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OPTIMAL INVENTORY POLICY WHEN STOCKOUTS ALTER DEMAND
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l ABSTRACT

el B i e N

An inventory model in which future demand is affected by stochouts has been considered
recently by B. L. Schwartz. Some generalizations of Schwartz's model are presented in this
paper and properties of the optimal policies are determined. In the case of deterministic
demand, a set-up cost is included and a mixture of backlogged and nonbacklogged orders
is allowed during stockout. It is proved that the optimal policy entails either no stockout or
continual stockout, depending on the values of three parameters. For stochastic demand. the
eflect of ~tockouts on demand density is postulated. the resulting optimal inventory policy
is discu~sed. and an example involving an exponential density function is then analyzed in

detail.

INTRODUCTION

Optimal inventory policies may involve stockouts, even when the demand is assumed to be deter-
ministic. The effect of stockout in inventory models is usually taken into account by means of a stock-
out (penalty) cost. In some cases this may be appropriate, e.g. when the demand during stockout is met
by a priority shipment or extra production run. In other cases, however, stockouts may cause loss of
goodwill and affect future demand to the firm. B. L.. Schwartz |1, 2] formulated a *“*perturbed demand™
model to analyze this latter situation. The initial results of Schwartz are extended in this paper.

The case of uniform demand rate is considered first. Customer response to stockout is assumed to
lower future demand, and the steady state (long-term) situation is analyzed. If there is no restriction on
order size or interorder time, it is proved for a generalization of Schwartz's model that the optimal
policy entails either no stockout or continual stockout. For problems involving fixed order size. fixed
initial inventory level, or fixed interorder time, the equations for the optimal policy are derived.

In the case of stochastic demand, a form for the future demand densii v as a function of stockouts
is proposed. Optimal inventory policy, based upon this assumed form, is discussed and an example

involving an exponential density function is presented.

DETERMINISTIC DEMAND

In the case of deterministic demand, consider a firm carrying a commodity for which the potential
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2 . J. CAINE AND R. H. PLAUT

demand rate is Ao (measured in units per time). That is, the firm would experience demand rate A¢
if none of its customers were to ever confront a stockout situation. Given that this firm institutes an
inventory policy resulting in a fraction a of demand occurring during times of stockout, one would ex-
pect to find demand perturbed downward from A to a lesser rate A =f(a: Ao) as a result of lost customer
goodwill. The first practical formulation of this “perturbed demand” concept is attributable to B. L.
Schwanz (1, 2).

In short, the implicit assumption in all ciassical inventory formulations is that demand experienced
by an individual firm is insensitive to the firm's operating policy. The firm wishes to choose a policy
which reflects an optimal balancing of holding, ordering, salvage and penalty costs. Although a cost is
generally associated with stockout, demand is considered independent of the frequency of such occur-
rences. Intuition, however, must lead one to question this assumption. It surely seems more reasonable
in many cases that the loss of goodwill which accompanies repeated stockouts will indeed be manifest
through lowered customer demand.

Consider the periodic inventory history depicted in Figure 1. Delivery of an order of size M — (1 — b\L
signals the start of a perind. Inventory depletion occurs at the constant (steady state) rate A per unit
time until, after T units of time have elapsed, a total demand of M units has been registered. In each
cycle L units of demand are recorded while stockout conditions prevail and it is assumed that bl of
this unsatisfied demand may be backlogged until new supplies become available in the next period.
where 0 b=< 1. Such a situation might arise, for example, if some customers were unwilling to wait for
the next shipment. (The classical backlog and nonbacklog cases are given by b=1 and =0, respec-
tively [3]).) Therefore, loss of sales per period totals (1 — b)l.. Once M units have been demanded. a new
order of size M — (1 — b)L is placed. Delivery is assumed to be immediate and all backlogged demand is
filled. Present inventory level now equates with inventory holdings at the previous period’s commence-
mert and the cycle repeats.

Suppose the firm wishes to maximize average profit per unit time. Considerable simplification re-
sults from observing the sufficiency of an analysis of average profit per unit time in a single cycle. That
such a study is indeed sufficient follows from the periodicity of the inventory history. The firm’s quest
reduces then to the single period problem of calculating an optimal set of values for the decision vasia-
bles M and L.

Note that periodicity of inventory history is not inconsistent with the perturbed demand hypothesis

INVENTORY
LEVEL
SLOPE = -A \ I
u
\ "
TIME
N nNE
1 Ml
\hl .,: | A
]

p— 1 —~f

FIGURE 1. Inventory system in steady state with deterministic demand.
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OPTIMAL INVENTORY POLICY 3

that stockouts in one period will influence demand in future periods. For once the firm institutes a per-
manent inventory policy thy choosing hixed values of ¥ and L), each customer will, in due time. ex-
perience a series of satisfactions and disappointments. The system achieves equilibrium when ordering
rates have been revised in accordance with the hrm’s established record of customer service. This
study focuses upon the operating characteristies of the stabilized system.

For the moment, consider Schwarts's assumption regarding customer response to stockout. That
is. when a customer’s demand cannot be immediately <atistied, the customer reacts to this disappoint-
ment by purchasing [ less units in the future than he would otherwise have purchased. For each unit
of stockout the firm loses I units of sales over the intinite future horizon Schwartz has suggested a
method for evaluation of the parameter 7]1].

Since the system is operating in equilibriom. the future effect of stockouts experienced in any
single ¢yele must be in balance with the accumulated impact on that eyele of stockouts encountered in
previous periods. Therefore. for the purpose of mathematical formulation. it s proper to treat the L
stockouts in any period a~ though they affeet the demand rate for that period. 1t is important to realize
that this observation i made solely in the interest of mathematical simplicity. Itis not a correet deserip-
tion of the actual dynamies of a system operating under perturbed demand assumptions.

Given a potential demand of Aw with no stockouts, AT represents potential demand in a period of

length 7. Actual demand per evele, however, equals AoT — L1 as g result of [ units of lost sales aceruing

to each of the L disappointments per evele, In view of the fact that total demand per period equals

M, it follows that

th ‘l———)\'l‘ )\4.7"‘[./.
ur
Ao Ao .
) ) DT Nl . R
{2 A = /”) ] /((l’./\n)

This relationship provides the fundamental link between perturbed and potential demand.

We assume that the following cost and revenue factors are operating. A cost per unit time is associ-
ated with storing each unit of inventory held. This holding cost is taken to be linear with coethicient H.
Ordering cost has two components: in addition to a proportional cost of ¢ per unit ordered. a set-up
cost of A is levied tndcpendent of order sizetvtor cach order placed. Revenue is proportional to quantity
sold with coeflicient r. Recall that no immediate penalty arises from ~stockouts under the assumptions
of perturbed demand. Penalties from stockout are reflected in the lowered future demand which de-
rives from the perturbed demand effect.

Since. in every period, the firm <ells the same quantity as it orders, it is convenient to formulate
the problem in terms of net revenue per unit. defined as V= r—¢. Therefore profit per cyele, I1. may

be written as

W —L)H

. _ p L s USTI
(3) H=(M—(1-b)L|N~- BTN k.
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4 G. J. CAINE AND R. H. PLALT

Defining P to be net profit per unit time, it now follows that

LA =b)Ly (M=L)*H kA
e —T“‘IW—)\.\[I—T]___Z -y

It is always understood that N > 0, for otherwise the problem is trivial. But ¥ > 0 implies that Na, -~
0 so that in finding values of M and L which maximize P/ ¥\y. one has found those values of M and L.
which maximize P. Therefore it is sufficient to consider the probleta of maximizing P’/ ¥\, with respect to
M andl.

Define

5 .-M. [—M. h= I\H. )= P .
) m AoV AoV Ao MV g AoV

In terms of these nondimensional quantities, (3) becomes

- [m—t1=h—4k) (m—1?*
kb) d (m+1I) 2m

The decision variables are [ and m. and the relevant parameters have been reduced 1o A b, and 1.

It is clear that M and L have been dehned in such a way that M = L = 0. which immediately trans.
lates into m =/ =0. Thus. m=0jmrplies /=0, or, in other words. the firm is experiencing no stockouts
in spite of the fact that it is placing no orders. This circumstance can occur only in the degenerate case
of A=0. Since the assumption is made in all subsequent formulations that A > 0, it i onlv necessary
to consider maximization over m > 0.

Note that if A is a ixed constant, then //m assumes a hxed ratio y with 0 < y < 1. An eflective ap-
proach to the optimization problem consists of first maximizing p along rays in the (/. m) plane fi.e.,
with y fixed) and subsequently maximizing over the range of admissible values of y. For /= ym, writing p

in terms of y and m yields the function

[I—=(1=bry—(4/m)] (1—y)im

(7 p=

(1++yh 2
Differentiation with respect to m gives
ap ; | .
L im (v yhime 21770 :
and
ap o =2k
9) =P_

am* (14 ylym3’

Hence p is concave with respect to m, and for fixed y the value of m which maximize~ p is obtained as
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by setting ap/im = 0. Plots of rit versus y for parameter value</ -3 and 1aih = 0.005, by [ = 0.28125,
(cyh = 2.0 are shown in Figure 2.

Note that expression (10} for m is independent of &, For a situation in which y s fixed, t110) gives the
value of m which maximizes net profit per unit time. The fact ihat this optimal value of m is not affected
by changes in the parameter b lends an attractiveness 1o the solution. since a irm mav be uncertain
about the actual value of this parameter.

Substitution of m = i from (101 into (71 leads 1o the following expression ) which gives the optimal

value of p tor fixed y:

) ) = e — -- —_ R4 -+ A
i1 I (l+yl)[l -hyy—tl =yiN201 - yhi].

The meximum over all rays is now determined by letting y vary from 0 to 1. The derivative dpdy can

be written in the form

(1) dnE I (2~I‘yl)vllﬁmA‘l'—l‘~l.

dy (1 +yl)?

lts sign bhehavior depends only upon the quantity in brackets, which is an increasing function of y:
therefore dp/dy i~ either alwavs positive, always negative, or changes sign once from negative to
positive as y ranges from 0 to 1. It follows that the maximum of p occurs at one tor both) of the bound-
aries y=0or y=1. In Figure 2, p is plotted versusy for b=1.1=3, and rta) /L = 0.005. b 4 = 0.28125,

teyh =20, In case taty = 0 is optimum, in (h) both y=0 and y= | give the <ame tmaximumi value of p,

and in(cry=11is optimum.

(a) (b) {c)
1.0 =] r -] al
" 5 4 = |
05\ L 4 {
[ T <
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¢ 4
05 ¢ ~
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- @ - -
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4 - |I = i
" g 5
2 - -
! - - -
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FioUre 2. Behavior of pand mofor b 101 - 3,0 tat 4= 00005, th) L= 028125, 1) 4 = 2.0
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6 G ). CAINE AND R. H. PLAUT

Fory=0.(11) gives p= 1= V24 and (10 yields m = V24 while the case y= 1 leads to p=b/(1 + 1)

and m = + . Hence the optimal policy is as follows:

it 1=\ 24 = b 1h =\ 1=0:
] = (I‘f’l)' 1en - o =\

(13

then m=1=+x,

. — )
if 11—V < TEYTS
In other words, the firm either should never be out of stock (/= 0) or should always be out of stock
(m=1). In the first case, note that the optimal order quantity is proportional to the square root of the
storage cost. The second case, with m=1=x, is of course not a practical result. However, other
factors or constraints may compensate for this inadequacy, and a few will now be considered.

A firm may wish to restrict the range of ¥ 10 0< y <y, < . The argumenis above again lead to a
houndary solution, and the optimal policy results from a comparison of p at y=0 and p at y= y,. The

corresponding value of m is given by 1101, and /= ym.
It may occur that the nondimensional order quantity m is fixed at some value mqa. Putting m = mq

in 6} and then setting dp/dl = 0 yields the cubic equation

1141 tmg = O Cma~ N2+ Klmg— (1~ 1 =b)yml=0

in the parameter [. Comparison of the net profit p at the real solutions of 114) in the range 0 < { < m,
and at the boundaries { =0 and [ = m, leads to the optimal policy.
Suppose the irm desires that the inventory level at the start of each eycle be a fixed positive value

Qo. Then m=1+ q where ¢= (uH/AWN . ~o that 6) hecomes

15 b+ qg—1 q

5 )= e .

- ! (l-I~q 2+q)

and the condition dp/dl = 0 implies that

(16) 200 gL~ Dk —g)y+bg]+ @l + D= g)*=0.

This guadratic equation in [ can be solved immediately and the optimal policy can be found as in the

previous case,
Finally. the interorder time may be prescribed at some value T=T,. It follows from (1} and (5
that m=1t—1I where t=TiH/N. Substituting for m in 6) and setting dp/dl =0 vield~ the quadratic

equation

(17 200+ 1=byte == tt—=(1 - DI[24 =1+ Dl]=0

and the optimal policy can be determined. We note that equations (141, (161, and (17) were previously
given (in dimensional formi by Schwartz [2] for the case A=0 with b=0and h=1.
The results derived above are based on the relationship (2) hetween perturbed and potential

T T———

i




OPTIMAL INVENTORY POLICY

demand. Other models of customer response are possible, of course: for example, the relationship

might be assumed to have the form

Ao
RG] N
or

where £1(0)=0 and £2(0)=0. If b= and if the first denvatives of the functions f,t1) and .01} are
zero at L.=0, we note that aP/al. i« positive at . =0 and hence the optimal policy alwavs involves
stockouts, The case fo(L)=1,1%/2 has been considered in |4] to model customer response when time

of stochout is a factor a~ well as the amount of stockout.

STOCHASTIC DEMAND

An extension of perturhed demand concepts presented so far s now sought in an effort to analvze
the stochastic demand problem. Analogous to the deterministic demand situation. one may view
long-term customer density of demand as a downward perturbation (stemming from the hrm’s opera-
tional inventory policy) of potential demand density, For example, allowing interorder time to vary,

Schwartz |2, 4] proposes the steady state perturbed demand rate

I~ W /

based upon hypothetical demand rate wa. disappointment factor a=17. . and fixed parameter /.
Here we will investigate the case of fixed interorder time. 1t is useful to formulate this problem
in terms of an expected disappointment factor. Schwartz [4] considers a long-term expected disappoint-

ment factor a defined by

f’ (E— V) (€)dE
¥

121y a= "
f b€V dE

i

where ¢, (&) is the demand density in steady state and v is the stock level at the beginning of each
perind. Note that 0< a < | since demand density functions are zero when their arguments are nega-

tive. As an example for ¢, (£). Schwartz gives
122) duter=141 - aleu (1 +al)€]

where [ is a positive constant and ¢a( £) is the density of demand experienced each period if no stock-

Oouts ever occur.

bl el gt d o s p—
St s b Bl s e s
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1 CAINE AND R H O PLALT

Equation 211 1s a functional relatonship in a which may not have an analytical solution and

hence mas have to be solved numencally for each value of v. In order to avod this difhculty, we detine
the alternative expected disappointment factor g,

J" (€ — v IdwlE)dE

23 =t — -
f Edat EVdE ]
and propose that the long-term demand density d4(€)1 be a function of 8. Note that 8 is the ratio of t

eapected stochauts to expected demand. based on the density do(€). and that 0< g < 1. Also, we
assume that the relationship of dst€) 1o dot ) has the form

24 dulé) = gpdolpf . & >0

where 2,1~ a tunction of 8. The requirement

f' b AEVdE=]

1~ automatically satistied with the form (241

The expectation associated with ¢, satishes

. x x l .
1261 Etd.)- f Ednt ENilE = f Eeudot g dE= — Etdn)

LU U K i
and. since stochouts are assumed to lower future demand. we must have {
0-4A 0 Ly = l. 1

- , 1
Alsi, since o is the distribution when there are no stockouts, e, when g8 — 0, we desire that
|
128 g1 as g—0. ]
k]
W e assume that g4 is monotonically increasing as 8 increases from zero.

One might also assume that the long-term demand for the firm’s product tends to zero if a stock-

out situation {v=0) alwavs exists, (This is especially true in the nonbacklog situation.) In this case
one would require

129) I hadn- as B—1

some functions satisfying conditions (27)-(29) are
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. 1 2 :
130 ,L'g-'(—l_—ﬁ—,' ] */3“!‘,[3’). e, 20
520
and
d
t31) rg= == {>0.
: a Ing ‘

It the model is to be such that a small amount of <tockout thelow a threshold 8= 80) has no effect on

long-term demand, one might assume a form such a-

! for0<s g <
132) /:f{ G

A’,»; fﬂr ﬁ(;<B< I

where g0 0s given by 30V or 310, sav. with 8 replaced by

33) y="t

‘ ﬂ | _ﬁn

The relation

1341 ga=1-gl.  1>0.

analogous to that used in (22), satishes conditions 27} and (28) but not (29),

As an example, consider the exponential density
135 d)n(.flzll(’ at, « >(). E = 0

Then ¢ 48)is also an exponential density with parameter gga. If g4 is given by (31), one obtains

R e P dy it
IR B=e" g.=1+ —. dst&)Y=[a+- Je s B
ay )

A higher value of o implies a larger effect of stochouts on long-term demand.

1n order 1o determine the optimal inventory policy of the firm. consider a period in the steady stat..
| ving the classical theory for now |5], let ¢(€) be the density function of demand. x the inventor,
level hefore ordering tit 1 - 0, then — v denotes the amount of backlogged orders), and y the inventory
level after ordering an amount ¢ (so that v —x = z. v = v). The purchase or urdering cost is assumed
to be c(y —x), the sale price for a unit of stock is r. the holding cost is h(y—¢) and the stockout
{penalty) cost is p(€ —y)t, where the functions c. h, and p are zero for nonpositive arguments. For

a given demand ¢, the total loss experienced during the period may then be expressew as

tIf the fractional part (£—y1h of excess demand may be be b logged. thenp(£ —v) might be assumed to have the form

pré—ry)y=pltg =] - vl = —h. '




10 6.1 CAINE AND R H. PLALT

(v =)+ {min(O ) =g ) ] r o (G —&) cpléa-y) ity =0
(37 Lly:x) =

cy—x)—(y —a)r = plté, —y) ify <0
F and the expected loss is
; (38)  E[L(y:1)]=
9 u ,
: r(y—x)—{—[min(l).x)]r-i—f [h(y — &) —ré b (EVdE + ( (e — )= )db(&)dE ify=0
0 Y
4 cly—x) - (y—.r)r+f pLE=Y) bLEME lprs
b [}
3 For the situation considered in this paper, the effect of stochout is manifest in the density func-

tion. In (38), therefore, the stockout cost is deleted and the density & (€) is replaced by ¢d4(£) which

depends on initial inventory level v. This yields
(39)
" x
c(v—x)+ [min ((),x)]r+f [h(_y—f)-r_f]d)n(.f)r{_f—rvf bl EVdE ity=0
E[L(y:x)]= 0 v

cly—x)—(v—x)r if v<0.

If the ordering cost is linear, i.e.. ;
(40) clz) =z,

then (39) may be written as

{41) FIL (y:2) J=—cx+ [min {0, 0 ]r+ G(v) :‘

where
GOyr=cv+ F(yv).

(42) i 4
I’} x
= j [hty— &) —rEldulE)dE—ry j Dl E)dE Hy=0 )
F(yv)=1% Jo v
—ry if v <.
Now consider the exponential density ¢y(£) given in (36). If we assume that the holding cost is
linear, i.e.,
(43) hiy—&)=(v—¢&)h.
<

and define the nondimensional quantities

e i adh St b A e G Wl R g s A L




OPTIMAL INVENTORY POLICY 11
“ i a6
(44) y=ay, F=<, h=k. ==,
c c c
then (42) yields
. (F+h) _ X
o 1+ h)y————§[l —¢ tved) ify=0
: (45) Gigy=| UTRF— gy -] iy
; (1—-F)y if y <0
1 Note that G(0) =0, as intuition would sugge:  One can show that G’/ (#) > 0 for ¥ # 0, and hence
G(#) is convex. In Figure 3, plots of G (#) are ziven for parameter values F=2.0.h= 0.2, and d = 0.1,
0.5, 1.0, and 2.0. The minimum values of G () occur at ¥, = 0.567, 0.405., 0.178. and 0, respectively.
’ and ¥ = ¥mn is optimum. The long-term density functions corresponding to the optimal policy for the
&
1ok

-os5L

FIGURE 3. Behavior of G for #= 2.0, h = 0.2, g formulation.

cases = 0.1, 0.5. and 1.0 are shown in Figure 4, along with the hypothetical density function ¢o( &) for
d=0.
Differentia ing (45), one obtains

(46) lim G () =1+h—

which is positive for sufficiently large values of d. Therefore. if the effect of stockouts on long-term
Jdemand is large. then 7, = 0 according to this model and the best policy may be to not carry the item

under consideration,
Recall that the disappointment facter 8 defined in (23) is based on the density ¢o(£). The particu-

lar example treated above has been chosen such that one can also obtain analytical expressions with the 3
use of the disappointment factor a defined in (21). If we replace 8 by a in equations (24) and (31) and b
f
3
A
:
3

bl el S i il
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FiGURE 4. Density functions ¢4 for aptimal policies. g tormulation

if pol&) is given by (35), then the relationship (21) becomes

(47) a=¢ |1 tdina )]ay.

Taking logarithms of both sides of (47) leads to a quadratic equation in Ina. with the appropriate

solution
(48) Ina=—1/2(v+ V¥ + dvd).
Using (43), one then obtains
G
10F
05F
k }
! L i 1 i i L T
-05 _ ! ;
. {
-05*- :
FIGURE 5. BEHAVIOR oF G for 7= 2.0. h = 0.2, a tormulation, E
)
i
3
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1 (]+E)1_i ] —e 11 (dlmll]V} fy=0
-' ~ ! [l—(d/lnu)]{ ‘ R
] (49) G(y)= o L
v‘ (1—-7)y ify<0
which is plotted in Figure 5 for the same parameter values as in Figure 3. The minimum values of
. G(¥) oceur at Py = 0.566, 0.437, 0.338. and 0.233 for ¢ =0.1. 0.5, 1.0. and 2.0, respectively. All
? curves have the same slope (1 —F) at ¥ =0, so that vy, > 0 unless the unit purchase cost exceeds the
] unit sale price. The optimal policy is again ¥ = ¥;n.
: Comparing Figures 3 and 5, we see that the curves G ! ¥) are similar for the two formulations if the
s parameter d is small. In other words, the formulation in terms of 8 and the one based on a lead to similar
optimal inventory policies if the effect of stockouts on demand is not too large.: As this effect increases,
} however, ¥mn becomes zero in the 8 model but remains positive in the « formulation.
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i ABSTRACT

A well known preventive replacement policy is the block replacement policy {BRP).
In such a policy the item undergoes a planned replacement at a sequence of equally spaced
time points independent of failure history. The main advantage of a BRP 1s its simplicity,
because under this policy it is unnecessary to keep detailed records about times of failures
or ages of items. The main drawback of a BRP is that at planned replacement times we may
1 he replacing practically new items. In this paper we study a modified BRP which i~ free of this
drawback. We calculate the expected cost of following a moditied BRP for hfetime distribu-
tions possessing a special structure and illustrate it for the case of an Erlang distribution.
A numerical comparison is made between a modified BRP and a <tandard BRP for the special
case of a two stage Erlang distribution.

1. INTRODUCTION

3 A preventive replaceme..t policy may be worthwhile in reducing the cost of operating a stochasti-
: cally failing item. Under such licv the item is replaced hefore actual failure (and thus we lose the

value of any remaining life)in orderto p >~ .t the extra costs associated with a failure.

A well known preventive r- alacemen: olicy is the block replacement policy (BRP). In such a
policy the item undergoes & pli, «+ --placem nt at a sequence of equally spaced time points indepen-
dent of failure history. If the '« » thr 1 one item the planned replacement times are common for
all of them. This is why the na  biuck 1eplacement is used. The basic BRP model is presented in
[1: pp. 95-96|. A working item v . failure is assumed to be immediately detectable, is replaced

both at failure and at fixed interva’ of i.me. The replacement is assumed to be instantaneous. The

PO T SR TV

main advantage of this policy lies in its simplicity because no recording of times of failure and ages of
items is requir. d. The objective function to be minimized is the minimum average cost per unit of time,
for an infinite 1ime horizon. ]

The main drawback of the BRP is that at planned replacement times we might replace practically
new items. The following articles modify the BRP in various ways. In the first model. [1: pp. 96-98].
[2]. a failed unit is no longer replaced but is instead given a minimal repair. By minimal repair, we mean
that the repair, needed to put the failed item back into operation, has no effect on its remaining life- 1

time. This repair action is mathematically equivalent to replacing the failed item by another working

item of the same age. This policy may be appropriate for complex systems hecause a system undergoing
minimal repair can be thought of as a single unit which is aging over time. Bhat [3] also relaxes the

requirement in the basic BRP of replacing failed items by new items. In his model failed items are

15
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16 M. BERG AND B. EPSTEIN

replaced by items having age ¢ (the block replacement interval), which were taken out unfailed in a
former planned block replacement. By reusing these items unused item lifetime is reduced.

In a block replacement model considered by Cox [5]. an item which fails **close to” the time of the
scheduled block replacement is not replaced and remains idle until block replacement occurs. A
penalty, assumed to be a linear function of idle time, is taken into account. Crookes [6] in one of his
models (strategy E) follows similar lines. In his model a unit which fails at any time within the interval
is not replaced until the next block replacement. Both of these articles contain a mathematical error
which has been corrected by Blanning [4]. Woodman [8] suggested the use of dynamic programming
to find the optimal policy for the preceding two models.

In this paper we present a different madification of the basic BRP. We call this policy a modified
BRP.

2. OUTLINE OF A MODIFIED BRP

The expected cost per unit time per item of a standard BRP taken over the indefinitely long future is

M) + e,
(1) C“):—f'

where ¢ is the length of the interval hetween scheduled replacements, M (t) is the expected number of
failures (unscheduled replacements in [0, t)). M(¢) is of course the renewal function. ¢, is the cost of
making an unscheduled replacement of a failed item. ¢» is the cost per item of a scheduled (block)
replacement.

We assume that o <r,. and that the conditional probability of an item failing in the interval
(x. x+ A} given that it has attained age x is increasing in x. This property is called IFR (Increasing
Failure Rate). Mathematically this means that the item failure rate (or hazard rate) r(x) is increasing

in x. where

Hx)
F(x)

(2) rix)==

f(x) and F(x) are respectively the p.d.f. and c.d.f. of the life length of an item and F (x) = 1 — F (x).

The principal advantage of a BRP is its simplicity since it renders it unnecessary to keep detailed
records about times of failures or ages of items. The principal disadvantage of this policy is its waste-
fulness hecause we may replace practically new items at the prescribed replacement points. This led
us to consider a modified BRP which is free of this defeet.

In the modified BRP we still replace failed items instantaneously after failure. but jtems possessing
age b or less at scheduled block replacement pointst.2t. 3t. . . . are not replaced by new items but
are instead permitted to remain in service: b is a number between 0 and (. Thus at the points ¢, 2¢°,
3t. . . ., some of the items will have age zero (0) (following age replacement) and some of the items
wll have age x, 0 < x < h. We would like to stress that the time points t. 2¢, 3¢, . . .. are no longer
regeneration points as in the ordinary BRP. This makes the mathematical treatment much more com-

plicated and hence new techniques have to be developed. The age distribution in the stationary case is

i ot R s e b B
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denoted by the function f(x), which has a discrete point mass for items having age zero and is otherwise

continuous for age x in the interval 0 < x < b. Of course
b -~ -

(3) ] Six)dx+ f(0) = 1.
00

For a modified BRP with parameters (), t), the expected cost per unit time per item taken over the

indefinitely long future, is

E:[M, S0
) C(b,t)=CE [Mt(t)]'H‘J( ).

where M ((t) is the expected number of unscheduled replacements in an interval of length ¢, if the item
is of age x at the start of the interval. Of course Mo(t) = M(t). E.[M,(t)] is the expected number of

unscheduled replacements in an interval of length ¢ in the stationary case. That is

b -~ -~
5) EM0) = [ FoMade+ M),

We are interested in finding the values of b and t which minimize C(b, t). To do this we must find

EAM.(1)] and f(0).

M (1) satisfies the modified renewal equation
t{
(6) M,(t)=F,(!)+J’ M(t—u)fr(u)du,
0

where

pipFEED—FW
F(x)

(7)
Fo(t) = F(1).

F (1) is the (conditional) probability that an item having survived to age x will fail to survive for an
additional length of time t. f,(t) = (d/dt)F r(¢) i5 the (conditional) p.d.f. of the additional life time ¢ of
items which have survived to age x. fo(t) = f(t).

M(t) is obtained by solving the renewal equation

(8) M(t)=F(t)+I‘M(t—u)f(u)du.
0

(This is a special case of (6) for x=0).

fix) and}(O) can be expressed as the unknowns in the following Markovian integral equations

P
=
3
E

e i




18 M. BERG AND B. EPSTEIN

b

](x)= f(y)p,,,dy+](0)p,,,, O<x<)

0

(9)

b -
f S(x)dx+ f(0) =1,

where: pyr, 0 < x < b, 0 < y < b is the stationary Markovian transition probability density that an item

has age x at the beginning of an interval given that the item had age y at the beginning of the preceding
interval.

It can be verified easily that

pue=mylt —x)F(x). Osyvs=sh O0<xs=s)
(10)

b
Pyn=1 —f Dyrdx
o

where

d
my(t) =7 My(t)

molt) = mt).

Differentiating (6) yields the integral equation

(11) m,,(l)=f,,(t)+f Sylu)m{t — u)du.
0

s

We see from equation (4) that the computation of the cost functions C(b, 1) requires knowledge of

both E (M. (1)) and f(0).

To find them we must know}(x) (0 < x < b), which satisfies the integral equation (9). To obtain a
general solution for this integral equation is difficult. In the next section we solve}(x) for the case when )
the item life density,](x). has a specific structure. l

Having sketched the modified BRP it is worthwhile to note that this policy is similar to an optional :
policy with regular interopportunity replacement intervals, discussed by Woodman in [7]. In the - :
optional policy, t is a given number. In our model, ¢ is a parameter subject to optimization. Woodman,
using a dynamic programming technique, presents only the basic functional equations and then solves
them for a specific life distribution and specific parameter values. No attempt is made in [7] to derive

an analytical solution which gives the cost of a modified BRP as a function of the cost parameters and :
the item lifetime distribution.

3. CALCULATION OF C(b,¢)

Assume that f(r + y) can be expressed as

s 2 e e

ca i
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K }
(12) fit+y) =S ailt)Bily).
Z, A
Then it is easy to verify that ‘
K
my(t) =S ailt)Bily).
v Z,la Bily
where
t
&5(l)=&;(1)+j ailu)ym(t —u)du, i=1.2, .. .k
0 k/
and
-‘(y)
ly)=—=—.
A Fy)
Hence, using (10),
m
{13) pur= 3 ailx)Bity). 0<sy<b 0<xs<b
i=1
where 1
a;(x)=&.~(r—x)ﬁ-‘(x). 1
3
Inserting (13) into (9) yields }
N k 1] - n »
(14) fx)= 2 ai(x) [I f(}')ﬂi()’)d}’+f(0)l3i(0)]. 0<x<b 2
i=1 0+
Hence
i
- k ‘
(15) flx) = 2 aiai(x). !
i=1

To find a;(i=1, . . ., k) we insert (15) into (14)

I

b K .
S a0 [ 801 S amdy+TOBO) |

i=1

K
(16) 2 (1;ai(x)=
i=1

y@=1, .. .. k) on both sides of equation (16) yields the set of

I ST T

Equating the coefficients of ailx

equations

K b
(17) a;= 2 a,-J' aj(y)B.-(y)dy+f(0)/3.-(0). HE 3 I
=1 o+
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b

Recalling that ]’(0) =1 -f ]'(.r)(l.x we obtain

(L

b

[
(18) Jy=1- 2 a, a,(ahdy,
J=1 (

Inserting (18) into (17) vields the set of equations for a,. (i=1. . . .

A

(19) a=p0)+ Y (1,[

J=1 0

For example for & =1 we get

B1(0)

(2()) )=

b :
l—j ar (VB () = Bi10) )y
{

-
Let us now define a matrix £
(21) = (ey,). i=1.. .. 4k J=1.

where

[
f’u:f a, (¥} (Bily) — Bi(0))dy.
{

-
and let @(0) and a be the row vectors
(22) /_3(0)= (B1(0)). . . .. B.x(0)), a=(a,. .

Then (19) can be rewritten as

a(l—E)=£(0).

where F is the transpose of E.

Now if (/ -—E) is a nonsingular matrix then
(23) a=BO)(—F) .
Hence using (15) we obtain

(24) S0 =B (= E) atx).

A

b
f u,())(/}.(_v)~ﬁ.(()))d\]. (=1,.. .

3 og (ll,).

A ik St J;w o
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where afx) is the column vector (m(.x ))
m(.x)
Hence
o b - b
125) j'(())=|—f Sixdx=1-g0)U—E) 'f al(x)dx,
v: 0

b -
wherej alx)dx is the column vector by integrating a(x). Inserting (24) and (25) into (5) yields
(]

]

b = -~ s
1261 E,ul,m)=f VL 0B0V U~ E) tatv)dy+ M(r) (l--g(oul—f:) 'f u(.x')dx).

0 ne

Inserting (25) and (26) into (4) yields the required cost function

b . - v
(',f MAOB0) U —E) 'atx)dr~+ (e M) +¢2) (l—@(())(I—E) 'f a(x)dx)
27 Cih.)y=—= , = :

4. C(b,t) FOR ERLANG DISTRIBUTIONS*

The p.d.f. of an Erlang distribution with m stages is

(Af)"' 1

. = Ae M . =0
(28) f{t)=Ae 1)1 t
aad
_ mo )
F(1)=e'“2 (l—,’ t=0.

i=0

It can be verific /! easily that
m-1 Alt+y i
& Aty

. ft+y) & i
: =——— = M ——— =0
(29) ./u“) F(\) € mz—l ‘)\).): t
=0 i!
and
e Ay ]
= Fit+y) i=0 i!
Fylt)= =M . t=0.
ll( ) F( V) 4 m-1 (K)')'
’ 2 i
i=0
From [1, p. 57] we have
At l m-1 oj .
(b, © — -AIL1-8)) 9
m+mj:211-0j[] e IR m=2
Mt)=
(30 (t) e -

*The distribution used as an example in |7] belongs to this family of distributions.

Caasiod ity b il o i o e e
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y -

and hence

| 2 A m o\
mit)y = fe A 8D m = |
/ m &g
t / where =¢""'" i< an mth root of unity.
Using the binomial expansion it is easy to verify that ftr + v in 28) <atisties (12)*. Hence we can
1 use 1250 and (26) to compute £(0) and E [ M (1) ], respectively.
| We now carry out the detailed calculations for the two stage Erlang distribution with A = 1 clearly
[ £
there i~ no loss of generality since this involves only a scale change).
In this case m=2. Hence 128, 1291 and (301 become i
1 128" fuy=te ' =0 [
| .s
f : 1
Fiuny=e 'ti - 1), r=0, ;
o . L RN
29 flh=e ' —2  1>0 :
I+ 1
1
' - l+1-
Fjany=e'!'——— 120
I«
130" Vi) =1/42t—1-¢ .,
mity=12(1 —¢ ).
{
Inserting (29'1 and (30" into (6) and (11) we obtain
1
1 . Loy —
3 130 oth=1/4 {20+ (1 —e ) .
3 Vool
1
q
v—1
mylt)=1,2 (I el )
v+l
Using (281 and 1311 to compute p,, 1see (101 we obtain )
1
e () ) v .
132y pw:—.—[lﬁe- Sl T L O<y=). 0 v b,
L Vo
}{('n('('
Pur=a ()Y at)fda (v ), 0=\ <sh, O<uv=h
where
*In fact the class ot distributions based on the Laguerre polvnomials ivee 9]0 which contains the class ot Erlang distnbu:
tions, also satishes (12,
-y
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. e 7]+ a) y — 1

1331 ag (1) - ——> - aal) = e 2] » 1), Bilv)=1. By)=— o
2 20y~ 1)

Hence by (210,

‘34’ f’“:(). (ST l'2[| e I"] & h’]. [T () (S ¢ ""ll O’"(I"h)]

and

35 By =1, gy - =12

In<erting 1330, 341, and (351 into (24 vields

= e 21+ ) el - by
136 Fl) = e (| )
: 2 ] Ve (T b ]

From (33

b e "2 b g )
137 aivpdi=1~- 3 . aztv)dv=he 0
[ t

Inserting (341, (351, and (37) into 25) vields

3 b bl - hye 2eh
138) (0) =¢ * e AR R i
e [I 252 —gp -'tl—MH—-hn]

Inserting (301, «311.136). and (38) intu (31 vields

(b= e "1 - )
3 EMo0] =14 | 2= |
o (M) 14[’ L—p 21— o] /m]

Inserting (381 and (39) inte 14) vields the required cost tunction, Coho ) wath

fs 1 —e e 2] #5) ]"'e h[|.l'. bl e hye Bt J

: 2722 H( et 1= b))

81 Cibooy =2
(B8] Aboty= — g Jr— T
T i e e e A1 22
In principle it is possible to find the values of (6% *) which minimize Cih. 1) by computing
aC (b 1)/ ab and aC(h, 1)/a1, setting them equal 1o zero and <olving the two equations for b*, ¢*. Of
course this is not a practical wav of inding the optimal values of 6%, 1 and it is simpler to use @ com-

puter routine.
It is interesting to compare the minimum cost obtainable with a moditied BRP with the minimum

cost obtainable with a standard BRP. Let C(b*. t*) be the minimum cost for the modified BRP and
((ty) the minimum cost for a standard BRP. Obviously the block replacement intervals ¢* for the modi-

fied BRP and ¢, for the standard BRP are in general different.
A numerical analysis of formula (301, where the item life distribution is assumed to be two stage

T ea——
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Erlang. shows that one can save up to 5 percent by using the modified BRP. For 0.25 < ¢y/¢, < 0.4, the
modified BRP is cheaper than a Failure Replacement Policy (a policy of replacing items only at failure)
while the standard BRP is definitely inferior to the FRP (see [1, p. 96]1.

It seems reasonable that we could have obtained much higher savings with a modified BRP if we

had chosen an Erlang life distribution with many stages.
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ABSTRACT

T

This study concentrates on distributions of leadtime demand that permit explicit
solution 1o the lot-size, reorder point model. The optimal order size for the general case is
first expressed as a function of the economic order quantity and a quantity known as the
“residual mean life” in reliabilitv theory. The concept of “no aging” is then utilized to
identify a broad class of distributions for which the optimal order size can be determined
3 explicitly, independent of the reorder point.

1. INTRODUCTION

. In section 4-2 of their book. Hadlev and Whitin (3] discuss a class of static inventory models

e

usually known as ihe *“'lot-size, reorder point’” models. These models, although approximate in nature,

are used frequently by the practitioners because of their simplicity and ease in application. To further

facilitate their use, the above authors have developed an iterative technique wh. h is heuristic yet quite
efficient for most practical problems under the model. However, use of this technique may in some cases
require repeated evaluation of an integral which may not be easy. For this reason we investigate here
if in certain of those cases the difficulty in iteration may be avoided and the solution obtained algebra-
ically by using an explicit formula. 3

2. THE RESULT :

For the sake of brevity, we retain the assumptions and notations of Hadley-Whitin to the extent

possible in our discussion. This enables us to quote the following results directly from reference [3]:

K = expected total system cost per unit time
i [ 04 ] I e ) :
===+ —tr—u +—=nlr
0 2 0
where i
;;(r)=j xh(x)dx—rH(r). i
r

{
L4
Further, the determining equations for the optimal () and r (that minimize K) are 3

25
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24 2mAn(r) }w
l = ———+—.
0 4 { Ic IC )
IC
(2) H(r)=0—-
mA

lL.et us now introduce the notation
B(r)=n(r)/H(r)
so that equation (1) can be rewritten as

_r2A44+27r)\B(r)H(r) )2
L Ic IC ] '

Substituting the right hand side of equation (2) for H(r) in the above expression we then get
(3) Q={0%+28(r)Q}"?

where

2NA 12
Ou= ( T ) = Wilson's economic lot size.

Hence, squaring both sides of equation (3) and transposing terms

(4) 0" —28(nQ - 0%=0.

Solving the above for Q > 0, and denoting the optimal values by Q*, r* it then follows
(5) Q*=B(r*) +{B(r*) + O}

Under the present model the optimal crder size can thus be expressed as an explicit function of
B(r*) and Q.. However, the factor 8(r*) which is known as the "‘mean residual life”” function may not
be explicit. Therefore, a closed form expression for Q* can be obtained only if 8 can be written expli-
citly in a convenient form. Of course, if the distribution of leadtime demand is such that 8(r) is inde-
pendent of r, then Q* possesses a remarkably simple expression.

We now proceed to illustrate determination of ) * whether 8(r) is constant or not.

3. EXAMPLES

Let us first consider the case of uniform distribution of leadtime demand. This distribution is most
often used to demonstrate the Hadley-Whittin method: an explicit solution for this case can, however,
be obtained as shown below.
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ORDER SIZE AND REORDER POINT

Example 1
Let

Then it is easily verified that

HU)=(b—rH(b—aL

nir)= (b"r)"’/{Z(b—-u)}.

E
] B(r)=(b—r)/2.
|
From equation (2) we, therefore, get
hb—r* Q¥ic
YT _HM=—
b—a il A
so that
(6) b—r*=aQ*
where
(b—a)lC
a=—"""-
A
Hence
2B(r*) *= (h—r*)Q*= aQ*

(4) and simplifying, we then get

Substituting the above in equation

Q*=(1—a) "0

Finally, from equation {6) we derive

r*=b—a()*=b—a(l—a)"‘2()u-.

Next we consider a case where B(r) is constant.

Example 2
Let

a<xs o’

hix)=0:- exp(—0:1x).

where 0, 0. are positive parameters (that may depend on @) such that h(x) is a proper probability

distribution. By integration it is easy 1o verify that

Lk i el .
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H(r)=(8:/6,) - exp(—r8,),
n(r) = (6:/83) - exp(—ré,),
B(r)=1/8,.

Therefore, from equations (5) and (2)

Q*=(1/6:) +{(1/6:)* + Qr}'2,
r¥= (]/01) . {ln(1r)\0_:) —ln(O*lC().)}

Note that the above formula for Q* is independent of r*, although that of r* involves Q*. What is
more noteworthy is that Q* does not depend on the penalty cost parameter 7. These properties, as
proved in Das [2], are special to distributions with constant 8. The rest of the paper is, therefore,
devoted to a detailed study of this class of distributions.

4. DISTRIBUTIONS WITH CONSTANT g8

As mentioned and illustrated above, distributions with constant 8 enjoy some special properties
that give rise to simplification in inventory decision-making. These distributions are also of independent
interest in reliability theory since constant 8 is equivalent 1o the property of “no aging”—a concept
that is valuable in reliability studies. Regarding their characterization, it is widely known that among all
continuous distributions defined on the positive half of the real line only the negative expconential dis-
tribution exhibits this special property. Example 2, however, shows that the truncated exponential
distribution which includes the regular negative exponential as a special case also possesses the same
property. For inventory applications of this result we must, of course, verify that the truncated exponen-
tial is a realistic distribution of leadtime demand. This is particularly important here because leadtime
demand being in general a random sum of random variables has a compound distribution to which the
truncated exponential might not be a good fit. However, this doubt is removed, at least in part, by the
following example where we allow both the demand per unit time and leadtime to follow a fairly realistic

distribution each hut the leadtime demand distribution emerges as the truncated exponential.

Example 3

Let us assume that the demand per unit time is distributed normally with mean u and variance
o®. and that leadtime is randum having a negative exponential distribution with mean y-'. The con-
ditional distribution of leadtime demand given that leadtime is m. is then normal with mean mu and

variance ma?:
hixim)= 2mma*) Vexp{—(x—mu)*2ma?}.

The marginal distribution of x is, therefore, given by

17) h(.r)=6] hixim) exp (—ym)dm.
0

A




A e Bt b L L - e ek i

ORDER SIZE AND REORDER POINT 29
where & represents the undetermined normalizing factor such that h(x) is a proper probability distri-
bution. The specific numerical value of 8 shall depend on the range of x which we prefer to specify
later in the paper. Our immediate task is then to evaluate the integral appearing on the right hand
side of equation (7). After some simplification it is seen that this integral reduces to
(8) (2ma?) "% exp (px/o?) - 1{x)
where

Ix)= J. m-"2exp{—(x*+ m2p?)[2ma*}dm,
[\

]
9

pi=ptt 2yod.

To evaluate I(x), let us now make the following transformation

l{x) can then be written as
9 1(x)=2%(ca/p))(a)
where

Ja)= j exp [={v* + (al1)2} 1dy,

0
a= (p/2o*}x.
From the table of integrals (see [4]. p. 305, integral no. 427). we next find
Jla)= (1]2)mw'* exp (—2a).
Hence substituting the above in equation (9) we get
J(x)= (2m)'*(o/p) exp {(—pxla?).
Therefore. utilizing equation (8) we finally arrive at
hix)= (8/p) - exp {(—(p—p)x/o?}
which is nothing but the rruncated exponential distribution of example 2 with 8.=8/p and 6= (p—

w) /o In particular, if we assume 0 < x < x. then §=p#f 50 that h(x) becomes the regular negative

exponential distribution.
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Similarly, it can be shown that if the demand per unit time itself is negative exponential and the
leadtime is geometric, then the leadtime demand is negative exponential. In this context we may also
mention Carlson’s [1] result: if the leadtime distribution is geometric, then for any arbitrary distri-
bution of demand per unit time with finite cumulants the leadtime demand is asymptotically exponential
as the mean leadtime increases.

As regards discrete distributions of leadtime demand, we may point out that the geometric distri-
bution being the discrete analogue of the exponential possesses the “'no aging” property. Therefore,
pairs of distributions such that their compound is geometric will generate leadtime demand distribu-
tions of constant 8 for the discrete case. An excellent example of this occurs when demand per unit

time is negative Binomial and the leadtime is geometric (see Magistad [5]).

5. CONCLUDING REMARKS

The class of leadtime demand distributions permitting explicit formulas for the decision variables
under the lot-size, reorder point model is, therefore, not so narrow as might appear to be. Further, if
approximate solutions are acceptable, then this class can be augmented by admitting distributions

that can be approximated by those with constant 8. For instance, Presutti and Trepp [6] show that the

standard normal distribution can be approximated by a function of the form 6, exp{—6,|x|}. where
0, =2'2 Hence, if the leadtime demand distribution is normal with arbitrary mean and standard

deviation o. then

B(r) = a6 = (g*/2)"*
so that
Q* = (a2 + {(a*/2) + Qi)'

Besides providiig such explicit formulas the function 8 also facilitates various sensitivity studies of

the model discussed here. An application of this nature can be found in Das [2].
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! ABSTRACT

This paper considers the problem of computing reorder points and order quantities for
continuous review inventory systems subject to either a service level constraint or a con-
straint on the average fraction of time out of stock. It is demonstrated that three apparently
distinct models are equivalent under these circumstances. Using this equivalence, stream-
lined algorithms for computed lot sizes and reorder points are developed.

i BACKGROUND -
Although the literature abounds with numerous descriptions of inventory models, only a very few 3

. : . ) k

of these have ever heen applied to a real inventory control problem. Most are too time consuming and

complex to be of use in large multiproduct systems, or require too many restrictive assumptions to hold.

Since it is very rare that demands are known with certainty, we will restrict our attention to the |
3 situation in which demands are random variables with a known probability dist-ibution. When demands p
are random, there are essentially two distinct classes of inventory models: periodic review and con- 3
1 1

tinuous review. In the periodic review case it is assumed that the state of the system is reviewed at

e

fixed points in time (i.e. periodically} while a continuous review inventory model would he applicable

if the state of the system is known at all times.*
Although nost industrial inventory control systems fall into the periodic review category, the

literature suggests that most scientific inventory systems in use utilize a continuous review methou-
ology. There are a number of reasons for this. Equations for the continuous review case are similar
to the familiar lot size equation and hence are more easily understood. In addition, when there is a
fixed charge (or set-up cost) for placing an order, optimal policies are quite difficult to compute under
the periodic review assumption, and truly eflective approximations have yet to be developed. A third

re.son is, perhaps, that when the review period is relatively small and units are demanded on a one at

a time basis, a continuous review approach provides an extremely good approximation.

OPTIMAL POLICY

When units are demanded one at a time and the underlying demand distribution is unchanging with
time, it is well known (see for example Hadley and Whitin [4]) that the optimal policy is of the following

*Hadley and Whitin {4] use the term transactions reporting as it indicates that transactions are reported as they take place.

However since cortinuous review appears to be the more accepted term. we will use it.
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form — whenever the on hand inventory falls to a level r. an order is initiated for an amount Q to arrive
7 units of time into the future. This policy is optimal in that it minimizes the expected average cost over
infinitely many ordering cycles.

Computing values of (Q, r) optimally appears to be an extremely difficult problem, and those cases
for which solutions do exist are quite restrictive and still require prohibitive computation. We consider
two simple approximations that have been suggested in the literature, but before presenting them we
require the following definitions. Our notation follows that of Hadley and Whitin [4].

DEFINITIONS AND ASSUMPTIONS
X (1) =demand during lead-time 1.
H(t)=P{X(7) >t} = probability that lead-time demand exceeds ¢.
A= average or expected number of unitc demanded each year.
: C = dollar value of each individual unit.
1 I = cost of carrying one doilar of inventory for 1 year.
‘ A = cost of placing an order.

n(t)=E{max (X(7) —t.0)} = expected number of units which go short during a lead time when
4 the reorder point is t.

In the development of the mathematical model the following assumptions are made:
Al Costs are charged against:
(a) ordering at CQ+Aif Q>0,0if =0,
{b) holding at /C per unit beld per year,
(c) shortage at 7 per unit short.
A2. There is never more than a single order outstanding.*
A3. The reorder point is r > 0.

A4. Excess demand is backlogged.

Based on these assumptions, Hadley and Whitin [4] develop an approximation which requires
the simultaneous solution of the two equations:

(1) 0=\/%(A+7rrt(r)) :
_oic
(2) H(r)= =

By modifying their derivation slightly, Wagner (9] has obtained the two equations:

(3) 0= \/ [() n(r)

*This assumption may be relaxed if the on-hand plus on-order minus backorder inventory is compared to the trigger point r.
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The symbol u is used to represent the mean lead time demand and is equivalent to A7,
Both of these systems may be solved fairly efficiently by the following algorithm:

Algorithm ]

(a) Choose the initial value of Q= V 2AA/IC.

(b) Find r from (2) or (4).

{c} Find Q from (1) or (3) using the value of r computed in (b). Stop when successive values of either

Q or r are equal or are sufficiently close (that is, within a prespecified tolerance).

In using Hadley and Whitin’s model an implicit assumption is that the value of the backorder cost,
r, is sufficiently large so that the term QIC/wA is always less than one, otherwise (2) would not make
sense. Since it is possible that 2QIC/(ICu+2wA) < 1 while QIC/7wA > 1 it can happen that for some
small values of 7 equations (3) and (4) may yield a solution while (1) and (2) will not. This is certainly one
advantage of Wagner’s approach. However, a recent study by Gross and Ince |3] indicate that in general
Hadley and Whitin’s model is closer to the optimal than Wagner's a greater portion of the time. The
authors speculate that perhiaps the Hadley-Whitin model has compensating errors which allow it to
perform better in many cases.*

An advantage of these simple models is that they can be modified to allow for a variety of generali-
zations including incremental or all units quantity discounts, orders which must be a multiple of a fixed
batch size, problems with space or budgetary constraints, and cases where the lead time, 7, is not known

with certainty but is a random variable. Hadley and Whitin discuss the modifications necessary in the

computations to deal with situations of this type.

SERVICE LEVELS

A serious problem with actually applying the two models defined above is that it is often difhcult
if not impossible to assign dollar values to the cost of shortage. As an alternative, one may specify either
the service level (probability of a stockout occurring during lead time) or the average time out of stock
{probabulity that any unit demanded can be satisfied with available stock). The latter is also referred to
as the fill rate. Although it is evident that there exists a great deal of confusion regarding the distinction
between these two criteria, their difference is discussed at length in a number of places. (Brown [1] is
one example.) Gross, Harris and Robers [2] present an algorithm for computing (Q, r) values using
Wagner's model (equations (3) and (4)) when the service level is specified. The same method can be used
for Hadley and Whitin's model. If we can assume that a is the prespecified service level then the

method is:

Algorithm 11
{a) Let the initial value of Q= V2A4/IC.
(b) Find r by solvingH(r) = a.
(¢} Compute 7 from (2) {or (4)).

*| am indebted to the referee for bringing this reference to my attention.
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(d) Find n(r)*.

(e) Compute the new value of Q from (1) (or (3)).
Return to (c) or terminate computations when successive values of Q or r are equal or are
sufficiently close.

The same approach can be extended to develop an algorithm for computing (Q, r) values when the
average fraction of time spent out of stock is specified. Hadley and Whitin describe the following
procedure for computing the optimal (Q, r) values subject to the constraint n(r)/Q=8:

Algorithm I11

(a) Choose an initial value of 7= .

(b) Using 7o find the optimal values of (Q, r) solving (1) and (2) (or (3) and (4}). This involves

iterating successive values of (Q, r) as described in Algorithm |.

{c) For the given solutions obtained in (b) compute n(r)/Q. f n(r)/Q > B choose w > 7, and return

to (b). If n(r)/Q < B choose 7 < mq and return to (b). Step only when n(r)/Q is sufficiently close
to 8.

Anyone who has had any experience with this algorithm can attest to the fact that it is extremely
time consuming. Choosing the proper values of 7 at each stage is largely a hit and miss affair, and to
obtain an accurate solution may require as many as 400 computations.

We will demonstrate that both of these algorithms can be streamlined considerably with no loss in
accuracy. The value of # may be completely eliminated from equations (1) and (2) as follows: From

equation (2) we have that
7=QIC/\H(r).

Substituting this into equation (1) we obtain:

0=\/% {A+%-n(ﬂ}

which can be seen to be a quadratic equation in Q. The positive root obtained from the quadratic formula

is:
_nt) , [ 2
(3) =nin*t (H(r)) TS

It is surprising to note that had we solved for 7 in (4) and substituted into (3} we would still obtain

equation (5) as the solution.t When the lead time demand distribution is exponential or is approximated

= {H
G n(r)=f xh(dx—rH(r) where h(x)=%
When lead time demand is normally distributed, n(r) may be obtained as a function of the standardized loss integral. See Hadley
and Whitin [4]. Wagner [9] or Brown T1].
tThat these two apparently differcat sets of equations yield identica® 1 (). r) values when a service constraint is imposed is
quite surprising. What will be different is the imputed cost of shortage. : .. the value of 7 obtained from Algorithms II or 111

Besidedc
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by an exponential tail, the variable r drops out of equation {5) so that the order quantity may be deter-
mined independently of the reorder point. This special case is discussed by Parker [6], Presutti and
Trepp [7] and Schroeder [8]. Brown [1] has also obtained equation (5) by a different derivation. Hence
we see that when dealing with service constraints, the models of Hadley and Whitin (equations (1) and
(2)), Wagner (equations (3) and (4)) and Brown (equation (5)) are all identically equivalent.

The use of equation (5) completely eliminates the need of an algorithm to determine the optimai
(Q, r) values when a service level constraint is imposed. If we let o= probability of stockout during

leadtime, then the reorder point r is computed to satisfy the equation
Hir)=a.

Since specification of r determines n(r), the optimal lot size,Q, may be computed directly from equa-
tion (5) (with a substituted for H(r)). The optimal (), r) values obtained in this manner will be iden-
tical to those computed from Algorithm II independently of which model is used. By eliminating the
need for an algorithmic solution, the use of equation (5) can reduce computation time by as much as a
factor of 10 or 20.

Equation (5) can also be used to significantly reduce computation time for the more common case

when B is specified as the average fraction of time spent out of stock. In that case the following al-

gorithm would be utilized:

Algorithm IV
(a) Pick an initial value of = ‘Z)LWIF

(b) Compute r from the equation n(r)= g0.
(¢) Compute Q from (5). Return to (b) or terminate computations when successive values of

or r are equal or are sufficiently closc.

Algorithm IV will yield the identical (Q, r) values as those obtained from Algorithm I, but with
a very small fraction of the computations. In fact, depending upon the accuracy desired, Algorithm IV
may require as little as 1 percent of the computation time. This is certainly a significant difference
especially when considering that such computations might be verformed repeatedly for thousands of
items on a continuing basis. Note also that once the optimal values of (), r) are determined, the
imputed cost of a backorder may be computed from either equations (2) or (4.

1 addition to the fact that equation (5} significantly stzeamlines previous algorithms, there are a
numker of interesting conclusions which can be drawn from the equivalence which we have demon-
strated:

(1) Although the formulas presented by Brown [1], Hadley and Whitin [4] and Wagner [9]
appear to be differ~+ il three models will yield identical results when a constraint is placed on either
the prot. ™ <ockarg out during lead time or the average fraction of time out of stock.

(2) Equation 15) remains valid for any lead tnae demand distribution, H(r). It is not necessary to

assume an exponential approximation.
(3) Since equation (5) obtained by Brown [1] is equivalent to two approximate models, it itself

must be an approximation.
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(4) The use of equation (5) significantly reduces computation time over Algorithms I and [l

when either a (service level) or 8 (fraction of time out of stock) are specified.
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ABSTRACT

In this paper we consider a multiperiod deternumstic capacits expansion and <hipment
planning problem for a single product. ‘The producet can be manufactuied in <everal producing
regions and is required in a number of markets. The demands tor each of the markets are non-
decreasing over time and must be met exactly during each time penod tie.. no backloggng or
inventorying for tuture periods i~ permitted). Each region 1« assumed 16 have an initial pro-
duction capacity, which may be increased at a @ven cost in any penod. The demand in a
marhet can be satistied by production and ~hipment from any of the regions, The problem i«
to iind a ~schedule of capacity expansions for the regions and a schedule of shipments from
the regions to the markets ~o as to mmimize the discounted capacity expansion and <hipment
costs, The problem s formulated as a inear programmmg model, and <olved by an effcient
algorithm using the operatur theory of parametric programming for the transporation problem.

Extensions to the infinite horizon case are also provided.

1. INTRODUCTION
The deterministic multiperiod. multiproducing region capacity expansion problem with concave

capacity expansion costs was first proposed by Manne [4]. Exact optimal solutions to the problem can
‘cur-e of

be obtained by using dynainic programming formulations [1. 2. $]. However. owing to the
dimensionality”, a problem with more than three producing regions is computationally prohibitive.

In this paper we make the assumption that the capacity expansion costs are linear rather than
concave. Linear capacity expansion costs may be realistic in the case of firms which rent or subeontract
their production capacities from other firms or when the fixed components in the capacity expansion
costs are relatively small. Such a formulation i~ also realistic in multiperiod personnel assignment prob-
lems with different types of jobs as markets and different training programs defining the producing
regions. In such contexts, the cost of recruiting and training may he hest approximated as linear. More-
over. the optimum solution to the problem with linear costs can be used to provide a lower bound to the
ubjective function of the problem with concave expansion costs. This information is useful in a branch

and bound approach to solving the problem under concave expansion costs, especially if the linear prob-
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lem can be solved efhciently. Further, studying the structure of the problem with linear costs may
provide a basis for the development of more efficient heuristics as aids in solving the problem with

concave expansion costs.
In the next section, the linear capacity expansion and shipment problem is formulated and in

section 3 we develop a solution procedure to sotve it. In section 4 some characterizations of the optimal
solution as provided hy the algorithm developed in section 3 are derived. In the same section we extend
the formulation to the case of infinite planning horizon and show how an optimal solution to that case

can be obtained.

2. PROBLEM FORMULATION

} We consider below the multiperiod capacity expansion and shipment problem (F1) for a single

product by defining the index sets:

I I={1.2. .. ..m} set of producing -egions,
f J={1.2.. . ..n} set of markets,
' AK={1.2....T} set of time periods where T is the end of the planning horizon and,

K={23....T}L
For iel. je/ and te K, we define

r', = initial demand in market j, in time period 0,
b
t

ri=known increment in market j's demand in time period t. r{= 0. Consequently. E r’ repre-
r=u

sents the demand in market j at time ¢.
¢! = initial production capacity in region i. Capacities are measured in the same units as demands.
¢! = cumulative amount of capacity added in region i from period 1 to 1. The total production

capacity in region 1 at time f is ¢} + ¢!.

k, = unit cost of capacity expansion in region { (A, > 0).

x{,= amount shipped from region i to market j during period ¢.

¢i,= unit cost of shipping from region { to market j. This consists of (a) the cost of transporting
one unit from region { to market j, (b} the variable cost of producing one unit in region i,
ic) maintenance cost for one vnit of capacity in regon i. (¢,; = 0)

st = excess (or idle; capacity in vegion [ a! time ¢ (= 0).

h, = unit cost of maintaining idle canacity in regioni. Obviously0 < h, < ¢, feriel . je .

& = terminal tor resale) value of a unit capacity at the end of planning horizon in region i (gi= 0).

a = discount factor per period (= where / is the appropriate cost of capital per period)

1+ 7/

0 < a< 1. Thus a' 'is the present value ti.e.. value as of the beginning of period 1) of one

dollar at the beginning of time period . 1
The problem P1 can be formulated as below: s

(1) Min z E 2 a' it 2 2 ' ‘h.sH—E kgl v 2 2 ol 'A.(q’i—q’i")—E aTgig’

teh el je) teh iel iel teh' 1€l iel
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(2) Y xi+si—qi=q) foriel tek.

ljlel!t

!
(3) 2 x;t= 2 r for jeJ. tek.
iel r=0

(4) gi—q! " '=0 foriel, tek’, and
(5) x20,5/=0,q;=0 foriel.je). tek

where x;!, si, ¢ are the decision variables.

Objective function (1) determines the minimum total time discounted transportation, idle capacity
maintenance and capacity expansion costs. The costs are assumed to be incurred at the beginning of
each period. Constraint (2) states that the amoun: shipped out of region i at time ¢ should not be greater
than the capacity available in region i at time t. It is assumed that the amount of capacity addition in
region i attime ¢, ¢/ — ¢! ' (at t=1, it is ¢}), is available for production to meet the demands in the same
period ¢. Constrain! (3) states that the amount shipped to market j at time ¢ should be equal to the de-
mand. Constraint (3) implicitly assumes that no backlogging of the product or inventory for the future is
permitted. This is quite a realistic assumption since the unit time period involved in these problems is
usually a year. Since h; < ¢; for i€l , it is obvious that stating constraint (3) as equality (rather than as = )
involves no loss of generality. Constraint (4) follows from the fact that g} expresses the cumulative
amount of capacity expansion until period .

As pointed out in {3]. there is no established precedent regarding the method to be employed in
computing the terminal value of capacity. The life of a production capacity is usually much longer than
a normal planning horizon. Manne {4] in many of his studies assumed an infinite life for capacity. Under
this assumption of no deterioration in the manufacturing production capability over time, we posit
that the capacity can be sold off approximately for its cost value {i.e.. kiqT) at the end of the t' e horizon.
Therefore it is not unrealistic to assume that the present value of the terminal value of the capacities is
Y alkigl. (For the infinite horizon case that will be considered later, this assumption is not needed.)
iel

Objective function (1) can now he modified to

(6) Min E E 2 a'“tepl, + 2 2 a' hist + 2 kgt + Z Ea" Yilgl — qi ") — z aThiq]

teh el jed teh iel iel teh' iel e/

Regrouping the cost coefficient of each ¢! in (6) we simplify (6) to (7).

(7) Min Y 3> a' lepr; Y Y athisi+ ¥ Y a thig)

teh ded  jed teh et teh el
where k= (1 —a)k,.

Under this formulation, the company is, in effect, renting at the rate .Y capacities worth kigl. kig?.

. . kigTin periods 1,2,. . .. T sothat the present value of the rent expenses would he

ik o

o

foii A

Lo
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[Shig) ] [Fhig2)] [9(kig}))
2 { 0+ (arr T 7 (1+.¢)T}

since S /(14 .#)= (] —a) the above expression is the same as the last term in (7). Consequently, (7)
minimizes the intuitively appealing objective defined as the sum of total time discounted transportation
costs, idle capacity maintenance costs, and the rental costs on the production capacities.

The linear cost capacity expansion and shipment problem can now be formulated as problem P2,
which is minimizing (7) over constraint set (2H5).

P2 can be solved using the simplex method for linear programs. However, for any reasonably large
size problem. the number of constraints and variables will be quite large. For example, a 10-period.
10-region, 200-market problem will have 2,190 constraints (excluding the non-negativity constraints)

and 20,200 variables making it computationally expensive.

3. SOLUTION PROCEDURE

3.1. Development

To develop an efficient solution procedure for P2, we consider the problem P3 of minimizing (7)
over constraint set (2), (3). and (5) (i.e., after dropping the coupling constraints (4)). Problem F3 consists
of a series of subproblems P’3! for te A. Our solution procedure is such that the optimal solutions for
subproblems so obtained also satisfy the coupling constraints (4) so that they are also optimal to F2.
Each P3'is of the form:

(8) Min 2 E a' Tepd+ 2 a thist+ E a' 'kiq|

iel et iel iel
{9) S xif+st—q;7qf  foriel.
el
t
(10) E Xy :2 ri for je/. and
tel r=0
(11 i =0,5i=0.¢'=20 for iel, je/.

To bring each P37 to “standard form", we convert each to a capacitated transportation problem
[5] with m + 1 regions and n + 2 markets.

We define a dummy (n + 1) market with

t
rY, = max{ﬂ. 2 q°— z r)‘.'} and 2 re,= 2 q? for tek,
=0

iel el tel

]
to absorb the excess capacities. * It is shown below that defining 2 o= 2 q! for any tek is suf-

=0 iel

ficient to absorh the excess capacities in an optimal solution to P3°.

* ; [ i p AN <7
Inother words.r,!, = 3 ¢ = r, ands,7 = Ofor]l <7< 7.

i
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LEMMA 1: [n anoptimal solution to P37, teN . s/, < ¢' for iel.

PROOF: Assume the contrary, i.e., 3 a b such thats! > ¢} = 0. But 2 x) +s/—q;= ¢ and hence
et

we have ¢f > 0. Consequently. the objective function to P3! can be reduced by decreasing ¢ and s} .

contradicting the optimality assumption.

COROLLARY 1: In an optimal solution ml’.‘%’.z HES 2 q'.

iel iel
1+ 1) markets can be satished by defining a dummy (m + ) region

The excess “demand™ of the (1
Cmor, ;= Mia large positive number) for jeJ, Am.y=cm.oy, nor =0

with ¢, = mux{(). S -3 al.
Jel el
and k. = 0, without increasing the value of the objective function. Consequently, there is a one-to-one

correapondence between an optimal solution to P3¢ and an optimal solution to P3! with the addition of

the (m + 1) region and (n + | ) market.
Hence, we can incorporate the following constraint to P3¢,

A 14 — ! — ol
2 -‘mvl.1+5m.| Gma1= Gmey-

(9a)
Jed
Eq. (10)is modified to:
f
{10a) > Xt b= 2 r] for je/ and
iel =0
{10b) .
2 S’i + S’nhlzz r7nol’
iel =0
Definel'=IU{m+1}. J'=JU{n+1}and J"' =] U {n+2}
Following the method of [8], we add N (a very large positive integer) to both sides of (9) and (9a) to
obtain,
(9h) 2 X +sit (N—ql)=¢"+ N foriel’.
el
Summing (9b) over lel’ anu subtracting from it (10b) and the sum of (10a) over je/ we have:
1
E (N=gly=(m+ )N+ 2 ¢ — E 2 rl
iel’ iel’ e’ 1=0
It can be shown in a similar manner as in |8] that eachP3'is equivalent to P4, which is
(12) Min '/:’=a"'Z'=a"'[ yy (‘uxfj+2k; N]
el jer e
{13 El‘fj = q for iel’,

Je "
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(14) Z xf;=bt  forje)".
{15) x{ 2 €N foriel’, and
(16) ;=0 for iel’, jeJ"
where
o =st foriel.
x L =N—q for iel’.

al=q?+ N, ciona=hi. Cionoa="—k; for iel’. bt = Z r for jeJ".

=0

!

Sria=mt DN+ = S 3 K and 2= 3 e+ T AN,

=0 iel' e =0 iel’ jel” iel’

Problem F3 is likewise converted to problem P4, which consists of the series of subproblems
P4 tek.
It should be noted that the coupling constraint (4), i.e.

¢i—qi' =0 foriel, teh’

is equivalent to

(17) ~xl g Tl h.=0 for iel, teh’.

We will now develop a solution procedure for solving ”4 and then show that the optimal solution
so obtained also satisfies (17). Hence the ¢ 1 mal solution to P4 so obtained is also an optimal solution
to problem P2, the original problem we ut to solve. For ease of presentation of the solution pro-

cedure, we defin the problem P5'. which is

MinZ'= 2 E cipxy, + E kN

el jel” iel’
over constraint set (13)=(16). The optimal solution to P5' is also optimal 10 P4/, with Zi=a' 12"
3.2. Solution Strategy for Solving P5' (and P4')

Each P5' is a capacitated transportation problem with upper bounds only on the (n +2) column.
The objective function of a subproblem P5' is similar to the others. Further the requirement vector or
rim condition [6, 7] of a P5' differs from P5' ' by amounts of rf for je/" ti.e.. b1 = b1 + &r' for jeJ”
since bf ' = ’2' rrand8=1).

=0
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With respect to the transportation tableau * of 57, it may be recalled that a cell (7. ) is an ordered
index pair with iel’.je)"". A basis Bisa set of (m+ 1)+ (n+2)—1 cells without eveles and such that
F’ there is at least one cell in each row and each column |5). Let u, and v; be the dual vanables associated

with B. A basic optimum solution B° to 5" can be found by using any standard capacitated trans-
! portation algorithm [5] or more efficiently by using the procedure suggested in [8]. For each . P5'
can be solved parametrically starting from the optimal solution to 5 ' by utilizing the area rim opera-
tor 8Ry (P)[6. 7]. This operator transforms the optimum solution of problem P into that of a problem of
P4 whose data are the same as that of Pexcept that o' = a,+8a, and b} =b,+ 88,. For P5', aj=a] '
iel"and B,=r'. jeJ"". Henee letting o, =0 foriel " and B, = rifor jeJ''. PS5 can be solved by applying 1R,
(P 1), The optimum solution to P4'is the same as the optimal solution to P57 with value of the objective
functionZ'=a' 'Z".

We provide helow an algorithm to solve each P4 successively for e = 1,2, . . .. T starting from
‘ B". The first phase of the algorithm determines an optimum basic solution to P4". The second phase
- applies the ares rim operator to find the optimum solutions to P4 teKk. We denote by @ the set of cells

tr, j) which have their respective x,, hounded from above. From (15),

(18) V= {u,n+ 2 foriel'}

. Let W= {4, jifor iel". jeJ '}

Since only the cells in W are bounded from above. we can somewhat simplify the statements of

the algorithm in (6, 7] for applying 8R ((P)1. This simplified version is given below and illustrated with

1 an example. The reader should refer to [6, 7] for the proofs involved in Phase 11.

3.3 ALGORITHM 1: Parametric Procedure for Solving Problem P4.

Phase I: For finding a basic optimal solution to P4°,

STEP 1: Solve P5" using any standard capacitated transportation procedure [5] or the procedure
suggested in [8]. Record the B, X0 = {x.}, u! for iel” and v? for jeJ''. These are the optimal primal
solutions to P4° as well. Also record 2° Set 2° = 79

PHASE 11: For applying 6R 1(P) 1o solve P4, tek.

STEP 2: Sete= 1. 4= 1. B, =B". X{ =X ZI =Z" u' = ul foriel', v, = v} for jeJ'".

STEP 3: Set 8,=r', for jeJ''. Find the modification matrix |6, 7], Y = {y;,} assc.iated with 8,

for je/'' and B4 by solving the following equations:

(19) o me g
2 vi,=0 for iel’.
jed”
(20} S, 3
2 Y= 8, for jeJ'' and 1
il E
9
* The reader is assumed to be familiar with the usval detimitions in the primal algorithm tor the trans~portation problem |5}, ' 1
For continuity the necessary definitions will be stated briefly when thev are needed. 3
i
3
E

b N kol y et o e et
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3
] (21) yi =0  ford,j) ¢ B.
Determine w$.. the maximum extent to which the basis preserving area rim operator 8R4(P) can be
applied using Equation (30) of [6], i.e.
122) wh = Min[(—x/,, )y, for {(, peVly,, < 0}
“ Record (r, s) as the cell at which the minimum of {22) is taken.
¢ '
: STEP 4: (i) If E ! =1, go to Step 4 Gii). Otherwise. go to Step 4 tii).
i=1
4 A.
k (i) (a) Set bf=b{~' + (2 lLf) B, for jeJ''.
i =
Zs.-¢| =Z')‘-+[.L(), [ 2 ,BJ'L",,';,-:I and X‘);.] = {.X,'j,’;,,] '—_.l',J"l. T+ (/L'l.))',,}
"y jebm!

(b) Delete the cell (r, s) from BL. If there are no basis cells in row r, define I/ =r, J!=¢. I, =
I'={r}, JI =J". Otherwise imagine the remaining hasis cells to be connected by horizontal and vertical
lines whenever two of the cells lie in the same row or column. Define I} and J; to be those lines (rows and
columns) that are connected torow r. Set I, =1'"—1[,.J.'=]" = J'.*

(¢) Determine A and the cell (e, f) where the minimum is taken (Equation (58) of [7]) via: ¥

o o { (cij = ui% — vl for(i.j.)e'[l; X,JI"]P 3l |
Wil + vl — cijox) for (i, Ye[I.x J"} N X

Set By, = By —(r, 5) + (e, /).
(d) Determine the duals u; .., foriel’ and v; ', ., forjeJ'" using Equation 160) of [7]. i.e.

{ T for iel |

o nd
uj . for iel

24)
. B { i+ A for jeJ ;'
l'j kel — I o Lot
vk for je/

Set k= Lk+1, go to Step (3).

*For a more rigorous definition of these sets, see [6].
t1t will be proved later (Theorem 1) that x, /s . 2., for i€/’ is nonincreasing as a function of the number of applications of

Steps (3) and (4). Since in P4', x, % ., for iel’ is the only set of variables with upper hounds. x,. % .| = 0 always. and Equation
158) of [7] applies.

S Gr e




(i) Set

for jeJ''.

BBy, =B 202 Tl #1[ S Bt }
jed

tel = g = u! il Jole= pt — ST
wl =l = Uy foriel'.  vi =0 T U for je "'
optimal solution to P4 with 25, =

Find X"“=X{M={.r.-j.,\.‘,=x,~,-.’k+ (nl)yijh X,y is @ hasic
11t > T, go 1o Step . Otherwise

o' 174 . 1. Record them as X! and 2! respectively. Set 1 =1 +h k=
g0 1o Step 3.
STEP 5: X, Z fort=1.. . .. T have been obtained. They are the optimal solution to Py Stop.

3.4. A Numerical Example

Figure 1ta), by, and () show a P5°. P5! and P57 respectively for m=n= 2 e, P form=n="1

[ 4 B | 1
il — == - — X " =
Ll 1] r‘._l s T \
"® ] 2 ] o+ N i H 2 -5 MR
u anoooN Y| 8]
(- | § }
Y. ] m 3 Wy l. 1 [ 4 TR
= - L i _ + ———
1] NLOA %
I [ T .. ] ] 1] 0 TR
} A N
I ' @ @ = T F— ——=F — —
t e e ——— — — =
M+ 2 M+ T (I S 1
20 w Wi KA |
o= Joaz s L o L _# A o —— j
FicuRe biak (A% [STHE 8 [ T e
‘h.l
Y H 2 5 (IR
- = 2 ls e oo
Ly
12 1 I ! W
ey
W ] 0 ih [T
. e i I g
S+ cHE o+ H LV ¢ I e i)
+ 20 i M i Hi

FIGURE L) (P57
Fier Re 1. Numerical example.

NOTE: ¢, =a' 'rij. where &, and ¢, are the cost coofticients for P ¥ and P35t respectively,
! i A ' '
o] o

@ l (f not marked. U, = %)

LLEGEND: F—" " 5 [, is the upper bound on the cell G /)

o aame o o
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and T=2, with é;;= a' 'c;;, where ¢;; and ¢;; are the cost coeflicients for P4' and P5' respectively),

and let « = 0.8. Note that

1 2
=S¢ -3 r=30 and rr= rr= 2 g’ = 90.
! m’ }2; ’ 1=20 4 12() 3 e '
Also,
r{=3N + 2 q¥ — E rj.'= 3N,
tel’ jed’

r}=3N-+-”2'q?-—ZI

r=0

3, ri=N - 20,

r2= 3N — 120 — 40.
In Phase 1 of Algorithm 1, using the primal transportation algorithm |5], we obtain the optimum
solution to P5? as shown in Figure lia). The circled cells denote optimum basis B and the amounts
xi; are shown in the northeast corncrs of the cells. Z¢ = 530, 79=(530/0.8) = 662.5.
In Phase II of Algorithm 1, we set k= 1, t=1,B/=B" 21 =27Z"u;i!y = u')for iel’ and v,!, =
v) for jeJ''. Figure 2(a) shows the modification matrix ¥ = {y:;} obtained by applying Step 3. u! =
40 30
Min [-—-— ——] = 1/2. Thus (r, s)= (2, 3).
20 60
In Step 4, since u} <1, we go to Step 4iiifa). Now b!=5b9+ B,/2 for JjeJ''. and X} .=xl  +
(1/2) yi;. These are shown in Figure 2(b). It can be verified that Z}=810. From Step iy, I,= {2, 1},
1,=1{3}. J/=1{2,1}.J,={3, 4}. From Step 4(ii)c), we find that A=Min[{M—10, M—9, —1+5,
1+2]=3and (e, f)=(2,4). B}=B!—(2,3) + (2, 4). Using (24) (Step 4ii}d)), we obtain the ] , und

v}, for iel” and jeJ' as showu in Figure 2 (¢). Applying Step (3), we obtain the modification matrix
Y= {yi,} as shown in Figure 2(d). We have u1=3/2, (r,s)=(1,2). In Step ¢ since Z ml>1wegoto
i

Step 4(iii), where we set ul=1-1/2=1/2, and b}. =bl+r! forjeJ''. Bt and X' are as shown in Figure
2(e). It can be verified that Z}=1.180. Hence Z'= (0.8)°(1.180) =1,180. We now have the optimum

solution to P4,

{ I 1 l
Ol O I
) S Y|
! | —
Ol ’
| It
| 60 | -60 ]
— |
I |
| O O
l | 120 ~120 ’
| !
20 40 60 —120
B, .
Y={y,}

FIGURE 2(a)

sl i
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Proceeding along similar steps, starting from Bi, we obtain the optimum solution to P42, with B2
and X2 as shown in Figure 3(a). Z2= (0.8) [1.680] =1,344. The optimum solution to P4 is X1 and X2 with
Z2=71+21=2524.

e, 12 1 — 1
PN e S
0 0 | W 0 ot 0 08 08
o P S , . —
A - — :
ole [+ % [on| Ty % I
i +— —f— | !
LY NI{N-T0 I Q | ‘
1 12 b 'l 0+ N | T
{ © & ! 0 0 -0.8
-+ !

| 90 ,\'JN—uo “ 0 O O '
| M M ' © i (O] 04N ’ «, -
A ' | 4 ] 0 0
T 20T 80420 | 9040 | 3N—120 +0.8 | ‘ O O

| —40 L A I |
|
M . N E— h(.um. 3
FIGURE 3(a) tv,,s are marked in the northeast corner of the cells)

FIGURE 3. Optimum solution to £24-

3.5. Equivalence Between P4 and P2

We note below a key property of Algorithm 1,

THEOREM 1: (i) The values of x{ .,  obtained on the application of Steps (3) and (4) form a
nonincreasing function of A for a particular 1.

tii) The values of x{, ., in X! form a nonincreasing function of 1.

PROOF: () For a particular £, by Step Hii), x|, =x{;  + (uf)yijwhere Y= {yi,} is computed
in Step 3 for £ and A We shall show that v; .. <0 for i<]’. Assume the contrary, i.c.

(25) 3 & Yigono2o > 0. l.ofl’.

From (19) z yi,.j=0. hence

"

ped
(26) I Viej, < O, jre) " —{n+2}.

But from (20) 2 Vi =B;=r =0 hence,

iel’
(27) Ay, >0, el —{ian}.

But from (19) 2 Vi, =0 hence,

jea

(28) 3vi..<0. el -{i1}.

Y R
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fjo={n+2},the cycle {tiv.n+2). (i . {1}, Uiss j1). (i1, n+2)} has been detected in B, which

is a contradiction,
If jo= {ni 2}, sincer| =0

(29) 3y,.,.,>0, el —{i}—{i}.

(i # g, since if i2=1{q, the cycle {(io. j1). (1a J1), i J2)o (Lo, j2)} has been detected by
(26)-(29), contradicting the fact that B! is a basis.)
We are then back to (28) with a

Yien <0, gue " ={ji}— {j2}.

(Again j3 # j, since if j4= J, a cycle has been detected in Bf.)

Since I' and J'' are finite. inductively, we must terminate with :1e existence of a

(30) )'i,,,n»2<().

Conditions (25)-(30) imply the existence of a cycle in B}, which is a contradiction. Now, u! = 0,

hence we have x!{ , , .., <x| ., ., foriel’.
(i) For a particular ¢ and £, by Step 4(iii)

-1 = {/ ; U
g el =x, 0, for iel
By Theorem lii). we have
1+1 —= f+1 st i t
'ri.n‘d_xi.n*z.l SXni2a " Xine2 where [ = 1. QED

REMARK 1: By Theorem 1!ii), Algorithm 1 provides an optimal solution to P4 with x! , a

nonincreasing function of ¢, for ie/’. Consequently, the coupling constraint (17) (which is equivalent to
14)) is satisfied. Therefore. the optimal solution provided by Algorithm 1 is also an optimal solution to the
linear capacity expansion problem P2.

Continuing on the numerical example in section 3.4, we find that ¢¥=¢}=¢3=0. ¢3=0. ¢} =30.
¢3=T70. Hence the optimal solution X', X? is also an optimal solution to the problem P2, formed by
adding the coupling constraint ¢{-—¢q! ' = 0fort =2,i=1, 2 to the numerical example given in Figure 1.

REMARK 2: Algorithm 1 provides an optimal solution to P2, by solving parametrically (in terms of

the rim conditions) T-+ 1 transportation subproblems P4/, t=0, 1, . . .. T. Since the computational

times for such large subproblems (e.g. 25X 500) are only a few seconds, Algorithm ] can provide an
optimal solution to fairly large size problems P2 (e.g. I =25,/ =500 and T = 10} in a matter of seconds.
However, as stated before, a problem P2 os such size may be computationally unwieldy for linear
programming codes.

REMARK 3: In converting problem P1 to P2 we assumed that g;= k; for iel. We show helow that

this assumption can be somewhat relaxed. If k; # g; then the expression a” '[a (k;i—gi)]qT will have
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to be added on 1o the objective function (7). In terms of the problem £5 this affects only 57 in which the

: .
costs ¢, change to ¢, .5 where

! el et e,

pone oH

In terms of the operator theory of parametric programming [6. 7] this is referred to as the area cost
aperator € (F) which tran<forms the optimum <olution of £ to that of £* with the came data excep

el =ci,+8y, toriel and je/. lv our problem =1,y ,..=—ath,—g) foriel and y,, = 0 ¢lse-

i 3
where. Let the maximum extent to which 8C, (P) can be applied without altering the current basis
structure be gy Then if w2 1 then B i< aleo optimal to this changed <et of costs, Howeser it - 1
then further application of the operator involves basis changes and the ~olution <o obtained for § = |
may not satisfy the constraints (17, However, tor a reasonably long planning honizon, even in the latter
case, the solution obtained with the assumption 4, g, mav be expected to be nearly optimal to P1,
Continuing on the example from section 3.4 we have 4, = 5/0.2=25 and 4, = 10. Let g, = 23 and
&:=9Y. Hence we have y, ,=—(0.8)(2)=—1.6.y. 4= —0.8 and y,, =0 for the remaining cells. Apply-
ing Theorem 8 of [6]. we obtain the u? foriel” and v tor je /' as shown in Figure 3tby. The maximum

extent to which the §C  (P) can be applied i< isee Equation (o of {6])
' =Minf (1= 0200801 - 11/08]- M- 1308
Hence the (primaly optimal solution a~ given in Figures 2ie) and 3ia) remains optimal to P with g, = 23

and g2 =9 as well In fact for this example, the optimal solution remains optimal to 1 for0=< g, </,

and 0= g < /..

1.0. OPTIMALITY PROPERTIES AND INFINITE PLANNING HORIZON
4.1. Properties of the Optimal Sclution

In this section we study sonme properties of the optimal <alution to 22 a~ provided by Algorithm 1,

LEMMA 2: In the optimal solution 10 22 as provided by Algorithm 1. sfo=af 00 =0 tor all
te{r, 7+ 1. .. . THifqg >0 (=1, .+ V) forany reh andiel’.
PROOF: Assume the contrary.ie. s! > O0forate{r. 7+ 1. . . .. T}.

By Theorem lidirg! 2 g7 > 0. The value of the objective function to subproblem P4 can be reduced
by decreasing s! (= decreasing 2! ) and decreasing ¢' ¢ increasing ' ). contradicting the tact

and 1! belong to an optimal solution of ¥

tonoe 2

B {
that x! |

The physical interpretation of Lemma 2 i< intuitively meaningtul, Tt <ave that with linear costs,
there exists an optimal solution to P22 <uch that if there i< a capacity addition in a period for ~<ome

region, then that reg =~ tull capacity will be utilized for that period as well a< all future periods.

t
LEMMA 3: if¢". and 2 rt are integers foriel. je ) and re{0} - A. the aptimal solution 10 2 a~
b 1
provided by Algonithm 1 are also integors.

{ ! t
PROOF: %" 17 | and 2 ri ., orte {0} = Ainvolve additions and subtractions of ¢! and 2 r.
7wl :

ro 0 (1}

iel. jeJ andte {0} - A. Aiso by denmition. ¢, ., = 0. Since NV can also he assumed 1o be an integer. the

rim conditions of P4 (see (13(15) ie. af and b forief and je/ " te{0} + A) are all integers. The
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constraint matrix of each subproblem P4¢, te {0} + K is totally unimodular. Application of Algorithm 1,
therefore, produces integral X' for t e K. By Remark 1, this integral solution is optimal to P2.

Lemma 3 is interesting hecause the constraint matrix of P2 is itself not unimodular. In the physical
context of the problem, integral optimal solution may be important, since it may be meaningless to add
a nonintegral number of capacity units. In the multiperiod assignment problem mentioned in section 1,

this may be particularly important.
LEMMA 4: (i) Assume r! >0 for jeJ'.* For some t and 4, if at Step 3 of Algorithm 1, the modifica-

tion matrix ¥ = {y;,} uvbtaining by solving (19)-(21) has y,,; = 0, for iel’, jeJ' then u' =L (a large positive
number).
(ii) The B'= B! | derived from the subsequent application of Step 4(iii) remains an optimal basis

for all subproblems P47, 7 =1t.
PROOF: We have y;, = 0foriel’, jeJ'. Using equation (22) we hav::

pi=Min(—=x{ .., ) /Yinez for {{i, j)os\T’Iy.-J < 0}

Since the set of minimization is empty, u!{ = L (a large positive number)

(iii) The Y= {y,;} satisfy (19)-(21). Since p{=L, from Step (3} we go into Step 4iii) where
B'=PB, _, is obtained. At the next application of Step 3, we can obtain a new modification matrix

Y ={3i,} satisfying (19)-(21) by defining v;; = (r'=tr)yi, foriel’. jeJ and yi n.2=— E v., for

et
iel'. Since r' >0, y;, 20t andr!*' =0foriel’. jeJ'. we have yi, =0foriel’. jel' Y thus satisfies
the cond'*ion of Lemma 4G) and u}*! > 1. Hence B' ' ' = B'. The argument can be repeated to show that
B =B'forr=1.

Lemma 4 provides a sufficient condition at which Algorithin 1 can be terminated, since when this
condition has been attained at time ¢ (say), an optimal solution to all P4", 7 = 1 can be readily obtained.
An optimal solution to P2 is given by B', B, . . .,B'".B'**'=B8'. . . . .B"=B',and X' . X%, . . .. X",
Xt-'=Xt4 Yoy Xrez=Xt-t4 Yoz XT=XT-14 Y7 (Y1 s the modification matrix obtained
Ly solving (19)-(21) with 8,= rist forjeJ''.)

4.2. Infinite Horizon Case

We now show that Algorithm 1 can be applied to solve P1 with an infinite planning horizon. Obvi-
ous!y, in the infinite horizon case, the assumption regarding the resale value of the capacity at the end
of the planning horizon is not needed. Infinite planning models have received interest e.g. [3. 4] as
it is felt that any terminal condition imposed on a planning model is arbitrary.

We assume that for periods prior to T, the demands in each market can be estimated with greater
accuracy. Hence the growth rates for these periods may be any nonnegative rate. At the end of the

planning period T. the demand in each market j is estimated to grow at the rate 8, per period.** After

*Ifri=0 for any jeJ"". let r'=e, where € is a very small positive number.
tit can be shown easily that since y,, >0 for 1e/’. jeJ'. chere can exist one and only one y,, > 0 for each yeJ'.

**From the definitions given in Section 3.1, we have 8..,=0 and B..: =~ Eﬁu
Jet
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solving P4/ for t up to T. the remaining problem in an infinite horizon wodel consists of the subproblems

P4 fort > T whe.o

' T
/;5=E j'=2 ri+ B —=T) fort > 7T and jeJ' .

T 0 b U

It is obvious that there exists a basic feasible solution to any subproblem P4/, for t = 0. Each
Pat is an equvalent problem 1o the others except for the requirement vector [5]. which is a nonde-
creasing function of 1. By a well known result in parametric programming [5. p. 149]. there exists an
optimum basis B to P47 which remains optimal to all P4 ¢ = 7.

Algorithm | can be applied to solve P4+ =0 until the modification matrix ¥ 1as computed in
Step 3) satisties the condition of Lemma (7). Assume this i~ achieved at 1= 1,. A basis B has been
ubtained whict remains optimal 1o all P4, ¢ =, An optimal ~olution to P41 >y is given by V' =
X'+ YO By Lemmad. BY. B2, . . . B Bur=B4 0 0 B>=B"is an optimal <olution to 1 for

the infinite horizon case.
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ABSTRACT

A Lincar Fractional Interval Programming problem (FIPy is the problem of extremizing a
linear fractional function subject to two-sided linear inequality constraints.

In this paper we develop an algorithm for solving (FIP) problems. We first apply the
Charnes and Cooper transformation on (F1P) and then. by exploiting the «pecial structure
of the pair of (1P problems derived. the algorithm produces an optimal solution to (FIP)

in a finite number of Nerations.

1. INTRODUCTION
Problems of maximizing a linear fractional objective function subject to two-sided linear inequality
constraints were termed in the literature as fractional interval programming problems. denoted by

(FIP1. Their general formulation is

Max (c¢Tv + eo) /[ (d7x + dy)

subject to b s dxs b

W e remark that for a suitable choice of the vectors & and b the constraints set of (FIP) is sufficiently
general to cover all hounded polyhedral sets.

Problems with lincar fractional objective function a1 e, e.g. in attrition games [14]. Markovian
replacement problems [11. 15]. reduction of integer programs to knapsak problems [4]. the cutting
stock problem [13]. in primal dual approaches to decomposition procedures [1, 16].

The linear interval constraints arise in problems of capital budgeting, blending and mixing prob-

lems., production planning problems and more. see e.g. [3. 19].

*This research was partially ~upported by NRC Grant number A-3024 and by ONR Contracts NOOO14-67-A-0126-0008
and NOOO13-67-A-0126-0009 with the Center for Cybernetic Studies, The University of Texas,
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54 A. CHARNES. ). GRANOT, AND F. GRANOT

A complete analysis and an explicit solution for (FIP) when the cocfhcient matrix A is of full row
rank was first obtained by Charnes & Cooper [7], sce also |5, 10]. A finite algorithm for solving the
general (FIP) problem directly, i.e. without resorting to the transformation of (FIP) to an equivalent
linear programming problem. was constructed in [9].

In this paper another finite primal algorithm for solving (FIP) is developed. In contrast with the
algorithm developed in [9], we first apply here Charnes and Cooper’s transformation [6] on (FIP) 10
reduce it to a pair of (LP) problems. The crucial observation is that for a fixed value of the additional
variable ¢, introduced by that transformation, each ore of the pair of (LP) problems is an Interval
Programming problem (IP) which is significantly smaller in size. This last feature is fully exploit in our
algorithm where instead of solving the pair of (LP) problems directly. we solve parametrically tor ¢
the associated (IP) problems using the method developed in [8]. We start with a feasible value of ¢
for which an optimal solution to the associated (P) problem is generated. The values of ¢ and the
corresponding optimal solutions are then modified until, after finitely many iterations. an optimal
solution to (FIP) is produced.

Thus, by exploiting the special structure of the interval constraints and by using the primal algo-
rithm for (1P} problems [8] as the main device, we are able to efficiently solve (FIP) problems,

The algorithm 1o be described here together with that developed in |Y] are based on two of the
major approaches suggested for solving fractional programs—those of Charnes and Cooper [6] and
Martos [17]. respectively, and they both utilize the special structure of the interval constraints while

generating an optimal solution to (FIP).

2. PRELIMINARY RESULTS

Consider again the (FIP) problem:

"Il*"n (:‘11)
() o { d™ - do Dix)
{(2) sboweS={h = dvsbh}

where e co. d do. b . b and 4 are given. In the sequel we <hall assume that 8 is hounded and

ey +0,

T7 3 * constant
div ¢ dy

(3
on S.
LEMMA 1 [7]: A feasible (FIP)is unbounded if either c¢ Vi4)-.or d¢ V{4)+ . where V(A4 ix the
null space of 4.
LEMMA 2 (9): Let (FIP) be given with ceV(A) <. deV(4) - and 4eR " where R " i< the set of
all m X n matrices with tank r. Let DeR 7" satisfy

R(D"y=R(AT)

Then:

(a) ADTeR™ T,

= 2 it ok o S AN i Sl s il i i Gl T T —
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tb) (FIP) is equivalent to a full column rank (FIP) with coefhcient matrix AD™ and cost function
CTDT}’ + Co
(ITDT'Y“}‘ (lo ’
(¢} If feasible, the optimal solutions of (FIP) are D"y*+ N(A4) where y* is the set of optimal
. solutions to the equivalent problem.
3
‘ PROOF: Since R(47)=N(A)* and since ceN'4) L, deN{4)"* it follows that every optimal solu-
tion to (FIP) is of the form
1 4+ NA)
; where x* is an optimal solution to
cx+ ey
3 Max ———
} o (IT.X + (11)
g (4)
st. b sdx<sh
2 xeR(A47)
But, since R(A7)=R(D7), xeR (A7) can be equivalently written as:

x=DTy, yeR"

Substituting x= DTy in (4) results in the equivalent problem, which completes the proof.

3. AN ALGORITHM FOR SOLVING (FIP)

Consider again the (FIP) problem :
'%
crtco Clx) !
Max{ —— =
(h & { d’x+d D(x) }
(2) st b sdx<s
and assume that (FIP) is feasible. ¢ L N(4). d L N(4) (see Lemma 1) and 4 is of full column rank 4
representation (see Lemma 2). '
Following Charnes and Cooper’s transformation [6]. we multiply C(x) and D(x) by 1.t >0, and
restrict t + D (x) to be equal to 1 tor — 1, for negative values of the denominator). Substituting
(5) tx=7z
4
1

in (1). (2) results with the following pair of (LLP) problems, equivalent to (FIP) and denoted by (ELP1)
(ELP2)

ST U
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6) Max {c¢7 -2+ co -t} {Max (—¢7:z—co* 1))
(7) st. A-zsb' -t

(8) Az=b -t

(9 d7-z=1-d,-t (d" z=—1—dy-t)
(10) O<si< M

where M is a sufficiently large number. As it was noted in |6], (ELP1) and (ELP2) differ from each
other by only a change in sign in the functional and in one constraint.
We observe that the constraints of (ELPY) (ELP2)) are of special structure. Indeed. for any fixed

value of ¢, the 2m constraints (7), (8) are equivalent to m interval constraints of the form
() b t<sAd-z<b' -t

Thus, for any fixed feasible value of + (ELP1) (ELP2) can be reduced to an equivalent (IP) problem
denoted by (E1P1) ((EIP2)) of the form

(12) Maxc? z4eg t (Max —c¢Tz— ey t)
(13) st b octsd-z=s bt
(14) l—dy-t=sdz<s 1 —dy-t (—1—do-tsdzs—1—dyt).

Let x! be a feasible solution to (FIP). not necessarily an extreme point.

REMARK 1: For a real world problem. a feasible solution to (2) might sometimes be at hand from
the available data on the problem. If. however, a feasible solution to (FIP) is not available then x=10
can be chosen as a feasible start whenever & < b, Otherwise, assuming 6 = 0, we can solve the
following (IP) problem

Max— M -eTU

st b sAx+1IU< b

where M is sufficiently iarge. in order to produce a feasible solution to (FIP). if such a solution exists.
For a more detailed discussion see [8].

Clearly.if D(x') >0 (D(x') < 0) then
(15) l|=l/l)(.l'l).2|=f|'.t'l (f|=_l/1)(.l").2|=fl'.l")

is a feasible solution to (ELP1) «ELP2)).
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In the following, we shall present a method for solving (ELP1 e, the case that D(x') > 0. Exactly
the same method will be applied for solving (ELP2) when D(x") < 0.

The main idea underlying our method is to take advantage of the special structure of (ELPI)
while attempting to generate an optimal solution to (FIP), Thus for 1=1, we first apply the primal
algorithm for (IP) problems, introduced in [8]. in order to produce an optimal solution z(t,). to (EIP1).

Let B be the optimal basis generated by the primal algorithm for (IP) and 'V the completion of the
rows of (37) to B. Let b (1) = (’{'_,‘,’0,) and & ()=} ;). and denote by b, (6). b (). b, (£), b (1)

the partitions of the vectors & (£). b (t) which correspond to the partition of 4 to B and V. respectively.

Substituting
i
3
116} v= Bz
!
in (EIP1) and rearranging the order of the constraints results with the following equivalent problem :
¥ 3
(17) Max {¢7 B 'y + cort}
(18) st byysvsb) 3
(19) bott) < NB W< biir) .
Since B is an optimal basis, V! given by j
bhotty) el v=0 ) 4
(20) yi={ e o =1 .. .. :
by(t) if TR, <0
1
% is an optimal solution to (17), (18}, (19) for t=1¢,, and
: (21) Ny =8 -1,
. . Al o . ‘J
is an optimal solution to ({EIP for ¢ = ¢,. See also |2]. |8].
Clearly, t = ¢, is not necessarily the optimal value of ¢ in (ELP1) In the following we shall genera e
the optimal value of ¢, 7P, and the optimal solution z(¢"') 1o (EIP1) for ¢ = ¢
Let
boity, ife’B ' =0
DY hytt), = H . ) t=1l.. ..
(22) (), by (1), it (B 1< 0 i .n)
Treating ¢ a~ a variable and substituting
(23) vi=bytt) li=1.. . ..n)
. 1
in (17), (18). (19) results with the following single variable constrained maximization problem i

it i i U ik ) S B e e e
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(24) Max{ 2 TB ')1[)” ) +Co'f} = Max {GH'I+BH}
(25) s.t. bi(t) < NB'by(t) < by(e).

Since t = ¢, is a feasiule solution to (25), then, if ay = 0 we can immediately conclude that (z(¢,), ;) is
an optimal solution to (ELP1). If, however, ay # 0 we need to consider the following three exhaustive
cases:

(i} ap > 0 and the value of ¢ can be increased until M without violating any of the constraints in
(25), then C(x)/D{x) is not bounded over S, see [6].

(ii) ay > 0(ap < 0) and the value of ¢ can be increased (decreased) from ¢, to t2. where t, >
t;{ts < ty) is the largest (smallest) value of ¢t which does not violate the constraints in (25).

(iii) Any € increase (decrease) in the value of t when ag > 0(ay < 0) violates at least one of the
constraints in (25).

Thus, whenever ay = 0 or case (i} occurs we terminate with the appropriate conclusions,

Assume therefore that we encountered case (ii), ay > 0 and that we had increased the value of
t until t,. We shall attempt to vary the value of ¢ from ¢, so as to improve the value of the objective
function. Exactly the same method is applied if case (ii), ay < 0 occurs or when case (iii} occurs, for
t=1t,.

Since for each j, bj’ (1), bj (t) are linear functions of ¢, they can be written as

(26) by Ct)=b - t+y; . by ()=b; - t+y;

J
For simplicity, let the nonbasic constraint satisfied as equality at ¢, be

(27) aylt)+ L ot ancyalt) =b0(2) ner =bney ta+ Yo

where b(t2)ns1=0"(t2)n+, if the nonbasic constraint reached its upper bound as ¢t was increased to
ty or b{(tz2)n.1=b"(t2)n., if it reached its lower bound.

We shall refer to nonbasic constraints satisfied as equalities at t=1¢, as critical nonbasic constraints,
and to t = ¢, as a critical value of ¢.

REMARK 2: We shall assume in the sequel that there exists only one critical non-basic constraint
at t =¢, and at any other critical value of t. This assumption can always be made, since if not, a
perturbation, essentially equivalent to that introduced in [8] for the linear interval programming problem
can be performed in order to secure this property. The perturbed problem is obtained from the original
problem by replacing the vectors b* and b - by the perturbed vectors b* (€¢) and b~ (€) where

bile) =bf +€  bile)=bi—¢€ (i=1,....m
and ¢ is sufficiently small and positive.

Let

T={t: t is feasible to (ELP1)}
v(t) —The optimal value of the objective function in (ELP1) for teT.
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LEMMA 3: T is convex and v(¢) is concave over T.
PROOF: The convexity of T is clear. Next, let ¢, t,e7 and let A, A be non-negative scalars such that

A+ A= 1. Then,

(28) v(Ae; + hez) = Max {¢ T [Azs+ Azo] + co[Ats + At2]

24,23

st b-[My+ At] < A{Az +Aze] < b° (At + Ar2])

=2 Max {(‘T[AZ| +}_\22] +C0[A’| +)-\ . f'_»]
2).22

st b () sAzy b (), b (1) sAz< b (ty)}

=\ Max {c’z
st b (t)y<sAz< b (1))}

+ A - Max {c"z
ol b(t) SAz<b (1)} =\ v(ty) + Ae(ta)

which completes the proof: see also [[12] Lemma 1].
Since it can be shown that (23) is optimal to (17), (18), (19) for ¢, < ¢ < ¢, then, as a corollary to

Lemma 3, we have the optimal value of ¢ in (ELP1) is greater than or equal to t..

The feasible solution (y(t2), t2) = (y1(22). . . ., ¥a(t2), t2) is an extreme point for (18), (19) in
R"+1_ In the following, we shall generate an adjacent edge to (y(:). t:) along which, by increasing the
value of ¢t we shall improve the value of the objective function (if such an incident edge exists).

Suppose we form a new basis by removing 8;, the jth basic constraint, and inserting the critiral
nonbasic constraint. Then, upon substituting the new set of values of the y;’s (as it was done in order to
obtain (24). (25)), we can calculate the slopes of the objective function and the constraints, as func-

tions of ¢, in the new basis.
Denote by
B=The current basis.
B;=B/ The jth basic constraint U the critical nonbasic constraint, where | denotes deletion
and U denotes union.

az=The slope of the objective function in the current basis B.
ay,=The slope of the objective function in the basis B;.
S .1=The slope of the critical nonbasic constraint in the hasis B.
Si=The slope of the jth basic constraint in the new basis B;.

Then it is easy to verify that

(cTB ),
(29) ahj=aﬂ+_(:—[,)n¢|—Snol]

J

1
(30) Sj=(bh)1+;[bn»|_snel]-
j

it
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We conclude therefore that if v, (1.); < b, (t2); and either

(31) (hy),= (by)j, ay; > 0.8, = (by);
or
(32) (br)j= (b)), auj>0. S;= (b)),

then we can increase the value of ¢, without violating any of the nonbasic constraints, and thus improve
the value of the objective function. If ir the jth basic constraint, b, (1), = b, (t,), we shall attempt to
remove that constraint from the basis only if §,= (4,,);= (b,), and an; > 0.

Thus, if possible, the value of ¢ will be increased until its next critical value, i.e. the largest value
that ¢ can be assigned without violating any of the nonbasic constraints.

THEOREM 1: If for cachj, (=1, . . ., n) neither (31) nor (32) are satisfied then

(33} (z(t2), t2)

is an optimal solution to (ELP1), where z(t2) = B 'y(12).

PROOF: Replacing a basic constraint with the critical nonbasic constraint and attempting to
increase the value of the objective function through an increase in ¢, amounts to examining the pos-
sibility of improving the value of the obyective function by moving along an incident edge to (1ta).t2).
Since any such attempt failed, and since y(r:) is an optimal solution to (17), (18), (19) for t =1, we
conclude that none such incident edge exists, which implies that (yt.). t,) is an optimal solution to
(17). (18), (19).and thus (B ! - y(t2).t:) is an optimal solution to (ELP1).

As we noted earlier, we maintain an optimal tableau while increasing tor decreasing) the value of
t from ¢, until ¢2. Explicitly. for each te(t,, t:], (23} is an optimal solution to (17), (18). (19). How-
ever, this property does not generally hold as we move, according to our criteria, from one extreme
point 1o an adjacent extreme point by varying the value of t. Therefore. whenever we reach a critical
value cf t+ we need to check the optimality of the current basic solution. If it is optimal we try to
improve the value of the objective function by moving along one of the incident edges to the current
basic solution. If, however, the solution is not optimal, we first apply the primal algorithm for (IP)
problems in order to generate an optimal solution for that critical value of ¢.

Algorithm A for solving (FIP) is conveniently summarized in the following.

ALGORITHM A.

Step 1: Generate a feasible solution x! to (FIP)—from which obtain by (15) a feasible solution (z!, t;)

either to (EL.P1) and then set i =1 or to (EL.P2) and then set i = 2.

Step 2. Fix the value of  at its current value and solve (ELPi) by the primal algorithm for (IP) problems,
Can the value of t he modified ti.e. increased or decreased) without violating any of the
constraints, which will result with an improved value for the objective function?

No, ap=0—terminate with an optimal solution to (ELPi), go to step 5.
No, ap # 0—go to step 4.
Yes—go to step 3.
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Step 3. Can the value of t be increased to M without violating any of the nonbasic constraints ?
Yes—ternunate. with the conclusion that C(x)/D(x) is not bounded over S.

No—Increase (or decrease) the value of t, whereas the values of the y;'s are modified accord-

e i s

ingly, as it was done in (23), until an additional nonbasic constraint is satisfied as equality,
i i.e. until the next critical value of r.

Do the yi's satisfy the optimality criterion for the current value of ¢?

. Yes—go to step 4.

4 No—go to step 2.

! Step 4. Check whether by removing a hasic constraint and inserting a critical nonbasic constraint the
value of the objective function can be improved by modifying the value of 1.
If impossible —terminate with an optimal solution to (ELPi), go to step 5.

If possible — perform the appropriate bhasis change and go to step 3.

Step 5. Are the optimal solutions to (ELP1) and (ELLP2) at hand?

No - find a feasible solution (z',t,) to (ELPj)je{1,2}j # i, seti=j, gotustep 2.
i Yes—Let (z(et*), t4*) and (z(4). t*') be optimal solutions to (ELP1), (ELP2), respectively.
Then 2

opt
¥

if Tz ]+ co - 9™ = cT[2(88P) ] + co - 2P

34) =

z(,_gm)

opt
t

if eT[z(e9%) ]+ co - 1% = T[2(19%) ] + ¢g - 9™

e

is an optimal solution to (FIP).

4. OPTIMALITY AND CONVERGENCE

The finiteness of Algorithm A stems from the finiteness of the primal algorithm for (IP) and from
the fact that while we move from one extreme point of (ELPi) i = 1.2 to an adjacent extreme point we
strictly increase (in the perturbed problem if necessary, see remark 2) the value of the objective func- ‘
tion. Since the number of extreme points is finite so is Algorithm A.

it_MARK 3: Let B be an optimal basis and y(¢,) an optimal solution for (17), (18), (19 for t=1¢,.
Assume that at t=1; the first nonbasic constraint is a critical constraint. Thus, (17), (18), (19) can be

written as:

Max (¢7TB " )yyi+ . 0 0+ (c"TB Yuyut oot

!

s.t. [;',(t)|s_)'|$l)"‘(f)| %
. (]

L]

E|

bplttns vy < by (t), |
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[) (l),”|$(1|)'|+ o o D +(lny"$[i'(')n;|
bi(t) < NB 'y< b"i‘(r)

where N are the remaining nonbasic rows.
If we choose to replace the critical nonbasic constraint, which is satisfied as equality on its upper

bound (lower bound) with the §; hasic constraint for which

i) ai#0

TR-1). TR-1).
AL T (——((B )'so)

(@€ ai

{i1i)

(CTB"),' (CTB"), ((‘TB"),' S (CTB")j ) )
@ = aj ( a g ).u,- 20

Then, the tableau obtained after performing the proper basis change is also optimal, i.e. the new 3,’s
satisfy the optimality criterion (20).

The above basis change wiil be performed only if it will be possible to modify the value of ¢ in the
new basis and thus to improve the value of the objective function. In this case we would not have to
solve an (IP) problem at the next critical value of ¢ (see step 2 in Algorithm A).

However, we remark that it might be impossible to construct a new optimal basis which will
include the critical nonbasic constraint, and even if possible. we might not be able to improve the value
of the objective function in the new basis, by modifying the value of ¢, in which case we will operate
according to Algorithm A.

EXAMPLE [9]: Solve the (FIP) problem:

Max 3.!'| T.U +4
ZXz

OS .\':qs l

Clearly, since x, = 1 (ELP2) is not feasible and thus we need only to solve (ELP1). A feasible
solution to (FIP) is x'= (0. 1. 0) for which D(x') > 0. From (15) we get z2'= (0. 1/2.0), t,=1/2 ax a
feasible solution to (ELP1). Problem (EIP1) is of the form:

(EIP1):

Max 32| —2Zy* 4[

TR T e o

Lpriie
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0$Z|+Z-_r S-“

< Iy SSI
0< st
12 < 22 < 1/2
1 0 1 10 -1 110
Lee B=[0 1 0] B'=[0 1 o0 “'=(o l 0)
0 0 1 00 |1 ‘
Then,

i B 1'=(3.0,—-4).

Substituting y= Bz in (EIP]) results with

TP

F Max 3y, —4y; + &t
st —t=<y =2
L 1/2< V2 < 1/2
0< yast

An optimal solution v is y= (2¢, 1/2. 0). Substituting y as a function of t in the objective function and

the nonbasic constraints results with
Max 61+ 4¢

st. 0s2+12<Tt

Wl
-

t<1/2 <

Since t, = 1/2, the second nonbasic constraint is critical. However, only the second basic constraint

can he replaced by the critical constraint and for this basic constraint we have b, = b*. According to ]
4

our method this constraint can not be reraoved since b, = b; # S,. Thus 1°®'=1/2 ix the optimal value
for t and 9
A
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10 1 I I
=R h={0 1 0 (1,’2 . I 2)

0 01 0 0

The optimal solution for (FIP) is
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SOLVING FIXED CHARGE NETWORK PROBLEMS WITH GROUP
THEORY-BASED PENALTIES

R. .. Rardin and V. E. Unger

School of Industrial and Svstems Engineering
Georgia Institute of Technology

ABSTRACT

Many well-hnown transportation, communication, and facilities location problem- in
operations research can be formulated as {ixed charge network problems. i.e. as minimum
cost low problems on a capacitated network in one commaodity where some arc« have both
fixed and vanable costs. One approach to solving such problems is to use group theoretic
concepts from the theory of integer programming to provide bounds for a branch-and-
bound procedure. This paper presents such a group-theory based algorithm fur exact
solution ot haed charge network problems which exploits the special structures of network
problems«. Computational results are reported tor problems with as many as 100 fixed charge

arcs,

1. INTRODUCTION
The fixed charge network problem (FCNP) can be formulated as

T

(1 min el + clas ~ el
(2) st. Eox,+E:x.=0
(3 —Ix,+Iy—1s=0
4) u,zy=0

(5) =z, =20

(6) u, =zs=10

(7) u,» =1, =1

8) v=0modu,.

where ¢,. ¢,. 5. u,. 1, and v are n,-vectors: c.. /.. u: and x» are n.-vectors: b is an m-vector: E, is

mXn,: Esis mXns; c,>0; and (£,. E2) is the node-arc incidence matrix of a direct network. i.e. a {

matrix with columns which correspond to arcs of the network and consist entirely of zeros except 4

67 1

Preceding page blank

kiRt Gaot i e




68 R. L. KARDIN AND V. E. UNGER

for a — 1 in the row corresponding to the origin node of the arc and a + 1 in the row corresponding to
the destination node of the arc. The problem is a general minimum cost How problem in one commodity
with the added features that all variables are bounded. and that a <ubset of the flow variables ithe
x1,) have a tixed charge cost structure. Thus each x, has both a variable charge v, v, and a positive
fixed charge f, assessed whenever, 1y, > 0. To obtain the formulation FCNP_ prorata amounts e, = f,/u,,
are calculated, the cost ¢, i~ defined by ¢, = ¢, +r,. and constraints on the slack vector s are arranged
<o that the tull amount 7, will be assessed when 1y, > 0.

In this paper the solution of fixed charge network problems in the form of FCNE will be pursued
by using the group theoretic approach 1o integer programming developed by Gomory. Johnson and
others [2, 3.4, 5, 6, 9,10, 11} to provide bounds for a branch-and-bound approach. Results in [15] for
general hxed charge problems (e, problems like FONP where no spectal structure of £y and E is as-
~sumed) are specialized to the network case. An algorithm using the results i< then outlined and computa-

tional results presented.

2. NOTATION

In order to effectively present observations about FONP, some notational conventions will be
required. For the convenience of readers, these conventions are summarized below.

. Sets of rows from a matrix tor vectory will be denoted by enclosing the matrix in brackets and

indicating the limiting row numbers. For example,

[ M ]} =the submatrix consisting of rows 1 through 4 of .

When only a single row of a matrix is required, the convention will be simplified by dropping the
redundant superseript. and if no confusion will result the brackets will alse be omitied leaving, for

example,
1y, = the jth row or component of the vector v,

20 All references to optimal solutions, bases, and tableaux ior various linear programs will be with
respect to bases of the well-known bounded simplex procedure. When it is desired to speak of the part
of a solution vector, cost vector, bound vector or matrix associated with the hasie variables. nonbasic
variables, ete. the usual rearrangement of rows and columns will he assumed, and identifying super-
script= will be attached 1o submatrices, Specifically, the superseript B will denote the basie part of the
matrix. N the nonhasic part, U the part with nonbasie variables at their upper bounds, and . the part
with nonbasic variables at their lower bounds.

3. A bar orer the name of a problem will denote the cantinuous relaxation of the problem. i.e the
~ame problem with any congruence constraints relaxed. Elements of the optimal solution. optimal
simplex tableau, ete. for such a continuous relaxation will be <similarly denoted by hars over the names

of the elements.*

“Througk at the paper the usual simpliicaton of reterrng to an optimal solution as it were umique 1= ohserved. There
mav, of course, be many hasie <olutions which satisfy simplex optimality erteria However, the given results hold for any ~uch
~olution. and the only posable effect of @' iernative <olutions i< to make <ome penalties zero becanse the adjusted costs of corre-

sponding nouhasic variables are zero,
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4. The function nu ) will be aused to denote the value of an optimal solution to the problem given

as its argument.

3. RESULTS FOR GENERAL VFIXED CHARGE PROBLEMN

The analysis of [15] developed a number of structural results for general fixed charge problems
which will be exploited in the algorithm of this paper. The next few sections briefly outline the mo«t
important of these results. Though the results are stated in terms of the notation of FCONP they applv

to any bounded fixed charge problem.

3.1. The Continuous Relaxation
At each iteration of a group theorv-based branch-and-bound solution procedure the continuous
relaxation FONP of a FCNP must be solved. In [15] it was shown that all ¢lements of any optimal

basic solution to FCNP could be constructed from the solution to the reduced netwerk problem (RNPs

(9) min v - el
(10) wt Eog - Eau=0
i) u, =, =0
(12) e Zaie B 1

If {af. 2} forms an optimal basis for RNP{a 0y ik an optimal hasis for FONP. The correspondimg

optimal solution is given by

3} 4 1,
| 1) .l_’-_'
s = 0,

where {&,. %2} is the optimal solution to RNP.

3.2. Penalty Subproblems

An equivalent form of any linear mixed-integer program can always be obtained by <olving the
continuous relaxation of the problem and rewriting the problem in terms of perturbations from the
values of the nonbasic variables in the optimal continuous <olution. The optimal simplex tableau i~
used to represent changes on hasic variables in terms of perturbations in the nonhasies, Tt is <hown

in [15] that such an equivalent form for FONP s given by

. - All A\ I A‘i S
03 min (¢} ( -—..\x': ) AL ( s ) <l As + nFCND)
I o] Ay o A _
l st IﬁH/‘.n (--Ax’l ) + [E‘-}ll.“ (~-A1; )—As S A
-l ! 0 2

.
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(15) As, Axl Axi, AxL Ax, = 0

t16) ul ! = Axt _ Axk 0
()= (&) =) (Lot ) - (e ) (5) = ()

)Gl (- (el ()
=y — e B | + =
)77 I_EI.. 1,4 — aAx! IF(f]A'” At As =0

‘18) U, = AS
(19 bz Axh, ul = Axl
(20) wh— U = Axhowh — 1) = Axl,
where Axi=2xl -0 Axl =ul — xb

Axi =l — x| As=s—0.

Axfi=x} =} k% = the dimension of x,#,

and é). ¢, EY,EY are taken from the optimal simplex tableau for RNP. The relaxation of this equiva-
lent form consisting of (13). (14). and (15) is the group problem of Gomory and Johnson (denoted GP
(FCNP).

GPFCNP) is generally dificult to solve. Thus a number of relaxations were developed in [13] 10
produce penalties for a branch-and-bound procedure. Relaxations of GP(FCNP) where only the rows
of (14) with numbers in an index set [" are enforced are denoted GPiI'). When a GP(I'1 is further con-
strained to satisfy (18), (19), and 120}, it is referred to as a hounded group problem and denoted BGPiI').
Finally, when a GP (1) is constrained to satisfy all rows 7 of (17 for f€l’, it is referred to as an either-os
problem and denoted EOPiI'y. The name for the latter problem derives from the fact that EOPil) i~
GPI) with = ¥, mod u,,” replaced by =¥, oru,, — 3,7 in row { of (14) for each (el

Observe that all these subproblems can be constructed directly from the optimal simplex tableau
for RNP. Moreover, the bounds obtained from solving the subproblems have the ‘ollowing obvious

relationships:

v [GPiY = o [FCNPY)

v [EOPI] = oGP

v [BGPUI] = p[GP]

b G = WGP

v [EOPIY = »[EOPT )] rcr.
v RGP ()] = ¢[BGPA )]
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4. THE NETWORK CASE

The algorithm to be presented in this paper employs a branch-and-bound approach where the

above subproblems are used to provide penalties. In such an approach certain of the congruence-
constrainted variables y, are fixed at either 0 or uy,. and the continuous linear program obtained by
relaxing congruence constraints on the other y, variables is solved. From the optimal simplex tableau
for this linear program a series of penalty problems is constructed to obtain lower bounds on how
much the value of the continuous optimal linear programming solution would have to bhe increased
to produce an optimal solution for the original fixed charge problem. These bounds or penalities are
then used to reduce the set of remaining possibilities for optimal solutions to FCNP and choose a new

branching variable. i.e. a new variable to fix so that enumeration can continue.

4.1. Solution of the Continuous Relaxation

The above discussion of properties of general fixed charge problems highlighted the importance
of the reduced problem RNP in the various steps of such a branch-and-bound procedure. In the network
case RNP is by definition a minimum cost low problem in one commaodity. Thus, the various steps in
the branch-and-bound procedure involving RNP can be simplified by exploiting the network structure.

One of the most powerful sets of theory for minimum cost flow problems is the graph theoretic
approach development by Johnson [8] and Langley [13] and others. In the terminology of this approach
a graph is a collection of arcs and nodes associated with some netwark: a cycle is a connected set of
two-ended arcs of the graph which touches nodes in such a way that every node is touched by exactly
two arcs: a tree is a connected set of two-ended arcs which contains no cyeles: and a forest is a set
of trees. A forest is said to span a graph if each node is touched by exactly one tree. If a one-ended
arc is added to each tree so that the number of nodes is equal to the number of ares, the one-ended
arc is called a root, and the tree is said to be a rooted tree. A collection of such rooted trees is a rooted
forest, and a rovted forest which spans a network is a rooted spanning furest.

In terms of these definitions. the fundamental result on which the graph theoretic approach to

network flow problems is based can be stated as follows:

t.1.1. Theorem (see |8]).

The arcs associated with any basis of a network How problem like RNP form a rooted spanning
forest for the network.

Define the node of a rovied tree touched by the root as the base of the tree. Then the importance
of Theorem 4.1.1 derives from the fact that by systematically searching from the hase of each tree in
the spanning forest associated with a basis for a problem like RNP. it is possible to reach all basic
arcs and all nodes without cycling. In particular define the direction up in a tree as away from the
base of a tree. and down as toward the base. Similarly, nodes and arcs will be said to be above a given
node or arc in a tree if they can be reached by preceeding up the tree from the gaven node or are. Then
by maintaining are flows, dual multipliers. and the following labels, it is possible to easily perform all

simplex operations necessary to solve RNP. (See for example [14] for the details of a simplex procedure.)
I

4.1.2. Definition.

The basis label of a node w in a network problem like KNP is 600, g, yae), anwe] where

T PN TN
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S(w) = the number of the node directly helow 1w in the basis forest (0 if 1 is the base of a tree).
ti) =the number of a node direct’ - 1hove win the basis forest (0 if no such node exists),
i y(w) = the number of a node z such thar () = 8(2) and y(2) # z forall 3 = satisfying &(w) =
' 6(2) (0 if no such node exists),
a(w) = the number of the are connecting w and 8o,

The components of the basis label are referred to as the down node, up node, right node, and down are,
respectively.

Figure 1 provides one of several such sets of basis labels for a sample basis forest. For example.,
the down node label of node 4 is 7 because 7 is the next closer node to the base of the forest, and the
down are label of node 4 is 17 because are 17 connects nodes 4 and 7. The chain of nodes immediately

above node 3 begins with node 2. which is the up node from 3. and proceeds right to node 8.

X
12,0,0,220 5 23] - 5 (2,052
. A
X26 X22 X2 Xis
3 A X 4 4
17,0,9,m 4 t7,0,0,1 9 e 2 36823 8 3,0.0,210 R
A ’ / 4
;
x|7 X“ x|3 x23 xZI 4
4 XM - ’ A ‘
1 10,0028 | : = 7 104,027 3 10,2,0,29 :
~ v E
\ ! i
] X28 X27 X29 )
BASE .
Fretre 1 Basis labels for an KNP example-.
4.2. Generating Constraint Matrices for Subproblems
The constraint matrice~ of the various subproblems defined in section 3.2 consist of rows drawn
from the constraints 114) and (171, Caretul study of the expressions for (141 and 17y will, in turn show
that all nontrivial rows of these constraints e, rows 1,2, . . . A%y are extracted directly from the
rows of the optimal RNP simples tableau which correspond to basic components of 1y, Thus, the es- !
~ential problem in generating con<traint matrices for the penalty subproblems is to generate the rows i
; ) ; : . 1
of the updated simplex tableaux for RNP which correspond to basic components of x ;.
Suppose now that RNP has be <olved by a graph-theoretic <implex procedure. Since the simplex

tableau corresponding to the aptimal labels has never been explicitly caleulated. a procedure for
generating nontrivial rows of the penalty subproblems from the labels i« required.

The usual approach for generating updated simplex tableaus from initial tableaux s to premultiply
the original tableaus by a basis inverse. [n the cace of an original tableaw which is a node-are incidence
matrix. the process amounts at most to taking the difference of two columns in the hasis inverse he-

cause there is at most one « | and one — 1 in cach eolumn of the onginal tableau.
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From the above observations it follows that constraint matrices for the various penalty subproblems
can easily be generated if an optimal basis inverse for RNP can bhe constructed from an optimal set
of basis labels. The following theorem from the theory of the graph-theoretic approach to network
problems shows that this can be easily accomplished by using the labels to trace the nodes of the net-

work above a particular arc in the optimal basis forest.

4.2.1. Theorem

The row of the basis inverse corresponding to any basic are of RNP will have + 1 entries for all
nodes above the arc in the basis forest if the arc is directed away from the base of its tree, and —1
entries for all nodes above the arc in the basis forest if the arc is directed toward the hase of its tree.
All nodes not above the arc in the basis forest wiil have 0 entries.

PROOF: See [13] p. 55.

Before turning to an example, one additional ohservation can be made. Recall that osly the rows
of the optimal tableau for RNP corresponding to basic components of x; are required to generate sub-
problems. Thus the corresponding rows «. the basis inverse are the only ones required. and the follow-

ing definition will lead to a further simplification.

4.2.2, Definition

A macro-node of a basis forest for RNP is a single node used to replace any maximal set of ordi-
nary nodes in the forest of RNP which are connected by a tree of basic ares drawn entirely from the
vector x».

The effect of grouping nodes of a network into macro-nodes is to collapse the optimal basis forest

for RNP into a tree consisting entirely of arcs with fixed charges (i.e. components of v,). Figure 2

illustrates this reduction for the example of Figure 1.

~ 9
4
/
;
X24
" ~
4 Xzs : 6
2 X|5
X
Xee X2
R¥) :
\( |17'3IF
4 X X
2’5' /i 14 3

FIGURE 2. The macro-node tree for the example RNP.

Associated with this reduction in the complexity of the hasis forest for RNP is a simplification

in calculation of the basis inverse. The following theorem states the results,

TR
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4.2.3. Theorem
The columns of a basis inverse for RI'P corresponding to any two nodes w and z which are part
of the same macro-node will have equal entries in all rows associated with components of x¥.
PROOF: Let x,; be any basic element of x, and ¥ be the set of nodes above x,; in the basis forest
for RNP. For any two nodes w and z which are members of the same macro-node, the unique path be-
tween the nodes in the basis forest for RNP consists entirely of arcs corresponding to elements of x,.
Thus z,; is not a part of that path and either

weV¥ and eV
or

we WV and ¢V

In either case it follows from Theorem 4.2.1 that nodes w and z will have identical entries in the row
of the basis inverse corresponding to x,;. Q.E.D.

The importance of the above discussion lies in its implication that a reduced basis inverse for
RNP, which contains one row for each component of x{ and one column for each macro-node, is all
that is required to generate the nontrivial elements of the penalty subproblem constraints. Thus the
problems GP(I'), BGP(I') and EOP(I') can be e: ‘ly constructed if the following labels are obtained

from the optimal basis forest for RNP.

4.2.4. Definition

For each node w in the basis forest for RNP,
7n(w) =the number of the macro-node to which w belongs.

For each macro-node z in the macro-node tree for RNP,

AU, z) = the element of the reduced basis inverse for RNP associated with the ith component of

xt and the macro-node z.

4.2.5. Algorithm

Let [8(n), pin), y(n). a(n}] be the labels of an optimai basis forest for RNP as defined in Dehi-
nition 4.1.2. Then the labels n(n), and A(i, k) can be obtained as follows:

STEP 0. Set the next available macro-node k= 1 and A, 5)= 0 for all ; and #.

STEP 1. Scan sequentially the nodes until a new tree base (i.e. a node n with &)= is found.
If none is found, stop; the algorithm is complete. Otherwise, set the arc index set A =&, the current
node n' = the number of the node which is the new base, n(a') =1, and the current macro-node
A'=1. and go to Step 2.

STEP 2. Proceed up by letting n=win"). If n=0 go 10 Step 5. Otherwise, proceed to Step 3 if
afn) is a component of x; and to Step 4 if it is a component of 1.

STEP 3. Let A=A U {a(n)} if a(n) is oriented away from the base of the forest, and A=A U
{—a(n)} if atn) is oriented toward the base of the forest. Also let f=L+ 1. 4" =L Ai k') =+ for
all i in A such thati >0, and AN(—i, &'}=—1 for all { in A such that / < 0. Then go to Step 4.

i e
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STEP 4. Set n'=n and n(n')=4'. Then go 10 Step 2.
STEP 5. Preceed right by setting n=1y(n’). If n=0 go to Step 6. Otherwise remove = a(n’)
from A if a(n’) is a component of x,, set k' =n(8(r’)), and then go to Step 3 if a(n) is a component of
x1, and to Step 4 if it is a component of x.
STEP 6. Proceed down by setting n=8(n’). If n=0, go to Step 1. Otherwise remove * a(n')
from A if a(n') is a component of x,, set i’ =n and k' =n(n'), and go to Step 5.
Table 1 illustrates the algorithm for the case of Figure 1.

TABLE 1. Steps in Algorithm 4.2.5 for Example Problem RNP

et i e U
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Algorithm Variables assigned values Algorithm Variables assigned values

step step

0 k=1, all Au, H=0 2 n=0
1 A=d, n'=1,7(1)=14A"=1 5 n=0
2 n=0 6 n=3,n"=3. k=1
5 n=0 5 n=0
6 n=0 6 n=0
1 A=d, n'=3, 93 =1, 4 =1 1 A=d, n'=7.n(7)=1,4"=1
2 n=2 2 n=4
4 Esakic S 3 A={—17}. £=3, h'=3.A(17.3) =—1
2 n=6

T 4 n'=4,n4)=3
3 As{—12} =2, k"=2,A(12,2)=~1 5 AN
4 N =6.7(6)=2 5 n=9. A=b k'=
X . 3 A={+ 1} A= A =4 1L $)=+1
5 n=5A=d, k' =1
, 4 n'=9,79)=4

4 n'=5,n(5)= 2 n=0
2 n=10 5 n=10
5 n=0 6 n=7,A=¢,n' =74+ =1
6 n'=2,k"=1 5 n=0
5 n=8, k= 6 n=10
4 n'=8,7n(8)=1 1 Stop

4.3. Right-hand-sides and Objective Function

Once penalty problem constraints are generated according to the above principles, the only re-
maining elements of the problems to be produced are the right-hand-sides and the objective function.
Review of (13), (14), and (17) will demonstrate that, like the constraint matrix, these elements of the
subproblem are derived directly from the optimal basic solution to RNP. The right-hand-sides are
obtained from the optimal FCNP value of y which is in turn equal to the optimal RNP flow on x,.

Similarly, if the optimal RNP simplex multiplier for node w is 7 () and arc x;; runs from node £, to

node k., then the objective function coeflicients are calculated by é;=ci,+m (k) —w (k).

4.4. Solving Penalty Subproblems

The algorithm and computational results which follow are based on the solution of one- and

two-row versions of the penalty subproblems GP(l), BGP(I), and EOP(I. For the one-row cases

of these problems, solution is elementary. It is easy to show tsee [15]) that »[GP ()] =v[EOP(:)].

s el oiete 2y oy
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: Thus a solution to either of these problems can be obtained by solving two linear knapsack problems.
K One corresponds to equating row [ of (14) to % (i.e. moving y; *"down’ to 0), anc the second corresponds

to equating the row to (u,— #) (i.e. moving y; “up” to u;). Thé well-known list search procedure for
E solving such knapsack problems reduces in the network case to finding the variable which has the smal-
lest objective function coefficient and a + | or — 1 in the constraint respectively.

Only a few modifications are required in the hounded case of BGP(/). A solution to BGP(1) will
continue to equal the solution to one of two linear knapsack problems like those in EOP (7). However,
upper bounds on the perturbation variables are observed, so that more than one such variable may be
positive in the knapsack problem solutions.

Two-row problems FOP(i, j) are solved analogously. In this case four, two-row linear programs

corresponding to the right-hand-sides

( ¥i ) (u,—)_’,) <u,—)"i>
_ . _ and i
u,—y, Y, u,—y,

are solved. The total unimodularity of the constraint matrix for (14) can be exploited to extend the list

search solution procedure outlined above to such two-row linear programs. Details are given in [14].

5. STATEMENT OF THE ALGORITHM

The computational analysis presented in the next section compares three different approaches to

using penalty problems in a hranch-and-bound procedure for FCNP. Letting

B tany minimization problem) = the best currently available lower bound on the value of an optimal
solution to the problem,
v (any unbounded problem)=—x 1
v (any infeasible problem)=+ x_ and 4
v (the best known solution for FCNP)= p*,
the algorithm used in obtaining the computational results is as follows: 3
STEP 0. Place the whole problem FCNP in the candidate list ti.e. in the set of restricted versions ;
of FCNP which might still vield an optimal solution to the full problem). Set g(FCNP) = —x and V* =
+x, and proceed to Step 1. ]
STEP 1. Choose as the current candidate, FCNP.. the element of the candidate list satisfying 3
BFCNP.) = min { B(FCNP.): FONP.. in candidate list} . :
4
and proceed to Step 2.
STEP 2. Solve the continuous relaxation of FCVP.. i.e. FCNP,. by solving RNP,.. If n(FCNP,)
= p*, proceed 1o Step 11 because no completion of FOCNP. ti.e. no setting of the v, not assigned values
in FCNP.) can produce a solution to FCNP with value less than that of a known solution. 1f »(FCNP.) < 1

v*, proceed to Step 3.
STEP 3. Create a feasible solution for FCNP by rounding “'up” the optimal solution for FCNP,..

i.e. by setting
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fuy, kG, i, >0
Y710 otherwise
[ I ¢
Y= ox
LU ¢

where £, and & are the optimal values of v, and . oin the solution of FONP, | 1 the value of this rounded
<olution is less than v*. proceed to Step 4. Otherwise to go Step 5.

STEP 4. A new incumbent solution has heen found. i.e. the rounded solution to FONP, provides
a feasible solution to FCNP with value lese than any solution found <o far. Save this incumbent as a
possible aptimal solution, and eliminate from the candidate list any problems with g value greater
than or equal to the value of the new incumbent. I the new 0¥ = —x, stop: FCNP is unbounded.
Otherwise, proceed to Step 3.

STEP 5. It no group-based penalty problems are to be used. choose a branching variable y,
randomly. i.e. randomly choose a new v 7 to hivin FONP Then proceed to Step 10,

If penalty problems are to he used. execute Algorithm 4.2.5 to identity the macro-node assignments
Nelndoand the reduced basis inverse entries AL 4) from the optimal basis forest for RNP, . Then go
to Step 6.

STEP 6. Construet and <olve a one-tow group-hased penalty problem tor cach row ¢ in 13-6).
If the value of an optimal <olution to any of these one-row problems i~ greater than or equal to ¢ *, go to
Step 11 and fathom. Otherwise, go to Step 7.

STEP 7. Using the “down™ and “up™ penalties obtained in the solution of the one row problems,

i.e. the solutions to the knap~ack problems corresponding to moving sy, “down™ to O ar "up™te, o, define

y=1{,;. the maximum of the values of the “up™ and the “down™ case in the (th o Wewm of
“Step 6 is among the 1 greatest values (2 is a pro detined parameter satisfying r = 1.

Then go to Step 8.
STEP 8 For each (€Y, ~elect another row 4, . and construet and <olve EOP (L 70 I the value of
an optimal ~olution to any of these penalty problems is greater than ar equal to 20 go to Step 11 and

tathom. Otherwise proceed to Step 9.
STEP 9. Choose the branching vaniable v <o that 7 is the 7eY which maximizes

mas {e{FOP ooy, = 0] v [EOP G 00y, =0y, ]

Then go to Step 14,
STEP 10 U'oolace FONPan the candidate Bist by two more restricted problems One is defined

by FONP,. with the additional constraint that the branching variable v, 00 and the other problem is
identical except that v, is restricted 1o equal uy,. 8 values for these two new candidates are as obtained

from the penalty problems of Steps 6 and 8. Next proceed to Step 1o select a new FUONP,

O T A P
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STEP 11, Fathom FONP.. i.e. eliminate FONP, from the candidate list because no completion
of it can produce a feasible <olution to FCNP with value less than v *, If the candidate list is now empy,
stop: if an incumbent solution exists, it is an optimal solution for FCNP, and other vise FCNP is in-

teasible. If the candidate list is not empty. proceed to Step 1 to select a new FONP..

6. COMPUTATIONAL ANALYSIS

In order to learn more about the effectiveness of the algorithm of <ection 5. a number of randomly-
generated problems were solved on Georgia Tech’s Univace 1108. Answers to two general questions
were of interest.

1. Would the procedure <olve problems as large or larger than those previously reported in the
literature?

2. Is the eflectiveness of the procedure signiheantly changed by the use of more sophisticated

penalty achemes?

6.1. Description of Experiments

The approach selected to accomplish an empirical analysis of these questions was a classical
factorial experimental design. Different solution approaches were applied to randomly-generated test
problems possessing all combinations of the properties previous researchers have indicated mo-t
affected computational ethcieney of algorithms for fixed charge problems,

In particular, a version of the algorithm of section 5 was used to generate and solve fixed charge
network problems in manners specified by the following factors:

1. Type of problem. — Whether the problem is a general FONP (GNP) or a tived charge transporta-
tion problem (FCTP). (See for example | 11] tor the formulation of this special caser

2. Size of xi.—The number of ares in the problem with fixed charges tcode 0= 20, code 1 = 50.
code 2= 75, code 3= 100,

3. Relative size of fixed costs.— Whether the tined costs in a problem are small or large relative to
variable costs (code | = <mall, i.e. hxed charges made up less than 5 percent ot the value of an optimal
solution: code 2 = large. i.e. fixed charges make up 15-30 percent of the value of an optimal <olution ).

4. Solution methed. — The combination of group-related penalty techniques used in solution of the
problem (code O0=use¢ no group-related techniques: code 1=use only the EOPGYE code 2=use the

BGPii) and EOP(i. /) chosen by the criteria of [15]).

The generation provedure (detailed in [1T4]) is an extension of the a, proach of Klingman, Napier and
Stutz [12] which ereates feasible network problems of given characteristics. Fixed charges on ares
are correlated with upper bounds.

It was initially planned to test all combinations of the above factors at the indicated level codes,
However, preliminary testing revealed that structures of GNP's and FCTP's were <o different that
results for different solution procedures could not be compared across problem types. In addition,
carly results <howed that problems with the dimension of vy greater than 50 could not be ~olved within
reasonable tinie limits without some penalty techniques being used.

Thus two replications of four separate factorial experiments were actually performed. The two
principle experiments focused separately on the GNP and FCTP cases. Fach case was tested in all

combinations of large 1, sizes(codes 1.2, and 33, relative fixed costs, and group-related <olution methods,
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In addition, two special experiments were run to analyze the impact on smaller GNP« and FCTP's of
eliminating all group-related penalty schemes. These special experiments tested GNP's and FCTP's

with 20 fixed charge arcs (code 0). Results lor each cell in the four experiments are shown in Table 2.

TABLE 2. Results of Experiments

SR, - — = - o
Average
Proble m Expenment® Number Numbet | Fixed charge  Average number Average
type aptions of nodes of ares | arcs part soluhon candidate ~olution
fixed charges problem Wit (sec)
"“'\"l’
13 ==-% + 4 =3 + T =3 =
| Ceneral 010 18 69 20 0021 39 1
network ull 18 0Hy 20 (U1 ) i
prohlems 020 I8 () 20 1.8 ) 50
02) I8 6HY 20 381 T 5
1 31 159 50 010 3 pex 4
& 34 159 0 010 3 1.5
121 A4 159 50 067 10 12
[ 24 H 159 W 108 8 12
21 ! 50 238 ) 024 13 68
1 ALY Kt} 234 ) 21| 1 169
4 | S 248 s 071 12 8.4
R S0 248 75 076 T 7.2
311 6 37 1t 0.6 18 216
312 66 A7 100 (1A 1t 20K
A2 (¢ 0] 317 100 1% th 50.8
pan Hh ST 100 (M8 8 14
bo— - + - et —+ - - — - - — e
Fived oy K} 33 20 010 ' 150 6y 3
charge on i “ 2u 023 1 2
fransportation 020 ' 4 20 02 |42 2906 ]
prohlems 021 R 43 20 140 2 3 3
11 20 oY 0 020 3 5
12 20 04 By (U] h [N i
121 20 60y M 189 LR IXE ] 3
122 20 64 : 30 208 103 A
i 24 98 i 02 I 32 1
| 212 24 98 P 021 20 46
|2 2 98 W 20 63 462 ‘
| P ARy 24 94 i 188 180} 511 3
{o3n 26 125 100 2 33 106 1
[ 31 26 125 100 024 sl 144 j
321 26 125 100 2480 1.458 ST O
o P 26 125 100 154 R [
1 _ 4 - Lo pa IS = = - 4
*In each case the hirst digat is the “size of 7 lesel, the second 1= the Urelative size of hinved cost” level. and the third i~ the
“solution method™ Jevel.
6.2. Analysis of Experimental Results.
Turning first 10 the general effectiveness of the procedure. inspection of the results in Table 2
suggest that relatively large fixed charge network problems can he solved in several minutes by either

of the group-related penalty methods tested. Averages for each problem tvpe. v, size and fixed charge
pattern reported in Table 2 are within such reasonable computational houndaries. yet the problems
with 100 fixed charge ares are as large or larger than any FONP'< previously reported solved efhciently.

In order to more precisely address tae second issue of the difference between techniques. as well
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as 1o determine the eflect of various factors on the experimental resulte, statnistical analvsis of variance
wa~ applied to the results. The <tatistical assumptions underlving the analveic of variance could not
| he verified in the relatively unstructured domaim of randomly-generated optimization pro. lem<. How.
ever, since all the problem factors other researchers have indicated had <igniticant effects on computa:
nonal results were included in the experiments and the ANOV A procedure i« well-hnew 5 to be robust,
the procedure was considered adequate tor indicating the importance of vanous effects,
The response vanable <elected for analysis i< the number of candidate problems exgheith inves
pated in salving a FONP. This vanable was chosen because it appears to give the most aecurate meds

ure of the true impact of different group-related penalty procedures. Solution times are also ven

:mportant, but the effect of the various penalty procedures on <olution times i~ clouded by the program

.

mimng efheieney of routines 1o execute the penalty procedures,
Results of the analysis of vanance for this response variabde are gven in Tables 3 through 6 and

lustrated in Figeres 3 and 4. The <signiticance of vanous factors implied by the results is discussed an

W ELT Wewy—r—e

the neat <everal subsections.

3 Tagire 3. Analvses of Vargance for General Problems on Special Analyvas
et Suts ol DPregrees Mean }orate
~udres o treedom ST
13 ] 1 3 3
Relative tived cost 17 860 | 17 Mot |
Salution me thod LN | P20 1N
Cost method imterdaction [N A UK
Frror [IRNT ] } [ o
9 St ant at o 825 leved
Tasre 4 Analvsis of Vatiance for Transporation Probdems o0 Special inalssas E
: FEtlet Sum ot Degrees Mean Forana
1 ~yudres ol treedom Square
I3 3 1 1
k Relative bned cost EERLLE | TIRLTY] 5
3 Solution method 1955 88 | 1495 KR TR
1 Cost method oteraction RRLAN | SHCH )
baror IR ! (LA} i
Siemhcant ata 005 Jevel
Tasre 5. Analvsis of Vartance tor General Test Problems
F et Surmoot Degrees Mean Forann
squres of freedeom ~quare
1 1 1 T
Stee o [ N sy o ey
Relative tin o cost Mo | o 2t
Solution me aod 205 AR 0 32
Sizeccast gnte aeten (R A [P [T
Size method o eraction {0 I v N
Cost miethod i cractom j oot | IRy H
Frror il | 1

Siemiticant at v O 0 fevel

Sintheant at v 005 beved
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Fanir 6 tnadvsis of Varcanee for Transportation Test Problems

i

Fitect S o Dprre es Mean Foratio
~quates ot freedom ~quare
B ' ' ' g
Nz oal FTU N S 2008500 | 1
Kelanive tined ot Wik K ! 1.304.800 T o8
~oduticns te thet ERAN U I S50 JHY
Npse s ost et hon ook N | I A w2y
S methon b it toon [EANIAR] 2 LY I 220
Cont e thond it s toen BRINE | S5.648 28y
T AT A 4 18250 i X

Froo

Sientte ant oo 00t

~ ks Wt ey

MEAN NUMBER CANDIDATE
PROBLEMS SOLVED

)
150 -
\
NO PENALTIES
100 -
50
BGP(.} 8 CRITERIA CHOSEN  /,
EOP{ I,J)
EOP (1) ONLY .
PR 3
oA @ &
— - -3
Q 25 50 75 100 !

Froevwr 5 Mean numder of canddidate problene solvesd tor general test problems by <ize ol ooand <olution method

6.2.1. Stee of v, Effects

Smee the possible number of candidate problems increases exponentially with the <ize o the
vovector, t could e espected that the number of candidate problems actually <olved would also he
ereathy attected by the <ize of v Analyas of vartanee results for GNP'< generally confirm this expecta
toi a= dothe praphs o Figore 30 1o interestng, that the <ame statistical signibicance i not ohserved

i the result< tor FCTP < However, the carves i Frgure $eertainly suggest <ome «ize of 1 effect,

ot ot aanii - R ——— o ’ -
S T ——

:
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MEAN NUMBER CANDIDATE
PROBLEMS SOLVED

IOOO1 u]

A
! |""NO PENALTIES
750+

A
500~
/
ad
250+
EOPI ) ONLY
_BGP(,) B CRITERIA CHOSEN
3 EOPLI, )
- A ==
S [H— = . SIZE
o ' ; > OF X,
25 50 75 100

FicURE 4. Mean number of candidate problems solved for transportation problems by siz- ot 1, and ~olution method.

6.2.2. Relative Fixed Cost Effects

Most previously reported research on fixed charge problems has indicated that computational
efficiency is highly effected by the relative size of the fixed and variable costs. If fixed costs are small,
v(FCNP) provides a good estimate of vt FCNP), and only a few candidates need to be explicitly explored.
When fixed costs are high. however. numerous possibilities for v must be investigated.

Experimental results for FCTPs strongly confirm this previous experience. The cost effect is very
significant in both Table 4 and Table 6. However, results for GNP's show the relation between fixed
and variable costs is relatively insignificant. A possible explanation of this phenomenon is the higher
fixed costs in GNP's tend only to force all flows along ares without tixed charges. Thus. the value of a

p(FCNP) as a bound on v{FC'SP1is not diminished as fixed charges increase.

6.2.3. Solution Method Effects

The experimental factor of greatest interest to this research is the effect of changing the solution
procedure used. Any techniques shown to be significantly superior would provide suitable focuses for
future research and applicaiions.

All results show at least mildly significant solution method effects, with the effects accentuated at
high relative costs in FCTP's. The most outstanding of these effects is the difference between the

no-group analysis and one-row analysis methods. Even for the relatively smail case of 20 fixed charge

L et L el 'y s il e i s Al
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ares, result~ m Tables 3 and }indicate signibcant improsements are obtained by using at least <ome
group-related penalties. Moreover. review of Table 2 will <how that the gain s just as greataf solution
timme i~ considered instead of the number of candidates,

The difference between one-row and tworow techmgques are not as clear trom experimental
resilts, Both CNP Cand FOTP S chowed <ome sizmbicant effects of vaniation in these <olution method-
(Fable S and 91 and Figutes 3 and $ contum the effect craphically, Howeser, Table 2 <hows cases where

use of the two-row analvsis increased <olution time.

7. CONCLUSION

The above results are prelionmary . but appear to demonstrate that croup thears hased penalts
approdches can be quate etectivels applied 1o fived charge network problems. The observations an
<ection bdemonstrate the signiheant <simplitications realized mopenalis approaches when the special
~tructure of network problems s eaxploted. Compatational expenence i section 7 conhrms the value

of at least some use of penalties Bowould certinby appear that zroup-based penalty approdehes are

warthy of <ienibcant turther investigation,
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ABSTRACT

bre thas paper a sers sersanle game model s developed tor use i the long range planning
of our strategic force postute This tughly ageregate model vields optumal toree mives fon
the tnad dand and sea based onssile svstems aed hombersiunder a varety of constramts,

Fhe model desenibed Bere s a0 uovvabahty model, however, it (s <hown how the model can

b be used as a measure of overall ssstem eltectiveness. Constraints imposed on the

problem mclude both SATT and budget limitations,

I. INTRODUCTION

The technical review needed for the selection of <trategic foree postures is conducted at various
levels of sophistication and complicanon. The most detailed and largest simuiations are especially
useful for the targeting of reentry velucles and the positioning of our mobile forces. Many of the para-
meters in a very larpe scale simulation are poorly known for today’s environment and must be extrap-
olated tto absurdity ) tor use in i ~cenario projected 5 or 1 vears into the future,

Smaller scale simulations using aggregate models are usetul for te<ting particular proposed torce
structures These models require the projection of fewer parameters and are generally more believable.
Generallv, they are dependent on penetration taeties and postulated adversary force postures and
tacties. The manager i~ probably unaware of all the assumptions that were made in developing the
model.

An alternative approach to long range planning i~ the use of game theory, This approach obtains
an Coptimal” toree posture at the expense ol additional aggregation. An advantage to this approach is
that the nser knows alb ot the assumptions. however it is subject to the eriticism that not enough details
are used. The resubte of this type of model could be used as input tor a simulation model. but the
primary putpose s to oquickly provide the manager with both g qualitative and quantitative under-
standing of the cllects of improving existing <s<tems. introducing new <vatems, SALT and budgetary
restrictions. uncontiollable inereases i operating costs, ete. In the next <ection we develop along
historical hues a game theoretie model <uitable tar these purposes. The model has been exercised and
re~ults are presented i the classihed literature.

I ~ection HI we bretly indicate the method used to <olve tor the optimal allocation,

s weork s been <upported b the Othee of the Clhoel of Naval Operations, CNOCNOP 663 under Task Number NOI
Ay phasng wdeas nde ated o this paper wee the authors" and do not tepresent Navy policy o procedures
Peestire Bine s balle Churche Va 22043
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. HISTORICAL DEVELOPMENT OF THE MODEL

The ul'i}.limﬂ “"Max-Min Model™ lor offensive ~t|ul¢~gi(' syslems was dc-\pln'n-(’ l») |'hi|)p_~ l()l,

Restricting his attention to survivability, he assumed that missile system~ could be broken down into
two baste types, The first elass is comprised of <y<tens that are ditheult 1o locate but comparatively
cisy 1o destroy, onee located. POLARIS is an example of such a svatem. Phipps coined the name
Upercentage sulnerable”™ for svstems of this class because a tived effort v, by an attacker would bring
under attack a fived pereentaze of the tetaliator’s weapons belonging to the (th sy<tem, independent
of their number, Thus, the <urviving fraction of weapons (platforms) for this sy<tem s e % where
a, i~ the vulnerability of the <vstem. The exponential tarm used here is hased on Koopman’s theory of
random <earch | 1],

Exach ot the extensions ot Phipp<” model, including the moditications presented here alsn restriet
attention to survivability, The method of <oluzion presented in the nest <ection can be modihed tor any
draw down o probabilin of <urvival curve. Thus, modibications to include penctration <hould not
imvolve additional computational ditheulties.

The other class consists of systems which are easy 1o locate but dithedt to destrov, e
MINUTEMAN, These svatems were labeled “numerically sulnerable”™ because they hind <atety in
uumbers. Allowing tractional reentry sehicles, the fraction of weapons surviving a barrage attack i~
e et owhiere s the retaliator’s fevel of effort, Temporarily we <hall consider the “level of effurt™,
voand o, for each oo be expressed in dollars,

Treatmg numertically vulnerable weapons as point targets. the correct survival probahility curve
tioes not allowing tfractional reentry vehiclesvis a broken line whose corner< tall on an exponential curve:
however, the exponential is an excellent approximation to the broken hne tor reasanably sized vulner-
alilities a. Phipps [ 7] disensses how these valuerability parameters can be evaluated

For a miv of M percentage vulnerable svstems and vV W numerically valnerable ss<tems, the

~ursvivine Cvalue” of the miy s

\ \

Fooovt N e i o Ny e i
et =
[} oM

where s the value or tigure of ment of the rth <vatem = expressed onginally as a coct-effectiveness
parameter. eoeomegatonnage per dollar ithang per huekn Applving a conservatoae strategy . the objective

-

of this madel s v determine the aptimal allocations «* and v <uch that
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Unfortunately, although Phipps developed this model (just before leaving OEG-NWG) in 1960, it was~
not solved until Danskin [2] published his hook on Max-Min in 1967. Independently. in 1965 Matheson
[5] considered a Lagrange multiplier approach to solving this problem in some informal working
papers and showed how the percentage vulnerable systems can be replaced by a single equivalent sys-
tem. He also showed, for V< 4, how regions of the feasible set may be formulated according the mix
of nonzero systems in the optimal allocation.

One of the biggest drawbacks to this model is its assumption that all systems are bought from
scratch. This was all night in 1960: however, by 1965 some systems had already been procured and this
should influence the results. To formulate a more realistic model, Shere and Cohen [10] took account
of development or buy-in costs and Shere [8] further extended the model 1o also include prior invest
ments. During the parameter evaluation and computational phases of this work. Shere noted that the
cost-effectiveness parameter v, could be adjusted to influence the results by using various methods of
costing the systems.

Consequently, the model was further modified to explicitly represent future costs, Redefining o,
to be the number of retaliator’s weapons 1or platforms) in the th system and y, to be the number of
search units or reentry vehicles attacking the 7th <ystem, the <urviving equivalent megatonnage

(EMT) of the foree mix is

11 \
{ ') Fivoy) E wyn,e M. 2“""", g Ty
[

=M

where w, is the EMT per weapon or platform. The measure of effectiveness could also be throw weight,
equivalent numbers of 50 K'T warheads, number of reentry vehieles, kill potential. ete. The kill potential
i~ a measure of the effectiveness of a ~single reentry vehicle against targets of a specified hardness.

The attacker and retaliator need not, of course, use the same measure of effectiveness. For ex
ample, the attacker may want to allocate his resources to minimize surviving EMT. whereas the re-
taliator wants to maximize the surviving or residual kill potential. That 1~, subject to the constraints

specitied below we muost find +* and a function v* such that

" Flouoay* tar min Fiaoy)
\

and

3 G v (i =mayv Govoy )
1

where G, ) is given by the right hand side of (b with the EMT per weapon o, replaced by the kill
potential per weapon é,. The information available to the players requires the retaliator (v-plavern)
to allocate his resources first, then the attacher (v-plaver) allocates his resources. Moreover, the pe-
taliator knows the attacker’s measure of effectiveness,

There are a vanety of constrainis that can be imposed. Let K, be the total funds available to the
retaliator over a speciied time frame and let K, be the tunds available 1o the attacker. Writing the cost

per svstem as the sum of the operating. investment and buy-in costs we have for the retaliator
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\
(4) 2{”,(!,‘ U2 e poman (0 v g < R,
T

where o, p, and g, respectively denote the aperating, procurement and buv-n costs per weapon in the
i th system: v, i the number of weapons at the end of the tme period and s the existiag or initial
number of weapons, Note that ¢, Ot either v Oor g O otherwise itis positive, A< a fir-t atiempt
to include the effects of phasing systems into and out of the force structure. a constant rate over the
eatire time period was assumed. This is reflected in the operating cost caleulation. Other phase-in
rates could be used. For example, operating costs of the rth system couid be o0y, - 300 L Inactual
applications we have further extended this model, hut are not presenting the results here, to aceount
for 111 time lags between procurement of plattorms and delivers of pladtorms. ai the TOC date bor new
systems, and i manufacturing capabilities thoth annual capacity and o nunimal annual production
required to heep production lines intaet.

A ~imilar constraint for the attacker is
\
= oY . 1
(5} 2 @/, ) D o man Uy ) [ R,
[

or. more brieflv. Fovy < Ky owhere oy s the quantity ceast to the attacker denated by the lett hand
side of 3). The attackers costs agamst a mobile sv<teni tor example. are the costs of operating a ~earch
and procuring more <earch unit=. Once these parameters are specitied, 11 = not necessary o spectiy
the particular torm in which the search takes place: e we can think imtenms of the un cost 1o an
adversary 1o search a given area.

The attacker’s development costs.in Fquation D1, are ignored for <everal reasons, Firsthy attacker
svstems used in g counter-force role can generally also be used in a counter-value tole ae . agamst
urban/industrial targetsi. Consequenthy, the torces deseribed in this model represent only a portion
of the attacker’s total forces. I a svstem is used in both role< it would be imposaible 1o specity what
portion of the development cost is ehargeable to one tole or the other, Thus it must be realized that the
attacker’s budget specified. Ky is only a portion of bis total budget, Another reason that this assump
tion is convenient 1= the extreme ditheulty i estimating buvan coste, From the retaliator’s view point,
this is a conservative assumption. Generally though, new adversary svatems can be compared intenms

of the vulnerability 1o the retaliatory svatem and the cost to the attacker. This < allastrated by Figure 1

Attacker
Search
Capahilft :
p y =
/ S0
o2 1
- |
Keep F.xisl'l:g: Buy New S.otcm
System '
1

Attacker Cost

FIGERE T Comparison of new B esasting =velein
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In addition to the budgetary constraints, there are arms limitations imposed by international
treaties. These constraints for the retaliator on his total number of launchers, his sea-based launchers

and his land-based launchers are, respectively:

\
(6) ES,I,SS
i
(7) SiUEN,
e ¥,

(8) 2 SILE N,

where M, and M, are disjoint subsets of {1. . . ..V},
There are various other constraints also imposed on the retaliator to make the model more realistic,

for example,
9) LELG fori=2.4.6

where / is a positive constant. If v were the number of Brand | boats at sea, then 1o would be the num-
ber of Brand 1 boats in port. Sometimes the size of a system is influenced by political factors, Thus,

there may be constraints of the type

(1) vy is a given constant,
(1) TEa,= 15
or

$30 ity >0
{12 =

0 it v, =0

Constraint (12) say~ that the number of weapons allocated to svstem 6 is at least 430 unless <vstem 5
ha< been p|la.~¢~«l-nu(.

Hitherto only missile systems have been discussed: however, bomber <ystem< may also be in-
cluded. Dr. Alden Turner [11] of the Center of Naval Analysi~ recently developed an empirical formula

by analyzing ~imulation data, for the fraction of <urviving bomber< of the form
113 | —b, are tan a,y,

where v, s the number of reentry velieles attacking the bomber hases for homber type ¢ and b, and o

are positive numbers depending on the number of bases, reaction time and density of attack, Of
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course. the fraction (131 is replaced hy zero when v, is large enough to drive the fraction negative. Using

Turner’s results we could replace (1) by

N \ \
(1) Fiuvoy) 2 Wov,e E e T T 2 w0 = b are tan any,)
i tNy ) [ERTEN|

for a complete deseription of the triad.

In the next section we describe the method used tor <olving the problem defined by (=12,

HI. METHOD OF SOLUTION

The inner problem i< to hnd, given v point vy 00 wineh minimzes Fovoy) subjeet 1o the con-
straints on v, The owter probdem i< to find a4 point ©* which masimizes G v o)) subjeet 1o the
constraints on L G v 00 ) i a well-defined quantity <ince. as will be een later. v * 00y s umque.
The existence of y* () and 7 i« establiched by suitable continuity and compactness arguments,

Two approaches to optimization problems are (hto apply analvtic eriteria to caleulate an optimizing
point. and (2) 1o use a numerical scheme —often an iterative one —to hind a point acceprably close 1o
the optimum. The <ccend approach generally requires many function evaluations,

As a function of v. Govo i) s continuons and piecewise continuously differentiable. The
locations ot the discontinuities are not known i advance since they depend on v *Cthat i< on the general
~olution to. tae inner problem. Consequently we did not ind the outer problem analvtieally tractable.
tIn the special case in which oniv percentage vulnerable svstems appear, there are no buv-in costs,
and F =6 the function F has a saddle point tnamels a7 v a0 and a Lagrange multiplier approach
can be used For solving the outer problem we used an iterative scheme which will be deseribed later
in this section. Quiek evaluation of G sy " oo —and henee of 3200 — s required for <uch a scheme
to converge i a reasonable amount of time. Facking a general <olution of the mner problem, we <olved

it for each vrequired uang o Lagrange multipher technigque, obtamimg an exact <olution

solution of the Inner Problem

Let /) be detined by

and y, hy:

Voot way v s o man {00 )

<o that
AY
Frooavr N oo v
-
and

\
oy Ny, v K,
o
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Each /, is convex in its second argument, and each y is convex, so that the attacker is faced with
a convex programming problem. Let P be the set {y: v, =20, i=1, . . .. V}. Consider the problem
of finding the point ¥ (x, w) which minimizes F (1. v) + ul'(y) over P for positive u. Then, according to

Everett’s Theorem 1 {3]. y(x, 1) minimizes F{(x, y) over ¥ subject to the constraint:
FevysToy(aw)

I'(¥(x. &) is monotone nonincreasing in w. From the strict convexity of F+ b in v it can be shown

that I'(y(x. ) is continuous in g, and that vix. g) is unique. The equation:

{14 Fivtv ) =K,

is solved for u a~ follows:
The minimization of F « ul” with respect ta v splits into N <eparate mmmmization problems, since

F o ulis <eparable in v, and P a cartesian prodocet.

AY AY
min S ftn v s pydn S e vy v
wl ,2 ""l y;en
A simple caleulation then <hows that
an, | TRTIRY
min : log max { l. — } m.nJ v o dog man { = IH for 1. M
@ "y L e
vl o)
1, a.n ot |
min log max { 1. - '( mas { V.. log max {1, }l tor:e M- 0. Y
a, [ s, ! a, us i
where s, - 1/2 @, 7 and § 172w, unless y 0. when s 12w+ m See Frgure 2 tor a <keteh

of vy, goversus log g This tunction s precewise inear and nommereasing i log poand hence Tovog wn
i~ also. The values of g correspondimg to corner~ of this graph are casily caleulated fron the condition
that exacth one of the ane-sided denvatives waith respect toy of fon v gy trestncted 1o [00 x

vanishes at a corner pont. Equation bhos solved by bracketing K between o panr of cotner pomnts and

: . : .
solving a linear equation, g™ s g ~olution, v Soo= v g
Upper and lower hounds on v can casls be incorporated mto the <olution — they amphy add more

corner pomis

As dong as the solutions 1o the one-dimen<sional memmization problems can be obtamed simpls,
as m the case presented and as i the are tangent torm used o130 the <clution of the inner problem
van be reduced 1o the solution of «ne cquation m one unknown b general the equation mav not be

linear. <o that the interpolation procedure may have 10 be replaced by <ome other method, not neces

~anly by one EIVINE an esact ~olution

The Outer Problem

W e solved the outer preblem by o twostage process In the irst <tage <everal hundred teasible

points v vt were generated at random and Goc oy toe LG At e evaluated
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The ¥ « 1 best points were used as an initial comples of points for a variation of Box's search method

{1]. Both procedures are described in detail in a <eparate document [9].

bt we ! Plot ot v v ve log g tor g pereentage vulnerabde svetem

IV, CONCLU SION

We have presented a moded tor allocation of resources to offensive <trategc svstems that can he
used to reahatically reflect the Jang range planning process

Suppeose, tor example, that the planoer ce Cthe tetaliator wants brst 1o abtam a <pecitied capa
ity against hard targets and <econdly v masvimize fus surviving FMT He can use thee model. by
changmg the olpective tunction, to mimimize cost constramed by g dower bound on <covivng ll
potential Using the output trom this pronden as the imput of the retahiator <s<stem lower boands . he
can then maximize sursviving FMT . provided the mimmum cost resulting trom the tirst <tep s lees than
his badget

Fhe planner may have the musstle tor cach tvpe of svstem categenzed as usetul against hard targets
o usetul agamst <ot targets He wants 1o mavmize sursiving kil potential tor the tirst group of ns
<iles and oo mavamize curviving EMT tor the <econd group Bemmg presented with o multicrntenon
problem the planner must deade the tvpe of optimum he desires For example. he can take a convey
combimation of the twocntend as his olgective tunction Another approach i< 1o tind the Pareto optimum
ponts This can be done by oo <alving the "Rl potental™ problem enonng survivng EMT and oo
then solving repeatedis the "EMTT problem while imposimg lower bounds on the Ml patential ranging
trom zero to the answer obtamed an <tep o The planner now ha< a range of Pareto optimal outcomes

He can then choose a partcular torce min ta advocate hased on other considerations
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PROJECT SCHEDULING: THE EFFECTS OF PROBLEM
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Fesotice Usage i an attempt to prediet the pereent increase i eritieal path doration that resulted when
a4 mimmum-late-hmsh-time hearistic was apphied o constrained-re<ource problems, His experimental
medium consisted of 202 different <ingle-project networks solved under a variety of resource limitations
which vielded 721 test problems. For the one sequencing rule, Davis detived several multiple regression
models for predicting the percent increase in eatical path duration due to limited resource availa-
biiies. Each model had R values in the neighborhood of 085095, The <tandard error of estimate
i these models was equally good. 1t ranged from about 0.0° 1o 011 These tindings demonstrate that
1t is possible to <tatistreally isolate project summary measures that can be u-ed a< a guide in predicting
heurt<tie perlormance,

In this paper. ditheulties which are often encountered when using artiicial prejects are deseribed,
Twe groups of dissimilar project tvpes. both dartibeiolly cencrated. are then mvestigated. Mualtiple
istepdowm regression 1~ used o predict hearistiec pertormance. Guidelines are then developed for
~cheduling project sctiate. Advantages of anabvzing problem <tructare bhefore choosing g technigue

tor ~olving ot are also reported,

I, SEQUENCING RULES EXAMINED

Fhe prenty dispateh <scheduling rudes exammed are mdicated i Fable 1 These rules have all
been tested previoushy and represent a colicetion of those which have beer found effective elsewhere.
o~ well as wome which have generally produced poor tesults on <elected problems A rule which re-

~olves tecource conthiets anoa purely random bhas<is has also beenneloded to he used as a comparicon,

Tavte V. Scheduling Kules Fyamined

~¢hedubing rale Ldentitic ation
3
Feast Torgr bl 111
Coreatest Resonree Denand LD
et o8 Remannng Kescurce Denvond GRRD
Rewuree Scheduling Method . [IRNY}
Shottest fmminent Opeeration ~lo)
Coeatest Besouree i R
Farhiest Date Bt Tone 1H1
Most Lok Possible NI
Handom Aoty selection RAN

Determned b vomventionad cnteeal path methods
Fhe actual vale used s wodsnamie sersion oo the Feast Total Float hennstiesand s cgquvalent tean
Farhost Dot start T rale o 0] tar o proot of thas o latoanshap

Fhes tule s the <ame as the Grooest Totad Resonroe Deand oule ot 12
Ueed onby cn multipropect prablenns

Uaed vy oo winzle progect probibe ms

Fach ot the rules listed in Table Tis apphed m eomanenon wath the paratlel method of <cheduling
m owhich <equenciog priooties are determmed durmg ~chedubing, cather than betore. Wath the exeep-
ton 4 the RSV heunstie va desenption of which can be tound so [ ) the heanstie nde indicates the
prionty given to competmg activities. For examples the Leas Total Float hearistie gives highest priorits
to activiies possessing the least amount of aoteats total loat: the Grearest Resoniee Demand rule gives

highest prcomy 1o those activities demandimg the greates amount of tesomces.  \ more compaete
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deseription of cach of the rules in table 1 can be found in [6] or in [12]) Ties in activity priority are
generally broken first by project number tfor the multiproject case) and then be activity (job) number.
No add-on™ or reschedule rules of the type investigated by Wiest [15-17] are included in this investi-
gation because we assume that each activity 1< completed within its specified duration with a constant
usage of resources. Activities cannot he expedited (<lowed) with the addition (subtraction) of resource

units from those specified.

I, HEURISTIC DISCRETION AND THE USE OF ARTIFICIAL PROJECTS

In order to exercise purported logic relative ta a specific eriterion, a hearistic scheduling rule must
he able to diseriminate among activities. This often leads 1o difheulties when data are artficially gen-
erated. Diseretion by itself, however,is often not sufticient. A< is <hown below, the rule must have the

oppoertunity to make resolutions of sequencing conflicts which will have an ultimate bearing on the
results obtained.

Figure 1. tor example, represents two projecl networks requinng tined amounts of one resource.
The activities in Network | of Ficure 1 have adentieal values of total float, have the <ame duration
tthree time units), and require the same amounts of resonrees thve units tor cach of three periods, for
15 unit-periodsi. With a limit of ive on the number of resource units available, application of each of
the sequencing rules given in Table 1 except on oceasion, RANG results in an ideatical <chedule if
ties are brohen by fowest job number. The prionty dispateh sequencing rale used to solve this problem

i relatively unimportant.

It i~ not difhealt to explain why any <election of <cheduling rules results in identical schedules
lor the above problem. Resources are “tught™ in the <ense that cach activity requires five units of the
particular resource over ats three period duration, and only five units of the resource are available

Only one activity can be on-going at any one tisme. Resource utiivzation over the constrained-resource
duration i< 100 percent.

The <cheduling abilities of the priontsy dispateh roles are not a function of resource utilization
alone, however. This 1< evident in scheduling network 1 with a resource imit of nine units. The ratio
of usage 1o availability of this resonrce measured over the resource-constrained project duration.
ischedule <pan) is onlv 36 percent: vet the sequencing rules given in Table 1 <ull do not diseriminate
among the activities in <equencing them, and <chedules identical to those obtaimmed with a resource

limit of five units prevail.

Network 2 of Figure | was constructed 1o illustrate vet another type of problem for the sequencing
rules of Table 1. The majority of activities in Networh 2 have different durations, demands {or re-
sources, amounts of total float, and <o on. Henee! there are ample opportunities in scheduling this
~econd project to diseriminate among activities in making sequencing decisions. With a resouree limit
of <iv units, for example, application of cach of the seaquencing rules given in Table 1 results in a
nonidentical <chedule, These re<ults are summarized in Table 2. Note also from Table 2 thar use of
cach of the <equencing ruies results i a schedule span of 31 time units, even though no two schedules
are alike! An evaluation of these rules on Percent Increase in Critical Path Duration or on Project

Makespan tor on i« host of other critertar wonld show no ane rule superior or inferior to the rest.
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It is indeed likely that, for a host of real and artificial problems, the choice of a scheduling rule
makes little difference in the results of scheduling effort. It is, therefore, relatively unimportant which
sequencing rule is employed. Although the networks of Figure 1 were fabricated to produce the results
shown, the results reported are not atypical of those obtained in examining smaller. laboratory type
projects, For example, difficulties often arise when attempting to control certain values of project
and resource parameters when smaller, laboratory type projects are examined. Resource utilization
is one characteristic which is particularly difficult to control because of integer restrictions on the
availability and use of resources. Other characteristics pose similar problems when the data are
artificially generated. Considerable care must. therefore. be exercised if the results of the experiment

are to be generalized to the types of projects commonly found in practice.

Project and resource sammary measures designed to prediet heuristic perdformance as well as
to indicate characteristics of problems for which heuristic choice is likely to be umimportant are de-

seribed in the following section. These measures are intended for use in scheduling actual as well

as artificial projects and project sets,

IV. IDENTIFICATION OF INDEPENDENT VARIABLES USED IN PREDICTING
HEURISTIC PERFORMANCE

In this section, the independent vartables which may contribute 1o good or poor) heuristie per-
formance are identitied. They are divided into three categories, In one. time and network based param-
eters are computed prior to critical path analveis. In the <econd. time and network based parameters
are computed subsequent to eritical path analysis. The third category includes resource-hased param-
eters which are generally computed subsequent to critical path analy<i<. Note from Figure | that a
multiproject scheduling problem can be treated in the same manner as a single-project scheduling
problem if a dummy activity is used to precede (suceeedr the beginning tending) activities of all projects.
It is useful, however. to identify several sets that simplify the notation uzed when single vs. multiproject
parameters are intended. Table 3 gives these sets. and other notation for identifving variables u<ed in

describing the various problem characteristics examined.*

1. Time and Network Based Parameters Computed Prior to Critical Path Analysis

NPROJ Number of Projects To Be Scheduled

NNODE Number of Nodes (Activities) To Be Scheduled
NARC Number of Ares (Precedence Relationships)
NDUMMY Number of Dummy Activities (0-duration)

*In the definitions that follow, an attempt has been made todentify parameters that have beenimtially deseribed by other
researchers of the constraned-resource, project «cheduling problem. These are indicated by the author’s name following the
description of the parameter referenced. In some imstances, the parameter a< used in thic paper mav not be as originallv descnbed

v the author.
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TABLE 3. ldentification of Variables and Sews Used In Computation of Project Parameters
[lndo-pc-nde-m \ ariahlr~]
Nmation Deseription
b= = = =
Y The set of all activities ta be scheduled.
r The et ol ai projects 10 he scheduled
R The «et of all resource cdtegnries
d, Duration of activitsy 7 of project ¢
0o Per-period requirement of resource £ oby activaty ot
project ¢
R Availabibity of resource & each penod of the <chedule
~pan.
P Cntteal path length of project ¢
l~'F‘l"' Free-float of activity ; ot project ¢
'l'[-':l' Total-float of activity ¢ of projeet 5.
foe———— " j
"Determined by convennonal eritical path methads '
1 1
1 . . . . . . . 3
LDUR Sum of the Activity Durations
S,
\ A
XDUR Average Activity Duration }J
e
t' SDUR
! NNODE,
VA DUR Variance in Activity Duration :
> (d, — XDUR):
\ I
L - _ i
NNODE — :
T- DENSITY Twal Activity Density (Johnson) i
2 max {0, Mumber of Predecessor Activities — Number of Successor Activities} ;
\
XDENSITY Average Activity Density 3
T-DENSITY
NNODE
COMPLEXITY Project Complexity (Pascoe) |
NARC 3
! NNODE
..'
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Of those parameters identified above, Variance in Activity Duration (VA-DUR Vs likely to have
an effect on the performance of the SIO heuristic. which is an optimal rule tunder a set of restrictive
conditions) for the one-machine sequencing problem of the job shop. This parameter <hould alse affect

the performance of other rules which are based in part upon activity duration.
The last three parameters (T DENSITY, XDENSITY, and COMPLEXITY) measure the inter-

connectedness of a network. and thereby influence when tin terms of network logic) an activity can

be scheduled.

2. Time and Network Based Parameters Computed Subsequent to Critical Path Analysis

>CPILL Sum of the Critical Path Lengths
N CP,
T
\CPL Average Critical Path Length
SCPL
\NPROJ
VA CPL \ ariance in Critical Path Lengths

E CP, — XCPLy

s
NPROJ — 1
MAXCPIL. Maximum Critical Path Length
max {CP,}
o
SSLACK Total Slack (Float) of All Activities
E TF,,
AY
NSLACK Number of Activities Possessing Positive (NonZero) Total Float

Il ii'7‘f‘,,>0}
0 TF,=0

>

PCTSLACK Percent of Activities Possessing Positive Total Slack

NSLACK
NNODE
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XSLACK

TOTSLACK- R

XSLACK-R

PDENSITY-T

ZFREESLK

NFREESLK

PCTFREESLK

XFREESLA

PDENSITY-F
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Average Total Slack Per Activity

ISLACK
NNODE

Total Slack Ratio

2ZSLACK
MAXCPL

Average Slack Ratio

XSLACK
MAXCPL

Project Density —Total

IDUR
YDUR + ESLACK

Free Slack (Float) of All Activities (Johnson)
2 EE,
A
Number of Activities Possessing Positive (Non-Zero) Free Slack

S { 1 ?f f:f:,, i ()}
<10 if FF,=0

Percent of Activities Possessing Positive Free Slack

NFREESLK
NNODE
Average Free Slack Per Activity
SFREESLX
NNODE
Project Density—Free (Pascoe)
IDUR

2ZDUR + ZFREESLK
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Of the parameters listed in this second category, those that reflect measures of float or slack

B PRI L 8 R T

present in activities are likely to aceount for a significant portion of the variauon present in the per-
formance of the Least Total Float heuristic. Since measures of slack do, however, reflect scheduling

freedom in the sense that specific activities can be delayed without delaying the completion of a

——

project, this measure will undoubtedly account for a large portion of the variation in the hehavior
of the other sequencing rules. Delays should 1on the average) be less when using (e.g.) the SIO heuristie
in ~cheduling a project with large amounts of <lack on a high proportion of activities than in scheduling
a project in which few activities possess relatively small amounts of slack or toral float,

This second category of measures includes parameters based on the total float and the free float
present in project networks. Measures of free float were included because the measures of total float
omverstate the amount of scheduling freedom available in an activity: activity total slack may be dupli-
cated for all activities in a given chain. For such activities, the delay in a preceding activity means a
loss of <lack in the succeeding activities. The above measures also reflect the percent of activities

which possess either total or free slack, as well as the amounts possessed. i

3. Resource Based Parameters Generally Computed Subsequent to Critical Path Analysis

PCTR, Percent of Activities Requiring Positive Amounts of Resource 4

I i, > 0)

E{() i ro }[[ 1

: oD for all AeR !
| MINGDEMAND  Minimam Percent of Demands 1or a Resource {
min {PCTR,}
"
g”{l)l“..\l AND Average Percent of Demands for Resources

N PCTR,
T
\NRES
MAXZDEMAND  Maximum Percent of Demands tor a Resource

max {PCTR,}

M
UTI, U tilization of Resource 4 1 Measured over the longest eritical path lengthy (Davis)
S LTI ({,_,
\

Y forallk
R aayepr  orallheR
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MINUTH

RE

MANUTILL

DMN\D,

XDMND

CONSTR,

MINCON

XCON

MAXCON

1. H. PATTERSON

Minimum Resouree U tilization

min {l TIL.,}
K

Average Resouree Utilization
z UTIL,
"
NRES
Maximum Resource Utilization

max {UTI.}

4

Average Quantity of Resource 4 Demanded When Required By An Activity

Erljk
\

Lif ), »0]
Z {0 if!,,;.’—“'()

Average Quantity of Resources Demanded When Demanded

for all LeR

E DMND,
K

NRES

Resource Constrainedness

DNND,
Ri

for all LeR
Minimum Resource Constrainedness
min {CONSTR,)
R’
Average Resource Constrainedness

Y CONSTR,
R
NRES

Maximum Resource Constrainedness

max {CONSTR,}
R
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VA-CON Variance in Resource Constrainedness

; (CONSTR, — XCON)?

NRES ~ |

TCON, Resource Constrainedness Over Time

E roja 'dlj

\

-~ i or,. >()} . —
\ {]” it ra=0] | Ry - MAXPL
H\

for all ek

E MINCON-TM Minimum Resource Constrainedness Over Time ]
i 3
g‘ min {TCON} !
K
E XCON-TM Average Resource Constrainedness Over Time
| T TCON, ;
) " :
$ NRES ]
MAXCON-TM Maximum Resource Constrainedness Over Time
max {TCO,} 1
K 4
VA-CON-TM Variance In Resource Constrainedness Over Time ;
T (TCON, —XCON-TM)?
7
NRES —1 :
A
-
ACON, Resource Constrainedness Using All Activities as a Base :
z LAy i
v .
NNODER, for all LeR
4
MINCON-ALL Minimum Resource Constrainedness Using All Activities as a Base 1
min {ACON,}
K’ i
]
i

s Gk o it e T
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XCON-ALL Average Resource Constrainedness Using All Activities as a Base
2 ACON,
x _____
NRES

MAXCON-ALL Maximum Resource Constrainedness Using All Activities as a Base

max { ACON}
k

VA-CON-ALL Variance in Resource Constrainedness Using AL Activities as a Base

S ACON, - NCONZALL 2
K

NRES -1

The above resource utilization parameters reflect the “tghiness™ of certain resource 1y pes.
Obviously, if the demand for a particular resource at any point in time does not exceed the availabihity,
K. then this resource is not very constraining and few resolutions of conflicts in the demand for this
resource will have to be made. Ynd where conflicts do have o be resolved. but the quantities required
approach the availability of a resource, conflict resolution will have 1o be made but will be of litde
consequence in terms of the ultimate duration of a project. An example of this Latter Situation was given
in the previous section.

Between the extremes of a large portion of the activities demanding 4 large quantity of the avail-
ability of a resource and resources being available to schedule all competing activities without resolu-
tion, a given heuristic has the potential 1o effect decisions which may bear heavily on the criterion
being evaluated. This is because. of course, the heuristic has the ability to select some (possibly unique)
subset of the activities available for scheduling. As the number of activities which could be included
in a given subset of scheduled activities increases. and as the number of feasible subsets of activities
for selection increases, the more potential there is for effecting decisions which will have an impact on
the final results. The resource parameters herein termed “Constrainedness™ and “Constraineduess
Over Time™ are examples of quantifiable indices of potential decision-making effectiveness.® High
values of certain constrainedness parameiers imply the potential for masking the intended effectiveness
ot heuristic procedures. As the average demand for a particular resource decreases, for example, the
potential {or making effective decisions increases. Several different constrainedness indice. are

included in order to identify their potential effect on heuristic pedormance.
OFACT, Obstruction Factor of Resource A (Davis, Pascoel

“Excess™ Resouree Requirement;,

for all LeR

Resource Work «.ontent,

*The importance of the constrainedness parameters i ob shop scheduling research <hould be apparent. The impheaton
of a job tactivity) using all of an available resource tman, machine, eteo e, of course, that the resolution of all resource con

flicts implies one 1ol or activity 18 seheduled and ol other available jJobs mast be postponed no two or moret activities using
the same resource can be on-going at the same time.

i
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MINOFACT

MANOFACT

LFACT,
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\’
Excess Resource Reguirement, = max {0, Demand, — K, }

At
MoANe

where the demand tor resource s based on an all early start schedule. (See Figure

9

Resource Work Cantent, = E road,
\

Total Obstruction Factor (Davis
N OFACT,
Mintmum Obstruction Factor
mn {OFACT )
K
Mavimum Obstruction Factor

max COFACT, |

h

l nderutihzanon Factor

| nderutilization
= : tor all 4
Fotal Work Content, LS

U nderutilization, = N max {0, K, — Demand, }
MANG I

where the demand for resource £ oas based on an all early start ~chedule (see

Frgure 21

Total 1 nderutihzation Factor

A

v LFACT,

=

Minimum U nderutilization Factor

min {UFACT, )
A

Maxmum U nderutilization Factor

max {UFACT, }
"
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NOVER, Number of Time Periods The Demand for Resource 4 Exceeds the availability of
{ Resource & iwhere the demand is based on an all early start schedule}
4 ] if Demand, >K; .
? {U if Demand, <K, et elli3ats 3
MAXCPL d
\OVER Average Facess Demand Time Periods for Resources ..
z NOVER;,
R
\RES j
MINOVER Minimum Excess Demand Time Periods for Resources 3
b
min {NOVER,}
K
MAXOVER Maximum Excess Demand Time Periods for Resources
max {NOVER,
K
NUNDER: Number of Time Periods the Availability of Resource & Exceeds or Equals the ?;f
Demand for Resource & (where the demand is based on an all early starn i
schedule) i
1 iR, = Dcnlamh} 1
. all keR :
] z {0 if R) < Demand, o el
MAXCPL i
XUNDER Average Time Underutilization of Resources
2 NUNDER,
L]
NRES
MINUNDER Minimum Time Underutilization of Resources
min {NUNDER,}
H
MAXUNDER Maximum Time Underutil sdon of Resources
max {NUNDER,}
K
-
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Figure 2 is a resource profile of the demands for the one resource involved in Network 2 of Figure 1

based upon each activity being scheduled at its «ritical path analysis determined carly start time. As

RESOURCE

RESOURCE PROFILE--ALL EARLY

START SCHEDULE
o

5 10 15 18

TIME PERIOD

Fictre 2. Resouree profile of an all early start schedule for network 2 of hgure 1.

shown in the nonresource constrained version of this problem. the peak demand for resources occurs
in time period seven at 16 units and reaches a low demand of three units in time periods 17 and 18.
An imposed limit of six units on the quantity of resource available will extend the duration of this pro)-
ect beyond the 18 time periods indicated by its critical path length. These latter resource hased param-
eters provide an indication of the conflicts which will develop hecause of the limitation on resources,
These measures assess both the number of time periods in which resources are underutilized or over-
utilized, and the amounts of overutilization and underutilization based on an all early start schedule.
Knowing in aavance, for example, that there are very few time periods in which the demand for re-
sources exceeds the avatlability, one might be tempted to employ conventional eritical path procedures
and resolve the conflicts as they develop in the life of the project and not plan the sequencing of ac-
tivities with any formal heuristic procedure.

A FORTRAN program was written to calculate the parameters in each of the three cate gories
above. The values obtained then served as independent variables in a regression model to predict
heuristic perforncance. Stepdown multiple regression was used to analyze the scheduling results, and
independent variables with a net regression coefheient significant (-test) at the 95 percent level re-
mained in the regression equations developed.

V. MULTIPLE REGRESSION RESULTS FOR PREDICTING HEURISTIC

PERFORMANCE

Sixty multiproject scheduling problems were computer generated using network. time, and
resource parameters from [12] to construct each network, Project sets generated consist of 6 to 10
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B b L b i b M o b i S et £

e

Lt

it i g

s




» - T T TR S T S R
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projecis each, and each project consists of 20 to 40 activities. Thirteen different resource categories
were involved. and each activity demanded fixed. positive amounts of resources from as many as 13
resource categories. This generated data is thus representative of that found in practice.

Three criterion functions are investigated for this multiproject data: (1) minimize the sum of
the delays beyond