U.S. DEPARTMENT OF COMMERCE
National Terwnical inforiaation Service

AD-A025 117

IMPRECISE PROGRAM SPECIFTCATION

UNIVERSITY OF SOUTHERN CALIFORNIA

PREPARED FOR
DEEENSE ADVANCED ReSEArRCH PROJECTS AGENCY

Decemper 1975

22

MW_-

o

- T

T

e e s

ADAO25117

159143

Robert M. Balzer

ISI/RR-75-36
December 1975

Imprecise Program Specification

DDC-

et

D (A E0N AP
A Tw LA
DISTQI_FI_J‘Z'IQN STATEMENT A SN 2 1976
; -v.-s ed for public 1clcase;
(hppD‘zH}.uilon Unlimited 4 ‘

————

A

INFORMATION SCIENCES INSTITUTE

. |
o

: 4676 Adniiralty Way[Marina del Rey/California 90291
v UNIVERSITY OF SOUTHERN CALIFORNIA (213)822-1211

A REPRODUCED BY 1
- NATIONAL TECHICAL
. INFORMATION SERVICE

U.S. DEPARTMENT 0 !
SPRINGFIELT, V4, a0y RCE i

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLLETING FOR#

\. REPORT NUMBER

ISI/RR-75-36

2. GOVT ACCESSION NO.|

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (snd Subtitie)

Imprecise Progrom Specification

Research Report

S. TYZE OF REPORT & PERIOD COVERED

$. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s)

Robert M. Balzer

®. CONTRACT OR GRANT NUMBER(e)

DAHC 15 72 C 0308

Marina del Rey,

> 35¢) Taformation
4676 Admiralty Way

CA 90291

gIQN NAME AND ADD'!ESS
ciences Institute

10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WC RK UNIT NUMBERS

ARPA Order f 2223
Progrom Code 3D30 & 3P 10

11. CONTROLLING OFFICE NAME AND ADDRESS
Defense Advanced Research Projects Agency
1400 Wilson Blvd. , Arlington, VA 22209

12. REPORT DATE

December 1975

13. NUMBER NnF PAGES

30

T4 MONITORING AGENCY NAME G ADDRESS(1! dilicrent from Controlling Ollice)

Unclossified

1S. SECURITY CLASS. (ol thie report)

" Tsa DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (ol this Report)

This document is approved for public release ond sale; distribution unlimited.

DD QN

17. DISTRIBUTION STATEMENT (o’ the sbetraci entered in Block 20, I different from Report) U

18. SUPPLEMENTARY NOTES

Presented ot Consiglio Nazionale delle Ricerche ISTITUTO DI ELABORAZIONE
DELLA INFORMAZIONE meeting on 20 Years of Computer Science, Pisa, ltaly,
16- 19 June, 1975,

=

QL B
JUN 2 197 'r] !

.L..

i

19. KEY .WORDS (Continue on revires eide If neceeeary ard identlly by block number)
Automatic programming, domain- independent
natural-language, nonprocedural language, nonpro
problem specification, specification language

, imprecise specification,
fessional computer user,

understood.

oo
2U. ABSTRACT (Continue on reveres elde Il neceseary and identify by block number)

The first section of this report attempts to characterze the field of automatic
programming through a general model describing the stages and processing required. The
second discusses a particular project as a specialization of the general model. The final
section focuses on the problem of imprecise specifications and how they can be

DD ,[3%"s 1473

EDITION OF 1| NOV 68 18 OBSOLETE /

S/N 0102-014- 6601

/ UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date ored)

A0

Robert M. Balzer

ISI/RR-75-36
December 1975

E Imprecise Program Specification

Wrile Sectho
Bttt [

WARNODRCED el
JORTIFIRATION . - e i

DSTHIRTIOL ARILAL T EER |
——

———
'

——— |

AV e A

|

INFORMATION SCIENCES INSTITUTE

4676 /N4 miralty Way/ Marina del Rey/ California 90291

UNIVERSITY OF SOUTHERN CALIFORNIA

1213)822-1511

THIS RESEARCH IS SUP™ORTLD BY THE ADVANCED RESEARCH PROJECTS AGENCY UNDER CONTRACT NO, DAHCIS 72 C 0308, ARPA ORDER

NO. 2223, PROGRAM CODE NO. 3D30 AND 2P10.

VIEWS AND CONCLUSIONS CONTAINED IN THIS STUDY ARE THE AUTHOR'S AND SHOULD NOT BE INTERPRETED AS REPRESENTING THE
OFFICIAL OPINION OR POLICY OF ARPA, THE U.S. GOVERNMENT OR ANY OTHER PERSON OR AGENCY CONNECTED WITH THEM

THIS DOCUMENT APPROVED FOR PUBLIC RELEASE AND SALE: DISTRIBUTION IS UNLIMITED. ¢

l

CONTENTS

Foreword

Introduction 1
A Global View of Automatic Programming
The Four Phases: An Overview 3
The Automatic Programming Model 2
Problem Acauisition 4
Process Transformation 5
Model Verification §
Automatic Coding 6

The Automatic Programming Project
General Approach 7
Restrictions 8
Specific /pproach 9
Current Status 10
Plans 16

Imprecise Specifications 18

Conclusion 24

FOREWORD

This paper was originally presented at a Meeting on 20 Years of Computer
Science, June 16 - 19, 1975, at Pisa, ltaly, sponsored by the Instituto di Elaborazione
della Informazione under the aegis of the Consiglio Nazionale deile Ricerche. It
appeared in the Proceedings of a Meeting on 20 Years of Computer Science, Supplement
1 of Volume Xl of the journal Calcole

1. INTRODUCTION

It is well known that software is in a desperate state. It is unreliable, delivered
late, unresponsive to change, inefficient, and expensivo. Furthermore, since it is currently
labor-intensive, the situation will further deteriorate as demand increases and labor costs
rise. Thus the industry faces one of ‘wo choices: either increase the productivity of
highly trained, carefully selected specialists or reduce the training requirements through
automation, thereby broadening the base of qualified users. Structured programming, built
around the concept of discipline, addresses the first path, automatic programming the
second. We feel that the first approach wiil perpetuate the current crisis as systems
continue to become more coinplex. Only automating the process can control the enormous
complexity, improve the reliability, modifiability, and efficiency, and reduce the cost. For
this approach to be successful, the system must acquira and use a semantic description of
8 domain--a particular universe of discourse--to understand the user’s statements, fill in
omitted details, and maintain consistency.

A GLOBAL VIEW OF AUTOMATIC PROGRAMMING

This section presents the author’s personal framework® for characterizing automatic
programming systems in terms of how a task is communicated to the system, the method
by and time at which the system acquires the knowledge to perform the task, and the
characteristics of the resulting program.

One goal of any automatic programming system is to allow its users to state their
problem and any advice about its solution in terms natural to the problem. We treat bcin
the native terms of the field and terms from other fields which users have found useful to
describe and conceptuzlize problems and solutions as the problem domain terms of a given
field. With this definition, we corjecture that the solution of every computable problem
can be represented entirely in problem domain terms as a sequence wnich may involve
loops and conditionals of actions in that domain which affect a data base of reiationships

* This view resulted from the suthor’s discussions with snd suggestions from numerous colleagues, for which
he is deeply indebted. This section is s condersstion of pert of s larger work (R. M Bslzer, Automatic
Progrsmming, USC/Information Sciences Instituts, September 1972 (dreft]) which sttempts to structure the
field by mesns of the conceptualizstion exprsssed here. The interssied reader should consult this work, which
describes the issues in grester detsil snd presents supporting evidence.

INTRODUCTION 2

between the entities of the domain. Included either as part of the data base or as a
separate part of the model is the history of the modal (i.e., the sequence of actions applied
to the model). This logically completes the mode!l and makes questions or actions involving
historical information possihle. In a strong sensc, such a solution is a direct simuiation of
the domain. The syster models at each step what would occur in the domain.

The important part of the above conjecture is that any computable problem can be
solved, and hence described, in terms of the problem domain. This enables us to divide
the solution into two parts: external and internal. The former is the problem
specification given by the user in completely domain-specific terms. The requirement for
such users is na longer a comprehensive knowledge of computers, but rather the ability to
characterize completely the relevant relationships between entities of the problem domain
and the actions in that domain. In addition, such users should have a rough awareness of
the problem-solving capability of the system so that they can provide udditicnal help
where needed in the form of more appropriate macro-actions, recommendations about the

use of certain actions, and/or imperative sequences which will solve all or part of the
problem in problem-related terms.

The internal part is concerned first with finding a solution in problem-related terms
(if this has not already been provided by the user), second with finding efficient solutions
given the available computing resources. Such optimizations occur at two levals beyond
what is normally considered ootimization. First, at the problem level, recognition t4at
certain entities and/or relationships are irrelevant makes it possible to remove them from
the model. Second, since only part of the state of the modelied domain is required (and
only at certain points in the solution process) rather than a complete simulation of the
model at each step, the system can employ alternative representations which require less
maintenance and which either directly mirror the required part of the domain state or
allow such parts to be computationally inferred. Such representations may also permit a
more direct solution. These optimizations form the main distinctior between the code

feneration part of an automatic programming system and current state-of-the-art
compilers.

Thus, our definition of an automatic programming system is one which accepts a
problem in terms of a modal of the domain, obtains a solution in terms of this model, and
produces an efficient computer implementation of this solution in the form of a program.

I

—

INTRODUCTION 3

THE FOUR PHASES: AN OVERVIEW

Automatic programming begins with the application of prcblem solving to problem
stataments rather than problem solutions, i.e., with the attempt by a computer system to
understand the task being specified. Once the task has been understood, if it is not in the
form of a process it must be transformed into one. This is the traditional area of Artificial
intelligence and human program design. The resulting process modasl must be verified as
be:- ‘he one desired by the user and adequate for the user’s problem. If not, it must be
modified and transformed by the above steps and reverified. It must then be made into an
efficiently running program. This involves automating the ad hoc knowledge of computer
science.

A complete automatic programming system thus consists of four major
phases: problem acquisition, process transformation, model verification, and automatic
coding. Problem acquisition is the process by which tha system obtains (1) z description
of the problem to be solved or task to be performed in a form processable by the system
and (2) the knowledge needed to solve the problem. The result of this phase is a well
formed problem and knowledge base which can be manipulated by the system ard
transformed into a high-level process for solving the problem during process
transformation. The third phase is used to verify that this process is the one desired and
that it is adequate for the problam solution. The fourth phase, automatic coding, fills in
the necessary details, optimizes .he process, and produces the actual code to solve the
problem.

THE AUTOMATIC PROGRAMMING MODEL

One of the most striking and deep-rooted features of the automatic programming
model presented here is the interface it creates between a high-level external
specification of a problem which omits data structures that are not part of the domain and
the internal implementation of that specification in an efficient representation.

This choice of a basic interface has predicated large parts of the entire model. This
choice as the basic interface within the automatic programming model can be expected to
provide four important gains. First, the complete model conjecture states that wuch a
division is feasible for stating and solving domain-dependent problems. Second, since the
choice of a data representation and the maintenance of its consistency occupy such a large
portion of current programs, their omission should drastically reduce the size and
complexity of the resulting specifications. Third, since so much detail has been removed
from the specification, it is easier for the system to understand what the task is rather
than to become lost in the details of what is going on. Finally, since the problem has not

been overspecified with a particular choice of representation in order to express it the
system is now free to choose a representation that will efficiently solve the problem at
hand. The system has been given increased flexibility in its choice and may well
outperform humans in correctly making representation choices; this is true not because the
system is more intelligent than the user, but because it can cycle through more
possibilities and bring to bear a greater level of effort in such optimizations than any user
is willing or able to invest in such issues.

Problem Acquisition

The problem acquisition phase is concerned with obtaining an understanding of the
user’s problem and the domain in which it exists so that the process transtormation phase
can attempt to fina 8 sequence of transformations or operations in that domain that will
obtain the solution required by the user. Thus, the problem acquisition phase is
concerned with building a model of the user’s domain that represents the interactions
between the entities of that domair and the effect on those entities by the allowed
transformations or applicable operations. Only by developing such a model! of the user’s
domain can the automatic programming system have any degree of generality in the
domains for which it is applicable.

Courrently, all such models of user domains have been coded into a system. It is
proposed here that such models can be specified to the system by its users and that
through these models the system can acquire the knowledge necessary to solve problems
within these domains and to understand what is required for such a solution. The two
main issues, then, are what constitutes an adequate and appropriate mode! and how is such
a model specified or communicated to the system.

The adequacy of a mode! is dependent uron its use in solving the problem.
Operationally, this requires that the automatic programming system be capable of finding
the complete set of applicabie transformations on the model and be able to calculate the
consequences of each of these acticns. The appropriateness of the model is s measure of
how well suited the avsilable transformations are to solving the problem at hand, i.e., an
adequate model can be made more appropriate by adding to it nonprimitive
transformations made up of a sequence of primitive ones, which are suitable building
blocks for the problem being posed. The model may also be made more appropriate by
including recommendations sbout the suitability of alternative strategies for sequences of
model transformations. Users can significantly reduce the well kncwn problem of building
a powerful general-purpose problem solver by tailoring the specified model to make it
more appropriate for the piobler at hand.

e s

INTRODUCTION 5

The basic viewpoint, then, 1s to process the user’s natural language communication
with the understanding that it is meant to convey to the automatic programming system a
model of his problem domain. Towards this end the system can extract entities and the
relationships be.ween them from the communication. It can further query the user as to
the relationships between entities which have not as yet been explicitly specified but
which have been inferred by the previous communication. Such inferences by the system
about the completeness of the model require a sophisticated understanding not only of the
communicaticn but of the types of models used for problem domain specification.
Unfortunately, our sophistication in both these areas is quite limited. In communication we
need to be able to understand how information is ordered for presentation, how context is
established and utilized, how the capabilities of the recipient affects the communication,
and how these capabilities are perceived by the speaker. In modelling we need to have a
space of possible models, an understanding of how the parts of a model interact, 2 means
for recognizing incompleteness and inconsistencies in models, a means for obtaining all the
allowed operations on the model, and the means for transforming the models with these
operations.

Process Transformation

Our contentior: is that the main activity in programming is not finding a solution but
in finding a solution which omits the irrelevancies and abstracts the necessary processing
for efficient implementation. This is a strong contention, but for most programming
problems a solution is known; the main concern is finding a more efficient one. This is not
optimization in the normal sense of the term. The concern, rather, is with finding
irrelevancies in the complete model and representational abstractions based on the

required processing of that model. Once these logical representations have been found,
they must be efficiently implemented.

The above contention, if true, greatly shifts the emphasis within the process
transformation phase from that of a general purpose problem solver solving problems in a
domain-independent way to modifying a solution so that it does not maintain any irrelevant
portions of the complete model and abstracting the relavani portions into a more efficient
representation for the processing required. Together with problem acquisition the ability
to find representational abstractions and transform complete model solutions into those
which utilize these representations represenis the main technological drawbacks to
obtaining an Automatic Programming system.

Model Verification

Although the Automatic Coding phase will produce only correct code, program
testing cannot disappear. This is because problem acquisition and process transformation

INTRODUCTION 6

will undoubtedly employ a number of heuristics and may very well incorrectly interpret
either the problem statement or the allowed transformations that can occur in the user’s

model. Because of this, the user must verify that the system created is the one that he
desired.

The technology for this is at hand. It consists of today’s methods wherein a test
case is given to the system and its performance is used to validate the model that it
constructed. Additionally, the system can aid the process by generating test cases of its
own which probe uncertain areas that could have led to either misunderstanding or
incompleteness in the original model. One might also expect that program debugging
would disappear, but for very similar reasons it too will remain under automatic
programming. If there is a disparity between the user’s model and the system’s model,
then the reason for this disparity must be ascertained.

Automatic Coding

Automatic coding is concerned with finding an efficient computer implementation of
the process description obtained from the preceding phase. This description does not yet
include a choice of data representations, but does specify the major processing elements
and sequences. It is intended that this phase will not need any domai1-specific knowledge
except for input frequency and distribution information. The major logical representation
and processing decisions have already been made in process transformation.

Of all the phases in the Automatic Programming system, automatic coding is the one
essential component. Without it the system cannot produce programs, and hence, though
it may be useful, it cannot be an Automatic Programming system.

Most people are not truly creative when they reorganize sections of their program
to increase efficiency. Rather than inventing totally :w representations, they appear to
select one out of an ill-defined set of such possible representations and adapt or modify it
to function in the current situation. This is probably the main challenge to the Automatic
Coding phase: the atility not only to cycle through a set of alternative representations,
but slso to adapt and modify them to the existing situation. Such an ability would vastly
increase the applicability of a small set of alternativa representations.

From such automatic coding studies, one would expect to see both 2 set of heuristics
and, eventually, a calculus for data representation choices.

2. THE AUTOMATIC PROGRAMMING PROJECT

The goal of ISPs Automatic Programming project is simply to allow experts in an
application area (who are not programmers) to functionally specify their application
directly to a computer system, with the system transforming this input into a precise
operationa! functional specification of the application. Such an accomplishment represents
= testable modul of the p-oposed application which could be used as follows:

® To examine the functional behavior of the application against the
requirements and, if necessary, to modify the functional specifications
unti! they satisfv tisa requiremznts.

As the input to an cutomatic test data generatcr which would develop
test cases to comprehensively exercise the model.

As a precise specifica‘ion of the desired application program from
whkich a human programmer <uld generate the application and
against which the implementation could be tested.

Eventually, as the specification of the desired applicition program,
for an automatic program optimizer--thus eliminating, ultimately, the
need for programmers.

Because programming activities are so diverse, such a system must be capable of
accepting specifications for a wide variety of applications.

GENERAL APPROACH

Functionally, the two most important characteristics of our proposed system are its
independence from any particular problem domain and its attempt to deal directly witn
nonprofessional computer users without the intervention of computer
programmers--choices which have largely dictated the direction of the project. Domain
independence requires that the domain "physics™--its objects and their relationships with
other objects, its laws, its transformations, and its constraints--be available in a
processable form within the system and that the system be general enough to deal
effectively with a wide variety of such physics. Direct interaction with nonprofessional
computer users means that.both the physics and the problem statements will be in

AUTOMATIC PROGRAMMING PROJECT 8

problem-oriented {as opposed to computer-oriented) terms, preferably in natural language,
and that they wili be “lonse” descriptions containing incomplete, irconsistent, and
irrelevant statements rather than a precise formzl structure. The primary goal of our
system is to acquire from a dialogue with the user the physics of the loosely defined
domain, structure it, and use it to understand further communication and to w:'te a
program accomplishing the use’’s stated tasks.

The constraints and restrictions of the computer have increasingly been
incorporated into programming advances for several years. They are manifest in better
languages, automatic storage mechanisms, and optimizations of many forms. On the other
hand, the structure, constraints, and limitations of the problem domain have generally not
been thus incorporated. A major theme of automatic programming (in fact the
characteristic distinction between it and conventional programming) is the use of such
knowledge--an issue which raises a number of questions. If the system is to understand
something of a domain, how is the know!edge on which this unders’anding is based to be
represented? What procedures can be made availal . for exploiting this knowledge in
guiding the system’s interaction with a user and in generating programs? How, in
particular, is the essentially nonprocedural information in constraints and limitations to be
reflected in a procedural form? What can be done to help identify inconsistencies? Hew can
the system be given a capacity for inference similar to that which forms the mainstay o/
human communication and which allows obvious details to be left unspecified? Will the
system be able to understand its own products well enough to be able to modify them in
response to chazed requirements? Answers to these questions define the front on which
important advances in automatic programming will be made.

RESTRICTIONS

To concentrate oni this knowledge extraction and domain structuring activity, we
have assumed the exisience cf a natural language parser which transforms the user’s input
into a parsed case structure. Such a parser is currently beyond the state of the art, but
this goal is actively being pursued by other groups and we expect it to be available by
the time our project is ready to assemble a total system. Until then, we are manually
transfo, ning the naturai languase input into the case structured form required. If such a
parser does not materialize, we would have to use a more restrictive and formal subset of
natural language.

As a second means of limiting the scope of our w. 'k, we have decided to omit
efficiency concerns for the piograms generated; thus we will focus on generating »
logically correct program for the user’s needs without attempting ty cptimize it. This
greatly simplifies our effort by allowing us to directly model the :mer’s domain in a
data-representation-free manner through an associative data base, hence obtaining

3

AUTOMATIC PROGRAMMING PROJECT 9

running programs modeling the user’s conception of the problem. By not having to
introduce extraneous details (such as data representation) during the construction phase,
we can concentrate on the program’s logical behavior. Furthermore, we firmly believe
that such representation-free and behaviorly specified programs are the correct way to
program--tor both man and machine--and that optimization should occur as a separate and
later phase (not part of this project). It is clear that with such an approach the
maintenance problem would be greatly simplified. The logical-behavior specification would
be modified and the program reoptimized.

SPECIFIC APPROACH

We are building a system with two major components--domain acquisition and model
completion. The domain acquisition component sequentially processes a set of statements
describing the user’s problem and the domain in which it exists. This component is
responsible for extracting from these statements the descriptior of the object being
manipulated, the actions performed on them, the criteria recessary and sufficient to
perform these actions, the constraints which must be satisfied, and the rules for inferring
information not explicitly stated. This information may be given directly, may be inferred
from example usage, or may be assumed in order to make sense of the input. Some of
this information may have been previously acquired and saved in a domain description.

This component is implemented through a production system in which each
transformation rule has a pattern which, if found in the input, activates the rule. An
activated rule will typically assert some extracted knowledge in the associative data base
and rewrite the input with the extracted information omitted or transformed. This
activation process is contirued until no rule matches the (transformed) input. Then the
next input is processed.

A production schema was chosen because of its orientation toward case analysis, its
facility for expanding as new rules are added, and its ability to accept manual
transi _-mations for unimplemented rules.

Duriny these transformations, when an ambiguous interpretation is noted, one of
three actions is taken: the problem can be kept for later processing in the hope that new
information wi!l resolve the ambiguity; the user :an be askad directly to resolve the
ambiguity; or the systers can establish a backtracking point, assume one interpretation, and
be prepared to back up and assume the other. Currently, only the first two options are
used, since our system has no backtracking capavility.

The model completion component is responsible for all interstatement processing.
s main function is to form a program by organizing the actions referenced in the

AUTOMATIC FROGRAMMING PROJECT 10

individual statements into an appropriate control structure. These actions are organized
into sequential segments or asynchronously activated demons in a two-stage process.
First, the needs, requirements, and results of each action are analyzed to determine any
Implicit ordering restrictions. This partial ordering is then merged with any explicit partial
ordering specified in the input to produce the final ordering restrictions. The second
stage determines which actions should be treated as asynchronous demons and removes
them from the ordering. It then attempts to find a total ordering consistent with the
restrictions. Finally, all action descriptions, action invocations, anc object references are
transformed into an executable form.

CURRENT STATUS

We decided to develop our system in the context of a real-world (albeit simplified)
problem. Having selected the significant domain of automatic message distribution, we
have extracted from an existing functional specifications manual a snort, simplified, and
very-high-level loose description of a real implemented cystem.

With the help of some manual transformations this description has been processed
and analyzed by the domain acquisition component. The model completion component is
largely unimplemented, but one part which takes the requirements and re.ults of the
actions described and produces the implicit partial ordering is working. Furthermore, it
identifies the inputs and outputs of the system by finding, respectively, the information
used but never produced and the information produced but never used.

The task specification, an example of the manually parsed input, and the structured
knowledge extracted from the input is given below:

English Description of Message Listribution System

1: MESSAGES RECEIVED FROM THE AUTODIN-ASC ARE ROUTED FOR SERVICE-ACTION IF
REQUIRED AND THEN PROCESSED FOR AUTOMATIC DISTRIBUTION ASSIGNMENT

2: IF THIS ASSIGNMENT CANNOT BE PERFORMED AUTOMATICALLY BY THE SYSTEM, THE
MESSAGE IS DISPLAYED ON THE CRT FOR AN OPERATOR TO PERFORM THE
ASSIGNMENT MANUALLY

3: THE MESSAGE IS THEN DISTRIBUTED TO EACH ASSIGNED OFFICE

4: EACH MESSAGE IS ASSIGNED FOR ACTION TO A SINGLE OFFICE WHICH IS REFERRED
TO AS THE ACTION OFFICE

AUTOMATIC PROGRAMMING PROJECT 11

10:

11:

12:

13:

14;

THE NUMBER OF COPIES OF A MESSAGE SENT TO AN OFFICE IS A FUNCTION OF
WHETHER THE OFFICE IS ASSIGNED FOR ACTION OR INFORMATION

MESSAGES THAT ARE CLASSIFIED TOP-SUCRET AND THOSE WITIH SPECIAL-HANDLING
INSTRUCTIONS ARE NOT ALLOWED TO BE ASSIGNED AUTOMATICALLY BUT ARE
FORCED TO MANUAL DISTRIBUTION ASSIGNMENT

SERVICE MESSAGES ARE IDENTIFIED BY COMMUNICATION-ACTION CODES IN THE
CONTENT-INDICATOR CODE FIELD OR BY KEYS IN THE TEXT

THESE. MESSAGES REQUIRE SOME TYPE OF SERVICE-ACTION AND SHOULD BE PRINTED
FOR THE SERVICE-SECTION

THE RuLCS FOR EDITING MESSAGES ARE (1) REPLACE ALL LINE FEEDS WITH SPACES
(2) SAVE ONLY ALPHANUMERIC CHARACTERS AND SPACES AND THEN (3) ELIMINATE
ALL REDUNDANT SPACES

IT IS NECESSARY TO EDIT THE TEXT PORTION OF THE MESSAGE
ALL MESSAGES ARE SEARCHED FOR ALL KEYS

ASSOCIATED WITH EACH TYPE OF KEY IS AN ACTION TO BE PERFORMED WHEN A KEY
OF THAT TYPE IS LOCATED IN A MESSAGE

THE ACTION FOR TYPE-0 KEYS IS: IF NO ACTION OFFICE HAS BEEN ASSIGNED TO THE
MESSAGE, THE ACTION OFFICE FROM THE KEY IS ASSIGNED AS THE ACTION OFFICE
OF THE MESSAGE. IF THERE IS ALREADY AN ACTION OFFICE FOR THE MESSAGE, THE
ACTION OFFICE IN THE KEY IS TREATED AS AN INFORMATION OFFICE. ALL
INFORMATION OFFICES IN THE KEY ARE ASSIGNED TO THE MESSAGE IF THEY HAVE
NOT ALREADY BEEN ASSIGNED AS ACTION OR INFORMATION OFFICES.

THE ACTION FOR TYPE-1 KEYS IS: IF ANY TYPE-1 KEY IS FOUND IN THE MESSAGE,
THE FIRST ONE FOUND IS USED TO DETERMINE THE ACTION OFFICE AND ALL OTHER
KEYS ARE USED ONLY TO ASSIGN INFORMATION OFFICES

AUTOMATIC PROGRAMMING PROJECT 12

Actual Inpus for Message Distribution Example

[RPAQQ

FS1 ,
(INPUT-SENTENCE]

(SOURCE\TEXT (MESSAGES RECEIVED FROM THE AUTODIN-ASC ARE POUTED
FOR SERVICE-ACTION IF REQUIRED AND THEN
PROCESSED FOR AUTOMATIC DISTRIBUTION

ASSIGNMENT))
(FS-NOTATION

(CONJOINED

(CONJUNCTION AND-THEN)

(CONJ-ARGS

{[FSIF
[PRED (NFS (HEAD EVENT#REQ)
(ACTION REQUIRE)
(OBJECT (NFS (HEAD EVENT#SA)
{(:*CTION SERVICE-ACTION]

' (THEN ‘
(NFS
(HEAD EVENTaRT)
(ACTION ROUTE)
[OBJECT I
(NFS (HEAD MESSAGEs1’ |
(NBR PLURAL)
(REL (NF$ (HEAD EVENTSRCV) 1
(ACTION RECEIVE)
(OBJECT MESSEGEw1) |
(FROM (NFS (HEAD "AUTODIN-ASC")

(DET THE) ‘
(FOR EVENT#SA]

(NFS (HEAD EVENT#PRC)

(ACTION PROCESS)

(MOOD DCL)

(OBJECT MESSAGE#1)

(FOR (NFS (HEAD EVENT#ASG))
(ACTION ASSIGN)
(MOD AUTOMATIC)
(MOD (NFS (HEAD EVENT#DST)

(ACTION DISTRIBUTE)

— i o il .

AUTOMATIC PROGRAMMING PROJECT

Structural Knowledge Extractsd Froiv Input

1. NEW TYPES

TYPE

CODE

CODE -OPERATIONS
CODE-TYPE
CONTENT-INDICATOR CODE
INSTRUCT ION
INSTRUCTION-CATEGORY
KEY

KEY-CLASS

KEY-TYPE

MESSAGE

MESSAGE -CLASS -A
MESSAGE-CLASS-B
OFFICE
SERVICE-MESSAGE

TEXT

TYPE-0-KEY
TYPE-1-KEY

Il. PART-OF RELATIONS

RELATION

CONT-IND-CODE -PART
CONT-IND-CODE ~SUBPART
INSTRUCTION-PART

KEY - IN-TEXT
TEXT-PART

IMMED IATE SU '€RTYPE

CODE

LOCATION
MESSAGE
ORDERED/SET
KEY

KEY

DOMAIN-TYPE

INSTANCES, IF ANY

MESSAGE
CONTENT-INDICATOR-CODE
MESSAGE

TEXT

MESSAGE

"'"COMMUN I CATION-ACTION"!
CONTENT-INDICATOR-CODE
""SPEC IAL-HANDLING"'

"TYPE-Q'!, "TYPE-1"
"TYPE-0-KEY, TYPE-1-KEV

"TOP-SECRET"
"'SECRET"

RANGE -TYPE

CONTENT-INDICATOR-CODE
CODE -OPERATION
INSTRUCTION

KEY

TEXT

(NOTE: KEY=-IN-TEXT IS THE SAME AS "'MATCH-SUBSEQUZNCE,' BUT THIS CAN ONLY BE
DETCRMINED BY INFERENCE.)

AUTOMATIC PROGRAMMING PROJECT

111, OTHER RELATiIOHS

RELATION ARGUMENT-TYPES

ACTION--FOR-KEY-TYPE KEY-TYPE EVENT

KEY-TYPE -FOR KEY KEY-TYPE
MESSAGE-CLASS-A-FOR MESSAGE MESSAGE-CLASS-A
MESSAGE-CLASS-B-FOR MESSAGE MESSAGE-CLASS -B
NUIBER=-OF -COP I ES -OF -MESSAGES CONDITION HUMBER

OFF ICE-FOR~-MESSAGE MESSAGE CFFICE

OFF ICE-FOR=-KEY KEY OFFICE

IV. INFERENCE RULES

(1) (KEY-TYPE-FOR KEY "TYPE-0'')
iff
(Al0 KEY TYPE-0-KEY)

(KEY-TYPE-FOR KEY "'TYPE-1")
iff
(Al0 KEY TYPE-1-KEY)

(MESSAGE-CLASS B-FOR MESSAGE ''SERVICE')
iff
(A10 MESSAGE SERVICE -MESSAGE)

V. OTHER TUPLES ASSERTED

(A10 '"AUTODIN-ASC' LOCATION)

(ACTION-FOR-KEY-TYPE TYPE-0-KEY EVENT)
(ACTION-FOR-KEY-TYPE TYPE-1-KEY EVENT)

AUTOMATIC PROGRAMMING PROJECT

Vi. NEW ACTIONS

ACTION ARGUMENT-TYPES

ASS | GN MESSAGE, OFFICE, RELATION
DETERMINE KEY OFFICE

DISTRIBUTE MESSAGE OFF ICE

EDIT MESSAGE

RECE1IVE MESSAGE LOCATION LOCATION
ROUTE MESSAGE LOCATION LOCATION
TREAT-AS ENTITY TYPE EVENT

INFORMATION INTERPRETED BUT LEFT ENCODED N "EVENTS'' AND '"'OBJECT DESCRIPTORS"

(other than case-argument pairings)

"The system APSYSTEM
""Manual'* X (PERFORMED-BY X USER)

"Automatic'' X (PERFORMED-BY X APSYSTEM)

""The CRT! OPERATOR-CRT
"cannot'' (in FS2) result (of assign by APSYSTEM) = FAJLURE

"number of copies" x, st.(CARDINALITY Y X),
where Y some set of copies of a message
(see below).

""copy oF a message' resul* of performing action COPY on message

""message to an office' some specialization of TRANSMIT is the
ACTION of an EVENT in which ""message'
isl the transmitted object and ''an office'
is the goal location.,

""necessary'' (FS10) - (REQUIRED-OF ? edit...)

AUTOMATIC PROGRAMMING PROJECT

PLANS

By the end of the year we expect the system to be 2ble to handle this entire
oexample without manual assistance. This will require (1) replacing all the manual
transformations in domain acquisition with implemented rules; (2) implementing the model
completion component and connecting it to the prior phase; and (3) implementing a module
to collect needed input data for the program genersted. In addition, we plan to develop
an execution monitoring capability to enable a user to watch the generated program
operate as a debugging aid.

Our example contains two known errors, one of which could be spotted by a bug
apprehension system we have begun to plan. It is caused by producing, under certain
clrcumstances, a data value after it has been used to control program flow. This error
and many other common ones can be spotted as potential (data-dependent) problems by a
pattern-directed analysis of the program. Their occurrence could then easily be spotted
In actual behavior trace.

The second bug concerns an interpretation of the English statement, X is a function
of Y." Does this mean that X is a function only of Y or of Y and some other unnamed
things? We have chosen the former meaning, although the latter was intended in the
example. This interpretation will cause a bug in the generated program which can be
spotted only by observing its behavior.

We then plan to select and prasent to our system several different real-world]
domains of approximately the same complexity as the message-distribution domain.

Although we have tried to build a domain-independent system, we have been driven by]
our example in that we have built only those transformations required by the example.

Thus, as we address new domains, more transformations will become necessary to handle |
new situations previously unercountered. The new transformations may interfere with |

the existing ones. We will have to identify and resolve such conflicts.

The main goal of thuse studies will be to determine the generality of our system in
term: of the amount of overlap, and the amount of conflict, with existing facilities. In some J
sense, we must develop an estimstion of the size of the "vocabulary” (i.e., the facilities)
needed to handle domain descriptions. We will also be studying how to specify a domain l
and program how to represent them in the system. b

This understanding of domain and program descriptions will allow us to accept more]
Imprecise a‘d incomplete 'specifications by resolving or fillina In Information from
Information :peclfied elsewhere and through knowledge of domain structures and

TN

e ————
-

AUTOMATIC PROGRAMMING PROJECT 17

interrelationships. We will continve to push on this front untii we can handle
specifications typically found in functional specification manuals.

Iif we were totally successful in attaining domain independence, then new domains
could be accepted without any modification of the system by merely providing their
domain description. We do not expect to achieve such a level of independence. However,
our goal is to minimize such modification so that by the end of 1976 we can acquire and
handle a new domain of roughly the size and complexity of the message-distribution
domain in less then a week.

18

3. IMPRECISE SPECIFICATIONS

There are three main problems in transforming a specification into a program. The
first, eofficiency, has been explicitly excluded from our consideration. The second,
transforming nonprocedural specifications into procedural ones, such as constructing
programs so that stated constraints cannot be violated, is in general a very difficult
problem and has therefore been postponed for later consideration. That leaves only
ill-defined or imprecise specifications. This remaining major problem hzs become our main
focus because of the significant improvements which can thus be realized.

The notion of imprecise specifications is itself imprecise. By imprecise, we n.can
information which is not explicit in any statement but is implicit in some group of
statements and context. We do not have a complete categorization of the ways in which a
specification can be deficient, nor do we understand all the boundaries. But our approach
is engineering-based rather than mathematical. Rather than attempting to handle all
cases, we are looking for those which arise frequently in natural language communication
between two people. Our assumption is that the user is attempting to be helpful and that
something is imprecise only because either it doesn’t matter or because for the speaker
one, and only one, interpretation is obvious and hence the meaning is unambiguous.
Therefore, removing the imprecision should nearly slways be simple and involve only
shallow reasoning.

We list below the types of imprecisions we currently handle or plan to handle, a
specific example drawn from the problem presented in the previous section (the numbers
in the square brackets identify the sentence numbers), and a discussion of how such
imprecisions can be handled.

1. Tomplete parameter specifications for events (actions or reiations).
A. Disambiguation by well-formedness criteria of IF statement -
“Ail information offices in the key are assigned to the message if

they have not already been assigned as action or information oifices”
(S13]

Tha second ASSIGN in the sentence doesnt specify to what the
office is assigned. From previous specializations, we find it couid be

IMPRECISE SPECIFICATIONS 19

to either KEYS or MESSACES. During a meta-evaluation phase the

program is tested for well-formedness which, z.nong other things,

requires that the value of the predicate of an i statement is not 1
determinable from the program structure itself (i.e., without any

knowledge of the data). The office being investigated is known from

the first part of the sentence to be assigned to a key (“office in the

key” see 5B below). Hence, only it MESSAGE is filled in as the

unspecified parameter is the [F well-formed.

— e +

8. Dynamic Context -

“The rules for editing messages are: replace all line feeds with
spaces” [S9] and "It is necessary to edit the text portion of the
message” [S10]

The set in which the replacement is to be performed is not specified.
Lexical analysis indicates that MESSAGE is a parameter of EDIT, but
it is not a set. However, it has sevaral components which are sets
ADDRESSEE, TITLE, TEXT, etc). Dynamic .ontext (from sentence
10) indicates that the TEXT component shouid be edited and hence it
is the unspecified parameter to REPLACE.

C. Modification of parameters -

"The message is distributed to each assigned office” [S3]
"The number of copies of a message to an office ..." [S5]

: Sentence three indicates that MESSAGES are to be DISTRIBUTED.

{ Sentence five further specifies this parameter as beirg those which
are the result of COPYING the MESSAGE. Thus the call to
DISTRIBUTE must be modified to be the result of the COPY
action on the MESSAGE which was originally thought to be the
psrameter to DISTRIBUTE.

2. Sequencing

A. Loop Formation

“Messages received from the Autodin ASC are routed .. [S1]

A set (MESSAGES) is specified for the direct object parameter of

IMPRECISE SPECIFICATIONS 20

ROUTL which |s exnected to be singular. The causes s loop to
be formed around the ROUTE action with MESSAGE as the iteration
varlable and cortroiled by the filter "messages recieved from the
Autodin-ASC". This loop is then percolated up through the “if
required” and “and then processed” statements which surround the
ROUTE becsuse they are both dependent on the iteration
variable. This brings the loop to the outermost level of tho
sentence.

8. Demons
"Messages received from the Autcdin-ASC are routed .." [S1]
A loop at the top level of a sentence which is not explicitly
sequenced relative to other statements is treated as a loop
distributed in time--a deamon--which is fired whenever its controlling
fliter Is satlsfied.

C. Purpose
"Processed for automatic distribution assignment® [S1]
if an action (PROCESS) is performed for the purpose of enabling
another (ASSIGNMENT) which is not explicitly sequenced, then have
it precede the enabled action. Thus although it is never explicitly
invoked in the specification, we infer that ASSIGNMENT should follow
PROCESS and similarly that DISTRIBUTION should follow
ASSIGNMENT.

D. Explicit Sequencing
"The message Is then searched for all keys" [S11]

The SEARCH s made to follow the svent of the previous sentence
(EDIT).

E Remote Loops
“The number of copies of a message to an offlce ..." [S5)

As mentioned In 1C above, this sentence modifles the Invocation of

IMPRECISE SPECIFICATIONS

21

DISTRIBUTION of MESSAGES. It changes the actual parameters
from MESSAGE to a specified NUMBER OF COPIES. This causes a
loop to be formed around the COPY action, which in turn causes the
loop to be percolated up around the DISTRIBUTE since it cannot
take a set as a parameter.

Requirements Analysis
"The message is then searched for ali keys" [S11]

This informs us that SEARCH foliows EDIT, but the placement of this
pair roiative to the other actions is not known. Therefore an
anaiysis of the pre- and post-conditions of each action is undertaken
to discover any unstated sequencing rules. This analysis shows that
the ASSIGNMENT is caused by actions performed only when a KEY is
LOCATED. Since LOCATE ic a successful SEARCH, SEARCH must
precede ASSIGNMENT.

IF-THEN Sequences

"If no action office has been assigned to the message, ... If there is
already an action office for the message, ..." [S13]

This sentence is of the form "if P then X; if not {P) then Y" and
should be interpreted as “if P then X; else Y". More generally,
several [F statements following each other should be treated as a
CASE statement rather than a sequence of IF statements.

3. Time Frame

Passive Voice
"Messages received from Autodin-ASC are routed” [S1]

Does this mean that when RECEIVED MESSAGES have already been
ROUTED, or upon RECEIPT they should then bs ROUTED? Suchi
statements are interpreted as either a tes! or an action invocation.
The critical issue is that the interpretation should be tha same for all
items. The problem is that, in general, this cannot be determined
made at specification time. Thus, this imprecision is left until the
first usage, which examines the situation existing at that point and
determines the interpretation that should be used thereafter.

5 y
r Vv - P s

} IMPRECISE SPECIFICATIONS 22

1 B. Positive Constraints

Wy

"Each message must be assigned to a single ffice for action™ [S4]

Again, the interpretation is not clear. Does it mean that the
: ASSIGNMENT should have already been made or that such ar
[ASSIGNMENT must now be made? Our interpretation is "if not]
(test) then perform™ That is, if the condition has not already been
met, then meet it (if possible). One further imprecision i
remains: when should such an interpretation be applied? Whereas
negative constraints apply everywhere (they can never be violated), J
[positive constraints apply only at some particular time, normally
unspecified. We default such unspecified times to the first
unconditional usage of the event or any of its unique side conditions.
For the above positive constraint, this is during DISTRIBUTION,
when the action is performed for each ASSIGNED MESSAGE. The
earlier usages in sentence 13 are conditional.

b 4. Irrelevant Information i

A. Indeterminate Specislizations
"These messages require some type of service action .." [S8]

Neither tho types of SERVICE-ACTION nor the method of
determining which one applies in a particular situation is given nor is
the distinction used, hence the system assumes the distinction is
irrelevant. 1

R

B. Indoterminate Sets
“Replace all line feeds with spaces” [S9]

The cardinality of the set of SPACES is unspecified and hence is
assumed not to matter. Two is assumed.

5. Reference

A. Uniformity ?

"and then processed for automatic distribution assignment™ [S1]

PROCESS is cieariy a dummy name for some more specific actions
which enable ASSIGNMENT. Unfortunately this Is not specified.
However, EDIT followed by SEARCH perform the function of enablirg
ASSIGNMENT and are not explicitly sequenced but by requirements
analysis must precede ASSIGNMENT. It should therefore be
sssumed that the definition of PROCESS is EDIT followed by
SEARCH.

B. Generalized Reiations
"The action office from the key" [S13]

Prepositions iike FROM, IN, and OF often are not part of the case
frame for the omitted reiation between the entities on either side of
the preposition. instead they imply that the entity on the ieft is
ASSOCIATED-WITH the ona on the right. The system responds
to such generalized relations by searching for a known reiation

between the two entities (here ASSIGN an OFFICE to a KEY for
ACTION,.

6. implied Relations

A. Use of Known Attribute Values

- are not aiiowed to be assigned automaticaily” [S6]

AUTOMATIC is known to be an attribute vaive of the
PERFORMED-BY relation which specifies who actually psrforms
an action (here the ASSIGN is performed by the system).

B. Use of Unknown Attribute Vaiues

"Top-secret messages” [S6]

TOP-SECRET is an unknown attribute. A new named relation is
created which links MESSAGE with an named range of which
TOP-SECRET is an element. It is sssumed that the attribute
vaives in this rangs are mutually exclusive, and that other unknown

adjective modifiers of this same type of object (MESSAGE) also
beiong to this range.

LT S

24

¢. CONCLUSION

In this report we have tried to present a particular view of Automatic Programming
as a field, examine a single project consistent with this view working on specification
acquisition, and discuss several different forms of imprecision and a possible method of
coping with them. This approach is based on applying analysis and problem solving
techniques to the problem statement, not to solve it, but rather to understand it.
Knowledge of the cha;acteristics of well-formed specifications, of how people specify
tasks, and a domain description to provide recundancy disambiguates natural
communication to a great extent.

Though such an approach is far from producing practical results, it does ofter the
eventual promise of removing the major remaining Larrier to society’s effective use of
computers, i.e., the ability to specify tasks at a level aporopriate for human communication
with automated implementations rather than in a highly formalized rotation requiring
excessive training, attention to details and optimization, and associated high costs. Only
then can the promise of computers--the ultimate malleable object--be widely realized.

