

«■■ ^r ll-1 ' '■'■ ^ " ■^^

^ ■

lESIU ft,

m
MC

■MMMI

»Mi ttrttM V

D

■MMMMMMMI cwo PARALLELISM IN AI PROBLEM SOLVING:
A CASE STUDY OF HEARSAY II

R. D. Fennell and V. R. Lesser
Dop«, tment of Computer Science1

Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

October, 1975

D D C

JUN 3 1976

EisEinnsiyj
D

ABSTRACT

The Hearsay II speech-understanding system (HSII) (Lesser, et al., 1974;

Fennell, 1975; Erman and Lesser, 1975) is an implementation of a knowledge-based

multiprocessing Al problem-solving organization. HSII is intended to represent a

problem-solving organization which is applu able for implementation in a multiprocessing

environment, and is, in particular, currently being implemented on the Cmmp

multiprocessor system (Bell, et ai., 1971) at Carnegie-Mellon University. The object of

this paper is to explore several of the ramifications of such a problem-solving

orgiiniz?tion by examining the mrxhamsms and policies underlying KSH which are

necessary for supporting its organization as a multiprocessing problem-solving system.

First, an abstract description of a class of problem-solving systems is given using the

Production System model of Newell (1973). Then, the HSII problem-solving organization

is described in terms of thir model. The various decisions made during the course ot

design necessitated the introduction of various multiprocessing mechanisms (e.g.,

mechanisms for maintaining data localizatior and data integrity), and these mechanisms

are discussed. Finally, a simulation -♦■jjy is presented which details the effects of

actually implementing such a problem-solving organization for use in a particular

application area, thct of speech understanding.

This research was supported in part by the Defense Advanced Research Projects
Agency of the Office of the Secretary of Defense (Contract F44620-73-C-G074) and
monitored by the Air Force Office of Scientific Research

I

^—x MM

"P-"»-

INTRODUCTION

Many AI problem-solving tasks require large amounts of processing power in

order to achieve solution in any given computer implementation of a problem-solving

strategy. The amount of processing power required is directly related to the si?e of

the search space which is examined during the course of problem solution. Exhaistive

■ earch of the state space associated with almost any problem of interest is preceded

cue to the sheer size of the state space.1 In most problem-solving attempts, heuristics

a e employed which prune the search space to a more manageable size. However,

searching even the reduced state space often requires large amounts of processing

power. The demand for sufficient computing power becomes critical in tasks requiring

real-time solution, as if the case in the speech-understanding task with which this paper

is primarily concerned. For example. | speech-understanding system capable of reliably

understanding connected speech involving a large vocabulary and spoken by multiple

speakers is likely to require from 10 to 100 million instructions per second of computing

power, if the recognition i- to performed in real time.2 Recent trends in technology

suggest that this computing power can be economically obtained through a closely-

coupled network of asynchronous "simple" processors (involving perhaps 10 to 100 of

these processors). (Bell. * <U., 1973, and Heart, * ol, 1973). The major problem (from

the problem-solving point o' view) with this network multiprocessor approach for

generating computing power is in devising the various problem-solving algorithms in

such a way as to exhibit a structure appropriate for exploiting the parallelism available

in the multiprocessor network, for it is only by taking advantage of this processing

parallelism that the desired effective computing power will be achieved.

The Hearsay II speech-understanding system (HSII) (Lesser, et aL 1974;

Fennell, 1975; and Erman 2-d Lesser, 1975) currently under development at Carnegie-

Mellon University represents a problem-solving organization that can effectively exploit

a multiprocessor system. HSII has been designed as an AI system organization suitable

for expressing knowledge-based problem-solvent strategies in which appropriately

As an example, consider the chess-playing task. In an end game situation, there are
typically 20 legal moves at each ply (half move); so for a search depth of 6 plies, the
sear-.h space will have 64 million branches.

The Hearsay I (Reddy, et ai., 1973a,b,c and Erman. 1974) and Dragon (Baker, 1975)
speech understanding systems require approximately 10 to ?0 mips of computing
power for real-time recognition when handling small vocat"' es.

 „^

mmm imrw

orgamzed cubject-matter Knowledge may be represented as fcnW^e »ourc« capable

of contnbutmg the.r knowledge in a parallel data-d.rected fashion. A klMwMp ^rct

may be described as an agent that embod.es the knowledge of a part-cular aspect of a

problem domain and It useful in solving a problem from that domain by performing

actions based upon its knowledge so as to further the progress of the overall solut.on.

It is felt that the knowledge source is an appropriate unit for use m the decomposition

of a Knowledge-intensive task domain. Knowledge sources, being suitably organiZed

capsules of sub)ect-matter knowledge, may be mdependently formulated as vanous

pieces of the knowledge relevant to a task doma.n become crystallized. The HSU

system organ.zat.on allows these various independent and diverse sources of knowledge

to be specified *d their interactions coordinated so they might cooperate with one

another (perhaps asynchronously and m parallel) to effect a problem solut.on. M an

example of the decomposition of a task domam mto knowledge sources, in the speech

task doma.n there NfM be distinct knowledge sources to deal with acoustic, phonetic,

lexical, syntactic, and semantic information. While the speech task is the f.rst test of the

multiprocessing problem-solv.ng organization of HSU. it is believed that the system

organization provided by HSU is capable of expressing other knowledge-based AI

problem solving strategies, as might be found m vision, robotics, chess, natural language

understanding, and protocol analysis. In fact, proposals are under way which will

further test the applicab lity of HSH by implementing a system for the analysis of

natural scenes usmg the HSI! problem-solv.ng organization (Ohlander. 1975).

The rest of this paper will explore several of the ramifications of such a

problem so'vmg organization by examining the mechamsms and polices underlying HS1I

which are necessary for supporting its orgamzat.on as a multiprocessing problem-

solving system. First, an abstract description of a class of problem-solving systems is

given Ming the Production System model of Newell (1973). Then, the HS11 problem-

solving organization ,s desenbed m terms of this model. The various decisions made

durmg the course of design necessitated the introduction of various multiprocessing

mechanisns (e.g., mechanisms for maintaining data localization and data mteg ity), and

these mechanisms are discussed Finally, a simulation study is presented whicn details

the effects of actually implementing such a problem-solving organization m a

multiprocessor environment. '

- - ^^^ ■«■■HBMMBH.

w—^

THE MODEL

An Abstract Model for Problem Solving

In the abstract, the problem-solving organization underlying HSII may be

modeled in terms of a "production system." (Newell, 1973), A production system is a

scheme for specifying an information processing system in which the control structure

of the system is defined by operations on a set of productions of the form 'P -. A',

which operate from and on a collection of data structures. 'P1 represents a logical

antecedent, called a precondition, which may or may not be satisfied by the information

encoded within the dynamically current set of data structures. If 'P' is found to be

satisfied by some data r.fructure. then the associated action 'A1 may be executed, which

presumably will have some alt -ing effect upon the data base such that some other (or

the MM») precondition becomes satisfied. This paradigm for sequencing of the actions

can be thought of as a data-directed control structure, since the satisfaction of the

precondition is dependent upon the dynamic state of the data structure. Productions

are executed as long as their antecedent preconditions are satisfied, and the process

halts either when no precondition is found to be satisfied or when an action executes a

stop operation (thereby signalling problem solution or failure, in the case of problem-
solving systems).

The HSII Problem-Solving Organization: A Production System Approach

The HSII system organization, which can be characterized as a "parallel"

production system, has a centralized data base which represents the dynamic problem

solution state. This data base, which is known as the blackboard, is a multidimensional

data structure which is readable and writable by any precondition or knowledge-source

process (where a Knowledge-source process is the embodiment of a production

action). Preconditions are procedurally oriented and may specify arbitrarily complex

tests to be performed on the data structure in order to decide precondition satisfaction.

As an example, the dimensions of the HSII speech-understanding system data base
are informational level (e.g acoustic level, phonetic level, and word level), utterance
time (speech time measur d from the beginning of the input utterance), and data
alternatives (where multiple hypotheses are permitted to exist simultaneouslv at the
same level and utterance time). For additional details, see Appendix A.

!

 MM _ 1 —. L ^

^•BT^^^^BF .■""■ ■'

Preconditions are themselves data-directed m that they are tested for satisfaction

whenever relevant changes occur in the data base;1 and simultaneous precondition

satisfaction is permitted. Testing for precondition satisfaction is not presumed to be an

instantaneous or even an indivisible operation, and several such precondition tests may

proceed concurrently.

The Knowledge-source processes representing the production actions are also

procedurally oriented and may specify arbitrarily complex sequences of operations to

be performed upon the data structure. The overall effect of any given knowledge-

source process is usually either to hypothesize new data which is to be added to the

data base or to verify (and perhaps modify) data oreviously placed in the data base.

This follows the general hypothesue-and-test problem-solving paradigm wherein

hypotheses representing partial problem solutions are generated and then tested for

validity; this cycle continues until the verification phase certifies the completion of

processing (and either the problem is solved or failure is indicated). The execution of a

Knowledge-source process is usually temporally disjoint from the satisfaction of its

precondition; the execution of any given Knowledge-source process is not presumed to

be indivisible; and the concurrent execution of multiple Knowledge-source processes is

permitted. In addition, a precondition process may invoKe multiple instantiations of a

Knowledge source to worK on the different parts of the blacKboard which independently

satisfy the precondition's pattern. Thus, the independent data-directed nature of

precondition evaluation and Knowledge-source execution can potentially generate a

significant amount of parallel activity through the concurrent execution of different

preconditions, different Knowledge sources, and multiple instantiations of a single

Knowledge source.

1 In effect, preconditions themselves have preconditions, call them "pre-preconditions."
In HSII, Knowledge-source preconditions (which correspond to action preconditions in
the production system model) may be arbitrarily complex. In order to avoid executing
these precondition tests unnecessarily often, they in turn have pre-preccnditions
which are essentially monitors on relevant primitive data base events (e.g., monitoring
for a change to a given field of a given node in the data ba^e, or a given fiele of any
node in the data bar.e). Whenever any of these primitive events occurs, those
preconditions monitoring such events are awaKened and allowed to test for full
precondition satisfaction. These data events are used by the precondition process as
pointers to the specific parts of the data base which may now satisfy the pattern the
precondition is monitoring for. During the period between when the precondition
process has been first awakened and the time it is executed, the monitoring for
relevant data base events continues. Thus, a precondition process, when finally
executed, may checK more than one part of the data base tor satisfaction.

-- ■

• VI11 T—

The basic structure ar»d components of the HSII organization may be depicted

as shown in the message transaction diagram of Figure 1. The diagram indicates the

paths of active information flow between the various components of the problem-

solving system M solid arrows; paths indicating control activity are shown as broken

arrows. The major components of the diagram include a passive global data structure

(the blackboard) which contains the current state of the problem solution. Access to the

blackboard is conceptually centralized in the blackboard handier module, 1 whose

primary function is to accept and honor requests from the active processing elements to

read and write parts of the blackboard. The active proceso.ng elements which pose

these data access requests consist of knowUdae-soarce process«: and their associated

precondtHons. Preconditions are activated by a blackboard momtonng mechanism

wtveh monitors the various write-actions of the blackboard handler; whenever an event

occurs which is of interest to a particular precondition process, that precondition is

ac.ivated. If upon further examination of the blackboard, the precondition finds itself

"fatisfied," the precondition may then request a process instantiation of its associated

knowledge source to be established, passing the details of how the precondit.on was

satisfied as parameters to this instantiation of the knowledge .ource. Once instantiated,

the knowledge-source process can respond to the blackboard data condition which was

detected by its precondition, possibly requesting further modifications be made to the

blackboard, perhaps thereby triggering further preconditions to respond to the latest

modifications. This particular characterization of the HSII organization, while certainly

overly simplif ed, shows the data-driven nature of the knowledge source activations and
interactions

The following sections of this paper will attempt to refine this diagram of the

HSII orgamzation by pointing out the difficulties that arise from this oversimplified

representation of the organization and by supplementing the various components of this

simple dMgram to resolve these problems and result in a more complete organization for

AI problem-solving in multiprocessing environments. A more complete message

transaction diagram for HSII will be presented in a subsequent section.

The blackboard handler module could be implemented either as a procedure which is
called as a subroutine from precondition and knowledge source processes, or as a
process which contains a queue of requests for blackboard access and modification
sent by precondition and knowledge source processes. In the implementation
discussed in this paper, (he blackboard handler module is implemented as a
subroutine.

ft - ■-■^~- -

„

%

00

- - - ~^mmm

^■^■ww

HEARSAY II MULTIPRXESS1NG MECHANISMS

Given the decision that multiple preconditions may be simultaneously satisfied

and that multiple knowledge-source processes may execute concurrently, various

mechanisms must be provided to accommodate such a multiprocessing environment.

Mechanisms must be provided to support the individual localized executions of the

various active and ready processes and to keep the processes from interfering with one

another, either directly or indirectly. On the other hand, mechanisms must also be

provided so that the various active processes may communicate with one another so as

to achieve the desired process cooperation. Since the various constituent knowledge

sources are assumed to be independently developed and are not to presume the explicit

existence of other knowledge sources, communication among these knowledge sources

must necessarily be indirect. The desire for a modular knowledge source structure

arises from the fact that usually many different people are involved in the

implementation of the set of knowledge sources, and, for purposes of experimentation

and knowledge source performance analysis, the system should be able to be easily

reconfigured with alternative subsets of knowledge sources. This communication takes

two primary forms: data base monitoring for collecting pertinent data event information

for future use {tocal contexts and precondition activation), -md data base monitoring for

the occurrence of data events which violate prior data assumptions {tags and messages).

The following paragraphs will discuss these forms of data base monitoring and their

relationship to the data access synchronization mechanisms required in a multiprocess

system organization.

t

Local Contexts

interprocess communication (and interference) among knowledge sources and

their associated preconditions occurs mainly via the global data base, as a result of the

design decisions involved in trying to maintain process independence. It is therefore

not surprising that the mechanisms necessary to bring about the desired process

cooperation and independence are based on global data base considerations. The glooal

data base (the blackboard) is intended to contain only dynamically current information.

Since preconditions (being data-directed) are to be tested for satisfaction upon the

occurrence of relevant data base changes (which are historical rfata events), and since

neither precondition testing nor action execution (nor the sequential combination of the

 - I

m^m*^** w — ■'■ ' I«F ■■ - m<

,wo) ,5 assumed to be an mdiv.s.ble operate, located data bases must be prov,ded

.or each process unit (precondit.on or action) which needs to remember relevant

H.stor.cal data events. These localized databases, called local context, m HSU. wh.ch

record the changeo to the blackboard s.nce the precond.t.on process was last executed

or the KnowledSe source process was created provide personalized operat.ng

environments for the various precond.t.on and Knowledge-source processes. A local

context preserves only those data events^ and state changes relevant to .ts owner.

The creat.on time of the local context (i.e.. the time from wh,ch it begins collechng data

events) ,s al.o dependent upon the context owner. Any given local context .s bu It up

incrementally: when a mod^cation occurs to the global data base, the resultmg data

event is d.stributed to the vanous local contexts -nterested m such events. The vanous

primitive data modification routines (or node creation routines) are respons.ble for the

distribution of the data events which result from the modification, just as these

rr.odif.cafon routmes are also respons.ble for send.ng wam.ng messages to those

processes which want to be not.f.ed when specihc characteristics of a part.cular node

are altered.2 ThuS| the vari0Us local contexts retain a h.story of relevant data events.

while the global data base contains only the most current information.

Data Integrity

Since precondition and Knowledge-source processes are not guaranteed to be

executed un.nterruptedly. these processes often need to assure the integrity of vanous

assumphons they are maK.ng about the contents of the data base; for should these

assumphons become violated due to the act.ons of an intervening process, the further

computat.on of the assuming process may have to be altered (or terminated). One way

to approach the problem of data integrity is to guarantee the validity of data

mumptkm. by disallow^ mtervening processes the ability to modify (or perhaps even

,o examme) critical data. In order to guarantee the integrity of data through the

mechamsm of exclus.ve access, the HSU system provides two forms of locKmg pr.rmt.ves.

We- and re^on-iock^. Node-locKing guarantees exclusive access to an explicitly

1 The informafon which defines • ^ata event consists of the ,^u\j
0' ^.^^ ^'^

data node name and a held name w.th.n that node) and the old value of the held (the

new value being stored in the global data base).
2 The use of these wam.ng messages as way of preserving dat. mtegr.ty w.ll be

discussed in the next sect on.

g*m.
.T.<.M ^V - ■ -p—

^■^

spec.f.ed node in the blackboard, whereas reg.on-lockmg guarantees exclusive access to

a collection of nodes that are speeded impl.c.tly based on a set of node characteristics.

In the current implementation of HSII, the regton characteristics are specified by a

particular information level and time period of a node. If the blackboard is considered

as a two-dimensional structure w-th coordinates of information-level and time, then

region-locking permits the locking of an arbitrary rectangular area in the blackboard.

Region-locking has the additional property of preventing the creation of any new node

that would be placed in the blackboard area specified by the region by other than the

process which had requested the region-lock. Additional locking flexibility is introduced

by allowing processes to request read-only access to data fields; this reduces possible

contention by permitting multiple readers of a given field to coexist, while excluding any

writers of that field until all readers are finished, The system also provides a "super

lock," which allows an arbitrary group of nodes and regions to be locked at the same

lime. A predefined linear ordenng strategy for non-preemptive data access allocation

(Coffman, et aL, 1971) is applied by the "super lock" primitive to the desired node- and

region-locks so as to avoid the possibility of data base deadlock.

However, this technique of guaranteeing data integrity through exclusive

access is only applicable if all the nodes and regions to be accessed and modified are

known ahead of time. The sequential acquisition of exclusive access to nodes and

region, without intervening unlocks, can result in the possibility of deadlock. In the HSII

blackboard, nodes are interconnected to form a directed graph structure; because it is

possible to establish an arbitrarily complex interconnection structure, it is often very

difficult for a knowledße-sourc.» process to anticipate the sequence of nodes it will

desire to access or modify. Thus, the mechanisms of exclusive access cannot always be

used to guarantee data integrity in a system with a complex data structure and a set of

unknown processes. Further, even if the knowledge source can anticipate the area in

the blackboard w.fhm which it will work and thereby request exclusive access to this

area, the area may be very large, thus leading to a significant decrease in potential

parallel activity ca^eo by other processes waiting for this locked area to become

available.

An alternative approach to guaranteeing data integrity is to provide a means

by which a process (precondition or knowledge source) may place data assumptions

about the particular state of a node or group of nodes in the data base (the action of

putting these assumptions in the blackboard is called ta8Bcna). If these assumptions art

10

WT* W* "

invalidated by a subsequent blackboard modification operation of another process, then

a message indicating this violation is sent to the process making the assumption. In the

meantime, the assuming process can proceed without obstructing other processes, until

such time as it intends to modify the data base (since data base modification is the only

way one process can affect the execution of another). The process must then acquire

exclusive access to the parts of the data base involved in its prior assumptions (which

parts will have been previously tagged in the data base to define a cräied. data set)1

and check to see whether the assumptions have been violated (in which case, messages

indicating those violations would have been sent to the process). If a violation has

occurred, the assuming process may wish to take alternative action; otherwise, the

intended data base modifications may be made as if the process had had exclusive

access throughout its imputation. This tagging mechanism can also be used to signal

the knowledge-source process that the initial conditions in the blackboard (i.e., the

precondition pattern) that caused the precondition to invoke it have been modified; this

is accomplished by havi.ig the precondition tag these initial conditions on behalf of the

knowledge-source process prior to the instantiation of the knowledge source.

In summary, the HSIi organization provides mechanisms to accomplish both of

these forms of data integrity assurance: the various data base locking mechanisins

described previously provide several forms of exclusive or read-only data access; and

the data tagging facility allows data assumptions to be placed in the data base without

interfering with any process' ability to access or modify that area of the data base (with

data invalidation warning messages being sent by data base monitors whenever the

assumptions are violated).

To provide a basis for the discussion in the subsequent sections of this paper,

Figure 2, depicting the various components of the HSII organizational structure is

offered. The diagram is a more dstailed version of the message transaction model

presented previously. The new components of this diagram are primarily a result of

addressing multiprocessing considerations.

As in the earlier, more simplified organizational diagram, the dynamically

current state of the problem solution is contained in a centralized, shared data base,

called the blackboard. The blackboard not only contains data nodes, but it also records

Actually, the requirement is that no other process be able to write to these parts of
the data base.

11

■

'•

1

C3
N

E

V)

00

12

I

data monitonng mformation (fags) and data access synchronization information (locks).

Access to the blackboard is conceptually cen«'alized in three modules. As before, the

blackboard handler module accepts and honors read and write data-access requests

from the active processing elements (the knowledge-source processes and their

precoruiLtion processes). A lock handler coordinates data-access synchronization

requests from the knowledge-source processes and preconditions, with \U ability to

block the progress of the requesting process until the synchronisation recuest may be

satisfied. A monaonnS mechanism is responsible for accepting data tagging requests

from the knowledge source processes and preconditions, and for sending mtssages to

the tagging processes whenever a tagged data field is modified. It is also the

re-ponsibility of the monivonng mechanism to distribute data events to the venous local

contexts of the knowledge-rource processes and preconditions, as well as to activate

precondition processes whenever sufficient data events of interest to those

preconditions have occurred in the blackboard.

Associated with each active processing element is a local data base, the local

context, which records data everts that have occurred in the blackboard and are of

interest to that particular process The local contexts may be read by their associated

processes in order to find out which data nodes have been modified recently and what

the previous values of particular data fields were. The local contexts are automatically

maintained by the blackboard rromtoring mechanism.

Upon being activated and satisfied, precondition processes may instantiate a

knowledge source (thereby creating a knowledst-source process), pasting along the

reasons for this instantiation as parameters to the new know'edge-source process and

at the same time establishing the appropriate data monitoring connections necessary for

the new process. The uo<U-direcfd scheduler retains the actual control over allocating

hardware processing capability to those knowlodge-source processes and precondition

processes which can best serve to promote the progress of the problem solution.
1

1 One way a scheduler might help in reducing (or eliminating) global data base access
interference is to schedule to run concurrently only processes whose global data
demands are disjoint. Such a scheduling policy could even be used to supplant an
explicit locking scheme, since the global data base locking would be effectively
handled by the scheduler (albeit probably on a fairly gross level). Of course, other
factors may rule out such an approach to data access synchronization, such as an
inability to make maximal use of the available processing resources if only data-
disjoint processes are permitted to run concurrently, or the inability to know in

13

- - - -

^v

EXPERIMENTS WITH AN IMPLEMENTATION

The precedmg sect.ons of th,S paper have presented various of the
mechanl5ms y „ (mplement(ng a kri0wledBe.based prob(em.so|v.ng ^ ^

HSH -n a .numprocess.ng env.ronmenf. The present sect.ons w.ll d.scuss the vanous

exper^ents IM have b-. perform .n an atte.pt ,o character.ze the .umprocessing

performance of the HSH o-an.zat.on In the speech-understand.ng task

HSII Multiprocess Performance Analysis throußh Simulation

In order to gam .ns.ght -nto the vanous eff.cency .ssues mvolving

"ult.process problem-solv.ng organ.zations. a s.mulat.on model was mcorporated within

the un.proce. sor ver.on of the HSII speech-understand.ng system. The HSII problem-

solv.ng organ.zat.on was not .tself modeled and s.mulated. but rather the actual HSII

-plementafon (wh.ch ,s a mult.process.ng organ.zation even when executing on a

un,prOCesSor, was mod.f.ed to permit the station o dware multiprocessor
env.ronment.

There were four pr.mary objectives of the s.mulation experiments: a) to

mm** the software overheads .nvo.ved .n the des.gn and execut.on of a compl.cated.

data-d.rected mu.t.proces.(or) control structure, b) to determ.ne whether there rea.,y

ex.sts a s.gn.f.cant amount of parallel act.vly .n the speech-understand.ng task, c) ,o

understand how the vanous forms of .nterprocess communicat.on and interference

especally that from data access synchron.zat.on .n the b.acKboard. affect the .-..ount of'

ef ecnve para.lel.s « reaSzed. a.d d, to ga.n .ns.ght .nto the des.gn of an approbate

-hedu ^ algonth. for a mult.process problem-solv.ng structure. Certa.nly. any

results presented w.l, reflect the deta.le^ eff.cienc.es and .neff.c.enc.es of the part.cu.ar

system .mplementat-on be.ng measured, but hopefully the organ.zation of HSH is
su cently Ben , ,hat the vari0us ^^^^ wi|| ^ ^^^

appl.cab.l.ty for those cons.dering similar multiprocess control structures.

By way of summary, the primär, characterises of the HSII organization

H

-- — -

include: a) multiple, diverse, independent and asynchronously executing knowledge

sources, b) cooperating (in terms of control) via a generalized form of the hypothesize-

and-test paradigm involving the data-directed invocation of ki owledge-source

processes, ?nd c) con municating (in terms of data) via a shared blackbojrd-liKe data

base in which the current data state is held in a homogeneous, multidimensional,

directed-graph data structure.

The HSII Speech Understanding System: The Simulation Configuration

The configuration of the HSII speech-understanding system, upon which the

following simulation results were based, consists of eight separate generic knowledge

sources (each of which may be realized by several active instantiations at any given

moment during the problem solution), each of which represents some body of knowledge

relevant to the speech-understanding task. Due to the excessive cost of the simulation

effort (and due to the limited stages of development of some available knowledge

sources), only a subset of the available knowledge sources was actually used in the

simulation experiments. Appendix A (which was extracted from (Lesser, ef al., 1974))

contains a more detailed description of the blackboard and the various knowledge

sources for the more complete HSII speech-understanding system. Tt ■• knowledge

sources used in the simulation were: the Segment Classifier, the Phone Synthesizer

(consisting of two knowledge sources), the Phoneme Hypothesizer, the Phone-Phoneme

Synchronizer (consisting of three knowledge sources), and the Rating PoUcy Module.

These knowledge sources are activated by half a dozen precondition processes (which

are permanently instantiated in the system), which are continuously monitoring the

blackboard data base for events and data patterns relevant to their associated

knowledge sources. Both knowledge sources and preconditions may freely access the

centralized blackboard data base, which consists of nine lexicon levels. The particular

levels used were chosen so as to facilitate the information exchange between the

various component knowledge sources.

This set of knowledge sources and preconditions and the associated operating

system facilities provided by the HSII organization were first implemented to execute on

r While there are eight conceptual information levels within the HSII speerh-
understanding system (see Appendix A), the blackboard is abstractly .egmen'ed
according to lexicons, rather than information levels, since lexicons alle w ; finer
abstract decomposition of the blackboard

15

-- - - ---

« uniprocessor DECsystem-lO computer. The particular implementation represented

here was programmed m the Alsol-like language. SAIL (Cwinehart and SprouH, 1971),

using SAIL'S mult.processmg facilities (Feldman, * ed., 1972) anH making extensive use

of its LEAP associative data storage facility (Feldman and Rovner, 1969). Thus, while

the hardwaro environment of this version of the HSU speectvundersfandmg system is

thai of a single procesror, the software environment is the multiprocessing structure

described throughout this paper. The simulation experiments were then run usinR this

HSII conf.guration. simulating the h?rdware environment of a closel- .oupled

multiprocessor whore procescors can directly communicate w.th each other through

shared memory. The size of the HSII conf.guration used in the s.mulat.ons was about

180K. 36-b.t words; 70K of this total was the HSII operatmg system plus the SAIL

runtime routines. 73K was precondition and knowledge source code plus variables, and

the remainder (which varli?d from 20K to /J5K depending on the number of processors

being simulated and the number of processes being instantiated) represented the

blackboard data base plus process activation records and other SAIL working space.

The simulations were carried out to determine the efficiencies of the various HSII

multiprocessing mechanisms discussed previously, as well as to gain some insight into

any problems that might arise in the ensuing implementation of a HSII speech-

understanding system for the Carneg.e-Mellon C.mmp multiprocessor.1 The following

sections w.ll dfccUM the results of the various experiments which have been performed

using the multiprocessor-simulation version of the HSII speech-understanding system

Simulation Mechanisms and Simulation Experiments

The various multiprocessor simulation results were obtained by modifying the

flow of control through the usual HSII multiprocessing orgamzation to allow simulation

scheduling points every time a running process could interact in any way with some

other concurrently executing process. Such points included blackboard data base

accesses and data base access synchronization points (including attempts to acquire

data base resources, both at the system and user levels, and any resulting points of

The implementation of the C.mmp version of the HSII speech-understanding system
tnus far has been, m fact, essentially a di.ect mapping of the DECsystem-10
implcmentaf.on, w.th addiliona design being done as necessary to solve the particular
problems of running ,n the C.mmp environment (such as having to resolve the small

rSST* r'P!C<? problem' whore,n W g,ven process may have at any one moment only
a JZK-word window into the centrally located mam memory).

16

■ -

^-p^T^™—

process suspen.on due to the un.va.lab.l.ty of the requesteo resource, .s well as .he

subsequent po.nts of process waKe-up for retrying the access request), S.m.lat.on

KtaduNn. pcnts were aiso .nserted whenever a data .od.f.cat.on waning message

(tri6eered by .od.fy.ng . tagged data held) was to be sent, as weli as w enever .

process attempted to recede such a message. The schedule .echan.sm .tse.f was a so

mod(f(PJ to al,ow for the s.muiated scheduhng of mult p.e processing un s wh.le

.a.ta.n.ng the st.te -nfor.at.on assorted w.h each processor be.ng ^**^

as the processor clocK hme of that simulated processor and the state of the part.cul r

process bemg run on that processor). The s.mulat.on runs were performed so as to

Keep the processor docK-hmes of each processor being s.mulated in step w.th one

another (the s.mulat.on be.ng event-awn, rather than san^ä), thereby aliow.ng for

the accurate measurement and comparison of concurrent events across processors. By

.elects the number of processors to be simulated and choos.ng the usual sc edu„ng

parameters and precond.t.on and Knowledge-source parameters, a chronolog.cal trace of

the active of each process and processor could be obtained. By accumulate stat.s -cs

during the trace per.od and by perform.ng vanous post-process.ng operat.ons upon th.s

active trace record, the s.mulat.on results presented m the follow.ng sect.ons were

obtained.

Most of the results presented here were achieved by using a single set of

Know.edge sources (as described above), w.th a s.ngle speech-data .nput utterance

Keepmg the data base locK.ng structure and schedule algorithm essent.ally f.xed.

wh-e vary.ng the number of simulated (.dent.cal) processors Several runs were also

performed to te t the effects .f altering the Knowledge-source set. altering the locKmg

structure, and altenng the mode of data input (the normal .nput mode be.ng a utter.nce-

time-ordered introduction of input data which simulates red-t.me speech mput).

Measures of Multiprocessing Overhead: Primiiive Ooeration Timings

T.r>,e measurements of various pr.m.t.ve operations were mads using a 10-

microsecond hardware .nterval timer. Some of the t.med primitive operations (such as

those involvng simple data base access and mod.f.cation) were not especially sublet to

the fact that the prcblem-solv.ng orgamzation .nvolved multiple parallel processes,

whereas others (such as those involv.ng process .nstantiation and process

synchron.Zat.on) were d.rectly related to the multiprocess aspects of the organ.zat.on

17

 J^^J»

:

(and might even be taken in part as overhead when compared to alternative single-

process system organizations). The times for the various system operations, as shown

in Table I, should be read as relative values, comparing the multiprocess-oriented

operations with the data accessing operations to get a relative feel for the overheads

involved in supporting and maintaining the multiprocess organization of HSU. Keep in

mind that such time measurements are highly dependent on the particular

implementation and can change fairly radically when implemented differently. In fact, a

primary use of such timings is in determining operating system bottlenecks so that such

code sections can be rewritten in a more optimal way. As a result, some primitive

operations reflect execution times which ate a result of extensive optimization attempts,

while other operations (in particular, the "super lock" operations, lock! and unlock!)

have not yet been subjected to this optimization

Table I |ivM timing statistics relating to the costs involved in maintaining the

shared, centralized blackboard data base. Two sets of statistics are given, one set

showing the operation times without the influence of data access synchronization

(blackboard locking) and one set with the locking structures in effect. These two sets

of times give a quantitative feeling for the cost of data access synchronization

mechanisms in this particular implementation of HS11. The figures given include the

average runtime cost per operation, the number of calls (in this particular timing run) to

each operation (thereby showing the relative frequencies of operation usage), and the

percentage of the overall runtime consumed by each operation. With respect to the

individual entries, create.node is a composite operation (involving many field-writes and

various local context updates) for creating blackboard nodes. The rtad.node.fceld and

wnte.noda.ficld operations are used in accessing the individual fields of a node. Note

that included in any given field-read rr -write operation is the cost of perhaps tagging

(or untajgmg) that particular field (or its node). The various functions of the

blackboard momfonng mechanism are contiiined within the field-write operations. Thus,

also included in the field-write operation is the cost of distributing the data event

resulting from the write operation to all relevant precondition and knowledge-source

process local contexts, as well as the cost of se ding tag messages to all processes

which may have tagged the field being modifie Ij these additional costs are also

aicounted for independently in the send.nisssanr. events and notify.sttt table entries.

Field-write operations are also responsible for evaluating any pre-preconditions

associated with the field being modified and activating any precondition whose pre-

18

^g r—. wim

Blackboard Accessing:

create.node
read.node.field
write.node.field

Blackboard Associative Retrieval:

retrieve
get.time.adjacent
get.struct.adjacent
get.nodes.in.rgn

Process Handling: •

invoke.ks
create.ks.prcs
ks.cleanup
invoke.pre
create.pre.prcs

Local Context Maintenance:

transfer.tags
delete.all.tags
notify.sset
send.msgs.and.events
receive.msg
read.cset.or.sset

Data Access Synchronization:

lock!(overhead)
unlock!(overhead)
lock.node
exam.node
lock.rgn
write.access.chk
read.access.chk

7. total runtime mean time (ms) number of calls

w/o w/ w/o w/ w/o w/

lock lock lock lock lock lock

6.96 4.15 35.81 50.77 287 287

5.06 15.68 0.31 2.03 23577 25279

14.13 • 7.75 13.96 18.44 1493 1476

etneval:

2.72 4.98 25.07 109.45 160 160

9.31 15.33 23.44 92.00 586 586

3.99 6.31 43.35 163.20 136 136

2.05 0.87 2.98 3.00 1015 1015

5.29 2.30 22.64 23.64 345

0.75 0.31 3.21 3.22 345

8.20 5.24 35.06 53.94 345

0.10 1.04 10.44 10.59 14

0.42 0.40 ' 8.53 19.57 72

7.78
3.22
2.32
9.34
0.11
0.41

14.45

57.47
23.78

2.94
2.40
1.77
0.98
1.60

342
342
342

14
72'

7.12 2.99 9.12 9.17 1152 1149

0.52 0.22 2.01 2.03 383 380

6.52 3.01 2.63 2.92 3665 3626

4.04 2.12 3.68 4.68 1021 1594

0.36 0.15 1.00 1.01 531 530

0.11 0.05 0.84 0.84 • 1S2 192

476
476

2770
13675

227
1470

31761

l

Table 1. Primitive Operation Times

19

— ■AMB»^^ . . . l^i

mfmmm

.

precondition is satisfied. Included in the cost of reading a data field (e.g.,

rccul.node.fteld) is the cost of verifying the access right of the calling process to the

node being read (which could involve a temporary-locking operat.on.1 the cost of which

is also g.ven independently m the U>ck,node table entry); this access-right checkmg cost

is also separately accounted for by the reaxi.acce5s.chk operation. It should be noted

that because mott of the mechanisms required to implement a data-directed control

structure are embedded in the blackboard writ« operations, the t.mo to execute a write

operat.on is significantly more expensive than a read operat.on. However, the Ktlltl

cost in terms of total run time of implementing a data-directed control structure is

comparatively small in the HSII speech-understanding system, because the frequency »I

read operations is much higher than that of wnte operations. If this relative frequency

for read and wnte operations holds for other task domains (e.g., vision, robotics), then a

data-directed contro, structure (which is a very general and modular type of sequencing

paradigm) seems to be a very reasonable framework wtthm which to implement such

tasks.

Additional olackboard operat.on costs are described in the Associative

Retrieval section of Table 1. Associative retrieval is based on specifying partial node

descriptions (called matcliing prototypes) which serve as a means of retrieving the set

of blackboard nodes fitting that partial description. Retneue represents the various

retrieval operations possible using these matching prototypes. Retrieval from the

blackboard may also be done by requesting the nodes which are time-adjacent

(according to the utterance-time dimension of HM spoech-jnderstanding blackboard) or

structurally adjacent (according to the blackboard graph structure) to a given node (or

set of nodes); get.time.ndjatent and set.stract.adjajcent perform these operations.

Furthermore, retrieval may be done by requesting the set of nodes contained within a

certain region of the blackboard (by Bet.riodes.cn.rBn).

Tfble 1 also relates the costs of process handling within HSII. Process

invocation and process creator are separated (the former being a request from a

precondition or knowledge-source process to the scheduler to perform the latter), and

the costs are accounted separately, as in crwoke.ks and create.ks.prcs. Ks.cleanup is the

r
If a process has not prev.ously locked the node to which it desires access and the
process does not have any other node locked, then the system will temporarily lock
the node for the durat.on of the smgle read or wnte operation, w.thout the process
having explicitly to request access to the node.

20

■ - ■ Mi

■1^ "»^ " *i«w^^-^«r» —p- ^p "^ 1
cost of terminating a knowledge-source process; preconditions never get terminated.

The cost of initializing and terminating a knowledge-source process (i.e., invoke.kr and

Ksxleanup) is due to the overheads involved m maintaining local ccr.texts, locking

structures, and data base monitoring (tagging), all uf which are necessitated by the

multiprocess nature of the HSII organ.zation. However, in a relative sense, this is not

expensive, since the total overhead associated with process handling amounts to only

about 97. of the overall execution time.

Additionally, local context maintenance costs are given in Table 1, since they

are also a cost of having asynchronous parallel processes. While individual tag creation

and deletion is handled by the primitive field-read and -write operations, tags may be

transferred from a precor.dition to the knowledge source it has invoked via transfer.tags

and destroyed at termination of a process via delete.alUaqs. As noted above, notify.sset

and send.msg.and.evenxs are sub-operations of the field-write operations and represent

the cost of distributing data event notificat.ons to all relevant local contexts.

Recetve.msB is the operation used by precondition or knowlt 'ge-source processes to

receive a tagging message (or perhaps wait for o ic, if one does not yet exist); and

reatl.cset.or.fttt is the operation for retrieving the information from a local context.

Finally, Table 1 gives the costs associated with the data access

synchronization mechanism. Lock! and unlock! represent the overhead costs of lockin-

and unlocking ; group of nodes specified by the process requesting access rights.

These two operations are anong the most complex routines in thrf HSII operating

system, the complexity arising from having to coordinate the allocation of data base

resources by two independent access allocation schemes (node-locking and region-

locking). This coordination is necessary in order to avoid any possibility of data base

deadlock by ma ntaining a homogeneous linear ordering among all data resources fnodes

and regions). The costs of lock! and unlock! do not include the time spen* in performing

the actual primitive locking operations. The primitive lock costs are given by lock.node

(lock a node for exclusive access), exanunode dork a node for read-only access), and

U>ck.rBn (lock a region for exclusive access). The access-checking operations

(.wn.te.access.chk and read.access.chk) are ! öed by the blackboard accessing routines

discussed above.

These timing statistics can be used to determine the amount of system

overhead incurred n running precondition and knowledge-source processes under the

1

21

, - _ . Ü

■P^^^^W^^^*-»—**^^!

HSU operating system. The following summary statistics are offered, given as

percen'aßes of the total execution time, the percentages being calculated so as to avoid

overlapping between categories (as, for example, factoring blackboard reading costs out

of blackboard access synchronization):

Blackboard reading
Blackboard writing
Associative retrieval
Internal computations of processes

Local context maintenance
Blackboard access synchronization
Process handling

157

n.
277.

107.
177.

97

Another way of viewing these figures is that approximately half of the execution time

involves multiprocessor overheads (i.e., local context maintenance, blackboard access

synchronization, and process handing). Based on the assumption that this multiprocess

overhead is independent of the parallelism factor achieved,1 then a parallelism factor of

2 or greater is required in order to recover the multiprocess overhead.

Effective Parallelism ar.d Processor Utilization

The problem-solving organization underlying HSII was designed to take

maximum advantage of any separability of the processing or data components available

within that organization. Knowledge sources were intended to be largely independent

and capable of asynchronous execution in the form of knowledge-source piocesses.

Overall system control was to be distributed and primarily data-directed, being based on

events occurring in a globally shared blackboard data base. The intercommunication

(and interdependence) of the various knowledge-source processes was to be minimized

by making the blackboard data base the primary means of communication, thereby

exhibiting an indirection with respect to communication similar to the indirect ds(a-

directed form of process control. Such a problem-solving organization was believed to

be particularly amenable to implementation m the hardware environment of a network

Of closely-coupled asynchronous processors which share a common memory. Given

I

This assumption, based on timing statistics from a series of runs with different
numbers of processors, seems valid except for the cort of context swapping and
process suspension, which depends upon the amount of da'a base interference and
the number of p'Ocessors.

HMMM

22

'.■-»•'" " ■ ■'

J

. -*. pfoteSSOr J:: ■; :r t:j
h; - - - ~~. -^ *.

-d.por,donl as „„^^ ' e"P,ed ,0 "'°« lh« »•*« to»**. Sour„s „ be as

<- ■.«. e«p:jv ;:^v^'s:'"cu,'o",n'er,•^•n"'«''"■-
envi^„„m.nt being somc ■ ■"ih,! ath"^ P"."el,Sm h . mumprocessp, ,ess ,hiln ,„ po,ent|a| ^^^^ wj|h<)ut |nter)erence

Several experiments wf»rA r..n ♦«

-<*. o, ,*„„„,.p,otessor E
s; b,;m;s 'n8 or8a",""on üsine -**

^ow^^-so^« „, descr,bcd p.™ ly sl;;:
e"per'm"" «» »•

»• da., base s0 ,s ,0 37»' l'S'"g "» »— -PU' «* (introducd into

P-cessor. An „JI 0 ^ ^ ,,B0,:,hm' ^ *"™ - -be, o, (iden.ica,,
p,(? ot fhe grap.iical output oroHurpH Kw »U

"^ O' ei8W P-c^so,., is d.spia^d in FlZa „ „ ' <"'' ^ 'he

,o .«* —„pn id: :„:::': :o£esses e,,h' i"8 - ^
numbor p, ac(lvt,

8 POIn,• "" ' """""t Pr»ceSSes- pip, glves ^

^ ***** PP., and r;::::::- awa,""8 •—'io • —, „

^te that !he r-,2e of the Wtl m »

;h;;s-d^s(hyPothj:eSan ..^ rar^j^rr,?','0 erow to 0^ —'
course, on the task domain. Thus ,• i ^' 2 /.' d entr"?S apiece' depend.nß, of
'nvest.gat.ons, at least) that ^eLckLT^^0! ,he PUrposes 0' ^e curren
fhus. -nput/output operat.ons are no °n "S^ reS,den, iri P^^y memory
compute-bound, "* n0t an lssue *»% the system bemg essenT.a ly

'c3

- -- ■ - — - - - -■ til***]

i^Hpv ■ ■ *^^^^^H " » -~w-^m^wqm*

u
M

II

/ runnab I« :o

procastat
It

: 11 . .

• s« too is« :oo zvi)M as« 4oe

ro

IS

#10 runninq
procaitci m

!

e i»

0 W IW 1M ?00 750 308 Kt «PO

llMdtc)

process»»

«0

»i

rs

M

If
W

/ cukpandad ■*
processes

IS

iüiWiUit
o so io» iso :oo :so 300 m 4M

IlMteMl

Uiktei
s« IM iso ;»v :so mo KO «OC

ttMdac)

Figure 3a-d. 8 Processors

24

—

first satisfied: th* longer a precondition is delayed, the more data events it is likely to

accumulate in the meantime, and the mo.-«» knowledge-source processes it is likely to

instantiate once it does get executed; hence the ^oiked nature of the resultant ready-

processes plots for configurations of few processors. As parallel processing power

increases, preconditions can mon often be run as soon as their pre-preconditions are

initially satisfied, and the spiking phenomenon subsides.

As an example of how these activity plots have been used in upgrading the

performance of the implementation, compare Figure 4 to Figure 3c. Figure 4 depicts the

process activ.ty under the control of a scheduler which did not attempt to perform load

balancing w.th respect to ready preconditions; and as a result of not increasing the

relative scheduling priority of preconditions as they received more and more data

events, the activity spike phenomenon referred to above became predominant, to the

extent of reducing process activity to a synchronous system while the long-time waiting

precondition instantiates a great many knowledge-source processes all at once.1 Figure

3c shows the activity on the same number of processors, but using a somewhat more

intelligent scheduling algorithm, with a resulting reduction in the observed spiking

phenomena. This improved scheduling strategy is the one used for all plots presented
herein.

In addition to the plots descrtbed above, various other measures were made

to allow an explicit determination of processor utilization and effective parallelism for

varying numbers of processors. Referring to Table 2, one can get a feeling for the

activity generated by employing increasing numbers of processors. All simulations

represented in Table 2 were run for equivalent amounts of processing effort with

respect to Ihe results created in the blackboard data base by the knowledge source

activity. The final clock time of the multiprocessor configuration being simulated is

given h simulated real-time seconds, and fho accumulated processor idle and lost times

are also given. Idle time is attributed to a processor when it has no process assigned

to it and there are no r-.^y processes to be run; tost time is attributed when the

process on a processor is suspended for any reason and there are no ready processes

r
This can bo inferred from Figure 4 by noting that the sample points (vertical tick
marks) are taken af earh simulation scheduling point, and the lack of samples between
times 220 and 380 indicates that the process that started running at 220 had no
concurrently running processes competing with it until time 380, when there were
suddenly 25 new processes contending for computing resources.

25

 - - ■ - - -- - ■•

,W'f- ~~m t^^^nmmmm*

«o

I
JO

pe*dy processes :s

M

is -

I«

•^^^TT^^

10" rn^, 3.V, '(■0 So« 6tv 'OO 9W »x. If'. ■

ti*i«(stc)

Figure 4. 8 Processors-old scheduling stra'.egy

26

■ -

m^T^^mim i i i «r. ■ ■■«■ ■ ■•

number of prcrs
(all times in sees)

I 2 4 8 16 32
(special*)

KS instantiations 3D5 401 423 421 415 434

PRF activations 82 126 173 213 200 229

multiprcr clock time 1076 634 389 350 351 43

total idle time 9 15 37 380 2608 867

total lost time 0 5 34 900 1546 0

avg cxt swaps 0 309 942 368 9 0

avg prcr utilization 997 987. 957. 547 267 377.

effective • prcrs 0.99 1.96 3.80 4.32 4.16 11.84

utilization speed-up 1.00 1.98 3.84 4.36 4.20 11.96

» The 32-processor column represents an experiment which
was run under speaal conditions, to be explained below,
and should not be compared Erectly to the other columns
of the table.

Table 2. Processor Utilization

which could be swapped in to replace the suspended process. Processor utilization

(calculated using the fmal clock time and processor idle and lost times) is given in Table

2; Figure 5 shows the corresponding effective parallelism (speed-up), based on the

processor utilization factors of Table 2.

The speed-up for this particular selection of knowledge sources is

appreciable up to four processors, but drops off substantially as one approaches

sixteen processors In fact, a rather distressing feature of this effective parallelism plot

is that the speed-up actually decreases slightly in going from eight processors to a

sixteen-processor configuration (from a speed-up of 436 over the uniprocessor case,

down to 4.20) This may be explained by noting that both the eight- and sixteen-

processor runs had approximately equal final clock times; but in the sixteen-processor

27

—. _•. _ — —

**ß mm1

^ — -
i wmw- HWV^^P

I ieoo

*«t

«N

M

•p««d up a 1(S.«i

«K.«

**

.•Hl

100

-J—'—'—I—I—I—I—I—I I I—I I ■

• ' * , ' s • ' • ' 18 ii u 11 M is is 17 u u :e

/ preetliort

Figure 5. Effective Parallelism According to Processor Utilization

28

 Mi

■"■■■"■

case, the number of runnable processes never exceeded sixteen processes, so any

ready process could always be accommodated immediately. As a result, the number of

Knowledge-source instantiations and precondition activations fell off a bit from the

eight-processor case, because the preconditions were more likely to b« fully satisfied

the first time they wpro activated (since all ready-processes. Knowledge-source

processes in particuUr, could be executed immediately and complete their intended

actions sooner, so that when a precondition came to be activated, it would more liKely

find its full data pattern to be satisfied); thus, preconditions would not often be aborted,

having to be re-tested upon receiving a subsequent d,ita event. However, running

'■■wer preconditions resulted in much more idle time for the sixteen-processor

configuration (the increase in lost time indicated m Table 2 is an artifact of having too

many processors available, since suspended processes would tend to remain on

otherwise idle processors rather than being swapped off the processor -- note the

rather dramatic decrease in context swaps indicated by Table 2 for the sixteen-

processor case) The result is a lower proportionate utilization of the processor

configuration, and hence a decrease in the effective parallelism from the eight-

processor configuration to the sixteen-processor configuration.

Due to the limited state of development of the total set of Knowledge sources,

the set of knowledge sources used in the simulation was necessarily limited; so the fact

that these plots indicate thai not more than about four to eight processors are being

effectively utilized is not to say that the full HSU speech-understanding system needs

only eight processors. One might ask that if only 4,16 processors of the sixteen-

processor configuration are being totally utilized (see Table 2), what is the maximum

potential effective parallelism, given this set oi knowledge sources? To answer this

question, an experiment was performed in which effectively infinite processing power

was provided to this knowledge-source set and all data access interference was

eliminated (by removing the locking structure overheads and blocking actions); the

scheduling algorithm was kept unchanged, as was the input data, although the input data

stream was entered so as to be instantaneously available in its entirety (rather than

being introduced in a simulated real-time, "left-to-right" manner). The results of this

experiment are summarised by the 32-processor column of Table 2 (32 processors was

an effective infinite computing resource in this case, since eight of the processors were

never used during the simulation). Notice that no lost time was attributed to the run,

due to the lack of locking interference; and the resultant processor utilization was 372

.9

■ —_ •_ i- LM

K ' "^ ' W^^ ' ~^^^PPP«» ■^^P»^ wimm^f

I
of 32 processors, or 1184 totally ut.lized processors Thus, data base mterference

caused by particular data base accessing patterns and aj>ociated lockmg structures of

the knowledge source set used in the experiment significantly affected processor

utilization; if the use of the locking structures could be accomplished in a more non-

interfenng manner, the speed-up indicated by the eight- or sixteen-processor

configurations could be increased substantially. The next section will analyze in detail

the exact causes for this data base inteference, and propose changes to the knowledge-

source locking structure so as to reduce potential inteference.

Tahle 3 presents some other system configurations to show effective

processor utilizations under varying conditions. The first row repeats the statistics of

the sixteen-processor case of Table 2; the second row is a summary of the 32-

processor case of Table 2, as described above. Three further data points are offered

to indicate the effects of increasing the size of the knowledge-source set. The last

throe rows of Table 3 involve experiments using an expanded knowledge-source set

consisting of the knowledge sources of all the previous runs plus the Syntactic Word

Hypothesizei (see Appendix A) and its precondition. Using this expanded knowledge-

source set, simulations wore performed to evaluate the effects of this knowledge-source

set on a sixteen-processor configuration with the locking structure in effect, presenting

the input data in the usual "lefl-to-nghf manner, as well as in the instantaneous

manner used in the infinite-processor test. Comparing the results (in Table 3) to the

orig.nal «.ixteon-processor run, the "left-to-right" input scheme achieved « processor

utilization of 337, up 77. from the smaller knowledge-source set case; and by presenting

ail input data simultaneously, the utilization rose to 35Z. The fifth row of Table 3

represents the results of providing effectively infinite computing power (only 25

processors were ever used during the run) to the expanded knowledge-source set and

eliminating ail data access interference, in the same manner as for the experiment of the

second row. In this "optimal" situation for the expanded knowledge-source set,

processor utilization was measured at 467., or 14.72 totally utilized processors. Again, It

may be noted !l>at a more effective (less interfering) use of the locking structures Chn

result in substantial increases in processor utilization and effective parallelism.

The addition of the Syntactic Word Hypdhesizer was able to achieve the

increases in utilisation noted in Table 3 because it operates on lexicons that are used

by only one other knowledge source (the Phoneme Hypothesi'«»r) in the basic

knowledge-source set; hence, the process interference introduced by adding this

30

— - I I mmm*

•^mi ■r -— "-—■•" p^*w"

experiment
description

multiprcr total total t util effective
clock idle lost • prcrs

8 KS's, 6 PRE's 351 2608
16 prcrs, w/ lock
l-to-r input

8 KS's, 6PRE's 43 867
32 prcrs, w/o lock
instantaneous input

1546 26^

0 377.

4.16

11.84

R KS's, 7 PRE's 148 854
lb prcrs, w/ lock
l-to-r input

9 KS's, 7 PRE's 155 839
16 prcrs, w/ lock
instantaneous input

9 KS"s, 7 PRE's 13 226
32 prcrs, w/o lock
instantaneous input

726 337.

784 35^

5.28

5.60

0 46X 14.72

Table 3. System Configuration Variations

knowledge source was minimal. Unfortunately, the development of knowledge sources

at lexicoi levels which more directly conflict with those of existing knowledge sources

has been limited, so direct experimentation on the interfering effects of such knowledge

sources could not be performed; but based on the observations comparing the 32-

processor without-lock experiments to the original sixteen-processor with-lock runs,

substantial inteiference due to ineffective use of the locking structure would be

expected in such cases of adding "competing" knowledge sources. One mitigating

circumstance which could alleviate such interference was noted in the "instantaneous"

input case of the expanded Knowledge-source set case, as compared to the "left-to-

31

 - AM

^i«V ' ' ^i . iimvwnnmw •«■ | ■-— —-

I
nsW" input case: if process activ.ty can be spre;,d across the utterance-time dimens^n

of the blackboard, process interference would decrease -- but interference due to data

access synchronization interference can easily overwhelm this improvement. Further

experiments along these lines will be attempted as the appropriate Knowledge sources
become available for use.

Execution Interference Measurements

In addition to the primitive operation timings and achieved parallelism

measurements given above, various other measurements were made to determine the

various aspects of system performance as related to multiprocessing. As has already

been mentioned, a major concern in a multiprocess environment in which the various

processes are not entirely independent is that of execufioa cnterfrrftc*. Execution

interference may arme whenever any given process enters a critical section within

which it requires the integrity of a given data structure be maintained (thereby

necessitating a mean, by which to disallow access to Dttwn until the critical section is

exited). Execution interference may also anse whenever processes must synchronize

the.r activities i nd perhaps cause themselves to wait on an event based on an action

which is to be performed by some external process. Thus execution interference may

arise due to causes external to the process being delayed (as in the csse of trying to

access a data strurfuro which is currently held for exclusive access by another

process), or the interference may arise due to causes internal to the process being

delayed (as when a process delays itself by waiting for the occurrence of an externally

caused event) As a result of the HSH design philosophy, vhich states that the various

knowledge-source processes should be as independent e. possible in specification and

execution, most of the execution interference experienced in HSII is of the external

variety, wherein a process is delayed due to external causes unknown to itself (and the

delay itself is transparent to the process being delayed).

As previously described, there are two methods in the HSII system for

preserving data integrity: a) guaranteeing exclusive access through the use of node-

and region-locking pnmitives, and b) placing data assumptions in the blackboard,

through tagging primitives, which when violated cause a signal to be sent to the process

making the assumption. There is an interesting balance in terms of execution overhead

and execution interference between these two techniques. The region-locking

32

- - L''

"^ T •- ■ ■ --■—

techn.que is least costly m terms of execution overhead and is the eas.est to embed in a

program but causes the most execution interference. This is in contrast to the use of

taggmc wh.ch is the most costly in terms of execution overhead and is the most diff.cult

to embed in a program but causes the least execution interference. Both these methods

were used for guaranteeing data integrity in the precond.t.on and Knowledge-source set

that was used in the simulation experiments.

In structuring each knowledge source so as to preserve .ts data integrity, no

a pnori, assumptions were made about the non-mod.f.ability of any blackboard data that

Knowledge source used in .ts processing (i.e.. it was assumed that any blackboard

informat.on that the knowledge source read could perhaps be modified by some other

concurrent knowledge-source). This self-contained approach to the design of a

Knowledge source's locking and tagging structure is required if the modularity of the

system, w.th respect to deletion or addition of knowledge sources, is to be preserved.

The knowledge sources that were used in the simulation experiments were

not orirrinally designed so that they could be interrupted at arbitrary points in their

processing, and consequently they lacked the appropriate locking and taggmg structure

to guarantee data integrity in a multiprocess(or) environment. The addition, as an

afterthought, of the appropriate locking and tagging structure to these knowledge

sources was someumes quite difficult. This was an especially serious problem when an

attempt was made to put tagging primitives into knowledge sources which had internal

backtracKing control structures for searching the node graph structure in the

blacKboard. This difficulty arises because previously made data assumptions (tags in the

blackboard) associated with a partial path (sequence of nodes in the blacKboard) must

be removed upon discover.ng that the path cannot be successfully completed. Thus,

most of the knowledge sources in the experiment did not use tag mg as a method of

guaranteeing integrity, but rather used a combination of node- and region-locking.

However, precondit.ons. which have a much simpler structure and generally do not write

in the blackboard, were modified to use the tagging mechanism. In addition, to further

simplify knowledge-source locking structures, region-locking was used wherever

possible. This excessive use of region-locking was mainly responsible for the significant

amount of interference amonp, processes which caused the effective processor

utilization to go from an optima 12 to a realized 4 (see Table 2).

Figure 6 shows an interesting case demonstrating that the indiscriminate use

33

—

■ •^, -P^ —TV^'^ —

of reg.on-lockmg can obstruct the execu .on progress of many processes and thereby

temporarily reduce the eftect.ve parallelism of the system It represents a snapshot of

the blackboard lock.ng structure taken during the execution of the simulation. The gnd

structure represents the two-d.mensional abstract data structure, the dimensions bemg

lexicon level and reg.on element number (corresponding to the .tterance-t.me

dimension). At the pom» of each snapshot, the outstanding node and region locks are

indicated, as well as the areas requested 'but not yet obtained) by suspended

processes. The various (non-interfer,nf.) tags placed throughout the data base are also

indicated. The key indicates the sets of active and suspended processes (the names

referring to the precondition and knowledge source names, and the numbers in the

names indicating « process instantiation .ndex un.que to that particular process). This

particular snapshot was taken from the sixteen-processor simulation run with the

smaller knowledge-source set. Not.ce that PSYN263 has locked regions at the PHON.

MXN. and PSEG lexicon levels for its exclusive access; the nodes locked by PSYN263

(hypotheses being .ndicaied by ^sequence number>. and links by ^sequence number»

w.th.n these regions are those being created by PSYN263. hence the reason for the

region locks. Unfortunately, this locking action resulted in the suspension of s.x other

processes awaiting access to parts of the PHON and PSEG lexicon levels which 0 erlap

PSYN'^S's region-locks. Each of these suspet.ded processes is waiting to acquire

access-rights to a node -n these locked regions; in fact. PRE!PSYN!PSYN .nd CSEG259

are both waiting on the same node (H141). The diagram also shows the various (non-

interfering) Us which were placed on the vanous nodes at the PHON and PSEG lexicon

levels by three of the processes at some previous time. Figure 7. which is another

snapshot of lockmg structure, shows a case ^here execution interference was not so

sigrificant.

The reason the locking structure plots are localized in the lower left-hand

corner of the blackboard structure is that the construction of the data base in the

speech-processing task is initially left-to-nght due to the time-sequential nature of the

•pMCh input. Also, the part.cular set of knowledge sources chosen for use .n the

simulation experiments happened to be an effectively bottom-up speech recogmt.on

system (some of the top-down knowledge sources havin'. not yet been devetooed to a

stable enough state to have been used m »he simulations): hence, activity starts in the

lower left-hand corner of the blackboard. Further simulations are planned which w.ll

work in a combined top-down and bottom-up fashion, thereby increasing the potent.al

34

-- mm. -

■^■•w v »- ^vL ■HF -w- JT"

1.-1
•I

0:1

rc
<
Q _i 2

«1

,, 2 O >
O j a <n
w 0 a a.

n 0) 3- 03 li 2 cj) eg
>£)

o 'J t- O > IT) O
OJ to i- a tn «"M c>J 2 Q a 3 a: a. a 2 >
CO
a «1

T3
i
CJ

üj u.' üj Üj ^ >:
or ct ct o: ^ J^
CL Q. CL (T. t? P;

•• 0
■ * S2I eg ro rr ii) liJ r*. ^- 3!
< LT.l C3 f J Q UJ u. C3

I I

i

<1<

cl <l

<l« HT

Cl -v T

<l At)

-T1

ti

<tl

<i< - r>-

If) o o r^ r^
rj X

IP
1-
o ^r

X CT> X I
CM *r en CM
N -H lO JV

V) X X X X
fC

1- « •^ r^ -^
IT) (Tt in
CM i in

|
1/1 B
nj vo CM o -^ «
i T <T O «T «T

^H • 4 • - •—4 - -* a
4) X X -t X X 1 O

CM Ä ü u V 8 «!

<i« - h

«lOlftlM- h

<i BTOJ«* r*

5
c
o

m s
tt:

0)
X)
o 2

in

— o:

Q
X
CO

O

o
I
CO

Q

o
5

Q
ft

2 2
a O
ID X
co a

Ul O
CO UJ
a to

«M
in —«
X
ml pj

O
SU

c O -T
in o I

<l

■ - - — __„_

^"

-I H

n
M
c.
r
c

o > l/l

o a. in o
to cr ft, r- Vl
y-. 5 t* O SI
o o
Ui z. in csi n ■r 0
CL ct. n a: uj oo oc 00 n

P
R

E
!

P
R

E
l

UJ a
a

< 5
UJ ^

CM CVi
> > > 0

CO K- 3 3 1
■o <
t c

— CM n ^ tn 16 N 0
^»s^ ^^^ ~1

< ca u Q UJ u. U ^ IS)

rr
< a
.: 3
' 5
CO _
F oo
y- eg
-0 UJ

n: r;
CL CT.

01

!

1

1

üJI Hi
M un n .

UJl ■ — uil 0

Uli -^ wi ri

hi i U o ^

u. ^ o

1
T ^r

T

OJ «T ■0
Ol m ■Ti
T 3 I

r> N ■r ■0 no
n cr c. (7» p i rt

T -I Z w~% i

N ■r oo •-4 r^
Oi c> a» r r j
X 3 i m i

M ■: 00 c> r>.
i>: » m ^-4 v-M

u I 1 x X X

rt

in K CO U --«
N

M

•—

1
'Z 00 •T 1
> «T .1

—« , -4 1 01 X i-

Q
N

6 1 .. ^
E

iO

--:
c
O
M

ft

uH

LIT

t
O
t/
0)

o

in

co r-
C\J o

LL O

I

UJl

Z
UJ

□
I
LO

a
ft
Q
Q
X
O)

n
a o

CO

a

5
ft
3
CO

o
x
CL

UJ
CO

ft.
13
ui
00

k
■ - -

*■ '■"■"
^w^ , —

parallelism (since the fop-down knowledge sources will presumably not intenere with

the execution of the bottom-up knowledge sources as much as additional competing

bottom-up knowledge sources would). The expanded knowledge-source set experiments

presented above were a first step in introducing such top-down knowledge; as more

knowledge sources become available, their various interference effects will be

investigated. Also, other tasks which could use the HSII organization might not

necessarily have the left-to-right input characteristics of speech, so future simulations

will also test a more distributed input pattern, thereby also increasing the potential

parallelism by spreading the process activity across the breadth of the blackboard; the

several experiments presented above which introduced the input in an "instantaneous-

manner were the initial attempts in this direction.

A more analytic approach to analyzing the data access interference

expenenced by precondition and knowledge source processes, for varying numbers of

proce^o-r.. is given in Table 4.

i

number of prcrs
(all times in sees)

16

avg BB accesses/KS
avg BB accesses/PRE

avg prim locks/KS
avg prim locks/PRE

avg dsched, prim lock(KS)
avg dsched/prim lock(PRE)

avg dsched duration/KS
avg dsched duration/PRE

avg cxt swaps
avg cxt sw?ps/dsched

54.4 52.8 54.5 53.9 56.4
96.7 68.7 55.7 48.2 51.1

27.9 27.4 28.0 25.7 26.9
96.7 687 55.7 48.2 51.1

0 0.020 0.050 0.055 0.053
0 0.009 0.026 0.045 0.040

0 5.08 5.69 1.75 1.90
0 3.95 1.91 1.35 1.86

0 309 942 368 9
0 1.03 0.97 0.36 0.01

Table 4. Data Access Characteristics

37

^wr^^^B^Fw-p^w^i^F« ''■•'^ ""
-w-«»—-^.- -

Essentially, Table 4 is an extension of Table 2, which was discussed in the

previous section (i.e., the underlying simulation runs wc.e the same for both tables).

Execution interference was measured by recording the amount of process suspension

(also called dtscheduUng), which results from processes being temporarily blocked in

their attempts to gam access to some oart of the blackboard data base.1 As might be

expected, as process activity increases with increasing numbers of processors, the

possibility of execution interference increases (see table entries on

"deschedules/pnmitive lock"). This pheno; .enon stops at eight processors because in

these simulation expenme.its there were rarely more than eight processes executing at

any given moment. At the same time, with more and more processing power available,

the likelihood of suspended processes being unblocked and becoming available for

further processing increases as the number of processors increases (see table entries

on "deschedule duration"). This phenomenon is also indicated by the significant

decrease in processor context swaps per deschedule (i.e., with more processors, if

becomes less likely that when a process is suspended there will be another process
ready to execute)

The major point tl-at can be drawn from this table is that the decrease in

processor utilization caused by the locking structure is not due to the high rate of data

accesr interference (i.e., at most only 67, of the primitive locks result in deschedules)

but rather from the long duration over which descheduled processes are blocked. This

deschedule duration, in the optimal case of 16 processors, where processes do not have

to wait for for an available processor, is approximately 2 seconds, which is very close

The number of deschedules attributed to a process is related to the inner workings
of the locking mechanism. Not only is the granularity of the locking structure
important (i.e., how small a piece of the blackboard data base can be requested for
access allocation), but the granularity of the process blocking mechanism is important.
For example, processes could be blocked upon trying to gam access to a node and
then relegated to wftmg m a set of processes which are waiting on an^ node at the
level of the requeued node; or the wait set could be divided accordng to the
individual nodes being waited upon. If, in an attempt to conserve semaphore
structures, the former strategy is chosen, it could become quite expensive tc
determine whether, upon receiving an unlock wake-up signal for the wait set, a
particular member of the wait set is really re-schedulable as a result of that wake-up
signal; hence, it may be cheaper to release all waiting processes in the set, even
though all but one will just become descheduled again. If the single-node wait set is
used, the costs of maintaining separate semaphores for every possible data object
may become prohibitively expensive, although process re-scheduling would not be
done unnecessarily in such a scheme.

■

38

- -- rnsmm - - - - ■■- - i^i

r ■ ■■ m nm I'l ■ " "' w"1

to the average run time of a knowledge source. This long duration occurs because the

knowledge-source locking structures involve executing region locks at the beginning of

the knowledge source execution. These region-locks define the entire blackboard area

(and perhaps even more) that the knowledge source will either examine or modify

during its entire execution.1 These locks are then released only a*, the termination of

the knowledge source execution. Thus, if data accecs interference (i.e., a primitive lock

deschedule) occurred because of a previously executed region-lock, then the suspended

process would very likely not be unblocked until the knowledge source executing the

region-lock had completed its processing.

Finally, it is once again admitted that the reiulfs presented here are derived

from a rather limited selection of knowledge-source processes, the coding style of

which may be affected by the various efficiencies and inefficiencies of the particular

implementation of the HSU system organization. In particular, since the HSU speech-

understanding system is under constant development, various code sections involving

the system operations have been subject to extensive optimization attempts, while other

sections have not yet had the benefit of such optimization. Additionally, the results are

biased by the task domain (viz., speech understanding) and the data structure chosen to

represent the dynamic solution state of the task. However, it is hoped that the system

organization (including the data base design) is of sufficiently general character that

these particular results at least give a feeling for the results that might be expected

using a different cet of knowledge-?.ource processes to solve the same or different

problems.

SUMMARY AND CONCLUSIONS

This paper has presented a design for the organization of knowledge-based

Al problem-solving strategies which is felt to be particularly applicable for

implementation on clocely-coupled multiprocessor computer systems. The method of

design is a result of formulating the problem-solving organization in terms of the

1 Note that the number of primitive lock operations for preconditions is equal to the
number of b'ackboard accesses (from the precondition process averages of Table 4):
preconditions do not usually need a long-lasting locked environment (since they do
not modify the blackboard except to place tags into it), thus each access is
individually protected by the HSU operating system (via temporary-locking), rather
than having the precondition perform an explicit LOCK.' operation before each access.

.1

19

-

-r— —■- P

hypothcs(ze-and-test paradigm for heuristic search, where the various hypothesirers

and testers are represented as Knowledge sources applicable to the tasK domain ot the

problem being solved. A knowUdSe source may be described as an agent that embodies

the knowledge of a particular aspect of the problem domain and is useful in solving a

problem from that domain by performing actions based on its knowledge so as to

further the progress of the overall problem solution. The hypothesize-and-test

paradigm provides the conceptual means of coordinating these various knowledge

source activities by suggesting that it is the function of some knowledge sources to

create hypotheses representing a possible (perhaps partial) solution state for the given

problem. Hypotheses are created in a global data base and are available for inspection

by all knowledge sources. It is the responsibility of other knowledge sources to

evaluate these hypotheses in light of their own knowledge of the task domain, and

either accept or reject the hypotheses, or propose their own alternative hypotheses

(by *ither modifying the existing hypotheses or creating entirely new ones).

The Hearsay II speech-understanding system (HSII), which has been

developed at Carnegie-Mellon University using the techniques for system organization

described here, has provided a context for evaluating this system architecture. The

HSII organization provides the facilities necessary for knn^(edge-source cooperation

through the hypothesize-and-test paradigm to be carried out in a highly asynchronous

and Hata-directed manner, where knowledge sources are specified as independent

processing entities capable of parallel execution; the activities of any given collection of

such knowledge sources are coordinated by the hypothesize-and-test paradigm through

the use of a shared clobal data base called the blackboard.

In specifying the blackboard as the primary means of interprocess

communication, particular attention has been paid to resolving the data access

synchronization problems and data integnty issues arising from the asynchronous data

access patterns possible from the various independently executing parallel knowledge-

source processes. A non-preemptive data access allocation scheme was devised in

which the units of allocation could be linearly ordered and hence allocated according to

that ordering so as to avoid data deadlocks. The particular units of data allocation

(locking) were chosen as being either blackboard nodes (node-lockinB) or abstract

regions in the blackboard {region-locking). Bhckboard nodes also represent the units

of data creation within the blackboard. The region-locking mechanism views the

potential blackboard as an abstract data space in which access rights to abstract

-- ' u

■ — ^^ . <■ —

regions could be granted without regard to the actual data content of these regions.

Another area ot concern relating to the use of a shared blackboard-like data

facility relates to the assumptions made by the various executing knowledge sources

concerning issues of data integrity and localized data contexts. Since the blackboard is

intended to represent only the most current glob*! «status of the problem solution state,

mechanisms were introduced to allow inH;,/tdual knowledge sources to retain recent

histories of modifications made to ♦f'ie dynamic blackboard structure in the form ot local

contezti. Knowledge sources are also permitted to mark (fag) arbitrary fields (or nodes

or regions) of the blackboard itself (without requiring continuing access rights to the

field being tagged) and thereby monitor (in a non-mterfenng way) those locations for

subsequent changes; the knowledge source will then be sent messages should any

modifications be performed upon a tagged field Local contexts provide knowledge

sources with the ability to create a local data state which reflects the net effects of

data events which have occurred in the data base since the time of the knowledge

source's activation. Combined with the blacKboard data ta?finR capabilifes, local

contexts also provide a means by which knowledge sources can execu e quite

independently of any other concurrently executing knowledge sources (and without

interfering with the execution progress of any of these processes).

In an attempt to improve the problem-solving efficiency of a multiprocessor

implementation of the system by increasinp the amount of potential parallelism from

knowledge source activity, the logical functions of precondition evaluation and

knowledge source execution are split into separate processing entities (called, of course,

precondition and knowledse-source processes). A precondition process is responsible for

monitoring and accumulating blackboard data events which might be of interest to the

knowledge source associated with the precondition; and when the approonate data

conditions for the activation of the knowlectg« source exist in the blackboard, the

precondition will instantiate a knowledge-source process based on its associated

knowledge source, giving to the new process the data context in which the precondition

was satisfied.

The process activity of HSU is intended to be very data-directed in nature,

basing the decisions as to whether a knowledge sourc.» action can be performed on the

dynamic data state represented in the blackboard data base. It is the responsibility of a

precondition to '.esf tins data state for conditions which would warrant the instantiation

üi

- -

*^m ••

ACKNOWLEDGMENTS

We wish to acknowledge the contributions of the following people: Lee Erman

for his major role in the design and development of HSU, Raj Reddy for many of the

basic ideas which have led to the organization described here, and Gregory Gill for his

untiring efforts in systems implementation.

6

43

■MBMiMBI
■ __ JM

l'"l ^

Apperxiix A:
HSII BLACKBOARD AND KS DECOMPOSITION

Conceptual
Phrasal
Lexical
Syllabic
Surface-phonemic
Phonetic
Segmental
Parametric

Figure 1. The Levels in Hearsay It

Figure 1 shows a schematic of the information levels of Hearsay 11.

Parametnc Level - The pprametric level holds the most basic representation of the
utterance that the system has; it is the only direct input to the machine about the
acoustic signal. Several different sets of parameters are being used in Hearsay 11
interchangeably; 1/3-octave filter-band energies measured every 10 msec, LPC-
denved vocal-tract parameters, and wide-band energies and zero-ciossing counts.

Segmental Level - This level represents the utterance as labeled acoustic segmLnts.
Although the set of labels may be phonetic-like, the level is not intended to be
phonetic -- the segmentation and labeling reflect acou:tic manifestations and do
not, for example, attempt to compensate for the context of the segments or
attempt to combine acoustically dissimilar segments into (phonetic) units. As with
all levels, any particular portion of the utterance may be represented by more
than one competing hypothesis (i.e., multiple segmentations and labelmgs may
coexist).

Phonetic Level - At this level, the utterance is represented by a phonetic description.
This is a hroacl phonetic description in that the size (duration) of the units is on ;he
order of the "size" of phonemes; it is a fine phonetic description to the extent that
each element ir labeled with ? fairly detailed allophonic classification (e.g.,
"stressed, nasalised [I]").

Surface Phonemic Level - This level, named by seemingly contradicting terms,
represents the utterance by phoneme-like units, with the addition of modifiers such
as stress and boundary (word, morpheme, syllable) markings.

Syllabic Level - The unit of representation here is the syllable
Lexical Level - The unit of information at this level is the word.
Phrasal Level - Syntactic elements appear at this level. In fact, since a level may

contain arbitrarily many "sub-levels" of elements using the AND and OR links,
traditional kinds of syntactic trees can be directly represented here.

Conceptual Level - The units at this level are "concepts" As with the phrasal level, it
rnay be appropriate to use the graph structure of the data base to indicate
relationship-, among different concepts.

 ■■ AM

'■~~T~~T- *>•*

Levels - Knowledge Sources

CONCtPTUAL

PHRASAL

LEXICAL

SYLLABIC

SURFACE-
PHONEMIC

PHONETIC

SEGMENTAL

PARAMETRIC

 «Semanlic Word Hypothesizer

— Syntactic Parser

-Syntactic Word Hypothesizer

 Phoneme Hypothesizer

 Word Candidate Generator

Phonological Rule Applier

 Phone—Phoneme Synchroniser

s-Phone Synthesizer

Segment—^hone Synchronizer

Parameter—Segnen»
Synchronizer

 Segmenter-CIassifier

Figure 2. A Set of Knowledge Sources for Heörsayll.

As examples of Knowledge sources, Figure 2 shows the first set implemented
for Hearsay II. Tne levels are indicated as horizontal lines in the figure and are labeled
at the left. The knowledge sources are indicated by arcs connecting levels; the starting
point(s) of an arc indicates the level(s) of major "input" for the Knowledge source, and
the end point indicates the "output" level where the Knowledge source's major actions
occur In general, th- action of most of these particular Knowledge sources is to create
linKs between hypotheses on its input level(s) and: a) existing hypotheses on its output
level, if appropriate ones are already there, or b) hypotheses that it creates on its

output level.

 —~-~*~-~ --- **

^ ■ »M."— 1 •■•, ■ -

The Segmenter-Classifter knowledge source uses the description of the speech signal
to produce a labeled acoustic segmentation. For any portion of the utterance,
several possible alternative segmentations and labels may be produced.

The Phone Synthesizer uses labeled acoustic segments to generate elements at the
phonetic level. This procedure is sometimes a fairly direct renaming of an
hypothesis at the segmental level, perhaps using the context of adjacent segments.
In other cases, phone synthesis requires the combining of several segments (e.g.,
the generation of [t] from a segment of silence followed by a segment of
aspiration) or the insertion of phones not indicated directly by the segmentation
(e.g., hypothesizing the existence of an [I] if a vowel seems velanzed and there is
no [I] in the neighborhood). This knowledge source is triggered whenever a new
hypothesis is created at the segmental level.

The Word Candidate Generator uses phonetic information (primarily just at stressed
locations and other areas of high phonetic reliability) to generate word hypotheses.
This is accomplished in a two-stage process, with a stop at the syllabic level, from
which lexical retrieval is more effective.

The Semantic Word Hypothcsizer uses semantic and pragmatic inforrmiion about the
task 'e.g., news retrieval or chess) to predict words at the lexical lev -I.

The Syntactic Word Hypothcsizer uses knowledge at the phrasal level to predict
possible new words at the lexical leve' which are adjacent (left or right) to words
previously generated at the lexical level This knowledge source is activated at the
beginning of an utterance recognition attempt and, subsequently, whenever a new
word is created at the lexical level.

The Phoneme Hypothcsizer knowledge source is activated whenever a word
hypothesis is created (at the lexical level) which is not yet supported by
hypotheses at the surface-phonemic level. Its action is to create one or more
si-quences at the surface-phonemic level which represent alternative
pronunciations of the word. (These pronunciations are currently pre-specified as
entries in a dictionary.)

The Phonological Rule AppUer rewrites sequences at the surface-phonemic level.
This knowledge source is used: a) to augment the dictionary lookup of the
Phoneme Hypothesizer, and b) to handle word boundary conditions that can be
predicted by rule.

The Phone-Phoneme Synchronizer is triggered whenever an hypothesis is created at
either the phonetic or the surface-phonemic level. This knowledge source
attempts to link up the new hypothesis with hypotheses at the other level. This
linking may be many-to-one in either direction.

The Syntactic Parser uses a syntactic definition of the input language to determine if
a complete sentence may be assembled from words at the lexical level.

1

46

m ______________ j^ä

—-"- mm mm

The primary duties of the Segment-Phone Synchronizer and the Parameter-Segment
Synchronize1- are similar: to recover from mistakes made by the (bottom-up)
actions of the Phone Synthesizer and Segmenter-Ciascifier, respectively, by
allowing feedback from the higher to the lower level.

In addition to the knowledge source modules described above, all of which
embody speech knowledge, several poncy modules exist. These modules, which
interface to the system in a manner identical to the speech modules, execute policy
decisions, e.g., propagation of ratings and calculation of processing-state attributes.

47

mm—i

SELECTED REFERENCES

.

Baker, J (1974). "The DRAGON System -- An Overview,- in Proc, IEEE Symp. Speech
Recognition, Carnegie-Mellon Univ., Pittsburgh, Pa., April 1974, pp. 22-26; also
appeared m IEEE Trans on Acoustics, Speech, and Signal Processine, ASSP-23 1
pp. 24-29 (Feb. 1975).

Bell, C. G., W. Broadley, W. Wulf, A. Newell, et al. (1971). "C.mmp: The CMU Multi-mini-
processor Computer," Tech. Rep, Comp So. Dept, Carnegie-Mellon Univ.
Pittsburgh, Pa.

Bell, C. G, R. C. Chen, S. H. Fuller, J. Grason, S. Rege, and D. P. Siewiorek (1973). "The
Architecture and Application of Computer Modules; A Set of Components for
Digital Systems Design," COMPCON 73, San Francisco, Calif.

Coffman, E. G, M. J. Elphick and A. Shoshani (1971). "System Deadlocks," Computimr
Surveys 3, 2, pp. 67-/3.

Erman, L. D, and V. R. Lesser (1975). "A Multi-Level Organization for Problem Solving
Using Many, Diverse, Cooperating Sources of Knowledge," 4th International Joint
Conference on Artificial Intelligience, Tiblesi, Russia.

Feldman, J. A, and P. D. Rovner (1969). "An Algol-based Associative Language " Comm
ACM 12, 8, op 439-449.

Feldman, J. A., et al. (1972). "Recent Developments in Sail - An Algol-based .anguage
for Artificial Intelligence," Proc. FJCC.

Fennell, R. D. (1975). "Multiprocess Software Architecture for A.I. Problem Solving,"
Tech. Rep. (Ph.D. Thesis), Comp. Sei. Pjpt., Carnegie-Mellon Univ., Pittsburgh, Pa.'

Heart, E., S. M. Ornstem, W. R. Crowler and W. B. Barker (1973). "A New
Minicomputer/Multiprccessor for the ARPA Network," Proc AFIPS NDD42
pp. 529-537.

Lesser, V. R, R. D. Fennell, L. D. Erman and D. R. Reddy (1974). "Organization of the
Hearr.ay II Speech Understanding System," in Proc. IEEE Synp. Speech
Recognition, Carnegie-Mellon Univ., Pittsburgh, Pa, April 1974; also appeared in
IEEE Trans on Acoustics, Speech, and Signal Processing, ASSP-23. 1, pp 11-23
(Feb. 1975).

Newell, A. (1973) "Production Systems: Models of Control Structures," in W. C. Chase
(ed.) Visual Information Processing, Academic Press, pp. 463-526.

Ohlander, R. B. (1975). "Analysis of Natural Scenes," Tech. Rep. (Ph.D. Thesis), Carnegie-
Mcllon Umv, Pittsburgh, Pa.

48

 * . . - u

"
-

• ■

vl
Reddy D. R. (1973a). "Eyes and Ears for Computers," Tech. Rep., Comp. Sei. Dept.,

Carnegie-Mellon Univ., Pittsburgh, Pa. Keynote speech presented at Conf. on
Cognitive Processes and Artificial Intelligence, Hamburg, April, 1973.

Reddy, D. R., L. D. Erman and R. B. Noely (1973b). "A Model and a System for Machine
Recognition of Speech," IEEE Trans Audio and EUctroacoust., AU-21, 3, pp. 229-
238.

Reddy, D. R., L. D. Erman, R. D. Fennell and R. B. Ncely (1973c). "The HEARSAY Speech
Understanding System: An Example of the Recognition Process," Proe 3rd Int«r.
Joint Conf. on Artificial InUI, Stanford, Calif., pp. 185-193.

Swinehart, D. and R. Sproull (1971). SAIL. Stanford AI Proj. Operating Note 5'.2,
Stanford Univ., Stanford, Calif.

49

i
I

i

M^I^^I^^MHMgMgl - -

ii mwpwi

'-ifi>f»rf;

^ -Jtflfet.ASSfl'fKn__
^-Cl.^Y CLASMr.CAT.ON Or T.,. ggg r.-

Production Syst.. modol of ^U (S^) ^!l,i;K!y"S- li «lV«" "*«« ^
Ration is described in terms o th ^^1 Th^ f" Probl —^in« organ-

the course of design necessitated t, e int oduc 1 of ,S/CClSl0nS **** *ir1»« ^
mechanisms (e.g.. mechanisms for malnta^ In' d ^o ^7 -1 ^processing

^^rr:ff^

j
i j

