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20. ABSTRACT (Cont.)

Each field is represented by a potential matrix. The rf vector poten-
tial matrix is computed from an integration of Kosmahl and Branch's
field formulation. The magnetic vector potential matrix is derived
from ideal current loops representing the field sources. The space
charge potential matrix is obtained by an extension of Hockney and
Buneman's Fourier Analysis Cyclic Reduction method to cylindrical
cooi'dinates.

The trajectory steps are then computed from analytic integrals of the
general cross-field equations of motion, using a fast subroutine for
simultaneous interpolation and differentiation of the potential ma-
trices. '

A comprehensive example.is given of output obtained from the program.
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SUMMARY

This report describes tiane development of a cor_.uater program
for calculation of three-dimensional electron trajectories
in a coupled cavity traveling wave tube. RF, magnetic and
space charge fields are included without paraxial approxima-
tions. Both PPM and solenoid magnetic fields are admitted.

Each field is represented by a potential matrix. The rf
vector potential matrix is computed from an integration of
Kosmahl and Branch's field formulation. The magnetic vector
potential matrix is derived from ideal current loops repre-
senting the field sources. The space charge potential matrix
is obtained by an extension of Hockney and Buneman's Fourier
Analysis Cyclic Reduction method to cylindrical coordinates.

The trajectory steps are then computed from analytic inte-
grals of the general cross-field equations of moticn, using
a fast subroutine for simultaneous interpolation and differ-
entiation of the potential matrices.

A comprehensive example is given of output obtained from the
program.

Documzentation associated with this report available from NELC:
1. Users Manual for TWTVA Traveling Wave Tube Trazjectory Computation
2. Source program listing

3. Computer card deck
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1.0 OBJECTIVE

The general objective of this contract is the development of
a computer program for calculation of beam trajectories in
coupled-cavity traveling wave tubes.

Specific objectives set out in the statement of work include
the following:

i) the program will be in FORTRAN IV level H.

ii) the beam will be reprecented by a disc model up to the
beginning of the saturation region.

iii) the beam will be represented by a ring model of at least
96 rings per wavelength in the saturation region.

iv) the speed of the program shall aliow the 96 ring calcu-
lation to be carried out in 5 minutes of CPU time, or
less, per cavity, on an appropriate computer.

v) che program shall include a self-contained routine to
generate an rf vector potential matrix, to avoid depen-
dence on the Los Alamos program LALA.

Though not stated, it was understood that the program would
include rf, magnetic and space charge fields, without paraxial
approximations, and that the magnetic fields should include
both uniform (solienoid) and nonuniform (PPM) cases. It was
also understood that the interaction between the beam and the
rf fields would be computed in both directions -- that is, the
fields would be appropriately modified by the computed beam
trajectories, not merely applied from external sources.

This report describes the analytical backgrouna to tlie devel-
opment of the computer program. It is not necessary to read
the report in order to use the program: a separate User's
Manual gives all *the instructions necessary for setting up a E
case and interpreting the results. But familiarity with this

report is necessary for anyone intending to modify the program.

The analysis is specific to coupled-cavity TWT circuits at
this stage, but much of it is sufficiently general for future
application to other O-type tubes.
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2.0 DESCRIPTION OF THE PHYSICAL MODEL
2.1 The Tube

The tube will be represented as a sequance of gaps and tun-
nels, as shown in Figure 1; there are rf voltages across the
gaps, determined by the rf power flowing in each cavity, and
the rf fields due to any one gap are taken to extend irto the
tunnels on either side as far as the midplanes. Beyon. these
planes the fields due to the adjacent gaps take over. This
assumption that the fields due to one gap become negligible -
beyond the midplanes is, of course, not exact; but Iur typical
tube structures the fields at these planes are 25 to 30 dB
below the gap fields, so that it is a reasonable simplifying
assumption. A numerical example supporting this will be found
at the end of Section 4.7.

2.1.1 Specific Model

In order to have a ccnsistent set of test cases for numerical
trials and illustrations, an imaginary (but not unrealistic)
tube design was constructed.

Taking a goal oi 50 kW peak output, 30% bandwidth centered on
10 GHz, a preliminary rule-of-thumb TWT program gave 36 XV,
1.2 yP for the beam, .203" for the tunnel diameter, .297" fog
the cavity period, 9 ohms interaction impedance, and 1.02x10
m/s phase velocity (1.48m per cavity) at 10 GHz. 7The expected

~electronic efficiency was 24.9%.

After adjusting the voltage upward to 38 kV at 1.1 pP to allow

for relativistic effects not included in the simple program,
and rounding off other parameters to convenient values, the
following set of nominal parameters was adopted:

Tube type: ‘Navtest!

Frequency: 10 GHz

Power output: 20 kW peak

Tunnel diameter .2"; cavity period .3", magnet period .6";
gap .1".

Beam 38 kV 1.1 uP (approx. 8 amps), b/a = .7.

Cavities = 30; impedance 10 ohms; loss 0.1 dB/cavity;
sever gt cavities 12 and 13, phase velocity
1.0x70° m/s.

The tube structure is shown in Figure 2(a).
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This case was run on the large signal program [1]%*, with the
results shown in Figure 2(b). The upper block shows the input
data, followed by various derived quantities, including the
equivalent Pierce parameters. The lower block shows the power
saturating at 61.8 kW, _.e. about 1 dB margin, at 43 dB gain.
The energy balance in the last column is within .3 dB, which
is quite satisfactory. The »utput is plotted in Figure 2(c)
showing a very normal type oi Applegate diagram for a high
power over-voltaged tube. The electronic efficiency of 22.2%
is somewhat less than the 24.9% estimated by the preliminary
program, but not unreasonable. Overall, this seems to be a
self-consistent design for program test purposes, and its
parameters will be used for the test cases for the rf field,
magnetic field, etc.

2.2 The Beam

The beam will be represented by a one-wavelength segment,
traveling down the tube at the dc beam velocity. The assump-
tion is made that this wavelength is preceded and followed by
identical wavelengths: this assumption allows us to do two
things: .

i) compute space charge forces by a fast Fourier analysis
method, which implies that the segment considered is
part of an infinite sequence of identical segments;

ii) replace any element of the beam which leaves the segmnt
at one end, by a corresponding element entering at the
other end; i.e., an element can always be moved up or +
down one beam wavelength to keep it in our working range.

Since the tube is intended to be an amplifier, the bunching
in general increases along the tube, so the assumption of
identical wavelengths ahead and behind cannot be strictly

(1] J.R.M. Vaughan, 'Galculation of Coupled-Cavity TWT
Performance', IEEE Transactions on Electron Devices,
ED-22 #10, October 1975, pp. 880-890.

* References will appear as footnotes on the pages where
they first occur, and will also be collected in a com-
plete list at the end of this report.

1 See page 93. |




|

CASEt  NAVIEST
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Figure 2(b) . -6-
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correct. However, the tunnel walls exert a shielding effect

which diminishes the effect of more distant charges very

rapidly, so that ervors in estimating their magnitudes have 1
very little effect on the final results. Indeed, the real

reason for including anything more than adjacent wavelengths

in the space charge computation is that they can be expressed

as a geometric progfession whose 'sum to infinity' is a sim-
pler expression (T—:_?) than the sum of even three terms.

The assumption iz most likely to become unrealistic at the
final cavity, where the next wavelength ahead is likely to
be very different from the one being tracked, if the effi-
ciency is high. Ultimately we may be able to track three
consecutive wavelengths, the outer ones acting as guards for
the center one.

2.3 Subdivision of the Beam

Initially the one-wavelength segment of the beam will be
divided into 12 or 24 discs and these will be tracked for

the full length of the tube to establish initial values of
the rf voltages and phases at each gap, using an existing
disc model computer program [1]. We shall then backtrack to
the start of the saturation region, subdivide each disc into
2, 3 or 4 concentric rings, and repeat the calculation from
that position; with each ring now moving independently under
the action of the applied fields. Although we refer to these
elements of the beam as 'rings', we do not think of them as
hydrodynamic volume elements in the sense that Kosmahl and
Albers [2] consider them. In this work, what_is actually
tracked is a 'super electron' having about 107 times the
charge and mass of a real electron, which represents the
electrons in its neighborhood. Thus discussion of 'changes
of shape' of a ring are not meaningful in this ccntext: the
ring is represented by a point charge which has no shape, but
it will still be referred to as a ring for brevity. The pre-
cise charge is chosen so that, when multiplied by the number
of rings per wavelength, we obtain the same total charge as
the real beam, subject to a small correction to be discussed
later. '

[2] 'Three-Dimensional Evaluation of Energy Extraction in
Output Cavities of Klystron Amplifiers', H. G. Kosmahl
and L. U. Albers, IEEE Transactions on Electron Devices,
ED-20 #10, Oct. 1973, pp. 883-890.




2.4 The Fields
The fields acting on a ring are:
1) the rf field;
11) the space charge field;
iii) the magnetic field.

In the preliminary disc model calculation the magnetic field
does not enter, and only tre axial components of the rf and
. space charge fields are efiective. In the ring model part

i of the calculation, »oth axial and radial components of all
three fields are to e included, and are not to be limited
to paraxial approximations.

It will be noted that dc electric and rf magnetic fields are
not included; the effectsof the dc electric fields in the gun
are represented by the axial injection velocity with which
the electrons are started, and 'velocity-Jjump' sections are

3 not at present included. Several past studies have shown

] that the rf magnetic fields are negligible for foreseeable

1 microwave tubes.

There are various methods known for representing the fields
in computation. They may be derived from analytic solutions
of the wave equation or Laplace's or Poisson's equations as
appropriate, or from Green's functions,or from the gradients
of a potential function. We have available a fast trajectory
algorithm of proven accuracy | 3], which derives the fields by
interpolating the gradients of an array of potentials on a
rectangular grid which overlays the interaction region. Thus
our working representation of each of the fields will be a
matrix of potentials at the nodes of a suitable grid. The
mesh sizes and locations of the grids will be discussed in
detail in Section 2.6. There will be a separate grid and
separate matrix for each of the three fields.

1 [3] ‘'Flectron Ray-Tracing Program for Image Intensifiers',
Final Report, Contract DAAKO2-67-C-0182, by J.R.M.
Vaughan and O. Buneman, Sept. 1970.
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2.5 Matrix Representation of the Fields

For each field, we have the choice of constructing either a
scalar potential matrix or a vector potential matrix; for
reasons that will become apparent later, we choose a matrix
of radius x vector potential for the rf fieids, a scalar
potential matrix for the space charge fields, and a matrix
of vector potential x radius for the magnetic field. These
differences are not apparent to the ordinary user., but must
be recognized by anyone intending to delve into the program
to modify it. The required fieids (potential gradients?rare
derived from a scalar potential matrix by differencing the
matrix elements in the same direction, but from a vector
potential matrix by differencing in the perpendicular direc-
tion. Thus a scalar (R,Z) matrix like this:

1T 2 3 4 5 ...
1 2 3 l" 5 @ e e
12 3 4 5 ...

would represent a wniform axiai field; a 'vector potential
x radius' ratrix for the same aaial field would look like
this:

0O O O O O

1 1 1 1 g

4L 4 4 4 4

9 9 9 9 9 ...

(In practice, of course, the elements are not simple integers,
and the scaling factors are different for the two cases, but
the vector potential matrices dc always have zeroes along the
axis.) It may be worth noting here another possible source

of confusion: one of the unfortunate conventions of mathemat-
ics is that matrices are printed with the row numbers increas-
ing downwards, which conflicts with Cartesian coordinates with
y increasing upwards. Thus we shall draw meshes superimposed
on the interaction space of the tube in conventional Cartesian
form, with the horizontal lines {representing r rather than y)
increasing upwards. But in a straight printout of the corre-
sponding matrix, the top line of the matrix will correspond to
the bottom line of the mesh, and vice versa. In some demon-
stration cases we shall deliberately program the computer to
print a matrix in reverse row order for clarity, but a simple
MAT PRINT statement does not do this.

i

=




If it ié later decided to include dc electric fields to rep-
resent velocity Jjump sections, a scalar potential matrix will
be used for the electrostatic fields.

2.6 Matrix Dimensions

The fast interpoiation routine INTRA foir the potential graa-
ients requires the potentials at 9 surrounding mesh points:
thus for an electrcn at Q in Figure 3, the nearest mesh point
is P5, and the remaining points P4 to P4y and Pg to Pg are then
determined as shown.

P7 . Pg Pg
R
P P P
3 6
h F .
Z P> P

Figure 3: Mini-Matrix for INTRA

The routine fits an exact quadric surface through these 9
values, and obtains the gradients of the two principal tan-
gents at Q to th: quadric, resresenting the field components
at Q. (The routine INTRA is extremely compact, and does not
explicitly derive the quadric, Lut cuts straight through %o the
gradients, without neglecting any terms, so that it is correct
to machine accuracy. It was derived in reference [3 , where
its ad-vantage over 5 point interpolation was demonstrated.)

One can see from Figure 3, that the matrix must extend at
least one-half mesh in each direction beyond any position
that an electron @ can occupy during t')e calculation, so
that 9 surrounding potentials will always be available.

In the radial direction, an electron is limited by the tunnel
wall and the axis (it can pass through the axis, but its rad-
ial coordinate is by definition always positive, so that it

appears in the R-Z plane to bounce off the axiss. Thus the
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minimum radial mesh system would extend from one-half mesh
below the axis to one-half mesh above the wall. But there

is such obvious convenience in having one of the mesh lines
along the axis, and another along the wall, that we choose

to make every matrix (for rf, space charge aad magnetic
fields) extend radially from 1 mesh below the axis to 1 mesh
above the wall, recognizing that this makes the radial matrix
dimension greater by 1 than it would strictly have to be.

The number of meshes hetween the axis and the tunnel wall
need not be the same for all three matrices. For the ~f and
magnetic field matrices, the numbers may be chosen at will --
the larger the number, the more accurate can be the represen-
tation of the field, but the larger is the memory requirement,
and the more computation is required to set up the matrix.

It does not, however, affect thz amount of computation in the
main ring-tracking part of the program: at each step 9 adja-
cent values have to be extracted and interpolated, and it
makes no difference whether they are 9 out of 100 or 9 out

of 1000. Typical values for the number of radial meshes will
range from 4 for rough calculations or debugging, to about 20
for precise work (there is no real advantage in going to rad-
ial mesh numbers that are higher than the ratio of tunnel
radius to ferrule cormer radius, which is typically not more
than about 20). The radial mesh numbers are denoted Nggr for
the rf vector potential and Nyp for the magnetic vector poten-
tial matrices. Allowing for the guard rows, the matrices run
from -1 to Ncg + 1, and -1 to My + 1. When the program calls
for 'mesh numbers', it is the basic numbers Ngr, Nmp, etc.
that are to be entered. "he program will add %he guard rows
and columns as necessary. i

For the space charge matrix, the fast algorithm to be given
in Section 5 requires that the number Ngr of radial meshes

be a power of 2. It will usually be 4 or 8, possibly 16. In
this case the choice does affect the main computation speed,
since this entire matrix has to be recalculated after every
time step, and this is the pacing item for the whole program.

In the axial direction, the number of meshes is similarly a
free choice for the rf and magnetic field matrices (except
that it must be an even number for the rf matrix; an odd num-

ber would be an unlikely choice for either matrix in any case).

But the choice is strictly limited to 6, 12, 24 or possibly 48
for the space charge matrix. The rf mesh is physicaily tied
to the cavity period, as shown in Figure 4(b), but with an
extra mesh at each end. This matrix is stationary, but is
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repeated for every cavity. The matrix represents the poten-
tials for 1 volt peak rf across the gap at zerc phase, and
in use the gradients will be multiplied by appropriate volt-
age and phase factors for each cavity. If the cavity period
is divided into Ngp parts, the matrix numbering will run from
-1 to Ngcao + 1. Ngpa will typically be not less than 4 nor
more than 50. ;

The magnetic field matrix, Figure 4(c), will similarly be
tied to the magnet period. For 'single period' focusing
(alternating magnet polarities in each cavity) this is twice
the cavity period; for 'double periocd' focusing, the magnet
period is four times the cavity period. There is also the
possibility of focusing systems being used which do not tie
the magnet period tn the cavity period at all, so we shall
allow the magnet pericd to be an independent variable, but
with the expectation that in most cases it will be specified
as 2 or 4 times the cavity period. An example of a nonuni-
form field that was not tied to the cavity period would. be

a field produce¢ by a solenoid of several coils with inde-
pendent current contrcls, so that a 'programmed' field could
be generated. This would be treated as a periodic field
whose period extended over all the saturation region cavities,
so that the computation would never get beyond the first per-
iod. If tne magnet period is divided into Nymp parts, the
magnet matrix will run from -1 to Nmp + 1, agé will be re-
peated for every magnet period. Typical values of Nyp will
be from 4 to 24. For both rf and magnetic field matrices,
there is a two mesh overlap of consecutive matrices, but
there is no confusion as to which one is to be used for
rings in the overlap range: if a ring is on or to the right
of the tunnel midplane, it uses the matrix on the right; if
it is to the left of the midplane, it uses the matrix on the
left.

If the magnetic field is uniform (solenoid focusing), it is
not necessary to construct a magnetic matrix at all; the
trajectory program will allow for a uniform field by analytic
methods.

The space charge matrix is different in character: the number
of meshes in one beam wavelength must be one of the numbers
for which a superfast F.F.T. exists; usually it will be 12

or 24; and the corresponding grid is not stationary but is
moving with the beam. (Fig. 4(d)) If the number of meshes
is Ngp, we can arrange that the mesh position of a ring is
always within the range 0.5 to Ngp + .5 (since we have al-
ready agreed that a ring can be moved up or back 1 beam wave-
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length to keep it in range), so that this matrix runs from
0 to NSA + 1.

In the Super Basic debugging version of the program, the
mAatrices can be dimensioned exactly as written (e.g., -1

to 9 radially, O to 13 axially for a nominal 8x12 space
charge matrixs, but for the working Fortran version there

is the added complication that zero or negative indices are
inadmissible, so that all the indices have to be shifted up-
ward by 1 or 2 as the case may be. This is a thorough nui-
sance, and it is to be hoped that eventually a version of
Fortran will come out that, iike PL/1 and Super Basic, allows
negative or zero indices. In the meanwhile, it is a quirk to
be recognized by anyone digging into the program details, but
irrelevant to the ordinary user.

Since the axial and radial mesh sizes for each matrix are
determined independently, the meshes will not in general be
square. Normally the choices made are such that they are
elongated in the axial direction; the interpolation routine
allows for this, but there is some advantage in making
choices that do not result in extreme elongation -- say,

not more than 8:1. It does not appear likely that a case
would ever arise in which the meshes were elongated radially.

2.7 Coordinate Svstems

The basic coordinate system of the program is a stationary
Cartesian system in MKS units: the Z axis lies along the

tube axis, and the origin is at the tunnel midplane on the
entrance side of cavity #1. The Z coordinate of a disc or
ring at any time is its distance in meters from this plane,
and the R coordinate of a ring is similarly in meters. R
will be broken down into X and Y components in the trajectory
computatlon, the XZ plane being the plane initially contain-
ing a super-eiectron. (It will move out of this plane unless
the magnetic field is zero everywhere.) The XYZ axes remain
fixed, but each super-electron has its own RZ plane which
rotates about the Z axis so that it always passes through

the current position of the super-electron, as shown in
Figure 5.

Each of the three matrices constitutes an auxiliary coordi-
nate system in whici: the units are tne mesh sizes. For each
ring, we shall know from its Z coordinate which cavity and
which magnet period it is in, s¢ we shall subtract the Z
coordinate of the origin of the matrix for that cavity or

f
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Figure 5:

Mesh line numbering and Node numbering
for INTRA. Three different meshes are
used for the rf vector potential, the
magnetic vector potential, and the space

charge potential, but all are numbered in
the same way.
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magnet, and divide by the axial mesh size to get the relative
position in mesh units.

Similarly the radial position in mesh units is the MKS r
divided by the radial mesh size, usually different from the
axial mesh. The relative position in mesh units then allows
us to obtain the gradients representing that iield.

The same procedure applies to the moving grid in which the
space charge forces are evaluated. This grid moves with the
‘dc beam velocity', but this term is slightly ambiguous when
potential Cdeopression is taken into account. For reasons

given in {1 we choose the velocity at a radius b//3 in the
initial uniform beam as tne nominal dc beam velccity. The
moving grid is assigned this velocity. and retains it through-
out the motion, so that in saturation the beam is mostly slid-
ing back through it. The zero of time is the instant at which
the origin of the moving grid passes the origin of the fixed
MKS coordinate system. Since the zero of the moving grid-is
at its left-hand end, this implies that the beam segment to

be tracked crossed the entrance plane (mid-tunnel on the left
of cavity #1) before t=0, and is aiready distributed thrcugh
cavity 1 and part of cavity 2 at t=0 (the 1 wavelength beam
segnent is typically about 1-3/4 cavities long).

It is evident that this use of four separate coordinate sys-
tems involves ar enormous number of transformations, but they
are extremely simple and fast overations on the computer. To
compel all the fields to use a common set of mesh units would
force undesirable compromises on ail of them. By letting each
grid be independent, and determined only by its own constraints
and accuracy needs, while relating each to the underlying MKS
coordinates, we retain great flexibility, and freedom to in-
cosrorate additional matrices, such as one for electrostatic
fields if we want to. To this writer at least, there is alco
a strong psychological advantage in using MKS units as the
basic system, rather than normalized units such as Pierce's

y. it gives a feeling of knowing where the electrons'really
are!. Certainly if programming errors or incorrect data en-
tries result in unrealistic values, this becomes much more
obvious if they are expressed in familiar units.

-17-
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2.8 Input Dimensions

Since tube drawings are still often dimensioned in inches,
the user is allowed to make a choice of entering 211 linear
dimensions in either inches or millimeters. The choice sets
a conversion factor CLIN to either .0254 or .001 respective-
ly. Once made, the choice must be adhered to for all inputs
involving linear measures.

The program then converts all lengths and distances to meters
by multiplying by CLIN. Output coordinates are converted to
millimeters, but conversion back to the input units couid be
substituted very easily if this is preferred. This use of
the most familiar units for input is considered of great
importance for avoiding wasteda runs caused by incorrect data
entries.

An example of the very straightforward input for the prelim-
inary time-sharing version of the program is shown in Figure
6. The user needs to know the physical parameters of the tube
he wishes to have calculated, and to have some idea of the
accuracy level he wants, to allow a suitable choice of matrix
dimensions, but he need know nothing more about the progran.

The FORTRAN input is, as always, somewhat more restricted in
format, but is fully described in the User's Manual.
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OlL, TWEINP
READY = SBA!
KNH, M, 8192____10000

TthNP_ INPUT FOR HIRG MODEL PRUGRAM 01720716,

* PAKT 1t GENERAL® .
%_ INPUL DATA ON FILE (Y/N) ? N
‘ CASE IDENTIFICATION 7 NAVTEST
; LINEAR UNITS (1d OR MM) 7 IN
» PAKT 23 TUBE PHYSICAL DESCwIPTION: )
# TLEM | TUNNEL DIAMcTER ? .2
4 2 CAVLITY PERIOD 7 .3
o 3 GAP LENGTH o ? .l ) .
n 4 TOUAL # OF CAV.TIES 7 30
" 5 NU. OF SEVER CAVITIES ? 2
M 31 SEVER CAVITY HuMBLRS 71202
nl 6 RING CALC STARL AT CAV # ? 24
i 7 FIELD INTENSIFICATION FACTOR ? 2.5
Lo PAKL 3% CULD TEST UATA:s . ) i
1 b PHASE VEL (M/SEC/IVELS 7 10.0
g 9 IMPEDANCE- (OHM>) 710

10 LOSS (LB/CAV) 7 .0

PAKT 43 MAGNETIC FIELs DATAs .
Il UNIFORM (1) OR PERIODIC (2) ?
|3 PERIUDIC LENSTH ? .6
32 NUMBEK OF CUIL> (MAX 10) ?
33 FOR EACH COIL oNTER K, Z M
TCOIL 1T L 148,-.15,~158.2 S
COIL 2 ? .148, .15, 169.56
COIL 3 7 .148, .45,1_-169.8

Wy O COIL 4 7 .148, .15, 158.2  _ _ _
PAHT 53 kF DATA3
" 14 FREQUENCY (GidZ) 710
¥ 15 DRIVE PON!R CanT3y . 2.3.2
a. PART 63 BEAM DATA
n 16 BEAM VULrAOE {¥v) : ? 38
v, V1 MICROPERVEANCE . AR S - :
5 18 NUALNAL B/A ? LT

i PAKTS 1 AND 8 STANUARL (S) Ok NON-STANDARD (N) ? N

- »_PAKT 73 BEAM MODEL3

¥, 19 ¢ OF DISCS PER WAVELENGTH 712 T
g 20 #:0F RINGS PER DISC 72

_PART o3 PUTENTIAL MESH DIMENSIONSS - e
o 21 SCHAI'T  RADIAL, AXIAL ? 4,12
o 22 RFMAT:  RADIAL, AXIAL ? 4,12
@ 23 MAGNAT: RADIAL, AXIAL 7 4,16

4

w; COKKRECTIONS (Y/N7 2 N

¢ FILE DATA (Y/H) 2 Y e R
o FILE NAME (Hui) 7 NAVIST

v INPUT SAVED ON “NAVISLY :

&8

v SPACE CHARGE DENSITY  7.140E-03 CB/M™3

viOMEAN POLENTLAL DEPRESOION 876.6 VOLTS

v PULENTIAL DEVRESSIuUN G AXIS 1086.6 VOLTS

» MEAN BEAN VELUCLLY 10.790x1ET M/SEC

n BEAM CURKENL  8.1403 AMP

W BEAR wAVELENGIH 425 IN o=
»i BILLOUIN FLelb  v41.6 GAUSS

wt FIME SIEP ¥ DISC CALC, b.33333 PICOSEC

ol FO RING CALC, 5.665%25 PICOSEC i
"
~w MKS SCALED DATA SAVED UN “NAVMKS’
ENv
. Figure 6: Program Input
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3.0 MAGNETIC FIELD

The only restriction placed on the magnetic field is that it
be axisymmetric, that is, that it have no dependence on 8.

In PPM structures the field hecomes purely radial at certain
Planes, and of course it is purely axial at the centers of
the gaps; if we are to model this complete range of directions

"accurately, we cannot allow any paraxial approximations. The

method to be described passes from purely axial to purely

radial with no loss of accuracy, and constitutes a valid solu-
tion of Laplace's equation. (Some published approaches to this
problem use ad hoc expressions which do not satisfy Laplace [4]).

Primarily the magnetic field is represented in the computer
program by the parameters of a set of ideal circular current
loops, usually not more than 10 in number. These loops are
chosen so that the field they generate matches the actual field
over the working region within a desired tolerance. However,

. as explained in Section 2.5, the trajectory algorithm requires

a4 matrix whose elements are 'radius X magnetic vector potential'
at the nodes of a suitable mesh in the r-z plane. Therefore,
the loop parameters are used to generate this matrix, which then

- becomes the working representation of the field for the main

ray-tracing part of the program. Whether the chosen loops rep-
resent the desired field accurately or not, the field derived
from the loops is always a true solution of Laplace's equation.

The reasons for this choice of method, and its implementation,
will now be discussed in more detail.

3.1 The Vector Potential Matrix

The ray-tracing .nutine derives information about the magnetic
field by extracting the values at the 9 nearest nodes of a
potential matrix for each ring at each time step. These values
are then interpolated by subroutine INTRA to give the gradients
at the position of the ring. Since the magnetic field is static,
a scalar potential matrix could be used. But it is found that
the magnetic field terms can be more effectively integrated into

‘the ray-tracing routine if the vector-potential is used, with

each value muitiplied by R. The vector potential is a less

[4] H.K. Detweiler and J.E. Rowe, 'Electron Dynamics and -
Energy Conversion in O-Type Linear Beam Devices' in
'Advances in Microwaves', Vol. f, 1971, Academic Press,
p. 35. The pair of equations (14) on p. 39 do not
satisfy Laplace.
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familiar concept but it takes a very simple form for axi-

symmetric fields, and is easily calculated from formulas to

be given. It should be remembered that the use of vector :
potential involves vector cross products, so that the radial
differences in the matrix determine the axial field and vice

versa. .

3.2 Th2 Magnetic Vector Potential

.gor ? general axisymmetric field, the vector potential at
R,Z) is

R
1
A=-§ j r B, dr (3-1)
) ' .
= §%§ « (flux through circle of Radius R) (3-1a)

The direction of the vector A is circumferential. The quan-
tity to be stored in the matrix element corresponding to
(r,z) is M = rA, and the field components are then given by

_d M S - | -
B, =% %% ¢ B, = T oz (3-2)

3.2.1 Uniform Field

If the field is uniform

Bz = Bo independent of r

Br =0 everywhere.

Then
M(R,Z) = R.A = R2B°/2

Thus the matrix for a uniform field reéion is easily recog-
nizable: in each column, the values are proportional to O, 1,
4, 9, etc., and all columns are identical.

-21=




However, for the uniform field case, the ray-tracing program
will be diverted to a simpler set of equations in which only
the axial component B, occurs, so that it is not necessary to

construct the M matrix at all. This includes the case of zero
field.

3.2.2 General Axisymmetric Field

The basic sources of an axisymmetric magnetic field are loops
of current flowing in planes perpendicular to the axis. If
the field is generated by a solenoid, there is an obvious cor-
respondence between these mathematical current loops and the
actual turns of the coil. But if the physical source is a
permanent magnet, one can still visualize the billions of
'Amperian' currents circulating in the aligned molecules, can-
celling each other everywhere in the interior (for uniform
magnetization), but adding up to a large surface current dens-
ity at free surfaces that are not perpendicular to the direc-
tion of magnetization (Figure 7). It should be noted that the
kind of ring magnet often used in TWTs has two such surfaces,
the inner and outer cylindrical surfaces, with Amperian cur-
rents in opposite directions. The correct representation of
this magnet therefore requires two sets of current loops of
opposite polarity located on the inner and outer diameters.
The writer has seen quite large-scale attempts to compute
fields based on the assumption that the field can be repre-
sented by a single current sheet or set of loops. This is
only true if one confines attention to the region close to the
axis: we shall find that in this case (which is common in TWTs
of course) a single set of coils can be sufficient; but it
should be remembered that this is not generally true.

The most common textbook expression for the field is an ex-
pansion in terms of the axial values and their differentials.
Evidently the writers of textbooks have never actually carried
out this calculation because, while algebraically sound, the
method has numerical instabilities which make it useless in
practical cases _5!. It only works if one restricts oneself
to paraxial cases, a limitation which we have specifically re-
Jjected, or if the axial values of the field are known with
machine accuracy (order of 8 digits or more). The values can
only be known with this kind of accuracy if one has derived
them mathematically from the 'sources' Just described, which
implies that one knows what the sources are. 1If one dces know

[5] J.R.M. Vaughan, 'Representation of Axisymmetric Magnetic
Fields in Computer Programs', IEEE Transactions on Elec-
tron Devices, ED-19 #2, February 1972, pp. 144-151.
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this, then it is much more natural to derive the desired
matrix M directly from the sources than via the axial dif-
ferentials. If what one knows is really a set of data values
of the field, then the procedure will be, first to find a set
of sources -- ideal current loops -- which will represent the
data, and then to derive M as before. Several methods of find-
ing appropriate loop parameters in practical cases have been
described [6].

Since the field is axisymmetric, every current loop is cen-
tered on the axis and perpendicular to it; each has three
parameters: axial position Z4, radius R4 and current Iq; the
writer prefers to use the 'strength' Mq = pyI4/2m as an
equivalent parameter.

The axial -positions of the loops are unrestricted: the grid
covers one period of the magnet structure in the axial direc-
tion, but loops lying outside that axial range can be con-
trivuting to the field within the range. For 'single period'
focusing, for example, the period covers two consecutive cavi-
ties; the field is represented by four coils, two in the geps
of these cavities, and one in the next cavity gap on eitber
side, so the two latter have z positions outside the range of
the grid.

The radius of a coil is restrictei: physically, it must be

greater than the tunnel radius, otherwise an electron could
encouirter a field singularity. This condition is in practice

only violated if a mistake has been made in caiculating (or
entering) the coil data. But when we use a wotential grid to
represent the field, a somewhat stronger ccadition is required:

the coil must lie not only outside the turmnel, but beyond the
outermost grid line by about 0.5 mesh sc¢ that no mesh point

can lie too close to the singularity. In practice, the correct
coil position for a typical PFM struccure is at about 1.4 or

1.5 times the tunnel radius, so this condition only comes into
play if a very coarse mesh is used (NMR = 2 or 3, for example).

'The program checks each coil radius, and if it is too small for
the mesh size chosen, it will automatically increase the radius

by a factor Cg to bring it to the minimum acceptable value. It
simul taneously increases the strength by a factor Cg5/1+.25C (C5-1)),
which restores the field strength on the axis to thé corrsc

value. A diagnostic is printed specifving the new values assigned.

[6] J.R.M. Vaughan, °Methods of Finding the Parameters of
Ideal Current Locps for Computer Simulation of Magnetic
Fields', IEEE Transactions on Electron Devices, ED-21
#5, May 1974, pp. 310-312.
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For a nonuniform solenoid focused case, the coil radii will
all be much larger, and the probiem would not arise even at
Nmgr = 2-

In the 'inch-gauss' or 'millimeter-gauss' units to be used
for data input (‘see Section 3.3), tne 'strength' of a single
loop of radius Rq inches or mm generating a field of G4 gauss
at its center is R1G1/ﬂ.

' The flux through the circle R,Z due to the source R

ie ] | 10 295 14
- 1
$ = u I (RR,)? (% - c) K(c) - £ E(c)J (3-3)
: ' I
where cz = 4RR1//{kR+R1)2 + (2-21)%} ' 3 (3-4)

and X and E are the complete elliptic integrals, modulus c.
(The alternative expansion in Legendre polynomials has very
slow convergence over much of the range we shall need.)

Combining (3-3) with (3-1a) to obtain A, and multiplying by
R we have

c

I o
M(R,2) = 32 (R} [(2 - c| K(c) - £ E(c)] (3-5)

where the reason for using u011/2ﬂ as a coil parameter is
now evident. . :

For values of ¢ 2 0.2, (3-5) can be evaluated by using the
elliptic integral subroutine ELIVA, which is incorporated
in the program. It is significantly faster than the IBM
routine. For ¢ < 0.2, the terms in the square bracket be-
come nearly equal, and we improve the accuracy by replacing
them with the power series expansion’

3 . |
[ }: Eﬁ; 1 + % 02 + %g% cl+ + %%g 06) (3-6)

[7] J. Jeans, 'The Mathematical Theory of Electricity and
Magnetism', Cambridge Univ. Press, 5th Ed. 1933, p. 443.
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The last term is <‘l0"4

for ¢ < .2, so furthe. teims are un-
necessary. :

3.3 Program Input

In line with the policy of inputting data in familiar or con-
venient units, the coil data will be called for in inch-gauvss
or mil. imeter-gauss units. These are then converted to MKS
units vsing CLIN = .0254 or .001, and CMAG = .0001 (for gauss
to Teslu). Note that (3-4) camnot be interpreted directly in
mesh units, because the mesh units normally differ for R and
Z; it could, of course, be modified to allow for this, but it
appears simpler to keep the R's and Z's in meters and evaluate
(3-4) and (3-5) as written. .

Thus, if the magnet period is Ly inches, and is divided into
NMA meshes axially, the.Z values are

Ly * CLIN ¥ I/NMA for I = 1 to Ny, (3-7)

or for I

1 to Ny,/2 (3-7a)
if the magnet period has Z symmetry.

Similarly if the turnel radius is A, inches, and is divided
into NMR meshes, the R values are

Ay * CLIN * J/NMR for J = 1 to Nyp + 1. (3-8)

Subroutine MAGVA evaluates (3-5), using (3-4) and (3-6)
where appropriate, for these ranges c¢f I and J, for each
coil. The M values for several coils are additive: although
they are strictly vectors, they all have the same direction
(normal to the R-Z plane) so they can be added algebraically.
The yoI4/2w terms in (3-5) are the entered strengths M, mul-
tiplied by CMAG x CLIN. '

The number of coils riecessary to represent one period of the
field has never so far exceeded 10; 4 coils are sufficient

for ordinary 'single period' focusing, and 8 for double period.
In either case, only half the matrix need be calculated, the
other half being the same with reversed signs. For cases

such as the multi-coil nonuniform solenoid, the whole wmatrix
must be; calculated.




The remaining elements of the full matrix can ther be filled
in without further calculation:

M(R,Q):M(R,NMA) for R = 1 to Nyp + 1
M(R, -1) = M (R, Ny, -1) for R = 1 to Nyp + 1
M(R, NMA+1) =M (R, 1) for R = 1 to Nyp + 1 (3-9)
M (0, Z) =0 for Z = -1 to Ny, + 1
M (-1, 2) =M (1, Z) for Z = -1 to Ny, + 1

The program will allow three options for the magnetic poten-
tial matrix: :

i) Compute the matrix and discard.it at the end of the
run.

ii) Compute the matrix and save it on a file MAGMAT for
future use. '

iii) Read in the matrix from MAGMAT.

The nominal matrix dimensions N, and N are stored with the
matrix, and in case (iii) are cgﬁpared Wtn the specified
values as a safeguard against reading in an incorrect matrix.

The complete process of generating the magnetic vector poten-
tial matrix from the original specification of the field is
summarized in the flow chart in Figure 6.

There remains the question of location of the magnet period

ir. relation to the cavities: the matrix is only needed for the
last k cavities in which the ring model of the beam is to be
used (k ~ 10). The convention adopted is that the Ny,'th

grid line of the last magnet period coincides with the mid-
plane in the tunnel following the last cavity. Then as many
repetitions of the magnet period are added prior to this as
are necessary to extend back over at least k+1 cavities (since
if we change from the disc to the ring mcdel at cavity k, some
elements of the beam segment will still be back in cavity k-1).
For example, if the tube has 50 cavities, or which the last 10
are to be computed with the ring model, and if 'double period'
focusing is used (magnet period = & cavity periods), then mag-
net period 1 will cover cavities 39-42, period 2 cavities 43-46,
and period 3 cavities 47-50. If 12 cavities were to bg used,
then 4 magnet periods would be needed, starting at cavity 35.

s e o 3 e e e i '-w..;ﬂ';.\"‘-hsw e~ ol
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3.4 Numerical Example

Since it is rather easy tc become confused over the unmits, '
and is useful to have a test case for debugging, a fully
worked-out numerical example follows, based on the standard
test case of Section 2.1. The pertinent data are:

Tunnel diameter . .200"
Ferrule 0.D. « 500"
Magnet I.D., 0.D. ' 1.5, 2.0"
Double cavity length
(i.e.,.magnet period) . 600"
'Magnet length .200"
Ferrule gap o Mt
Web thickness cL AN '

Magnet material: Samarium Cobalt.

This information is sufficient for calculation of the field

by the method of Sterzer and Siekancwicz [&] which is em-
bodied in Litton proprietary program /PPMMAG18/. Figure 9
shows the case run on this program. Half way down the page

we see the gap center field midway between the ferrules,
5316.9 gauss, and the field on the axis in the same Z plane,
3046.7 gauss. “hese two values are sufticient for a first
approximation to the parameters of a coil to produce this
field, using the method of [5! and [67 . The program then
assigns identical coils of opposite polarity in adjacent gaps,
and a fourth coil beyond the third, and calculates the pertur-
bations they cause in the first gap. The coil radii and
strengths are then adjusted to restore the fields atv r=0 and
r=a to the desired values, and the two outer coils are slight-
ly adjusted to force the field to zero at the mid-tunnel posi-
tions; the final parameters for all four coils are printed out
at the bottom of the page in the desired inch-gauss units.

The program gives other information which is useful for magnet
design but not relevant to the present application.

AP T 5 i SN i s R R S S AR T G R R,

[8] F. Sterzer and W.W. Siekanowic:, 'The Design of Periodic
Permanent Magnets for Focusing of Electron Beams', RCA
Review, Vol. 18, pp. 39-59, Mar. 1957.
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YLOAD /PPHMAGL G/
*RUY

PERIODIC FERMANENT MAGHET DESIGH PROGRAM 0108 11349

INPUT FPOM CFILEMAMF OR TELY 7 TEL
HUR 1.0, «DI1>, O.D. b2y C(INCHES) 7 .29.73
MAGHET 1.D. (D3> O.bU. (D4 7 1.52
DOVBLE 7.F. CELL LEHRTH ‘L)» MAGRMET LEMGTH (T> ? .6y.2
GARP (f. .« MUMEERP OF GARPS PER MAGHET 7 ,1,2.7 1
OUTER =HiM THICKFHFSS = , 100 IHCH
THHER SHIM THICKHELIZ (T2) .7 1§
IS MAGHET MATERIAL 110X 1 41>s ALNICD 8R (2)y» BB (2>, 8C (4,
SM=-CO (%> PT-COwery ALNICO 98 (7> 9C <Bd>, HI=-90 (3>, DTHER (107 S

MAGHET OFERRTING FPOIMTs H=-7,&55 K-DE» B= 4,912 KGs Er/H= ~1.849

REGIONH PEPﬁEHNCE(]N.) FLUX (SRUSS-CH~2)

1. TUHHEL 261 824
2. FERFULE-FERFULE . 393" 1247
3. FERPLLE D.D. . 309 1061
4. FEFRWLE TO =TEP g.448 . 2897l
6. STEF 7O MAGHET .00t 0
S. EXTERNHAL 3..290 1ia2ae

TOTAL 12.700 42555

GHP CENMTER FIELD = S316.9 GRUSS
AXIAL PEAKS AND MINIMAS

Z GRUZS
» 1500 346,97
L3000 .0

R.M. 8. FIELD 131&72.2 GRUSS
IHTESRATED FIELL (Yst> 7 N

HARMONRTC AMPLITURES:

Ho. HHFLITUIE #CT. UF PERK
1 2610, 8 85.9
3 -411.9 -13.%5
S 2o, i o7
e a. 1 .1

FLUX DERIITY IN SHIM RT D@ 21224 GRUSS
RT D 102672
IN FERRULE 130

WEIGHT FPER FF CRVITY
WEIGHT OF BNE MASHET

o
::‘ -
o
g
[0
[y
fme)
{2
~
H
()
[as]
w
-“’
o
D
s
2
(7]
-’

CRLCULATE EOUTVARLENT CDILS (Yer> 2?2 Y

GAP/R¥IS FIELD RATIO 1.745. COIL FAD PATIO 1,393
FIRST vwaLIIET CDIL FAD <132 STFEHGTH  135.1
SECOMD EXTIMATE OF FARIUS 14801348

FHS OF COIL FIELDE 2010.S5 GARUSK
HXIRL DATA BOW ON FILE -VveI1PLOT~

COIL DATA IH THCH-GAUSS <I> DR MESH M UNITS 7 1

FADIUS AXIAL PDZ. STPENGTH

caiL no. « 1480 =. 1500 -138. 2
rnit No o 2 ;1420 <1500 189, 8
COIL O 3 « 1420 1500 -109,.8
COIL nd. 4 . 1480 7300 158.2

ALOVE YALUES TO RE DIVIDED BY “UNITINZ FOP UIE IN SLAC PROGFAM

THPUT § FOR HEW VRLUEZ. @ FOP A HFW PUNs OR 3 YD SYOP
IF NFW VYARLUESs INFUT THEMs THEN TVPE “G0O° * 3 )




e

This set of coils reproduces the desired field values within
0.1% at r=0 and .5% at r=a, at mid-gap. The rms value of the
coil fields over a complete period is about 7% high. If nec-
essary this discrepancy could be reduced by using more coils
to represent th-~ field, but this does - .¢ seem necessary.
Other methods of obtaining coil parar ters without using
/PPMMAG18/ are detailed in[5] anr 6] .

The input data relevant to the magnetic vector potential ma-
trix is, for our standard test case: :

Tunmel diameter 2n Ay = LA
Magnet period 6" : Ly = .6"
‘Radial meshes in tunnel radius Nyp = &4
Axial meshes in magnet period Ny = 16

Coil. data R1, Z1 and M1 exactly as in Figure 9.

Then tunnel radius = A = A; x CLIN = 2.54 x 1077 meter
radial mesh H,p = .635 x 107> meter
axial mesh Hy, = Ly x CLIN/Ny, = .9525 x 107> meter.

Coil parameters converted to MKS units:

Radius Axial Pos. Strength
# 3.7592x107° ~3.81%10"7 ~4,0181x10™ %
#2  3.7592x107° 3.81x10™2 L. 3129510™ %
#3  3.7592x10°0 - 11.43x1072 ~4.3129x10” %
#  3.7592,1077 19.05x10™2 4.0183x10™ "

We will hand-calculate the matrix entrg for the point one
mesh unit off the axis (R = .635 x_10-2) at the center of
the first gap (Z = 29 = 3.81 x 1079): the dominant contribu-
tion is from coil #2, for which

c = [4x.635x1o‘3 X 3.7592x10°°/ {(3.7592x1o‘3

i .635x1073)% 4 oZ}J 172 _ 703
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Figure 10: Geometry for Magnetic Vector Potential at
(R,Z) Due to Current I in Loop Radius R4
Centered at (0,21)
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To obtain K and E from tables, which are usually given in
terms of the modulus expressed as an angle, we take arcsin
.703 = 44.7° as our entrg. In the program, subroutine ELIVA
uses the parameter m = c< as input. By either method, we ot-
tain K(c) = 1.8493, E(c) = 1.3535, and

m _ _z.1/2
M, = 4.3129x10 4 (.635x1073 x 3.7592x1073) /

=2 2 . ; -8
[‘.703 - -703) 1.8483 - —o53 x 1.,535} = 7.361x10

For coil #3, Z = 3.81x10-3, Zq = 11.43x10’3, giving ¢ = .3513,
K = 1.6229, E = 1.5212, M3 = -.591x10-8. Similarly the con-~
tribution from coil #1 is™Mq = -.550x10-8, For coil #4, ¢ =
.1948. Since this is less than .2, we use (3-9) to evaluate
the square bracket in (3-5):

M, = 4.0183x10-b (-.635){10-3 X 3.7592x10-3)1/2

3
x DI 14 (3/0)( 19687 + A2 (198)") - 093107

Thus the resultant M is

(7.361 - .591 - .550 + .093) x 10°8 = 6.31x10"8

Subroutine MAGVA carries out this computation for each of the
mesh points defined by (3-7) and (3-8). The run for the stan-
dard case, using the coarse 4 x 16 matrix size to fit on the
time-sharing system, is shown in F%gure11. The complete vector
potential matrix, multiplied by 10'Y and rounded to integer
values for clarity, is given in reverse row order.

The peak value 623x10'10 on the row next to the axic (row of
zeroes) corresponds to the 6.31x10-8 we have just hand-calcu-
lated. The discrepancy is due to the fact that hand calciula-
tion with linear irnterpolaticn of tables is barely adequate

for this problem; it does serve as & useiul check that no gress
errors have been maice. The machine calculated values are cor-
rect to 4 or more digits.

The axial and radial fields, in gauss, are tabulated below the
matrix. ‘
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A further check on the correctness of a matrix of this kind
(which should be applied as a check if any different method
of computing the matrix is adopted), is obtained by examining
any entry on the row adjacent to the axis. The field at the
corresponding point on the axis is then

10
. _ 2x10

gauss

x (matrix value adjacent to axis)
(radial mesh size in mm)2

(3-10)

Thus for the point calculated, using the machine value for
the off-axis potential,

10 p'e 623x10’10

_ 2x10 3 = 3090
.635

gauss

This is in agreement with the value shown for this point in
the axial field tabulation in Figure 8, but is 1.4% higher
than the expected 3046.7 gauss. This discrepancy is nct due
to inaccuracy of computation, but is simply a result of the
coarse 4 x 16 mesh used in this extmple -- it is a discreti-
zation error. If the sams data is run with 20 meshes radially
instead of 4, the computed peak axial field is 3049 gauss, an
error of less than 0.1%. This point should be remembered if

(3-10) is used to check any alternative method of computing
MAGMAT.

Since actual fields in tubes are seldom known to better than
5% accuracy, this also indicates that the discretization error

is not serious, in practical terms, even for the coarse 4 rad-
ial mesh case.




4.0 THE RF_VECTOR POTENTIAL MATRIX

This matrix provides the working description of the rf fields
in the tunnel and gap region. Its computation thus depends on
the boundary conditions that are assumed.

4,1 Basic Field Mpdel

Following the lead of Kosmahl and Branch [9J we adopt a field
model in which the gap field increases in intensity necr the
noses, but not to the extreme values associated with a sharp
edge. Kosmahl and Branch take the axial gap field at the tun-
nel radius to vary as cosh(mz) where z is measured from the

gap center, and m is an arbitrary parameter (20) which in
effect describes the 'sharpness' of the noses. K. and B. give
experimental data confirming that the model is a good one for
a typical nose radius, giving a field concentration of about
2.5:1 at the nose compared to the gap center. This corresponds
to m¢ = arc cosh 2.5 = 1.57, where & is the haif gap length.

It should be noted that the model.does have a logical incon-
sistency, in that the finite fi<ld concentration corresponds

to a rounded nose, but a rounded nose does not correspond ex-
actly to a boundary condition of E, = cosh(mz) up to ¢ and zero
beyond, since the tunnel wall curves up before it reaches z = 4.
Thus the model will break down if one tries to examine the
fields near the nose on a scale comparable with the implied
nose radius, or to specify an excessively large field concen-
tration factor -- about 4 is the limit that should be used,

and 1.5 to 3 is a more reasonable range. This is in general
agreement with the conclusions of K. and B. The case m=0,
concentration factor 1, corresponds to the uniform gap field
first analyzed by Wang [10]. The program will call for the
field concentration factor as input, and will calculate m from
it (knowing t), because it is easier for the user to think in
terms of concentration factor.

[9] H.G. Kosmahl and G.M. Branch, 'Generalized Representation
of Electric Fields ir Interaction Gaps of Klystrons and
Traveling Wave Tubes', IEEE Transactions on Electron
Devices, ED-20 #7, July 1973, pp. 621-629.

[10] cC.C. Wang, 'Electromagnetic Field Inside a Cylinder with
a Gap', Journal of Applied Physics, 16, June 1945,
pPp. 351-366. ' .




The mid-gap field strength (E,) and tke total rf voltage
across the gap (V.f) are related by

mV ¢ :
By = 2sinh (o) : (4-1)

[ . If m=0, this reduces to V,.s/21, as expected. We are going
to rompute the matrix for grf‘ 1 volt peak.

- 4.2 Vector Potential E;preséions

It will be remembered from the introduction that the quantity

Vec to be stored in matrix is 'radius x vector potential!’,

Just as in the magnetic field case. Multiplying the four ex-

pre551ons given by Kosmahl and Branch (for the axial and radial

flelds in the gap and in the tunnel) by r, and 1ntegrat1ng with
espect to r and z, we cbtain the following two expressions for

Vecl -
For C s|z|s 4:

T N

( I‘J..(IJ 2rm2)
V. =E cnsh(mz)
t 'ec 0
 kPam® I (aVk2+m2)

9 2 rJ.(k.r) ml, -my, -p.1/a P2
" - a Z } l(i‘l_: ) < + 2 e O cosh —2-
= Ppdqi%y

-ma - +ma a
pn pn

%E . : (4-2)
and for z 2 g: '

o

— T, (k r) sinh(an/a+mL) sinh(p 4/a-me) -pn|z|/a
Ve E - 2; P J1Tk a) p,+ma + p,-ma

(4-3)
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wherein E_ = field {(v/m) at zQO, r=a, defined by (4-1)

o
a = tunnel radius, meters
4 = half gap length; meters
w = éngular frequency
k = w/c
ln = nth root of JO
P, = Jknz - (ka)2
k, = kn/a

The geometry is illustrated in Figure.12 '

It may be verified by differentiating (4-2) and (4-3) with
respect to r and z, using the Xnown relation [11]

£ %.34(kx)) = kxJ_(kx),

that the results agree with K and B's expressions for the
field components, including the factor 1/r which we need.

Thus with V. defined by (4-2) and (4-3), we have for the
fields

) : ' |
E, =% ic (4-4)
3V
4 ec
B =7 5 (4-5)

The negative sign in (4-5) will be taken care of later.

The units of Vec are meter-volts, and Ez and Er will then
be in volts per meter.

The matrix Vg, is symmetrical about z=0, so the left-hand
half (z < O) can be filled in once the z = O values have
been calculated (assuming that we were not so stupid as to
adopt an unsymmetrical grid).

[11] N.W. McLachlan 'Bessel Functions for Engineers', Oxford
Univ. Press, p. 158, equations 22 and 24,
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4.3 Ccmputation of the rf Vector Potential Matrix

_ T

We shall compute one matrix V,. for unit rf voltage across ‘
the gap; this describes the shape of the field for any cavity.

When a super electron is in cavity n with peak rf voltage Vn

at phase ¢,, we ‘conceptually lay Vg, over that cavity, obtain

%E_and E, at the position of the super electron by (4-4) and

5), and multiply by Vhcos(wt+gn). Thus one matrix serves
for all cavities.

. ]

] The immediate problem is thus to devise an efficient scheme

: for evaluating (4-2) or (4-3) at each node of a grid of the
desired fineness, as shown in Figure 12. The constapt factor
Ey, given by (4-1) with Vng=1, can be omitted for the present.

. We find that in some regions, 50 or more terms are needed to

3 get 5 figure accuracy, while in other regions less than 10 are

E | adequate. Thus the computation scheme does warrant some care-
| ful thought, because 50 terms of (4-2) or (4-3) is obviously

A not a trivial calculation. But we can afford to be fairly

: generous in the number -of terms, because we only calculate one
matrix one time; compared with direct calculation of the fields
at each superelectron position at each time step, the vector
potential approach will start to return dividends in time saved
after only about 2 time steps of the main calculation.

The complexity of (4-2) and (4-3) also makes it unlikely that 5

we could establiish analytically the number of terms required

for a giver accuracy in a given region of r and z. So we pro-

ceed heuristically by summing the series directly to a consid-

erable number of terms at some representative points both in

the gap and in the tunnel, printing out the partial sum after

each term. This is dcne for a 'typical' gap to diameter ratio

3 and a 'typical' diameter to wavelength ratio. Inspection of

4 . the output establishes for_each point the number of terms needed
to get within 1 part in 10° of the final potential. The results

of such a computation are shown in Figure 12. We see that in

the middle 2/3 of the gap, and in the tunnel beyond about 4/3

of the half gap length, 8 terms or less are sufficient. As we

approach the plane z={ (the gap edge) from either side, the

number of terms rises first to about 16, then to about 30, and

at z={ and r=a even 60 are inadequate. Taking a generous mar-

, gin to allow for different frequencies and t/a ratios, we ar-

1 range to sum 12 terms for z/4 < .7 or z/¢ > 1.3, and 20 terms

1§ for .7 < z/4 < .93 or 1.07 < 2/4 < 1.3. The region .93 < z/¢

1 < 1.07 is clearly one of slow convergence which will require

f& different treatment.
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The summations to 12 or 20 terms are carried out by direct '

] evaluation and summation of the terms as written. The sub-

routine BESVA is used for evaluation of the Jq(k,r) terms: A

it is more than twice as rast as the Library routine BESJ,

and changes over automatically to the trigonometrical ex- !

pansions when k,r > 12. The J4(kpa) terms do not have to

: be calculated: %y definition, kna=A, which is a root of J,, {
and the corresponding J4 values are tabulated; the table up

to n=20 is incorporated in the program, with the correspond-

ing table for A,.

4,4 Special Methods near the Gap Edge

:m-ﬂ-—r, stk 2

Figure 13f@shows the convergence for two po.ats near the plane
i z=4: the upper curve at z=.9%, r=.9a shows that 20 terms were
adequate there, but the lower curve at z=.95% shows that about
30 terms should be used here. As a function of r, we find
that the convergence is more rapid for middle values of r,

but is slowest for r/a < .1 or 2 .9. The region near the

axXis is less important, because only a small part of the beam
travels there, so we concentrate on the high values of r/a,
but less than unity. Figure 13(})again for z=.94 and .95,

but at r=a, shows that the osciliatory nature of the conver-

RN ol et st o

$ gence has now disappeared. But it is still true that 20
’ ter%s are adequate at z=.94, while 30 or so are needed at
.95 *

Beyond n=10, we can start to make simplifying approximations
before continuing the summation, because and py are now
both greater than 60; for example, cosh(ppz/a) in (4-2) can
be replaced by .5 exp(ppz/a), and this can then be combined
with the exp(-p,t/a) term to give exp(-p,{t-z)/a). With

Pn > 60, this is going to give rapid convergence except when

3 zZ ~ { -- now we see why the z=% region is the most difficult
E ¢ part.
f; 4.5 Approximations Valid for Large n
%; Specifically, the approximations we adopt for n > 20 are
A, = m(n-.25) _ (4-6)

k, = m(n-.25)/a (4-7)

-
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n+1 :
Jy(kpa) = Ji(Ay) = i%l Tﬁ:%??f (4-8)
cosh(p z/a) = .5 exp(p,z/a) ' (4-9)
e except wheﬁ knr < 12
sinh(p t/amt) = .5 exp(p t/amt) (4-11)

We note that p, = A, within .04%, but since the square root
in the exact definition of p, is a very fast operation, we
need not take this approximation.

The approximations (4-6) z=a (4-8) are better than .01% even

at n=12, so we are quite safe in adopting them for n > 20.

The limitation kur < 12 will only affect the innermost rows,

if any: at n=21, kn=65.2/a, so the limitation is equivalent

to r/a < .185, which applies to no row of the matrix if

Ncr = 5, and only one row for Neg up to 10, which covers most
cases; as stated ir. the introduction, we do not expect NgR ever
to exceed 20. For n > 21, the limitation becomes progressively
less significant. Applying these approximations and simplify-
ing, we find that the general terms in the summations for both
(4=2) and (4-3) can be expressed as .

p.I
%%? sin (_g_ —~£ exp(-pnla-zl/a) F(a,m,%,n) (4-12)
emL e—m& ' |
where F(a,m,%,n) = - p_ma + P for lzls L (4-13)
emL e—mL
and  F(a,m,¢,n) = + for ‘ziz ) (L-14)

S -
ptma " p -ma

for n > 20.
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Using these approximatiens, we continue the summation out to
n=40, for .93 < z/% < .99 o 1.01 < z/4 < 1.07. We shall make
a8 further adjustment of n after the next section.

4.6 The Case z=4

At z=¢, we find that 40, or even 60 terms are not adequate,
and we look for a more sophisiicated approach. This case is
not an improbable one, because of the tendency to choose
'round numbers' for setting up cases. For example, if the
cavity period is 0.3" and the gap C.1", any choice c¢f the num-
ber of axial meshes NQ that is a multiple of 6 will place a
grid line exactly on vﬁe plane z=4. Remember that we are not
required to cowmpute for arbitrary values of z, but only for
those corresponding to a line of the chosen grid. Further,

a distinction between z/¢ = .99 and z/4 = 1.00 is not very
meaningful in terms of typical TWY dimensions and achievable
tolerances, so we shall take z=4 if the nominal z is between
9924 and 1.014.

On this plane we can use either (4-2) or (4-3), and we should,
of course, get the same result. Figure 13 shoss the conver-
gence at z=4, r=.9a, calculated both ways. glearly both curves
are converging to a value of about 1.746x107~, but have not con-
verged within an acceptable tolerance even at 50 terms; by
chance, this happens to be a particular number of terms at
which they bcth cross over the asymptotic value, as are 41

or 31 terms. The periodicity of the curves, and hence the
specific favorabie values of n, depends on the ratio r/a. The
oscillatory component comes from the sin term in (4-12), and
clearly we can obtain satisfactory accuracy without an exces-
sive number of terms if we stop at one of the crossovers.

4.6.1 Diophantine Approximation for r&, z=24

Since the curve is effectively the integral of (4-12), it is
the cosine function that should be zero; thus we should choose
n to make j an integer (or almost so) in

b,r

=T % = (J+i,m

Using the approximation p, = A, = M(n-.25), we have

4

n = .25+(a/r)(j+.75) (4-15)

or j = (n-.25)(r/a)-.75 (4-16)
~45-
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The summation will then be terminated close to one of the
asymptote crossovers rather than at one of the peaks. Since
n must be an integer, and j should be as close to an integer
as possible, this leads us more or less into the realm of
Diophantine [12] equations-(algebraic equations restricted

to integer solutions), which are notorious for not having
any general methods of solution. Knowing this to be tb2
case, we shall evaluate (4-12) out to some fixed n, say 40,
chosen to get down to the .1% accuracy region, and then on

to the next integer n satisfying (4-15); we shall obtain this
by solving (4-16) to find a jJ that is acceptably close to
being an integer -- in general there will not be a strict
Diophantine solution except for some particular values of r/a.

Subroutine FANTUS identifies the next crossover for any
given starting value of n and r/a, excep* r/a=%; if it hap-
pens that n is itself a.crossover point, FANTUS fails to
recognize this and goes out to the next crossover, but other-
wise it finds the first available one. For Ncr s 20, r/a
will never be less than .05 or greater than .95, and we find
that the maximum number of extra terms called for by FANTUS
is 20; for the more likely value of 8 for Nnrp, a maximum of 9
extra terms is needed, and in the middle range of r/a values
it is down to 3 or less. For small r/a, and z/%4 close to 1,
the convergence pattern is of the 'beating wave' form shown
in Figure 14. Starting from an arbitrary point such as A,
FANTUS correctly identifies the next envelope crossover at
B, and is not deceived by the intermediate point-to-point
crossovers.

Since the oscillatory term in (4-12) is independent of z/4,
this theory is equally valid for optimizing the number of
terms near 2z=4 as well as on it, so we apply it over the whole
range covered by Section 4.5, even though it may not be strict-
1y necessary there. Thus for .93 < z/4 < .99 and 1.01 < z/4

< 1.07 for all r/a, and for .99 < a/t s 1.01 for r/a < .95, we
extend the summation of (4-12) beyond 40 terms out to an opti-
mum number between 40 and 60 determined by FANTUS (always 60
for r=a). The values determined by FANTUS for Npp = 20 are
tabulated in Figure 17 as a function of the radiag mesh number
Lo

[12] Diophantus, 'Arithmetica', Univ. of Alexandria, Egypt,
ca. 320, trans. S. Stevin, pub. Elsevier, Leyden, 1634,

(Newton collection, Bender Library, Stanford University) 1
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L.6.2 Zeta Function Approximation for r=a, z=4£

At r=a, the Diophantine equation (4-16) has no solution, be-
cause the oscillatory term in the expansion has disappeared.
Figure 15 shows that the convergence, calculated from either
side, is now monotonic, but so slow that even 60 terms are
quite inadequate. But at n=60, a further simplification can
be made: ma is now negligible compared to p, and the residue
of the summation reduces to

o 2 [+ <
: 2 4 a L
R.~ = -a“cosh(mt) —= =- = cosh(mi) 2: — (4-17)
= Z; Py ™ 61 (n-.25)

This is a Riemann Zeta function in the generalized form
introduced by Hurwitz. .Tables of the generalized functions
are not readily available, but the sum can be reduced to
known forms as follows:

©

E: n—? 5)«

61

(o 60
z; (3:42372 - z; n-?

z: Zn-?2§72 - 2.5252825 by direct summation

1
16 ) ——s - 2.5252825

(4n-1)
( - o] @
1 _\n
=8 — - —L—l——z - 2.5252825
% (2n+1)? % (2n+1)

n

1 | 1 ' -
=8 - — - — - 2.5252825
Z; ;§ 2r - %; (2n+1) g
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Now the first sunmation is Riemann's ((v) = 1.64493407 [13]
gnd the second is Catalan's constant A = .91596559 [j3, p. 807)
ence -

), —1— - .0165972* | (4-18)
61 (n'-.25)

Hence the residue of the summation is

2
Rgy = - 0165972 iz cosh mg
h13

- - 1.682 E-3 a2 cosh mt (4-19)

Note that the numerical coefficient 1.682E-3 is specific to
stopping the term-by-term summation at 60 terms. We adopt

- this formulation if z is within 1% of equality with

{ and
r=a. Outside this range, the terms equivaient to e~ ag_z 1/Z/pn
ensure convergence within 60 terms for any reasonable {/a.

The result of summing from the gap side to 60 terms and then

adding the (negative) residue Rggp is shown by the x in Figure
15. Clearly it has, in this instance at least, hit the aver-
age of the two curvec very closely, while only requiring one

series to be summed.

Figure 16 shows the variation of Vec at r=a going through the
z=4 region, indicating that the various methods used do Jjoin
up smoothly.

To summarize, the computation strategy is:

For z/4 < .7, sum (4-2) to 12 terms.
For .7 < z/4 < .93, sum (4-2) to 20 terms.

For .93 < z/¢ < .99, for all r/a, and for .99 < z/4 < 1.01 for
r/a < .95, sum (4-2) to 20 terms, then (4-12) to (40 to 60)
terms as determined by FANTUS.

For .99 < z/¢ < 1.01 and r=a, sum (4-2) to 20 terms, then (4-12)
to 60 terms, then add (4-19).

[}3] M. Abramowitz and I. Stegun, 'Handbook of Mathematical
Functions', N.B.S. Washington, D.C. 1964 or Dover Publi-
cations, New York, 1965, page 811.

¥can be obtained more briefly by Gumowski's method, J.A.P. August
1953, p.1068 (with correction noted or p. 1330). This gives
.0165971. We did not find this reference until after this report
was first issued.
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For 1.01 < z/4 < 1.07, sum (4-3) to 20 terms, then (4-12) to
(40 to 60) terms. :

For 1.07 < z/1 < 1.3, sum (4-3) to 20 terms.
For z/4 > 1.3, sum (4-3) to 12 terms.

4.7 Subroutine LALAVA

‘We have now established procedures for evaluating (4-2) and

(4-3) with the necessary accuracy in all regions of interest.
Subroutine LALAVA carries out these evaluations at all nodes
of the chosen grid for z 2 0, and copies them to the corres-
ponding z < O nodes. The values on the axis are all zero,
without computation, and the values at R = -1 are equal to
those at R = 1. The Ngr+1 row is equal to the Ngp-1 row for
|z | > ¢, thus forcing the tangential component E, to be zero
at the wall. In the gap region, the Npp+1 row is extrapolated

from the Nop and Npop-1 rows to maintain the required axial
fields. :

As in the case of the magnetic vector potential matrix, the
options are
i) compute the matrix, use it and discard it.

ii) compute matrix and store on file RFMAT, as well as
using it for the current run.

~iii) read in the matrix from RFMAT.

When the matrix is stored, it is preceded by the nominal dimen-

sions Ncr and Ngp, as a safeguard against reading in the wrong
matrix. .

LALAVA will also print out the matrix if desired, and will also
compute the field components (4-4) and (4-5) at each point and
print out tables of E. and E,. Figures 16, 17 and 18 are ex-

amples of these printouts, only half the region being shown in

each case. Vg, and E, are symmetric about 2z=0 and E, is anti-
symmetric. ) :

As a final check, the fields were also computed directly from
Kosmahl and Branch's expressions, and the result is shown in
Figure 19. The comparison of Figure 19 with Figure 18 is not
a precision one, because we did not go through the whole rou-
tine of finding appropriate large n simplifications for each
region, but simply summed 20 terms at every node. The agree-
ment is excellent in the mid-gap region, and inside the tunnel,
but degrades near the gap edge, as would be expected with only
20 terms taken. The field expressions have even slower conver-
gence than the potential expressions, so that still more terms
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would have to be taken to get a precision comparison; the
comparison shown is good enough to demonstrate that no mis-
takes in scaling have been made; it also shows that the smell
negative values of for large r and small but non-zero z,
which are not realistic, are a basic defect of the model, not
an effect of using the potential method. It is a side effect
of the inconsistency of the model at the gap edge, discussed
earlier. -

Despite this deficiency, which is numerically not very large,
it is the opinion of this writer that the K and B model is

the best one to which we know an analytic solution. The only
model which can in principle deal correctly with noses of fin-
ite radius is the relaxation method on a suitably fine mesh.
This is the approach used in the Los Alamos program LALA; the
reason for not regularly using LALA is a matter of size and
time: LALA has about 60 pages of source statements if close-
packed (actually 94 pages as normally printed), and typical
solution times are 300 to 600 seconds of CPU time. The ana-
lytic subroutine LALAVA developed from the foregoing analysis
occupies 5 pages of source statements, and has typical solu-
tion times of 20 to 40 seconds. However, the option for read-
ing in a previous LALAVA matrix will be written so that a ma-
trix generated by LALA would also be accepted; there will be
problems of adjusting the scale factor, since LALAVA normal-
izes to unit rf voltage across the gap, which is the important
quantity for TWT work, while LALA normalizes with respect to
energy chonge along the axis, which is the important quantity
for accei- ~ators, for which LALA was originally written.

In Sectic 2.1 t was asserted that the fields at the mid-
planes of the tunnels would be 25 to 30 dB below the gap
fields, so that beyond tliese planes the fields could safely
be neglected. Figure 18 shows that the field on the axis at
the tunnel mid-plane (7.0 volts/meter) is below the mid-gap
axial field (195.4 v/m) by 28.9 dB, and is falling by a fur-
ther 2.5 dB per mesh point. Thus the assertion is well sup-
ported in this numerical case, which is a guite typical one.

R L g e g o T FEy 22 E e a i S




5.0 SPACE CHARGE FORCES

As in the case of rf and magnetic fields, the space charge
forces are to be derived from the gradients of a matrix of
potentials. This matrix differs from the others in that it
is moving with the beam, and that it has to be recalculated 1
completely after every time step of the trajectory celcula-
tion, since the distribution of space charge changes at each i
step. For this reason, the most extreme efforts must be made
to obtain a fast and efficient algorithm for this matrix.

For a rectangular geometry, the fastest known numerical solu-
tion of Poisson's equation is the Hockney-Buneman FACR
(Fourier Analysis Cyclic Reduction) method [147. What fol-
lows is primarily an extension of this method to cylindrical
coordinates.

The essence of the FACR method is:

i) assignment of the continuous distribution of charge
into discrete charges at the nodes of a mesh.

e e T B VU P —————

ii) Fourier analysis-of the charge d:stribution in one
direction, along each row of the mesh.

iii) combination of the analyzed rows in sets of 3, using
certain trigonometric identities to eliminate alternate
rows, so that the number of rows left is reduced by a
factor 2.

iv) Repeating this cycle until it is reduced to a relation
between the center row and the boundary rows, on which
the potentials are determined.

v) Reversing the process to fill in the potentials on
intervening rows in the reverse order.

The difficulties encountered in applying this technique in
cylindrical coordinates are two:

i) The expressions for cyclic reduction are deperdent on r,
whereas the corresponding rectangular geometry expres-
sions were independent of y.

[14] R.W. Hockney, 'The potential Calculation and some
Applications', in *Methods in Computational Physics', I
Ed. B. Alder et al, Academic Press, New York 1970.




\ ii) One of the boundaries is the axis, on which the poten-
] tials are not initially known. Instead we have the

: condition that equipotentials must intersect the axis
4 at right angles.

*! . In this section we shall develop the explicit recursion rela-

tions for the cylindrical case, and show how to handle the
axis by developing a second recursion to be solved simultan-
eously witn the first.

5.1 Analysis of the Axisymmetric Space Charge

We require the solution of Poisson's equation

2 2

Q"P 1 °P 9°P g(r,z) a
1] ~otr -t 27 T2me : - (5-1)
{1 or ez o)

at the nodes of the grid shown in Figure 20. The potential P
is in this case the ordinary scalar potential. p(r,z) is the
charge density at r,z in coulombs/meter?; it will be deiermined
from the superelectrons in the vicinity of (r,z) by formulas to
be given later.

Longitudinally the grid extends over one beam wavelength Ag
plus one mesh, from J=0 to J=Ngp+1. Ngp is one of the numbers
6, 12, 24 or possibly 48,'fm?wﬁich very fast Fourier transform
routines exist. The mesh length is thus

In the radiel direction, Ngr must be a power of 2 to allow the
Cyclic Reduction to come down to a single row nalf way between
the axis and the wall. Usually Nggr will be 4 or 8, possibly 2
or 16. VWe define a shape factor f such that the radial mesh
size is fh and :

The charge Q(i,j) to be associated with node (i,j) of the grid
is
2h2

a(i,3) =—Lo(r,2) (5-4)
0
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Figure 20: Grid for Space Charge Calculation




The node is located at r=ifh, z=jh.

The differentials in (5-1) are now expressed in finite
difference form [15]: '

P 1 o . o

3;? - EEEE {p(l_j,s) - 2P(i,J) + P(1+1,3i} (5-5)
%% = ?%H {P(i+1;3) - P(i-1ﬁj% : ' (5-6)
2

g;g o ;% {P(i—i,j) - 2P(i,J) + P(}+1,Ji} (5-7)

Substituting (5-5) through (5-7) in (5-1)

(1+1/21) P(i+1,3) + (1-1/21i) P(i-1,3) + fz{P(i,j-1) + P(i,j+1)}

- 2(1+£2) P(i,3) = Q(i,3) (5-8)

for i = 1 to Ngr-1.

On the axis:
2P(1,3) + f2{9(0,3—1> + P(o,a+1ﬁ>— 2(1+£2) P(0,3) = a(0,3)  (5-9)

We have now split Poisson's equation into N R Separate
equations, which differ because of the 1—1/51 and 1+1/2i
factors.

i [15] F.S. Shav 'Relaxation Methods', Dover Publications,
New York, 1953.
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5.2 Fourier Analysis Step

- We now express the unknown potential P and the kiiown or given
3 : charge distribution Q on each row of the grid, as finite
3 Fourier sums. These sums extend to the mth harmonic, where

3 _1

m = 3 Ngy (5-10)
i m m-1

L; k=0 k=1

E .

; . m-1 . . km

Q1,3) = ) Ay(ik) cos KN 5, ) Byld,k) sin 553 (5-12)
g k=0 k=1

These equations implicitly define the cosine and sine compo-
5 nents U and V of P, and the components Aq and Bq of Q. The
- reason for subscripting A and B will become apparent later.

Our basic procedure will be to derive the A's and B's from Q
: by (5-12), then to use the cyclic reduction process to obtain
E the U's and V's from the A's and B's, and finally to synthesize
! P from the U's and V's by (5-11). The new potential distribu-
tion P will be used for the fields in the next trajectory step,

which will result in a new space charge distribution Q, and the
process is repeated.

Once the Aq's and Bq's have been calculated, they contain all

3 the information about the space charge distribution (in a dif-
3 ferent form), and matrix Q can be vacated and used for storage
g of the U's and Vis as they are derived from the Aq's and Bq's.
: Once the information has been transferred to the U's and V's,

1 the memory space for the Aq's and Bq's can be vacated, and

1 used for storage of the potential matrix P. Some Jjuggling of

5 indices is required, but there is a substantial saving of mem-
5 ory requirement. The combination is

% U and V share Q's storage

A1 and B1 share P's storage.




The orthogonality of the Fourier harmonics alliws us to re-
write (5-8) as 2m separate equations; there are m+1 cosine
equations:

(141/2i) U(i+1,k) cosmkj/m + (1-1/2i) U(i-1,k) costkj/m
+ K2 U(i,k){cosnk(j-1)/m o cosnk(j+1)/m}

- 2(1+k%) U{i,k) cosmkj/m = A,(i,k) costkj/m  (5-13)

for k=0 to m.

Thére are m-1 similar sine equations relating Vv and B1, with
sin instead of cos, running k=1 to m-1.

But by a standard trigonometric identity
cosmk(j-1)/m + cosmk(j+1)/m = 2costkj/m costk/m (5-14)

with a similar sine sum formula. Let us write

F1(i,k) =1 -1/2i (5-15)
G (i,k) =1 +1/2i (5-16)
S1(i,k) = 2(1+f2) - 2f2 costk/m - (5-17)

where the reason for the dummy k in Fq and Gq, and the dummy
i in S4 will become apparent later.

Substituting (5-14) in (5-13), simplifying and using (5-15)
through (5-17) we have

F1(i,k) U(i-1,k) - S1(i,k) U(i,k) + G1(i,k) U(i+1,k)

A, (4,k)
(5-18)

F1(i,k) V(i-1,k) - S1(i,k) V(i,k) + G1(i,k) V(i+1,k)

B, (i,k)
(5-19)

where (5-18) runs k=0 to m, (5-19) runs k=1 to m-1, and both
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On the éxis, the orthogonality of the equipotentials requires

20(1,k) - S1(0,k) U(0,k)

A1(O,k), k=0 tom (5-20)

]

2v(1,k) - S1(0,k) v(0,k) B1(O,k), k=1 to m-1 (5-21)

5.3 Recursion Step

We now define a sequenée of functions Fp, Gp, Sp, Ay and By
by the following recursion:

Fn(i,k) - Fn—1(i’k)' .Fn_1(i-2n-2,k)/Sn_1(i-1n_2,k) (5-22)
G (i,k) = G _4(i,k). Gh_1(i+2n-2’k)/Sn_1(i+2n—2,k) <~23)

So(i,k) = 5, 4(i,k) - F_,(i,k). G, _,(i-2""2,k)/s__,(i-2""2 k)

. . -2 -2
G, _q(i,k). F_,(i+2%72x)/s _,(1+2°7% k)

(5-24)
AGik) = A q(i,k) + F_q(ik). A (i-2°7%%)/s _4(i-2"72 k)
+ G _q(1,k). A _1(1+2%72,k)/5 (142772 k)

(5-25)
B (i,k) = By 4(i,k) + F__(i,k). B__,(i-2""2,k)/s__,(i-2%"% k)

+

G, 4(i,k). B _4(1+2™2,k)/5__(1+2%7% k)
(5-26)

The recursion runs from n=2 to log, (Ngr) (i.e. to 2, 3 or &
for Ngg = 4, 8 or 16), for j=2n-1 %o NSR-Zn'1 by 22=1  and for
k=0 to m. (1 to m-1 for (5-26)). The n=1 values have already
been determined by (5-12) and (5-15) through (5-17); the reasons
for the dummy variables in these should now be clear.
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5.4 Cyclic Reduction

We now write down (5-18) for consecutive values i-1, i and i+1
(where i is even), multiplying the first by F4(i,k)/Sq(i-1,k)
and the third by Gq(i,k)/S4(i+1,k), and adding. We apply
(5-22) through (5-26) with n=2. Then we have, after simplifi-
cation:

Fz(i,k) u(i-2,k) - Sz(i,k) U(i,k) + G2(i,k) U(i+2,k) = Az(i,k)
(5-27)

Similarly from (5-19) we obtain

Fo(i,k) V(i-2,k) - S,(i,k) V(i,k) + Gy(i,k) V(i+2,k) = By(i,k)
(5-28)

Now in (5-27) and (5-28) the odd numbered rows i-1 and i+1

have been eliminated, and the form of the equations retained,
with n=2. Thus the set of recursion equations (5-22) through
(5-26) were properly chosen, and can be applied repeatedly for
successive values of n. The general forms of the equations are

1

F_(i,k) u(i-2""",k) - S (i,k) U(i,k) + G (i,k) U(i+2"" k)
= A (i,k) (5-29)
F_(i,k) V(i-2""",k) - S (i,k) V(i,k) + G (i,k) V(i+2"",k)
= B (1,K) (5-30)
. . n-1 n-1 n-1
running i=2 to NSR-Z by 2
k =0 tom for (5-29), 1 to m-1 for (5-30) .

When n = log,Ngr we have just a single pair of equations for
i = 3Ngg, which we will write iq/2 for brevity. This pair of
equaticons relate the potentials on the axis and at the wall to
the row iq 2 midway along the tunnel radius. The recursicn
stops at this point, but we still do not know the potentials
on iq/o because the axial potentials are not known. Taking
the wall potential to be zero, the final pair of equations is

i L . k* Pe— s a " l "
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Fn(i1/29k) U(O’k) = SI_I(?II/Z,k) U(i1/29k) An(i'l/Z’k)

Fn(i,l/z,k) v(0,k) - sn(i,l/z,k) V(i1/2,k) = Bn(i1/2,k)

Note that while this apparently expresses the potentials in
terms of row iq/5, the A, and B, contain contributions from

all the nodes, not just those on row iq/2, from the way they
were defined.

5.5 Second Recursion

To complete the solution we must have a second pair of equa-
tions: we obtain these by going back to the axis equations
(5-20) and (5-21). 1If we write (5-18) and (5-19) for i=1, and
solve simultaneously with (5-20) and (5-21) respectively, we
can eliminate i=1, and get relations between U(0O,k) and U(2,k)
and between V(O ks and V(2,k). Repeating for i=2, we relate
U(0,k) to U(4,k), etc. The required recursion is

%ﬁk)={%ﬁfkak)%bﬁk)‘zgﬁfkakﬁ/ﬁﬁfkak)
{Sn(zn-1,k) Cn_1(k) + ZAn(Zn-'I ’k)}/Gn(Z —1,k)
QJKV={%JfPak)%pﬂk)+2%52‘ﬂk%/ggfbﬂk)

with the initial values:

7060 = {51011 5,(0,%) - 284 (1,10} /6, (1,)

C1(k) = {81(1,k) A1(O,k) + 2A1(1,k)}/G1(1,k)

D1(k) = {51(1,k) B1(0,k) + 2B1(1,k%}/G1(1,k)

(5-31)

(5-32)

(5-33)
(5-34)

(5-35)

(5-36)
(5-37)

(5-38)




The resulting simultaneous solutions are

2u(2",k) - T, (k) U(0,k) = C_ (k) (5-39)

2v(2",x) - T, (k) V(0,k) = D_(k) ' (5-40)

where k = 0 to m for (5-33), (5-34), (5-36), (5-37) and (5-39),

1 to m-1 for (5-35), (5-38) and (5-40).

Again the recursion stops at n = lognNSR, and we have (since
U=V =0 on the wall)

U(0,k) = ~C, (k)/T (k) L (5-41)

v(0,k)

-D, (k) /T, (k) (5-42)

5.6 Backward Recursion and Synthesis of P

We now have the potential components on the axis; these can be
substituted in (5-31) and (5-32) to give the components on i4/o,
the mid radius. Then the values on the axis and on ij deter-
mine those at the quarter radius, etc. Specifically, the back-
wards recursion equations are

U(i,k) = {Fn(i,k) U(i-2""" k) - A (i,k) + G (i,k) lU(i+2n'1,k)}/
s,(i,k)  (5-43)
v(i,k) = {Fn(i,k) v(i-22"x) - B (i,k) + G (i,k) v(i+2n‘1,k)}/

Sp(i,k)  (5-4b)

for n = 1og2NSR to 1 by -1,
i= 2" to NSR-J’ by 2P,
k = 0 to m for (5-43),

1 to m-1 for (5-44) .
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On compietion of this backwards recursion, we have all the

U and V components. We now insert them in (5-11) to generate
the potential matrix P. '

While these recursions appear horrendous, they are very straight-
forward for computation. Note that there are no higher functions
to be evaluated, because the sine and cosine coefficients in
(5-11) and (5-12) are required only for a fixed set of submul-
tiples of 2w, so they are precalculated and stored as numerical
coefficients in the Fourier analysis and synthesis subroutines.

5.7 Charge Distribution of the Beam

The foregoing sections 5.1 to 5.6 have shown how the potentisl

P is derived from a given charge distribution Q. We now address
the question of exactly what distribution best represents the
beam. The test of what is 'best' is that the resulting poten-
tials, for cases to which an analytic solution is known, should
agree with the analytic values as closely as porsible for as wide
a range of beam diameters as possible. Naturally we shall find
that a finer grid -- larger values of Nggr -- will give better
accuracy, but it will be shown that accuracy in the 2% region can
be achieved even for Nggr=4 for beams with b/a of .5 or greater,
while Ngr=8 gives accuracy better than 1% for b/a > .3, which is
adequate for any .foreseeable TWT.

5.8 The Uniform Beam

We consider a uniform beam of radius b in a tunnel of radius a,

at voltage V, and microperveance uP; the potential depression on
the axis is

Vd = -.0304 VOJ;E {.5 + Ln(a/b)}, (5-45)
and the charge density (uniform out to r=b, zero for r >b) is
p = 5.4x107 10 v_(WP)/5 . (5-46)

We begin with a simple-minded model, in which each node of the
grid lying within the beam (r < b) is assigned the charge Q
given by (5-4) and (5-46) combined, and each node outside the
beam has no charge. Obviously this model will give errors of
one sign at beam diameters such that a row of nodes lies Just
inside the beam, and of the opposite sign if the row is just
outside. Thus we expect a sawtooth curve of errors as a func-
tion of beam radius. Carrying through the computation for a




El

s o -
e 5 -
AP e Lt s dad s F

.

B —

case with Ngg=16, we obtain a 'curve' such as that in Figure 21.
The sawtooth shape is not quite as bad as it looks: the errors
are within 10% for b/a > .5, and there would be a good deal of
cancellation of positive and negative errors when the beam diam-
eter began to cheaiige, as it will in the real tube.

It is clear that the curve is converging to a value about 1% i
high for large r/a. This is a result of the finite-difference
treatment of the problem. The offset varies as NSRz’ and it is
found that if the charges assigned to the nodes are all reduced
by the factor

F_=1- 3.2/NSR2 ' (5-47) |

then the offset is corrected to within a fraction of 1% for
Nsgr = 4, 8, 16 or 32.

At the left of Figure 21, we see the errors becoming quite large
for small b/a. This is because too few nodes are now within the
beam to define it properly. 1In general, we find that the errors
for large b/a depend primarily on the fineness of the grid, i.e. ‘
on NsR, while +he errors for small b/a depend mainly on the ab- 1
solute number of nodes within the beam, i.e. on (b/a)Ngg.

These are the effect of the finite mesh size; when we bring in
the discrete super-electron model of the beam, instead of the
uniform charge density, the effects are more complicated, be-
cause 'interference' effects arise between the mesh periodicity
and the super-electron periodicity. The super-electron model of
the beam starts with a rectangular array of super-electrons in a
radial plane. The number of columns in this array will usually
be the same as the number of nodes Ngp (though it does not have
to be), and the number of layers Nj, will normally be 3 or &,
possibly 2, 6 or even 8; the case Ngy=12, Ngg=8, Ni=4, b/a=.7

is illustrated in Figure 22.

If we simply assign *the charge of each super-electron to its
nearest node, we shall obtain a sawtooth error curve similar to
Figure 21. To avoid this, we arrange to divide the charge be-
tween the four surrounding nodes, in inverse ratio of its Ar
and Az intercepts. Referring to Figure 23, if the super-elec-
tron is in the rectangle defined by nodes (i,Jj), (i+1,3),
(i,j+1) and (i+1,j+1) (the left and lower sides inclusive), its
charge is distributed in the proportions

-69-
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Figure 21:

Errors of potential on axis when each node
inside the beam is assigned the full charge
given by (54), and each node outside none.
The beam is assumed to be uniform. Ngp = 16.




L N TV ST

Tunnel Wall

N, 8
7
- LSuperelectrons
: 4 A Beam edge (B/a ={.7)
e e g e e P P o e e = P . P e @ - = 4 -
5> |
e ¥ G 4 ¢ & ¥ ¢ ¢ 0 1
4
3 ® @ [ ] L J ® [ ] [ ] T T [ ] [ J )
2 4
¢ © ® l [ [ J [ [ ] 1 [ ] - 3 L ]
1
o — + — - - - -
o I 2 3 4 5 6 7 8 q 1o 12 3
MNea
Axis

Figure 22: Superelectron Distribution for
Uniform Beam (first trial)

(1, ) ! tHl, g+l
[
L
>
o
- — — ——
¢ l
4 |
|
Ly A% I—az i:j“

Figure 23: Distribution of Charge of a Super-
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Q(1-AZ)(1-AP). to (1,3)
Qar(1-Az) to  (i+1,3)
(5-48)
QAz(1- Ar) to (i,3+1)
QAZAr to (i+1,3+1)

vhere Az is expressed in units of the axial mesh size hg, and
Ar in the radial mesh size hgy. '

Carrying through the potential calculation for this case we
obtain Figur'e 24: the sawtooth has been eliminated, but the
offsets at the wall and at small b/a are quite large. There
1s nov only a minor dependence on Ngp, so we are here seeing
mainly the effects of the beam model. The small wrinkles on
the curves are the interference effects between the beam and
grid models.

Now we saw in the continuous charge distribution case that the
offset at the wall could be corrected by slightly adjusting the
amount of charge assigned, using (5-46). We can make a similar
type of correction for the discrete beam model, though we have
not been able to-find an analytic expression for the required
reduction factor, which we will call gq. In addition, we were
clearly incorrect in placing the outermost layer of super-elec-
trons in Figure 22 at the nominal beam radius. If they are to
represent the real electrons in their neighborhood, that neigh-
borhood should surround them; thus the outermost layer should
be on a line at some radius pb, where p < 1 (but not much less),
with the cthers moved in proportionately.

The writer has no analytic method of finding the correction
factors p and q, but computer cut-and-try is effective. It

is found that p affects both the slope and the absolute level
of the error curves, while q mainly affects the absolute level.
As p is reduced from unity, the slope (over the interesting
range of b/a) decreases and eventually changes sign. When a
value of p is found which makes the error curve as flat as
possible, q is adjusted to level it around zero. Satisfactory
(not necessarily optimum) values of p and q determined in this
way for the probabie combinations of Ngp and Ny, are given in
Table 5.1.
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Table 5.1 Correction factors for super-electron beam model

P is correction factor for radial position, q for

charge
P q P | q p a [pla| p a |
16 1 .842 !.904 |.875 {.920 {.90.94.933 |.952
. 8 |.770 |.882 |.855 |.916 |.870 |.934 |.90:.945.917 |.955
SRy 4|74 l.919 1.83 |.93 |.86 |.944 |.881.95|.89 |.950
21.65 .90 |.72 |.90 |.75 |.905 |.78(.95{.80 |.920
2 3 6
Ny,

The error curves obtained using these factors for ng =2, 4, 3
ast is good

and 16 are shown in Figures 24, 25, 26 and 27.
enough for any conceivable tube design, but even the coarse 2

The

mesh case (Figure 24) would be good enough for prelimiuary work

with b/a > .5.

Thus Nggp and Np, are chosen according to the fineness of model

required, remembering that both directly affect the computation
time; then p and q are obtained from Table 5.1, and the starting
positions for the super-electrons are

r, = pbi/NL

and the assigned charges are (from (5-4))

Qs

afpbr,/(Np e,)

where p is given by (5-46).

Note that the correction (5-47)

i=11tN

af?n2p (b/a) (Ngp Ngp/(Npe,))

(5-49)

(5-50)

for the uniform (fluid model) beam is not applied here, as it

has been superseded by q.
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5.8.1 Accuracy of the Uniform Beam Model

From Figures 24 through 27 we see that the accuracy for the
uniform beam can be expressed by the following tabulation:

For Ngp = 2 | errors are within #2% for b/a > .5

; 4 +1.4% for b/a > .45
i 8 +1% for b/a > .33
E 16 : +.5% for b/a > .22 q

Clearly the accuracy can be extended to smaller beams by
_ using larger values of Ngp; but the computation time will ;
f go up proportionately, and for very small beams a different {
[ approach should be taken: the starting point should be a beam
3 in free space, with the tunnel introduced only as a minor per-
1 turbation. t&'ince such small beams are not of interest for TWT £
work, we shall not pursue this. ]

5.9 The Chopped Beam Accuracy Check

3 . The last section showed that very satisfactory accuracy of

the potential depression is obtained for the uniform beam,

4 for reasonable values of Ngp; btut this did not check the

. Fourier analysis part of the procedure, since only the d-c

3 term remained. i

The next test is to chop the beam into uniform cylinders of

5 charge, analytic expression for the potential in this case

3 are given by Hechtel [16], Rowe [17] and others. If the disc
3 thickness is equal to the axial mesh size h, then all the m
Fourier harmonics are required to express the potential, and
are therefore checked for accuracy.

[16] J.R. Hechtel, 'The Effect of ‘otential Beam Energy on
the Performance of Linear Beuw Devices', IEEP 'ransactions
on Electron Devices, ED-17, #71, November 197 , pp. 999-
1009.

[17] J.E. Rowe, 'Nonlinear Electron-Wave Interaction Phenomena',
Academic Press, New York, 1965.
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The potentials due to a single disc of 4 rings located at one
node were calculated for every node on the axis (including the
zero node where the disc was located) out to the 12th. Beyond
this the values repeat, of course. The following table com-
pares the potentials calculated by the method of Sections 5.1
through 5.6 with. the analytic values calculatzd from Hechtel's
equations. The specific case chosen was a 30 kV 0.8 yP beam
for which the analytic values had already been obtained.
Nga=24, Ngp=8, Np=4, and p and q taken from Table 5.1.

Table 5.2: Potential depression on axis due to a
single disc at node O

Pot. dep. Pot. Dep.
Relative Node analytic (volts) FACR (volts)

0 -148.40 -146.25
1 -100.65 -97.19
2 -57.72 -57.98
3 -32.61 -33.57
4 -18.33 -19.24
5 -10.29 -10.98
6 -5.77 -6.26
7 -3.24 -3.57
3 -1.83 -2.04
9 -1.05 . -1.19
10 -.626 -.722
11 -.412 -.492
12 -.358 ) - 422

The individual discrepancies are nowhere more than 0.6% of

the total depression; the relative discrepancies are somewhat
higher, but this is largely self-cancelling when the whcle set
of 24 discs is considered; the discrepancies at the further
nodes are quite unimportant, because the absolute values are
here so small; in point of fact, the 'analytic' values are
suspect here, because they involve calculation of a large
nunber of Bessel functions which nearly cancel each other,

so that round-off errors become magnified. The total of all
the depressions (ir.cluding the mirrored values for nodes 13




to 23) should agree with the analytic depression (5-45) of
a uniform beam (since 24 adjacent discs constitute such a
beam); we find that the FACR total actually agrees better
with (5-45) than the 'analytic' total of Table 5.2.

Thus we can conclude that the FACR contributions of individ-
ual discs to the total potential are accurate to better than
1% of the total potential depression, and are at least as
accurate as the 'analytic' values, for NSA=24.

It is impossible, of course, to demonstrate the accuracy of
the FACR methcd for every possible case; but it is believed
that the foregoing checks, for a reascnably typical case,
verify that the method is sound, and that no mistakes of
scaling have been made.

-81-~




S it el aa

6.0 THE TRASJECTORY EQUATIONS

The foregoing sections have provided us with the potential
matrices, and a fast and accurate interpolation routine by
which the axial and radial fields can be derived from them
at the position of each superelectron at each time step.
Thus we can now consider the fields as known.

The vector equation for the acceleration of an electron in
combined electric and magnetic fields is quite simple

S = (e/m)E + 5XB (6-1)

In principle, one can separate this intc three component
equations, and integrate each by a Range-Kutta or similar
routine. This procedure is inefficient because it makes

no use of the fact that we know the integral of the equa-
tion for the cross field case (E perpendicular to B); this
is the well-known cycloidal solution, combined with motion
parallel to B which is not affected by the value of B.
Textbook formulations of the cycloidal solution are in gen-
eral too simple for use here -- they do not allow for arbi-
trary initial velocity components. General formulations for
the cross field case have been given by Yu [181, Vaughan [19]
and others. For the present purpose, the equations in [19]
are the more convenient starting point, since they give the
position and velocity components at the end of a time step
in terms of the same quantities at the start, together with
the local field values.

We can apply that formulation to the present case by adopt-
ing a new coordinate system as shown in Figure 29. Since B
has no ¢ component in an axisymmetric system, the resultant
B lies in the r-z plaie, and the new Pz' axis is taken in
this direction; Py' is normal to the r-z plane, and there-
fore makes an angle ¢ with the Oy direction, and Px' is then

[18] S.P. Yu, G.P. Kooyers and O. Buneman, 'Time-dependent com-
puter analysis of Electron-wave Interaction in Crossed
Fields', J.Appl.Phys., vol. 36, Aug. 1565, pp 2550-2559.

(191 J.R.M. Vaughan, 'Beam Buildup in the Dematron Amplifier!',
IEEE Transactions on Electron Devices, ED-18 #6, June
1971, pp. 365-373.




=% _

Figure 29:

Relation of Axial and Radial Magnetic Field
Components B, and B,., defining the auxiliay
x', y*, af coordina¥e system. ' lies along
the resultant B, at angle 6 to ,; y' is nor-
mal to the r-z plane at P; x' .. in the r-z
plane, completing the triad. ‘
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in the r-z plane, at an angle 6 (= arc tan B./B,) to the
radial direction. Thus the field B is normal to the plane
x'Py', and we can resolve all velocity components and fields
into components along these axes and use the solution of [197.
In doing so, we need to note that x' and y' as defined here
correspond to y and x respectively as defined there. This
formulation is extremely accurate -- essentially to machine
accuracy =-- over any region and time in which the fields are
constant. It dces not depend on At being small. But it re-
quires 57 multiplications, 31 additions and 1 cosine evalua-
tion per cycle. The complete formulation is shown in Figure
30.

This is more than ‘we need for the present purpose, where the
fields are not uniform over appreciable distances or times.

We have to take a At that is a small fraction of an rf per-
iod; since the focusing fields are always such that wc; is of
the same order of magnitude as w (within a factor of about 3),
we shall always have wcAt<<1 also. Hence thg cos{wcAt) and
sin(w.At) in [19] can be replaced by 1-w02At /2 and w;At with
extremely small errors. These and consequent simpiifications
were carried througli by Prof. 0. Buneman in 1969, for the
RZTRAJ program fcr night vision devices [3], and resulted in

a formulation witl. only 31 multiplications, 21 additions and
no cosine evaluation per cycle -- a marked and valuable reduc-
tion, when the cycle will be repeated several thousand times
for each cavity the beam is tracked through. Extensive tests
reported in [3] showed that this compact formulation is still
capable of accuracy at the 0.1% or better level, for reasonable
choices of step size. The step size (At) in the present pro-
gram is not specified by the user, but is automatically chosen
to conform to the accuracy requirements -- it is tied to the
number of radial meshes in the space ~harge matrix, which the
user can specify. If the user sets a large value (8 or 16)
for this, indicating that he desires a high accuracy run (and
is willing to pay for the computer time involved), a small At
will result. For a 'debugging' type run with Ncr = 2, a larger
At will be used, but still not large enough to introduce seri-
ous errors in Buneman's formulation.

This formulation, which is the one used in the program, is
shown in Figure 31. It has eliminated the auxiliary x', y',
z! coordinate system, but it is so tautly written that without
the foregoing theory to lead up to it, it is almo~t impossible
to see how it works. The factor A = 2/(1+B1¥¥24+B2¥%2:B3*%2)
is the approximation to the missing cosine function, with a
factor 2 resulting from dividing the step into two parts.
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605 RI=SOR(XI"2+Y1"2), S2=Y1/R1,C2=X1/RI o
610 B=SQk(B3*2+B1%2), CI=83/B,51=i#1/B ! B TOT, COS THETA, SIN THETA
620 00=EO*i,A0=C5%B ! OMEGA C = Eu/M, (F3/M)(DT)
625 IF A0<0.0002 THIEN 1600 ! MAGNETIC FI:LD EFFECTIVELY ZERO
630 K6=CO3(A0) ,K7=50it( 1-K6%K6) ,KO=1-K6 ,K6=K7/8,K9=K0/B
) 640 K1=K7/00,£2=K0/00,K3=K2/B,K4=(KI-T0)/3
; s 645 1F B1<.0001 %8 It 1600 ' GUTO _ROUTINE FOR AXIAL FIELD B
{ 650 33=S1%*52,C3=Cl1 ¥C2,54=52xCl ,C4=C2=S1
1000 ! TRAJECTORIES
w1010 US=UI*C3+VI*xS4-WIxS1 ! U~ ) L
: 1020 Vb=VI*C2-UIxS2 ! Vi“
i 1030 #5=Ul xC4+VI*S3+wWi*C) ! Wi~
: n . 1100 EG=E3xCI+E1451,E>==E3*xS|+E1%Cl ! EZ’ ,ER’
| 1200 XH=US*K1-VH%xK2+E>*K3 | X2
[ 1210 YH=US*X2+VH*xKI-Eo*K4 ! Y27
u | 1220 Z5=wH*TO+E6%KYS 1 222 : t i
4 1300 U6=Uh*K6+VoxKT+E>*K8 | U27
3 1310 VO=-UbkK/+V5%L6-5%K9 1 V27
@ | 1320 Wo=Wo+EE+CH 1 W24 ,
| 1400 ! BACK IJ ORIGINAL COORDINATES
1410 X2=X1+X5xC3-Y5%S52+.5%C4
0 1420 Y2=Y1+XH%54+4Y5%C2+Z5%53 o ) i
1430 22=Z1425%Cl=X5%Si
1500 U2=U6*C3-V6x32+1i6*C4
n 1510 V2=U6=so4+4VExC2+a0%53
120 W2=%6*CI=-U6*S1
1550 GUTO 2000
g % 1600 ! ROUTINE FOR ZekO MAGNETIC FIELD
L 1610 E2=El*Kb

le
- e

1620 X2=X1+1*TO+E£2%C2
n . 1630 Y2=Y14VI%TO+E2%52
1640 22=Z1+4il «TO+E 3%Ko
1650 E2=EI*CYH
a 1660 U2=UI+E2%C2
1670 V2=VI+£24S2

3 1680 W2=nl +£3xCH

3 3 1690 GUTO 2000 _
1800 ! ROUTINE FOR AXIAL MAGNETIC FIE&LD
1820 X2=X1+Ji*xK1=-VI*K2+E1 *(K3%C2+K4*x32)

v B30 Y2=sYI+UTaAK2+4V I*KI +:1 #(K3%52-K4%C2)

1 1840 22=Z1+81*xTO+E3*Ko

! 150 U2=UTxX8+VIaKT7+Ei *{K84C2+K9%x32)

3 0 1660 V2=VIxK6~Ul kK 7+ *(Ko*32-K9*x(2)

L 1670 W2=wl+E3%(CH

>

s i b

Figure 30: Full Trajectory Algorithm




32

38

39

33000

. 33200 &k

35400
35600
36000
37600
3/800

~ 33000

36200
36400
38600
30800
3Y000
39200
39400
39600
39600
40000
40200
40400
40600
40800
41000
41200

41400
41600

41000

? FIRST STEP INCREMENTS

=X04EY ,E2=Y0*:5,E3=F2%T6

1 FIHbI INuRLitNI TO STEP SIZES
X3=X3+El ,Y3=Y3+:2,23=Z3+E3
Ir 57=17THEN 392007 OIMPLIFIED ROUTINE FOR UNIFORM FIELD

? SCALED MAGNETIC FIELD COMPONENTS

=X0*kbH ,B2=Y0*t5,83=F2%T6 .

? CROSS PRODUCTS wlITH MAGNETIC FIELD
U=X3-Y 3%B3+Z3%B82 V=Y 3-Z3%B 1 +X3*B 3, i=Z3-X 3*B2+Y 3% 3!
B=2/(1+8172+32" 2+83 2)
IF N>1 THEN 3¥200.
b=B/2

? INCREMUNT WiITH CikOSS PKODUCTS
X3=X3-B*(V*33-WxB2),Y3=Y3=Bx(WxB1-U*B3),Z23=23-B*(U*32--V*8])
GU1T0 40800

? SIMPLIFIED ROUTINE FOR UNIFORM FIELD
IF BO=0 THEN 40300
U=X3-Y3%B3,V=Y3+X3*i3
IF N>1 THEN 40600
U=Urs2,V=V/2
X3=X3-V*xi4,Y3=Y3+U%B4
IF N=1 THEN 4i600

? SECOND HALF STEP, EIECTRIC FIFLDS
X3=X3+El,Y3=Y3+:2,73=23+E3

2 INCkEAENf THE COORDINATES
X0=X0+X3,Y0=YO+Y 3,20=20+Z23,21=21+23 ___
HO=SQR(X0T2+Y0"2)

Figure 31: Shortened (Buneman) Trajectory Algorithm

-86-




Under no circumstances should this routine be altered. It
could be replaced comple*ely by the more general routine of
Figure 30, but it is not believed that there would be any
significant increase in accuracy of the overall program to
conpensate for the sharp increwse in running time that must
result.

6.1 Accuracy of the Trajectory Equations

The accuracy of Prof. Buneman's trajectory algorithm was
tested thoroughly in the development of the image intensi-
fier program RZTRAJ, and the tests were discussed in detail
in the report on that contract [ 3].

The algorithm could not be taken over completely unchanged
froem RZTRAJ: in that program the mesh was square, and the
same mesh was used for both electrostatic and magnetic fields.
Since this gave a unique mesh size as a convenient unit of
distance, the problem was normalized to that distance. In
the present case, we have three meshes, all of them in gen-
eral rectangular, and independently dimensioned. As a result
we decided not to normalize the problem to any one mesh size,
but to retain the coordinates in MKS units. This does not
change the basic structure of Buneman's algorithm, but it re-
quires changes in all the coefficients used in converting the
gradients derived from the interpolation routine INTRA. For
example, when a mesh is allowed to be rectangular instead of
square, two distinct coefficients are needed for the axial
and radial forces instead ol one common one.

To demonstrate that the revised routine is correct, it is
primarily necessary to show that the expressions used for the’
new coefficients are correct; if they are, then the detailed
checks in [ 3] will apply to this case also.

We first check the magnetic field coefficients alone by track-
ing a single electron in a uniform field, so that the path
should be a circular helix; Figure 32 shows the projection on
the X-Y plane of such a trajectory; the smaller circle results
from projecting the electron.with the transverse velocity com-
ponent it would require for Brillouin flow if the entire beam
were present. In the absence of any space charge force, the
diameter of the circle is exactly half that for Brillouin flow,
so that the trajectory passes through the axis. The larger
circle results from doubling the transverse injection velocity.
Both circles are tracked round about 400°, and in the overlap
region they coincide essentially within the thickness of the
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line. This demonstrates that no mistake has been made in
rescaling tine magnetic iield. The test was made both with
the 'uniform: field® bypass in the trajectory routine, and
with a nominally 'nonuniform' field (so that the full tra-
Jjectory routine is used), but the field was in fact made
uniform to a high degree by specifying a Helmholtz pair for
the coils. The differences between the two cases were only
y at the 0.1% level, comparabls to the differences between the
. Helmholtz field and the exactly uniform field, so t"at both
versions of the trajectory routine were checked.

r The smaller circle in Figure 32 also shows that the program

retains RZTRAJ's capability to follow a trajectory through
the axis without blowing up; as in the earlier case, an
abort will occur if the trajectory not only passes through
the axis, but also nas one of the calculated points on it
exactlv at R=0. The probability of this occurring in any
- actual calculation is so small that it would be a waste of
computer time to put a test for R=0 at every step of every
ring, and go to a bypass routine if it occurred. If the
problem ever did occur, it could be eliminated simply by
rerunning the case with a minute change of some input var-
iable.

e oV A GRS

Having established that the magnetic field is correctly
scaled, we can check the space charge field by rumming a
Brillouin flow case, in which the space charge force should

1 just balance the magnetic and inertial forces. This can be
done without modifying the program, simply by specifying a
uniform magnetic field at the Erillouin value, together with
a drive level so low that rf fields never become significant.
In the 'Navtest' case we used 942 gauss, and 109 watt drive
(95 dB below the saturation drive of 3.2 watts). Incidental-
ly, this demonstrates the very large dynamic range of the
program: it still gives a satisfactory small signal calcula-
\ tion at this level. At the output end, the rf voltage is

3 still below 1 volt, and the beam modulation is only .0008,

; so the conditions for Brillouin flow are substantially met.

s Rt e

i e s SR

Figure 33 shows *the r-z plane projection of the trajectories
for this case.

Finally, the rf scaling can be checked by using a very stiff
beam, so that the ring trajectories are tightly constrained

to stay close to their starting radii by the large magnetic
field. In this case we revert to normal saturation drive,

and postulate a uniform magnetic field ten times the Brillouin
value. The corresponding cathode immersion is 98.5%, and
TRANS assigns the appropriate small transverse velocity cum-
ponents. Under these conditions, the exit bunching and
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P,

velocivies of the rings should be similar to the exit bunch-
ing and velocities of the 1liscs as given by NAV118B. They
will not be identical, because the rings are at different
radii from the b7372 used as the center of force for the
discs; but the test is sufficient to show whether any gross
errors such as omission of terms or sign changes have oc-
curred. Figure 34 compares the exit data of the disc and
ring models, anrd shows . that they are satisfactorily similar
with this ultra-stiff beam. (When it was first tried, the
test was very obviously not passed, and the cause was found
to be a 90° phase error in transferring the rf fields from
NAV118 to RNGTRJ. Thus the test is sensitive enough to te
useful.) We have, of course, already discussed the accuracy
of the potentials themselves in Sections 3 through 5, so
that correctness of the coefficients transfers this accuracy
to the completie calculation. These tests do not completely
eliminate the possibility that a coefficient might be off by
a few percent, but it seems very unlikely: the terms making
up the coefficients are mostly very large or very small num-
bers, so that the derivations can be expected to be either .
correct, or off by orders of magnitude; the tests have shown
that the latter is certainly not the case.




18

Ring number

é

5

!

4
16

Comparison of Ultra-Stiff Ring Model with

Disc Model Exit Velocities

Figure 34:
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7.0 ASSEMBLY OF THE PROGRAM

Subroutines corresponding to the foregoing sections were
assembled into a complete program as shown by the block
diagram in Figure 35. It would not be correct to say that
the subroutines were based on the analyses, because in some
cases the subroutines were written first ard then translated
into algebra for this report. It has to be recognized that
the formalism of Fortran or Super Basic is Jjust as valid for
the solution of problems in physics and engineering as the
formalism of algebra, and may well be the best one to use
when the end product is to be a program, nout a textbook.

In such cases, translating the program into algebra is
really only conformity to what will soon have become an

. outmoded tradition. The reader will have noticed in par-

ticular that Section 6 of this report has almost no equa-
tions, only copies of the full and condensed Super Basic
trajectory algorithms: no algebra translation of these al-
gorithms exiats. :

The entire program was first written in Surner Basic to allow
each section to be tested cn a time-sharing system with a
minimum of delay. In this version, each second level sub-
routine in Figure 35 is a seii-contained program, and the
'Main program' is the user at the keyboard, calling the pro-
grams in the correct order. The third level subroutines of
Figure 35 are then GOSUBs within the second level programs.

Apart from the essentially trivial (but agonizing) problems

of tracking down bugs, one defect of principle came to light,
which ought to have been foreseen: the procedurn of moving
beam elements forward or back by one wavelength .thenever nec-
essary to keep them within the space charge wavelength being
tracked has been used in all prior programs of this type known
to the writer, and was adopted here as indicated on nage &.
But all prior programs have been restricted to uniiorm mag-
netic fields. If this procedure is adopted with a PPM field,
one finds that the PPM period is not equal to the space charge
wavelength, so that a ring moved up or back one wavelength
suddenly finds itself in a different magnetic field, for which
its transverse component of velocity is incorrect. As a re-
sult, angular momentum is not conserved. If one arbitrarily
changes the tangential velocity to match the local field, then
energy is not conserved.

To escape from this dilemma, we adopted the valuable concept
of the Doppelgédnger. The Doppelgaénger (for thcse unfamiliar
with German folklore) is a ghost of a living individual which
haunts that *wdividual but occasionally goes elsewhere, and
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can conveniently be blamed for any mishap. The application
of this to the present pIoblem was to provide each ring with
a Doppelgianger (vector TW() in the program). The rings them-
selves are now not moved up or back when they leave the
tracked wavelength: only the Doppelgiangers are detached to
stay in that wavelength to pick up the appropriate space
charge forces; the other forces are still evaluated at the
true positions of the rings and thus see no discontinuities.
Each Doppelgdnger shares all its host'!'s coordinates and veloc-
iily components except for the Z ccordinate, so that only one
additional coordinate (stored in TW) is needed for each ring.

With this approach, it appears that both angular nomentum and
energy are satisfactorily conserved in both PPM and uniform
magretic fields. This is visually evident in the X-Y plots,
which show substantially radial motion at the exit plane for
all rings whicn reach that plane. :

S
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8.0 OUTPUT OF THE PROGRAM

Figure 36(a) through (j) shows the complete output for a
‘minimum' case corresponding to the test case 'Navtest';

(a) repeats the input data to make the case self-document-
ing. (b) is a miscellaneous collection of derived quan-
tities. (c) is the matrix RFMAT and rf fields. (d) is

the matrix MAGMAT and magnetic fields. (e} and (f) are

the disc model runthrough, which is somewhat beyond satu-
ration because the drive level (3.2 watts) had been deter-
mined for the 12 disc model, and the 6 disc value is usually
1 or 2 dB different. (g) is the conversion to rings. The
varying signs in the YDOT column arise because somc rings
are in one half of the magnet period and some in ‘the other
half, where ihe field is reversed. Each starting YDOT is
individually assigned to match the local field. (h) is

the ring trajectory printout, giving R and Z for each ring
every 20th step. (i) is the tabulation of exit coordinates
and velocity components. (j) is the tabulation of intercep-
tion on the ferrules, bcth by ring number and by ferrule
number, followed by some statistics on tie exiting rings.

The trajectories for this case airc plotted in Figures 37
and 38. An over-large plot step size was chosen, so that

these plots are somewhat angular; smoother ones can be dravm,
but require more ‘corvre.

The printout for a full scale 96 ring case i3 identical in

format to that shown, but simply more massive and unsuitable
for reproduction.

Interesting sequences of cases have been run; with a uniform
field at the Brillouin value, end no rf (10-® watt drive),
the veam remains well-behaved and there is no interception.
When 3.2 watts drive is applied, but nothing else changed,
the beam 'blows up' as expected, with collection of 2% out
of 48 rings spread over 6 ferrules. With a PPM field peak-
ing at 1.6 x Brillouin (1530 gauss), the interception is re-
duced to 8 rings out of 48, and 3060 gauss further reduces
vhis to 4 rings on two ferrules.

The ‘hour glass' X-Y plots in PPM fields are different from

what we expected. It is difficult to make out too much from
the corpleted plot: it is far more informative to watch the

plotter drawing them. The corresponding plots for a Brill-

ouin iiow case are arcs of circles, as expectsd.
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VAUGHAN’S RING MODEL TWT PROGRAM FORTRAN VERSION OF MAR. 1976

TWTINP  INPUT FOr RING MODEL PROGRAM UUULUUUU
PAKT 1: GENERAL: .

CASE IDENTIFICATION NAVIEST __ _
LINEAR UNIYS (IN OR M#) IN
PARS 2: TUBLE PHYSICAL DESCRIPTION:
ITEM | TUNNEL DIAMCTER B 0.2000
2 CAVITY PERIOD 0.3000
3 GAP LENGTH : 0.1000
4 TOFTAL # OrF CAV.ITIES _ED SN B
L NO. OF SEVER CAVITIES 2
SEVER CAVITIES 12 13 .
, 6 HING CALC STARI AT CAV. # 24
‘ 7 FIELD INTENSIFICATION FACTOR 2.5000 ‘
. PART 3: COLD TEST DATA: _ _ Wy
. b PHASE VEL (i/5:C/Z1ET) 10.0000
9 IMPEDANCE (QHMs) 10.0000
| 10 LOSS (DB/CAV) _ 0.1000 S
PART 4: MAGNETIC FIELD DATA:
It UNIFORM (1) Or PERIODIC (2) 2 o
13 PERIODIC LENGTH 0.6000
32 NUMBER OF COILs (MAX~t0) 4
corv... ok 2 _M .
! ] 0.1480 -0.1500 -158.1000
2 0.1480 0.1500 169.7500
- ___0O.,1480__ _ 0.,4500___ -'169.7500
4 0.1480 - 0.7500 :58.1000
PART 5+ RF DATA: ~
14 FREQUENCY (GHZ) 10.000 ) )
15 DRIVE POWER (WATTS) 3.20
~ PART 63 BEAM DATA: o - g —
16 BEAM VOLTAGE (KV) 38.000
17 MICROPERVEANCE 1.100
18 NGHINAL B/A - SR ¢ PO £ 0§ I
PART 73 BEAM MODtL:
19 # OF DISCS PR WAVELENGTH 6
20 # 0F RINGS Phkr DISC. i 4 e
PART o3 POTENTIAL MESH DIMENSIONSS
21 SCHAT: RADIAL, AXIAL_ 46 .
22 KEMATS  RADIAL, AXIAL 4 12
23 MAGMAT: RADIAL, AXIAL 4 16

Figure 36(a): Test Case Input Data (first page of output)
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SPACE CHARGE DENSITY
MeAN PUTENTIAL DEPRESSION 816.8 VOLTS

POTENTIAL DEPRESSIuid ON AXIS 1088.6 VOL1S
MEAN BEAN VELOCLLY & 10.790*lE/ N /5EC

7.14014D-03 CB/Mx*x3

BEAM CURKENT 8.1-183 AP
BEAM WAVELENGTH 0.425 IN
sRILLGUIN FIELD . 941.6_GAUSS __

TIME STeP FOR RING CALC 5.68525 PICOSEC
TIME SIEP FOR DISC CALC 16.606666 PICOSEC

Figure 36(b): Derived ‘Quantities
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NAV118s PRELIMINARY DISC MGDEL CALCULATION

( MEAN POT. DEP. -876.81 VOLTS, BEAM VEL. 1.078917D 08 M/S

o | LAMBDA E=  10.79 M3  BETA E=_ 582.3 = §
DISK CHAGE  1.353050-10 CB
PLASMA WVLGTH 60.06 Mid:i PLASMA FREQ  1.17860D 10 R/S
T _HEDUCED PLASHA FREQ  6.77395D 09 _R/S

POT. DEP. FROV SUM OF DISKS -87Y.31 VOLTS
VOLTS AT NODES O THRU 3 DUE TO DISC AT NODE O:
-506.936__=152.511__ -28.628 _ -10.097 __ :

| BETA(-1)= 628.3 GAMMA(-1)= 592.3 GAMMA*A= | .5045
| Ml = 0.8972 M2 = 0.6629
» | TOTAL IMPEDANCE=  648. OiMS . . .
f PIERCE’S C = 0.08123 S#ALL B =  0.901
QC = 0.3%880 SMALL D = 0.030
o | PHASE SHIFT PER CAVITY = 274,3 DEG ( 1.524P1) . —
) VOLTAGE ATTENUATION FACIUR PER CAV.=0.9886
E | Wl= 202.54 W3= 44.0y 5= 3.69
3 H
; E V.  VOLTS. POWER  GAIN I-FUND _ABS REL _CAV.LOSS EFFIC. EN.BAL.
3 . NO R-F WATTS DB /1-DC PHASE FHASE WATTS  PCNT. #CNT.
L : ‘
: » I 64.40 3,200 _0.00 0.0000_ 0.0 160.0_____0.073 0.00_100.09
3 2 63.83 3.114 -0.08 0.0020 356.9 184.4 0.072 =0.00 99.97
4 3 6b.35 3.605 0.52 0.0064 348.5 212.7 0.082 0.00 99.96
L n 4 852,19 5.213. 2.12.0.0110.339.8 236.5 0.119__0.00 99.96
: 5  106.48 3.749  4.37 0.0161 334.4 253.5 0.199  0.00 150.0l
1 6 137.5% 14.599 6.9 0.0200 332.4 263.5 0.332  0.00 100.04
5 £ 7 177.59 24,336 8.81_0,0262 330.9 265.!__ 0,554 0.0l 100.04
g b 225.59 39.269 10.6Y 0.0320 329.8 266. | 0.694 0.0l 100.06
9 275,37 58.51 1. 12.62 0.0342 328.4 263.9 1.332  0.02 100.03
E 10 337.01 uv1.638 14,38 0.0435 325.8 259.5 1.995 0,03  99.96
1l 431.83 143,890 16.53 0.0661 321.5 255.9 3.275  0.05 100.00
12 64,40 3.200 ~0.00 0.0883 313.1 266.| 0.073 =0.00 99.75
a 13 64.40 '3.200 _-0,00 0.1102 314.5 270.5____0.073 _=0.00 99.76
14 265,71 54,477 12.3) 0.1236 321.9 272.3 1.240  0.02 99.75
15 448,45 155,176 16.86 D.1148 324.9 274.2 3.532  0.05 99.74
P 16 598,21 276,121  19.36 0.1007 324.7 269.4  6.285 __ 0.09 99.62
3 17 741.84 424.638 21.23 0.1056 321.5 257.6 v.666 0.14 99,58
] 18 907.13 635.008 22.98 0.1286 31€,1 248.8 14,455 0.20 99.70
a 19 1203.05  1113.765 25,43 0.,2093 309.3 251.2 25,421 0.36 99.60
20 - 1579.02 1923.8,1 21.79 0.2520 305.2 257.8 43.792  0.62 100.0l

ne

3 2034.24 3193.030 2¥.99 0.3062 302.2 260.”° 72.682 1.03 100.66
& ﬂ 22 2587.10 5104.453 32.08 0.3802 299.4 260.. 417.557__1.67 101.28
1 23 3221.52 wd07.910 33.¥8 0.4992 295.7 256..3 182.282 2.59 101.39
24 4174.25> 13444.800 36.23 0.6862 290.2 243.0 306.041 4. 34 IOI.29i
B TRANSFER 2 COURDINATES®. : : —— S e :
0.1/5209 0.176041 0.176711 0.178032 0.180871 0.184001
THANSFER VELOCITIES (a1E=7)3
52 10. 8124 ¥.98402 P.78672 _10.23752 11.20927 _11.49444 _

Figure 36(e): Subroutine NAV118, disc model program, first part.
The last 4 lines are the disc positions and velocities

which will form the starting data for the ring model
calculation.
-101-
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CAV. VOLTS POWER  GAIN I-FUND ABS REL CAV.LOSS EFFIC. EN.BAL.
NO. R-F WATTS DB /71-DC PHASE PHASE WATTS  PCNT. PCNT.

25 5237.83 21163.920 38.21 0.8366 283.4 246.8 481 .864 6.84 100,73
26 6457.78 32173.300 40.02 1.0826 273.9 237.6 732.468 10.39 99.64
27 7380.38 42029.530_ 41,18 1.1221_262.1 222.2___956.70Y__13.57. 96.39
28 8011.59 49525.040 41.%¥0 0.9902 254.4 216.9 1127.350 15.99 94.34
2y T7740.13 46226.69C 41.60 0.6322 245.3 170.9 1052.248 14.9Y3 89.18
30 6922.96 36981.150_ 40.63.0.576y_245.2 11v.9 __841.794 __11.94 87.00

T = 2.11667D-09 SEC, NO = 127 STEPS | ‘
' TOTAL CAVITY LOSSCs5 = 5984.386 ¥ ___ _ _ — _
TOTAL SEVER POWER = 147.1 W
ELECTKONIC EFFIC. = 13.92 PCT
RESIDUAL BEAM K.E.= _ 73.07 PCT

Z COORDINATES, MM:
223.971 222.350 222.077 221 .465 227.539 226.398
GRID COORDINATES: e ———— . e
3.550555 2.645588 2.494014 2.153943 5.531154 4.896685
VELOCITIES (M/SEC/1E7) ¢
8.658630 8,412133  5.180522 10.Y08069__9.996846 __8.879843
RELATIVE ENZRGIESS
0.64399 0.60785 0.57484 1.02206 0.85844 0.67732
DISTANCE = 217.5Y M4

Figure % (f): Subroutine NAV118 continued; this case is overdriven,
since the power peaks at 49.5 kW at cavity 28 and has
fallen to 37 kW at cavity 30. It illustrates the fact
that the program does have overdrive capability, though
the accuracy, indicated by the Energy Balance (far
right columns, is beginning to degrade beyend saturation.
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TRANS:  SUBDIVISION OrF DISCS INTD RINGS
AND COMPUTATIUN UOF CHARGE-INL:PENDENT MATRICES

UNCORRECTED KIho CHARGE (EQU.5-50) 81.25407
CORRECTION FACTOR rFOR CHARGE:_ 0.944
CORRECTED kING CHARGE: 716.73216
COkECTION FACTOR rOxr RADIAL SPACINGS 0.660

COKRECTED KADIAL SPACING (EQU.5-=49) (MM): __ 0.38.
SITAKTING COO&DINATES (MM) AND VELOCITIES (MM PER TIME STEP)
RIKNG X Y A R : XDOT YDOT ZDoT

0.382 ©.000 175.208 0.382 0.00000 0.00099 0.63667

[
2 0.382 0.000 176.041 0.382 0.00000 -0.01501 0.58758
3 0.382 0.000 76.711 _0.382 _ 0.00000 =0.02869__ 0.57597 _
4 0.382 0.000 i17s.032 0.382 ° 0.00000 -0.05%071 0.60250
5 0.382 0.000 180.871 0.382 0.00000 -0.03837 0.65969
6 0.382 _0.000 184.001 _ 0.382___ 0.00000 _0.02146_ _ 0.67648 _
1 0.765 0.000 i75.208 0.765 0.00000 0.00194 0.63667
8 0.765 0.000 176.041 0.765 0.00000 -0.02926 0.58758
Y _0.765 0.000 176.711 0.765 _ 0.00000 =-0.05655 ~ 0.57597
10 0.765 0.000 i78.032 0.765 0.00000 -0.1064y 0.60250
1. 0.765 0.000 180.871 0.765 0.00000 -0.07768 0.65969
12 0.765 0.000 _+84.001__ 0.765 ___ 0.00000_0.04220 __0.67648
13 1.147 0.000 75.208 1.147 0.00000 0.00291 0.63667
14 1.147 0.000 176.041 1.147 0.00000 -0.04378 0.58758
15 t.147 0.000 176.711_  1.147 _ 0.00000 -0.06486  0.57597
16 1.147 0.000 178.032 1.147 0.00000 -0.160v7 0.60250
17 1147 0.000 180.87I 1147 0.00000 -0.11695 0.65969
(] 1,147 0.000 _ 184,001 __i1.147_. 0.00000_0.06325_ 0.67648

i

19 1.529 0.000 175.208 .52y 0.00000 0.00380 0.63667

20 1.52v 0.000 176.041 1.529 0.00000 -0.05699 0.58758
|

21 1.529  0.000. 176.7L1 _ 1.529 _ 0.00000_-0.LJ102 . 0.57597
22 1.529 0.000 178.032 1.529 0.00000 =0.22166 0.60250
23 1.52y ~ 0.000 18O.u7} 1.529 0.00000 -0.15643 0.65969

24 1.529. 0.000 _184.0C1 ___1.529 _ 0.00000_.0.00288___0.07648

Figure 36(g): Subroutine TRANS Output. The discs of Fig. 36{e)
are subdivided into 4 rings each. The Z and ZDOT
values correspond to the last 4 lines of Fig. 36(e),
with the conversion of units indicated above the
table. The time step was given in Fig. 36(b).




_ RNUTRJs  RING TRAJECTUKY CALCYLATION

¢

i R,Z (VM) FOR EACH RING ©VERY 20TH TIME STEP

-

STEP
Tyl 0. 352 _115.208 2_0.382__116.041 3 0.362 _176,71)______ 4 _0,382__178.032______ _
57 0.362° 180.t71 ¢ 0.382 184.001 7 0.765 1175.208 8 0.765 116.041
y 0.165 176.T11 10 0.765 178.032 1t 0.765> 180.871 12 0.765 1E4.n01
s 13 1,147 __175.208 14_ 1,147 176,041 15 __1.147 _176.740____16_1.147__17c.032_____
- 17 1.147 1b0.871 s 1.147 184.001 19 1.529 175.208 20 1.529 176.041
21 1.529 126.711 22 1.529 178.032 23 1.529 180.871 24 1.529 184.00!
]
STER 20
1 0.176 187,350 0.139 187,327 3 0.218 188.002 4 0,147 190.210
n oL 5__0.066__194. 212_____9 0.122 __196.633_____ 7 _0.442__181.258____ 8 0.140__187.210_______
) v 0.204 1b7.9148 10 0.285 1v0.246 11 0.0e2 194,220 12 0.231 196,581
13 0.366 187,111 14 0.220 186.998 15 0.412 1b/,740 16 0.563 190.261
» 1__:7_~o.|8| _194.223 18 0,485__196.491 19 _0.113__186.815 2D 0.650__186.5E1
.21 1.083 167.313 22 1.109 190.273 23 0.423 194,197 24 0.960 196,359
» i _STEP__. 40 :
{1 0.434 199,253 2. 0.5681 198,445, 3 0.746 200.022 4 0.219 202.L69
1 % 0.260 207.455 6 0.365 207.036 7 0.865 198.8b% 8 0.189 1YB.059
3 » L9 0.v33__199.60i____i6_0Q.414__202.955___ 11 _0D.803_207.515 1.2_0.7v4__207.02
- 13 0.509 198.461 14 0.028 197,356 15 0.973 195.9917 164 0.540 202.v50
A S5 17 1.163 207.608 18 0.b57 207.079 19 1.03y 197.473 20 0.997 1v¥5,801
y D, 21 _2.506_ 1v3.216____ 22 0,197 202.624_ 23 1.045 207.%b5___ 24 0.462_206.%33 _
E ] 5
A . STEP 60 '
' X o 1_0.134 211,059 2 0,435 209.361L 3 0.431._21).746_____ 4 0.274_ 215.868___
i S0 5 0.084 219.755 6 0.219 216.538 7 0.071 210.220 8 0.1712 2082.686
E .9 0.378 211.340 10 .0.245 216.098 It 0.419 2lv.¥16 12 0.094 216.6v2
b 2 130,209 20v.5Y]| 14__ 0,405 207,634 ____15__1.365_ 210.003___16__1.184 _216.118 __
] ) 17 0.09Y 220,175 1o 1.131 216.¥03 1y 0.35 208.102 20 2.570 199,448
g P21 2.586 193.276 22 0.853 215.304 23 1.559 220.339 24 0.621 216.104
o a 9
; T TSI 0 :
1 201 0.367 222.804 2 0.7H1 21v.951 3 0.4¢4 223.216 4 0.38Y 228.711
: 8 5 _0.148_228.901 6_0,406__226.%83____ 1 _0.661_221,467___ 8 _ 0.504._2ic.9%t____ ___
4 iy 0,702 222.624 10 0.674 228.626 1t 0.432 228.713 12 0.654 226.¥563
? 13 0.634 220.450 14 0.456 218.219 15 0.451 220.513 16 0.506 226.835
a V1 _0.619 228.623 180,503 227,648 1Y Q.046__218.705____20_2.57C__199.448
i | 21 2.586 193.27% 22 1.591 228.601 23 0.333 228.¥29 24 2.466 223.029
- A .
n r_a‘l‘ P_. 9y __ .
1 0.113 220.6v5 2 0.4Y5 220.10& 3 0.254 228.874 4 0.389 225.711
Y5 0.143 22b.v3/ 6 0.227 223.614 7 0.713 228.634 8 0.658 22t.845
2L 90,054 _.228.702____10_-0.674_°225.626___11__0.432_ 226.713___12_0.48)_ 229.070—_
7137 0.645  229.120 14 0.471 228.975 15 1.183 220.783 16 0.505 225.435
YT 0.619 226,628 16 0.257 228.761 -19 0.3b1 228.832 20 2.570 19¢.448
r ol 21 2.566_-l23.21ﬁ__.JHL__LJﬁU__ZZiLMQL___Zj__OAJJJ__zzs;y22_.__2§_“2¢uﬂL_223¢029~__~____

Figure 36(h): Running tabulation of R and Z coordinates only.
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n | 2. TABULATION OF COLLECTED_RINGS

RING#  FERRULE#  WAITS

|20 27 16016.7
] C 21 27 19020.9
1 24 30 23i45.9
3 2 3. FERRULE BUMBARDMENT POWERS:
3 i FEKitULE#  WA11S :
] w423 0.0
- | 24 0.0
: 25 0.0
3 30 26 0.0
] 27 35037.7
1 28 0.0
] » 29 0.0
3 30 23145,y
31 0.0
4 38 4 . o ) . _
1 4, STATISTICAL SUMMALY:
3 3 . RMS EXIT ANGLE, DEGRE:S = 6.46
; MEAN AXIAL EXIT VELOC.TY =  i0.0597
KMS  AXIAL EXIT VELOCLTY = 10.1166
4 o RMS KADIAL EXIT VELOCITY = _ 1,2061
1
| g
{
.E Figure 36(j): Summary Tabulations.
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e T, AN,

NAVTEST 3/3/76

Y-IN.

X"IN-

- Figure 38: X-Y Plot of Selected Rings -- the view looking
down the tunnel from the cathode end. The plot
is unduly angular because a coarse plot interval

was used.
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