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20.  ABSTRACT (Cont.) 

Each field is represented by a potential matrix. The rf vector poten- 
tial matrix is computed from an integration of Kosmahl and Branch's 
field formulation. The magnetic vector potential matrix is derived 
from ideal current loops representing the field sources. The space 
charge potential matrix is obtained by an extension of Hockney and 
Buneman's Fourier Analysis Cyclic Reduction method to cylindrical 
coordinates. 

The trajectory steps are then computed from analytic integrals of the 
general cross-field equations of motion, using a fast subroutine for 
simultaneous interpolation and differentiation of the potential ma- 
trices. 

A comprehensive example.is given of output obtained from the program. 
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SUMMARY 

This report describes the development of a corr^uter program 
for calculation of three-dimensional electron trajectories 
in a coupled cavity traveling wave tube. RF, magnetic and 
space charge fields are included without paraxial approxima- 
tions. Both PPM and solenoid magnetic fields are admitted. 

Each field is represented by a potential matrix. The rf 
vector potential matrix is computed from an integration of 
Kosmahl and Branch's field formulation. The magnetic vector 
potential matrix is derived from ideal current loops repre- 
senting the field sources. The space charge potential matrix 
is obtained by an extension of Hockney and Buneman's Fourier 
Analysis Cyclic Reduction method to cylindrical coordinates. 

The trajectory steps are then computed from analytic inte- 
grals of the general cross-field equations of motion, using 
a fast subroutine for simultaneous interpolation and differ- 
entiation of the potential matrices. 

A comprehensive example is given of output obtained from the 
program. 

Docuraentstion associated with this report available fron NELC: 

1. users Manual for TWTVA Traveling Wave Tube Traiectorv Coniput«ition 

2. Source progran listing 

3. Computer card deck 
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1.0 OBJECTIVE 

The general objective of this contract is the development of 
a computer program for calculation of beam trajectories in 
coupled-cavity traveling wave tubes. 

Specific objectives set out in the statement of work include 
the following: 

i) the program will be in FORTRAN IV level H. 

ii) the beam will be represented by a disc model up to the 
beginning of the saturation region. 

iii) the beam will be represented by a ring model of at least 
96 rings per wavelength in the saturation region. 

iv) the speed of the program shall allow the 96 ring calcu- 
lation to be carried out in 5 minutes of CPU time, or 
less, per cavity, on an appropriate computer. 

v)  ehe program shall include a self-contained routine to 
generate an rf vector potential matrix, to avoid depen- 
dence on the Los Alamos program LALA. 

Though not stated, it was understood that the program would 
include rf, magnetic and space charge fields, without paraxial 
approximations, and that the magnetic fields should include 
both uniform (solenoid) and nonuniform (PPM) cases. It was 
also understood that the interaction between the beam and the 
rf fields would be computed in both directions •— that is, the 
fields would be appropriately modified by the computed beam 
trajectories, not merely applied from external sources. 

This report describes the analytical background to the devel- 
opment of the computer program. It is not necessary to read 
the report in order to use the program: a separate User's 
Manual gives all the instructions necessary for setting up a 
case and interpreting the results. But familiarity with this 
report is necessary for anyone intending to modify the program, 

The analysis is specific to coupled-cavity TWT circuits at 
this stage, but much of it is sufficiently general for future 
application to other 0-type tubes. 
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2.0 DESCRIPTION OF THE PHYSICAL MODEL 

2.1 The Tube 

The tube will be represented as a sequance of gaps and tun- 
nels, as shown in Figure 1; there are rf voltages across the 
gaps, determined by the rf power flowing in each cavity, and 
the rf fields due to any one gap are taken to extend irto the 
tunnels on either side as far as the midplanes. Beyonv these 
planes the fields due to the adjacent gaps take over.  This 
assumption that the fields due to one gap become negligible 
beyond the midplanes is, of course, not exact; but for typical 
tube structures the fields at these planes are 25 to 30 dB 
below the gap fields, so that it is a reasonable simplifying 
assumption. A numerical example supporting this will be found 
at the end of Section 4.7. 

2.1.1 Specific Model 

In order to have a consistent set of test cases for numerical 
trials and illustrations, an imaginary (but not unrealistic) 
tube design was constructed. 

Taking a goal of 50 kW peak output, 50% bandwidth centered on 
10 GHz, a preliminary rule-of-thumb TWT program gave 36 kV, 
1.2 iaP for the beam, .203" for the tunnel diameter, .297" for 
the cavity period, 9 ohms interaction impedance, and 1,02x108 

m/s phase velocity (1.48TT per cavity) at 10 GHz. The expected 
electronic efficiency was 24.9%. 

After adjusting the voltage upward to 38 kV at 1.1 |iP to allow 
for relativistic effects not included in the simple program, 
and rounding off other parameters to convenient values, the 
following set of nominal parameters was adopted: 

Tube type:    'Navtest' 

Frequency:    10 GHz 

Pnwer output: 50 kW peak 

Tunnel diameter .2"; cavity period .3"» magnet period .5"; 
gap .1". 

Beam 38 kV 1.1 uP (approx. 8 amps), b/a = .?. 

Cavities = 30; impedance 10 ohms; loss 0.1 dB/cavity; 
sever at cavities 12 and 13» phase velocity 
1.0x108 m/s. 

The tube structure is shown in Figure 2(a). 
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ScaUi 5:/ 

Figure 2(a) 

Structure of Coupled-Cavity TWT 'Navtest', 

used in numerical examples 

0 ! Positions of current loops used in magnetic field 

© j representation 
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This case was run on the large signal program [jl*» with the 
results shown in Figure 2(b). The upper block shows the input 
data, followed by various derived quantities, including the 
equivalent Pierce parameters. The lower block shows the power 
saturating at 61.8 kW, I.e. about 1 dB margin, at 43 dB gain. 
The energy balance in the last column is within .3 dB, which 
is quite satisfactory. The output is plotted in Figure 2(c) 
showing a very normal type of Applegate diagram for a high 
power over-voltaged tube.  The electronic efiiciency of 22.2% 
is somewhat less than the 24.9% estimated by the preliminary 
program, but not unreasonable. Overall, this seems to be a 
self-consistent design for program test purposes, and its 
parameters will be used for the test cases for the rf field, 
magnetic field, etc. 

2.2 The Beam 

The beam will be represented by a one-wavelength segment, 
traveling down the tube at the do beam velocity. The assump- 
tion is made that this wavelength is preceded and followed by 
identical wavelengths: this assumption allows us to do two 
things: 

i) compute space charge forces by a fast Fourier analysis 
method, which implies that the segment considered is 
part of an infinite sequence of identical segments; 

ii) replace any element of the beam which leaves the segment 
at one end, by a corresponding element entering at the 
other end; i.e., an element can always be moved up or   *. 
down one beam wavelength to keep it in our working range. 

Since the tube is intended to be an amplifier, the bunching 
in general increases along the tube, so the assumption of 
identical wavelengths ahead and behind cannot be strictly 

[1] J.R.M. Vaughan, 'Calculation of Coupled-Cavity TWT 
Performance', IEEE Transactions on Electron Devices, 
ED-22 #10, October 1975, pp. 880-890. 

* References will appear as footnotes on the pages where 
they first occur, and will also be collected in a com- 
plete list at the end of this report. 

■j- See page 93. 
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correct. However, the tunnel walls exert a shielding effect 
which diminishes the effect of more distant charges very 
rapidly, so that errors in estimating their magnitudes have 
very little effect on the final results. Indeed, the real 
reason for including anything more than adjacent wavelengths 
in the space charge computation is that they can be expressed 
as a geometric progression whose 'sum to infinity1 is a sim- 
pler expression (% _ ■) than the sum of even three tenns. 
The assumption is most likely to become unrealistic at the 
final cavity, where the next wavelength ahead is likely to 
be very different from the one being tracked, if the effi- 
ciency is high. Ultimately we may be able to track three 
consecutive wavelengths, tht outer ones acting as guards for 
the center one. 

2.3 Subdivision of the Beam 

Initially the one-wavelength segment of the beam will be 
divided into 12 or 24 discs and these will be tracked for 
the full length of the tube to establish initial values of 
the rf voltages and phases at each gap, using an existing 
disc model computer program [1J. We shall then backtrack to 
the start of the saturation region, subdivide each disc into 
2, 3 or 4 concentric rings, and repeat the calculation from 
that position; with each ring now moving independently under 
the action of the applied fields. Although we refer to these 
elements of the beam as 'rings', we do not think of them as 
hydrodynamic volume elements in the sense that Kosmahl and 
Albers TZ] consider them. In this work, what is actually 
tracked is a 'super electron' having about 10* times the 
charge and mass of a real electron, which represents the 
electrons in its neighborhood. Thus discussion of 'changes 
of shape' of a ring are not meaningful in this context: the 
ring is represented by a point charge which has no shape, but 
it will still be referred to as a ring for brevity. The pre- 
cise charge is chosen so that, when multiplied by the number 
of rings per wavelength, we obtain the same total charge as 
the real beam, subject to a small correction to be discussed 
later. 

£2j "Three-Dimensional Evaluation of Eiiergy Extraction in 
Output Cavities of Klystron Amplifiers', H. G. Kosmahl 
and L. U. Albers, IEEE Transactions on Electron Devices, 
ED-20 #t01 Oct. 1973, pp. 883-890. 
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2.4 The Fields 

The fields acting on a ring are: 

i) the rf field; 

ii) the space charge field; 

iii) the magnetic field. 

In the preliminary disc model calculation the magnetic field 
does not enter, and only the axial components of the rf and 
space charge fields are efxective. In the ring model part 
of the calculation, ^oth axial and radial components of all 
three fields are to "^e included, and are not to be limited 
to paraxiäl approximations. 

It will be noted that do electric and rf magnetic fields are 
not included; the effects of the dc electric fields in the gun 
are represented by the axial injection velocity with which 
the electrons are started, and 'velocity-oump1 sections are 
not at present included. Several past studies have shown 
that the rf magnetic fields are negligible for foreseeable 
microwave tubes. 

There are various methods known for representing the fields 
in computation. They .nay be derived from analytic solutions 
of the wave equation or Laplace's or Poisson's equations as 
appropriate, or from Green's functions,or from the gradients 
of a potential function. We have available a fast trajectory 
algorithm of proven accuracy 'L3j,  which derives the fields by 
interpolating the gradients of an array of potentials on a 
rectangular grid which overlays the interaction region. Thus 
our worklnp; representation of each of the fields will be a 
matrix of potentials at the nodes of a suitable grid. The 
mesh sizes and locations of the grids will be discussed in 
detail in Section 2.5. There will be a separate grid and 
separate matrix for each of the three fields. 

OJ 'Electron Ray-Tracing Program for Image Intensifiers', 
Final Report, Contract DAAK02-67-C-0182, by J.R.M. 
Vaughan and 0. Buneman, Sept. 1970. 
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2.5 Matrix Representation of the Fields 

For each field, we have the choice of constructing either a 
scalar potential matrix or a vector potential matrix; for 
reasons that will become apparent later, we choose a matrix 
of radius x vector potential for the rf fields, a scalar 
potential matrix for the space charge fields, and a matrix 
of vector potential x radius for the magnetic field. These 
differences are not apparent to the ordinary user,, but must 
be recognized by anyone intending to delve into the program 
to modify it. The required fields (poxential gradients) are 
derived from a scalar potential matrix by differencing the 
matrix elements in the same direction, but from a vector 
potential matrix by differencing in the perpendicular direc- 
tion. Thus a scalar (R,Z) matrix like this: 

1  2  3  4  5 . . . 

1  2  3  4  5 . . . 

1  2  3  4  5 . . . 

would represent a uniform axial field; a 'vector potential 
x radius' matrix for the same axial field would look like 
this: 

0 0 0 0 0 
1 1 1 1 1 
4 4 4 4 4 

9 9 9 9 9 

(In practice, of course, the elements are not simple integers, 
and the scaling factors are different for the two cases, but 
the vector potential matrices dc always have zeroes along the 
axis.) It may be worth noting here another possible source 
of confusion: one of the unfortunate conventions of mathemat- 
ics is that matrices are printed with the row numbers increas- 
ing downwards, which conflicts with Cartesian coordinates with 
y increasing upwards. Thus we shall draw meshes superimposed 
on the interaction space of the tube in conventional Cartesian 
form, with the horizontal lines (representing r rather than y) 
increasing upwards. But in a straight printout of the corre- 
sponding matrix, the top line of the matrix will correspond to 
the bottom line of the mesh, and vice versa. In some demon- 
stration cases we shall deliberately program the computer to 
print a matrix in reverse row order for clarity, but a simple 
MAT PRINT statement does not do this. 
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If it is later decided to include dc electric fields to rep- 
resent velocity jump sections, a scalar potential matrix will 
be used for the electrostatic fields. 

2.6 Matrix Dimensions 

The fast interpolation routine INTRA for the potential grad- 
ients requires the potentials at 9 surrounding mesh points: 
thus for an electron at Q in Figure 3, the nearest mesh point 
is Ftj, and the remaining points P^j to P4 and P5 to P9 are then 
determined as shown. 

4- 

r P9 

' .Q 

Figure 3: Mini-Matrix for INTRA 

The routine fits an exact quadric surface through these 9 
values, and obtains the gradients of the two principal tan- 
gents at Q to th? quadric, representing the field components 
at Q.  (The routine INTRA is extremely compact, and does not 
explicitly derive the quadric, but cuts straight through to the 
gradients, without neglecting any terms, so that it is correct 
to machine accuracy. It was derived in reference [3], where 
its ad'.antage over 5 point interpolation was demonstrated.) 

One can see from Figure 3, that the matrix must extend at 
least one-half mesh in each direction beyond any position 
that an electron Q can occupy during the calculation, so 
that 9 surrounding potentials will alvays be available. 

In the radial direction, an electron is limited by the tunnel 
wall and the axis (it can pass through the axis, but its rad- 
ial coordinate is by definition always positive, so that it 
appears in the R-Z plane to bounce off the axis). Thus the 

-11- 

um-m mm Mtti^tta fllliMtlMMitt^litiittri^WnlMii'iirfiilftiiil" 



minimum radial mesh system would extend from one-half mesh 
below the axis to one-half mesh above the wall. But there 
is such obvious convenience in having one of the mesh lines 
along the axis, and another along the wall, that we choose 
to make every matrix (for rf, space charge and magnetic 
fields) extend Radially from 1 mesh below the axis to 1 mesh 
above the wall, recognizing that this makes the radial matrix 
dimension greater by 1 than it would strictly have to be. 

The number of meshes between the axis and the tunnel wall 
need not be the same for all three matrices. For the rt  and 
magnetic field matrices, the numbers may be chosen at vill — 
the larger the number, the more accurate can be the represen- 
tation of the field, but the larger is the memory requirement, 
and the more computation is required to set up the matrix. 
It does not, however, affect ths amount of computation in the 
main ring-tracking part of the program: at each step 9 adja- 
cent values have to be extracted and interpolated, and it 
makes no difference whether they are 9 out of 100 or 9 out 
of 1000. Typical values for the number of radial meshes will 
range from 4 for rough calculations or debugging, to about 20 
for precise work (there is no real advantage in going to rad- 
ial mesh numbers that are higher than the ratio of tunnel 
radius to ferrule corner radius, which is typically not more 
than about 20). The radial mesh numbers are denoted NQR for 
the rf vector potential and Njyro for the magnetic vector poten- 
tial matrices. Allowing for tne guard rows, the matrices run 
from -1 to NQR + 1, and -1 to Nj^ + 1. When the program calls 
for 'mesh numDers', it is the basic numbers NCR» %R> etc. 
that are to be entered. rhe program will add the guard rows 
and columns as necessary. 

For the space charge matrix, the fast algorithm to be given 
in Section 5 requires that the number NSR of radial meshes 
be a power of 2. It will usually be 4 or 8, possibly 16. In 
this case the choice does affect the main computation speed, 
since this entire matrix has to be recalculated after every 
time step, and this is the pacing item for the whole program. 

In the axial direction, the number of meshes is similarly a 
free choice for the rf and magnetic field matrices (except 
that it must be an even number for the rf matrix; an odd num- 
ber would be an unlikely choice for either matrix in any case). 
But the choice is strictly limited to 6, 12, 24 or possibly 48 
for the space charge matrix. The rf mesh is physically tied 
to the cavity period, as shown in Figure 4(b), but with an 
extra mesh at each end. This matrix is stationary, but is 
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repeated for every cavity. The matrix represents the poten- 
tials for 1 volt peak rf across the gap at zero phase, and 
in use the gradients will be multiplied by appropriate volt- 
age and phase factors for each cavity. If the cavity period 
is divided into NQA parts, the matrix numbering will run from 
-1 to NCA ♦ t. NCA will typically be not less than 4 nor 
more than 50. 

The magnetic field matrix, Figure 4(c), will similarly be 
tied to the magnet period. For 'single period1 focusing 
(alternating magnet polarities in each cavity) this is twice 
the cavity period; for 'double period' focusing, the magnet 
period is four times the cavity period. There is also the 
possibility of focusing systems being used whicn do not tie 
the magnet period to the cavity period at all, so we shall 
allow the magnet period to be an independent variable, but 
with the expectation that in most cases it will be specified 
as 2 or 4 times the cavity period. An example of a nonuni- 
form field that was not tied to the cavity period would be 
a field produced by a solenoid of several coils with inde- 
pendent current controls, so that a 'programmed' field could 
be generated. This would be treated as a periodic field 
whose period extended over all the saturation region cavities, 
so that the computation would never get beyond the first per- 
iod. If tne magnet period is divided into %A parts, the 
magnet matrix will run from -1 to NM^ + 1, and will be re- 
peated for every magnet period. Typical values of Njy^ will 
be from 4 to 24. For both rf and magnetic field matrices, 
there is a two mesh overlap of consecutive matrices, but 
there is no confusion as to which one is to be used for 
rings in the overlap range: if a ring is on or to the right 
of the tunnel midplane, it uses the matrix on the right; if 
it is to the left of the midplane, it uses the matrix on the 
left. 

If the magnetic field is uniform (solenoid focusing), it is 
not necessary to construct a magnetic matrix at all; the 
trajectory program will allow for a uniform field by analytic 
methods. 

The space charge matrix is different in character: the number 
of meshes in one beam wavelength must be one of the numbers 
for which a superfast F.F.T. exists; usually it will be 12 
or 24; and the corresponding grid is not stationary but is 
moving with the beam. (Fig. 4(d)) If the number of meshes 
is NSA» w6 can arrange that the mesh position of a ring is 
always within the range 0.5 to NSA + '5 (since we have al- 
ready agreed that a ring can be moved up or back 1 beam wave- 
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length to keep it in range), so that this matrix runs from 
0 to NSA +1. 

In the Super Basic debugging version of the program, the 
matrices can be dimensioned exactly as written (e.g., -1 
to 9 radially. 0 to 13 axially for a nominal 8x12 space 
charge matrix), but for the working Fortran version there 
is the added complication that zero or negative indices are 
inadmissible, so that all the indices have to be shifted up- 
ward by 1 or 2 as the case may be. This is a thorough nui- 
sance, and it is to be hoped that eventually a version of 
Fortran will come out that, ±ike PL/1 and Super Basic, allows 
negative or zero indices. In the meanwhile, it is a quirk to 
be recognized by anyone digging into the program details, but 
irrelevant to the ordinary user. 

Since the axial and radial mesh sizes for each matrix are 
determined independently, the meshes will not in general be 
square. Normally the choices made are such that they are 
elongated in the axial direction; the interpolation routine 
allows for this, but there is some advantage in making 
choices that do not result in extreme elongation — say, 
not more than 8:1. It does not appear likely that a case 
would ever arise in which the meshes were elongated radially. 

2.7 Coordinate Systems 

The basic coordinate system of the program is a stationary 
Cartesian system in MKS units: the Z axis lies along the 
tube axis, and the origin is at the tunnel midplane on the 
entrance side of cavity #1. The Z coordinate of a disc or 
ring at any time is its distance in meters from this plane, 
and the R coordinate of a ring is similarly in meters. R 
will be broken down into X and Y components in the trajectory 
computation, the XZ plane being the plane initially contain- 
ing a super-electron.  (It will move out of this plane unless 
the magnetic field is zero everywhere.) The XYZ axes remain 
fixed, but each super-electron has its own RZ plane which 
rotates about the Z axis so that it always passes through 
the current position of the super-electron, as shorn in 
Figure 5. 

Each of the three matrices constitutes an auxiliary coordi- 
nate system in whicli the units are the mesh sizes. For each 
ring, we shall know from its Z coordinate which cavity and 
which magnet period it is in, so we shall subtract the Z 
coordinate of the origin of the matrix for that cavity or 
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Figure 5: Mesh line numbering and Node numbering 
for INTRA. Three different meshes are 
used for the rf vector potential, the 
magnetic vector potential, and the sp'ice 
charge potential, but all are numbered in 
the same way. 

-16- 

ii i ii  iiiiiMa-ii«teM,ri^,"/''""''Hniiii WIMMW •mriivaf r       -■ -       . 



magnet, and divide by the axial mesh size to get the relative 
position in mesh units. 

Similarly the radial position in mesh units is the MKS r 
divided by the radial mesh size, usually different from the 
axial mesh. The relative position in mesh units then allows 
us to obtain the gradients representing that iield. 

The same procedure applies to the moving grid in which the 
space charge forces are evaluated. This grid moves with the 
'dc beam velocity' , but this term is slightly ambiguous when 
potential depression is taken into account. For reasons 
given in [Ij ^e choose the velocity at a radius b/V3 in the 
initial uniform beam as the nominal dc beam velocity. The 
moving grid is assigned this velocity, and retains it through- 
out the motion, so that in saturation the beam is mostly slid- 
ing back through it. The zero of time is the instant at which 
the origin of the moving grid passes the origin of the fixed 
MKS coordinate system. Since the zero of the moving grid is 
at its left-hand end, this implies that the beam segment to 
be tracked crossed the entrance plane (mid-tunnel on the left 
of cavity #1) before t=0, and is already distributed through 
cavity 1 and part of cavity 2 at t=0 (the 1 wavelength beam 
segment is typically about 1-3A cavities long). 

It is evident that this use of four separate coordinate sys- 
tems involves an enormous number of transformations, but they 
are extremely simple and fast operations on the computer. To 
compel all the fields to use a common set of mesh units would 
force undesirable compromises on all of them. By letting each 
grid be independent, and determined only by its own constraints 
and accuracy needs, while relating each to the underlying MKS 
coordinates, we retain great flexibility, and freedom to in- 
corporate additional matrices, such as one for electrostatic 
fields if we want to. To this writer at least, there is also 
a strong psychological advantage in using MKS units as the 
basic system, rather than normalized units such as Pierce's 
y. it gives a feeling of knowing where the. electrons'really 
art'. Certainly if programming errors or incorrect data en- 
tries result in unrealistic values, this becomes much more 
obvious if they are expressed in familiar units. 
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2.8 Input Dimensions 

Since tube drawings are still often dimensioned in inches, 
the user is allowed to make a choice of entering all linear 
dimensions in either inches or millimeters. The choice sets 
a conversion factor CLIN to eixher .0254 or .001 respective- 
ly. Once made, the choice must be adhered to for all inputs 
involving linear measures. 

The program then converts all lengths and distances to meters 
by multiplying by CLIN. Output coordinates are converted to 
millimeters, but conversion back to the input units could be 
substituted very easily if this is preferred. This use of 
the most familiar units for input is considered of great 
importance for avoiding wasted runs caused by incorrect data 
entries. 

An example of the very straightforward input for the prelim- 
inary time-sharing version of the program is shown in Figure 
6. The user needs to know the physical parameters of the tube 
he wishes to have calculated, and to have some idea of the 
accuracy level he wants, to allow a suitable choice of matrix 
dimensions, but he need know nothing more about the program. 

The FORTRAN input is, as always, somewhat more restricted in 
format, but is fully described in the User's Manual. 
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3.0 MAGNETIC FIELD 

The only restriction placed on the magnetic field is that it 
be axisymmetric, that is, that it have no dependence on 9. 

In PPM structures the field becomes purely radial at certain 
planes, and of course it is purely axial at the centers of 
the gaps; if we are to model this complete range of directions 
accurately, we cannot allow any paraxial approximations.  The 
method to be described passes from purely axial to purely 
radial with no loss of accuracy, and constitutes a valid solu- 
tion of Laplace's equation.  (Some published approaches to this 
problem use ad hoc expressions v/hich do not satisfy Laplace 14]). 

Primarily the magnetic field is represented in the computer 
program by the parameters of a set of ideal circular current 
loops, usually not more than 10 in number.  These loops are 
chosen so that the field they generate matches the actual field 
over the working region within a desired tolerance.  However, 
as explained in Section 2.5, the trajectory algorithm requires 
ä matrix whose elements are 'radius X magnetic vector potential1 

at the nodes of a suitable mesh in the r-z plane. Therefore, 
the loop parameters are used to generate this matrix, which then 
becomes the working representation of the field for the main 
ray-tracing part of the program. Whether the chosen loops rep- 
resent the desired field accurately or not, the field derived 
from the loops is always a true solution of Laplace's equation. 

The reasons for this choice of method, and its implementation, 
will now be discussed in more detail. 

3.1 The Vector Potential Matrix 

The ray-tracing routine derives information about the magnetic 
field by extracting the values at the 9 nearest nodes of a 
potential matrix for each ring at each time step.  These values 
are then interpolated by subroutine INTRA to give the gradients 
at the position of the ring.  Since the magnetic field is static, 
a scalar potential matrix could be used. But it is found that 
the magnetic field terms can be more effectively integrated into 
the ray-tracing routine if the vector-potential is used, with 
each value multiplied by R. The vector potential is a less 

[W]   H.K. Detweiler and J.E. Rowe, 'Electron Dynamics and 
Energy Conversion in O-Type Linear Beam Devices' in 
•Advances in Microwaves', Vol./., 1971, Academic Press, 
p. 35. The pair of equations (14) on p. 39 do not 
satisfy Laplace. 
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familiar concept but it takes a very simple form for axi- 
symmetric fields, and is easily calculated from formulas to 
be given. It should be remembered that the use of vector 
potential involves vector cross products, so that the radial 
differences in the matrix determine the axial field and vice 
versa. 

3.2 The Magnetic Vector Potential 

For a general axisymmetric field, the vector potential at 
(R,Z) is 

R 
A = ^ j    r Bz dr (3-1) 

o 

■1 

= w^ • (flux through circle of Radius R)       (3-1a) 

The direction of the vector A is circumferential.  The quan- 
tity to be stored in the matrix element corresponding to 
(r,z) is M = rA, and the field components are then given by 

Bz " F ör '  Br   r öz ^ 2) 

3.2.1 Uniform Field 

If the field is uniform 

B = B    independent of r 

Then 

B = 0    everywhere, 

M(RJZ) = R.A = R2B /2 

Thus the matrix for a uniform field region is easily recog- 
nizable: in each column, the values are proportional to 0, 1, 
A, 9, etc., and all columns are identical. 
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However, for the uniform field case, the ray-tracing program 
will be diverted to a simpler set of equations in which only 
the axial component Bz occurs, so that it is not necessary to 
construct the M matrix at all. This includes the case of zero 
field. 

3.2.2 General Axisymmetric Field 

The basic sources of an axisymmetric magnetic field are loops 
of current flowing in planes perpendicular to the axis. If 
the field is generated by a solenoid, there is an obvious cor- 
respondence between these mathematical current loops and the 
actual turns of the coil. But if the physical source is a 
permanent magnet, one can still visualize the billions of 
'Amperian' currents circulating in the aligned molecules, can- 
celling each other everywhere in the interior (for uniform 
magnetization), but adding up to a large surface current dens- 
ity at free surfaces that are not perpendicular to the direc- 
tion of magnetization (Figure 7). It should be noted that the 
kind of ring magnet often used in TWTs has two such surfaces, 
the inner and outer cylindrical surfaces, with Amperian cur- 
rents in opposite directions.  The correct representation of 
this magnet therefore requires two sets of current loops of 
opposite polarity located on the inner and outer diameters. 
The writer has seen quite large-scale attempts to compute 
fields based on the assumption that the field can be repre- 
sented by a single current sheet or set of loops.  This is 
only true if one confines attention to the region close to the 
axis: we shall find that in this case (which is common in TWTs 
of course) a single set of coils can be sufficient; but it 
should be remembered that this is not generally true. 

The most common textbook expression for the field is an ex- 
pansion in terms of the axial values and their differentials. 
Evidently the writers of textbooks have never actually carried 
out this calculation because, while algebraically sound, the 
method has numerical instabilities which make it useless in 
practical cases ^5j. It only works if one restricts oneself 
to paraxial cases,"a limitation which we have specifically re- 
jected, or if the axial values of the field are known with 
machine accuracy (order of 8 digits or more). The values can 
only be known with this kind of accuracy if one has derived 
them mathematically from the 'sources1 just described, which 
implies that one knows what the sources are. If one does know 

fS] J.R.M. Vaughan, 'Representation of Axisymmetric Magnetic 
Fields in Computer Programs', IEEE Transactions on Elec- 
tron Devices, ED-19 #2, February 1972, pp. 144-151. 
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this, then it is much more natural to derive the desired 
matrix M directly from the sources than via the axial dif- 
ferentials. If what one knows is really a set of data values 
of the field, then the procedure will be, first to find a set 
of sources — ideal current loops — which will represent the 
data, and then to derive M as before.  Several methods of find- 
ing appropriate loop parameters in practical cases have been 
described [6]. 

Since the field is axisymmetric, every current loop is cen- 
tered on the axis and perpendicular to it; each has three 
parameters: axial position Z-), radius R^ and current I«|j' the 
writer prefers to use the 'strength' M^ = ji0Ii/2n as an 
equivalent parameter. 

The axial positions of the loops are unrestricted: the grid 
covers one period of the magnet structure in the axial direc- 
tion, but loops lying outside that axial range can be con- 
tributing to the field within the range. For 'single period' 
focusing, for example, the period covers two consecutive cavi- 
ties; the field is represented by four coils, two in the gaps 
of these cavities, and one in the next cavity gap on eitbar 
side, so the two latter have z positions outside the range of 
the grid. 

The radius of a coil _is restricted: physically, it must be 
greater than the tunnel radius, otherwise an electron could 
encounter a field singularity. This condition Is in practice 
only violated if a mistake has been made in calculating (or 
entering) the coil data. But when we use a potential grid to 
represent the field, a somewhat stronger condition is required: 
the coil must lie not only outside the tunnel, but beyond the 
outermost grid line by about 0.5 mesh so that no mesh point 
can lie too close to the singularity. In practice, the correct 
coil position for a typical PPM struccure is at about 1.4 or 
1.5 times the tunnel radius, so this condition only comes into 
play if a very coarse mesh is used (Nj^ = 2 or 3, for example;. 
The program checks each coil radius, and if it is too small for 
the mesh size chosen, it will automatically increase the radius 
by a factor C5 to bring it to the minimum acceptable value. It 
simultaneously increases the strength by a factor 0^(1+.2505(05-1)), 
which restores the field strength on the axis to the correct 
value. A diagnostic is printed specifving the new values assigned. 

[öj J.R.M. Vaughan, 'Methods of Finding the Parameters of 
Ideal Ourrent Loops for Computer Simulation of Magnetic 
Fields', tEEE  Transactions on Electron Devices, ED-21 
#5, May 1974, pp. 310-312. 
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For a nonuniform solenoid focused case, the coil radii will 
all be much larger, and the problem would not arise even at 
NMR = 2' 

In the 'inch-gauss' or 'millimeter-gauss' units to be used 
for data input Csee Section 3.3), the 'strength' of a single 
loop of radius R^ inches or mm generating a field of G^ gauss 
at its center is R^G^/TT. 

The flux through the circle R,Z due to the source R., Z„, I„ 
is m 111 [7] 

IH K(c) - | E(c) 

where (R+R^2 + .(Z-Z^)21 

and K and E are the complete elliptic integrals, modulus c. 
(The alternative expansion in Legendre polynomials has very 
slow convergence over much of the range we shall need.) 

Combining (3-3) with (3-1a) to obtain A, and multiplying by 
R we have 

M(R,Z) «SgJ- (RR^* M K(c) - § E(c) 

where the reason for using HI^/ZTT as a coil parameter is 
now evident. 

(3-3) 

(3-4) 

(3-5) 

For values of c s 0.2, (3-5) can be evaluated by using the 
elliptic integral subroutine ELIVA, which is incorporated 
in the program. It is significantly faster than the IBM 
routine. For c < 0.2, the terms in the square bracket be- 
come nearly equal, and we improve the accuracy by replacing 
them with the power series expansion 

no5 3 2 
+ ^ c + 

4 A 245 „e
1 

c + W C i (3-6) 

. 

[7] J. Jeans, 'The Mathematical Theory of Electricity and 
Magnetism', Cambridge Univ. Press, 5th Ed. 1933, p. 443. 

-25- 

.^tair ■' a^iiT^liliiifiirtiliiliJliil-iiniiriiiri'iiiVM ■rt-iirl^iJilrTi-«-[iii^f»irh^it'l-fhYiriwrtiii-;ii^nl 
'j'yiMJn'i' MMiWaOTV 
iwaiiUm^^irBwriiiir-Tiniiifirtniirfa-  .  ^ ^ .^ — — fc-M Jt^-I  11 n ■       I     II    - - 



-4 The last term is <10  for c < .2, so further terms are un- 
necessary. 

3.3 Program Input 

In line with the policy of inputting data in familiar or con- 
venient units, the coil data will be called for in inch-gauss 
or millimeter-gauss units.  These are then converted to MKS 
units using CLIN = .0254 or .001, and CMAG <= .0001 (for gauss 
to Tesla). Note that (3-4) cannot be interpreted directly in 
mesh units, because the mesh units normally differ for R and 
Z; it could, of course, be modified to allow for this, but it 
appears simpler to keep the R's and Z's in meters and evaluate 
(3-4) and (3-5) as written. 

Thus, if the magnet period is Ljyj inches, and is divided into 
Njyr. meshes axially, the.Z values are 

1^ * CLIN * l/lim for I = 1 to Hj^ (3-7) 

or for I = 1 to Nj^/2 (3-7a) 

if the magnet period has Z symmetry. 

Similarly if the tunnel radius is Aj inches, and is divided 
into NMR meshes, the R values are 

Aj • CLIN * J/Nj^   for J - 1 to Nj^ + 1. (3-8) 

Subroutine MAGVA evaluates (3-5), using (3-4) and (3-6) 
where appropriate, for these ranges of I and J, for each 
coil. The M values for several coils are additive: although 
they are strictly vectors, they all have the same direction 
(normal to the R-Z plane) so they can be added algebraically. 
The H0I-I/2TT terms in (3-5) are the entered strengths M, mul- 
tiplied by CMAG x CLIN. 

The number of coils necessary to represent one period of the 
field has never so far exceeded 10; 4 coils are sufficient 
for ordinary 'single period' focusing, and 8 for double period. 
In either case, only half the matrix need be calculated, the 
other half being the same with reversed signs. For cases 
such as the multi-coil nonuniform solenoid, the whole iüatrix 
must bf. calculated. 

^*^-^- ---Tiiri tir iiTfiiilir"illiah 
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The remaining elements of the full matrix can then be filled 
in without further calculation: 

M (R, 0) = M (R, N^) for R = 1 to N^ + 1 

M(R, -1) = M (R, N^ -1) for R = 1 to Nj^ + 1 

M(R, Nj^+1) = K (R, 1) for R = 1 to N^ + 1      (3-9) 

M (0, Z) = 0 for Z = -1 to Nj^ + 1 

M (-1, Z) = M (1, Z) for Z = -1 to N^ + 1 

The program will allow three options for the magnetic poten- 
tial matrix: 

i)  Compute the matrix and discard.it at the end of the 
run. 

ii)  Compute the matrix and save it on a file MAGMAT for 
future use. 

iii)  Read in the matrix from MAGMAT. 

The nominal matrix dimensions IL~ and N^. are stored with the 
matrix, and in case (iii) are compared wxth the specified 
values as a safeguard against reading in an incorrect matrix. 

The complete process of generating the magnetic vector poten- 
tial matrix from the original specification of the field is 
summarized in the flow chart in Figure 6. 

There remains the question of location of the magnet period 
in relation to the cavities: the matrix is only needed for the 
last k cavities in which the ring model of the beam is to be 
used (k ^ 10). The convention adopted is that the Nj^'th 
grid line of the last magnet period coincides with the mid- 
plane in the tunnel following the last cavity.  Then as many 
repetitions of the magnet period are added prior to this as 
are necessary to extend back over at least k+1 cavities (since 
if we change from the disc to the ring model at cavity k, some 

.... ^     elements of the beam segment will still be back in cavity k-1). 
For example, if the tube has 50 cavities, of which the last 10 
are to be computed with the ring model, and if 'double period' 
focusing is used (magnet period = 4 cavity periods), then mag- 
net period 1 will cover cavities 39-42, period 2 cavities 43-46, 
and period 3 cavities 47-50. If 12 cavities were to be used, 
then 4 magnet periods would be needed, starting at cavity 35. 
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Figure 8. Flow chart for Magnetic Vector Potential computation. 

-28- 



3.4 Numerical Example 

Since it is rather easy to become confused over the units, 
and is useful to have a test case for debugging, a fully 
worked-out numerical example follows, based on the standard 
test case of Section 2.1. The pertinent data are: 

Tunnel diameter .200" 

Ferrule O.D. .300" 

Magnet I.D., O.D. 1.5", 2.0" 
Double cavity length 

(i.e., magnet period) .600" 

Magnet length .200" 

Ferrule gap .1" 
Web thickness ■ .1" 

Magnet material: Samarium Cobalt. 

This information is sufficient for calculation of the field 
by the method of Sterzer and Siekancwicz [8] which is em- 
bodied in Litton proprietary program /PPMMAG18/. Fi/pare 9 
shows the case run on this program. Half way down the page 
we see the gap center field midway between the ferrules, 
5316.9 gauss, and the field on the axis in the same Z plane, 
3046.7 gauss. These two values are sufficient for a first 
approximation to the parameters of a coil to produce this 
field, using the method of [5j and [6~ . The program then 
assigns identical coils of opposite polarity in adjacent gaps, 
and a fourth coil beyond the third, and calculates the pertur- 
bations they cause in the first gap. The coil radii and 
strengths are then adjusted to restore the fields at r=0 and 
r=a to the desired values, and the two outer coils are slight- 
ly adjusted to force the field to zero at the mid-tunnel posi- 
tions; the final parameter's for all four coils are printed out 
at the bottom of the page in the desired inch-gauss units. 
The program gives other information which is useful for magnet 
design but not relevant to the present; application. 

[8] F. Sterzer and W.W. Siekanowic:r, 'The Design of Periodic 
Permanent Magnets for Focusing of Electron Beams1, RCA 
Review, Vol. 18, pp. 39-59, Mar. 1957. 
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PERIODIC  FEFMAHEnT  MriGMET  BES1GH PRDGRftM 01^08     11149 

INPUT FPtlH   (FIUEMAHF  HP TEL'»   ? TEL 
HUB  I.lJ.    <Iil>.     n.l".    CHS)   <lhCHEJ>   ?   .2i.3 
MflGHET   I.D.    <:D3).   D.K.    ''D4>   ?   1.5f2 
lOJBLE  "•'.F.   CELL   LEtd'.TH   <L> i   flHi^MET  LENGTH   <T>   ?   .6». 2 
GiiP   <?.   •   "UrirEP  OF   GWS  PER  MFiGHET   1   .1.2-?   1 <«:' 
OUTER   SH.H   TrilCKNFtS   =   .100   INCH 
IMHER  SHIM  THICKHEir   <T2>   ?   .1 
IS  MftGMET   MRTERIftL   IMIiDK   1    <t>«   ftLNICD  8ft   <2>.   8B   ^S) i   8C   <4) f 
JM-CD   «>i   PT-CO-t'.   flLHICO 9fl   <7)>   9C   <S>.   HI-^O   (9>i   OTHER   (10>?  5 

HrtGNET  DI'FPRTIHG  POIHTi   H=-?..G'58  K-DEi   B=   4.913  KG,   B^H=  -l.S-*? 

PEGIÜH 
1. TUNNEL 
2. FEPPULE-FEPPULE 
3. FERRULE D.D. 
4. FERRULE TÜ .-ITEP 
6. STEP TÜ MAGNET 
5. EXTEPURL 

TDTDL 

EPHERNCE <IN.) FLÜX <GRUSS-Cr'r2) 
.261 894 
.393 1347 
. 309 1061 

S.448 23971 
.000 0 

3..£90 11 sea 
12.700 43555 

GRP CENTER FIELD = 5316.9 GRUSS 
RXIRL PERKS AND MIHI MR: 

Z       GRUSS 
.1500   3"46.7 
.3000       .0 

R.M.S. FIELT  1873.2 GRUSS 

INTEGRRTED FIELD <Y»N) ? N 

HRRMDNIC RMPLITUDES: 
NO. RHPLITUDE PCT. UF PERK 

1 £616.8 85.9 
3 -411.9 -13.5 
5 20.1 .7 
7 2.1 .1 

FLUX DENriTY IN SHIM RT D3 £1236 GRUSS 
fiT D2  10863 

IN FERRULE  13035 

WEIGHT PER PF CRVITY 
WEIGHT DF DHE MRGMET 

.1627  LBS 

.0966  LBS   <     43.837  GRRMS"» 

CRLCULRTE  E<X"VRLENT   COILS   <Y.N)    ?   Y 

GRP/RXIS  FIELD  RRTin     1.745-   COIL   RRD  RRTID     1.393 
FIRST  VMLME:   COIL   RRD        .139-    STPENGTH     135.1 
SECDtU'  E'.TIMHTE  OF   PRDIUJ   .14801348 

PDS  OF  COIL   FIELDS     £010.5  GRUSS 
RXIRL   DRTR  MtlW  ON  FILE   'V6JPL0Tx 

COIL  DRTR   It«  INCH-GRUSS   <n   OP MESH   <M>   UNITS  ?   I 

PRDiti?  RXIRL rn:.  STRENGTH 
COIL  NO. 1 .1480 -.1500 -15«.2 
rmi   NH * .!-»80 ^500 169.8 
COIL   NO. 3 .1480 .4500 -169.8 
COIL  ND. 4 .1480 .7500 158.2 

RMME  VRLUE<;  TO FF  DIVIDED BY  'UNITIN'  FDR UIE   IM SLRC FROGRRft 

INPUT   1   rilP  NEW VRLUt:.   ?  FOP  n  rtFW  PUN.   OR   3  TO  STOP 
IF   NFWVRlUf:.    INPUT   THFM.   THEN   TYPE   'GO'   »   3 

Fife. 9 

-30- 



This set of coils reproduces the desired field values within 
0.1% at r=0 and .3%  at r=a, at mid-gap. The rms value of the 
coil fields over a complete period is about 7%  high. If nec- 
essary this discrepancy could be reduced by using more coils 
to represent th^ field, but this does * ^o seem necessary. 
Other methods of obtaining coil pArsr ters without using 
/PPMMAG18/ are detailed in[5J ar^  6J . 

The input data relevant to the magnetic vector potential ma- 
trix is, for our standard test case: 

Then 

Tunnel diameter    .2" Aj = .1" 

Magnet period     .6" LM = .6" 

Radial meshes in tunnel radius   N^r, = 4 

Axial meshes in magnet period    NMA =16 

Coil data R1, Z1 and Ml exactly as in Figure 9- 

tunnel radius = A - AT x CLIN = 2,f>4 x ID"-
5 meter 

radial mesh HL« = .635 x 10 "^ meter 'AR 
-3 axial mesh H^ = L» x CLIN/N^ = .9525 x 10"^ meter 

' 

Coil parameters converted to MKS units: 

Radius 

#1 3.7592x10 

#2 3.7592x10 

#3 3.7592x10 

#4 3.7592.10 

-3 
-3 

-3 

Axial Pos. 

-3.81x10 

3.81x10 

11.43x10 

19.05x10 

-3 

-3 
-3 
-3 

Strength 

-4.0181x10 

4.3129x10 

-4.3129x10 

4.0183x10 

r4 

-4 

We will hand-calculate the matrix entry for the point one 
mesh unit off the axis (R = .635 x.10-3) at the center of 
the first gap (Z = Z-| = 3.81 x 10~3): the dominant contribu- 
tion is from coil #2, for which 

c = 4x.635x10"3 x 3.7592x10"3/ |(3.7592x10"3 

I   .fi^RYin~3\2   .   n2>    V2 _    r^. +  .635x10~3)2 + 02i ■  .703 
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Figure 10: Geometry for Magnetic Vector Potential at 
(R,Z) Due to Current I in Loop Radius R-j 
Centered at (O.Z^) 
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; 

To obtain K and E from tables, which are usually given in 
terms of the modulus expressed as an angle, we take arcsin 
.703 = 44.7° as our entry. In the program, subroutine ELIVA 
uses the parameter m = c2 as input. By either method, we oc- 
tain K(c) = 1.8493, E(c) = 1.3535, and 

^ = 4.3129x10"A (.635x10"3 x 3.7592x10"3) 

.703 - .703 1.84S3 - .703 x 1.3535 = 7.351x10 -8 

For coil #3, Z = 3.81x10~5, Z1 = 11.43x10"
3, giving c = .3513, 

K = 1.6229, E = 1.5212, M3 = -.591x10-8.  Similarly the con- 
tribution from coil #1 is M-i = -.550x10~8. For coil #4, c = 
.1948. Since this is less than .2, we use (3-9) to evaluate 
the square bracket in (3-5): 

M4 = 4.0183x1O"
4 (.635x10"3 x 3.7592x10~3) 

x^m^ [1 + (5/4)C.19^)
2 +^ C.^)4] 

Thus the resultant M is 

(7.361 - .591 - .550 + .093) x 10~8 = 6.31x10"8 

= .093x10 -8 

Subroutine MAGVA carries out this computation for each of the 
mesh points defined by (3-7) ^nd (3-8).  The run for the stan- 
dard case, using the coarse 4 x 16 matrix size to fit on the 
time-sharing system, is shown in Figure 11. The complete vector 
potential matrix, multiplied by 101° and rounded to integer 
values for clarity, is given in reverse row order. 

—10 The peak value 623x10"  on the row next to the axis (row of 
zeroes) corresponds to the 6.31x10-8 we have just hand-calcu- 
lated. The discrepancy is due to the fact that hand calcula- 
tion with linear irterpolaticn of tables is barely adequate 
for this problem; it does serve as a useful check that no grcss 
errors have been ma^e. The machine calculated values are cor- 
rect to 4 or more digits. 

The axial and radial fields, in gauss, are tabulated below the 
matrix. 
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A further check on the correctness of a matrix of this kind 
(which should be applied as a check if any different method 
of computing the matrix is adopted), is obtained by examining 
any entry on the row adjacent to the axis. The field at the 
corresponding point on the axis is then 

^      2x10  x (matrix value adjacent to axis)      /, „,.% 
p^uso ~  , 72       v3-iO; 
"^ (radial mesh size in mm) 

Thus for the point calculated, using the machine value for 
the off-axis potential, 

B     = 2x1010 x 623x10-1Q = 
gauss        .635^ 

This is in agreement with the value shown for this point in 
the axial field tabulation in Figure 8, but is 1.4% higher 
than the expected 3046.7 gauss. This discrepancy is not due 
to inaccuracy of computation, but is simply a result of the 
coarse 4 x 16 mesh used in this exiunple — it is a discreti- 
zation error. If the same data is run with 20 meshes radially 
instead of 4, the computed peak axial field is 3049 gauss, an 
error of less than 0.1%. This  point should be remembered if 
(3-10) is used to check any alternative method of computing 
MAGMAT. 

Since actual fields in tubes are seldom known to better than 
3%  accuracy, this also indicates that the discretization error 
is not serious, in practical terms, even for the coarse 4 rad- 
ial mesh case. 
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4.0 THE RF VECTOR POTENTIAL MATRIX 

This matrix provides the working description of the rf fields 
in the tunnel and gap region. Its computation thus depends on 
the boundary conditions that are assumed. 

4.1 Basic Field Model 

Following the lead of Kosmahl and Branch j_9j we adopt a field 
model in which the gap field increases in intensity nerr the 
noses, but not to the extreme values associated with a sharp 
edge. Kosmahl and Branch take the axial gap field at the tun- 
nel radius to vary as coshCmz) where z is measured from the 
gap center, and m is an arbitrary parameter (^0) which in 
effect describes the 'sharpness' of the noses. K. and 3. give 
experimental data confirming that the model is a good one for 
a typical nose radius, giving a field concentration of about 
2.5:1 at the nose compared to the gap' center. This corresponds 
to ml =  arc cosh 2.5 = 1.57, where l  is the half gap length. 
It should be noted that the model.does have a logical incon- 
sistency, in that the finite fic-ld concentration corresponds 
to a rounded nose, but a rounded nose does not correspond ex- 
actly to a boundary condition of E2 = cosh(mz) up to I  and zero 
beyond, since the tunnel wall curves up before it reaches z = i. 
Thus the model will break down if one tries to examine the 
fields near the nose on a scale comparable with the implied 
nose radius, or to specify an excessively large field concen- 
tration factor — about 4 is the limit that should be used, 
and 1.5 to 3 is a more reasonable range.  This is in general 
agreement with the conclusions of K. and B.  The case m=0, 
concentration factor 1, corresponds to the uniform gap field 
first analyzed by Wang [10].  The program will call for the 
field concentration factor"as input, and will calculate m from 
it (knowing l),  because it is easier for the user to think in 
terms of concentration factor. 

[9J 

[10] 

H.G. Kosmahl and G.M. Branch, 'Generalized Representation 
of Electric Fields in Interaction Gaps of Klystrons and 
Traveling Wave Tubes', IEEE Transactions on Electron 
Devices, ED-20 #7, July 1975, pp. 621-629. 

C.C. Wang, 'Electromagnetic Field Inside a Cylinder with 
a Gap', Journal of Applied Physics, 16, June 1945, 
pp. 351-366. 
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The mid-gap field strength (E0) and the total, rf voltage 
across the gap (Vrf) are related by 

Eo = 
_mvrf 

2 sinh (m-t) (4-1) 

If m=0, this reduces to VTf/2i,  as expected. 
to compute the matrix for Vrf=1 volt peak. 

We are going 

4.2 Vector Potential Expressions 

It will "be remembered from the introduction that the quantity 
Vec to be.stored in matrix is 'radius x vector potential', 
just as in the magnetic field case. Multiplying the four ex- 
pressions given by Kosmahl and Branch (for the axial and radial 
fields in the gap and in the tunnel) by r, and integrating with 
respect to r and z, we obtain the following two expressions for 
vec* 

For C  -|z|^ I: 

'■    ec        o cosh(m2) 
rJ.(rVk2rm2) 

'/k2+m2 J_  (aVk2+m2 
) 

- a ^   P^rÖCäy   p -ma + p +ma 

00 

n=1 Vl^-Ä' 

-Pn^/a p z 
e    n        cosh ~~ a 

1 

(4-2) 

and for    z  * l: 

ec E, 
Y"-   rJ^^r)    I sinh(pn-t/a+mt)       sinh(pnl,/a-mt) 

pn+ma pn-ma }e 
-Pn|z|/a 

(4-3) 
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wherein   E0 = field (v/m) at z=0, r=a, defiiied by (4-1) 

a = tunnel radius, meters 

I  = half gap lengtht meters 

oo = angular frequency 

k = u)/c 

\    =  nth root, of J n o 

Pn - ^n
2 - (ka)2 

\ - Va 

The geometry is illustrated in Figure.12. 

It may he verified by differentiating (4-2) and (4-3) with 
respect to r and z, using the known relation [11] 

^(x.J.jdtx)) - kxJ0(kx), 

that the results agree with K and B's expressions for the 
field components, including the factor 1/r which we need. 
Thus with V defined by (4-2) and (4-3), we have for the 
fields    ec 

Ez = ^ !!ec •     ' (4-4) 

Er =4 ^ ^5) 

The negative sign in (4-5) will be taken care of later. 

The units of Vec are meter-volts, and Ez and Er will then 
be in volts per meter. 

The matrix Vec is symmetrical about z=0, so the left-hand 
half (z < 0) can be filled in once the z ^ 0 values have 
been calculated (assuming that we were not so stupid as to 
adopt an unsymmetrical grid). 

[11J N.W- McLachlan 'Bessel Functions for Engineers', Oxford 
Univ. Press, p. 158, equations 22 and 24. 
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4.3 Ccroputation of the rf Vector Potential Matrix 

We shall compute one matrix Vec for unit rf voltage across 
the gap; this describes the  shape of the field for any cavity. 
When a super electron is in cavity n with peak rf voltage Vn 
at phase 0^ we 'conceptually lay Vec over that cavity, obtain 
Ej, and Ez at the position of the super electron by (4-A) and 
(4-5), and multiply by Yncosiwt+(i>n).    Thus one matrix serves 
for all cavities. 

The immediate problem is thus to devise an efficient scheme 
for evaluating (4-2) or (4-3) at each node of a grid of the 
desired fineness, as shown in Figure 12.. The constant factor 
E0, given by (4-1) with Vr;f=1, can be omitted for the present. 

We find that in some regions, 50 or more terms are needed to 
get 5 figure accuracy, while in other regions less than 10 are 
adequate.  Thus the computation scheme does warrant some care- 
ful thought, because 50 terms of (4-2) or (4-3) is obviously 
not a trivial calculation. But we can afford to be fairly 
generous in the number of terms, because we only calculate one 
matrix one time; compared with direct calculation of the fields 
at each superelectron position at each time step, the vector 
potential approach will start to return dividends in time saved 
after only about 2 time steps of the main calculation. 

The complexity of (4-2) and (4-3) also makes it unlikely that 
we could establish analytically the number of terms required 
for a given accuracy in a given region of r and z. So we pro- 
ceed heuristically by summing the series directly to a consid- 
erable number of terms at some representative points both in 
the gap and in the tunnel, printing out the partial sum after 
each term. This is dene for a 'typical' gap to diameter ratio, 
and a 'typical' diameter to wavelength ratio. Inspection of 
the output establishes for-each point the number of terms needed 
to get within 1 part in 10-5 of the final potential. The results 
of such a computation are shown in Figure 1Z. We see that in 
the middle 2/3 of the gap, and in the tunnel beyond about 4/3 
of the half gap length, 8 terms or less are sufficient. As we 
approach the plane z=l  (the gap edge) from either side, the 
number of terms rises first to about 16, then to about 30, and 
at z=£ and r=a even 60 are inadequate. Taking a generous mar- 
gin to allow for different frequencies and l/a  ratios, we ar- 
range to sum 12 terms for z/l <  .7 or z/l  > 1.3, and 20 terms 
for .7 ^ z/l *  .93 or 1.07 s z/l  s 1.3. The region .93 < z/l 
< 1.07 is clearly one of slow convergence which will require 
different treatment. 
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The summations to 12 or 20 terms are carried out by direct 
evaluation and summation of the t^rms as written. The oub- 
routine BESVA is used for evaluation of the J^(knr) terms: 
it is more than twice as fast as the Library routine BESJ> 
and changes over automatically to the trigonometrical ex- 
pansions when k^r > 12. The Ji(kna) terms do not have to 
be calculated: by definition, kna^Xj^ which is a root of J0, 
and the corresponding J^ values are tabulated; the table up 
to n=20 is incorporated in the program, with the correspond- 
ing table for Xn. 

4.4 Special Methods near the Gap Edge 

Figure 13f^shows the convergence for two pcnts near the plane 
z=l:  the upper curve at z=.9ii  r=.9a shows that 20 terms were 
adequate there, but the lower curve at z=.95^ shows that about 
30 terms should be used here. As a function of r, we find 
that the convergence is more rapid for middle values of r, 
but is slowest for r/a <  .1 or ^ .9. The region near the 
axis is less important, because only a small part of the beam 
travels there, so we concentrate on the high values of r/a, 
but less than unity. Figure 1J>[P) again  for z=.9l  and .951, 
but at r=a, shows that thö oscillatory nature of the conver- 
gence has now disappeared. But it is still true that 20 
terms are adequate at z=.9^,  while 30 or so are needed at 

Beyond n=10, we can start to make simplifying approximations 
before continuing the summation, because ^ and pn are now 
both greater than 60; for example, cosh(pnz/a) in (4-2) can 
be replaced by .5 exp(pnz/a), and this can then be combined 
with the exp(-pn-t./a) term to give exp(-pn(-t-z)/a). With 
pn > 60, this is going to give rapid convergence except when 
z w t — now we see why the z=^  region is the most difficult 
part. 

4.5 Approximations Valid for Large n 

Specifically, the approximations we adopt for n > 20 are 

Xn = TT(n-.25) (4-6) 

kn » TT(n-.25)/a (4-7) 
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n+1 

vv) • ji( v - ¥ 
cosh(pnz/a) = .5 exp(pnz/a) 

(4-8) 

(4-9) 

^I^V^ " TT y/(n-.25)r  sin |   a     5j (4-10) 

except when k r < 12 

sinhCp^/a+m-t,) = .5 exp(pn-t./a+m^) (4-11) 

We note that Pn = ^n within .04%, but since the square root 
in the exact definition of Pj, is a very fast operation, we 
need not take this approximation. 

The approximations (4-6) anä (4-8) are better than .01% even 
at n=12, so we are quite safe in adopting them for n > 20. 
The limitation knr <: 12 will only affect the innermost rows, 
if any: at n=21, kn=65.2/a, so the limitation is equivalent 
to r/a <r .185, which applies to no row of the matrix if 
^CR * 5» an(^ only one row ^or NCR up to 10, which covers most 
cases; as stated ir. the introduction, we do not expect NQR ever 
to exceed 20. For n > 21, the limitation becomes progressively 
less significant. Applying these approximations and simplify- 
ing, we find that the general terms in the summations for both 
(4-2) and (4-3) can be expressed as . 

Var Pnr 

Pr 
sin |-~- - ■£! exp(-pn|^-?, |/a) F(a,m,t,n) (4-12) 

where F(a,m,t,n) ■ - 
Ml 

pn-ma 

-ml e 
P + ^n ma 

for \z\ -z I (4-13) 

and   F(a,m,'t,n) 
ml 

r+ma n pn-ma 
for \z\* I (4-14) 

:or n > 20. 
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Using these approximaticns, we continue the summation out to 
n=40, for .93 <; zA <  .99 or 1.01 < z/l  <1.07. We shall make 
a further adjustment of n after the next section. 

4.6 The Case z=l 

At z=l,  we find that 40, or even 60 terms are not adequate, 
and we look for a more sophisticated approach. This case is 
not an improbable one, because of the tendency to choose 
'round numbers' for setting up cases. For example, if the 
cavity period is 0.3" and the gap C.1", any choice of the num- 
ber of axial meshes NQA that is a multiple of 6 will place a 
grid line exactly on 1:ne plane z=l.    Remember that we are not 
required to compute for arbitrary values of z, but only for 
those corresponding to a line of the chosen grid. Further, 
a distinction between z/l  = .99 and z/l =  1.00 is not very 
meaningful in terms of typical TWT dimensions and achievable 
tolerances, so we shall take z=l  if the nominal z is between 
.99-^ and 1.01t. 

On this plane we can use either (4-2) or (4-3), and we should, 
of course, get the same result. Figure 13(c) sho;s the conver- 
gence at z=l,   r=.9a, calculated both ways.  Clearly both curves 
are converging to a value of about 1.746x10 , but have not con- 
verged within an acceptable tolerance even at 50 terms; by 
chance, this happens to be a particular number of terms at 
which they both cross over the asymptotic value, as are 41 
or 31 terms.  The periodicity of the curves, and hence the 
specific favorable values of n, depends on the ratio r/a.  The 
oscillatory component comes from the sin term in (4-12), and 
clearly we can obtain satisfactory accuracy without an exces- 
sive number of terms if we stop at one of the crossovers. 

4.6.1 Diophantine Approximation for r<9, z-l 

Since the curve is effectively the integral of (4-12), it is 
the cosine function that should be zero; thus we should choose 
n to make j an integer (or almost so) in 

p r 

Using the approximation pn ■  Vi a  fT(n-.25), we have 

n =  .25+(a/r)(o+.75) (4-15) 

or        j = (n-.25)(r/a)-.75 (4-16) 
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The summation will then be terminated close to one of the 
asymptote crossovers rather than at one of the peaks. Since 
n must be an integer, and j should be as close to an integer 
as possible, this leads us more or less into the realm of 
Diophantine [12J equations (algebraic equations restricted 
to integer solutions), which are notorious for not having 
any general methods of solution. Knowing this to be the 
case, we shall evaluate (4-12) out to some fixed n, say 40, 
chosen to get down to the .1% accuracy region, and then on 
to the next integer n satisfying (4-15); we shall obtain this 
by solving (4-16; to find a j that is acceptably close to 
being an integer — in general there will not be a strict 
Diophantine solution except for some particular values of r/a. 

Subroutine EANTUS identifies the next crossover for any 
given starting value of n and r/a, except r/a=1; if it hap- 
pens that n is itself a.crossover point,  FANTUS fails to 
recognize this and goes out to the next crossover, but other- 
wise it finds the first available one.  For NCR * 20, r/a 
will never be less than .05 or greater than .95, and we find 
that the maximum number of extra terms called for by FANTUS 
is 20; for the more likely value of 8 for NQ^, a maximum of 9 
extra terms is needed, and in the middle range of r/a values 
it is down to 3 or less.  For small r/a, and z/-f. close to 1, 
the convergence pattern is of the 'beating wave" form shown 
in Figure 14.  Starting from an arbitrary point such as A, 
FANTUS correctly identifies the next envelope crossover at 
3, and is not deceived by the intermediate point-to-point 
crossovers. 

Since the oscillatory term in (4-12) is independent of z/*-, 
this theory is equally valid for optimizing the number of 
terms near z~l  as well as on it, so we apply it over the whole 
range covered by Section 4.5, even though it may not be strict- 
ly necessary there. Thus for .93 ^ z/* < .99 and 1.01 < z/t 
^ 1.07 for all r/a, and for .99 * aA ^ 1.01 for r/a < .95, we 
extend the summation of (4-12) beyond 40 terras out to an opti- 
mum number between 40 and 60 determined by FANTUS (always 60 
for r=a).  The values determined by FANTUS for NrR = 20 are 
tabulated in Figure 17 as a function of the radial mesh number 
I. 

1/12] Diophantus, 'Arithmetica', Univ. of Alexandria, Egypt, 
ca. 320, trans. S. Stevin, pub. Elsevier, Leyden, 1634. 
(Newton collection, Bender Lxbrary, Stanford University) 
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Figure 14:     'Beating Wave1   Convergence for 
Small r/a 
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4.6.2 2eta Fimction Approximation foi* r=a, z=l 

At r=a, the Diophantine equation (4-16) has no solution, be- 
cause the oscillatory term in the expansion has disappeared. 
Figure 15 shows that the convergence, calculated from either 
side, is now monotonic, but so slow that even 60 terms are 
quite inadequate. But at n=60, a further simplification can 
be made: ma is now negligible compared to pn and the residue 
of the summation reduces to 

%0 -a ce>s h{ml)  JT -^2 = - ~2  cosh(m-0 ^ 
61 pn     - 61 (n-.25r 

(4-17) 

This is a Riemann Zeta function in the generalized form 
introduced by Hurwitz.  Tables of the generalized functions 
are not readily available, but the sum can be reduced to 
known forms as follows: 

L    (n-^5)2 =     L   (ZT 
61 

(H^572 

60 
V   1 
L    (n-.25)2 

2_ /n_ ^5^2 " 2.5252825 by direct summation 

= 16 y _u - 2.5252825 

- 8 < 

- 8 

£_1      I     A^ 
~   (2n+1)

2   ~     (2n+1)' 
>- 2.5252825 

= 8 < 
n 

1  n^   Q  (2n+1) 

Y  (2n)2   ^  (aa+1)2 
- 2.5252825 

^ - 2.5252825 
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Now the first summation is Riemann 
and the second is Catalan's constant 
Hence 

's rfV) = 1.64A93407 [13]  , 
at X = .91596559 [13, p. 8071 

I -1- 
6i'  (n-25) 

7 = .0165972 (4-18) 

Hence the residue of the summation is 

a2 
R^n = - .0165972 % cosh m-t v60 -7 

TT 

= - 1.682 E-3 a2 cosh ml (4-19) 

Note that the numerical coefficient. 1.682E-3 is specific to 
stopping the term-by-term summation at 60 terms. We adopt 
this formulation if z is within 1% of equality with 1  and 
r=a. Outside this range, the terms equivalent to e~Pn  z 

ensure convergence within 60 terms for any reasonable l/a. 
1/z/p a 

The result of summing from the gap side to 60 terms and then 
adding the (negative) residue R50 is shown by the x in Figure 
15. Clearly it has, in this instance at least, hit the aver- 
age of the two curvet: very closely, while only requiring one 
series to be summed. 

Figure 16 shows the variation of Vec at r=a going through the 
z=i  region, indicating that the various methods used do join 
up smoothly. 

To summarize, the computation strategy is: 

For z/l  < .7, sum (4-2) to 12 terms. 
For .7 « z/l  < .93, sum (4-2) to 20 terms. 
For .93 * z/l < ,99,  for all r/a, and for .99 ä z/l *  1.01 for 

r/a ^ .95, sum (4-2) to 20 terms, then (4-12) to (40 to 60) 
terms as determined by FANTUS. 

For .99 * z/l *  1.01 and r=a, sum (4-2) to 20 terms, then (4-12) 
to 60 terms, then add (4-19). 

ll3J M. Abramowitz and I. Stegun, 'Handbook of Mathematical 
Functions', N.B.S. Washington, B.C. 1964 or Dover Publi- 
cations, New York, 1965, page 811. 

*can be obtained more briefly by Gumowski's method, J.A.P. August 
1953, p.1068 (with correction noted on p. 1330). This gives 
.0165971. We did not find this reference until after this report 
was first issued. 
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For 1.01 < 7.11 <  1.07, sum (4-3) to 20 terms, then (4-12) to 
(40 to 60) terms. 

For 1.07 < 7.11 *  1.3, sum (4-3) to 20 terms. 

For 7./1  > 1.3, sum (4-3) to 12 terms. 

4.7 Subroutine LALAVA 

We have now established procedures for evaluating (4-2) and 
(4-3) with the necessary accuracy in all regions of interest. 
Subroutine LALAVA carries out these evaluations at all nodes 
of the chosen grid for z ^ 0, and copies them to the corres- 
ponding z < 0 nodes. The values on the axis are all zero, 
without computation, and the values at R = -1 are equal to 
those at R = 1. The N^R+I row is equal to the NQR-I row for 
|z | > £, thus forcing the tangential component E2 to be zero 
at the wall. In the gap region, the N^+l row is extrapolated 
from the NQR and N^^-l rows to maintain the required axial 
fields. ■ . 

As in the case of the magnetic vector potential matrix, the 
options are 

i) compute the matrix, use it and discard it. 

ii) compute matrix and store on file REMAT, as well as 
using it for the current run. 

iii) read in the matrix from RFMAT. 

When the matrix is stored, it is preceded by the nominal dimen- 
sions NCR and NQ^, as a safeguard against reading in the wrong 
matrix. 

t 

LALAVA will also print out the matrix if desired, and will also 
compute the field components (4-4) and (4-5) at each point and 
print out tables of Er and Ez. Figures 16, 17 and 18 are ex- 
amples of these printouts, only half the region being shown in 
each case, 
symmetric. 

VeC and E7j are symmetric about z=0 and Er is anti- 

As a final check, the fields were also computed directly from 
Kosmahl and Branch's expressions, and the result is shown in 
Figure 19. The comparison of Figure 19 with Figure 18 is not 
a precision one, because we did not go through the whole rou- 
tine of finding appropriate large n simplifications for each 
region, but simply summed 20 terms at every node. The agree- 
ment is excellent in the mid-gap region, and inside the tunnel, 
but degrades near the gap edge, as would be expected with only 
20 terms taken. The field expressions have even slower conver- 
gence than the potential expressions,- so that still more terms 
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: 

would have to be taken to get a precision comparison; the 
comparison shown is good enough to demonstrate that no mis- 
takes in scaling have been made; it also shows that the small 
negative values of IL, for large r and small but non-zero z, 
which are not realistic, are a basic defect of the model, not 
an effect of using the potential method. It is a side effect 
of the inconsistency of the model at the gap edge, discussed 
earlier. 

Despite this deficiency, which is numerically not very large, 
it is the opinion of this writer that the K and B model is 
the best one to which we know an analytic solution. The only 
model which can in principle deal correctly with noses of fin- 
ite radius is the relaxation method on a suitably fine mesh. 
This is the approach used in the Los Alamos program LALA; the 
reason for not regularly using LALA is a matter of size and 
time: LALA has about 60 pages of source statements if close- 
packed (actually 94 pages as normally printed), and typical 
solution times are 300 to 600 seconds of CPU time.  The ana- 
lytic subroutine LALAVA developed from the foregoing analysis 
occupies 5 pages of source statements, and has typical solu- 
tion times of 20 to 40 seconds. However, the option for read- 
ing in a previous LALAVA matrix will be written so that a ma- 
trix generated by LALA would also be accepted; there will be 
problems of adjusting the scale factor, since LALAVA normal- 
izes to unit rf voltage across the gap, which is the important 
quantity for TWT work, while LALA normalizes with respect to 
energy change along the axis, which is the important quantity 
for accrl  ators, for which LALA was originally written. 

In Sectic  2.1 *t was asserted that the fields at the mid- 
planes of the tunnels wou]d be 25 to 30 dB below the gap 
fields, so that beyond these planes the fields could safely 
be neglected. Figure 18 shows that the field on the axis at 
the tunnel mid-plane (7.0 volts/meter) is below the mid-gap 
axial field (195.4 v/m) by 28.9 dB, and is falling by a fur- 
ther 2.5 dB per mesh point. Thus the assertion is well sup- 
ported in this numerical case, which is a quite typical one. 
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5.0 SPACE CHARGE FORCSS 

As in the case of rf and magnetic fields, the space charge 
forces are to be derived from the gradients of a matrix of 
potentials. This matrix differs from the others in that it 
is moving with the beam, and that it has to be recalculated 
completely after every time step of the trajectory calcula- 
tion, since the distribution of space charge changes at each 
step. For this reason, the most extreme efforts must be made 
to obtain a fast and efficient algorithm for this matrix. 
For a rectangular geometry, the fastest known numerical solu- 
tion of Poisson's equation is the Hockney-Buneman FACR 
(Fourier Analysis Cyclic Reduction) method D^I« What fol- 
lows is primarily an extension of this method to cylindrical 
coordinates. 

The essence of the FACR method is: 

i) assignment of the continuous distribution of charge 
into discrete charges at the nodes of a mesh. 

ii) Fourier analysis of the charge d.'stribution in one 
direction^ along each row of the mesh. 

iii) combination of the analyzed rov/s in sets of 3> using 
certain trigonometric identities to eliminate alternate 
rows, so that the number of rows left is reduced by a 
factor 2. 

iv) Repeating this cycle until it is reduced to a relation 
between the center row and the boundary rows, on which 
the potentials are determined. 

v) Reversing the process to fill in the potentials on 
intervening rows in the reverse order. 

The difficulties encountered in applying this technique in 
cylindrical coordinates are two: 

i) The expressions for cyclic reduction are dependent on r, 
whereas the corresponding rectangular geometry expres- 
sions were independent of y. 

[l4]  R.W. Hockney, 'The potential Calculation and some 
Applications*, in 'Methods in Computational Physics', 
Ed. B. Alder et al, Academic Press, New York 1970. 
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ii)  One of the boundaries is the axis, on which the poten- 
tials are not initially known. Instead we have the 
condition that equipotentials must intersect the axis 
at right angles. 

In this section -we shall develop the explicit recursion rela- 
tions for the cylindrical case, and show how to handle the 
axis by developing a second recursion to be solved simultan- 
eously with the first. 

5,1 Analysis of the Axisymmetric Space Charge 

We require the solution of Foisson's equation 

)2p     1 a?  afi 
ö7  r^  B2

L   —o ^ + r^r+-i2" 2TTG ,    ^ U 

at the nodes of the grid shown in Figure 20.  The potential P 
is in this case the ordinary scalar potential.  p(r,z) is the 
charge density at r,z in coulombs/neter^; it will be determined 
from the superelectrons in the vicinity of (r,z) by formulas to 
be given later. 

Longitudinally the g^id extends over one beam wavelength Xe 
plus one mesh, from J=0 to J=NQ^+1. Ns^ is one of the numbers 
6, 12, 24 or possibly 48, for which very fast Fourier transform 
routines exist. The mesh length is thus 

hsa = VNSA  • ^-2) 

In the radial direction, NSR must be a power of 2 to allow the 
Cyclic Reduction to come down to a single row half way between 
the axis and the wall. Usually NSR will be 4 or 8, possibly 2 
or 15. We define a shape factor f such that the radial mesh 
size is fh and 

hsr • fhsa " a/KsR (5-3) 

The charge Q(itö) to be associated with node (i,ö) of the grid 

o 
QCi.j) =-~^p(r,z) (5-4) 

-59- 

inniiii irniiiiriiiniiiift-Mntirii-iiB^MnailifciiiiiiitgiiiaMiMii-riii T    n i^iiiniriMifmiWiMifaiiitnaTirin nr-i-M-fiimi-n 
, 

'   ----■'-<-"-'-'-"iMiftn, 



Tünoet    t^aK 
•^►ntiK I    i 

i W 
r-lt t -X r-iii$r 

i— _rri— f^ 
Ikr 
^  ttsa-s. 

l . 

1 

T ̂ 0    • ; 1         Plxls L           N M      ^ u*-/ 
'sa 

Figure 20: Grid for Space Charge Calculation 
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The node is located at r=ifh, z=Jh. 

The differentials in (5-1) are now expressed in finite 
difference form riSQs 

TT = -TT fPC1-1^) - 2P(i,ö) ♦ P(i+l,ö)) or   f^h^ I J 

op = zk {p(i+1'j) - p(i-i.d)] 

^ « 4 (p^-i'Ö) " 2P(i.ü) * P(i+1,Ö)] 
02  h  I < ) 

(5-5) 

(5-6) 

(5-7) 

Substituting (5-5) through (5-7) in (5-1) 

(1+1/21) P(i+1,j) + (1-1/21) P(i-1,ä) + f2|p(i,a-1) + P(i,Ö+1)| 

- 2(1+f^) P(i,3) = Q(i,j) (5-8) 

for i = 1 to NSR-1. 

On the axis: 

2P(1,j) + f2|p(0,j-1) + P(0,3+1)|- 2(1+f
2) P(0,j) = Q(0,a)   (5-9) 

We have now split Poisson's equation into NQR separate 
equations, which differ because of the 1-1/2i and 1+1/21 
factors. 

[l5] F.S. Shaw" 'Relaxation Methods', Dover Publications, 
New York, 1953. 
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5.2 Fourier Analysis Step 

We now express the unknown potential P and the known or given 
charge distribution Q on each row of the grid, as finite 
Fourier sums. These sums extend to the mth harmonic, where 

m = 
1 n ?WSA (5-10) 

m-1 

P(i,Ö) - Y,   U(i'k) cos IT J + Z V(i'k) Sin 
kTT 
m 

k=0 k=1 
(5-11) 

Q(i,j) = Y,   A^i.k) cos krj m 3  + 
k=0 

m-1 

I 
k=1 

B,(i,k) 
kTT . 
m u (5-12) 

These equations implicitly define the cosine and sine compo- 
nents U and V of P, and the components A^ and Bi of Q.  The 
reason for subscripting A and B will become apparent later. 

Our basic procedure will be to derive the A's and B's from Q 
by (5-12), then to use the cyclic reduction process to obtain 
the U's and V's from the A's and B's, and finally to synthesize 
P from the U's and V's by (5-11). The new potential distribu- 
tion P will be used for the fields in the next trajectory step, 
which will result in a new space charge distribution Q, and the 
process is repeated. 

Once the A^'s and B^'s have been calculated, they contain all 
the information about the space charge distribution (in a dif- 
ferent form), and matrix Q can be vacated and used for storage 
of the U's and V's as they are derived from the A^'s and B^'s. 
Once the information has been transferred to the U's and V's, 
the memory space for the A^'s and B^'s can be vacated, and 
used for storage of the potential matrix P. Some juggling of 
indices is required, but there is a substantial saving of mem- 
ory requirement. The combination is 

U and V share    Q's storage 

A^ and B1 share  P's storage. 
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The orthogonality of the Fourier harmonics allows us to re- 
write  (5-8) as 2m separate equations;  there are m+1  cosine 
equations: 

(1+1/2i) ü(i+1,k)  cosTTkö/m + (1-1/2i) U(i-1,k)  cosTikj/m 

+ k    U(i,k) JcosTTk( j-l)/in + cosnkCj+l )/m> 

- 2(1+k2) U(i,k)  cosTTkj/m - A^i.k)  cosrtcj/m      (5-13) 

for k=0 to m. 

There are m-1 similar sine equations relating V and B^, with 
sin instead of cos, running k=1 to m-1. 

But by a standard trigonometric identity 

cosTTk(ö-1)/m + cosTTk(j+1)/m = 2cosnkj/m cosrrk/m (5-14) 

with a similar sine sum formula. Let us write 

P^i.k) = 1 - 1/21 (5-15) 

G1(i,k) = 1 + 1/2i (5-16) 

S1(itk) = 2(1+^) - 2f2 cosTTk/m  • (5-17) 

where the reason for the dummy k in F-; and G-], and the dummy 
i in S^j will become apparent later. 

Substituting (5-14) in (5-13), simplifying and using (5-15) 
through (5-17) we have 

F^i.k) U(i-1,k) - S1(itk) U(i,k) + 0^,(1,k) U(i+1,k) = A^i.k) 

(5-18) 

F^i.k) V(i-1,k) - S^i.k) V(i,k) + G^i.k) V(i+1,k) = B^i.k) 

(5-19) 

where (5-18) runs k=0 to m, (5-19) runs k=1 to m-1, and both 
run i=1 to NSR-1. 
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On the axis, the orthogonality of the equipotentials requires 

2U(1,k) - S^O.k) U(0,k) = A^O.k),  k=G to m (5-20) 

2V(1fk) - S^O.k) V(0,k) = B^O^),  k=1 to m-1        (5-21) 

5.3 Recursion Step 

We now define a sequence of functions Fn, Gn, Sn, A^  and B^ 
by the following recursion: 

Fn(i,k) 

Gn(i,k) 

Sn(i,k) 

F
n_1

(i'k)- 

^|_1(itk). 

Sn_1(i,k) 

Fri_,(i-2
n-2,k)/Sr, .(i-l

11-2^) Jn-1 

G_1(i+2
n-25k)/Sn_1(i+2

n-2.k) 

n-1 

'n-1 

(5-22) 

(-25) 

F^^i.k).  Gn_1(i-2
n-2,k)/Sn_1(i-2

n-2,k) 

- G^Ci.k). Fl^1(i+2P-
2
fk)/S^_1(1+2

ll"2,k) 

(5-24) 

An(i,k) = An_1
(i'k) + Fn-1

(i'k)- An_1(i-2
n-2,k)/Sn_1(i-2

n-2,k) 

+ G^Ci.k).  An_1(i+2
n-2.k)/Sn_1(i+2

n-2,k) 

(5-25) 

n-2 ,n-2 Bn(i,k) = ^(i.k) + F^U.k),  Bn_1(i-2"-'
l
>k)/Sn_1(i-2

n-^,k) 

♦ G^^i^).  Bn_1(i+2n-2,k)/Sn_1(i+2n-2,k) 

(5-26) 

I from n-2 to logo (NSR) (i.e. to 2, 3 or 
16), for i=2n-1 to NSR-2

n-1 by 2n-1, and 
The recursion runs 
for NSR = 4, 8 or 16), for i=2

n-' to NSR-2
n-' by 2"-', and for 

k=0 to m.  (1 to m-1 for (5-26)). The n=1 values have already 
been determined by (5-12) and (5-15) through (5-17); the reasons 
for the dummy variables in these should now be clear. 
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5.A Cyclic Reduction 

We now write down (5-18) for consecutive values 1-1, 1 and 1+1 
(where 1 Is even), multiplying the first by Fi(l,k)/Si(l-1,k) 
and the third by Gi(i,k)/S^(i+1,k), and adding. We apply 
(5-22) through (5-25) with n=2. Then we have, after simplifi- 
cation: 

F2(i,k) lJ(l-2,k) - S2(i,k) U(i,k) + G2(i,k) U(i+2,k) =- A^i.k) 

(5-27) 

Similarly from (5-19) we obtain 

F2(i,k) V(i-2,k) - S2(i,k) V(i,k) + G2(i,k) V(i+2,k) - B2(i,k) 

(5-28) 

Now in (5-27) and (5-28) the odd numbered rov/s 1-1 and 1+1 
have been eliminated, and the form of the equations retained, 
with n-2.  Thus the set of recursion equations (5-22) through 
(5-26) were properly chosen, and can be applied repeatedly for 
successive values of n. The general forms of the equations are 

Fn(i,k) U(i-2
n~1,k) - Sn(i,k) U(i,k) + Gn(i,k) U(i+2

n"1,k) 

= A^^k)        (5-29) 

Fn(i,k) V(i-2
n-1,k) - Sn(i,k) V(l,k) + Gn(i,k) V(i+2

n-1,k) 

= Bn(l,k)        (5-30) 

running    1 = 2n"1 to NSR-2
n"1 by 2n"1 

k = 0 to m for (5-29), 1 to m-1 for (5-30) . 

When n = logpNsR we have just a single pair of equations for 
1 = ^Nß^, which we will write ii/2 for brevity. This pair of 
equations relate the potentials on the axis and at the wall to 
the row i-i/? midway along the tunnel radius. The recursion 
stops at tnis point, but we still do not know the potentials 
on ii/2 because the axial potentials are not known.  Taking 
the wall potential to be zero, the final pair of equations is 

-65- 

.l.rMl^M'-iMritt«*—M~^...-  ^. ,    ._..   .   .        '--,^111   I'   II  ll 



Fn(il/2.k) U(0,k) - Sn(i1/2,k) U(i1/2,k) = Vi^k)       (5-31) 

Fn(i1/2,k) V(0,k) - Sn(il/2,k) V(i1/2,k) - Bn(il/2,k)       (5-32) 

Note that while this apparently expresses the potentials in 
terms of row ii/2» the An and BQ contain contributions from 
all the nodes, not just those on row ii/2. from the way they 
were defined. 

5.5 Second Recursion 

To complete the solution we must have a second pair of equa- 
tions: we obtain these by going back to the axis equations 
(5-20) and (5-21). If we write (5-18) and (5-19) for i=1, and 
solve simultaneously with (5-20) and (5-21) respectively, we 
can eliminate i=1. and get relations between U(0,k) and U(2,k) 
and between V(0,k) and V(2,k).  Repeating for i=2, we relate 
U(0,k) to U(4,k), etc.  The required recursion is 

Tn(k) = |sn(2
n-1,k) T^k) - 2Fn(2

n-1.v)l/Gn(2^
1,k) 

Cn(k) = |sn(2
n-1,k) C^OO + 2An(2

n-1,k)j/Gn(2
n-1,k) 

Dn(k) = |sn(2
n-1,k) D^^k) + 2Bn(2

n-1,k)|/Gn(2
n-1,k) 

with the initial values: 

^(k) = js^l.k) S^O.k) - 2F1(1,k)j/G1(1,k) 

C^k) = js.jd.k) A^O.k) ♦ 2A1(1,k)|/G1(l,k) 

D1(k) = ' S^l.k) B^O.k) + 28^1^)1/0^1^) 

(5-33) 

(5-34) 

(5-35) 

(5-36) 

(5-37) 

(5-38) 

-66- 

 - -  Mnifnimmiiilmiini-miiiiiiiii riiriMM.fuwm.nrtiMiKiiiiinir'niiiMiiimrr   '       ■ mat 



The resulting simultaneous solutions are 

2U(2n.k) - T (k) U(0,k) = C fk) n n' 

2V(2n,k) - Tn(k) V(0,k) o Dn(k) 

(5-39) 

(5-40) 

where k = 0 to m for (5-33), (5-34), (5-36), (5-37) and (5-39), 

= 1 to m-1 for (5-35), (5-38) and (5-40). 

Again the recursion stops at n = logNsR, end we have (since 
U = V = 0 on the wall) ^ 

U(0,k) = -Cn(k)/Tn(k) .    (5-41) 

V(0,k) = -Dn(k)/Tn(k) (5-42) 

5.6 Backward Recursion and Synthesis of P 

We now have the potential components on the axis; these can be 
substituted in (5-31) and (5-32) to give the components on ii/2» 
the mid radius. Then the values on the axis and on ii/? deter- 
mine those at the quarter radius, etc. Specifically, tne back- 
wards recursion equations are 

U(i,k) = |Fn(i,k) U(i-2
n-1,k) - A^^k) + Gn(i,k) U(i+2

n-1,k)|/ 

Sn(i,k)   (5-43) 

V(i,k) = <JFn(i,k) V(i-2
ri-1,k) - Bn(i,k) + Gn(i,k) V(i+2

n-1,k)j/ 

Sn(i,k)   (5-44) 

for     n = log2NSR to 1 by -1, 

i = 2n~'1  to NSR-2n"1 by 2n, 

k = 0 to m for (5-43), 

1 to m-1  for (5-44)   . 
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On completion of this backwards recursion, we have all the 
U and V components. We now insert them in (5-11) to generate 
the potential matrix P. 

While these recursions appear horrendous, they are very straight- 
forward for computation. Note that there are no higher functions 
to be evaluated, because the sine and cosine coefficients in 
(5-11) and (5-12) are required only for a fixed set of submul- 
tiples of 2TT, SO they are precalculated and stored as numerical 
coefficients in the Fourier analysis and synthesis subroutines. 

5.7 Charge Distribution of the Beam 

The foregoing sections 5-1 to 5.6 have shown how the potential 
P is derived from a given charge distribution Q. We now address 
the question of exactly what distribution best represents the 
beam. The test of what is 'best' is that the resulting poten- 
tials, for cases to which an analytic solution is knovm, should 
agree with the analytic values as closely as possible for as wide 
a range of beam diameters as possible. Naturally we shall find 
that a finer grid — larger values of NSR — will give better 
accuracy, but it will be shown that accuracy in the Z%  region can 
be achieved even for NSR=4 for beams with b/a of .5 or greater, 
while NSR=8 gives accuracy better than 1% for b/a > .3, which is 
adequate for any foreseeable TWT. 

5.8 The Uniform Beam 

We consider a uniform beam of radius b in a tunnel of radius a, 
at voltage V0 and microperveance |iP; the potential depression on 
the axis is 

Vd = -.0304 V0V^P |.5 + «n(a/b)L (5-45) 

and the charge density (uniform out to r=b, zero for r >b) is 

p = 5.4x10~10 Vo(MP)/b , (5-46) 

We begin with a simple-minded model, in which each node of the 
grid lying within the beam (r « b) is assigned the charge Q 
given by (5-4) and (5-46) combined, and each node outside the 
beam has no charge. Obviously this model will give errors of 
one sign at beam diameters such that a row of nodes lies just 
inside the beam, and of the opposite sign if the row is just 
outside. Thus we expect a sawtooth curve of errors as a func- 
tion of beam radius. Carrying through the computation for a 
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case with NQ^=I6, we obtain a 'curve' such as that in Figure 21. 
The sawtooth shape is not quite as bad as it looks: the errors 
are within 10% for b/a > .5. and there would be a good deal of 
cancellation of positive and negative errors when the beam diam- 
eter began to change, as it will in the real tube. 

It is clear that the curve is converging to a value about 1% 
high for large r/a. This is a result of the finite-difference 
treatment of the problem. The offset varies as Ng^, and it is 
found that if the charges assigned to the nodes are all reduced 
by the factor 

Fc = 1 - 5.2/* SR (5-47) 

then the offset is corrected to within a fraction of 1% for 
NSR = ^» 8» 16 or 32. 

At the left of Figure 21, we see the errors becoming quite large 
for small b/a. This is because too few nodes are now within the 
beam to define it properly. In general, we find that the errors 
for large b/a depend primarily on the fineness of the grid, i.e. 
on NsR, while the errors for small b/a depend mainly on the ab- 
solute number of nodes within the beam, i.e. on (b/a)NsR. 

These are the effect of the finite mesh size; when we bring in 
the discrete super-electron model of the beam, instead of the 
uniform charge density, the effects are more complicated, be- 
cause 'interference' effects arise between the mesh periodicity 
and the super-electron periodicity. The super-electron model of 
the beam starts with a rectangular array of super-electrons in a 
radial plane.  The number of columns in this array will usually 
be the same as the number of nodes NgA (though it does not have 
to be), and the number of layers NL will normally be 3 or 4, 
possibly 2, 6 or even 8; the case N3A=12, NSR=8, NL=4, b/a=.7 
is illustrated in Figure 22, 

If we simply assign the charge of each super-electron to its 
nearest node, we shall obtain a sawtooth error curve similar to 
Figure 21. To avoid this, we arrange to divide the charge be- 
tween the four surrounding nodes, in inverse ratio of its Ar 
and &z intercepts. Referring to Figure 23, if the super-elec- 
tron is in the rectangle defined by nodes (i,j), (i+1,ö), 
(i,0+1) and (i+1,,j+1) (the left and lower sides inclusive), its 
charge is distributed in the proportions 
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Figure 21: Errors of potential on axis when each node 
inside the beam is assigned the full charge 
given by (5-^), and each node outside none. 
The beam is assumed to be uniform. NOD = 16. 
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Figure 22:  Superelectron Distribution for 
Uniform Beam (first trial) 
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Figure 23: Distribution of Charge of a Super- 
electron to Surrounding Nodes 
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Q(1-Az)(1- AT) to (i,0) 

QÄr(l-Az) to (i+1,d) 

Q&z(l-&r) to (1,0+1) 

QäZ&T to (i+1,d+1) 

(5-A8) 

where Az is expressed in units of the axial mesh size hsa and 
AT in the radial mesh size hsr. 

Carrying through the potential calculation for this case we 
obtain Figure 24: the sawtooth has been eliminated, but the 
offsets at the wall and at small b/a are quite large. There 
is now only a minor dependence on NSR, SO we are here seeing 
mainly the effects of the beam model. The small wrinkles on 
the curves are the interference effects between the beam and 
grid models. 

Now we saw in the continuous charge distribution case that the 
offset at the wall could be corrected by slightly adjusting the 
amount of charge assigned, using (5-46). We can make a similar 
type of correction for the discrete beam model, though we have 
not been able to find an analytic expression for the required 
reduction factor, which we will call q.  In addition, we were 
clearly incorrect in placing the outermost layer of super-elec- 
trons in Figure 22 at the nominal beam radius. If they are to 
represent the real electrons in their neighborhood, that neigh- 
borhood should surround them; thus the outermost layer should 
be on a line at some radius pb, where p < 1 (but not much less), 
with the ethers moved in proportionately» 

The writer has no analytic method of finding the correction 
factors p and q, but computer cut-and-try is effective. It 
is found that p affects both the slope and the absolute level 
of the error curves, while q mainly affects the absolute level. 
As p is reduced from unity, the slope (over the interesting 
range of b/a) decreases and eventually changes sign. When a 
value of p is found which makes the error curve as flat as 
possible, q is adjusted to level it around zero. Satisfactory 
(not necessarily optimum) values of p and q determined in this 
way for the probable combinations of Ncjg and NL are given in 
Table 5.1. 
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Figure 2h:    Errors of potential on the axis when super- 
electron charges are distributed to the 4 
adjacent nodes instead of assignment to the 
nearest one. Beam has h  layer's. 
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Figure 25: Errors of potential on axis when correction 
factors p and q are applied, NCp = 2, 
2, 3 or 4 layers. 
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Figure 26:    Errors of Potential on axis, NqR = 4, 
2,  3 or A layers. SR 
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Figure 27: Errors of Potential on axis, NCD =8, 
2, 3, 4 or 8 layers.        ^ 
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Figure 28: Errors of Potential on axis, N«« = 16, 
3, 4 or 8 layers. ^ 
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Table 5.1 Correction factors for super-electron beam model 
p is correction factor for radial position, q for 
charge 

■ i 

P q 
.... _ . .. , 
p  |  q P q P jq P q 

16 .842 1.904 .87> .920 .90;.94 |.933 .952 

li  8 .770 .889 .855 .916 .870 c934 .90 .9*51.91? .955 
;  SR 

4 • 74 .91 .83 .93 .86 .944 .88 .95 .89 .950 

j 2 .65 .90 .72 .90 .75 .905 .78 .95 .80 .920 

2 3 4 6 8 

NL 

The error curves obtained using these factors for NßR =2, 4, 3 
and 16 are shown in Figures 24, 25, 26 and 27.  The last is good 
enough for any conceivable tube design, but even the coarse 2 
mesh case (Figure 24) would be good enough for preliminary work 
with b/a > .5. 

Thus NSR and NL are chosen according to the fineness of model 
required, remembering that both directly affect tho computation 
time; then p and q are obtained from Table 5.1, and the starting 
positions for the super-electrons are 

rB = pbi/Nj i = 1 to NT (5-49) 

and the assigned charges are (from (5-4)) 

Qs = qf
2h2p (b/a) (NSR N^/Cü^)) 

= qfpbXe/(NLe0) 

where p is given by (5-46). Note that the correction (5-47) 
for the uniform (fluid model)'beam is not applied here, as it 
has been superseded by q. 

(5-50) 
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5.8.1 Accuracy of the Uniform Beam Model 

From Figures 2h  through 27 we see that the accuracy for the 
uniform beam can be expressed by the following tabulation: 

For Ngo = 2 . errors are within +2%  for b/a > ,5 

4 +1.4% for b/a > .45 

8 +196 for b/a > .33 

16 +.5% for b/a > .22 

Clearly the accuracy can be extended to smaller beams by 
using larger values of Nß^; but the computation time will 
go up proportionately, and for very small beams a different 
approach should be taken: the starting point should be a beam 
in free spac*?, with the tunnel introduced only as a minor per- 
turbation. l.'ince such small beams are not of interest for TWT 
work, we shall not pursue this. 

5.9 The Chopped Beam Accuracy Check 

The last section showed that very satisfactory accuracy of 
the potential depression is obtained for the uniform beam, 
for reasonable values of NCR; but this did not check the 
Fourier analysis part of the procedure, since only the- d-c 
term remained. 

The next test is to chop the beam into uniform cylinders of 
charge; analytic expression for the potential in this case 
are given by Hechtel p6j, Rowe M?] and others. If the disc 
thickness is equal to the axial mesh size h, then all the m 
Fourier harmonics are required to express the potential, and 
are therefore checked for accuracy. 

[l6] J.R. Hechtel, 'The Efftct of otential Beam Energy  on 
the Performance of Linear Bear; Devices', IEEE '^ansactions 
on Electron Devices, ED-17. #11» November 19V , pp. 999- 
1009. 

[ly^ J.E. Rowe, 'Nonlinear Electron-Wave Interaction Phenomena', 
Academic Press, New York, 1965. 
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The potentials due to a single disc of 4 rings located at one 
node were calculated for every node on the axis (including the 
zero node where the disc was located) out to the 12th. Beyond 
this the values repeat, of course. The following table com- 
pares the potentials calculated by the method of Sections 5.1 
through 5.6 with- the analytic values calculated from Hechtel's 
equations.  The specific case chosen was a 30 kV 0.8 u? beam 
for which the analytic values had already been obtained. 
NSA=24, NSR=8, NL=4, and p and q taken from Table 5.1. 

Table 5.2: Potential depression on axis due to a 
single disc at node 0 

ive Node 
Pot. dep. 

analytic (volts) 
Pot. Dep. 

FACR (volts) 

0 -148.40 -146.25 
1 -100.65 -97.19 
2 -57.72 -57.98 

3 -32.61 -33.57 
A -18.33 -19.24 

5 -10.29 -10.98 

6 -5.77 -6.26 

7 -3.24 -3.57 
8 -1.83 -2.04 

9 -1.05 -1.19 
10 -.626 -.722 

11 -.419 -.492 

12 -.358 -.422 

The individual discrepancies are nowhere more than 0.6%  of 
the total depression; the relative discrepancies are somewhat 
higher, but this is largely self-cancelling when the whcle set 
of 24 discs is considered; the discrepancies at the further 
nodes are quite unimportant, because the absolute valuer are 
here so small; in point of fact, the 'analytic' values are 
suspect here, because they involve calculation of a large 
number of Bessel functions which nearly cancel each other, 
so that round-off errors become magnified. The total of all 
the depressions (including the mirrored values for nodes 13 
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to 23)  should agree with the analytic depression (5-45) of 
a uniform beam (since 24 adjacent discs constitute such a 
beam); we find that the FACR total actually agrees better 
with (5-45) than the 'analytic' total of Table 5.2. 

Thus we can conclude that the F^CR contributions of individ- 
ual discs to the total potential are accurate to better than 
1% of the total potential depression, and are at least as 
accurate as the 'analytic' values, for NeA=24. 

It is impossible, of course, to demonstrate the accuracy of 
the FACR method for every possible case; but it is believed 
that the foregoing checks, for a reasonably typical case, 
verify that the method is sound, and that no mistaken of 
scaling have been made. 
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6.0 THE TRAJECTORY EQUATIONS 

The foregoing sections have provided us with the potential 
matrices, and a fast and accurate interpolation routine by 
which the axial and radial fields can be derived from them 
at the position of each superelectron at each time step. 
Thus we can now consider the fields as known. 

The vector equation for the acceleration of an electron in 
combined electric and magnetic fields is quite simple 

S = (e/m)E + SXB (6-1) 

In principle, one can separate this into three component 
equations, and integrate each by a Range-Kutta or similar 
routine.  This procedure is inefficient because it makes 
no use of the fact that we know .the integral of the equa- 
tion for the cross field case (E perpendicular to B); this 
is the well-known cycloidal solution, combined with motion 
parallel to B which is not affected by the value of B, 
Textbook formulations of the cycloidal solution are in gen- 
eral too simple for use here — they do not allow for arbi- 
trary initial velocity components.  General formulations for^ 
the cross field case have been given by Yu Q18] , Vaughan [19] 
and others.  For the present purpose, the equations in ^9j 
are the more convenient starting point, since they give the 
position and velocity components at the end of a time step 
in terms of the same quantities at the start, together with 
the local field values. 

We can apply that formulation to the present case by adopt- 
ing a new coordinate system as shown in Figure 29.  Since B 
has no 0 component in an axisymmetric system, the resultant 
B lies in the r-z plane, and the new Pz' axis is taken in 
this direction; Py? is normal to the r-z plane, and there- 
fore makes an angle 0 with the Oy direction, and Px* is then 

[18] S.P. Yu, G.P. Kooyers and 0. Buneman, 'Time-dependent com- 
puter analysis of Electron-wave Interaction in Crossed 
Fields', J.Appl.Phys., vol. 36, Aug. 1965, pp 2550-2359. 

[19] J.R.M. Vaughan, 'Beam Buildup in the Dematron Amplifier', 
IEEE Transactions on Electron Devices, ED-18 #6, June 
1971, pp. 365-373. 
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Figure 29: Relation of Axial and Radial Magnetic Field 
Components Bz and B^, defining the auxiliay 
x', y', z' coordinate system,  z' lies along 
the resultant B, at angle 0 to  -; y' is nor- 
mal to the r-z plane at P; x' _. in the r-z 
plane, completing the triad. 
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in the r-z plane, at an angle 9 (= arc tan Bp/I^) to the 
radial direction. Thus the field B is normal to the plane 
x'Py', and we can resolve all velocity components and fields 
into components along these axes and use the solution of £191. 
In doing so, we.need to note that x' and y' as defined here 
correspond to y and x respectively as defined there. This 
formulation is extremely accurate — essentially to machine 
accuracy — over any region and time in which the fields are 
constant.  It does not depend on At being small.  But it re- 
quires 57 multiplications, 31 additions and 1 cosine evalua- 
tion per cycle. The complete formulation is shown in Figure 
30. 

This is more than we need for the present purpose, where the 
fields are not, uniform over appreciable distances or times. 
We have to take a At that is a small fraction of an rf per- 
iod; since the focusing fields are always such that u]C is of 
the same order of magnitude as m  fwithin a factor of about 3), 
we shall always have wc-At«1 also. Hence the cos(aicAt) and 
sin(trcAt) in [19J can be replaced by 1-u)c^At

2/2 and a'cAt with 
extremely small errors.  These and consequent simplifications 
were carried through by Prof. 0. Buneman in 1969, for the 
RZTRAJ program for night vision devices £3], and resulted in 
a formulation with only 31 multiplications', 21 additions and 
no cosine evaluation per cycle — a marked and valuable reduc- 
tion, when the cycle will be repeated several thousand times 
for each cavity the beam is tracked through.  Extensive tests 
reported in [3j showed that this compact formulation is still 
capable of accuracy at the 0.1% or better level, for reasonable 
choices of step size.  The step size (At) in the present pro- 
gram is not specified by the user, but is automatically chosen 
to conform to the accuracy requirements — it is tied to the 
number of radial meshes in the space charge matrix, which the 
user can specify- If the user sets a large value (8 or 16) 
for this, indicating that he desires a high accuracy run (and 
is willing to pay for the computer time involved), a small At 
will result. For a 'debugging' type run with NQR = 2, a larger 
At will be used, but still not large enough to introduce seri- 
ous errors in Buneman's formulation. 

This formulation, which is the one used in the program, is 
shown in Figure 31. It has eliminated the auxiliary x', y', 
z1 coordinate system, but it is so tautly written that without 
the foregoing theory to lead up to it, it is almost impossible 
to see how it works. The factor A = 2/(1+B1**2+B2**2+B3**2) 
is the approximation to the missing cosine function, with a 
factor 2 resulting from dividing the step into two parts. 
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11 00 
1200 
1210 

u 12 20 
1300 
1310 

77 1320 
140Ö 
1410 

30 1420 
1430 
1-300 

15 1510 
lb 20 
1 bbO 

36 1600 
1610 
1620 

Jf 1630 
1640 
16-JO 

m 1660 
1670 
I6Ö0 

ts 1690 
IbOO 
1820 

M lb30 
1840 
IbbO 

SI Ib60 
lb 70 

> 

60b  1<1=SÜH(X1'V2+Yr2),   S2=Yl/Hl,C2=Xl/kl      !   Rl ,   SIN PHI.   COS PHI 
610   iJ=SQK(B3A2*i3r2),   Cl =33/B, SI =B1/B     !   B TOT.   COS THETA.   SIN THETA 
620  00=E0*D,A0=Cb*B     !   OMEGA  C =  EB/M.   (FB/MHDT) 
62'J   IF  A0<U.0002 THEN   1600     !   MAGNETIC   FIELD^ EFFECTIVELY  ZERO  
630  tx6=CÜS(A0),KV=Sü1<{ 1-K6*K6) ,K0=I-K6 ,Kb=K7/B,K9=K0/B 
640  Kl=<7/uJ,K2=K0/U0,K3=K2/B,K4=(KI-T0)/3 
64j   IF BK.OOOUB  MBi   1 oOO     !   GOTO H0U1INE FOR AXIAL FIELD  
6b0  o3=Sl*S2,C3=CI*C2,S4=S2*Cl,C4=C2«SI 
1000       !   TfiAJECTORIES 
1010  Ub=Ui*C3+Vl*S4-Wl*Sl   _!   Ul'  
1020  Vb=Vl*C2-Ul*S2     !   Vl' 

h'b=Ul *C4+Vl*S3+iA.'i *C!      !   41* 
E6=E3*C1+EUS1 ,EJ=-E3*SI+E1*CL_L   EZ'».ER^  

X2/ 

Y2/ 

U2'~ 
!   72' 

Xb=UbA.<l-Vb*K2 + L:j*K3 
Yb=Üb*.\2+Vb*K 1 -E-J*:<4 
Zb=rtb*rO+E6*Kb     !   Z2/ 

U6=Ub*!<6+Vb*K7 + E3*Kö 
V6=-üb*K /+Vb*.\6-L:b*K9 
h6=W-j + i£6*Cb      !   HZ'  

!   BACK   1J DiUGINAL COORDIKATES 
X2=X1+Xb*C3-Yj*S2+Zb*C4 
Y2=Yl+X'jxS4+Y5*C2+Zb*S3_          
Z2=Zl+Zb*Cl-Xb*Si 
U2=Ü6*C3-V6*S2+W6*C4 
V2=ü6«J4+V6*C2+MO*S3   
W2='rt6*Ci-U6*Sl 
ÜüTO 2000 

!   RüUTINt  FO.-J  Zr.WO MAGNETIC  FIELD 
E2«El*Kb 
X2=X1+;JUT0+E2*C2 
Y2=Y1+V1*T0+E2*S2      ;  
Z2=Zl+Wlv<T0i-E3*Kj 
E2=El*Cb 
U2=ül+E2*C2   
V2=Vl+t2*S2 
h'2=Al +E3KC5 

690 GOTO 2000 
!   ROUTINE  FÜR AXIAL MAGNETIC FIELD 

X2^Xl+Ji*Kl-VUK2+El*(K3*C2+lC4*S2) 
Y2=YI+U1 *K2+Vl*Kl +i:l *( K3*S2-:<4*C2 ) 
Z2=ZI->V.'1*TO+E3*KJ 

U2=UI*;\6+V1 *K7 + Ei*(KÖ*C2+K9*S2) 
V2=V1 *K6-iJl*K7+Ei *(Ko*S2-K9*C2)- . _ 
rt2=i,»l+E3*Cb 

Figure 30: Full Trajectory Algorithm 
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3300Ü  ? FIRST STEP INCRtMHNTS 
3320U i:l=Xü*Eb,H2=rO*£:5,H3=F2*T6  
33400  V FIRST INCHEMENT TO STHP SIZES 
33600  X3=X3+fcl,Y3=Y3+c2tZ3=Z3+c3 
36000   IE   IJ7=1   IHEN   39oOO?   SIMPLIFIED  ROUTINE  FOR  UNIFORM  FIELD 
3/600   ? SCALED MAGNhTIC FIELD COMPONENTS 
3/bOO iJl=XO*E3,B2=yo*E5,ü3=F2*T6 
36000       ?  CROSS  PRODUCTS  i.TTH MAÜNETIC  FIELD          
36200  ü^X3-Y3*ii3+Z3*a2,V=Y3-Z3*Bl+X3*i53,».=Z3-X3*B2+Y3*t3! 
36400  ii=2/(i+Br2 + LJ2Ä2+B3"2) 
36600 IF H>\   THEN 3y2DC,  
36Ö00 B=B/2 
39000  ? INCREMENT HiTH CROSS PRODUCTS 
3V200 X3=X3-B*(V*ii3-i^B2) ,Y3=YJ-B*(N*Bl-U*B3),Z3=Z3-B*(U*t}2-V*Ül ) 
39400 0010 40600 
39600   ? SIMPLIFIED ROUTINE FOR UNIFORM FIELD 
39600   IF   B0=0 THEN  40300 .  
40000 U = X3-Y3*B3,V=Y3+X3*ii3 
40200 IF H>\   THEN 40600 
40400 U=U/2,V=V/2 ,  
40600 X3=X3-V*Ü4,Y3=Y3+U*B4 
40600 IF N=l THEN 41600 
41000  ? SECOND HALF STEP ELECTRIC FIELDS       
41200 X3=X3-fEI ,Y3=Y3+-2,Z3=Z3+E3 
41400   ? INCRtMENf THE COORDINATES 
41600  Xü=XÜ+X3fY0=Yü+r3,Z0=Z0+Z3tZi=Zl+Z3    _                 
41üOO  RO'=SQR(XO'N2 + VO'N2) 

Figure 31: Shortened (Buneman) Trajectory Algorithm 
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Under no circumstances should this routine he altered. It 
could be replaced completely by the more general routine of 
Fi/^ure 30, but it is not believed that there would be any 
significant increase in accuracy of the overall program to 
compensate for the sharp increase in running time that must 
result. 

6.1 Accuracy of the Trajectory Equations 

The accuracy of Prof. Buneman's trajectory algorithm was 
tested thoroughly in the development of the image intensi- 
fier prograra RZTRAJ, and the tests were discussed in detail 
in the report on that contract L^J- 

The algorithm could not be taken over completely 'unchanged 
from RZTRAJ: in that program the mesh was square, and the 
same mesh was used for both electrostatic, and magnetic fields. 
Since this gave a unique mesh size as a convenient unit of 
distance, the problem was normalized to that distance.  In 
the present case, we have three meshes, all of them in gen- 
eral rectangular, and independently dimensioned.  As a result 
we decided not to normalize the problem to any one mesh size, 
but to retain the coordinates in MKS units.  This does not 
change the basic structure of Buneman's algorithm, but it re- 
quires changes in all the coefficients used in converting the 
gradients derived from the interpolation routine INTRA.  For 
example, when a mesh is allowed to be rectangular instead of 
square, two distinct coefficients are needed for the axial 
and radial forces instead o.c one common one. 

To demonstrate that the revised routine is correct, it is 
primarily necessary to show that the expressions used for the 
new coefficients are correct; if they are, then the detailed 
checks in Q3] will apply to this case also. 

We first check the magnetic field coefficients alone by track- 
ing a single electron in a uniform field, so that the path 
should be a circular helix; Figure 32 shows the projection on 
the X-Y plane of such a trajectory; the smaller circle results 
from projecting the electron.with the transverse velocity com- 
ponent it would require for Brillouin flow if the entire beam 
were present. In the absence of any space charge force, the 
diameter of the circle is exactly half that for Brillouin flow, 
so that the trajectory passes through the axis. The larger 
circle results from doubling the transverse injection velocity. 
Both circles are tracked round about ^00°, and in the overlap 
region they coincide essentially within the thickness of the 
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line. This demonstrates that no mistake has been made in 
rescaling the magnetic xield. The test was made both with 
the 'uniforn. field; bypass in the trajectory routine, and 
with a nominally 'nonuniform' field (so that the full tra- 
jectory routine is used), but the field was in fact made 
uniform to a high degree by specifying a Helmholtz pair for 
the coils.  The differences betv/een the two cases were only 
at the 0.1% level, comparable to the differences between the 
Kelmholtz field and the exactly uniform field, so t1\at both 
versions of the trajectory routine were checked. 

The smaller circle in Figure 32 also shows that the program 
retains RZTRAJ's capability to follow a trajectory through 
the axis without blowing up; as in ths earlier case, an 
abort will occur if the trajectory not only passes through 
the axis, but also has one of the calculated points on it 
exactlv at R=0.  The probability of this occurring in any 
actual calculation is so small that it would be a waste of 
computer time to put a test for R=0 at every step of every 
ring, and go to a bypass routine if it occurred.  If the 
problem ever did occur, it could be eliminated simply by 
rerunning the case with a minute change of some input var- 
iable. 

Having established that the magnetic field it.  correctly 
scaled, we can check the space charge field by running a 
Brillouin flow case, in which the space charge force should 
just balance the magnetic and inertial forces.  This can be 
done without modifying the program, simply by specifying a 
uniform magnetic field at the Erillouin value, together with 
a drive level so low that rf fields never become significant. 
In the 'Navtest' case we used 942 gauss, and 10~9 watt drive 
(95 dB below the saturation drive of 3.2 watts). Incidental- 
ly, this demonstrates the very large dynamic range of the 
program: it still gives a satisfactory small signal calcula- 
tion at this level. At the output end, the rf voltage is 
still below 1 volt, and the beam modulation is only .0008, 
so the conditions for Brillouin flow are substantially met. 

Figure 33 shows the r-z plane projection of the trajectories 
for this case. 

Finally, the rf scaling can be checked by using a very stiff 
beam, so that the ring trajectories are tightly constrained 
to stay cloye to their starting radii by the large magnetic 
field. In this case we revert to normal saturation drive, 
and postulate a uniform magnetic field ten times the Brillouin 
value. The corresponding cathode immersion is 98.5%, and 
TRANS assigns the appropriate small transverse velocity com- 
ponents. Under these conditions, the exit bunching and 
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velocities of the rings should be similar to the exit bunch- 
ing and velocities of the uses as given by NAV118B.  They 
will not be identical, because the rings are at different 
radii from the bv3/2 used as the center of force for the 
discs; but the test is sufficient to show whether any gross 
errors such as omission of terms or sign changes have oc- 
curred. Figure 34 compares the exit data of the disc and 
ring models, and shov/s that they are satisfactorily similar 
with this ultra-stiff beam.  (When it was first tried, the 
test was very obviously not passed, and the cause was found 
to be a 90° phase error in transferring the rf fields from 
NAV118 to RNGTRJ.  Thus the test is sensitive enough to be 
useful.) We have, of course, already discussed the accuracy 
of the potentials themselves j.n Sections 3 through 5> so 
that correctness of the coefficients transfers this accuracy 
to the complete calculation.  These tests do not completely 
eliminate the possibility that a coefficient might be off by 
a few percent, but it seems very unlikely: the terms making 
up the coefficients are mostly very large or very small num- 
bers, so that the derivations can be expected to be either 
correct, or off by orders of magnitude; the tests have shown 
that the latter is certainly not the case. 
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Figure 34: Comparison of Ultra-Stiff Ring Model with 
Disc Model Exit Velocities 
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7.0 ASSEMBLY OF THE PROGRAM 

Subroutines corresponding to the foregoing sections were 
assembled into a complete program as shown by the block 
diagram in Figure 35. It would not be correct to say that 
the subroutines were based on the analyses, because in some 
cases the subroutines were written first and then translated 
into algebra for this report- It has to be recognized that 
the formalism of Fortran or Super Basic is just as valid for 
the solution of problems in  physics and engineering as the 
formalism of algebra, and may well be the best one to use 
when the end product is to be a program, not a textbook. 
In such cases, translating the program into algebra is 
really only conformity to what will soon have become an 
outmoded tradition. The reader will have noticed in par- 
ticular that Section 6 of this report has almost no equa- 
tions, only copies of the full and condensed Super Basic 
trajectory algorithms: no algebra translation of these al- 
gorithms exiots. 

The entire program was first written in Suner Basic to allow 
each section to be tested on a time-sharing system with a 
minimum of delay. In this version, each second level sub- 
routine in Figure 35 is a self-contained program, and the 
'Main program' is the user at the keyboard, calling the pro- 
grams m the correct order.  The third level subroutines of 
Figure 35 are then GOSUBs within the second level programs. 

Apart from the essentially trivial (but agonizing) problems 
of tracking down bugs, one defect of principle came to light, 
which ought to have been foreseen: the procedure of moving 
beam elements forward or back by one wavelength whenever nec- 
essary to keep them within the space charge wavelength being 
tracked has been used in all prior programs of this type known 
to the writer, and was adopted here as indicated on page 4. 
Bit all prior programs have been restricted to uniform mag- 
netic fields. If this procedure is adopted with a PPM field, 
one finds that the PPM period is not equal to the space charge 
wavelength, so that a ring moved up or back one wavelength 
suddenly finds itself in a different magnetic field, for which 
its transverse component of velocity is incorrect. As a re- 
sult, angular momentum is not conserved. If one arbitrarily 
changes the tangential velocity to match the local field, then 
energy is not conserved. 

To escape from this dilemma, we adopted the valuable concept 
of the Doppelgänger. The Doppelgänger (for those unfamiliar 
with German folklore) is a ghost of a living individual which 
haunts that .'^dividual but occasionally goes elsewhere, and 
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can conveniently be blamed for any mishap. The application 
of this to the present problem was to provide each ring with 
a Doppelgänger (vector TW() in the program).  The rings them- 
selves are now not moved up or back when they leave the 
tracked wavelength: only the Doppelgängers are detached to 
stay in that wavelength to pick up the appropriate space 
charge forces; the other forces are still evaluated at the 
true positions of the rings and thus see no discontinuities. 
Each Doppelgänger shares all its host's coordinates and veloc- 
ity components except for the Z coordinate, so that only one 
additional coordinate (stored in TW) is needed for each ring. 

With this approach^ it appears that both angular momentum and 
energy are satisfactorily conserved in both PPM and uniform 
magnetic fields.  This is visually evident in the X-Y plots, 
which show substantially radial motion at the exit plane for 
all rings whicn reach that plane. 

~ 
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8.0 OUTPUT OF THE PROGRAM 

Figure 36(a) through (j) shows the complete output for a 
'miniraum1 case corresponding to the test case 'Navtest*; 
(a) repeats the input data to make the case self-document- 
ing,  (b) is a miscellaneous collection of derived quan- 
tities,  (c) is the matrix RFMAT and rf fields,  (d) is 
the matrix MAGHAT and magnetic fields,  (e) and (f) are 
the disc model runthrough, which is somewhat beyond satu- 
ration because the drive level (3.2 watts) had been deter- 
mined for the 12 disc model, and the 6 disc value is usually 
1 or 2 dB different,  (g) is the conversion to rings. The 
varying signs in the YDOT column arise because some rings 
are in one half of the magnet period and some in the other 
half, where the field is reversed. Each starting YDOT is 
individually assigned to match the local field,  (h) is 
the ring trajectory printout, giving R and Z for each ring 
every 20th step,  (i) ix  the tabulation of exit coordinates 
and velocity components,  (j) is the tabulation of intercep- 
tion on the ferrules, bcth by ring number and by ferrule 
number, followed by some statistics on tne exiting rings. 

The trajectories for this case arc plotted in Figures 37 
and 38. An over-large plot step size was chosen, so that 
these plots are somewhat angular; smoother ones can be drawn, 
but require more core. 

The printout for a full scale 96  ring case is identical in 
format to that shown, but simply more massive and unsuitable 
for reproduction. 

Interesting sequences of cases have been run: with a uniform 
field at the Brillouin value, end no rf (10"8 watt drive), 
the jeam remains well-behaved and there is no interception. 
When 3.2 watts drive is applied, but nothing else changed, 
the beam 'blows up' as expected, with collection of 28 out 
of 48 rings spread over 6 ferrules. With a PPM field peak- 
ing at 1.6 x Brillouin (1530 gauss), the interception is re- 
duced to 8 rings out of 48, and 3060 gauss further reduces 
this to 4 rings on two ferrules. 

The 'hour glass' X-Y plots in PPM fields are different from 
what we expected. It is difficult to make out too much from 
the coHipleted plot: it is far more informative to watch the 
plotter drawing them. The corresponding plots for a Brill- 
ouin flow case are arcs of circles, as expected. 
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VAUGHAN'S RING W30EL TWT HHOCHAM FORTRAN VERSION OF MAR. JV76 

TWTINP   INPUT FDR RING MODEL PROGRAM. 
PART 1i   GENERAL» • 

CAbE IDENTIFICATION  
LINEAR UNI'lb (IN UR MM) 

PAR/ 2: TUBE PHYSICAL DESCRIPTION: 

UUUUUUUU 

NAVIESf 
IN 

ITEM TUNNEL DiAMcTEji  
CAVITY PERIÜU 
GAP LENGTH 
TOTAL »  Or   CAViTIES     
NO. OF SEVER CAVITIES 

SEVER CAVITIES 
RING CALC STAR! AT CAV #_ _ 
FIELD INTENSIFICATION FACTOR 

0.2000 
0.3000 
0.1 000 

2^  
2 

12       13 
24  
2.5000 

PART 3 
b 
9 

10 

COLD IES1   DATA«       
PHASE  VEL   (M/StC/IE7) 
IMPEDANCE   (ÜHMo) 
LOSS   (DB/CAV)      

PART 4i   MAGNETIC FIELD  DATAi 
_   11   UNIFORM  (1)  OR  PERIODIC  (2) 

13 PERIODIC  LENGTH 
32 NUMBER OF  COILa   (MAX-fO) 

10.0000 
10.0000 
 JD.JOOO, 

_2._ 

u 

PART b 
14 
16 

COIL 
1 
2 

_3 __  ___ 
4 

i RF DATA« 
FREQUENCY (GHZ) 
DRIVE POWER (WATTS) 

_ R _ 
Ö.I4S0 
0.1480 
0.I4Ö0 
0.1480 

0.6000 
4 

 z  
-0.1500 
0.1500 
.0.4500  
0.7500 

 10.000 
3.20 

M 
-158.1000 
169.7500 

-169.7500 
:58.1000 

PART 6» BEAM DATA:      
16 BEAM VOLTAGE (KV) 
17 MICHOPERVFAKCE 
18 NOMINAL B/A   

PART V: BEAM MODELi 
19 ä   OF DISCS PER WAVELENGTH 
20 *  OF RINGS PER DISC 

3Ü.000 
1 . 100 

_J).700_ 

6 
__4 

PART 6« POTENTIAL MESH DIMENC 

21 SCMAT«  RADIAL. AXIAL 
22 RFNAfl  RADIAL, AXIAL 
23 MAGMAT« RADIAL, AXIAL 

olONS« 
4 
4 
4 

6 
12 
16 

Figure 36(a): Test Case Input Data (first page of output) 
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SPACE CHAküE  DENSITY       7.14ÜI4IJ-03 Cn/M**3 
MEAN  POTENTIAL DEPiiESilON       676.b VOLTS 
POTENTIAL DEPHESSIüiN ON AXIS     1088.6 VOLTS 
MEAN  BEAM  VhLüCl 1Y     lü .790*! E7. JL 'SEC  
bEAM CURüENT        8. l!«i3 AMP 
BEAM  WAVELENGTH ü.^2b   IN 
ük 1 LLüUlli  FIELL) 94 I . 6 GA USS    
TIME  STEP  FOH KING CALC 5.Ö8625  PICOSEC 
TIME   SIEH  FOR  DISC  CALC       16.66666  PICOSEC 

Figure 36(b): Derived Quantities 

-98- 



CM 

II 

? 

til 
o: 
81 
in 

r— 
fM n 

• f\ 
— •"■t 

M     • 
JO 

► II 
rn < 
o^ 
a 
o - 
o o 
o • 
■«■ 0^ 
.no 
CM 

I! 
O 11 

'^ 
UJ 

< 
X 
< 

« i 

— n 
•  l 

n uj 
o, 
o 

II  o 
< LO 

• 

X! X 
O '/) 
O aj 

• 
— ■_) 

•< 
►-4 

ii b 
~i < 
3; X 

.x 
en 
LU 

< 
1—4 

Q 
< 

H 

10 
2 

Q 
LU 

•o;    s 
r> 

LU 

a 
H 
CO 

a 
LU 
H 
■u 
a 
re "t O 
LU O 
m 

2; < 

•• fV (M 
.O < 
3 

X 
x 
Q 
t—4 

n 

^1 

rj- r- ^._ O O O 
r- in iSfNj CM     c\j 

■^ O «r — r~ o f- 
LO O iTi O O     h© 
m r\J tni c in    : in 
r^, ^ fv> f\i 

<**>ir\ co —     Hroono 

OüOM-co     >qüOir!COO 
fM r\j 

oo — 
O '-O 

00    •    • 
LU '.M O 

•:ü0 '"O 
—jin n 

i— ^■ 

>;— — 
cai 

d 
LU; 
>—(' •  • 
j > > 

h-ior- 
J tM rv 

I 
<-> 
UJ^  • 

ho 
r>i— 
LOOJ 

> fM 

OJOr-or-a.   •   •   •   •   • 
Oj^noo    :a3<o>-f,ofno 

> O     — co M- t 

(M fM -o XlO 

00 

CO 
o 
a: 

i o 
>  • < o' > in o fM 

<Mi fM CO C CO ..... 
oo ^o in     'n LL. o fo — o CM 

_ ro .o fO O 
ro rocM — 

Q cor- OO 

-HO 
l-o cc 

< 
LU 
0. 

fO O JO 

.!   .    .    .;   . M O, O "O 'O O 
> Tf — o — _!    •}   •    •    •    • 
oioo ooofM^L^o 
co!—<? ho >     -r^— CMCM 
Oi O CM ' fM 
(Ml — 

oc 
o 
Ü. 

•   •   •     o in co o o 
N't "O OiOOS    •:   •    •    •    • 
m— ^     -^ LU fo o ^ n- o 
O'O^-O      's0f-<f^:<MOC0CQ 
_niTr ro     rn u o fM • — 
n — TZ      I I 

ex 
LU 
a.    ] 

a:   •••!••.   •     — o o o — 
t_i^T)—— OOO^O'O  
<fMoo^-inin     ,of-'Oi3—o — 
Äor-Oin'*     •^_iino^LnrocM 

oo'no)^-     ■^■aror\ir\jf\ifv 

fM o o o o 
o in ^- CM 

O^ O 't <5 O 
*     •     •     *     » 

no K. -^j-  ^ O 
r- o „n CM 

if» > ^^ o O 
^     .     .     .    « 

iri OfM fO o 
ex o .r> fM 

r~ > o r- o 

— > O fO O 

< 
X 

< 
X 

H 
x 
o 

I       :  3  : 
 •jfM'taoO'O 

ooooinaoocoLu   •   •   •   •   • 
r- — "0 n -«t     •* —< ;> t) CM .n in 
0, r^r-      r--Lu>cr->o^'v> 
for-r-os^r     ■«*     »"NJCMCMCMCM 
oo oo M- — _J 
-        . < 

in    ! 
o 
_i 
LLi o o o o o 
t—i      •     •     t      •     • 

IL O OO QO 
I  t I  I 

< 

X 

o 

ft 
O 

S) 
w 
0) 

Q) 
•H 
«H • 

a: 
Tl ft r: i-i 
(Tl H 

i^ 
H H 
m 
•r' ^ 

y 
0) 

■P H 
n CÜ 
ft -1. 

(I) s 
r1 H 
H >» 

XI 
» 

•d 
1 0) 
ft P 

■P o 
3 0) 
o H 

(1) 
< W i ^i 3 s 
^ (!) 

•P 
Q) •H 
c 

■H P 
p 3 
3 O 
0 ■P 
h q 
/a •H 
3 t-i 

CO ft 

-99- 



I 
■ 

") O "> 

i 

o. f) f-i r\( 
VJ <^ ifl r- 

""I 
>o — O f- in o in 
II O- Oj Of^     .P~ 
mio nm 
on in«*! — 
I 1  M I 
• • I • 

n o. -«■ cr> 
— o «nin 

d o »^ in o 
m '-> o o o 
<3 r- « 10 o. 
I    !    I    I,   I 

I 

t 

a: rvjo o. o 
o — o o o 

•i     in co vo u) x) 

111! 

o o inn) 

77 V 
• • 1 • 

>o in -• •'i 
in -o -«r es 
in a) n >o 
m nj -o fv 
m— i. i 
I   I    i 

in   : i/i 

s: nj -; — 
oj <• o 

o o irioj 
 ii i 
i   i 

") O "i 

I 

o c w 

m    i in 
I     I ■ 

■<r CO r^ 
O (V o 
T nio 
f) «on/ 

'I" 
4     «     • 

i^ iw in 
in T T 
o. fv m 
in ^ ^ 

V ' 
»> «o — 
o ^ f~ 
-r rv/ o. 
"l "i nj 
i: l   l 

! •     « 
or- 
O — 
oo h- 
r: rg 
I   I 

I «   • 
oo o 

fMC 
KJ n 
Ii > 

7, 
\ 

1* — 
O fM 

(M f V 
Ii I 

oo in —I oj <o o <; 
in — o — r~- t— 
m o. <> in ">     "I, 
co in "n — I        I ■    ■    -' I '.'. 1 

oo o o m in 
o nj f- r>- >o 
-O 03 co oo oo 

II   I   Ml 1 
»o rv co -o ■<» o -* 
•«■ «O CO f\' U3     i oo 
t-- <o inr- — 
^ nj —i i   • 
I 
i m-H I   i       i        | 

"   ' J •   «   <   t   ■   •   ■       « 

OT o o o — 
■o or- o — 
<3 a> to o. a 
I     !    I     II 

o o a o o o o 
i   ii     I      I 

rn CV 0} -O rt O ■& 
v -o com co    Ico 
h- -c inr- — 

:i 

OC O QO 
I    I   1  I 

X) O O Ö — 
<i or- O — 
«ocoa) 6v o 

co in —! m o o, o 
cu — o — r- P" 
in c>> "Jt in ■'i |*1 
co tn 

oo o o inin 
O fvi r- r- o 
O J0 CO 33 D 

O v J —' — CO O CO 
"1 CO 1* -O TT      IV 
'o o n 'M r»   iin o O in nj 

O"  

lii t   - 

— in \T -T om     cv 
|ir\ co n-o <o    [O 

10 in nj >a (\' 
tu' CM —    | 1 

S •  .J<..I. 

o f^ — v — 
Q^ir- o <M 
■» CM > co r- 

r- t\j in id o 
in v v cv > 
> nj m CNI o 
in' -c "i i > «^ 

-; «f»do 
rvo- oi 
"lit 
S 
i    •    • 

r- <o i^ nlO 
TT-I C 
in O ■O'' 
 I   •' 
I. ( 

■«■ — in o 
V CO ■<* <N 
— I  I  I 
I 

n r.j _■_ o 
i; I   I   I 

J. I 
<3 O — ^ O 
•O — Xi O 
T J3 M f\ 

•«■ -y T (N O 
rn ^( rn (-) 
in o -o fj 

CM r~ m — o 
(M ro r\J —, 
f^ O. <5 " 

O'.OO 
O r- o 

vo 
o 

i • . 
njr- in 
«N '''I r\i 
ry c- « 

1.. 
-jo 

T     t't T 
V •* •<? 
r^) r-) f*) 
in o o 

o o — 
ri — vn 
v JO -a- 
i 

t\iO 
O 

Q 

I 

Ul CO t- ^ O Tt CO CO o s v ooi^ or- "i"! mo > to 1 — o — m ^ OtM •o O — ■«—.no 
rs x"^ o ^ CNJ a-* in V (M Os C0t~ sr oo v CM O < •-• O O lA CV <■') ro og C\| CM — III 

►-« o re  1 
H 1 K 
IU o ino <••<••• • •   * •   «  • «   •  •   •  • 
z in 'OiT. E o — o.-- 0 o in TO fMO > O r- -o in f\l o o • >o > v o o. o .-~ !^ > — oo>o T'H') o < no oo J -n A» •'i in »n »•> in co oo .-o co XI o -o "^ 
X (MOO 

oo o 
< JO ji -n —   

i 
tL ,M    .    ■ fe .  . J . . . 1 i '         j 
o oo M •   • «     •     « •• 1 IU O «f iCKN'OO "1 ■o o ") .n «o /) M tv »n o o z »    1 (-. C rO >- OJ t) H) ') ■o >. -o r>> o "1 — -i f\j — 
D II; H O «»o irt r— — ;o o^ a 00 > 3 CM > «O fO •-« tf> 

a: 
:J < — ill 

H — MUi -r 1 (-1 1 < x rviM D [ 1 
J <«-• o   •   •   "   •   •   • • •  • •  *  • * 
3 V)10 Hr-O-O-OOO • n >• "1 — o •o o> O O IM o q y Ol —     | m n O T> O -K O 
j OIX IU o t ~j o o ,n "» < toco >         1 ,-> in o a OJ JJ 1 

CJ               i 1   ^ 
Ui 
•«4 u. 

1; 

m .-.j H O V  ,f» CM ro o ^ ■J < !U < J '.u O- ^ r~ rv D «J r. •> .— < X. <? V) r» r» — «. < ♦-« 

o !fl"Q -^ O -1   M -   1    1 1 n 
z s • - X 

1                 1 
I ... .1   

<   1    1     1 1 L 5 s 
1   __   ^ 

<D 

^•H 

a> 

=1 tj< N »I N «I 

-100- 

L 



H 

NAVIIO»  PRELIMINARY DISC MODEL CALCULATION 

MEAN  POT.   DEP.       -876.81   VOLTS, 
LAMBDA  h= 10.79 MM;     BETA  E=_ 
DISK CHARGE        I.3bd05ü-l0 CB 
PLASMA  WVUitH 60.o6  MM;     PLASMA 

HEDUCED_PLASMA 
POT.   DER.   FROM SUM OF 
VOLTS  AT NODES 0 THRU 

BEAM VEL. 
bü2.3 

I,0789 70 08  M/S 

FREQ       I.17860D 
FREQ       6.773930 

DISKS       -8 79.31   VOLTS 
3     DUE TO DISC AT NODE 

10 
09 

R/S 
R/S 

0« 
-28.62b 

ÜAMMA(-1)= 
0.6629 
648.   OHMS 

-10.097 
'392.3 

-D06.936     -152.5 
BETA(-1)= 628.3 
Ml   =     0.b972     M2  = 
TOTAL  IMPEDANCE* 
PIERCE'S  C  =     0.08123     SMALL   B  =       0.901 

QC  =    0.35880     SMALL D  =       0.030 
PHASE SHIFT PER CAUXi  = 2/4,3. DEG.(   1 .524PI) 
VOLTAÜE  ATTENUATION  FACTOR  PER  CAV.=0.9886 
rtl=  202.54     rt3=     44.09     W5?=       3.69 

ÜAMMA*A=  1.5045 

Cy V .     VOLTS 
R-F 

P Ort ER 
WATTS 

GAIN     I-FUND    ABS JBEL_ 
PHASE 

CAV.LOSS 
WATTS 

EFFIC. 
PCNT. 

EN'.BAL 
NO. DB          /I-DC  PHASE PCNT. 

L. 64.40 3.200 O.CO 0.0000       0.0 .I80..0_ .0.073 Q.00 100.00 
2 63,83 3. M4 -0.08  0.0020   356.9 184.4 0.072 -0.00 99.97 
3 68.35 3.605 0.52 0.0064   348.5 212.7 0.082 0.00 99.96 

.      4 ö2. 19 
100.48 
 5.213 

8.749 
.  2.12. 0.01 10.339.8 

4.37  0.0161    334.4 
236.5 .    ....0.119 _ .0.00 

0.00 
.99.98 

5 253.5 0. 199 100.01 
6 137.55 14.599 6.59  0.0200   332.4 263.5 0.332 0.00 100.04 
7 177.59 

225.59 
.     24.336 

39.269 
8.8L 0.0262   330.9 

10.89  0.0320   329.8 
265.!_ 
266. 1 

._   0.554  0.01. 
0.01 

100.04 
8 0,894 100,06 
9 275.3/ 53.51 1. 12.62  0.0342   328.4 263.9 1.332 0.02 100,03 

10 337.01 
431.83 

b7.638 
M3.890 

14.38 0,0435   325.8 
i6.53 0.0661   321.5 

259,5_ 
255.9 

.      1 -.995.. 0,03 
0.05 

99.96 
1 1 3.275 100.00 
!2 64.40 3.200 -0-00 0.0883   313.1 266.1 0.073 -0.00 99.78 
13 64.40 

265.71 
3.200 

54.477 
-0.00  0.1 102   3M.5 
12.3!   0.1236  321.9 

270.5 0-073 -0.00 
0.02 

99.76 
14 272.3 1.240 99.75 
15 448.45 155.1/6 16.86  0.1i4d   324.9 274.2 3.532 0.05 99.74 
16 598.21 

741.84 
276.121 
424.638 

19.36 0.1007   324.7 
21.23 0.1056   321.5 

269.4 6.285 0.09 
0. 14 

99.62 
17 257.6 9.666 99.58 
18 907.18 635. OJb 22.98 0.1 2b6   316, 1 248,8 14.455 0.20 99.70 
19 1203.05 

1J/9.Ü2 

1116.765 
1923.8J1 

25.4 3 0.209 3   309.3 
2 7.79  0.2520   305.2 

251.2 
257.8 

25.421. ...0.36 
0.62 

.99.60 
20 43.792 100.01 
21 2034.24 3193.030 29.99  0.3082   302.2 260. ^ 72.682 1.03 100.66 
22 258 7.10 5164.4^3 .32.08.0.3802  299.4 260... J17.557 __J .67 101 .28 
23 3221.52 b007.9iO 33.9b  0.4^92  295.7 256..< 182.282 2.59 101 .39 
24 4174.25 13444.800 36.23 0.6862   290.2 253.0 306.041 4.34 101 .29 

TRAN SEEK  Z  COüHDINATEo». 
0.1 /5209     0. 176041     0.176711     0.178032     0. 80871 0.184001 

TRAN SFER  VELOCIIIES   (A IE -7)1 
10. 81^04       9 .98402       9. 78672 .10.23752     11 .2092 7.. .11.49444 

Figure 36(e): Subroutine NAV118, disc model program, first part. 
The last A lines are the disc positions and velocities 
which will form the starting data for the ring model 
calculation. 
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CAV. 
HÜ. 

2b 
26 
27 
2b 
29 

VOLTS 
R-F 

5237.83 
6457.7a 
73ÖO.3ö 
bOlI,59 
7740.13 

POWER 
WA'ITo 

21163.920 
32173.300 
4202V.530_ 
49526.040 
46226.69C 

GAIN  I-FUND ABS   HHL 
DB   /I-I)C PHASE PHASE 

38.21 0.8366 283.4' 246.8 
40.02 1.082ö 273.9 237.6 
41,18_J_, 1 22 1 262^7.. 222.2_ 
41.90 0.9902 254.4 216.9 
41.60 0,6322 248.3 170.9 

30 6922.96 36981 . ISO .40.63, 0.5769. 245^-2 JL9..9._ 

CAV.LOSS 
MATTS 

481.864 
732.468 

_956.709. 
1 127.350 
1052.248 
841.794 

T =  2.I1667Ü-09 SEC, 
TOTAL CAVITY LOSSES = 
TOTAL SEVER POWEH = 
ELECTRONIC EFFIC. = 
RESIDUAL BEAM K.E.= 
Z COORDINATES, MM: 

NO = 127 STEPS 
5984 . 386 M _ _ 
147.1 N 

13.92 PCT 
71.Q7 PCT  

222.350  222.077   221.465   227.539 
COORDINATES: 

223.977 
GRID 
3.550555 

VELOCITIES (M/SEC/1E7): 
8.658630 8,412133.0.160522 
RELATIVE ENERGIES: 
0.64399  0.60785  0.57484 

DISTANCE =   217.59 MM  

2.645568  2.494014  2.153943  5.531154 

10. 908069.._J9 .9.96846 

1,02206       0.85844 

226.398 

4.896686 

.5^879843 

0.67732 

EFFIC. 
PCNT. 

6.84 
10.39 

.13.57. 
15.99 
14.93 

_J 1 .94 

EN.BAL, 
PCNT. 

100.73 
99.64 
96.39 
94.34 
89.18 
87.00 

Figure ^ (f): Subroutine NAV118 continued; this case is overdriven, 
since the power peaks at 49.5 k.W at cavity 28 and has 
fallen to 37 kW at cavity 30. It illustrates the fact 
that the program does have overdrive capability, though 
the accuracy, indicated by the Energy Balance (far 
right column), is beginning to degrade beyond saturation. 
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n 

—     i 

IRANSf     SUBDIVISION ür  DISCS   INTO  RINGS       
AND COMPUTATION OF CHANGE-INChPENDENT MATRICES 
UNCÜRRBCTED  KlfJÜ  CHARGE  (EQU.b-bO) 81.28407 
CORRECTION FACTOR FOR CHARGE» __,Q.944  
CORRECTED RING CHARGE: 76.73216 
CORRECTION FACTOR FOR RADIAL SPACING»        0.860 
CORRECTED RADIAL SPACING {EQU.5-4y,y (MM)» 0..38  
STARTING COORDINATES (MM) AND VELOCITIES (MM PER TIME STEP) 
RING R XDOT YDOT ZDOT 

L 

I 
2 
3 
4 
5 
6 
7 
8 
y 
10 
11 
12 
13 
14 
lb 
16 
17 
18 
19 
20 
21 
22 
23 
24 

0.382 
0.382 
0.382 
0.382 
0.382 
0.382 
0.76S 
0.76S 
0.76b 
0.76b 
0.76b 
0.76b 
1.14/ 
1.147 
1.14 7 
1 .147 
1.147 
1,147 
1.529 
1 .b2v 
1 .b2y 
I .b29 
1 .b2y 
I .529 

0.000 
0.000 
0.000^ 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

I 7b.208 
I 76.041 
176.7JJ . 
i 7ü.032 
I 80.d7t 
184.001 
i 7b.203 
176.041 
176.711 
178.032 
!b0.871 
.84.001 
i 7b.208 
176.041 
176.71 1 
l78.032 
180.871 
164.001 
17b.208 
i 76.041 
176.711 
178.032 

)84.0G! 

0.382 
0.382 
.0.382_ 
0.382 
0,332 
0.382 
0.76b 
0.76b 
0.76b 
0.7öb 
0.76b 
0.76b 

.147 

.147 

.L47_ 

.147 

.147 

.! 47. 

.b2y 

.b29 

.b29_ 

.b29 

.b29 
■.t.52g 

0.00000 
0.00000 
J) ..00000 
0.00000 
0.00000 
0.00000. 
0.03000 
0.00000 
O.QQOnQ 
0.00000 
0.00000 
ü.00000_ 
0.00000 
0.00000 
0.00000.. 
0.00000 
0.00000 
.0.00000 .. 
0.00000 
0.00000 
.0.00000. 
0.00000 
0.00000 

..0., 00000 

0.00099 
-O.OlbOl 
-.0.02869 . 
-0.0b071 
-0.03837 
.0.02146. 
0.00194 

-0.02926 
.-O.Obobb 
-0.10649 
-0.07768 
._ 0.04220 

0.00291 
-0.04378 
-0.08436 
-0.160V7 
-0.1:69b 
_0.0632b. 
0.00380 

-0.0b699 
-0.1J102 
-0.22166 
-0.1b643 
. 0.0ü286 

0.63667 
0.b87b3 
0.b7b97 
0.60250 
0.6b969 
0.67648 
0.63667 
0.58758 

.O..b7b9X 
0.602b0 
0.65969 
0.67648 
0.63667 
0.b87b8 
0.b7b97 
0.602bO 
0.65969 
0.6 7648 
0.63667 
0.b87b8 
.O.b7b97 
0.602b0 
0.65969 
.0.6 7648 

Fig-are 36(g) Subroutine TRANS Output.  The discs of Fig. 36(e) 
are subdivided into A rings each. The Z and ZDOT 
values correspond to the last 4 lines of Fig. 36(e), 
with the conversion of units indicated above the 
table. The time step was given in Fig. 36(b). 

IL 
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..     _RNÜTHJ«     HING IHAJECTühY CALCULATION, 

I   h.Z  (KM)   FOß EACH HIR; uVtHY 20TH TIME STEP 
—    h 

1^ STEP   .    0 
|    I _0.3b2_l 75.P03 

•>    0.3b2     JÖO.faVl 
V    0.76b     1/6.711 

1.3 1**41 L75.20Ö 
17     1.14/     IbO.öVi 
?A     1.32y     1/6.711 r; 

2 0. 
6 0. 

10 0. 
14 1. 

STfcP      20 
I     0.176 

 b__0.066 
V    0.204 

13 0.366 
_17_0.I81 

21     i.Oü3 

382 L76.04L 
302 184.001 
76b 178.032 
l_47 176..04J_ 

JLJUlä. 
7    0.761J 

11     0,76ti 
Jh UAL 

22 
1 .147 
1.529 

1Ö4.001 
178.032 

19 
23 

1.529 
l „529 

.L76.JIL. 
175.208 
180.871 
J76.J.LI_ 
175.208 
180.871 

b 
12 

J>..382 178.032. 
0.765     176.04 1 
0.765     lb4.noi 

_L6 UJ 47 17ö.032- 
20     i.529     176.04 1 
24    1.529     184.001 

187.350 2    0.139     187.327 
.194.212 6_O..I22_J96Jt633._ 
lb7.Vld 10    0.2Ö6     190.246 
187.Jll 14 0.220 1Ü6.998 

.194,22a l8__D,4ti5 196.497. 
Ib7.3l3 22     1.109     190.273 

0.218     ISO.002 
.0.442 Ib7.25a_ 
•J.0b2      194.220 
0.412      ib/.740 

_DJJ3 Ia6..8l5_ 
23    0.423      194.197 

II 
15 

_L2_ 

4    0.147     190.210 
_b_jO.I40 187.210. 
12    0.231      196.bSl 
16    0.563     190.267 

.2?    0.650_186.5f l_ 
24    0.960     196.359 

..STce_.    40 „ 
I     0.434 
5     0.3S0 

_ 9 _0.v33 
13    0.b09 
17     1.163 

._21     2.5t.6_ 

STbP 
_ I 

b 
9 

13 
17 
21 

60 
134 
0b4 
378 
209 

Ü.099 
2.5b6 

STEP 
I 

-.5 . 
9 
13 

_I7_ 
21 

-aTbP 
I 
5 

.„f_ 
13 
17 

80 
0.367 
O.Ud 
0.7C2 
0.634 
0.619 
2.586 

99 
0.1 13 
0.143 
0.054 
0.645 
0.619 

199.253 2.   0.581      198.445. 3    0.746     200.022 
20'/.465 6    0.365     207.03b 7     0.8öb      19Ö.8bG 

J 99. bO i 1X/_Q.4 14_202.955 1.1 0.803_ 207.51 5_ 
198.461 14 0.028 197.356 15 0.978 19b.997 
207.608 18 0.857 207,079 19 1.03y 197,473 
Ay.3..2Z6 22    0.I91_2Q2..624        23 lJ..Q4ii__207.bbä_ 

211.059 2_0I435_209.361 3_D.437__2IJ .748^ 
219.756 6    0.219     216.53S 7     0.077     210.220 
211.340 10  .0.-J45     216.098 II     0.419     2!v.yl6 
209.59 1 1 4_0,.406._.20.7..634_ 1.5 1.365_ 210.003. 
220.175 lü     1.131     216.903 19    0.356     208.102 
193.2/6 22    0.853    215.304 23     1.559     220.339 

4    0.219     202,b69 
8    0.189     198.059 

J2_J).794__207.Ö5Z. 
16    0.b40     202oy50 
20    0.997     lyb.eoi 

-2.4_0._4 62 2Q6.bJi- 

_-4_ 
8 

12 
JA, 
20 
24 

.0.274 2l5.ö6a_ 
0.172     ?0S.6Öü 
0.094     216.6y2 

.1 .184 -.216.1 18 
2.570 199.448 
0.621      216.104 

222.804 2    0.711     2ly.951 
228.9o 7 6_0.406 226.583 
222.624 10    0.674     228.626 
220.450 14    0.456     218.219 
228.62J 10 D)503_ ^2_/.64ü 
193.276 22     1.591     228.601 

3    0.464     223.216 
_L_0.66?_221.467_ 
II     0.432     228.713 
15    0.4i>l      220.513 

.jLy_Q.J 46 ZI Ö.J0b_ 
23 0.333 228.929 

220.69:» 2    0.4y5     229. lOfc 3 
22ö.93/ 6     0.227     228.614 7 

.228.702 J0_0.674_22b.626 LL 
229.120 14    0.471     228.975 15 
22b.628 Id    0.257    228.761 19 

0.254     228.874 
0.713     228.634 

J0.432_22b.713_ 
1.183     220.763 
0.3fal     228.832 

JL    L   2l.__2.5b4....|y(3.216 ZZ Ub^J_22^.6Ql.._ Z.l_0JJ2J_22ß^2 

4    0.389     228.711 
_.8_0.o04._2;c.,:iy i_ 

12    0.654     226,y.'.3 
16    0.506     226.835 

-2Q_2.57(l_J99.44b_ 
24     2.466     223.029 

4    0.389    22b.711 
8    0.658     22b.845 

J2._0.480_.229.070- 
16    0.506    22b.fa35 
20    2.570     199.448 
>4_J>^4ii6 223- Q2SL 

I 
F 

Figure 36(h): Running tabulation of R and Z coordinates only. 
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2.  TABULATION OF COLLECTED RINGS 

RINürf       FERRULES       WATTS 
20  27 16016.7  
21 27 190 20.9 
24                      30            23145.9 

3.     FERRULE   BOMBARDMENT POWERS» 
FERRULES       RA11S 

71 ! 

31 

23 
24 
2b 
26 
27 
2b 
29 
30 
31 

__ 0.0 
0.0 
0.0 
0. J 

35037.7 
0.0 
0.0 

23145.V 
0.0 

4.  STATISTICAL SUMMARY: 

RMS EXIT ANGLE, 
MEAN AXIAL EXIT 
RMS AXIAL EXIT 
RMS RADIAL EXIT 

DEGREiiS 
VELOCxTY 
VELOCITY 
VELOCITY 

.^6.46     . 
10.0597 
10.1166 
1.2061 

Figure 36(j):    Summary Tabulations. 

-106- 



CO 

CO 

to 

> 

2 

oro 20'0 oo-if 

-107- 



■m 

NflVTEST 3/3/76 

7 

Figure 38: 

X-IN. 

X-Y Plot of Selected Rings — the view looking 
down the tunnel from the cathode end. The plot 
is unduly angular because a coarse plot Interval 
was used. 
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