
ijJii«! Mim mum "■ HI m •^P""^ i '■ mp^m^^MH«

U.S. DEPARTMENT OF COMMERCE
National Tertaical infonnation Senice

AD-A025 117

IMPRECISE PROGRAM SPECIFICATION

UNIVERSITY OF SOUTHERN CALIFORNIA

PREPARED FOR

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY

DECEMBER 1975

 — - - - -- -■ ■ - —- - -

Il"11 mamm^mmmmmmmmmmmimmmmmmmmmmmmm

Robert M. Bolzer

/

ISI/RR-TiK
Dectmbtr 1979

Imprecise Program Specification

iß

©

D D C
fn)E©!2Grii22ro

r^ÄTIONOTS^^QJin U^ JUN ft 1976

UNIVERSITY OF SOll HliRN CALIFORNIA

k DLrtributix

iS^

Unlimited riSISED 0F
INFORMATION SCIENCES INSTITUTE

4676 AJmiuilty Way/Marina del Rey/California 90291

(2l.i)822l'.:i

REPRO0UCE0 BY

NATIONAL TECHNICAL
INFORMATION SERVICE

U. S. DEPAeTKENT OF COMMERCE
SPRINGFIELr, VA. 0161 ^

i "in n mmmmmmm'mmmm**timimmm*^^™>mim*-'wmmmB**m mmmmj^mmmmmmmmim

UNCLASSIFIED
StCOAtTV CLASSIFICATION OF THIS PACit f1Wi«n D«l« gtHf 4)

REPORT DOCUMENTATION PAGE
1. REPORT NUMBER

ISI/RR-75-36

2. GOVT ACCESSION NO

4. TITLE (and Subilll»)

Imprecise Program Specification

READ INSTRUCTIONS
BEFORE COMPLETINO FORM

S. ReCiRIENT'S CATA.OG NUMBER

S. TYPE OF REPORT * PERIOD COVERED

Research Report

«. PERFORMING ORO. REPORT NUMBER

17. AUTMORf»;

Robert M. Balzer

9. PERf0nMIWGOROANIZAJ'<)N NAME AND ADDRESS "JoC/Information bciences Institute
4676 Admiralty Way
Marina del Rey, CA 90291

y

II, CONTROLLING OFFICE NAME AND ADDRESS

Defense Advanced Research Projects Agency
1400 Wilson Blvd. , Arlington, VA 22209

1. CONTRACT OR GRANT NUMBiR(«)

DAHC 15 72 C 0308

10. PROGRAM ELEMENT. PROJECT. TASK
AREA • wr RK UNIT NUMBERS

ARPA Order * 2223
Program Code 3D30 & 3P 10

12. REPORT DATE

December 1975

IT MONITORING AGENCY NAME C ADDRESSf» <««<..«>' /roiTConffO/Hn« OHIe»)

13. NUMBER "F PAGES

30
IS. SECURITY CLASS, fol thl» n^rt)

Unclassified
1»«. DECLASSIFY ATION/DOWNORADINO

SCHEDULE

16 DISTRIBUTION STATEMENT (ol mil Rmporl)

This document is approved for public release and sale; distribution unlimited.

o'd^
17. DISTRIBUTION STATEMENT (C Hi* fltmcl tnfnd In Block 30. II dlllftnt fro« K*ort)

JUN 2 »71

l5lL"'. L.

m
U. SUPPLEMENTARY NOTES

Presented at Consiglio Nazionale delle Ricerche ISTITUTO DI ELABORAZIONE
DELLA INFORMAZIONE meeting on 20 Years of Computer Science, Pisa, Italy,

16- 19 June, 1975.
19 KEY WORDS (Cenllfni* on nrjf »Id» II n»e»»»fy mid Idmntllr br »'»«* ntmb»t)

Automatic programming, domain- independent, imprecise specif-cat.on,
natural-language, nonprocedural language, nonprofessional computer user,
problem specification, specification language

7o. ABSTRACT fConllnuo on rororoo mid, II nocoooory «"* Id^lltr »F Woe* numbmt)

The first section of this report sttempts to chartcterze the field of automatic
programming through a general model describing the stages and processing required. The
second discusses a particular project as a specialization of the general model. The final
section focuses on the problem of imprecise specifications and how they can be

understood.

DO , 'VTn 1473 "ITIOM OF I NOV •• IS OBSOLETE j UNCLASSIFIED
S/H 0102-014-6601 »KCUHITY CLAStlFlCATlOM Of THIS RAOl (Whm, Dm* m*r*)

 - - -

11 " ■,l1 r A m iiiii-iM "■" " '

1SI/RR-75-36
December 7975

Robert M. Bolzer

Imprecise Program Specification

IN Mr

m 3^
■MNIBIUCH
«IIIflMTiaH

Iktl t.'CtHH

INFORMATION SCIENCES INSTITUTE

UNIVERSITY OF SOUTHERN CALIFORNIA im 4676 Admiralty Way!Marinadel Rey/California 90291

'215)8221)11

THIS RESEARCH IS SUPrORItr BY THE ADVANCED RESEARCH PROJECTS A'JENCY UNDER CONTRACT NO DAHCI9 72 C OSOB ARPA ORDER
NO. 2223. PROGRAM CODE NO 3D30 AND ?,PtO.

VIEWS AND CONCLUSIONS CONTAINED IN THIS STUDY ARE THE AUTHOU S AND SHOULD NOT BE INTERPRETED AS REPRESENTING THE
OFFICIAL OPINION OR POLICY OF ARPA. THE US GOVERNMENT OR AN> OTHER PERSON OR AGENCY CONNECTED WITH THEM

THIJ DOCUMENT APPROVED FOR PUBLIC RELEASE AND SALE: DISTRIBUTION IS UNLIMITED. "
It

-- - ---

 *■ « ■' " ^^M

iü

CONTENTS

Foreword «

1. Introduction 1
A Global View of Automatic Programming
The Four Phases: An Overview 3
The Automatic Programming Model .'

Problem Acouisition 4
Process Transformation S
Model Verification 5
Automatic Coding 6

2. The Automatic Programming Project 7
General Approach 7
Restrictions 8
Specific Approach 9
Current Status 10

Plans 16

3. Imprecise Specifications 13

4. Conclusion 2i

-- — MttMilMMMfllMMiniMi^JHM

I • wwmmm^**m.i mmmm ——— '"■^

IV

FOREWORD

This paper was originally presented at a Meeting on 20 Years of Computer
Science, Jun« 16 - 19, 1975, at Pisa, Italy, sponsored by the Instituto di Elaborazione
detia Informazione under the aegis of the Consiglio Nazionale deile Ricrrche. It
appesrsd in the Proceedings of a Meeting on 20 Years of Computer Science, Supplement
1 of Volume XII of the journal Calcolc

^ ILI aa i IUII tmmm*^mmm^*mmm^^mm

i. INTRODUCTION

It is well known that software is in a desperate state. It is unreliable, delivered
late, unresponsive to change, inefficient, and expensive». Furthermore, since it is currently

labor-intensive, the situation will further deteriorate as demand increases and labor costs
rise. Thus the industry faces one of two choices: either increase the productivity of
highly trained, carefully selected specialists or reduce the training requirements through
automation, thereby broadening the base of qualified users. Structured programming, built

around the concept of discipline, addresses the first path, automatic programming the
second. We feel that the first approach will perpetuate the current crisis as systems
continue to become more complex. Only automating the process can control the enormous
complexity, improve the reliability, modifiability, and efficiency, and reouce the cost. For
this approach to be successful, the system must acquire and use a semantic description of

a domain—a particular universe of discourse—to understand the user's statements, fill in

omitted details, and maintain consistency.

A GLOBAL VIEW OF AUTOMATIC PROGRAMMING

This section presents the author's personal framework* for characterizing automatic
programming systems in terms of how a task is communicated to the system, the method
by and time at which the system acquires the knowledge to perform the task, and the

characteristics of the resulting program.

One goal of any automatic programming system is to allow its users to state their
problem and any advice about its solution in terms natural to the problem. We treat both
the native terms of the field and terms from other fields which utert have found useful to
describe and conceptualize problems and solutions as the problem domain terms of a given
field. With this definition, we conjecture that the solution of every computable problem
can be represented entirely in problem domain terms as a sequence wnich may involve
loops and conditionals of actions in that domain which affect a data base of relationships

* This vww r»tultid from th« aulber't ducuitiom wi<h tnd tufiMfioni from nunwrout celtoaf«Ml, for which

ho n dooply indobtod Thw Mciion it • condonMtion of pert of ■ hrftr work (R. M Balzor, Automatic

Protrtmmim. USC/Information Pcwncot Inititut«, Soplombor 1972 [draft]) which attompU (e atructur* »ho

fwU by moan» of (ho concoptutKiation ouproaaod horo. Tho inforoalod roador ahovM conauH Ihia work, which

doacribot Iho ntuot in traitor dotail and proaontt aupportinf ovidonco.

 .^^_^ ^_^ ^ ^ ,. . mmmum* ^h^^^L^^^Ä

mmm'jm mmmmmm "■""'■ m^mwmm ^MIWWWI ■*» PI IHIIMI

INTRODUCTION

batwen the .nfitie« of the dom.ia Included either .s part of the d.t. base or as .

JLSLTJS r S 8,M"y COmP,ereS ^ m0del '^ m8keS questi^s or ^~ evolving 'Tzi^ %: r -ln a s,rong sen$ ^a soiution is • *-' --'•t-" 3 the domam. The systerr models at each step what would occur in the domain.

SO|VBdTTJTr,an! ^ 0f ^ ab0V9 COnJ0CtUre is that any comPut«ble P~W«« can be
sdved and hence dascr.bed. in terms of the nroblem domain. This enables us to divide
he oluhon .nto two part,: external and internal. The former is the problem
pechcfon g.ven by the user in completely domain-specific terms. The requireLt for

such users .s n3 longer a comprehensive Knowledge of computers, but rather the ability to

^Thl^n: elfyJLhe LT: rei"tion$hips betw tities of the"— 2^
ST JTnhf . a,a 'n 8dditi0n' SUCh USerS Sh0uld hav9 • r0u8h «wareness of

where needed m he form of more appropriate macro-actions, recommendations about the
use of certam act.ons. and/or imperative sequences which will solve all or part of the
problem in problem-related terms.

m fh ^ ^T"?1 ^^ i$ COncerned first with ««*«• « solution in problem-related terms
(f ths has no already been provided by the user), second with finding efficient solutions
g.ven the ava. able computing resources. Such optimizations occur at two lev... beyond
what ,s normally considered ontimi^tion. First, at the problem level, recognition th.t

^ ^ c" 'T' rdati0nshipS are ""^ "*** N Possible to remove them from
the model. Second, s.nce only part of the state of the modelled domain is required (and

^1. » KV0'"!! ^ ,he S0,Uti0n Pr0CeSS) rather th8n - comP|e»e si^«t*on of the
model at each step, the system can employ alternative representations which require less
maintenance and which either directly mirror the required part of the domain state or
•How ^ P^« to be computationally inferred. Such representations may also permit .
more d.rect solution. These optimizations form the main distinction between the code
leneration part of an automatic programming system and current state-of-the-ert
compilers.

^u Thl*\0W defini,,0n of " •utom^ Programming system is one which accepts .
problem In terms of a modol of the domain, obtains a solution in terms of this model, end
produce, an efhcent computer implementation of this solution in the form of a program.

- — - - -

wmmmm 11 ",' ' W^" wmr* mmm 11 ■"i«"i ■ Ill» MIllOT.RLK M 1

INTRODUCTION

Tff« FO(/iR PHASES: AN OVERVIEW

Automatic programming begins with the application of problem solving to problem
statements rather than problem solutions, i.e., with the attempt by a computer system to
understand the task being specified Once the task has been understood if it is not in the
form of a process it must be transformed into one. This is the traditional area of Artificial
Intelligence and human program desiga The resulting process model must be verified as
be -„ '.he one desired by the user and adequate for the user's problem. If not, it must be
modified and transformed by the above steps and reverified. It must then be made into an
efficiently running program This involves automating the ad hoc knowledge of computer

science.

A complete automatic programming system thus consists of four major
phases: problem acquisition, process transformation, model verification, and automatic
coding. Problem acquisition is the process by which the system obtains (Da description

of the problem to be solved or task to be performed in a form processable by the system
and (2) the knowledge needed to solve the problem. The result of this phase is a well
formed problem and knowledge base which can be manipulated by the system and
transformed into a high-level process for solving the problem during process

transformation. The third phase is used to verify that this process is the one desired and
that it is adequate for the prnblem solution. The fourth phase, automatic coding, fills in
the necessary details, optimizes .he process, and produces the actual code to solve the

problem

THE AUTOMATIC PROGRAMMING MODEL

One of the most striking anH deep-rooted features of the automatic programming
model presented here is the interface it creates between a high-level external
specification of a problem which omits data structures that are not part of the domain and
the internal implementation of that specification in an efficient representation.

This choice of a basic interface has predicated large parts of the entire model. This
choice as the basic interface within the automatic programming model can be expected to
provide four important gains. First, the complete model conjecture states that euch a
division is feasible for stating and solving domain-dependent problems. Second, since the
choice of a data representation and the maintenance of its consistency occupy such a large
portion of current programs, their omission should drastically reduce the size and
complexity of the resulting specifications. Third, since so much detail has been removed
from the specification, it is easier for the system to understand what the task is rather
than to become lost in the details of what is going on Finally, since the problem has not

—,^" *~~- mßmm

INTRODUCTION

b—P overspecif.ed with a particular choice of representation in order to express it the
system is now free to choose a representation that will efficiently solve the problem at
hand. The system has been given increased flexibility in its choice and may well
outperform humans in correctly making representation choices; this is true not because the
system is more intelligent than the user, but because it can cycle through more
possibilities and bring to bear a greater level of effort in such optimizations than any user
it willing or able to invest in such issues.

Problem Acquisition

The problem acquisition phase is concerned with obtaining an understanding of the
user's problem and the domain in which it exists so that the process transformation phase
can attempt to fino a sequence of transformations or operations in that domain that will
obtain the solution required by the user. Thus, the problem acquisition phase is

concerned with building a model of the user's domain that represents the interactions
between the entitle« of that domaih and the effect on those entities by the allowed
transformations or applicable operations. Only by developing such a model of the user's
domain can the automatic programming system have any degree of generality in the
domains for which it is applicable.

Currently, all such models of user domains have been coded into a system. It is
proposed here that such models can be specified to the system by its users and that
through these models the system can acquire the Knowledge necessary to solve problems
within these domains and to understand what is required for such a solution. The two
main issues, then, are what constitutes an adequate and appropriate model and how is such
a model specified or communicated to the system.

The adequacy of a model is dependent upon its use in solving the problem.
Operationally, this requires that the automatic programming system be capable of finding

th* complete set of applicable transformations on the model and be able to calculate the
consequences of each of these acticns. The appropriateness of the model is a measure of
how welt suited the available transformations are to solving the problem at hand, Lt, an
adequate model can be made more appropriate by adding to it nonprimitive
transformations made up of a sequence of primitive ones, which are suitable building
blocks for the problem being posed. The model may also be made more appropriate by
including recommendations obout the suitability of alternative strategies for sequences of
model transformations. Users can significantly reduce the well Known problem of building
a powerful general-purpose problem solver by tailoring the specified model to make it
more appropriate for the pioblem at hand.

mmm^m*—'

IWTROOUCTION

The basic viewpoint, then, is to process the user's natural language communication
with the understanding that it is meant to convey to the automatic programming system a
model of his problem domain. Towards this end the system can extract entities and the
relationships be.ween them from the communication. It can further query the user as to
the relationships between entities which have not as yet been explicitly specified but
which have been inferred by the previous communication. Such inferences by the system

•bout the completeness of the model require a sophisticated understanding not only of the
communication but of the types of models used for problem domain specification.
Unfortunately, our sophistication in both these areas is quite limited. In communication we
need to be able to understand how information is ordered for presentation, how context is
established and utilized, how the capabilities of the recipient affects the communication,
and how these capabilities are perceived by the speaker. In modelling we need to have a
space of possible models, an understanding of how the parts of a model interact, a means

for recognizing incompleteness and inconsistencies in models, a means for obtaining all the
allowed operations on the model, and the means for transforming the models with these
operations.

Proce** Tramformation

Our contention ;s that the main activity in programming la not finding a solution but
In finding a solution which omits the irrelevancies and abstracts the necessary processing
for efficient implementation. This is a strong contention, but for most programming

problems a solution is Known; the main (oncer n is finding a more efficient one. This is not

optimization in the normal sense of «he term. The concern, rather, is with finding

irrelevancies in the complete model and representational abstractions based on the
required processing of that model. Once these logical representations have been found,
they must be efficiently implemented

The above contention, if true, greatly shifts the emphasis within the process
transformation phase from that of a general purpose problem solver solving problems in a
domain-independent way to modifying a solution so that it does not maintain any irrelevant
portions of 'he complete model and abstracting the relevam portions into a more efficient
representation for the processing required Together with problem acquisition the ability
to find representational abstractions and transform complete model solutions into those
which utilize these representations represents the main technological drawbacks to
obtaining an Automatic Programming system.

Model Verification

Although the Automatic Coding phase will produce only correct code, program
testing cannot disappear. This is because problem acquisition and process transformation

*" ■" tammmmmm

IMROOUCTION

will undoubtedly employ a number of heuristics and may very well incorrectly interpret

either the problem statement or the allowed transformations that can occur in the user's

model. Because of this, the user must verify that the system created is the one that he

desired.

The technology for this is at hand. It consists of today's methods wherein a test

case is given to the system and its performance is used to validate the model that it

constructed. Additionally, the system can aid the process by generating test cases of its

own which probe uncertain areas that could have led to either misunderstanding or

incompleteness in the original model. One might also expect that program debugging

would disappear, but for very similar reasons it too will remain under automatic

programming. If there is a disparity between the user's model and the system's model,

then the reason for this disparity must be ascertained.

Automatic Coding

Automatic coding is concerned with finding an efficient computer implementation of

the process description obtained from the preceding phase. This description does not yet

include a choice of data representations, but does specify the major processing elements

and sequences. It is intended that this phase will not need any domai i-specific Knowledge

except for input frequency and distribution information. The major logical representation

and processing decisions have already been made in process transformation.

Of all the phases in the Automatic Programming system, automatic coding is the one

essential component. Without it the system cannot produce programs, and hence, though

it may be useful, it cannot be an Automatic Programming system.

Most people are not truly creative when they reorganize sections of their program

to increase efficiency. Rather than inventing totally iW representations, they appear to

select one out of an ill-defined set of such possible representations and adapt or modify it

to function in the current situation. This is probably the main challenge to the Automatic

Coding phase: the ability not only to cycle through a set of alternative representations,

but also to adapt and modify them to the existing situation. Such an ability would vastly

increase the applicability of a small set of alternative representations.

From such automatic coding studies, one would expect to see both a set of heuristics

and, eventually, a calculus for data representation choices.
'

»_„_, «MHMMMIiBaaMkMai M«

WWPi^iPll^i""^"",^"^iW".wi" i-in ii i.. »min*^m*!rmi^''^^~^^mm*mf!*m

2. THE AUTOMATIC PROGRAMMING PROJECT

The goal of ISI's Automatic Programming project is simply to allow experts in en
application area (who are not programmers) to functionally specify their application

directly to a computer system, with the system transforming this input into a precise
operational functional specification of the application. Such an accomplishment represents

« testable modol of the poposed application which could be used as follows:

• To examine the functional behavior of the application against the
requirements and, if necessary, to modify the functional specifications

until they satisfy ths requirements.

• As the inpuv to an automatic test data generatcr which would develop

test cases to comprthensively exercise th« model.

• As a precise specification of the desired application program from
wh'ch a human programmer '/Jd generate the application and

against which the implementation could be tested.

• Eventually, as the specification of the desired applic/ion program,
for an automatic program optimizer—thus eliminating, ultimately, the

need for programmers.

Because programming activities are so diverse, such a system must be capable of

accepting specifications for a wide variety of applications.

GENERAL APPROACH

Functionally, the two most important characteristics of our proposed system are its
independence from any particular problem domain and its attempt to deal directly wun
nonprofessional computer users without the intervention of computer
programmers—choices which have largely dictated the direction of the project. Domain

I independence requires that the domain "physics"—its objects and their relationships with
other objects, its laws, its transformations, and its constraints—be available in a
proccssable form within the system and that the system be general enough to deal
effectively with a wide variety of such physics. Direct interaction with nonprofessional
computer users me^ns that.both the physics and the problem statements will be in

 ■-- — ——~— -- ^—-——^_^-

............ ... IIMH .••■■ I ill« ■»IN i . <mmmmm''w^mmmm .1^1 I in. liw.j.i

AUTOMATIC PROGRAMMING PROJECT 8

problem-oriented (as opposed to computer-oriented) terms, preferably in natural language,
end that they will be loose" descriptions containing incomplete, inconsistent, and

irrelevant statements rather than a precise formtl structure. The primary goal of our

system is to acquire from a dialogue with the user the physics of the loosely defined
domain, structure it, and use it to understand further communication and to w<te a
program accomplishing the use's stated tasks.

The constraints and restrictions of the computer have increasingly been
incorporated into programming advances for several years. They are manifest in better
languages, automatic storage mechanisms, and optimizations of many forms. On the other
hand, the structure, constraints, and limitations of the problem domain have generally not
been thus incorporated. A major theme of automatic programming (in fact the
characteristic distinction between it and conventional programming) is the use of such
knowledge—an issue which raises a number of questions. If the system is to understand
something of a domain, how is the knowledge on which this unders anding is based to be
represented? What procedures can be made availal 9 for exploiting this knowledge in
guiding the system's interaction with a user and in generating programs? How, in
particular, is the essentially nonprocedural information in constraints and limitations to be
reflected in a procedural form? What can be done to help identify inconsistencies? Hew can
the system be given a capacity for inference similar to that which forms the mainstay 0/
human communication and which allows obvious details to be left unspecified? Will the
system be able f.o understand its own products well enough to be able to modify them in
response to charged requirements? Answers to these questions define the front on which
important advances in automatic programming will be made.

RESTRICTIONS

To concentrate on this knowledge extraction and domain structuring activity, we
have assumed the existence cf a natural language parser which transforms the user's input
into a parsed case structure. Such a parser is currently beyond the state of the art, but
this goal is active!/ being pursued by other groups and we expect it to be available by
the time our project is ready to assemble a total system. Until then, we are manually
transfo. ,;.ing the natural languace input into the case structured form required. If such a
parser does not materialize, we would have to use a more restrictive and formal subset of
natural language.

As a second means of limiting the scope of our w k, we have decided to o.-nit
efficiency concerns for the piograms generated; thus we will focus on generating r
logically correct program for the user's needs without attempting ti optimize it. This
greatly simplifies our effort by allowing us to directly model the :iver's domain in a
data-representation-free manner through an associative data base, hence obtaining

-■ - 1 1 1 1 r - - - -

mm « '■■"■ 1111 ■ ' "■ ' ■ - '

AUTOMATIC PROGRAMMING PROJECT

running programs modeling the user's conception of the problem. By not having to
introduce extraneous deUiU (such as data representation) during the construction phase,
we can concentrate on the program's logical behavior. Furthermore, we firmly believe
that such representation-free and behaviorly specified programs <re the correct way to
program—for both man and machine—and that optimization should occur as a separate and
later phase (not part of this project). It is clear that with such an approach the
maintenance problem would be groatly simplified. The logical-behavior specification would
be modified and the program reoptimized.

SPECIFIC APPROACH

We are building a system with two major components—domain acquisition and model
completion. The domain acquisition component seqi'cntially processes a set of statements
describing the user's problem and the domai t in which it exists. This component is
responiible for extracting from these statements the description of the object being
manipulated, the actions performed on them, the criteria necessary and sufficient to
perform these actions, the constraints which must be satisfied, and the rules for inferring
information not explicitly stated. This information may be given directly, may be inferred
from example usage, or may be assumed in order to make sense of the input. Some of
this information may have been previously acquired and saved in a domain description.

This component is implemented through a production system in which each
transformation rule has a pattern which, if found in the input, activates the rule. An
activated rule will typically assert some extracted Knowledge in the associative data base
and rewrite the input with the extracted information omitted or transformed. This
activation process is continued until no rule matches the (transformed) input. Then the
next input is processed.

A production schema was chosen because of its orientation toward case analysis, its
facility for expanding as new rules are added, and its ability to accept manual
trans.'.'mations for unimplemented rules.

During these transformations, when an ambiguous interpretation is noted, one of
three actions is taken: the problem can be kept for later processing in the hope that new
information wtll resolve the ambiguity; the user ;an be asked directly to resolve the
ambiguity; or the system can establish a backtracking point, assume one interpretation, and
be prepared to back up and assume the other. Currently, only the first two options are
used, since our system has no backtracking capauility.

The model completion component is responsible for all interstatement processing.
Ita main function is to form a program by organizing the actions referenced in the

iMUMitoi M^MMAIUiltfH •fiüüMdMbMti

IWOTW H. ■PH. . ii •m^mmfmmmßmmmmmnmmfmtimmmtmum'mu^ ni»»ni»^wi^ii«wi ■« i ! iim J ■» i^mmmmm^*i^**m[iin ,i -^^»»i

AUTOMATIC PROGRAMMING PROJECT 10

individual statements into an appropriate control structure. These actions are organized
into sequential segments or asynchronously activated demons in a two-stage process.
First, the needs, requirements, and results of each action are analyzed to determine any
implicit ordering restrictions. This partial ordering is then merged with any explicit partial

ordering specified in the input to produce the final ordering restrictions. The second
stage determines which actions should be treated as asynchronous demons and removes
them from the ordering. It then attempts to find a total ordering consistent with the
restrictions. Finally, all action descriptions, action invocations, anc object references are
transformed into an executable form.

CURRENT STiiTUS

We decided to develop our system in the context of a real-word (albeit simplified)
problem. Having selected the significant domain of automatic message distribution, we
have extracted from an existing functional specifications manual a short, simplified, and
very-high-level loose description of a real implemented system.

With the help of some manual transformations this description has been processed
and analyzed by the domain acquisition component. The model completion component is
largely unimplemented, but one part which takes the requirements and results of the
actions described and produces ttie implicit partial ordering is working. Furthermore, it
identifies the inputs and outputs of the system by finding, respectively, the information
used but never produced and the information produced but never used.

The task specification, an example of the manually parsed input, and the structured
knowledge extracted from the input is given below:

Engliih DetcHptiom of MetMage LiAtribution System

1: MESSAGES RECEIVED FROM THE AUTODIN-ASC ARE ROUTED FOR SERVICE-ACTION IF
REQUIRED AND THEN PROCESSED FOR AUTOMATIC DISTRIBUTION ASSIGNMENT

2: IF THIS ASSIGNMENT CANNOT BE PERFORMED AUTOMATICALLY BY THE SYSTEM, THE
MESSAGE IS DISPLAYED ON THE CRT FOR AN OPERATOR TO PERFORM THF
ASSIGNMENT MANUALLY

3: THE MESSAGE IS THEN DISTRIBUTED TO EACH ASSIGNED OFFICE

4: EACH MESSAGE IS ASSIGNED FOR ACTION TO A SINGLE OFFICE WHICH IS REFERRED
TO AS THE ACTION OFFICE

.

-—--- —

_,.— '" ' '■".'■"•«— "' ■*"
w^mt^f^ mm'»' i •^vqamm^"^^

AUTOMATIC PROGRAMMING PROJECT 11

5: THE NUMBER OF COPIES OF A MESSAGE SENT TO AN OFFICE IS A FUNCTION OF
WHEFHER THE OFFICE IS ASSIGNED FOR ACTION OR INFORMATION

7:

MESSAGES THAT ARE CLASSIFIED TOP-SLCRET AND THOSE WITH SPECIAL-HANDLING
INSTRUCTIONS ARE NOT ALLOWED TO BE ASSIGNED AUTOMATICALLY BUT ARE
FORCED TO MANUAL DISTRIBUTION ASSIGNMENT

SERVICE MESSAGES ARE IDENTIFIED BY COMMUNICATION-ACTION CODES IN THE
CONTENT-INDICATOR CODE FIELD OR BY KEYS IN THE TEXT

8: THESE MESSAGES REQUIRE SOME TYPE OF SERVICE-ACTION AND SHOULD BE PRINTED
FOR THE SERVICE-SECTION

9: THE R'JL£S FOR EDITING MESSAGES ARE (1) REPLACE ALL LINE FEEDS WITH SPACES

(2) SAVE ONLY ALPHANUMERIC CHARACTERS AND SPACES AND THEN (3) ELIMINATE
ALL REDUNDANT SPACES

10: IT IS NECESSARY TO EDIT THE TEXT PORTION OF THE MESSAGE

11: ALL MESSAGES ARE SEARCHED FOR ALL KEYS

12: ASSXIATED WITH EACH TYPE OF KEY IS AN ACTION TO BE PERFORMED WHEN A KEY
OF THAT TYPE IS LOCATED IN A MESSAGE

13: THE ACTION FOR TYPE-0 KEYS IS: IF NO ACTION OFFICE HAS BEEN ASSIGNED TO THE
MESSAGE, THE ACTION OFFICE FROM THE KEY IS ASSIGNED AS THE ACTION OFFICE
OF THE MESSAGE. IF THERE IS ALREADY AN ACTION OFFICE FOR THE MESSAGE, THE
ACTION OFFICE IN THE KEY IS TREATED AS AN INFORMATION OFFICE. ALL
INFORMATION OFFICES IN THE KEY ARE ASSIGNED TO THE MESSAGE IF THEY HAVE
NOT ALREADY BEEN ASSIGNED AS ACTION OR INFORMATION OFFICES.

14: THE ACTION FOR TYPE-1 KEYS IS: IF ANY TYPE-1 KEY IS FOUND IN THE MESSAGE,
THE FIRST ONE FOUND IS USED TO DETERMINE THE ACTION OFFICE AND ALL OTHER
KEYS ARE USED ONLY TO ASSIGN INFORMATION OFFICES

- -- - - - ' - - |M«M ■ ■ ' - - - - - ■ I I

^^■yillVII 11 «Pll UIMUWIMWI» IIIIHJIVail«! HI. I IIIB! Rill 1 !. IIU MIIIU«

AUTOMATIC PROGRAMMiNG PROJECT 12

i4efMl iRjwt for lituagt DUtrihutiom Example

[RPAQQ
FS1
(INPUT-SENTENCE

(SOURCE\TEXT (MESSAGES RECEIVED FROM THE AUTOCHN-ASC ARE POUTED

FOR SERVICE-ACTION IF REQUIRED AND THEN
PROCESSED FOR AUTOMATIC DISTRIBUTION
ASSIGNMENT))

(FS-NOTATION
(CONJOINED

(CONJUNCTION AND-THEN)
(CONJ-ARGS

([FSIF

[PRED (NFS (HEAD EVENT«REQ)

(ACTION REQURE)
(OBJECT (NFS (HEAD EVENT«SA)

(ACTION SERVICE-ACTION]
(THEN

(NFS
(HEAD EVENTuRT)
(ACTION ROUTE)
[OBJECT

(NFS (HEAD MESSAGEtl)
(NBR PLURAL)

(REL (NFS (HEAD EVtNT»RCV)
(ACTION RECEIVE)
(OBJECT MESSAGEtl)

(FROM (NFS (HEAD "AUTODIN-ASC")
(DETTHE]

(FOR EVENT«SA]
(NFS (HEAD EVENT«PRC)

(ACTION PROCESS)
(MOODDCL)
(OBJECT MESSAGE«!)

(FOR (NFS (HEAD EVENT«ASG)
(ACTION ASSIGN)
(MOD AUTOMATIC)

(MOO (NFS (HEAD EVENT»DST)
(ACTION DISTRIBUTE]

—

mmmmm ■■ '" ' 1,1111 ■■'■ 1 ll «

AUTOMATIC PROGRAMMING PROJECT 13

1. NEW TYPES

Slruclurai Kitowledg* Extrcet ti Fron \ Input

TYPE IMMEDIATE SIPERTYPE

CODE
CODE-OPE RATIONS
CODE-TYPE
CONTENT-INDICATOR CODE CODE
INSTRUCTION
INSTRUCTION-CATEGORY
KEY
KEY-CLASS
KEY-TYPE
MESSAGE
MESSAGE-CLASS-A
MESSAGE-CLASS-B
OFFICE LOCATION
SERVICE-MESSAGE MESSAGE
TEXT ORDERED/SET
TYPE-0-KEY KEY
TYPE-1-KEY KEY

INSTANCES, IF ANY

"COMMON I CATI ON-ACT I ON"
CONTENT-INDICATOR-CODE

"SPECIAL-HANDLING"

"TYPE-O", "TYPE-1"
"TYPE-O-KEY, TYPE-1-KEV

"TOP-SECRET"
"SECRET'

I I. PART-OF RELATIONS

RELATION

CONT-IND-CODE-PART
CONT-IND-CODE-SUBPART
INSTRUCTION-PART
KEY-IN-TEXT
TEXT-PART

DOMAIN-TYPE

MESSAGE
CONTENT-INDICATOR-CODE
MESSAGE
TEXT
MESSAGE

RANGE-TYPE

CONTENT-1 NO ICATOR-CODE
CODE-OPERAT I ON
INSTRUCTION
KEY
■IXT

(NOTE: KEY-IN-TEXT IS THE SAME AS "MATCH-SUBSEQUENCE," BUT THIS CAN ONLY BE
DETERMINED BY INFERENCE.)

- —. . —-.——. ^MMk^a_ _______

» ■«

AUTOMATIC PROGRAMMING PROJECT 10

III. OTHER RELATIONS

RELATION

ACTION-FOR-KEY-TYPE
KEY-TYPE-FOR
MESSAGE-CLASS-A-FOR
MESSAGE-CLASS-B-FOR
NU;.BER-OF-COP I ES-OF-MESSAGES
OFFICE-FOR-MESSAGE
OFFICE-FOR-KEY

ARGUMENT-TYPES

KEY-TYPE EVENT
KEY KEY-TYPE
MESSAGE MESSAGE-CLASS-A
MESSAGE McSSAGE-CLASS-e
CONDITION NUMBER
MESSAGE OFFICE
KEY OFFICE

IV. INFERENCE RULES

(1) (KEY-TYPE-FOR KEY "TYPE-O")

Iff

(A 10 KEY TYPE-0-KEY)

(2) (KEY-TYPE-FOR KEY "TYPE-1")

Iff

(A 10 KEY TYPE-1-KEY)

(3) (MESSAGE-CLASS B-FOR MESSAGE "SERVICE")

iff

(AIO MESSAGE SERVICE-MESSAGE)

V. OTHER TUPLES ASSERTED

(AIO "AUTODIN-ASC" LOCATION)

(ACTION-FOR-KEY-TYPE TYPE-0-KEY EVENT)
(ACTION-FOR-KEY-TYPE TYPE-1-KEY EVENT)

HHtMaiaMMIH *jm ■ -

I
'■ ■■ '-■"■ ' - ■pv

AUTOMATIC PROGRAMMING PROJECT 15

(

VI. NEW ACTIONS

ACTION ARGUMENT-TYPES

ASS IGN
DETERMINE
DISTRIBUTE
EDIT
RECEIVE
ROUTE
TREAT-AS

MESSAGE, OFFICE, RELATION
KEY OFFICE
MESSAGE OFFICE
MESSAGE
MESSAGE LOCATION LOCATION
MESSAGE LOCATION LOCATION
ENTITY TYPE EVENT

INFORMATION INTERPRETED BUT LEFT ENCODED IN "EVENTS" AND "OBJECT DESCRIPTORS"

(other than case-argument pairings)

"The system = APSYSTEM

"Manual" X

"Automatic" X

"The CRP'

"cannot" (in FS2)

"number of copies"

where Y

"copy of a message"

"message to an office"

- (PERFORMED-BY X USER)

- (PERFORMED-BY X APSYSTEM)

= OPERATOR-CRT

- result (of assign by APSYSTEM) - FA'.LURE

- x, St.(CARDINALITY Y X),

= some set of copies of a message
(see below).

■ resul«: of performing action COPY on message

= scxre specialization of TRANSMIT is the
ACTION of an EVENT in which "message"
isl the transmitted object and "an office"
is the goal location.

•necessary" (FS10) - (REQUIRED-OF ? edit...)

 -

1,1 -1"1 "■I,iii l■ll H*~~*mmmmmmmmmmmmmmmmmmmmMmm**m*mmmm~~,~

AUTOMATIC PROGRAMMING PROJECT 16

PLANS

By the end of the year we expect the system to be *ble to handle this entire
example without manual assistance. This will require (1) replacing all the manual
transformations in domain acquisition with implemented rules; (2) implementing the model
completion component and connecting it to the prior phase; and (3) implementing a module
to collect needed input data for the program generated In addition, we plan to develop
an execution monitoring capability to enable a user to watch the generated program
operate as a debugging aid.

Our example contains two Known errors, one of which could be spotted by a bug
apprehension system we have begun to plan. It is caused by producing, under certein
circumstances, a data value after it has been used to control program flow. This error
and many other common ones can be spotted as potential (data-dependent) problems by a
pattern-directed analysis of the program. Their occurrence could then easily be spotted
In actual behavior trace.

The second bug concerns an interpretation of the English statement, "X is a function
of Y." Does this mean that X is a function only of Y or of Y and some other unnamed
things? We have chosen the former meaning, although the tatter was intended in the
example. This interpretation will cause a bug in the generated program which can be
spotted only by observing its behavior.

We then plan to select and präsent to our system several different real-world
domains of approximately the same complexity as the message-distribution domain.
Although we have tried to build a domain-independent system, we have been driven by
our example in that we have built only those transformations required by the example.
Thus, ßs we address new domains, more transformations will become necessary to handle
new situations previously unencountered. The new transformations may interfere with
the existing ones. We will have to identify and resolve such conflicts.

The main goal of tbdse studies will be to determine the generality of our system in
term« of the amount of overlap, and the amount of conflict, with existing facilities. In some
sense, we must develop an estimation of the size of the "vocabulary" (i.e., the facilities)
needed to handle domain descriptions. We will also be studying how to specify a domain
and program how to represent them in the system.

This understanding of domain and program descriptions will allow us tt> accept more
imprecise a.'d incomplete specifications by resolving or fillip in information from
information tpecified elsewhere and through knowledge of domain structures and

■ --- - - — in I—i—i in IIHIIM ■■mill in i

w-™ -^— ^— "■ ■ "■

AUTOMATIC PROGRAMMING PROJECT 17

Interrelationships. We will continue to push on this front until we can handle
specifications typically found in functional specification manuals.

If we were totally successful in attaining domain independence, then new domains
could be accepted without any modification of the system by merely providing their
domain description. We do not expect to achieve such a level of independence. However,
our goal is to minimize such modification so that by the end of 1976 we can acquire and
handle a new domain of roughly the size and complexity of the message-distribution
domain in less than a week.

. tJL ■■ - -...-..

mm mmm " '

18

i. IMPRKCJSE SPECIF IC/mONS

Th»re are three main problems in trancforning a specification into a program. The
first, efficiency, has been explicitly excluded from our consideration. The second,
transforming nonprocedural specifications into procedural ones, such es constructing
progrems so thst stated constraints cannot be violated, is in general e very difficult
problem and has therefore been postponed for later consideration. That leaves only
Hi-defined or imprecise specifications. This remaining major problem h«s become our main
focus because of the significant improvements which can thus be realised.

The notion of Imprecise specifications is itself imprecise. By imprecise, we n^an
information which is not explicit in any statemem but is implicit in some group of

statements and context. We do not have a complete categorization of the weys in which a
specification can be deficient, nor do we understand all the boundaries. But our approach
i« engineering-based rather than mathematical. Rather than attempting to handle aii
cases, we are looKing for those which arise frequently in natural language communication
between two people. Our assumption is that the user is attempting to be helpful and that
something is imprecise only because either it doesn't matter or because for the speaker
one, end only one, interpretation is obvious and hence the meaning is unambiguous.
Therefore, removing the imprecision should nearly always be simple and involve only
shallow reasoning.

We list below the types of imprecisions we currently handle or plan to handle a
specific example drawn from the problem presented in the previous section (the numbers
n the square brackets identify the sentence numbers), and a discussion of how such

imprecisions can be handled

1. Complete parameter specifications for events (actions or relations).

A. Disambiguation by well-formedness criteria of IF statement -

"All information offices in the key are assigned to the message if
they have not already been assigned as action or information offices"
[S13]

The second ASSIGN in the sentence doesn't specify to whet the
office is assigned From previous specializations, we find it could be

IMPRECISE SPECIFICATIONS 19

to either KEYS or MESSAGES. During a meta-evaluation phase the
program it tested for well-formedness which, *.nong other things,
requires that the value of the predicais of an It statement is not
determinable from the program structure itself (i.e., without any
Knowledge of the data). The office being investigated is known from
the first part of the itntence to be assigned to a key ("office in the
key" see 5B below). Hence, only it MESSAGE is filled in as the
unspecified parameter is the IF well-formed

B. Dynamic Context -

The rules for editing messages are: replace all line feeds with
spaces" [S9] and "It is necessary to edit the text portion of the
message" [S10]

The set in which the replacement is to be performed is wt specified.
Lexical analysis indicates that MESSAGE is a parameter of EDIT, but
it is not a set. However, it has several components which are sets
ADDRESSEE, TITLE. TEXT, etc). Dynamic context (from sentence
10) indicates that the TEXT component should be edited and hence it
is the unspecified parameter to REPLACE

C Modification of parameters -

The message is distributed to each assigned office" [S3]
"The number of copies of a message to an office ~" [S5]

i
Sentence three indicates that MESSAGES are to be DISTRIBUTED.
Sentence five further specifies this parameter as being those which
are the result of COPYING the MESSAGE Thus the cell to
DISTRIBUTE must be modified to be the result of the COPY
action on the MESSAGE which wea originally thought to be the
parameter to DISTRIBUTE

2. Sequencing

A. Loop Formation

"Messages received from the Autodin ASC are routed -" [SI]

A set {MESSAGES) is specified for the direct object parameter of

 ■

V ! iww— ■ ' " ■ ll|i,"!'«lli MM mi in .um mi

IMPRECISc SPECIFICATIONS 20

ROUTi' which it «xoccted to be singular. The causes a loop to

be formed around the ROUTE action with MESSAGE as the iteration
variable and cor.trolled by the filter "messages recieved from the
Autodin-ASC". This loop is then percolated up through the "if
required" and "and then processed" statements which surround the
ROUTE because they are both dependent on the iteration
variable. This brings the loop to the outermost level of the
sentence.

B. Demons

"Messages received from the Autcdin-ASC are routed ._" [SI]

A loop at the top level of a sentence which is not explicitly
sequenced relative to other statements is treated as a loop
distributed in time—a demon—which is fired whenever its controlling
filter is satisfied.

C Purpose

"Processed for automatic distribution assignment" [SI]

If an action {PROCESS) is performed for the purpose of enabling
another (ASSIGNMENT) which is not explicitly sequenced, then have
it precede the enabled action. Thus although it is never explicitly
mvokad in the specification, we infer that ASSIGNMENT should follow
PROCESS and similarly that DISTRIBUTION should follow
ASSIGNMENT.

0. Explicit Sequencing

The message is then searched for all keys" [Sll]

The SEARCH is made to follow the event of the previous sentence
(co/n

E. Remote Loop«

The number of copies of a message to an office _." [S5]

A* mentioned in 1C above, this sentence modifies the invocation of

- _>u>lMMMaC

^■■»"Jlpi mmmmmtm • > •• . ■ >||pHIIII'««^Mmil ""■■I

IMPRECISE SPECIFICATIONS 21

DISTRIBUTION of MESSAGES. It changes the actual parameters
from MESSAGE to a specified NUMBER OF COPIES. This causes a
loop to be formed around the COPY action, which in turn causes the
loop to be percolated up around the DISTRIBUTE since it cannot
take a set as a parameter.

Requirements Analysis

The message is then searched for all Keys" [Sll]

This Informs us that SEARCH follows EDIT, but the placement of this
pair rotative to the other actions is not known. Therefore an

analysis of the pre- and post-conditions of each action is undertaken
to discover any unstated sequencing rules. This analysis shows that
the ASSIGNMENT is caused by actions performed only when a KEY is
LOCATED. Since LOCATE is « successful SEARCH, SEARCH must
precede ASSIGNMENT.

G. IF-THEN Sequences

"If no action office has been assigned to the message,
already an action office for the message,.-" [^13]

If there is

This sentence is of the form "if P then Xj if not (P) then Y" and
should be interpreted as "if P then X; else Y". More generally,
several IF statements following each other should be treated as a
CASE statement rather than a sequence of IF statements.

3. Time Frame

Passive Voice

;

1,

"Messages received from Autodin-ASC are routed" [SI]

Does this mean that when RECEIVED MESSAGES have already been
ROUTED, or upon RECEIPT they should then br ROUTED* Such
statements are interpreted as either a tes' or an action invocation.
The critical issue is that the interpretation should be the same for all
items. The problem is that, in general, this cannot be determined
made at specification time. Thus, this imprecision is left until the
first usage, which examines the situation existing at that point and
determines the interpretation that should be used thereafter.

_.» _» ■

Jlllli^^^^M«.IUIIWiB ■ I 111 I II INI. I I
mm

IMPREOSE 3PECIFCAT<0NS 22

& Positiv« Constraint«

"Each metsag« mvs\ be assigned to a single office for action" [S4]

Again, the Interpretation is not clear. Does it mean that the

ASSIGNMENT should have already been made or that such at
ASSIGNMENT must now be made? Our interpretation is "if not
(test) then perform". Thet is, if the condition has not already been
met, then meet it (if possible). One further imprecision
remains: when should such an Interpretation be applied? Whereas
negative constraints apply everywhere (they can never be violated),
positive constraints apply only at some particular time, normally
unspecified. We default such unspecified times to the first
unconditional usage of the event or any of its unique side conditions.
For the above positive constraint, this is during DISTRIBUTION,
when the action is performed for each ASSIGNED MESSAGE. The
earlier usages in sentence 13 are conditional.

4. Irrelevant Information

A. Indeterminate Specializations

"These messages require some type of service action _" [S8]

Neither tho types of SERVICE-ACTION nor the method of
determining which one applies in a particular situation is given nor is
the distinction used, hence the system assumes the distinction is
irrelevant.

BL Indeterminate Sets

"Replace all line feeds with spaces" [S9]

The cardinality of the set of SPACES is unspecified and hence is
assumed not to matter. Two is assumed.

5. Reference

A. Uniformity

"and then processed for automatic distribution assignment" [SI]

- ■■■- ---■'—'—..-..- - ..,„.■-.—-«■^,—i—.—,—, . i ■■ ..n.nn - • • _ . .

T"

IMPRECISE SPECIFICATIONS 23

PROCESS Is clearly a dummy name for some more specific actions
which enable ASSIGNMENT. Unfortunately this is not specified
However, EDIT followed by SEARCH perform the function of enabling
ASSIGNMENT and are not explicitly sequenced but by requirements
analysis must precede ASSIGNMENT. It should therefore be
assumed that the definition of PROCESS is EDIT followed by
SDMCML

a Generalized Relations

The action office from the key" [313]

Prepositions like EROi4, IN, and OF often are not part of the case
frame for the omitted relation between the entities on either side of
the preposition. Instead they imply that the entity on the left is
ASSOCIATED-WITH the one on the right. The system responds
to such generalized relations, by searching for a known relation
between the two entities (here ASSIGN an OFFICE to a KEY for

(ACTION*,.

6. Implied Relations

A. Use of Known Attribute Values

"_. are not allowed to be assigned automatically" [S6] n
AUTOMATIC is known to be an attribute value of the
PERFORMED-BY relation which specifies who actually performs
an action (here the ASSIGN is performed by the system).

a UM of Unknown Attribute Values

Top-secret messages" [96]

TOP-SECRET is an unknown attribute. A new named relation is
created which links MESSAGE with an named range of which
TOP-SECRET is an element. It is assumed that the attribute
values in this rang are mutually exclusive, and that other unknown
adjective modifiers of this same type of object (MESSAGE) also
belong to this range.

- - ■

»"• " ' ""V

■

V

24

4. CONCLUSION

In thi$ rtport wt have tried to present a particular view of Automatic Programming
as a field, examine a single project consistent with thl? view working on specification
acquisition, and discuss several different forms of imprecision and a possible method of
coping with them. This approach is based on applying analysis and problem solving
techniques to the problem statement, not to solve it, but rather to understand it.
Knowledge of the characteristics of well-formed specifications, of how people specify
tasks, and a domain description to provide redundancy disambiguates natural
communication to a great extent.

Though such an approach is far from producing practical results, it does öfter the
eventual promise of removing the major remaining barrier to society's effective use of
computers, i.e., the ability to specify tasks at a level aporopriate for human communication
with automated implementations rather than in a highly formalized rotation requiring
excessive training, attention to details and optimization, and associated high costs. Only
then can the promise of computers—the ultimate malleable object—be widely realized.

I

.__ —

