ﬂ#-éﬂw - ——a., - e

right“ input case: if process activity can be spre:.d across the utterance-time dimension
of the blackboard, process interference would decrease -- but interference due to data
access synchronization interference can easily overwhelm this improvement. Further
experiments along these lines will be attempted as the appropriate knowledge sources

become available for use.

Execution Interference Measurements

In addition to the primitive operation timings and achieved parallelism
measurements given above, various other measurements were made to determine the
various aspects of system performance as related to multiprocessing. As has already
been inentioned, a major concern in a multiprocess environment in which the various
processes are not entirely independent is that of erecution interference. Execution
interference may arise whenever any given process enters a critical section within
which it requires the integrity of a given data structure be maintained (thereby
necessitating a means by which to disallow access to otherc until the critical section is
exited). Execu‘ion interference may also arise whenever processes must synchronize
their activilies ind perhaps cause themselves to wait on an event based on an action
which is to be performed by some external process. Thus execution interference may
arise due to causes erxternal to5 the process being delayed (as in the c:se of trying to
access a data structure which s currently held for exclusive access by another
process), or the interference may arise due to causes internal to the process being
delayed (as when a process delays itself by waiting for the occurrence of an externally
caused event). As a result of the HSII design philosophy, ', hich states that the various
knowledge-source processes should be as independent 7. possible in specification and
execution, most of the execution interference experienceu in HSII is of the external
variety, wherein a process is delayed due to external causes unknown to itself (and the

delay itself is transparent to the process being delayed).

As previously described, there are two methods in the HSII system for
preserving data integrity: a) guaranteeing exclusive access through the use of node-
and region-locking primitives, and b) placing data assumptions in the blackboard,
through tagging primitives, which when violated cause a signal to be sent to the process
making the assumption. There is an interesting balance in terms of execution overhead

and execution interference between these two techniques. The region-locking

32

-

technique is least costly in terms of execution overhead and is the easiest to embed in a

program but causes the most execution interference. This is in contrast to the use of

stly in terms of execution overhead and is the most difficult

tagging which is the most co
e methods

to embed in a program but causes the least execution interference. Both thes
were used for guaranteeing data integrity in the precondition and knowledge-source set

that was used in the simulation experiments.

In structuring each knowledge source $0 as to preserve its data integrity, no

a priori assumptions were made about the non-modifiability of any blackboard data that

knowledge source used in its processing (i.e., it was assumed that any blackboard

information that the knowledge source read could perhaps be moditied by some other

concurrent knowledge-source). This self-contained approach ‘o the design of a

knowledge source’s locking and tagging structure is required if the modularity of the

system, with respect to deletion or addition of knowledge sources, is to be preserved.

The knowledge sources that were used in the simulation experiments were
not orizinally designed so that they could be interrupted at arbitrary points in their

processing, and consequently they lacked the appropriate locking and tagging structure
The addition, as an

o these knowledge

to guarantee data integrity in a multiprocess(or) environment.
afterthought, of the appropriate locking and tagging structure t
sources was some (imes quite difficult. This was an especially serious problem when an

attempt was made to put tagging primitives into knowledge sources which had internal
the

n the

backtracking control structures for searching the node graph structure in
blackboard. This difficulty arises because previously made data assumptions (tags i
blackboard) associated wilh a partial path (sequence of nodes in the blackboard) must
be removed upon discovering that the path cannot be successfully completed. Thus,
most of the knowledge sources in the cxperiment did not use tag ing as a method of
guaranteeing integrity, but rather used a combination of node- and region-locking.
However, preconditions, which have a much simpler structure and generally do not write
in the blackboard, were moditied to use the tagging mechanism. In addition, to further

simplify knowledge-source locking structures, region-locking was used wherever

possible. This excessive use of region-locking was mainly responsible for the significant
amount of interference among processes which caused the effective processor

utilization to go from an optima 12 to a realized 4 (see Table 2).

Figure 6 shows an interesting case demonstrating that the indiscriminate use

g .’-“"-—

of region-locking can obstruct the execu'ion progress of many processes and thereby
temporarily reduce the effective parallelism of the system. it represents a snapshot of
the blackboard locking structure taken during the exccution of the simulation. The grid
structure represents the two-dimensional abstract data structure, the dimensions being

lexicon level and region element number (corresponding 1o the utterance-time

dimension). At the point of each snapshot, the outstanding node and region locks are

indicated, as well as the areas requested ‘but not yet obtained) by suspended
processes. The various (non-interfering) tags placed throughout the data base are also
indicated. The key indicates the sets of active and suspended processes (the names
referring to the precondition and knowledge source names, and the numbers in the
names indicating = process instantiation index unique to that particular process). This
particular snapshot was taen from the sixteen-processor simulation run with the
emaller knowledge-source set. Notice that PSYN263 has locked regions at the PHON,
MXN, and PSEG lexicon levels for its exclusive access; the nodes locked by PSYN263
(hyputheses being indicaled by H<sequence number>, and links by L<sequence number>)
within these regions are those being created by PSYN263, hence the reason for the
region locks. Unfortunately, this locking action resulted in the suspension of six other
processes awaiting access to parts of the PHON and PSEG lexicon levels which o -erlap
PSYN?63's region-locks. Each of these suspended processes is waiting to <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>