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OPTIMAL INVENTORY POLICY WHEN STOCKOUTS ALTER DEMAND 
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ABSTRAtrr 

\ri invenlnry in<idt'l in which fulurf (Irmand is afftTlrd by storkoiils has hfen considiTed 

rc<rnll> liy B. I.. Schwartz.. Some grneralizaliiins of Schwartz's mixlel are presented in this 

paper and properties of the optimal policies are determined. In the case of deterministic 

demand, a set-up cost is included and a mixture of hacklomced and nonhackloKged orders 
is allowed during slockout. It is proved that the optimal policy entail» either no stockoul or 

continual slockout, dependinii on the values of three parameters. Kor stochastic demand, the 

effect ol «liickouts on demand density is postulated, the resultiiiK optimal inventory polio 

is discussed, and an example involving an exponential density function is then analyzed in 

detail. 
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I INTRODUCTION 

Optimal inventory policies may involve stockouts, even when the demand is assumed to be deter- 

ministic. The effect of stockout in inventory models is usually taken into account by means of a stock- 

out (penalty) cost. In some cases this may he appropriate, e.g. when the demand during stockout is met 

by a priority shipment or extra production run. In other cases, however, stockouts may cause loss of 

goodwill and affect future demand to the firm. B. L. Schwartz [1,2] formulated a "perturbed demand" 

model to analyze this latter situation. The initial results of Schwartz are extended in this paper. 

The case of uniform demand rate is considered first. Customer response to stockout is assumed to 

lower future demand, and the steady state (long-term) situation is analyzed. If there is no restriction on 

order size or interorder time, it is proved for a generalization of Schwartz's model that the optimal 

policy entails either no stockout or continual stockout. For problems involving fixed order size, fixed 

initial inventory level, or fixed interorder time, the equations for the optimal policy are derived. 

In the case of stochastic demand, a form for the future demand densiiy as a function of stockouts 

is proposed. Optimal inventory policy, based upon this assumed form, is discussed and an example 

involving an exponential density function is presented. 

DETERMINISTIC DEMAND 

In the case of deterministic demand, consider a firm carrying a commodity for which the potential 
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2 (;. J. CAINE AND R. H. FLAUT 

demand rate is \o (measured in units per time). That is, tiie firm would experience demand rate Xo 
if none of its customers were to ever confront a stockout situation. Given that this firm institutes an 
inventory policy resulting in a fraction a of demand occurring during times of stockout, one would ex- 
pect to find demand perturbed downward from Xo to a lesser rate X=/(a; Xo) as a result of lost customer 
goodwill. The first practical formulation of this "perturbed demand" concept is attributable to B. L. 
Schwartz 11.2]. 

In short, the implicit assumption in all classical inventory formulations is that demand experienced 
by an individual firm is insensitive to the firm's operating policy. The firm wishes to choose a policy 
which reflects an optimal balancing of holding, ordering, salvage and penalty costs. Although a cost is 

generally associated with stockout, demand is considered independent of the frequency of such occur- 
rences. Intuition, however, must lead one to question this assumption. It surely seems more reasonable 
in many cases that the loss of goodwill which accompanies repeated stockouts will indeed be manifest 

through lowered customer demand. 
Consider the periodic inventory history depicted in Figure 1. Delivery of an order of size M — {\ — b)L 

signals the start of a period. Inventory depletion occurs at the constant (steady state) rate X per unit 
time until, after T units of time have elapsed, a total demand of M units has been registered. In each 
cycle L units of demand are recorded while stockout conditions prevail and it is assumed that bL of 
this unsatisfied demand may be backlogged until new supplies become available in the next period, 

where 0« 6^1. Such a situation might arise, for example, if some customers were unwilling to wait for 
the next shipment. (The classical backlog and nonbacklog cases are given by 6 = 1 and /; = 0, respec- 
tively [3].) Therefore, loss of sales per period totals (1 — h)L. Once \t units have been demanded, a new 

order of size Af — (1 — &)L is placed. Delivery is assumed to be immediate and all backlogged demand is 
filled. Present inventory level now equates with inventory holdings at the previous period's commence- 
mert and the cycle repeats. 

Suppose the firm wishes to maximize average profit per unit time. Considerable simplification re- 
sults from observing the sufficiency of an analysis of average profit per unit time in a single cycle. That 
such a study is indeed sufficient follows from the periodicity of the inventory history. The firm's quest 
reduces then to the single period problem of calculating an optimal set of values for the decision varia- 

bles M and L. 

Note that periodicity of inventory history is not inconsistent with the perturbed demand hypothesis 

INVENTORY 

FIGURE 1.    Inventory system in steady state with deterministic demand. 
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that stockouts in on«' period will influence demand in future periods. Kor once the firm institutes a per- 

manent inventory policy (by choosinii lixeii values ot \1 and /,I, each customer will, in due time, ex- 

perience a series ot satisfaction!« and disappointments. The system achieves equilibrium when ordering 

rates have heen revised in accordance with the firm's established record of customer service. This 

study focuses upon the operating characteristics of the stahili/.ed system. 

Kor the moment, consider Schwartz's assumption regarding customer response to stockoul. That 

is, when a customer's demand cannot be immediately satisfied, the customer reads to this disappoint- 

ment by purchasing / less units in the future than he would otherwise have purchased. Kor each unit 

of stockoul the firm loses / units of sales over the infinite future horizon Schwartz has suggested a 

method for evaluation of the parameter / 111. 

Since the system is operating in equilihrium, the future efTecl of stockouts experienced in anv 

single cycle must be in balance wiih the accumulated impact on that cycle of stockouts en< ountered in 

previous periods. Therefore, for the purpose of mathematical formulation, it is proper to treat the /, 

stockouts in any period as though they affect the demand rate tor that period. It is important to realize 

that this observation is made solely in the interest of mathematical simplicity. It is not a correct descrip- 

tion of the actual dynamics of a system operating under perturbed demand assumptions. 

• riven a potential demand of \„ with no stockouts, K»T represents potential demand in a period of 

length 7'. Actual demand per cycle, however, equals \iiT /./ as a result of / units of lost sales accruing 

to each of the /. disappointment' per cycle. In view of the tact that total demand per period equals 

M, it follows that 

111 W = \7 = A„7-/./. 

or 

121 
1 1 i/./U)/ 

A,, 

,./ 
/((«: A,, I ■ 

This relationship provides the fundamental link hetween perturbed and potential demand. 

We assume that the following cost and revenue factors are operating. A cost per unit time is associ- 

ated with storing each unit of inventory held. This holding cost is taken to be linear with coeflicient H. 

Ordering cost has two components: in addition to a proportional cost of r per unit ordered, a set-up 

cost of K is levied liiuh pendent of order si/el foi each order placed. Revenue is proportional to quantity 

sohl with coeflicient r. Kecall that no immediate penalty arises from stockouts under the assumptions 

of perturbed demand. Penalties from stockout are reflected in the lowered future demand which de- 

rives from the perturbed demand effect. 

Since, in every period, the firm sells the same quantity as it orders, it is convenient to formulate 

the problem in terms of net revenue per unit, defined as \ - r —r. Therefore profit per cycle, II, may 

he written as 

(3) IIK.M -U ~h )l'\y~ (A2X    ^"-K. 

■""""" ' - ■ |   ,!, 
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4 (.. J. CAINE AND R. H. Pl.Al T 

Definingf lo he net profit per unit time, it now follows that 

(4) 
„  i;   AII    ,. {\-b]L V-D-H    KK 

-"217 17 

It is always understood that ;V > 0, fur otherwise the prohlem is trivial. But N > 0 implies that .VA„ > 

0 so that in finding values of M and /- which maximize f/.VA«. one has found those values of V/ and L 

which maximize F. Therefore it is sufficient to consider the prohlem of maximizing/'/.VAn with respect to 

W and/.. 

Define 

I5I 
v/w 

/= 
I.H 

k = 
KH 

Ao.V Ao-V KoN1 

In terms of these nondimensional quantities. (4) becomes 

Ao.V 

^) 

[m- n-h)l-k]      \m- I)- 

(m + ll) ■2 m 

The decision variables are / and m. and the relevant parameters have been reduced to /.. /», and / 

It is clear that M and L have been defined in such a way that A/ ^ /- > 0. which immediatelv iriinv- 

lates into m 3= / ?(). Thus, m = 0 implies / = (). or. in other words, the hrm is experiencing no stockouts 

in spite of the fact that it is placing no orders. This circumstance can occur only in the degenerate case 

of A = 0. Since the assumption is made in all subsequent formulations that A > 0. it is only necessary 

to consider maximization over m > 0. 

Note that if A is a fixed constant, then llm assumes a fixed ratio y with 0 -s y s 1. An effective ap- 

proach to the optimization problem consists of first maximizing/' along rays in the (/. ml plant- li.e.. 

with y fixed I and subsequently maximizing over the range of admissible values of y. For /= ym. writings 

in terms of-y and m yields the function 

17) P = 
[1-(I-My-U/m)]     i\-y)2m 

(1 + -y/) 2 

Differentiation with respect to m gives 

(8i 
dfi /. 1 

dm    {\ + yl)m-     2 >(l-y^ 

(9) 
-2k t-p 

rim-     (\+yI)m5 

Hence p is concave with respect to m, and for fixed -y the value of m which maximize* p is obtained as 

'■--■■- •  ~      -   -    — —  -*-**-* MMMHMMMHHkMi^ 



OPriMAl. INVENTORY POLICV 

110) m - 7i ^, 
J2A_ 

l>y setting flp/rtm = 0. Plots of m versus y lor parameler value- / 3 and lai /, = O.OOS, il)i /, = O^H^'J. 

id /,     2.0 are shown in Figure 2. 

Note that expression 110) for m is mdepemlrni of /). Kor a situation in which y is fixed, 110) given the 

value of m which maximizes net profit per unit lime. The (act ihat this optimal value ot m is not affected 

hv changes in the parameter /* lends an attractiveness to the solution, since a hrm may he uncertain 

about the actual value of this parameter. 

Substitution of m ~ m from (10) into (7) leads to the ioliowintc expression i> which jiives the optimal 

value of/j lor fixed y: 

(111 
1 

/» = (1 + -y/) 
[1 - II -h)y- (1 -y) V2(l - y/W, 

The maximum over all rays is now determined liy letting y vary trom 0 to 1.   The derivative dpjdy can 

he written in the form 

.121 
1 

dy     (1 ^y/)2 
•     / • 1 t -y/1A     ,     ,     , 

Its sign behavior depends only upon the ((uantity in brackets, which is an increasing function of y; 

therefore dpliiy is either alway> positive, always negative, or changes sign once Iron) negative to 

positive as y ranges from 0 to I. It follow!« that the maximum of/; occurs at one (or hoihiof the hound 

aries y = 0 or y= I. In Figure 2, /< is plotted versusy for /)=!./=<. and (al/. =0.005. ihl k = ().2812.S. 

id /, = 2.0. In case lal y =; 0 is optimum, in lb) both y = 0 and y = I give the same unaxiinumi value ol /'. 

and in icl y = 1 is optimum. 

(a: lb) 

i  i   l i  j  ■  ■  i  : 

0 05 10 0 05 i0 
y y 

(c) 

I  ' I  i  ' '  ' '  I  ! 

0 05 10 

KK.I RK 2.    Behavior "I l< an.l rfi Ic.r h     1. /     \. la) <  - 0.00S, lb) /. = l).J812.'.. id i = JO, 

.■«illn.ii 
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6 (.. J. CAINK ANDK  H  IM AIT 

For"y = 0. (II) gives/>= I — V2Ä and (10) yields m = \ 2L while the (•ase>'= 1 leads t«/»= /</( 1 * /) 

and m = + x. Hence the optimal policy is as lollows: 

I, 
if I - V2* 5* 

(I + /)" 
then m- \U.        /=0: 

(13) 

if 1 - V2A 
1 + /)" 

then m = / = +x. 

In other words, the firm either should never he out of stock (/=()) or should always he out oi slock 

(m= /). In the hrst case, note that the optimal order ijuantitv is proportional to the square root of the 

storage cost. The second case, with m—l~^-. is of course not a practical result. However, other 

factors or constraints ma\ compensate for this inade(|uacy, and a tew will now he considered. 

A firm may wish to restrict the range of -y to 0* y « y,, < 1. The arguments above again lead to a 

houndary solution, and the optimal policy results from a comparison of /< at >= 0 and /* at y = ya. The 

corresponding value of m is given hy ilO), and l = ym. 

It may occur that the nondimensional order quantity m is hxed at some value m„. Putting m- m« 

in (6) and then setting (//»/<//~ 0 yields the cubic equation 

II4I {m0-l){m«-t 11)*+ klm,- il■* 1 -fc)mj=0 

in the parameter /. Comparison of the net profit p at the real solutions of (14) in the range 0 < I < nu, 

and at the houndaries / = 0 and /= m« leads to the optimal policy. 

Suppose the firm desires that the inventory level al the start ol each cycle he a fixed positive value 

(Ju. Then m = / ■ q where q = (JnH!Kit\. so that (6) hecomes 

ilS) 
hi l. 
(!•/)/-(/     2(/^(/) 

and the condition <iftldl = () implies that 

(16) 2(/+ gl^l!+/)(/-(/) +6fl] + <r![(l +/)/ +9]*= 0. 

This (jiiail'atH  equation in / can he solved immediately and the optimal policy can he found as in the 

previous case. 

finally, the interorder time may he prescribed at some value T= Tn. It follows from (1) and (5) 

that m = l~ll where 1—ToHIS. Substituting for m in (6) and setting (//<;<// = () yields the quadratic 

equation 

(17) 2(/-t- 1 -Mu -//)--f[/-(l * /)/|l(2 W)/-(l * /)//] = () 

and the optimal policy can he determined. Ue note that equations (14). (16). and (17) were previously 

given (in dimensional form) hy Schwartz |2l for the case /v = 0 with h— 0 and /»= 1. 

The results derived above are based on the relationship (2) between perturbed and potential 

—i— "    -     -  M    n 
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demand. Other niodeU »f custumer resfMinse are possiblr, of course: for example, the relationship 

minhl l»e assumed to have the form 

1I81 K = 
K„ 

1 - l/,(/.)/V71 

nr 

(19) X = A.,-( /,l/.l  M] 

where/i(0) = fl and ^(0)=0. If/<= 1 and if the first derivatives of the fumtions l\\l.) and fz(l.) are 

zero at /. = 0. we note that Hl'lhl. is positive at /. = 0 and hence the optimal policy always involves 

stockouts. The case /.■(/,) = 1,1*12 has he« n considered in |41 to model customer respon»e when time 

of slockout is a factor as well as !he amount ot »lockout. 

STOCHASTIC DEMAND 

•\n extension of perturhed demand concepts presented so far is now sought in an effort to analyze 

the stochastic demand problem. Analogous to the delermimsiic demand situation, one ma\ view 

long-term customer density of demand as a downward perturbation istemming from the firm'- opera 

tional inventory policy) of potential demand density. Kor example, allowing interorder time to vary. 

Schwartz |2. 4| propose» the steady state perturhed demand rate 

1201 /* = 
M" ^, 

^L,   i + oi 
if 

based upon hypothetical demand rale ß,,. disappointment factor <« = /. I/, and fixed parameter /. 

Here we will investigate the case of fixed interorder time. It is useful lo formulate this problem 

in terms of an expected disappointment factor. Schwartz. |4| consider- a long-term expected disappoint- 

ment factor c« defined by 

(21i ,= iM. r (£- v)«fc,(£><# 

/; 
(dt.AiuU 

where (<)„(( I is the demand density in steady stale and \ is the stock level at the beginning of each 

period. Note that 0« a^ 1 since demand density functions arc zero when their arguments are nega- 

tive. As an example Un<f),A(). Schwartz gives 

(22) <i)„(t)= (I ^ a/)<M(l +<*I)i;] 

where / is a positive constant and <}),A( I is the density of demand experienced each period if no stock- 

outs ever occur. 

-  - -    ,, 
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F.i((jaiii>n i2li in a tuiictMinal rrlalionship in u nhich may not h.iw an analytical Milutittn and 

hencf inn have in I»- solved numrnrally tor fach %aluc of ». In order In avoid ihi« difticullv. we dehne 

the alternative expeeted dinappoinlmenl (actor/i. 

/; 

/; 
{(bolt hit 

and |>ro|Mi>e that the long-term demand denMtv <t>!i^> I'e a (unction o( ß. Note that /i i.« the ratio o( 

expei'led ütorkouti« to expected demand. Iia>ed on the density ^o(^I. and thai 0 «/i t I. Al««», »»e 

as-unie that the relalion*hip ol (^(^' lo</>„i^i ha> the lorm 

>4i «An'f • - Kt(ih,\nJ    . ft > 0 

»here t'.. i- a (unction o( $.   The requirement 

'251 /    <i>.Muli = 

i- autornaticalK >ati-(ied with the form (24). 

The expectation associated with </>„ >aii>he>- 

26i Eltt>a)- |    (<ini{\tÜ=-  I    et^tJ: Uli -   - E(itto) 
ju Je Hi' 

and. »nice -.tockouls are assumed to loner future demand, we must have 

■ J.i K** I. 

Alsi,. since «i>ii is the diütribution when there are no storkouts, i.e.. when /j — (I . we desire thai 

1281 £„-* 1 as       /3-»0-. 

Me assume that n„ is nmnoionically increasinfC as ß increases from zero. 

One mi^hl also assume that the lonjj-term demand for the firm's product lends to /em if a stock 

out situation (y=0) always exists. (This is especially true in the nonhackiog situation.! In this case 

one would require 

(291 as       ß- 

Some (unctions satisfying conditions (27)-(29) are 
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and 

A',): I 
Inß 

<i > 0. 

Il ilu  mixlfl i» l<> l>f >uch thai a >iiiall amount «if «lockout (below a threshold/3 = /3o) has no effect on 

lonji-lerrn demand, one ini(iht assume a lorm -ucd as 

VII Ku- 
I forO=e/3«/3o 

i A',;       l<»r ßu<ß< 1 

where,!;,; is luven li\ i30l or (31).say. with/3 replaced by 

I X\) 
ß-ßo 
l-flo 

The rclalion 

i .U i ^= I -/j/.       />o. 

analogous to that used in (22i. satislles conditions (27) and I28I hut not (29*. 

As an example, consider the exponential density 

i .\r> i (/)«»£ I = ue ,i > 0.        £ ? 0. 

I hm <f>ri(f )is also an exponential density with parameter ftj«.   \( fiß is given by (31), one obtains 

«v ^ v / 
if. 

\ higher value ol (/ implies a larger effect of stockouts on long-term demand. 

In order to determine the optimal inventor) policy ol the tirm, consider a period in the steady staU'. 

I sing the classical theory for now [5), let <})[() be the density function of demand, x the inventor, 

level betöre ordering lit i • 0. then — r denotes the amount of backlogged orders), and y the inventor'; 

level after ordering an amount r (so that v — x = c. v s » ). The purchase or ordering cost is assumed 

to be (My - x), the sale price for a unit of stock is r. the holding cost is h(y—i) and the stockotlt 

(penalty) cost is i)(( — y)^. where the functions r. h. and /» are zero for nonpositive arguments. For 

a given demand £, the total loss experienced during the period mav then be expresseu as 

♦1) i)ir frartional [mn i(-y)h "I exces« drmand mav lir lie  Uuggpd. thenpif - ) l mifüil lit- assiumpd to have the lnrm 

/>U->) =;>,ht - Y)h] -   ...|ii -y)(l - 6)]. 

  r    i  ■-     
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10 J  CAINE \M) K  II. PLAIT 

137) L(y;x)^' 
,-(\ -v) + [min ((P. i)\i - [mindf,, y)|r • h{\ -£,.) ' l>{&- v)      i('.v&0 

c() -rl - (> -.< |r * /'(£,- ) ) if'y <0 

and the expected loss is 

(38)       E[lAy:.x)] = 

c{y-x) + [nui\(().x)]r+ I   [h() - () - ri \it>{( }<l( <   \     {pii - y) - n ]tl>{i)(l(        it y 3 i) 

c(y-.x) - (y-.v)r+       pi^-y) 4>^)(U 
/: 

if v < 0. 

For the situation considered in this paper, the ellect of stockout is manifest in the density func- 

tion. In (38), therefore, the stockout cost is deleted and the density (t){£) is replaced by (bnii) which 

depends on initial inventory level y. This yields 

(39) 

£•[/. ly:-v) ] 
■(v-.x:) +[min (0, jt)]r-f (    [>(>—^) - r^j^Mf )f/f-ry I    (f)^)^        ify^O 

f (y—.t) — (v —x)r if y < 0. 

If the ordering cost is linear, i.e.. 

(40) 

then (39) may be written as 

r(r) = zc. 

(41) 

where 

(42) 

F(yl 

E[L(y:x) ]=-rx-i [min (0. .< )]r + C'i \) 

6'(y) = rv * F(v), 

I" [h(y~(}-ri\(t>n{()(l£--n  I   (b.AO'tt        if v s 0 

-rv ify<0. 

Now consider the exponential density (t>iAi) (liven in (36). if we assume that the holding cost is 

linear, i.e.. 

(43) My-f)= (y-{)h. 

and define the nondimensional quantities 

M.lKiWll^ii.«ArllMi'irf*i?illll I   -ftl  ^YJ-'I imlHrftfilrti I     ^.A...^..,.^.^'.^...:^...  ;J.,.J...-^. ..,-! .,. .„ /..,..     ..'■.■.-,....      .„.,.. |||,M|B:-1 -...,„,..... ^.. ■.■h..^.....,., ,    .     ^ ........■...—.-. :- .^;...- ,: ■..-   |  ■   - MMl 
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(44) 

then (42) yields 

(45) 

y=(i.v. 

OPTIMAL INVENTORY POLICY 

h r n        f.    ad 
f = -, n = -. (J — — 

C C C 

c(y)=|(1+Ä)>'-!^y^1-p,i-rf,]    if^0 

l (I -f)y if y< 0. 

11 

Note that C(0) =0, as intuition would sugg« i- -)ne can show that C"(y) > 0 for v ?* 0, and hence 

G(y) is convex. In Figure 3, plots of C( y) are viven for parameter values f = 2.0, h = 0.2. and d = 0.1. 

0.5, 1.0, and 2.0. The minimum values of C(y) occur at ymin ^ 0.567, 0.405, 0.178. and 0, respectively, 

and y= ymin is optimum. The long-term density functions corresponding to the optimal policy for the 

-0 51- 

KlCURE 3.    Bfhavior of C IVir r- 2.0. h = 0.2. ß lormulaticni. 

cases d= 0.1, 0.5, and 1.0 are shown in Figure 4, along with the hypothetical density function^»«(^ ) for 

Differentia ing (45), one obtains 

(46) 
.     (r+Zi) 

lim G'iy) ~ 1 + h r— (1 -e "l 

which is positive for sufficiently large values of d. Therefore, if the effect of stockouts on long-term 

demand is large, then ymin = 0 according to this model and the best policy may he to not carry the item 

under consideration. 

Recall that the disappointment fact» < 0 defined in (23) is based on the density <£»(£) The particu- 

lar example treated above has been chosen such that one can also obtain analytical expressions with the 

use of the disappointment factor a defined in (21). if we replace ß by a in equations (24) and (31) and 

.- — -■■—■-■■ .-"■ -.—.-■ ■"■ ■   --     - I,,, „„ — --—-  «MM—ününai — - j     ■ mm 
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KlOURE 4.     I)en>ity functions 0;! tur ii|ilinial policies, fi lurmulaliiii 

ii (biiii ) is {iiven l)y (351, then the relationship (21 I becomes 

(47) , ~ e    I 1     lil!lnnl]ny 

Taking logarithms of both sides oi  (47) leads to a quadratic equation in Ina. with the appropriate 

solution 

(4«) 

I sing (4.'}), one then obtains 

/na=-l/2(.v+ Vv- + 4vJ). 

- y 

Kin HE 5.    BEHAVIOR OF (• lor f = 2.0. h = 0.2. a lormulalion. 

 -'  -   - — ■- ..- .  <.--..-^.J......      -— ■■ • - -  ■      •- ■   - ■...-. ~.±i~*t&Lil*m*i*MUiäa 
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(49) C{y) = 

(1 + A)y 

(l-r)v 

OPTIMAL INVENTORY I'OI.K^ 

(f+A) 

13 

[1- {dllna)] 
e   I i    (</ i no I )F} if y ^ 0 

if V < 0 

which is plotted in Figure 5 for the same parameter values as in Figure 3. The minimum values ol 

G(y) occur at ymln = 0.566. 0.437, 0.338. and 0.233 for (/=0.1. 0.5, 1.0. and 2.0, respectively. All 

curves have the same slope (1 — f) at y = 0. so that ymin > 0 unless the unit purchase cost exceeds the 

unit sale price. The optimal policy is again y= ymin. 

Comparing Figures 3 and 5, we see that the curves G{y) are similar for the two formulations if the 

parameter <l is small. In other words, the formulation in terms of/3 and the one hased on a lead to similar 

optimal inventory policies if the effect of »lockouts on demand is not too large. As this effect increases, 

however,ymln becomes zero in the/3 model hut remains positive in the a formulation. 
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A MODIFIED BLOCK REPLACEMENT POLICY 

Menacbem Bf rg and Benjamin Epslt-in 

TECHNIO\'-Israel Inslitute of Technology 

Haifa, Israel 

ABSTRACT 

A well known preventive replacement policy i* the Mock replareraent policy iBRl'l. 

In such a policy the item uiider(joes a planned replacement al a sequence of ecjually spaced 

lime points independent of failure history. The main advantage ol a BKP i> its simplicity, 

hecause under this policy it is unnecessary to keep detailed records almut limes of failures 

or apes ol items. The main drawhack of a KRl' is that at planned replacement times »e may 

he replacing practically new items. In this paper we study a modified BRP which is Iree of this 

drawhack. We calculate the expected cost of following a modified BRl' for lifetime distrihu- 

lions possessing a special structure and illustrate it for the case of an Krlang distribution. 

A numerical comparison is made hetween a modihed BRP and a -tandard HKl' for the special 

case of a two stage Erlang dislrihution. 

I. INTRODUCTION 

A preventive replaceme;.t po'icy may be worthwhile in reducing the cost of operating a stochasti- 

cally failing item. Under such licy the item is replaced Itefore actual failure (and thus we lose the 

value of any remaining life) in order to p ^      t the extra costs associated with a failure. 

A well known preventive p «»lace^en« (»licy is the block replacement policy (BRP). In such a 

policy the item undergoes a p'hi n ' .jlacen nt at a sequence of equally spaced time points indepen- 

dent of failure history. If tiu s • thrn one item the planned replacement times are common for 

all of them. This is why the na bi:Kk icplacement is used. The basic BRP model is presented in 

[I; pp. 95-96|. A working item v failure is assumed to be immediately delectable, is replaced 

both at failure and at fixed interva' of i.me. The replacement is assumed to be instantaneous. The 

main advantage of this policy lies in its simplicity because no recording of times of failure and ages of 

items is requir d. The objective function to be minimized is the minimum average cost per unit of time, 

for an infinite lime horizon. 

The main drawback of the BRP is that at planned replacement times we might replace practically 

new items. The following articles modify the BRP in various ways. In the first model. [1: pp. 96-98], 

[2], a failed unit is no longer replaced but is instead given a minimal repair. By minimal repair, we mean 

that the repair, needed to put the failed item back into operation, has no effect on its remaining life- 

time. This repair action is mathematically equivalent to replacing the failed item by another working 

item of the same age. This policy may be appropriate for complex systems because a system undergoing 

minimal repair can be thought of as a single unit which is aging over time. Bhat [3] also relaxes the 

requirement in the basic BRP of replacing failed items by new items. In his model failed items are 

15 
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16 M. BERG AND B EPSTEIN 

replaced hy items having age / (the l)l()ck replacement interval), which were taken out unfailed in a 

lormer planne<l block replacement. By reusing these items unused item lifetime is reduced. 

In a block replacement model considered by Cox [5], an item which fails "close to" the time of the 

scheduled block replacement is not replaced and remains idle until block replacement occurs. A 

penalty, assumed to be a linear function of idle time, is taken into account. Crookes [6] in one of bis 

models (strategy E) follows similar lines. In his model a unit which fails at any time within the interval 

is not replaced until the next block replacement. Both of these articles contain a mathematical error 

which has been corrected by Blanning [4]. Woodman [8] suggested the use of dynamic programming 

to find tne optimal policy for the preceding two models. 

In this paper we present a different modification of the basic BRP. We call this policy a modified 

BRF. 

2. OUTLINE OF A MODIFIED BRP 

The expected cost per unit time per item of a standard BRP taken over the indefinitely long future is 

(I) C(l) = 
riM{t) + r. 

where t is the length of the interval between scheduled replacements. Mit) is the expected number of 

failures (unscheduled replacements in [0, t)). M(t) is of course the renewal function, r, is the cost of 

making an unscheduled replacement of a failed item, ca is the cost per item of a scheduled (block) 

replacement. 

We assume that r^ <r1, and that the conditional probability of an item failing in the interval 

(x. .v+ A) given that it has attained age r is increasing in x. This property is called IFR (Increasing 

Failure Rate). Mathematically this means that the item failure rate (or hazard rate! r(r) is increasing 

in x. where 

(2) rix) 
Ax) 
Fix) 

f{x) and Fix) are respectively the p.d.f. and c.d.f. of the life length of an item and Fix) = \ — Fix). 

The principal advantage of a BRP is its simplicity since it renders it unnecessary to keep detailed 

records about times of failures or ages of items. The principal disadvantage of this policy is its waste- 

fulness because we may replace practically new items at the prescribed replacement points. This led 

us to consider a modified BRP which is free of this defect. 

In the modified BRP we still replace failed items instantaneously after failure, but items possessing 

age h or less at scheduled block replacement points f, 2t. M. . . . are not replaced by new items but 

are instead permitted to remain in service; h is a number between 0 and t. Thus at the points I'.'lt'. 

M' some of the items will have age zero (0) (following age replacement) and some of the items 

w:ll have age *, 0 < r =s /*. We would like to stress that the time points t. 2l. 3f are no longer 

regeneration points as in the ordinary BRP. This makes the mathematical treatment much more com- 

plicated and hence nt w techniques have to be developed. The age distribution in the stationary case is 

■ ? ■ - , ^n- 
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BLOCK REPLACEMENT POLICY 17 

denoted by the function/(JC), which has a discrete point mass for items having age zero and is otherwise 

continuous for age x in the interval 0 < .t s£ h. Of course 

(3) 
Jo* 

f(x)dx+f(0) = l. 

Vor a modified BRP with parameters (h, /). the expected cost per unit time per item taken over the 

indefinitely long future, is 

(4) C(b,t) = 
ciEI[Ms(t)]+c-if{0) 

where Mx(t) is the expected number of unscheduled replacements in an interval of length t, if the item 

is of age x at the start of the interval. Of course Mo(t) = M(t). Ex[MT{t)] is the expected number of 

unscheduled replacements in an interval of length t in the stationary case. That is 

(5) 
Jo* 

f(x)MAt)dx+f(0)M(t). 

We are interested in finding the values of 6 and t which minimize C(b. t). To do this we must find 

EAMAD] and7(0). 

Mj-(t) satisfies the modified renewal equation 

(6) 
/: 

MAt) = FAi)+ \  M{t-u)fAu)du, 

where 

(7) 

FAD 
F(x + t)-F{x) 

Fix) 

F0(t) =F{t). 

FxU) is the (conditional) probability that an item having survived to age x will fail to survive for an 

additional length of time /. /j(t) = (djdt)FT{t) is the (conditional) p.d.f. of the additional life time t of 

items which have survived to age x. /oU) = f(t). 
M(t) is obtained by solving the renewal equation 

(8) 
/: 

M(t) = F{t)+     M(t-u)f{u)du. 

(This is a special case of (6) for JC = 0). 

f(x) and/(0) can be expressed as the unknowns in the following Markovian integral equations 

-     -~        .  ^   --     ^-v-^-^^      , , _^^m^m^^^.  „ ■ -   -t.^^-. -,, ^—*—   I,,, iitliaaajMyjgg| 
- •-•'"^J1M11M_| 



18 

(9) 

M. BERG AND B. EPSTEIN 

-f. fix) =       f{y)l>ll,dy + f{0)pox,       (Xx^h 

J ii ♦ 
f{x)dx+f{0)= 1. 

where: Pyx. 0 < x ^ b, 0 ^ y ^ b is the stationary Markovian transition probability density that an item 

has age x at the beginning of an interval given that the item had age y at the beginning of the preceding 

interval. 

It can be verified easily that 

/>Wx= m^it - x)F{x).       0 « yss //. 0< x *£ /* 
(10) 

where 

I'yn = 1 I   Pi 
J () * 

(h 'yn ~ '       I      Fy-r' 

mll{t)= — Mu(t) 

moit) = mil] 

Differentiating (6) yields the integral equation 

(II) 
Jo 

myU)=Mt)+ l fy(u)m{i ~u)du 

We see (rom equation (4) that the computation of the cost functions C(b, t) requires knowledge of 

both E AM At)) and/(()). 

To find them we must know/(jr)(0 < A «£ b). which satisfies the integral equation (9). To obtain a 

general solution for this integral equation is difficult. In the next section we solve/U) for the case when 

the item life density,/(x), has a specific structure. 

Having sketched the modified BRP it is worthwhile to note that this policy is similar to an optional 

policy with regular interopportunity replacement intervals, discussed by Woodman in [7]. In the 

optional policy, t is a given number. In our model, / is a parameter subject to optimization. Woodman, 

using a dynamic programming technique, presents only the basic functional equations and then solves 

them for a specific life distribution and specific parameter values. No attempt is made in [7] to derive 

an analytical solution which gives the cost of a modified BRp as a function of the cost parameters and 

the item lifetime distribution. 

3. CALCULATION OF C(b, t) 

Assume that/U + y) can be expressed as 



.- TvtrürM**^-      ' 

(12) 

Then it is easy to verify that 

BLOCK REPLACEMENT POLICY 

f{t + y) = yiaMßiiy\. 

19 

vhere 

and 

«,(0 = 5,(0+ I   adumt-u)du,       .= K2 A. 
Jo 

fr(y) 
ßi(y) 

Fiy) 

Hence, using (10). 

13) 
pUJ= £ a,U)fMy)'       O^y^b,       0<x^b 

vhere 
a,{x) = äi(t-x)F(x). 

Inserting (13) into (9) yields 

(14) f(x) = Zal{x)\ \" nymyUy + 'nomv - 0< x^ b. 

Hence 

(15) 7u) = 2"iai(r)- 

To find ai(i= 1, . . ., A) we insert (15) into (14) 

(16) X a<ai{x) = S ai(:t)       '3i(>') S «j«j(y)^y+7(0)/31(0) . 

s of aiix)(i= 1 A)  on both sides of equation (16) yields the set of 

k /. 

ai=£aj       aj(y)ßi{y)dy+f(0)ßi(0),       i=\,...,k. 

Equating the coefficients 

equations 

(17) 

.    .-^,. ^-^..,^,...^v..,....^.,J„.^...^...^^  „„-^..^  ■...■........„,.■  .... ^..^.-, -■—  -..-. 



20 M KEK(> AND B EPSTEIN 

Kecallinn that /(0) = I - |    f{x)dx w<- «diiain 
J o • 

K I, 

/(())= 1 - y „, I     ajxhix. 
I- I •' 0 

Inserting (18) into (17) yields the set of equations for ni. (j 

<i, = 13,(0) 1   £ ctj 
i - i      L ' o 

I.) 

(19) a,(.v)(/a,(v) -ßtmuh 

For example for f. = 1 we j;et 

(20) 

Let us now define a matrix E 

ß,(0) 
a i = 

Jo ■ 
1-|     ttMvX/j^y) -j«, (())!,/> 

(21) 

where 

A'= (ey),       i= 1 /,.      ;= |. 

(ßiiy)-ßi(0))dy. 

and let /3(0) and « be the row vectors 

(22) /8(0)=(/3l(0)) ^,(0)),        «=(«, ,„,). 

Then (19) can be rewritten as 

"(/-A-) = /:'(()). 

where E is the transpose of E. 

Now if (/ — £") is a nonsingular matrix then 

(23) 

Hence using (15) we obtain 

(24) 

0 = ^(0) (/-£■) 

./U) = 0(0) (/-£)■«(*) 

' ■ '■    ■- —--  --"■- — ■  '- -:-- ^-^-..-^-.-^ ^ ^.^.^^ato 
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whrre aix) is the column vector /ai(x)\ 

21 

Hence 

(25) ./(0)=l-[    f(x)dx=l-§m{l-E)  ' (    a(x)dx. 
]»■ Jo- 

where       «U )</x is the column vector bv integrating «U). Inserting (24) and (25l into (5) yie; 
Jo- 

EAMAt))= (    Wx(f)Ö(0)(/-£) 'i\{\)ih^ Mit) (\-§{{i){l~k) ' J    ^{x)dx\. i26> 

Inserting (25) and (26) into (4) yields the required cost function 

''i 

(27)       6'(i.n = 
j     Wx(/)§(0)(/-£)  ,Q(x)<ix+(r,M(0 + c2) (l-j8(0)(/-£;)  ' j    a(j:)Jx) 

4. C(M) KOR ERLANG DISTRIBLTIONS* 

The p.d.f. of an Krlang distribution with m stages is 

(28) 

and 

It can he verifir <! easily that 

./(n = \e M (Kt)* 
m- 1)!' 

t^Q 

(/) = e^ -r. 

"^ [\(f + .v)]' 

(29) 

and 

F(y) y iky)' 
H.    il 

1^0 

ry(t) = ElL±il = ^h ii_ 
F(y) y (Xy)' 

f ^0. 

From [1, p. 57) we have 

(30) Mit) 
m     m fi 1 - ÖJ l J m 

m=l 

'The dislribuliim used as an example in 17| belnngs li> lliis family of distributions. 

..,M.;»..;i.*l.«.Ll,^^.rl..-;,..,.   .^A   mgH   .^1„   ^    , H       [a|.   J 
■ H — lllill« 
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an»! lipiic»' 
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m 
y ^. uii 

/ whrre 0 = ?*" '" is an mtli root of unity. 

Isinn the binomial expansion it is easy t»i Nt-rily lliat/(/ • > I in I28I satisher. il2l*. Hence we can 

use I25I and (26) to compute / (0) and Kr\ l/^lM |. respectively. 

We now carry out the detailed calculations for the two stage Kriang distribution with A = 1 iclearly 

there is no loss of jjeneralily since this involves only a scale channel. 

In this case m = 2. Hence i28l. i29l and (301 Itecome 

(28'i finite '.       r ? 0 

FU) = e '{l-r t).       / ^ (I. 

l2V'l 

,1 + r + V 
^„(M-e ' —j—■^.       / > 0 

i30' i \Ht)= l/4(2f- 1 - e -''). 

mU) = 1/2(1 -e -'). 

Inserting 12^' i and i.W i into 161 and 1111 we ohtain 

(311 W„U)= 1/4 2/ + (1 - e -*') 

".<n = i/2(i + .^-J}- 

Using l28' I and t.'^l I to compute /»„., isee 110)1 we ohtain 

(321 

Hence 

where 

rÜ^i[1 
L 

l>IIS= !   l+e    iU-SI 
\  — 
y - 

0« > =e/<.       0-   « s h. 

f>yx = al{x)ß,{y) +ai{x)ßA}).       0«y«/(.        0<x^h 

'In fact tlif ila'.« lit (li>.iril)uti(iii« hascd mi ihr I aguirn- pujymimial)' isre|y|i »hull runtain-. lh>- i lass nl Krlaii); IIMIIIPU 

lion*, alsn sati-thr» il^i 
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(33) a,(t) = 
.- 'I 1 + x) y-l 

(».(«) = «-r-'ii - ii.      «,(>)-i,      «■>) = —— 
2(y-t 

Hen«» liv (211, 

(34) p.^O.       «•,,= 1/211    »•''( 1 W.)|.       «"i^O.       f--f -'[I -p'Ml-'')) 

anti 

(35) /j,((ti - 1.       /3-.I0I     -12. 

Inserting (33i, i34). and i3.Sl intn (24i \ii-l(^ 

(36) 

From (33) 

(37) 

«• J11 - «) 
.'(»)=  : ^ -'( I - ») 

f 'Ml - /,! 

a, I»)ilx = 1 

2-2f -'|1 -p'Ml -/')1' 

p "i 2 • 6) 

0 <    »   %:   /.. 

Inserting (34). |35). and (37) into I2.
:
>I yields 

1381 /!()) -p '• 
Ml • MP -' 

Inserting (30' i. (311. (36). and I38I intn (5i yields 

(34i EsiMAD] -- 1/4 2/- 
Ip   "( 1   •   /;! 

1 "^  -'(1- P'M 1  -   b\\ 

Inserting (38i and 13^1 intn I4I yields \\\v required ensl tunttmn. f. (/i. M with 

(40)      r;(/,,n = - 4/ 
p" 

/Hi   -  M, 

2P  -'( 1 -p'Ml -/.)) 

In principle it is possible to find the values oi I/I*. (*) which minimize VAb. fi hy computing 

iiC{b.t)ldli and dC(h.t)ldt. setting them c(jual i<> /cri> and solving the two equations Inr h*, t*. Ol 

course this is not a practical way of finding the optimal values of b*, I* and it is simpler to use a com- 

puter routine 

h is interesting to compare the minimum cost obtainable with a modified BKI' with the minimum 

cost ohtainahle with a standard BKI'. Let (Ab*, »*1 he the minimum cost for the modified BRP and 

(Atn) the minimum cost for a standard BRP. Obviously the block replacement inter\alsj* tor the modi- 

fied BKP and ;» for the standard BRP are in general different 

A numerical analysis of formula (40), where the item life distribution is assumed to he two stage 
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Erlang, shows that one can sav«* up to 5 percent by using the modified BKF. For 0.25 ^ rjc] « 0.4, the 

modified BRP is cheaper than a Failure Keplacement Policy (a policy of replacing items only at failure) 

while the standard BKF is definitely inferior to the FRF (see |l. p. %|). 

It seems reasonable that we could have obtained much higher savings with a modified BRF if we 

had chosen an Frlang life distribution with many stages. 
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EXPLICIT FORMULAS FOR THE ORDER SIZE AND REORDER 
POINT IN CERTAIN INVENTORY PROBLEMS 

(IhandraM-khar Das 

/ niversity of Saskatchewan 
Saskatoon, Canada 

ABSTRACT 

This study concentrates on distributions of Icadtimr demand llml permit explicit 
sidution to the lot-size, reorder point model. The optimal order size for the general case is 
first expressed as a function of the economic order quantity and a quantity known as the 
"residual mean life" in reliability theory. The concept of "no aging" is then utilized to 
identify a broad class of distributions for which the optimal order size can be determined 
explicitly, independent of the reorder point 

1. INTRODUCTION 

In section 4-2 of their book, Hadlev and Whitin [3] discuss a class of static inventory models 

usually known as the "lot-size, reorder point" models. These models, although approximate in nature, 

are used frequently by the practitioners because of their simplicity and ease in application. To further 

facilitate their use, the above authors have developed an iterative technique wh.ih is heuristic yet quite 

efficient for most practical problems under the model. However, use of this technique may in some cases 

require repeated evaluation of an integral which may not be easy. For this reason we investigate here 

if in certain of those cases the difficulty in iteration may be avoided and the solution obtained algebra- 

ically by using an explicit formula. 

2. THE RESULT 

For the sake of brevity, we retain the assumptions and notations of Hadley-Whitin to the extent 

possible in our discussion. This enables us to quote the following results directly from reference [3]; 

K— expected total system cost per unit time 

U Q 
- + r-fi /C + —7,(r) 

where 

=/, 
7/(r)=      xh(x)dx-rH(r). 

Further, the determining equations for the optimal Q and r (that minimize K) are 
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(1) 

C. DAS 

1  /C /C       1 

(2) W(r) = 
7T\' 

l-et us now introduce the notation 

/3(r)=^(r)///(r) 

so that equation (1) can be rewritten as 

r 2X.4    2nKB(r)H{r)-\in 

v=[Tr+—ic— 

Substituting the right hand side of equation (2> for H(r) in the above expression we then get 

(3) (?={<?2,+ 20(r)<?}"' 

vhere 

/2\/!\>'2 
Qu = I -jrr 1     = Wilson's economic 1 s economic lot size. 

Hence, squaring both sides of equation (3) and transposing terms 

(4) (>!-2j8(r)C>-(?i, = 0. 

Solving the above for Q > 0, and denoting the optimal values by Q*, r* it then follows 

(5) <?* = /3(r*) + {/32(r*)+C>i}"2 

Under the present model the optimal e;rder size can thus be expressed as an explicit function of 

ß(r*) and ()„-. However, the factor j8(r*) which is known as the "mean residual life" function may not 

be explicit. Therefore, a closed form expression for Q* can be obtained only if ß can be written expli- 

citly in a convenient form. Of course, if the distribution of leadtime demand is such that ß{r) is inde- 

pendent of r, then Q* possesses a remarkably simple expression. 

We now proceed to illustrate determination ofQ* whether j8(r) is constant or not. 

3. EXAMPLES 

Let us first consider the case of uniform distribution of leadtime demand. This distribution is most 

often used to demonstrate the Hadley-Whittin method; an explicit solution for this case can, however, 

be obtained as shown below. 

,^.-..W^.^.^rt..^.^L^ ^..■J^..-.    ,     ...^.f:.J..           ■       .^....^-^^i.» ■HMüHillllJ 
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Example 1 

Let 

Then it is easily verified that 

ORDER SIZE AND REORDER POINT 

Mx) = (b-a)-.       a*x*b. 

H(r)=ib-r)l{h-o) 

i){r)~(b-r)*l{2(b'-a)}. 

ß{r)= (fe-r)/2. 

From equation (2) we. therefore, get 

so that 

(6) 

where 

Hence 

Substituting the above in equation 

6-r* .      Q*IC 

b-a nk 

b-r* = aQ* 

a — 
(b-a)lC 

2ß(r*)Q* ={!>--r*)Q* = aQ*2- 

(4) and simplifying, we then get 

Q*= (\~a)-xn0u- 

'■Qu- 

27 

Finally, from equation (6) we derive 

r*=h-aQ*=b'a(\-a) 

Next we consider a case where ß(r) is constant. 

Example 2 

Let 

* ...nh that h{x)   is a proper probability 

dis.ribu.ion. By imeür«»" «•' ""'» """ """ 

. ^.^^.^.^.^.^..: ^. 
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//U)=(ö2/Ö.) -expi-rei), 

V(r}= (dzlffi) •exp(-rö,), 

/3(r)=l/01. 

Therefore, from equations (5) and (2) 

r*=(l/Ö,)    {IMnKe^-lniO^Cdt)}. 

Note that the above formula for (7* is independent of r*, although that of r* involves Q*. What is 

more noteworthy is that Q* does not depend on the penalty cost parameter n. These properties, as 

proved in Das [2], are special to distributions with constant ß. The rest of the paper is, therefore, 

devoted to a detailed study of this class of distributions. 

4. DISTRIBUTIONS WITH CONSTANT ß 

As mentioned and illustrated above, distributions with constant ß enjoy some special properties 

that give rise to simplification in inventory decision-making. These distributions arc also of independent 

interest in reliability theory since constant ß is equivalent to the property of "no aging" —a concept 

that is valuable in reliability studies. Regarding their characterization, it is widely known that among all 

continuous distributions defined on the positive half of the real line only the negative exponential dis- 

tribution exhibits this special property. Example 2, however, shows that the truncated exponential 

distribution which includes the regular negative exponential as a special case also possesses the same 

property. For inventory applications of this result we must, of course, verify that the truncated exponen- 

tial is a realistic distribution of leadtime demand. This is particularly important here because leadtime 

demand being in general a random sum of random variables has a compound distribution to which the 

truncated exponential might not be a good fit. However, this doubt is removed, at least in part, by the 

following example where we allow both the demand per unit time and leadtime to follow a fairly realistic 

distribution each but the leadtime demand distribution emerges as the truncated exponential. 

Example 3 

Let us assume that the demand per unit time is distributed normally with mean fi and variance 

a-, and that leadtime is random having a negative exponential distribution with mean y''. The con- 

ditional distribution of leadtime demand given that leadtime is m, is then normal with mean mß and 

variance mo-2: 

h{x\m) = (2mTro--)   ''- exp{ —U — mii)-j'lmcr-]. 

The marginal distribution of jt is. therefore, given by 

(71 
■/: 

h(x) = b\    h(x\m) cxp {—ym)dm. 

aMMfci in iiMlini ■    --  
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where S represents the undetermined normalizing factor such that b(x) is a proper probability distri- 

bution. The specific numerical value of S shall depend on the range of x which we prefer to specify 

later in the paper. Our immediate task is then to evaluate the integral appearing on the right hand 

side of equation (7). After some simplification it is seen that this integral reduces to 

(8) (2n<T2)-mexp(tixla-'i) ■ I{x) 

where 
/U)= (* n-m^i-ixt + m'p^VnuT^dm, 

Ju 

p2 = ^ + -Iyer'1. 

To evaluate /U), let us now make the following transformation 

v-= (p-/2o-2)m. 

I(x) can then be written as 

(9) 

where 

/U) = 2:l-((r/p)./(") 

./(«) = Jo  .>xp[-{v-4 («/.v)-}Rv, 

a = {pl2(T'-)x. 

From the table of integrals (see [4], p. 305, integral no. 427). we next find 

./(«) = (l/2)ir,'2exp(-2a). 

Hence substituting the above in equation i9) we gel 

/U)= C?:?)1 -((r/p) exp (-pxlar*). 

Therefore, utilizing equation (8) we finally arrive at 

h(x)= (8/p) •exp{-(p-p)v/o■-,} 

which i> nothing liut the truncated exponential distribution of example 2 with öj = 8/p and öi = (p- 
pl/a2. In particular, if we assume 0 ^ Jt -s x. then S = p6t so that h{x) becomes the regular negativ 

exponential distribution. 

- ■  ^  -■ —^- -  ---       - 
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Similarly, it can be shown that if the demand per unit time itself is negative exponential and the 

leadtime is geometric, then the leadtime demand is negative exponential. In this context we may also 

mention Carlson's [1] result: if the leadtime distribution is geometric, then for any arbitrary distri- 

bution nf demand per unit time with finite cumulants the leadtime demand is asymptotically exponential 

as the mean leadtime increases. 

As regards discrete distributions of leadtime demand, we may point out thai the geometric distri- 

bution being the discrete analogue of the exponential possesses the 'no aging" property. Therefore, 

pairs of distributions such that their compound is geometric will generate leadtime demand distribu- 

tions of constant ß for the discrete case. An excellent example of this occurs when demand per unit 

time is negative Binomial and the leadtime is geometric (see Magistad [5]). 

5. CONCLUDING REMARKS 

The class of leadtime demand distributions permitting explicit formulas for the decision variables 

under the lot-size, reorder point model is, therefore, not so narrow as might appear to be. Further, if 

approximate solutions are acceptable, then this class can be augmented by admitting distributions 

that can be approximated by those with constant ß. For instance, Presutti and Trepp [6] show that the 

standard normal distribution can be approximated by a function of the form ö.. exp( —öi j*|}, where 

0i = 2l/2. Hence, if the leadtime demand distribution is normal with arbitrary mean and standard 

deviation a. then 

that 

ß{r) =or/Ö1= {(T-I2)'!- 

C>*= (o--/2)"2+ {(0--72) f CU' '■ 

Besides providing such explicit formulas the function ß also facilitates various sensitivity studies of 

the model discussed here. An application of this nature can be found in Das [2]. 
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ABSTRACT 

This paper considers the prohlem of computing reorder points and order quantities for 
continuous review inventory systems subject to either a service level constraint or a con- 
straint on the average fraction of time out of stock. It is demonstrated that three apparently 
distinct models are equivalent under these circumstances. Using this equivalence, stream 
lined algorithms for computed lot sizes and reorder points are developed. 

BACKGROUND 

Although the literature abounds with numerous descriptions of inventory models, only a very few 

of these have ever been applied to a real inventory control problem. Most are too time consuming and 

complex to be of use in large multiproduct systems, or require too many restrictive assumptions to hold. 

Since it is very rare that demands are known with certainty, we will restrict our attention to the 

situation in which demands are random variables with a known probability dist'ibution. When demands 

are random, there are essentially two distinct classes of inventory models: periodic review and con- 

tinuous review. In the periodic review case it is assumed that the state of the system is reviewed at 

fixed points in time (i.e. periodically) while a continuous review inventory model would be applicable 

if the state of the system is known at all times.* 

Although nost industrial inventory control systems fall into the periodic review category, the 

literature suggests that most scientific inventory systems in use utilize a continuous review methou 

ology. There are a number of reasons for this. Equations for the continuous review case are similar 

to the familiar lot size equation and hence are more easily understood. In addition, when there is a 

fixed charge (or set-up cost) for placing an order, optimal policies are quite difficult to compute under 

the periodic review assumption, and truly effective approximations have yet to be developed. A third 

reason is, perhaps, that when the review period is relatively small and units are demanded on a one at 

a time basis, a continuous review approach provides an extremely good approximation. 

OPTIMAL POLICY 

When units are demanded one at a time and the underlying demand distribution is unchanging with 

time, it is well known (see for example Hadley and Whitin [4]) that the optimal policy is of the following 

*Hadley and Whitin [4] use the term transactions reporting as it indicates that transactions are reported as they take place. 
However since corlinuous review appears to he the more accepted term, we will use it. 
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form — whenever the on hand inventory falls to a level r, an order is initiated for an amount Q to arrive 

T units of time into the future. This policy is optimal in that it minimizes the expected average cost over 

infinitely many ordering cycles. 

Computing values of (Q, r) optimally appears to be an extremely difficult problem, and those cases 

for which solutions do exist are quite restrictive and still require prohibitive computation. We consider 

two simple approximations that have been suggested in the literature, but before presenting them we 

require the following definitions. Our notation follows that of Hadley and Whitin [4], 

DEFINITIONS AND ASSUMPTIONS 

.V (r) = demand during lead-time T. 

Hit) = P{X (T ) > /} = probability that lead-time demand exceeds t. 

X= average or expected number of unite demanded each year. 

C- dollar value of each individual unit. 

/= cost of carrying one dollar of inventory for I year. 

A = cost of placing an order. 

n(t) = E{ max (A'(T) —/, 0)} = expected number of units which go short during a lead time when 

the reorder point is t. 

In the development of the mathematical model the following assumptions are maiie: 

Al. Costs are charged against: 

(a) ordering at C^ + ^ if (> > 0, 0 if (> = 0, 

(b) holding at IC per unit held per year, 

(c) shortage at v per unit short. 
A2. There is never more than a smgle order outstanding.* 

A3. The reorder point i» r > 0. 

A4. Excess demand is backlogged. 

Based on these assumptions, Hadley and Whitin [4] develop an approximation which requires 

the simultaneous solution of the two equations: 

(1) <WM (A + wnir)) 

(2) QIC 
H{r) = ^ 

By modifying their derivation slightly, Wagner [9] has obtained the two equations: 

(3) n_   /2ÄJ     /    , 2X7r\      .  . 
Q-yj 7c"+U1+'/c7 ■"(r) 

"This assumption may he relaxed if the on-hand plus on-order minus backorder inventory is compared to the Iringer point r. 
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H(r) = 
ICiJi + 2nk' 

The symbol ft is used to represent the mean lead time demand and is equivalent to XT. 

Both of these systems may be solved iairly efficiently by the following algorithm: 

Algorithm 1 

(a) Choose the initial value of ()= V 2kA\lC. 

(b) Find r from (2) or (4). 

(c) Find() from (1) or (3) using the value of r computed in (b). Stop when successive values of either 

Q or r are equal or are sufficiently close (that is, within a prespecified tolerance). 

In using Hadley and Whitin's model an implicit assumption is that the value of the backorder cost, 

TT, is sufficiently large so that the term QlCInk is always less than one, otherwise (2) would not make 

sense. Since it is possible that 2QlC\(lCy.-\-2'n\) < 1 while QlCj-rrX > 1 it can happen that for some 

small values of IT equations (3) and (4) may yield a solution while (1) and (2) will not. This is certainly one 

advantage of Wagner's approach However, a recent study by Gross and Ince [3] indicate that in general 

Hadley and Whitin's model is closer to the optimal than Wagner's a greater portion of the time. The 

authors speculate that perhaps the Hadley-Whitin model has compensating errors which allow it to 

perform better in many cases.* 

An advantage of these simple models is that they can be modified to allow for a variety of generali- 

zations including incremental or all units quantity discounts, orders which must be a multiple of a fixed 

batch size, problems with space or budgetary constraints, and cases where the lead time,T, is not known 

with certainty but is a random variable. Hadley and Whilin discuss the modifications necessary in the 

computations to deal with situations of this type. 

SERVICE LEVELS 

A serious problem with actually applying the two models defined above is that it is often difficult 

if not impossible to assign dollar values to the cost of shortage. As an alternative, one may specify either 

the service level (probability of a stockout occurring during lead time) or the average time out of stock 

(probability that any unit demanded can be satisfied with available stock). The latter is also referred to 

as the fill rate. Although it is evident that there exists a great deal of confusion regarding the distinction 

between these two criteria, their difference is discussed at length in a number of places. (Brown [1] is 

one example.) Gross, Harris and Robers [2] present an algorithm for computing (Q, r) values using 

Wagner's model (equations (3) and (4)) when the service level is specified. The same method can be used 

for Hadley and Whitin's model. If we can assume that a is the prespecified service level then the 

method is; 

Algorithm II 

(a) Let the initial value of ()= V2X.4IIC. 

(b) Find r by solvingW(r) = a. 

(c) Compute n from (2) (or (4)). 

'1 «m indebted to the referee for liringinK this reference to my attention. 
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(d) Findn(r)*. 

(e) Compute the new value of Q from (1) (or (3)). 
Return to (c) or terminate computations when successive values of (7 or r are equal or are 

sufficiently close. 

The same approach can be extended to develop an algorithm for computing (Q, r) values when the 

average fraction of time spent out of stock is specified. Hadley and Whitin describe the following 

procedure for computing the optimal (Q, r) values subject to the constraint n(r)jQ-ß: 

Algorithm III 

(a) Choose an initial value of 7r=7ro. 

(b) Using TTO find the optimal values of (Q, r) solving (1) and (2) lor (3) and (4)). This involves 
iterating successive values of {Q, r) as described in Algorithm I. 

(c) For the given solutions obtained in (b) compute n(r)jQ. \{n(r)IQ > ß choose Tr> TTO and return 

to (b). If n(r)/^ < ß choose n < vo and return to (b). Stop only when n(r)jQ is sufficiently close 

toj3. 
Anyone who has had any experience with this algorithm can attest to the fact that it is extremely 

time consuming. Choosing the proper values of IT at each stage is largely a hit and miss affair, and to 

obtain an accurate solution may require as many as 400 computations. 

We will de^nonstrate that both of these algorithms can be streamlined considerably with no loss in 

accuracy. The value of TT may be completely eliminated from equations (1) and (2) as follows: From 

equation (2) we have that 
7r = (?/C/X//(r). 

Substituting this into equation (1) we obtain: 

Q -W^M 
which can be seen to be a quadratic equation in Q. The positive root obtained from the quadratic formula 

is: 

(5) Q-H(r) + y\Hir))   + 
2kA 
IC 

It is surprising to note that had we solved forTT in (4) and substituted into (3) we would still obtain 

equation (5) as the solution, t When the lead '.ime demand distribution is exponential or is approximated 

n(r) ■■ V xh(x\dx- rH{r)        where h{x) = 
(IfHx) 

dx 

When lead time demand is normally distributed, n(r) may be obtained as a function of the standardized loss integral. See Hadley 
and Whitin [4], Wagner [9] or Brown [1 ]. 

tThat these two apparently diffennl sets of equations yield identicu' 1^, r) values when a service ronstraint is imposed is 
quite surprising. What will be different is the imputed cost of shortage. : ^   ihe value of TT obtained from Algorithms II or 111. 
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by an exponential tail, the variable r drops out of equation (5) so that the order quantity may be deter- 

mined independently of the reorder point. This special case is discussed by Parker [6], Presutti and 

Trepp [7] and Schroeder [8]. Brown [1] has also obtained equation (5) by a different derivation. Hence 

we see that when dealing with service constraints, the models of Hadley and Whitin (equations (1) and 

(2)), Wagner (equations (3) and (4)) and Brown (equation (5)) are all identically equivalent. 

The use of equation (5) completely eliminates the need of an algorithm to determine the optimal 

(Q, r) values when a service level constraint is imposed. If we let a= probability of stockout during 

leadtime, then the reorder point r is computed to satisfy the equation 

H(r) = a. 

Since specification of r determines n(r). the optimal lot size,(). may be computed directly from equa- 

tion (5) (with a substituted for H{r)). The optimal (Q, r) values obtained in this manner will be iden- 

tical to those computed from Algorithm II independently of which model is used. By eliminating the 

need for an algorithmic solution, the use of equation |5) can reduce computation time by as much as a 

factor of 10 or 20. 

Equation (5) can also be used to significantly reduce computation time for the more common case 

whün ß is specified as the average fraction of time spent out of stock. In that case the following al- 

gorithm would be utilized: 

Algorithm IV 

(a) Pick an initial value of (/=" V2M//C. 

(b) Compute r from the equation ii(r) = ßQ. 
(c| Compute Q from (5). Return to (b) or terminate compulations when successive values of Q 

or r are equal or are sufficiently clo«c. 

Algorithm IV will yield the identical (Q, r) values as those obtained from Algorithm III. but with 

a very small fraction of the computations. In fact, depending upon the accuracy desired. Algorithm 1\ 

may require as little as 1 percent of the computation time. This is certainly a significant difference 

especially when considering that such computations miglit be ucrfurmed repeatedly for thousands of 

items on a continuing basis. Note also that once the optimal values of ((,*, r* are determined, the 

imputed cost of a backorder may be computed from either equations (2) or (4). 

In addition tv the fact that equation (5) r-iejiiiicantly stieamlines previous algorithms, there are a 

number of interesting conclusions which can be drawn from the equivalence which we have demon- 

strated; 

(1) Although the formulas presented by Brown [1], Hadley and Whitin [4] and Wagner [9] 

appear to be diffei°-' ail three models will yield identical results when a constraint is placed on either 

the proba '■'■.        ,;ov;ki."g out during lead time or the average fraction of time out of stock. 

(2) Equatioii (5) remains valid for any lead time riemH-.H distribution, H(r). It is not necessary to 

assume an exponential approximation. 

(3) Since equation (5) obtained 1>> Brown [l] is equivalent to two approximate models, it itself 

must be an approximation. 
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(4) The use of equation (5) significantly reduces computation time over Algorithms 11 and 111 

when eithera (service levellor/J (fraction of time out of stock) are specified. 
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ABSTRAn 

It) this paper vst- consider a imiltipcrioil lirirrniiinstir capacity expansion ami shipmenl 

piannint: problem lnr a »intilr product. The product can In- nianufacluied in several pmdurinfl 

rt'iuo'is ami i» required in a numlicr of market" The demands lnr each ol the markets are non- 

decreasing over time ami must he met exactly during each time period (i.e.. no backlogging or 

inventorying lor lulure periods i- permitted I. Kach regjon i« assumed to have an initial pro- 

duction capacity, which may he increaseil at a given cost in anv period. The demand in a 

market can lie satisfied by production ami shipment from any ol the regions. The problem is 

to hnd a schedule ol capacity expansions lnr the regions ami a schedule ol shipments Iror- 

the regions to the markets so as to minimize the discounted capacity expansion and shipment 

costs. The problem is lormulated a* a linear programming imuiel. ami solved hv an efficient 

algorithm using the operator theory ol parametric programming lor the transporation problem 

Extensions to the Inhnite horizon case are also provided. 

1. INTRODUCTION 

Th»- (leterministif multiperiod. multiproducing report capacity expansion prolilem wilh coneave 

capacity expansion costs was tirst proposed by Manne [4], Exact optimal solutions to the problem can 

lie obtained by using dynamic programming formulations [1.2, 4], However, owing to the "curse of 

dimensiotialitv". a problem with more than three producing regions is computationally prohibitive. 

In this paper we make the assumption that the capacity expansion costs are linear rather than 

concave. Linear capacity expansion costs may be realistic in the case of firms which rent or subcnntracl 

their production capacities from other firms or when the fixed components in the capacity expansion 

costs are relatively small. Such a formulation is also realistic in multiperiod personnel assignment prob- 

lems with different types of jobs as markets and different training programs defining the producing 

regions. In such contexts, the cost of recruiting and training may he hest approximated as linear. More- 

over, the optimum solution to the problem with linear costs can be used to provide a lower hound to the 

objective function ol the problem with concave expansion costs. This information is useful in a branch 

and bound approach to solving the problem under concave expansion costs, especially if the linear prob- 
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lern can be solved efficiently. Further, studying the structure of the problem with linear costs may 

provide a basis for the development of more efficient heuristics as aids in solving the problem with 

concave expansion costs. 

In the next section, the linear capacity expansion and shipment problem is formulated and in 

section 3 we develop a solution procedure to solve it. In section 4 some characterizations of the optima] 

solution as provided by the algorithm developed in section 3 are derived. In the same section we extend 

the formulation to the case of infinite planning horizon and show how an optimal solution to that case 

can be obtained. 

2. PROBLEM FORMULATION 

We consider below the multiperiod capacity expansion and shipment problem (fl) for a single 

product by defining the index sets: 

/={1,2 m} set of producing .legions, 

./={1,2 n} set of markets, 

^ = { 1, 2 T} set of time periods where T is the end of the planning horizon and. 

K' = {2, 3 f}. 

For iel.je.l and ttK, we dehne 

r'' = initial demand in market 7, in time period 0. 
t 

rj^ known increment in market/s demand in time period /. r'^0. Consequently. V rj repre- 
r- 11 

sents the demand in market y at time t. 

q"= initial production capacity in region 1. Capacities are measured in the same units as demands. 

(7J = cumulative amount of capacity added in region 1 from period 1 to /. The total production 

capacity in region ( at time t is q" + </]. 

k, = unit cost of capacity expansion in region i U, > 0). 

Xjj= amount shipped from region 1 to market; during period t. 

Cfj= unit cost of shipping from region i to market y. This consists of la) the cost of transporting 

one unit from region i to market j, lb) the variable cost of producing one unit in region i, 

ic) maintenance cost lor one onit of capacity in region i. (f|j ^ 0) 

s'j = excess (or idle) capacity in region / al time t (^0). 

h,= unit cost of maintaining idle canacity in region 1. Obviously 0 s£ /ii -S r^ U'T itl.jtj. 

R, - terminal (or resale) value of a unit capacity at the end of planning horizon in region 1 (£,& 0). 

a = discount factor per period (=- — where./ is the appropriate cost of capital per period) 

0 < a < I. Thus a' ' is the present value (i.e., value as of the beginning of period 1) of one 

dollar at the beginning of time period f. 

The problem Pi can be formulated as below; 

tth  if/   ft J t»k itl itl ftf\' i</ if/ 

——   .-- .. 
■ -—--■  
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(3) 2^'       hrjeJ.teK, 

(4) 9'-9'-'^0 for ie/, /e/v', and 

(5) x.'^O, s}^0, «/I^O       (orie/./eJ. reK 

where Vij, A', q] are the decision variables. 

Objective function 111 determines the minimum total time discounted transportation, idle capacity 

maintenance and capacity expansion costs. The costs are assumed to be incurred at the beginning of 

each period. Constraint (2) states that the amoun; shipped out of region i at time t should not be greater 

than the capacity available in region i at time /. It is assumed that the amount of capacity addition in 

region i at time t, q^ — q^ ' {alt—I, it is q|), is available for production to meet the demands in the same 

period t. Constrain! (3) states that the amount shipped to market j at lime I should be equal to the de- 

mand. Constraint (3) implicitly assumes that no backlogging of the product or inventory for the future is 

permitted. This is quite a realistic assumption since the unit time period involved in these problems is 
usually a year. Since h, =s fy for ie/, it is obvious that stating constraint (3) as equality (rather than as > ) 

involves no loss of generality. Constraint (4) follows .from the fact that q\ expresses the cumulative 

amount of capacity expansion until period/. 

As pointed out in |3]. there is no established precedent regarding the method to be employed in 

computing the terminal value of capacity. The life of a production capacity is usually much longer than 

a normal planning horizon. Manne [4] in many of his studies assumed an infinite life for capacity. Under 

tiiis assumption of no deterioration in the manufacturing production capability over time, we posit 

that the capacity can be sold off'approximately for its cost value (i.e., AK/J") at the end of the t:fne horizon. 

Therefore it is not unrealistic to assume that the present value of the terminal value of the capacities is 

V ayA^y. (For the infinite horizon case that will be considered later, this assumption is not needed.) 
iii 

Objective function (11 can now be modified to 

(6) Min 211 a''tc>A + 11 «'-'M + 1 hql + S S «'   ik>W - «?.")- I «^ 
(«A   ifl   jf.l Ith' ill ill 

Regrtuping the cost coefficient of each qj in (6) we simplify (6) to (7) 

(7) Min S S S «' 'f^ +11 a"ih>s>f 11a '^i 
lih   ifl   Ji.l Uh   i,l 

where k] = (1 — aU,. 

Under this formulation, the company is, in effect, renting at the rale ,/ capacities worth kiq'r.kiqt, 

. . ., A,(/[ in periods 1,2,. . ., T" so that the present value of the rent expenses would be 

 iiii ! i . "   '■■^-"~ — MMHMMH 
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(1   +,/)     r(l +./)- 
[./(AK/^ 

(1 +./)r 

since .//(1 + ./)=( 1 - a) the above expression is the same as the last term in (7). Consequently, (7) 

minimizes the intuitively appealing objective dehned as the sum of total time discounted transportation 

costs, idle capacity maintenance costs, and the rental costs on the production capacities. 

The linear cost capacity expansion and shipment problem can now he formulated as problem P2. 

which is minimizing (7) over constraint set (2>-(5). 
P2 can he solved using the simplex method for linear programs. However, for any reasonably large 

size problem, the number of constraints and variables will he quite large. For example, a 10-period. 

10-region, 200-market problem will have 2,190 constraints (excluding the non-negativity constraints! 

and 20,200 variables making it computationally expensive. 

3. SOLUTION PROCEDURE 

3.1. Development 

To develop an efficient solution procedure for Pi. we consider the problem P3 of minimizing (71 

over constraint set (2), (3|. and (iSl (i.e., after dropping the coupling constraints (4)). Problem P\ consists 

of a series of suhprohlems P3' for te K. Our solution procedure is such that the optimal solutions for 

subproblems so obtained also satisfy the coupling constraints (4) so that they are also optimal to P2. 

EachPS' is of the form: 

(8) Min X S «' '^-V £ «"M + ^ a' 'M 

(9) 2 *J+ s'i~9i= </"        for/e/. 

(10) X *ti~E rJ        foTJ€.L and 
Til r=0 

(111 x/j > 0,5i 5= 0. q'i ^0       fone/./e./. 

To bring each /'3' to "'standard form", we convert each to a capacitated transportation problem 
[5] with m + 1 regions and n+2 markets. 

We define a dummy (n + 1) market with 

O.^-Xr»   and £/■;.,, = S,« f„r,£K, 
ill j(J 

to absorb the excess capacities.* It is shown below that defining V r'n)1 = V q^ for any teK is suf- 
r=0 ifl 

hcienl to absorb the excess capacities in an optimal solution to P3'. 

* In oilier words. rn I, = V q" - /■„., and (^ 1 - 0 for 1 <: T ^ 7 . 

■J—^ -■-   ■—-■■'■    '  ■    - -    ■!    , MMMMMMMMMMfAtfltfMnrill 
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I.EMMA  1: In an optimal solution U>IJ'.V JfK.s^ *£ q" forte/. 

PROOF;  Assume the contrary, i.e.. 3 a A such that s[> q® ^ 0. But ^ »^ + s^.— (/[= </" and hence 

we have q'k > 0. Consequently, the objective function to P3' can he reduced hy decreasing «/'^ and 5[, 

contradicting the optimality assumption. 

COROLLARY 1: In an optimal solution to/'.V.]? sj « ]£ qf. 

The excess "demand" of the (« + 1) markets can he satisfied hy defining a dummy (m -M ) region 

• <m,i. ,= V/(a large positive numher) for /e./, hm.i = rm.u „., = 0 with 9^, = maxjo, ^ r'-^qj 
1     jti iti     ' 

and km*\ — 0, without increasing the value of the objective function. Consequently, there is a one-to-one 

correspondence between an optimal solution to P3' and an optimal solution to P.'V with the addition of 

the (m 4 1) region and Ui + I) market. 

Hence, we can incorporate the following constraint to ¥V. 

(9a) /,   * m ■ I. j   '" ^ in . 1       </ in . 1       ^in 

E(j. (10) is modified to; 

(10a) S ^ + *'m+..j=i '•]       for7€./and 

(10b) 

I^+^.^^r;.,. 

Define/' = /U {m + 1 )../'=./U {n + 1} and./" =7' U{n + 2}. 

Following the method of [8], we add /V (a very large positive integer) to both sides of (9) and (9a) to 

obtain. 

(9b) £ .v;. + si + (/V-(j'() = q1/ + .V       forie/' 
«/ 

Summing (9b) over/e/' aiwl subtracting from it (10b) and the sum of (10a) over/t,/ we have: 

2(.V-q!)=(m. 1).V4 X g" -X   trr 
i»/' i«.;'    T = O 

It can be shown in a similar manner as in (81 that eachPS'is equivalent toP4', which is 

(12) .V 

(13) Vxij = a?       lor i«/' 

^  ■»'"'■■:'-"-h—-^-"^-:-||H|^a|i|lilu_^ 

—■- ■ ■   ir ^   n     
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V xij= b'j       foTjeJ", 

(15) 

(16) 

where 

*!, »+2 s N       for '*'' and 

x'u^O       iorid'Jd" 

x'i.n,, = s\       foric/'. 

/V —qj       (oriel'. 

<i'l = q,l + ^.       r,.„.,-/),.       ri, „., = -^;       fonW.       6j=2)rj       foricy" 

Sr^2= (m+ 1)^ + 2 g»- ^ ^ r] and/' = 2 I ^+1 ^- 
r=ü K/' ,,.;•  r = 0 it/'   J«.r i</' 

Problem f.] is likewise converted to proltlem P4, which consists of the series of suhproblems 

P4': leK. 

It should he noted that the coupling constraint (4). i.e. 

'/' ~ 9! ' ^ 0        i\nid,teK' 

is equivalent to 

(17) xi,,.-, + xl:,],.,^0        for id,t€K'. 

We will now develop a solution procedure for solving /J4 and then show that the optimal solution 

so obtained also satisfies (17). Hence the i »r mal solution to P4 so obtained is also an optimal solution 

to problem P2, the original problem we ut to solve. For ease of presentation of the solution pro- 

cedure, we defin',' the problem PS', which is 

ur jt.i" ut' 

over constraint set  (13)-(16). The optimal solution to P5' is also optimal to PV. with Z'= a'   'Z'. 

3.2. Solution Strategy for Solving P5' (and Pi) 

Each P5' is a capacitated transportation problem with upper bounds only on the (n + 2) column. 

The objective function of a subproblem P5' is similar to the others. Further the requirement vector or 

rim condition |6, 7] of a P5' differs from PS' ' by amounts of r' (or jtj" (i.e., h', = b','1 + 8r' for /t/" 

since ij1 =2 r; and 8= I). 

       -   -   ■   ■ -   ■—-—'- ■ ■ — --  
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With respect to the transportation taliieau * oi/'.V. it may be retailed that acell(i.j) is an ordered 

index pair with ifl'.jtj". A hasis ß is a set of (/n + 1) + (n + 2) — 1 <<"lls without tytles and such thai 

there is at least one cell in each row and eaeh column |5|. Let (/, and r, lie the dual variables associated 

with B. A basic optimum solution li" to P.V can be found by usinj: any standard capacitated trans- 

portation algorithm |5| or more efficiently by using the procedure suggested in [8]. Kor each /. P51 

can be solved parametrically starting from the optimal solution to I**' ' by utilizing the area rim opera- 

tor 8R i (/•') [6, 7]. This operator transforms the optimum solution of problem f into that of a problem of 

PA whose data are the same as that of f except that «,' = ((,+Sui and 0* = bj + ftßj. ForP5',aj=aj '. 

id' and ß^r'^jtj". Hence lettinga, = 0for jc/'and ßj— rjfor jeJ".P5'van be solved by applying IR, 

(f" '). The optimum solution to HV is the same as the optimal solution to /J5'. with value of the objective 

function2'=a' '/'• 

We provide below an algorithm to solve each P4' successively lor I ~ 1.2 T starting from 

H". The first phase of the algorithm determines an optimum basic solution to P4". The second phase 

applies the arc rim operator to find the optimum solutions In t'V. ttK. ^e denote by i|/ the set of cells 

(i,;) which have their respective »,, bounded from above. From (15), 

118) V = {(i, n + 2) for iW 

Let ^= {{i,j) (m iel'.jd'} 

Since only the cells in ^ are bounded from above, we can somewhat simplify the statements of 

the algorithm in (6. 7| tor applying 8R il/-*). This simplified version is given below and illustrated with 

an example. The reader should refer to |6. 7| for the proofs involved in Phase 11. 

3.3 ALGORITHM i: Paramelric Procedure for Solving Problem P4. 

Phase 1: For finding a basic optimal solution to FV. 

STEP 1: Solve PS" using any standard capacitated transportation procedure |5| or the procedure 

suggested in |8). Record the B",X" = {.»i'1}, u," for /«/' and r," for/ej". These are the optimal primal 

solutions to P40 as well. Also record Z". Set /" = /"/u. 

PHASE H: For applying 8R .(P) to solve P4', uK. 

STEP 2: Set / = 1, /, = I. «i = «". .V; - A". // = Z". u,.\ - u»' for iel', i,.'/, = r," furjd"- 

STEP 3: Set /3j = r', (or jej". Find the modification matrix |6, 7|, V = {>,,} associated with ß, 

Utrje.!" and H'I. by solving the following equations: 

119) 
£  Yij = 0        for (W. 
pi" 

(20) 
^ yij = ß,       U>T jej" and 

* Th<* reader is assunu'd to he tanilliar with the iiMia) ilctiiutinns in thf primal algoritlun for the transportation prolilcni I'tj. 
Kor continuity ill«' nciosary (Iclinilinns will be Malcil Itriefly when lluv an1 meded 

rifitaiWMMÜiMiaM   
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>,; = ()        for (/.;) ^0',,. 

Determine /xi. the maximum extent to which the basis preserving area rim operator 6R4(/,) ean he 

applied using Equation (30) of |6], i.e. 

(22) fii = Minh-jc.j.A »/y.jl       f»r {(i, jle^lr,, < 0} 

Record (r, s) as the cell at which the minimum of (22) is taken. 

STEP 4: (i) Jf V pti S» 1, go to Step 4 (iii). Otherwise, go to Step 4 (ii). 

(ii) (a) Set b'j^b'j-1 + (^ Ml) ßj        foriej". 

Z5, + .=Zi + ^ [£■*'"■'. and X'k ., = {.Xij.'i. , , = .»,/,, + (/ii )y,,} 

(h) Delete the cell (r, s) from B[. If there are no basis cells in row r, define l'r = r, J" = <}), /„' = 

/' — {r}, J" = J". Otherwise imagine the remaining basis cells to be connected by horizontal and vertical 

lines whenever two of the cells lie in the same row or column. Define /,' and J" to be those lines (rows and 

columns) that are connected to row r. Set /j = /' — l'r.J[' = ./" —J'r'.* 

(c) Determine A and the cell (e,/) where the minimum is taken (Equation (58)üf [7]) via: + 

(23) 
(c.j - u,,',, - v},'k]     for(i,;)«[/; x j;'] n ^ 

for (i,i)e[/;xy;']nx 
.        w.     f (C.J - Uj.'* - t/j/A 
A= Mm    , 

[ {Ui.'k + VJ.'I, - Cij 

SetB'k + i = Bi-{r,s) + {e,ß. 

(d) Determine the duals u,,'/. +1 (oriel' and ij.'i, . , ioTJfJ" using Equation (60) of [7], i.e. 

ü'./, — A        for «/' 

(24) 

''.;.A • 1 

W!,A for ic/, 

f'i.A + A        UtrjfJ'r' 

(. ^.I.A for7V» 

Set Ä = A + 1, go to Step (3). 

*F<ir a more rigorous definition of these sets, see |6|. 
+ It will he proved later (Theorem 11 that;«,.',,. 2.t tone/' is nonincreasingas a function of the number of applications of 

Steps (31 and (4). Since in P4', Xi.'n ■■• for it/' is the only set of variables with upper hounds, Xn.'i. . i = 0 always, and Ki|ualion 
(58) of [71 applies. 

— — ..-..- ,,....  ,, , „gm^mi 
  ' Hill Hill 
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liii) Set 

W = i - 2 'i;- 
/,'= h>   ' i  r' \oTJd"- 

B\' = H[., = !([•       Z'r = Z[ \       "k Z[. t M 1 [  1 m. 
-   jt-! 

/ii:,1 = "!,.., = ";.A 
ton«/'.       ''' ,,' k      (orjd"- 

al solution  tu F4'  with Z'k.i = 
,+ tlliU\-X'      is a basic optimal somuun ...--.     -... 

Find A', '^^{^.A-.-^-A+^^t   /-' ,.= 1   n^r.gutoStepS.Otherwis 
ü- •/',,.,. Record them as A' and Z' respectively. Set , -   M  I. /•     I• 1U 

i^o to Step 3. 

STEP 5: X',Z' i..r/= 1. 
r have been obtained. They are the «iplim 

a! solution to P4'. Stop. 

3.4. A INumerical Example 
Figure 1(a). lb), and (c) show a P50, PS1 and P5- respectively lor m~n = 2 (i.e. P4 lor m~n = 2 

KlüHBF.  K.l.      (W-) 

Kl';' RK I      NiinK-ri«"1 '-"a1"!'1«'- 

,.....,, .„ui^ar,-,!.. s, ,.„..|l„.,l.nt.,nr/'t'an,l/'S. .>„.■. —U, 
NOTE: r,,= a' v,,. wl 

l-ECKNU;      I (;(| j      ^~1 (,, is the upprr bnund »n ihi- cell li, /) 

V*   -J        ilf not marked. [',, = ».) 

 —-..-^^^.^.^  i  -  ——^ ■ii iniiiiiiiiaMiltiiaiMiiiliMi 
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and T=2, with C(j= ur'   'c,j. where Cij and Cfj are the cost coefficients for P4' and P5' respectively), 

and let a = 0.8. Note that 

Also, 

w. 

120, 

^ = 3^- 120-40. 

in Phase I of Algorithm 1, using the primal transportation algorithm |5], we obtain the optimum 

solution to P5" as shown in Figure 1(a). The circled cells denote optimum basis ß" and the amounts 

*?, are shown in the northeast corners of the cells. Z" = 530, Z0= (530/0.8) = 662.5. 

In Phase II of Algorithm 1, we seU - 1, r = 1, «', = B".Z\ = Z".u,,', = u» for i«/' and vjS = 

t" ior jtj". Figure 2(a) shows the modification matrix Y = [yij] obtained l»y applying Step 3. ß\ = 

r40 30i 
1/2. Thus (r, 5)= (2,3). Min 

20 60 

In Step 4, since /xj < 1, we go to Step 4(ii)(a). Now bj = b]+ßjl2 for jej". and x}i 2 = xlj , + 

(lI'Dvij. These are shown in Figure 2(b). It can be verified that Z,l = 810. From Step4(ii)(b),/;.= {2,1}, 

/i={3},y;'={2, l},j;'={3, 4}. From Step 4(ii)(c), we find that A = Min[/M-10, ;Vf-9,-l+5, 

1 + 2] = 3 and (e, /) = (2, 4). B\ = B\ - (2, 3) + (2, 4). Using (24) (Step 4(ii)(dn, we obtain the //] ., and 

fj 2 for iel' andjej" as shown in Figure 2 (c). Applying Step (3), we obtain the modification matrix 

Y= {yij} as shown in Figure 2(d). We have /x.{ = 3/2, (r, s) = (1,2). In Step 4 since T /i} > I we goto 
i • 1 

Step 4(iii), where we set /ij= 1 — 1/2= 1/2, and h] = 6"+ rj (m j ej ". B[ and A"1 are as shown in Figure 

2(e). It can be verified that Zi= 1,180. Hence Z'= (0.8)0( 1,180) = 1,180. We now have the optimum 

solution to f^1. 

o 
20 

o 
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1 
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Proceeding alotifi similar steps, starting from B', we obtain the optimum solution to P42, with B2 

and A'8 as shown in Figure 3(a). Z2= (0.8) [1,680] = 1,344. The optimum solution to PiiaX1 and A2 with 

Z = Z'+Z2 = 2,524. 
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3.5.  Equivalence Between P4 an») P2 

We note helow a key property of Algorithm I. 

THEOREM 1: (i) The values of •*'{„, 2 t. obtained on the application of Steps (3) and (4) form a 

nonincreasiiifi   function   of   k   for   a   particular   I. 

lii)  The values of •*{,„ t2 in X1 form a nonincreasing function of t. 

PROOF: (i) For a particular I. by Stcp4(ii), v^ A. ^ , =jr{, ,,.+ (/x;)y,j where Y= {y,,} is computed 

in Step 3 for f and k. We shall show that >'(.„. L. =£ 0 for (€/'. Assume the contrary, i.e. 

(25) 3 a   yitt.n. 2 > 0,        ide/'. 

Froin(19)  V   >,„,; = (). hence 

(26) 3 >•„...,,< <>■       >,€,/"-{« + 2} 

But from (20) ^ Yi-j^ßj = rj, =50 hence. 

(27) 3.Vi,,j, >0,        /,«/' - (;„) 

But from il'^l  V yi,.j =0 henee. 
jtj" 

28) 3v,,.,2<0,       ./,e./"-   {/,}. 

 , .—^— IMIMJIIII       ..^■;.,—...»-.^.....^^1,  iiiiii in i HHüiaüiitiaü'" 
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liji— {n + 2}, the cycle {(tu, n + 2). (i . /1), (ii, ;i), Ui, n + 2)} has been detected inß',, which 

is a contradictini". 

\( ji* [n i 2}, since rj^O 

(29) äyii.J» >()- Htl — {in] ~ {h}. 

((2^ lo. since if i2 = ii), the cycle {(tu, j\). (ij, jx), di. /«), (io, /»)}  has been detected by 

(26)-(29), contradicting the fact that H'k is a basis.) 

We are then back to (28( with a 

>•.„<,<<».     }stJ"~{i\]~{ji)- 

(Again j.\ ^ }\ since if j*— }\ a cycle has been detected in ß'k.) 

Since /' and ./ " are finite, inductively, we must terminate with '.he existence of a 

(30) >..,-.. 2 <()• 

Conditions (2,C))-(S0) imply the existence of a cycle in ßj. which is a contradiction. Now./xj. ^ 0. 

hence we have *i. „.■,.,,,■ M ^ ■»■„ f2i/i for ie/'. 

(ii) For a particular t and k, by Step 4(iii) 

11. n t 2, I       •* i. ii . i for ie/' 

By Theorem lli). we have 

• -x, ., where / > 1. Q.E.D. 

REMARK 1; By Theorem i'ii). Algorithm 1 provides an optimal solution to P4 with x[ „^ a 

nonincreasing function of (. for te/'. Consequently, the coupling constraint (17) (which is equivalent to 

(4)) is satisfied. Therefore, the optimal solution provided by Algorithm 1 is also an optimal solution to the 

linear capacity expansion problem P2. 

Continuing on the numerical example in section 3.4, we find that «j" = </i = <tf = 0, (/" = 0, (jj = 30, 

(/Ü = 70. Hence the optimal solution A"1, X'1 is also an optimal solution to the problem P2. formed by 

adding the coupling constraint (/■ -<f ■   ' ^ Ofor f = 2, i = 1, 2 to the numerical example given in Figure 1. 

REMARK 2: Algorithm 1 provides an optimal solution to ^2, by solving parametrically (in terms of 

the rim conditions) T+\ transportation subproblems P4', t = 0. 1 T. Since the computational 

times for such large subproblems (e.g. 25x 500) are only a few seconds. Algorithm 1 can provide an 

optimal solution to fairly large size problems PI (e.g. / = 2S, J — 500 and T = 10) in a matter of seconds. 

However, as stated before, a problem P'l os such size may be computationally unwieldy for linear 

programming codes. 

REMARK 3: In converting problem PI to P'l we assumed that £i= A, for itl. We show below that 

this assumption can be somewhat relaxed. If k, ¥= £, then the expression aT   x[a(k, — £i)}q] will have 

-•l"il"'i"l""r '  *-    -  --—■■-    ,   ,  - m  
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to he added on to the objective function (7). In terms ot the pmhlem /Ti thi^ affects onl\ /T)' in which the 

costs c[„ . .,  change to c ' „ .., where 

r ,';„.,=  r,'„..,-u(/.,-A',). 

In terms o) the operator theory of parametric pnigrammini: |'). 7] this is referred to as the area cost 

operator Ml, (/') which transforms the optimum solution of /'to that oi /" with the same data except 

'i', ='',, + 6y,, for/c/ and /«./• In our proldem ß = I. y, „... = —u i/,, — ,1;, i lor/t/andy, = 0 else- 

where, l.el the maximum extent to which 6<V , if) can he applied without altering the current hasis 

structure he JU.I. Then it /n 1 '1 then IV \- also optimal to this changed set oi costs. However if ^ 1 • I 

then further application of the operator involves hasi» changes and the solution so obtained lor fi = I 

may not satisfy the constraints 117). However, for a reasonably long planning horizon, even in the latter 

case, the solution obtained with the assumption /., A', may be expected to be nearly optimal to AM. 

(Continuing on the example from section .i4 we have /,, ~ S/0.2= 25 and k: -- 10. Let ^t, - 'l.\ and 

gi = ^. Hence we have yi.j = —(0.8)(2) = - 1.6, "y. 4 = —0.H and y,; =0 for the remaining cells. Apply- 

ing Theorem 8 of [ft |, we obtain the u* for < t / and 1* for 76./ " as shown in h igure iibi. The maximum 

extent to which the h('. 11 /' I can he applied i« (see Kipialion 1 MM of [ft | 1 

/.i ' = Min[(.M- I - 121/0.8. 1 \1   1 - II 1/0.8]     ( W- VM 0.8 

Hence the (pritnall optimal solution a-, given in figures 2iel and 'Md\ remains op'imal to l'\ with ti\ - 2M 

and gx = 4 as well. In fact for this example, the optimal solution remains optimal to /'I for 0 s £', % /,, 

and 0=5 fi. s /,.,. 

4.0. OPTIMAIJTY PROPERTIES AM) INFINITE PLANMM. HORIZON 

4.1. Properties of the Optimal S< inliori 

In this section we study some properties of the optimal solution to/'l' as provided by Algorithm I. 

I.EMMA 2: In the optimal solution to I'l as provided by algorithm I, .sj (= «J „., I =0 for all 

^{7. T-H 7'} if </[ > 0 ( - i; „. , ■   V ) for any reA and/e/'. 

PROOF:  Assume the contrary, i.e. s; > 0 lor a/« {r. r + I T). 

Hy Theorem lliii q\ ^ q] > 0. The value of the objective function to subproblem I'V can be reduced 

by decreasing s{ (= decreasing ij „,,) ami decreasing (/J I increasing .»J „.., I. contradicting the fact 

that.vj „., and <:•„., belong to an optimal solution of/'I'. 

The physical interpretation of Lemma 2 is intuitively meaningful. It -av- that with linear costs. 

there exists an optimal solution to P'l such that if there is a capacity addition in a period for some 

region, then that reg < :'"■• fall capacity will be utilized for that period as well a- all future periods. 

LEMMAS:  If </','. and V r; are integers for/e/. it.l and/e{0) • /v. the optimal solution to ^2 as 
: - 0 

provided by Algorithm I are also intej« rs. 
( r 1 

PROOF:  V r^., and V /n   ,  orfi{0} ^ K involve additions and subtractions of gj1 and V i:. 

1'«/. jt.I and ft {0} ■ k. Also by definition. q"m . | —0. Si 1 ice .V can also be assumed to be an integer, the 

rim conditions of P4' (see (13)-(15) i.e., a" and //', for itl and n.l ". /€ {0} + A.) are all integers. The 

. .. .   --.—»—..^-^-—— mmmmmmamiammmm 
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constraint matrix of each subproblem P4'. tt {0} + K is totally unimodular. Application of Algorithm 1, 

therefore, produces integral X' (or t(K. By Remark 1, this integral solution is optimal to /"i. 

Lemma 3 is interesting because the constraint matrix of P2 is itself not unimodular. In the physical 

c iiitcxl of the problem, integral optimal solution may be important, since it may be meaningless to add 

a nonintegral number of capacity units. In the multiperiod assignment problem mentioned in section 1, 

this may be particularly important. 
LEMMA 4: (i) Assume r'j >0(OT jfj '.* For some t and k, if at Step 3 of Algorithm l,the modifica- 

tion matrix K= {y.j} obtaining by solving (I9H21) has y,; »0, for itl',jtj' then/x' =L (a large positive 

number). 

(iil The B'= B[., derived from the subsequent application of Step 4(iii) remains an optimal basis 

for all subproblems P4r, T * /. 

PROOF: We have y^ 3» 0 forit/', jt.J '. Using equation (22) we hav - 

K=M'n(-x{,1, + l.t.)/y(., + lfor{(i.>)€^|yu<0} 

Since the set of minimization is empty, fi[- L la large positive number) 

liii) The Y= {y,j) satisfy (19)-(21). Since ix'k=L, from Step (3) we go into Step 4(ii) where 

B' — ff^.i is obtained. At the next application of Step 3, we can obtain a new modification matrix 

Y={yi]] satisfying (19)-(21) by defining Vi; = (r^'/^ )y0 for i«/'. ;€7 ' and y,.n. 2= - ^ y,j lor 

iel'. Since r' > 0. yij ^0t and r'*' ^0 for le/'. jej '. we haveyij >0 for id', j(J '. Y thus satisfies 

the condition of Lemma 4(i) and /i',4' > I. Henceß'' ' = B'. The argument can be repeated to show that 
B' = B' for T5M. 

Lemma 4 provides a sufficient condition at which Algorithm 1 can be terminated, since when this 

condition has been attained at time t (say), an optimal solution to all P4T, T ^ / can be readily obtained. 

An optimal solution to^2 is given by ß'.ö2 B'.B'^^B' BT= B'. andX'.X2 V. 

X'-^X'+Y'^.X^^X'^ + Y1** Air = JtT-' +yT. (K'*1 is the modification matrix obtained 

hy solving (19)-(21) with/j^r^' forjej".} 

4.2. Infinite Horizon Case 

We now show that Algorithm 1 can be applied to solve P\ with an infinite planning horizon. Obvi- 

ous!), in the infinite horizon case, the assumption regarding the resale value of the capacity at the end 

of the planning horizon is not needed. Infinite planning models have received interest e.g. [3. 4] as 

it is felt that any terminal condition imposed on a planning model is arbitrary. 

We assume that for periods prior to T. the demands in each market can be estimated with greater 

accuracy. Hence the growth rates for these periods may be any nonnegative rate. At the end of the 

planning period T. the demand in each market /' is estimated to grow at the rate ß, per period.** After 

*lf rj = ü for any j«7 ". lei r1 = «, wherr « is a vrry small positive number. 
til can be shown easily that since y,j » 0 for ii/', jtj'. ihere can exist one and only one y,, > 0 for each jtj 
* * From the definitions given in Section 3.1, we have 0,. 1 = 0 and /ä,. 1 = — T /j, 

——^_*—  
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solving /'4' lor i up to T. the remaining problem in an infinite horizon model consists of the subproblems 

/'4' for/ >T whe., 

I 7 

^.= y r; = ^ rj-t ßjit-T)        for r > 7' andye./". 
:    (I ;    0 

it is obvious that there exists a basic feasible solution to any subproblem /'4'. for / S 0. Each 

I'V is an equivalent problem to the others except for the requirement vector [5], which is a nonde- 

creasing function of t. By a well known result in parametric programming \r>. p. 149], there exists an 

optimum basis H' to I'V which remains optimal to all I'V. I & T. 

Algorithm 1 can be applied to solve l'\\ I ?() until the modification matrix ) (as computed in 

Step 3) satisfies the condition of Lemma 4(J). Assume thu is achieved at f=/i. A basis li'i has been 

obtained whit i remains optimal to all P4'. t > t^. An optimal solution to I'V. ! > h is given by \' = 

V ' - >'. By l.emtnal. «'. «- H1'. H'I'= H'>. . .  . W3t = fi'i is an optimal solution to Pi for 

the infinite horizon case. 
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ABSTRACT 

A linear Kiaelinnal Interval Priinraniinint; problem iHPl is the problem of extremiling a 

linear iractiunal tunetinn subject lo two-si<led linear inet)Uality constraints. 

In 'his paper we develop an algorithm lor solving iHI*! problenut. We hrsl apply the 

• harries and (ouper Iransl'ormation on iKll'l and then. Ii\ exploiting tlie special structure 

ii) the pail "I il.Pl problems derived, the algorithm produces an optimal solution to iKlK1! 

in a finite numlier ol iterations. 

1. INTRODUCTION 

Problems of maximizing a linear fractional objective function subject to two-sided linear inequality 

constraints were termed in the literature as fractional interval programmins problems, denoted by 

(FlPi. Their general formulation is 

Max (C'.T +ct,\l(d
Tx + dn) 

subject to   l>   -e Ax =s /)• 

\^e remark that for a suitahle choice of the vectors /* and //' the constraints set of (FIP) is sufficiently 

general to cover ;ill bounded polyhedral sets. 

Problems with linear fractional objective function ai e, e.g. in attrition games [14], Markovian 

replacement problems [11. 15]. reduction of integer programs to knapsak problems [4], the cutting 

stock problem [13], in primal dual approaches to decomposition procedures [1, 16], 

The linear interval constraints arise in problems of capita! budgeting, hlending and mixing prob- 

lems, production planning problems atid more, see e.g. [3, ll>j. 

•This research was partially supported by NRC (irant number A-4024 and by ÜNK Contracts N00014-67-A-01l!6-()008 

and NOOOl-MiT-MllL'fi-tKMW with the Center for Cybernetic Studies. The University of Texas. 

53 

^uw.fiti-i>.--,-.ir«»)ni rt^^aiigaimdiäaiAulik  ,Mlliatllll>ll,MI,lll|ia|ia||| 



^^^PWWIiWWWWI^^»*^»^" ■""'■   ' i ■■■! jiiiiijii .ii.iii .   .    iiniiin.iiiii^iiii.unnii]! nuiiiuiiim^umDiPn, w^nm^mm*'** 

54 A. CHARNES. I). GRANOT, AND K. (.HANOI 

A complete analysis and an explicit solution for (F1P) when the coefficient matrix A is of full row 

rank was first obtained hy Charnes & Cooper 17). see also [5, 10). A finite algorithm lor solving tin- 

general (FIP) pr(il)leiii directly, i.e. without resorting to the transformation of (FIP) to an equivalent 

linear program mint: prohiem. was constructed in |9). 

In this paper another finite primal algorithm for solving (FIP) is developed. In contrast with the 

algorithm developed in [9|, we first apply here Charnes and Cooper's transformation |f)| on (FIP) to 

reduce it to a pair of (I,Pi problems. The crucial observation is that for a fixed value of the additional 

variable /, introduced by that transformation, each one of the pair of d.Pl problems is an Interval 

Programming problem (IPl which is significantly smaller in size. This last feature is fully exploit in our 

algorithm where instead of solving the pair of (LP) problems directly, we solve parametrically lor / 

the associated (IPl problems using the method developed in [8] . ^e start with a feasible value of / 

for which an optimal solution to the associated (IP) problem is generated. The values of / and the 

corresponding optimal solutions are then modified until, after finitely many iterations, an optimal 

solution to |F1P| is produced. 

Thus, by exploiting the special structure of the interval constraints and by using the primal algo- 

rithm for (IP) problems |8| as the main device, we are able to efficiently solve iFII'l problems. 

The algorithm to be described here together with that developed in [^1 are based on two of the 

major approaches suggested for solving fractional programs —those of Charnes and Cooper [6] and 

Marios [17J, respectively, and they both utilize the special structure of the interval constraints while 

generating an optim.'l solution to (FIP). 

2. PRELIMINARY RESULTS 

Consider again the (FIP) problem: 

(1) Max 
'■' > + r,,     C(x\ 

iPx " (C l)(x) 

(2) s.t.    «6.S--- {h   ^ A\^ b) 

where r'. ro. dr. tin. It  . h' and A are given. In the sequel we shall assume that S i> bounded and 

.... rrjf + r„ 
l>'l -r. . * constant 

tl'.X   i  (l„ 

on S. 

I.EMMA I [7|: A feasible (FIP) is unbounded if either f^\(-l ). or </< V(.4) •. where \ (.-1 ) is the 

null »pact of A. 

..EMMA 2 |9|: Let (FIP) be given with nMA]  , tIe.\'(A)    and AtR1;-" where rt; is the set of 

all m X n matrices with rank r. Let l)eR'r'" satisfy 

R{Dr\=K(AT] 
1 hen: 

(a) AürtR:"r. 

>»M^I1Al^T^,A|-*aliAiMj-B,...„-   r^w,^.^-:^,^.. -•ilWll-lllWfc-U.JMyit 
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(I)) (KIP) is equivalent to a full column rank (KlPl with coefficient matrix AD1 and cost function 

cTDTy+cH 

dTDTy+d» ' 

(c) If feasible, the optimal solutions of (F1P) are DTy* + N(A) where y* is the set of optimal 

solutions to the equivalent prohlem. 

PROOF: Since R{AT)-N{A)i and since reS'A)1. de!\(A)+ it follows that every optimal solu- 

tion to (F1P) is of the form 

where x* is an optimal solution t( 

(4) 

.t* 4 /VM) 

Max —lr        '- 
d'x + rfo 

■i.t.    /)   « Ax =s h 

xtK(Ar) 

But, since R(Ar ) = R{l)r ), xeRlA1) can be equivalenlly written as: 

.x = DTy,       .veftr 

Substituting x~ DTy in (4) results in the equivalent problem, which completes the proof. 

3. AN ALGORITHM FOR SOLVING (FIP) 

Consider again the (FIP) problem 

(1) l(/7.r4-d,-0U) 

(2) s.l.    /*   s .4x« h' 

and assume that (FIP) is feasible, r 1 N(A). d 1 \(.4) (see Lemma 1) and A is of full column rank 

representation (see Lemma 2). 
Following Charnes and Cooper's transformation [6], we multiply 6'(j) and D(x) by t. t >0> and 

restrict I • Dix) to he equal to 1 (or — 1, for negative values of the denominator). Substituting 

(S) Ix-z 

in (1), (2) results with the following pair of (LP) problems, equivalent to (FIP) and denoted by lELPlI 

t(ELP2)) 

  -'■-"'-■■"■■■  '—    -    ■ , r     .        ,,   || 
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(6) 

(7) 

(8) 

(9) 

(10) 

A. CHARNES, D. GKANOT, AND F. CRANOT 

Max {cT ■ z+r„ ■ t}        (Max {-cT-z - Co ■ t) ) 

s.t.    .4 ■ z^ h' ■ t 

A-z3: h    t 

(lTz=]-dlrt        {dT-z=-\-d0-t) 

where M is a sufficiently large numhei. As it was noted in |6|. (ELP1) and (ELP2) differ from each 

other by only a change in sign in the functional and in one constraint. 

We observe that the constraints uf (ELPl) ((ELP2)) are of special structure. Indeed, for any fixed 

value of t, the 2m constraints (7), (8) are equivalent to m interval constraints of the form 

(11) h   • f s .4 -z « /** • /. 

Thus, for any fixed feasible value of / (ELPl) ((EI.P2)) can be reduced to an equivalent (IP) problem 

denoted by (EIPll ((EIP2)) of the form 

112) Max r7 •; t r,, • t       (Max - c7'2 - c0-t) 

;13) s.t.    /<    ■ t ^ .4 • z^ b1   t 

(14) \-dol^<lTz^l-do-t       (- 1 - d,, ■ / « (/7z 5S - I - </„ • /). 

Let x1 be a feasible solution to (FIPl. not necessarily an extreme point. 

REMARK I: For a real world problem, a feasible solution to (21 might sometimes be at hand from 

the available data on the problem. If. however, a feasible solution to (KIP) is not available then r = 0 

can be chosen as a feasible start whenever /; =£/»'. Otherwise, assuming Ir s 0, we can solve the 

following (IPl problem 

Max-.l/eT 

s.t.    h   ^Ax + lü<b' 

Oss/t/ss/r 

where M is sufficiently large, in order to produce a feasible solution to (KIP), if such a solution exists. 

For a more detailed discussion see [8). 

Clearly, if DU1) >0(ß(^,)<0) then 

(15) l,= llD{xn,z, = t\ ■.<•'        {t1=-\ll)Lx'}.z' = t] •*') 

is a feasible solution to (EI.Pl) ((KI,P2)). 
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In the following, we shall present a method for solving (E1.F1) i.e., the case that Dix1) > 0. Exactly 

the same method will he applied for solving (ELP2) when l)(x') < 0. 

The main idea underlying our method is to take advantage of the special structure of (El.Pi) 

while attempting to generate an optimal solution to (FIP). Thus for 1 = 1, we first apply the primal 

algorithm for (IP) problems, introduced in [8], in order to produce an optimal solution zU\ I, to (EIPl). 

Let H he the optimal basis generated by the primal algorithm for (IP) and V the completion of the 

rows of (;]/) to B. Let h(t)= (';.„'„,) and h (/)== ('; ,,'„,). and denote by l>HU). tr^il). h'^t). /<VU) 

the partitions of the vectors h it). h' it) which correspond to the partition of -f to B and V, respectively. 

Substituting 

116) >-ßz 

in (EIPl) and rearranging the order of the constraints results with the following equivalent problem 

17) Max {rr -B  S * r„-t] 

18) .t.    httU) « \ ss l)H{l) 

(19) bs{t) « V/i  'vs l^{t) 

Since B is an optimal basis, ) ' given by 

(20) v = ■ 
bjlt),        i icTB '<(» 

n) 

is an optimal solution to (17), (18), (19) for t — t,. and 

21 zit,) = B   '•/, 

is an optimal solution to (ElPlff for t = I,. See also |2|. |8|. 

(Üearly, / = /i is not necessarily the optimal value of / in I ELP1). In the following we shall generate 

the optimal value of t, t"1". and the optimal solution c(/"1") to (EIPl I for t = t"w. 

Let 

(22) 
\h-H(t),   •iiv/v*« 

n) 

Treating / as a variable and substituting 

!3) v, = /),.(/), ('= I. 

in (17), (18), (19) results with the tollowing single variable constrained maximization problem 

 •- •  - ^i rai> 
 lit!   -^~-  iMhiii 
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(24) 

(25) 

Max 

A. CHARNES, D. GRANOT. AND F. GRANOT 

V icTB-^MOi + Co't] -; Ma* {aH ■ t + ßH} 
1=1 J 

s.t.    b;(t) ^NB^Hin^biit). 

Since t = tiis a feasible solution to (25), then, if a« = 0 we can immediately conclude that (z((|), (i) is 

an optimal solution to (El.Pl). If, however, a« ^ 0 we need to consider the following three exhaustive 

cases: 

(i) a« > 0 and the value of t can be increased until M without violating any of the constraints in 

(25), then C{x}ID(x) is not bounded overS, see [6]. 

(ii) a« > 0(a« < 0) and the value of t can be increased (decreased) from ti to /;.. where to > 

hiti < /i) is the largest (smallest) value oft which does not violate the constraints in (25). 

(iii) Any e increase (decrease) in the value of < when a« > Ofa« < 0) violates at least one of the 

constraints in (25). 

Thus, whenever a« = 0 or case (i) occurs we terminate with the appropriate conclusions. 

Assume therefore that we encountered case (ii), a« > 0 and that we had increased the value of 

t until ti. We shall attempt to vary the value of t from t> so as to improve the value of the objective 

function. Exactly the same method is applied if case (ii), a« < 0 occurs or when case (iii) occurs, for 

t = t,. 

Since for each 7, b*(t), b~(t) are linear functions off, they can be written as 

(26) b;  { t) = b; '■ t + y; .      bj (t) = bj ■ t + yj 

For simplicity, let the nonbasic constraint satisfied as equality at /j be 

(27) OiyiU2)+. . . + an-yn{ti) = b{ti)„,l = b„.l-ti + y„tl 

where b{ti)„ti = b*{t2)„ti if the nonbasic constraint reached its upper bound as t was increased to 

t-z or b{ti)nti = b'(ti)„t, if it reached its lower bound. 

We shall refer to nonbasic constraints satisfied as equalities aXt = t> as critical nonbasic constraints, 

and lo t = t> as a critical value of (. 

REMARK 2: We shall assume in the sequel that there exists only one critical non-basic constraint 

at t^t-i and at any other critical value of t. This assumption can always be made, since if not, a 

perturbation, essentially equivalent to that introduced in |8]for the linear interval programming problem 

can be performed in order to secure this property. The perturbed problem is obtained from the original 

problem by replacing the vectors 6' and b   by the perturbed vectors i* («) and b~(e) where 

biif) =bt +ei b[{€)=bi-fi {i= 1 m) 

and e is sufficiently small and positive. 

Let 

T={t:t isfeasible to(ELPl)} 

v(t) -The optimal value of the objective function in (ELPl) for teT. 
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LEMMA 3: T is convex and fU) is concave over T. 

PROOF: The convexity of T is clear. Next,let t,, ^eTand let \, X be non-negative scalars such that 

X+\=l.Then, 

(28) v(kti + hi) = Max {cT [Xz, + kz-i] + co[X(i + kti] 
'u'l 

s.t.   b-iktt + ktz] *A[kzx + kzt] ^ b*[kU + X^]} 

3=Max{rT[X2i + X2.2] + o)[X/, + X • f,l 

s.t.    b  (t,) ^ Az,^ b'itt),      b   {I-,) ^Az.^b'd-.)] 

= X • Max {rTz 

s.t.    b-(t\)**Az*Zb*(tx)] 

+ X • Max {cT2 

s.t.    b-{ti) ^ Az^ b-(t,]) = k ■ i-(/,) +Xi'(/2) 

which completes the proof: see also [[12] Lemma 1]. 
Since it can be shown that (23) is optimal to (17), (18), (19) for t, < t «£ t2, then, as a corollary to 

Lemma 3, we have the optimal value of / in (ELP1) is greater than or equal to t>. 

The feasible solution (yU*), h)~ (y\(ti). . ■ ., .YnUi), li) is an extreme point for (18). (19) in 

R" *'. In the following, we shall generate an adjacent edge to (yit-), t-,) along which, by increasing the 

value of t we shall improve the value of the objective function (if such an incident edge exists). 
Suppose we form a new basis by removing 8^, the )th basic constraint, and inserting the critical 

nonbasic constraint. Then, upon substituting the new set of values of they/s (as it was done in order to 

obtain (24), (25)), we can calculate the slopes of the objective function and the constraints, as func- 

tions of t, in the new basis. 

Denote by 

ß=The current basis. 

Bj=BI The jlh basic constraint U the critical nonbasic constraint, where / denotes deletion 

and U denotes union. 

aH=The slope of the objective function in the current basis R. 

aBj=The slope of the objective function in the basis Bj. 

Sn»i=The slope of the critical nonbasic constraint in the basis B. 

Si=The slope of the jlh basic constraint in the new basis Bj. 

Then it is easy to verify that 

(29) 
(c^-'h 

OtHj— (Xu H [/)n+ l — Sn t l] 

(30) S]=(bH)j + -[bn,i-Sntl]. 
a, 

"——'——"■■     ■■■-  - ■ um ■ - —■     -III   III 
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We conclude therefore that iibgU^j < bgit-^j and either 

(3i; (6Ä).j= (bi)jh aHj>0,Sj > (Mj 

or 

(32) (A«)j= (/'/,);, aBj>0,Sj^ (hi,), 

then we can increase the value off, without violating any of the nonbasic constraints, and thus improve 

the value of the objective function. If ir thejth basic constraint, bH(ti)j = b^t^j we shall attempt to 

remove that constraint from the basis only if .S,= (/',',).;= (^)j and a«  > 0. 

Thus, if possible, the value of t will lie increased until its next critical value, i.e. the largest value 

that / can be assigned without violating any of the nonbasic constraints. 

THEOREM 1: If for each /, (/'= I n) neither (31) nor (32) are satisfied then 

(33) (z(h)>h) 

is an optimal solution to (ELPl), where z{h) - tt '.»(HI- 

PROOF: Replacing a basic constraint with the critical nonbasic constraint and attempting to 

increase the value of the objective function through an increase in /, amounts to examining the pos- 

sihility of improving the value of the objective function hy moving along an incident edge to (vU-i),M. 

Since any such attempt failed, and since v(^) is an optimal solution to (17), (18). (19) ior I = !• we 

conclude that none such incident edge exists, which implies that (VU2). /2) is an optimal solution to 

(17), (18), (19), and thus (ß-1 ■ y(tt),ti) is an optimal solution to (ELPl). 

As we noted earlier, we maintain an optimal tableau while increasing lor decreasing) the value of 

/ from tx until t>. Explicitly, for each (e[/|, /:], (23) is an optimal solution to (17). (18). (19). How- 

ever, this property does not generally hold as we move, according to our criteria, from one extreme 

point to an adjacent extreme point by varying the value of /. Therefore, whenever we reach a critical 

value cf t we need to check the optimality of the current basic solution. If it is optimal we try to 

improve the value of the objective function by moving along one of the incident edges to the current 

basic solution. If, however, the solution is not optimal, we first apply the primal algorithm for (IP) 

problems in order to generate an optimal solution for that critical value of (. 

Algorithm A for solving (FIP) is conveniently summarized in the following. 

ALGORITHM A. 

Step 1: Generate a feasible solution v' to (KIP)—from which obtain by il5) a feasible solution (z1. It) 

either to (El,Pi) and then set ('= 1 or to (EI.P2) and then set / = 2. 

Step 2. Fix the value of/ at its current value and solve (El.Pi) by the primal algorithm for (IP) problems. 

Can the value of t he modified (i.e. increased or decreased) without violating any of the 

constraints, which will result with an improved value for the objective function.'' 

No, a;)=0 —terminate with an optimal solution to (ELPi). go to step 5. 

No, an y* 0—go to step 4. 

Yes —go to step 3. 

in" 1 ifniiif •*■J -'J-   '■'■-".'"-' 
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Step'i. 

Step 4. 

Step 5. 

Tht 

(".an the value oft he inrreased U>M without violating any of the nonbasic constraints? 

Yes—lernnnate. with the conclusion that C(x)ID(x) is not hounded over .S. 

No— Increase (or decrease) the value of I, whereas the values of the y/s are modified accord- 

ingly, as it was done in (23), until an additional nonhasic constraint is satisfied as equality, 

i.e. until the next critical value of r. 

Do the y/s satisfy the optimality criterion for the current value off'.'' 

Yes —go to step 4. 

No —go to step 2. 

Check whether hy removing a basic constraint and inserting a critical nonhasic constraint the 

value of the objective function can he improved by modifying the value off. 

II impossible—terminate with an optimal solution to (ELPi). go to step 5. 

II possible —perform the appropriate basis change and go to step 3. 

Are the optimal solutions to (ELPI) and (EI.P2) at hand? 

No-find a feasible solution (z\t,) to(El.Pj)/€{ I, 2}) ^ i, set i=j. go to step2. 

Yes-Let (zU',""),/',"") and U U,;"*),/a"*) he optimal solutions to (ELPl), IELP2), respectively. 

; (t"pl) 
—-        if r' [.'(0] + Co ■ C 3* rr[z{t^)] +c« • t™ 

(34) x,m=. 

zilT) 
if (•'■[zUf)] +Cfl ■ tf 5* rT[z(t';m)]+r„ ■ t°w 

is an optimal solution to (KIP). 

4. OPTIMALITY AND CONVERGENCE 

The finiteness of Algorithm A stems from the finiteness of the primal algorithm for (IP) and from 

the fact that while we move from one extreme point of (ELPi) i = 1, 2 to an adjacent extreme point we 

strictly increase (in the perturbed prohlem if necessary, see remark 2) the value of the objective func- 

tion. Since the number of extreme points is finite so is Algorithm A. 

ULIMARK 3: Let B be an optimal basis and y(tk) an optimal solution for (17), (18). (19) for / = </,. 

Assume that at / = /;, the first nonbasic constraint is a critical constraint. Thus. (17), (18), (19) can be 

written as: 

Max (r'ß '),>,+ + (r7ß ')„>',.+ r„/ 

s.t.    MOi ss VtSS/V.U)! 

/)„(/)„«>„=£ /»•(/)„ 
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b-(t)n+i^aly,+ .  . . +aHyn'&b*(t)nn 

where A' are the remaining nonbasic rows. 

If we choose to replace the critical nonbasic constraint, which is satisfied as equality on its upper 

bound (lower bound) with the 8i basic constraint for which 

i) r/j ^ Ü 

In) 3=0 CTH 
...   (crÄ-')i      (c^-');       ncTB-1},      {cTB '), 

(III) 
/(r'fl-M,      {c'B'}j\ 

* 0. j * i 

Then, the tableau obtained after performing the proper basis change is also optimal, i.e. the new >i"s 

satisfy the optimality criterion (20). 

The above basis change wiil be performed only if it will be possible to modify the value of/ in the 

new basis and thus to improve the value of the objective function. In this case we would not have to 

solve an (IP) problem at the next critical value of < (see step 2 in Algorithm A). 

However, we remark that it might be impossible to construct a new optimal basis which will 

include the critical nonbasic constraint, and even if possible, we might not be able to improve the value 

of the objective function in the new basis, by modifying the value of /, in which case we will operate 

according to Algorithm A. 

EXAMPLE [9]: Solve the (KIP) problem: 

Mt 
3.y i-■<:.■, M 

2x-2 

.1.      - 1 Sa Xt + X-i «2 

0 =£ .», -f X-i A I "t Xi -s I 

.»,.       «.I 

x, *£ 1 

Clearly, since x-t ^ 1 (ELP2) is not feasible and thus we need only to solve (ELPl). A feasible 

solution to (KIP) is jr1 = (0. I, 0) for which ZXjt1) > 0. From (15) we gel :'=■ (0. 1/2. 0), 1,= 

feasible solution to (El.Pi I. Problem (EIPl I is of the form: 

(EIP1): 

Max foj - z:, ♦ 4/ 

1/2 as a 

s.t. / 55 + ft « 2/ 

■ - 
■■aMMM 
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f sS «5/ 

0^ 23«! 

112- « 1/2 

/I    0    IN 
LetB=   0    1    0 

\o o   i; 

/i   o  -i^ 
8'=   0    1       0 

\0   0       1/ 
\0   1   o) 

Then, 
rrö '= (3,0.-4). 

Substituting y= öz in (EIPl) results with 

Max.ivi — 4y3 + 4/ 

s.t.    -f=Sy .>i «2/ 

1/2«        v, 1/2 

0 « >:, =S t 

0 =S y, f ya - y:l sS 7/ 

t « yo SJ St 

An optimal solution y is > = {2t. 1/2. 0). Substituting y as a function of / in the objective function and 

the nonbasic constraints results with 

Max (U + 4/ 

s.t.   0« 2/+ 1/2 «7/ 

f«sl/2       =s.Sf 

Since /[ = 1/2, the second nonbasic constraint is critical. However, only the second basic constraint 

can be replaced by the critical constraint and for this basic constraint we have hi = b'. According to 

our method this constraint can not be removed since t, =/(,; i* S-,. Thus t'm= 1/2 is the optimal value 

for / and 

— ,i, J 
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/I    0    l\ 
zm = fi •>= I 0    I    0 

\0   0    1/ 
1/2 
0 / it / 

The optimal solution lor (FIP) 
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SOLVING   FIXED   CHARGE   NETWORK   PROBLEMS   WITH   GROUP 
THEORY-BASED PENALTIES 

R. L. Kardin and V. E. Inner 

School of Induitnul nntl Syslrms Kniuneenng 

Georgia Institute oj Technolog 

ABSTRACT 

Many well-known transportalion. rommuniraliun. and facilitie« loeation problem in 

iiperatmns research (an lie formulaled as fixed charge network problem!', i.e. as minimum 

cust How problems on a rapaellated network in one commodity where some arc* have both 

hved and variable costs. One approach to solving such problems is to use group theoretic 

concepts from the theory of integer programming to provide bounds for a branch and- 

bound procedure. This paper presents such a group-theory based algorithm tor exac t 

solution ot fixed charge network problems which exploits the special structures of network 
problems ( omputational results are reported lor problems with as many as 100 hxed charge 

arcs. 

1. INTRODUCTION 

The hxed charge network problem (FCNP) cm be tormulated as ^ 

(I) 

(2) 

min rfjti + cTx-i * r^s 

s.t.  /■;,», + £■..»•. = () 

(3) 

(41 

-lxt+ly-ls = 0 

U, =8 V3»0 

(5) U I & V , 5» 0 

(6) u, ss s ss 0 

(7) u. ^ x^ /. 

(8l v = 0 nuid Ut 

where r,. r,. s, Ui, X\ and > are n, vectors: €••. !•. u.. and tj are n^-vectors: /> is an m-vector; E\ is 

mXm: £j is m x nj; r, > 0; and {£,, Et) is the node-arc incidence matrix of a direct network, i.e. a 

matrix with columns which correspond to arcs of the network and consist entirely of zeros except 

67 
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Inr a - 1 in the row i-arrfsponding to the origin node of the arc and a ^ 1 in the row corresponding to 

the destination node oi the arc The problem i> a general miiiimum cost How problem in one commodity 

with the added features that ail variables are hounded, and that a subset of the flow variables (the 

Xij) have a fixed charge cost structure. Thus each xij has hoth a variable charge r, »i, and a positive 

fixed charge /, assessed whenever, > i, > 0. To obtain the formulation FCNP, prorata amountsr.v =/,/«,, 

are calculated, the cost c,, is defined hy *,,= r,, f v,. and constraints on the slack vector s are arranged 

so that the full amount./j will he assessed when »,, > 0. 

in this paper the solution of fixed charge network problems in the form of l'(!\l' will he pursued 

by using the group theoretic approach to integer programming developed hy (iomory. Johnson and 

others |2, 3. I, 5, 6, 9, 10. 11| to provide hounds for a lirancliand-lioiind approach. Results in |15] for 

general fixed charge problems (i.e. problems like FCNF where no special structure of E, andAj is as- 

sumed) are specialized to the network case. An algorithm using the results is then outlined and computa- 

tional results presented. 

2. NOTATION 

In order to effectively present observations about I't'M1. some notational conventions will he 

required. For the convenience of readers, these conventions are summarized below. 

1. Sets of rows from a matrix (or vector) will he denoted hy enclosing the matrix in brackets and 

indicating the limiting row numbers. For example. 

[ M ]j = the submatrix consisting ol rows I through /. of 1/. 

When only a single row of a matrix is required, the convention will he simplified by dropping the 

redundant superscript, and it no confusion will result the bracket.- will also be omilted leaving, for 

example. 

»i ,= the /lb row or compoiieul oi the vector x, 

2. All references to optimal solutions, bases, and tableaux ,or various linear programs will be with 

respect to bases of the well-known bounded simplex procedure. When It Is desired to speak of the part 

of a solution vector, cost vector, bound vector or matrix associated with the basic variables, nonbasie 

variables, etc.. the usual rearrangement of rows and columns will be assumed, and identifying super- 

scripts will be attached to submatriccs. Specifically, the superscript H will denote the basic part of the 

matrix, V the nonbasie part. I tb> part with nonbasie variables at their upper bounds, and /, the part 

with nonbasie variables at their lower bounds. 

3. A bar over the name of a problem will denote the continuous relaxation of the problem, i.e. the 

same problem with any congruence constraints relaxed. Elements of the optimal solution, optimal 

simplex tableau, etc. for such a continuous relaxation will be similarly denoted by bars over the nam s 

of the elements.* 

'Thoiunh ul the paper ihr UMial Minplilicdliim "I rHfrrmi! In an oplmidl imlution a- il n «in umi|Ui' i- uli-i-nnf. Therr 

m.i\. ut cnurM». In main lia-n Milutinn.- which -.ili-lv «implrv iiptimalit> rnliru llowrvcr. ihr pwn re-xull» Imiil tnr .in\ MU-II 

-iituliiin. ami the "iitv PUSMMI- rffnl nf a'lernativt* -olutinn* is In inaki- some pcnaltir- /crn hrcause tin1 aiijustrH vii*t* nl enrrr- 

^paniiinji imnhasir variables art* /.em. 
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4. The function nu (rl will lie used to denote the value of an opiimal solution to the problem given 

as its argument. 

:i. RESULTS FOR GENERAL HXED CHARGE PROBLEMS 

The analysis of |15l developed a number of structural results for general fixed charge problems 

which will be exploited in the algorithm of this paper. The next lew sections hrietU outline the most 

important of these results. Though the results are slated in terms of the not itbii of KCNP, they appl\ 

to any bounded fixed charge problem. 

3.1. The ConlinuoUH Relaxation 

At each iteration of a group theory-based branehand-bound solution procedure the continuous 

relaxation FCNP of a FCNP inust be solved. In \\^\ it was shown that all elements of any optimal 

basic solution to FCNP could be constructed from the solution to the reduced network problem (HM'i 

(9) 

(10) 

ill) 

(12) 

(>, • ''' mm c Ai • <.;JT- 

.t.   /■;,<, • /■;..x. = o 

(/, s t, ?0 

ir: » x* ^ /- 

if {.x1'. x1!} forms an optimal basis for RNP, (.»''. »". y} is an optimal basis for FCNP. The correspondi 

optimal solution is given by 

v = x , --- x i 

* .• X; 

s = 0. 

where {jfi.fj} is the optimal solution to KM*. 

3.2. Penalty Suhproltlems 

An equivalent form of any linear mixed-integer program can always be obtained bv solving the 

continuous relaxation of the problem and rewriting the problem in terms ol perturbations from tin 

values of the nonba-ic variables in the optimal continuous solution. The optimal simplex tableau i~ 

used to represent change'- on basic variables in term- of perturbation- in the nonbasics. It is shown 

in |1S| that such an equivalent form for FCNP i- given bv 

114) 
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(16) {%HV^)(-n)-iv)L%)'Q 
(17) (:[)^-(^)(-^)-('<)(-ti) + A* 3= 0 

(18) 

(19) 

(20) 

üi Sä A^ 

uj- g bx'i, U'I 3= AJ', 

(u'i - I1..) -^ &x'i. (u'a - /!, I ^ Ax!, 

where     Ajr{ = x{ 

Axi = u't 

Hx!; = x/, //, 

Axi = u^ - xi 

\s = s - Ü. 

A" = the dimension of x/'. 

and c,v, rl, E,^. E) are taken from the optimal simplex talileau for KM'. The relaxation of this equiva- 

lent form consisting of (13), (14), and (15) is the group problem of Gomory and Johnson (denoted GP 

(FCNP)). 

GP(FCNP) is generally difficult to solve. Thus a number of relaxations were developed in |15| to 

produce penalties for a hranchand-hound procedure. Relaxations of GP(KCNP) where only the rows 

of (14) with numbers in an index set F are enforced are denoted GPd"). When a (iPd'l is further con- 

strained to satisfy (18). (19), and i20). it is referred to as a hounded group problem and denoted HGPd'i. 

Finally, when a GP(F) is constrained to satislv all rows i of (17) for iel , it is referred to as an eitherui 

problem and denoted EOP(F). The name for the latter prohlem derives from the fact that E()P(F) is 

GP(F) with "= y, mod Uii" replaced by "= v, or Ui, — y," in row i of (14) for each j'eF. 

Observe that all these subproblems can be constructed directly from the optimal simplex tableau 

for KNF. Moreover, the bounds obtained from solving the subproblems have the following obvious 
relationships: 

c|(;F(Fi| .- H'FGNFil 

HFOFiFil a ^|(;P(F)| 

<'|W;F(Fi| 3 t4GP<Fi| 

('[GPd)] 3 i/t(»PiF')| 

c(EOP(F)|   3 »'IFOFiF'i] 

»'[B(;p(F)i 9 HB(;P(F')1 

I   C  I 

mi  ■!  i    MiiaMMMM—Mug^g 
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4. THE NETWORK CASE 

The algorithm to he presented in this paper employs a hranrh-and-hound approach where the 

above suhprohlems are used to provide penalties. In such an approach certain of the congruence- 

constrainted variables yj are fixed at either 0 or u,,. and the continuous linear program obtained by 

relaxing congruence constraints on the other y, variables is solved. From the optimal simplex tableau 

lor this linear program a series of penalty problems is constructed to obtain lower bounds on how 

much the value of the continuous optimal linear programming solution would have to be increased 

to produce an optimal solution for the original fixed charge problem. These bounds or penalities are 

then used to reduce the set of remaining possibilities for optimal solutions to FCNP and choose a new 

branching variable, i.e. a new variable to fix so that enumeration can continue. 

4.1. Solution of the Continuous Relaxation 

The above discussion of properties of general fixed charge problems highlighted the importance 

of the reduced problem RNP in the various steps of such a branch-and-bound procedure. In the network 

case RNP is by definition a minimum cost flow problem in one commodity. Thus, the various steps in 

the branch-and-bound procedure involving RNP can be simplified by exploiting the network structure. 

One of the most powerful sets of theory for minimum cost flow problems is the graph theoretic 

approach development by Johnson |8] and Langley [13] and others. In the terminology of this approach 

a graph is a collection of arcs and nodes associated with some network; a cycle is a connected set of 

two-ended arcs of the graph which touches nodes in such a way that every node is touched by exactly 

two arcs; a tree is a connected set of two-ended arcs which contains no cycles; and a forest is a set 

of trees. A forest is said to span a graph if each node is touched by exactly one tree. If a one-ended 

arc is added to each tree so that the number of nodes is equal to the number of arcs, the one-ended 

arc is called a root, and the tree is said to be a rooted tree. A collection of such rooted trees is a rooted 

forest, and a rooted forest which spans a network is a rooted spanning forest. 

In terms of these definitions, the fundamental result on which the graph theoretic approach to 

network flow problems is based can be stated as follows; 

4.1.1. Thrurrm (aee |K|). 

The arcs associated with any basis of a network How problem like RN1' form a rooted spanning 

forest for the network. 

Define the node of a rooted tree touched by the root as the Ixise of the tree. Then the importance 

of Theorem 4.1.1 derives from the fact that by systematically searching from the base of each tree in 

the spanning forest associated with a basis for a problem like RNP. it is possible to reach all basic 

arcs and all nodes without cycling. In particular define the direction up in a tree as away from the 

base of a tree, and down as toward the base. Similarly, nodes and arcs will be said to be above a given 

node or an- in a tree if they can be reached by preceeding up the tree from the given node or arc. Then 

by maintaining arc flows, dual multipliers, and the following labels, it is possible to easily perform all 

simplex operations necessary to solve RNP. iSee for example 114| for the details of a simplex procedure. I 

4.1.2. Octinitiun. 

The basis label of a node u in a network problem like HNP is |S(i< i. ju.(«l. yiui, (*iicl| where 

uflkM ■■■■-•-. 
       -■ 
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5la')= the numlifr of the node directly lielow it in the hans forest (0 if w is the base of a tree). 

/jtlHl = llie number of a node direct'    ibove K in the liasis forest (0 if no sueh node existsl. 

yiw) = tiie number of a node z auch that 5(M) = 8(2) and -y(i) * 2 for all i ^ « »atisfyinp 6(M ) = 

ß(i) (0 it no such node existsl. 

a(tt'l= the number of the arc connecting u and fil« I. 

The components of the basis label are referred to as the down node, up node, right node, and doun arc, 

respectively. 

Figure 1 provides one of several such sets of basis labels for a sample basis forest. For example, 

the down node label of node 4 is 7 because 7 is the next closer node to the base of the forest, and the 

down arc label of node 4 is 17 because arc 17 connects nodes 4 and 7, The chain of nodes immediately 

above node 3 begins with node 2. which is the up node from ,'•!. and proceeds right to node 8. 

12,0,0,221    5 -   g   (2,0,5,121 

17,0,9,171   4 17,0,0.111    9 
X24 

13,6,8,23) 8   13,0.0,21; 
/ 

Xl7 X,, X|3 XJJ x2l 

10.0,0,281 • ••    /    10,4,0,271 S   10,2,0,291 

t 
X28 X27 X29 

BASE 

KlM HK  I      Ha-i- lal.i-U Im an KM' t\ani|p| 

4.2. (>eiieralinf{ <ionstrainl IVlalrices for Suhprohleni!« 

The constraint matrices of the various subproblems defined in section .12 consist of rows drawn 

from the constraints 1 !4l and (17l. (!aref ul study of the expressions for 114i and 117) will, in turn show 

that all nontrivial rows of these constraints (i.e. rows 1.2 /") are extracted directly from the 

rows of the optimal KM* simplex tableau which correspond to basic components of »i. Thus, the es- 

sential problem in generating constraint matrices for the penalty subproblems is to generate the rows 

of the updated simplex tableaux for H\l' which correspond to basic components of .1,. 

Suppose now that HM' has be solved by a graph-theoretic simplex procedure. Since the simplex 

tableau corresponding to the optimal labels has never been explicitly calculated, a procedure for 

generating nontrivial rows ol the penally subproblems from the labels is required. 

The usual approach for generating updated simplex tableaux fn m initial tableaux is to premultiply 

the original tableaux by a basis inverse. In the case of an original tableau which is a node-arc incidence 

matrix, the process amounts at must to taking the difference of two columns in the basis inverse be- 

cause there is at most one  • 1 and one     1 in < ach column of the original tableau. 
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From the above observations it follows that constraint matrices lor the various penalty subproblems 

can easily be generated if an optimal basis inverse for RNP can be constructed from an optimal set 

of basis labels. The billowing theorem from the theory of the graph-theoretic approach to network 

problems shows that this can be easily accomplished by using the labels to trace the nodes of the net- 

work above a particular arc in the optimal basis forest. 

4.2.1. Throrrm 

The row of the basis inverse corresponding to any basic arc of HN1' will have t 1 entries for all 

nodes above the arc in the basis forest if the arc is directed away from the base of its tree, and —1 

entries for all nodes above the arc in the basis forest if the arc is directed toward the base of its tree. 

All nodes not above the arc in the basis forest will have 0 entries. 

PROOF: See [13] p. 55. 

Before turning to an example, one additional observation can be made. Recall that ortly tlu rows 

of the optimal tableau for RNP corresponding to basic components of JCI are required to generate sub- 

problems. Thus the corresponding rows <,,' the basis inverse are the only ones required, and the follow- 

ing definition will lead to a further simplification. 

4.2.2. Deßnilion 

A macro-node of a basis forest for RNP is a single node used to replace any maximal set of ordi- 

nary nodes in the forest of RNP which are connected by a tree of basic arcs drawn entirely from the 

vector x>. 

The effect of grouping nodes of a network into macro-nodes is to collapse the optimal basis forest 

for RNP into a tree consisting entirely of arcs with fixed charges (i.e. components of X\). Figure 2 

illustrates this reduction for the example of Figure I. 

>. 9. 

/       / 

f( 4 :)                 / x25 
-6 

*ia 

Hi 
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*,« *,3 

KK.I KK _'.     Tin- marro-niidf tr<c IW ilu- cxamplp KM' 

Associated with this reduction in the complexity of the basis forest for RNP is a simplification 

in calculation of the basis inverse. The following theorem stales the results. 
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4.2.3. Theorem 

The columns of a basis inverse for RNP corresponding to any two nodes w and z which are part 

of the same macro-node will have equal entries in all rows associated with components of xf. 

PROOF: Let xij be any basic element of xi and ^ be the set of nodes above Xij in the basis forest 

for RNP. For any two nodes w and z which are members of the same macro-node, the unique path be- 

tween the nodes in the basis forest for RNP consists entirely of arcs corresponding to elements of xj. 

Thus xtj is not a part of that path and either 

i^e^        and       zeV 

or 

wiV        and       ziV 

In either case it follows from Theorem 4.2.1 that nodes w and z will have identical entries in the row 

of the basis inverse corresponding to x,j. Q.E.D. 

The importance of the above discussion lies in its implication that a reduced basis inverse for 

RNP, which contains one row for each component of xf and one column for each macro-node, is all 

that is required to generate the nontrivial elements of the penalty subproblem constraints. Thus the 

problems GPfD, BGPlF) and EOPdl can be e. ly constructed if the following labels are obtained 

from the optimal basis forest for RNP. 

4.2.4. Definition 

For each node w in the basis forest for RNP, 

Tj(M') = the number of the macro-node to which « belongs. 

For each macro-node z in the macro-node tree for RNP. 

XU, z)= the element of the reduced basis inverse for RNP associated with the j'th component of 

xf and the macro-node z. 

4.2.5. AlKorilhm 

Let [8(n), fi{n), y(n), a(n)] be the labels of an optima! basis forest for RNP as defined in Defi- 

nition 4.1.2. Then the labels r}{n), and K(i, k) can be obtained as follows; 

STEP 0.  Set the next available macro-node k = 1 and \(i, A)= 0 for all ( and k. 

STEP 1. Scan sequentially the nodes until a new tree base (i.e. a node n with S</il=0) is found. 

If none is found, stop: the algorithm is complete. Otherwise, set the arc index set \ = 4>, the current 

node n' = the number of the node which is the new base, T)(n') = l, and the current macro-node 

k'~ 1. and go to Step 2. 

STEP 2. Proceed up by letting n = fi[n'). If n = 0 go to Step 5. Otherwise, proceed to Step 3 if 

tt(n) is a component of j, and to Step 4 if it is a component of x... 

STEP 3. Let \=A U {«(n)} if a(n) is oriented away from the base of the forest, and A = A U 

{ —a{n)} if tt(n) is oriented toward the base of the forest. Also let (= ^ + 1, / ' = (, Mi, A ') = + 1 for 

all i in A such that i > 0, and X(—«', k') =— 1 for all r in A such that i < 0. Then go to Step 4. 

- ■   -      ■ ■        ■     —       -' • • mmtmatittfftmtmmimmtmimmtt 
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STEP 4. Set n' = n and T)(n') =k'. Then go to Step 2. 

STEP 5. Proceed right by setting n = y(n'). If n = Q go to Step 6. Otherwise remove ±a{n') 

from A if a (n') is a component of J:,, set A ' = T7(S(n')), and then go to Step 3 if a(n) is a component of 

X\, and to Step 4 if it is a component of x^. 

STEP 6. Proceed down by setting n = 8{n'). If n = 0, go to Step 1. Otherwise remove ±a(n') 

from A if a(n') is a component of xi, set n' = n and Ä' = T)(n'), and go to Step 5. 

Table 1 illustrates the algorithm for the case of Figure 1. 

TABLE 1.   Steps in Algorithm 4.2.5 for Example Problem RNP 

Algorithm Variables assigned values 

I 

|     Algorithm Varialde» assigned values                   j 
step !          step 

0 A = Lall Mi, A 1=0 2 n = 0                                                                        1 

1 A = <t). n,= l.T)(l)= 1, r=l 1            5 n = 0 

2 n = 0 1            6 n = 3, «' = 3. A'=l 

5 n = 0 5 n = 0 

6 n = 0 6 n - 0 

1 A»*,n' = 3,T)(3)^L A'=l 1            1 A = *,n' = 7.T,(7)=-l. A'=l 

2 /i = 2 2 n- 4 

4 «• = 2,T)(2) = 1 
3 A = {-17},^ = 3. A,-=3,X117,3) = -| 

2 n = 6 

3 A = {-12}. ;[ = 2,r = 2,X(12.2) = -l 
4 

2 

n' = 4.T/(4) = 3 

n = 0 

i           4 n' = 6.i1(6) = 2 5 « = 9, A = *.A'-1 

2 

5 

n = Ü 

n = 5, A = <t>, r = l                                           | 
3 \ = { + lli,/; = 4. A' = 4, X(ll,4) = + 1 

4 n' = 5,T)(5) = l                                               | 
4 

2 

n'=9,T,(9) = 4 

n = 0 

.            2 n = 0                                                                j 5 n = 0 

5 n = 0 6 n = 7, A = <1), n' = 7. A' = l                                | 

(i n'=2.A' = l                                                   1 .S n = 0 

5 n = 8.k,= l 6 n = 0                                                                    1 

4 n'=8.T,(8)=l                                              | 1 Slop                                                                                     i 

4.3. Right-hand-sides and Objective Function 

Once penalty problem constraints are generated according to the above principles, the only re- 

maining elements of the problems to be produced are the right-hand-sides and the objective function. 

Review of (13), (14), and (17) will demonstrate that, like the constraint matrix, these elements of the 

subproblem are derived directly from the optimal basic solution to RNP. The right-hand-sides are 

obtained from the optimal FCNP value of y which is in turn equal to the optimal RNP flow on x\. 

Similarly, if the optimal RNP simplex multiplier for node w is TT(U) and arc Xij runs from node Ai to 

node Aa, then the objective function coefficients are calculated by ff,j= OJ + TTUI ) —TTU..). 

4.4. Solving Penalty Subproblems 

The algorithm and computational results which follow are based on the solution of one- and 

two-row versions of the penalty subproblems GPlF), BGPdl, and EOP(F). For the one-row cases 

of these problems, solution is elementary.  It is easy to show (see [15J) that f[GP(i)] == i'[EOP(i)]. 

*M.   ■ mt^j. 
mmtimja 
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Thus a solution to either of these problems can be obtained by solving two linear knapsack problems. 

One corresponds to equaling row i of (14) to y, (i.e. moving y* "down" to 0). anc the second corresponds 

to equating the row to (u, —>'/) (i.e. moving y, "up" to «,). Th^ well-known list search procedure for 

solving such knapsack problems reduces in the network case to finding the variable which has the smal- 

lest objective function coefficient and a + I or — 1 in the constraint respectively. 

Only a few modifications are required in the bounded case of BGP((). A solution to BGP(/) will 

continue to equal the solution to one of two linear knapsack problems like those in F.OP(i). However, 

upper bounds on the perturbation variables are observed, so thai more than one such variable may be 

positive in the knapsack problem solutions. 

Two-row problems FOP((, /) are solved analogously. In this case four, two-row linear programs 

corresponding to the righl-hand-sides 

(;:)■ 

y, Ui-fi \ 

fj     I 
and 

are solved. The total unimodularity of the constraint matrix for (14) can be exploited to extend the list 

search solution procedure outlined above to such two-row linear programs. Details are given in [14]. 

5. STATEMENT OF THE ALGORITHM 

The computational analysis presented in the next section compares three different approaches to 

using penalty problems in a branch-and-bound procedure for FCNP. Letting 

ß (any minimization problem) = the best currently available lower bound on the value of an optimal 

solution to the problem. 

v (any unbounded problem)= -^ 

v (any inleasible prol)lem)= + *, and 

v (the best known solution for K".NP)= v*. 

the algorithm used in obtaining the computational results is as follows: 

STEP 0. Place the whole problem FCNP in the candidate list (i.e. in the set of restricted versions 

of FCNP which might still yield an optimal solution to the full problem). Set ti(FCNP) = —» and V* = 

+ *, and proceed to Step 1. 

STEP  1. ("boose as the current candidate, FCNP,-. the element of the candidate list satisfying 

/3(FCNP,.)= min {/ilFCNP,); FGNPr. in candidate list}, 

and proceed to Step 2. 

STEP 2. Solve the continuous relaxation of FCNPr, i.e. FCNP,. by solving HNP,.. If i(FCNP(.) 

i? i'*. proceed to Step 11 because Tin completion of F('NP, (i.e. no setting of the v, not assigned values 

in FCNPrlcan produce a solution to FGNP with value less than that of a known solution. Ifr(F("NPrl< 

v*, proceed to Step 3. 

STEP ii. Create a feasible solution for FGNP by rounding "up" the optimal solution for FCNP,-, 

i.e. by setting 

- ■ ■ ■■   ■-•:,m 
— ■    ii    i     „ |, ^jjj^^g^,,,,,,,. 
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X; = X-i. 

where X\ and Ja are ihe optimal valuer ut », an«! <j in the solution of F'( !NP,. lithe value of this ruunded 

solution is less than v*, pr<»ceed to St-p 4. Otherwise to iat Step 5. 

STEP 4. A new incumheni solution lia« heen iound. i.e. the rounded solution to K!\P, provides 

a teasihle solution t-i PCNP with value less than any solution Iound -o iar. Save this incumheni as a 

possihle optimal solution, and eliminate from the candidate list any prohlems with ß Nalue greater 

than or e(iual to the value of the new incumhent. It the new r* - -*. stop: P(!NP is unbounded. 

Otherwise, proceed to Step ,T. 

STEP '). ll no group-hased penally prohlems are to he used, choose a luatu hing variable >, 

randomly, i.e. randomly choose a new \ ', to ti\ in KCNP,.  Then proceed to Step 10. 

If penalty prohlems are to he used, execute Mgorithm 4.2.5 to identity the macro-node assignments 

T/,('il. and the reduced lia>i> inverse entries A,(/. /, I from the optimal liasi> toreM ior KNP, Then go 

to Step 6. 

STEP (>. (Construct and solve a one-row gtoup-hased penalty problem lor each row i in lii-6). 

If the va'ue of an optimal solution to any ol these one-row problems i> greater than or equal to r*, go to 

Step 11 and fathom. Otherwise, go to Step 7. 

STEP 7. Using the "down " and "up" penalties obtained in the solution o) the one row problems, 

i.e. the solutions to the knapsack problems corresponding to moving \, "down" to 0 or "up"^ a H.define 

,      i      the maximum of the values of the "up" and the "down" case in the /ill pi. Mem 
Step () is among the / greatest value« it i> a pr. defined parameter satisfying l 3= 

Then go to Step 8. 

STEP H. for each it} . «elect another row ;,. and construct and solve KOI', 11. /, I. If the value of 

an optimal solution to any ol these penalty problems is greater than or equal to /■*. go to Step II and 

fathom. Otherwise proceed to Step 4. 

STEP 9. Choose the hranchmg \anahle * , MI that i i> the it\ which maximi/es 

lav ic[K01,,l,,J,l: V, = U]. I'lKOlVl;.;,! Vi— U], 

Then go to Step 10. 

STEP 10. Pi »lace KCNP,. in the candidate liM by two more restricted problem'«. One i« defined 

by K NP, with the additional constraint that the branching variable \ , 0. and the other problem i> 

identical except that v, i> restricted to equal U\,. ß values for these two new candidate«, are as obtained 

from the penalty prohlems ol Steps 6 and K. Next proceed to Step 1 to select a new I vlNP,. 

'    ■!    ■  . .  ■■Ma 
mam» 
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STEP 11. Fathom K('.NPr. !.<•. eliminate KiM', from the candidate list liecaus»' rm completion 

of it can produce a teasilile solution to FCNP with valu«- less than c*. It the candidate list is now empty, 

stop: ii an incumbent solution exists, it is an optimal solution for FCNP, and othei wise Kt'Nl* is iti- 

feasible. 11 the candidate list is not empty, proceed to Step 1 to select a new FCNPr. 

6. COMPUTATIONAL ANALYSIS 

In order to learn more about the effectiveness ol the algorithm of section ö, a number of randomly- 

tieneraied problems were solved on (ieorgia Tech's Iriivac 1108. answers to two general questions 

were of interest. 

1. Would the procedure solve problems as large or larger llian those previously reported in the 

literature? 

2. Is the effectiveness of the procedure significantly changed by the use of more sophisticated 

penalty achemes!1 

6.1.  heseriplioii of Experiments 

The approach selected to accomplish an empirical analysis of these questions was a classical 

factorial experimental design. Different solution approaches were applied to randomly-generated test 

problems possessing all combinations of the properties previous researchers have indicated most 

affected computational efficiency of algorithms for fixed charge problems. 

In particular, a version of the algorithm of section 5 was used to generate and solve fixed charge 

network problems in manners specified by the following factors: 

1. Type of problem. — W hether the problem is a general FCNP ((»NPl or a fixed charge transporta- 

tion problem ( FCTP). (See for example [11] for the formulation of this special easel. 

2. .Size o/xi.—The number of arcs in the problem with fixed charges (code 0= 20. code 1 = 50. 

code 2= 75. code 3= 100). 

3. Relative size affixed cosfs. —Whether the fixed costs in a problem are small or large relative to 

variable costs (code 1 = small, i.e. fixed charges made up less than S percent of the value of an optimal 

solution: code 2 = large, i.e. fixed charges make up 15-30 percent of the value of an optimal solution I. 

4. Solution method. —The combination of group-related penalty techniques used in solution of the 

problem (code ()=use no group-related techniques: code l = iise only the KOI'l/l: code 2=use the 

BGPtil and EOFd. /) chosen by the criteria of [15]). 

The generation procedure (detailed in 1111 ' 's al' extension of the a; proach of Klingman. Napier and 

Stut/. [12| which creates feasible network problems of given characteristics. Fixed charges on arcs 

are correlated with upper bounds. 

It was initially planned to lest all combinations of the above factors at the indicated level codes. 

However, preliminary testing revealed thai structures of t IMF's and RTF's were so different that 

results for different solution procedures could not be compared across problem types. In addition, 

early results showed that problems with the dimension of v, greater than 50 could not tie solved within 

reasonable time limits without some penalty techniques being used. 

Thus two replications of four separate factorial experiments were actually performed. The two 

principle experiments focused separately on the (iNF and FCTP cases. Fach case was tested in all 

combinations of large i, sizes (codes 1.2. and 3), relative fixed costs, and group-related solution methods. 
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In addition, Iwo special experiments were run to analy/.e the impact on smaller (.NP's and KCTP's of 

eliminating all group-related penalty schemes. These special experiments tested (FNP"S and KCTP's 

with 20 tixed charge arcs (code 0), Results lor each cell in the lour experiments are shown in Table 2. 

TABLE 2.    Results of Experiments 

•             r  r^ V 

\irraK'" 

I'n.lil. in Kxprnninii * Nunilirr Numtin Hxed i ti.u^f Averanc iitiiitlirr Avrra)«- 

type nptiono of nod rs     j <il ar<-8 an - ; pan MIIUO m i-andidatr «oludoii 

tixnl rhariiefi prublrm lime i%rci 

i =," -r :^a =1 
0 021 1 

»olvd 

f                              T 
1)1(1 18 

1 
(,'i 20 ,19 1   » 

nrtwurk nil 18 M 20 024 .'1 » 
I'ftliicm«. Ii2<» 1H M 20 128 226 5(1 

, 
K\ 1H M 20 (HI ~ 5 

111 U 1 1,S4 .0 010 ! (1 2 2 

ii.: :i4 1 IM :>() .010 1 .» 1.5 

121 M l')<* :>o 067 10 1 2 

12-J ;t isy 51) 198 8 t.2 

.'11 .so 2W ■ i 024 11 68 

2! J .'id 2.W 7'i 0.11 It 16.9 

JJ1 'id 2.W . i 07» 12 HI 
')■>•) :>(i 2.1« < .> 076 - -      I 

Uli Mi ti: 100 026 18 21 6 

! :U2 f^. 317 100 0..'9 16 22.8 

ui (id M: 100 277 18 .50.8 

.i-'J Mi Ml 100 ()9H H II » 

Kixed nui It :u 20 015 V50 (1 '* 

rharitr (ill 14 vi 20 .02.1 I ■1 

iraiiHpnrtation (L'll u 
1 

i.i 20 202 1,542 29 6 

[imttlrni* U21 14 
1 

.1,1 20 I to 12 » 
111 20 69 "ill 020 .1 ) 
\2 20 

1 
d" 50 0IH 7 1 0 

121 20 dW 50 189 112 »:iH 

122 JO 69 50 208 KM 15 7 

:   211 24 i 9H 75 020 11 ,1 2 

212 21 9H ^-j .024 20 4(i 

221 21 98 . 5 202 652 14(i 2 

222           | 24 9H ■ i 188 180 51 1 

fll Jd 125 10(1 022 1,1 106 

SI 2 2(i 1 I2.'i loo 021 ,il 1» 4 

:»2l 2(i 12.S UK) 2:10 1 ,.»58 557 I) 

-A 
26 i 125 100 . 154 

I 
279 .512 

        . .     1 

*ln rach iasr ihr lir«! ilitul is llir "*iir ul 11 " lr\il. ihr »econd 1- ll»' "rrladw -i/r nl livnl ciisl" levi-l. and (he llnrd is ihr 

"solution inclhod*' Irvrl. 

6.2. Analysis of Experimental Results. 

Turning hrsl to the general effectiveness of the procedure inspetlion ot the results in TaMe 2 

Miauest that relatively large fixed charge network problems can be solved in several minutes by cither 

of the group-related penalty methods tested. Averages for each problem type, », size and fixed charge 

pattern reported in Table 2 are within such reasonable computational boundaries, yet the problems 

with UX) fixed charge arcs are as large or larger than any FCNP's previously reported solved efficiently. 

In order to more precisely address tiie second issue of the difference beiween techniques, as well 
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a» l<> dett-rmin«1 the pfffcl ol varimi« la(t<(r> mi the experimeBtal rr-uli», slatistical aualv-i- nl variance 

wa- applied In the rfiull». The statiMiral a>>.um|)tiiiri> underlying the analv»i- nl variance could rml 

lie verified in the relatively unstructured domain <il randomly-generated optimization pr.. leniv llnu 

ever, »mce all the prohleni laclur» oilier researcher^ have indicated liad significant effect-» on computa- 

lional result» were included in ilie experiments and ilie AN()\ \ pnx edure i» »ellkiHv* ; to lie rohu-i. 

ihe procedure vta>« considered adeifuate tor indicating the iniportam «• of variou- effects. 

The response variable «elected lor analysis is the number ol candidate problems evplicitb mvi- i 

^aled in s<ilving a Ki-NI'. This variable v\a- chosen I» ( au--e it appears In t;i\e Ihe nio-t accurate mea« 

ure ol  ihe irue impact of different  group-related penalty  procedure«   Solution limes ate also very 

m|Mirtatii. hut the effect ol the various penalt) procedures on solution lime- i- clouded hv the program- 

iniiifi eth( iencv of routines to execute the penallv  proccdure- 

Kesiilt- ot the arial\-i« ol variance loi this response variable an- given in Tables '. through ti and 

illiistraled in Kignres i and 4. ihe signihcaiu'e of various factor- implied hv the re-ult- i- discussed in 

the next several subsections. 

T.\BI K 3.     4niilYsi.s of ' uriiime for Ceneiul fmhlrms in Speriul 4n(ihsis 

Kflrc-I 

li.l.inv.  tu..I i..si 

Silminn in. ill...I 

I u-l Mii-lli...I ml. 1,1. IIIIM 

KIT..! 

Sum ..1 ll.p. M...i, / tail 

-.|IIJI.-- ..|  Irre. ..Ml -i{Udri' 

17 .W.i i 1 i: Hitii i 11 

tJ.IKII 1 LMKU ■J H.' 

I:.MI 1 i: i; i 1 IIH 

M '.on I I.'I.KJ: 1  INI 

i^inti. .ml .it u.j:. i.-w-i 

I \HI K 4.      fntilvsis iif I arianre lor TransponUion Frohlem.s in Sprrml  hmlwi 

Ktl.-. i 

H.l.mw hv. ,1 i,.-i 

N.lull..11   Ml. Ill,..I 

I ..^1 111.-ill.1.1 .■■ll-l.l. 1)1111 

Krr.u 

Slllll   1>| Il,-rr.- M.Mli /   ...ii.. 

-ijuare- ..1 Irci-.lnm -.|l.,llr 

ttU'i.lNMI 1 i>ir..iinti '.:. i 

.''.'.:..JKH I [.''.■...'HK ITH .' 

MH.'.JH 1 '>«<...'H ■'..(  l 

li.H'X. 1 in ''71 1   <HI 

i(imlii-aiit  II .i     II (15 II-MI 

I Mil.K .'v     Inalvsi.s a' I ananic lur deneriil Teil I'rulilrms 

Kliert 

-i/. ..i i 

Hi I.HIM- u\ .1 i ..-i 

s.iluiim IM.   i...i 

-l/r . ..^1   ml*" Hi I.'II 

S|/r mrlh.i.l  II    it.l. II..II 

I u-l in.-ill...I in .-rac-tHin 

V ii..i 

inn til 1) •Uli-t- \l...,. h tdtn 

|u ili- ..t  t 

4 

r.r.inni -,111.11. 

.1. II ''■' 

III 1 ill II .'(Ml 

JV i .'71 II .'  17 

II'. 1 v. ; |.CI 

.' IH J 11.11 WH 

III«. i ill«, 11 !   U 

,'.l I 1 117. .' 1 m 

IIIIIIIK JIII .n   ■     '> in li'wl 

iCiutii .ml HI   .      H _'. I. ..I 

lA^^^MUMUHMMM 
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TMII h <<      limlwn at I iiniiinr Im Tnwsportation Test Hroblrms 

i 

Utr. I 

^i/.   ..I   i 

H. lahw hx.-.| . .-I 

>..h]ll..ii    TIM   ill...I 

->!,■.   . ..-I IIII.I.I. n..n 
v i/t   -in l ti ■■} inlt-r ,1. li-.n 

> ..-i in. lli...I ml. i.i. In.ii 

hi.i 

HI 

-Mill.   "I 1) J:II r- M.an / I.H 

-■|1I.U.'- III 1 .-.(l  -l|II.Uf 

MlT.I '.'. -Ml l..')Wi i m 
1   111 I,HI Hi 1   tlll.WHi 'T iw 

ij.'.l >ii '.J'.IMi .' HI 

■11.11 i7ii.::J '12 

1'*.". ILM T .:. i 'i .'.." 
. 11 .d 1 1 '. il.'vll J W) 

!.'.7<i,:.u( 1 1 mi j:,n |.()0 

»iKMlll.    Uli    ll     i 'I "''   ItM I 

>i^nilM .ml   n .1      n .'". In. ! 

MEAN   NUMBER  CANDIDATE 
PROBLEMS   SOLVED 

150 

100 

NO   PENALTIES 

50 

BGPM ft   CRITERIA  CHOSEN A 
EOPl I.I) 

25 

E0P( i)  ONLT 

50 75 100 

SIZE 
'OF X. 

I- III   Kf     .        \li-.lli   MIIIIIIM' ilcUi   |ii..l.l. IM- .nlii-ii I..I Bfiicial li-^l pmliti'iji-. I.\ ^i/r "I i, .iml -..luiiuii mclhiid 

h.2.1.  Sitv »ft, KfTrrl« 

>iii( r ilif pii-Nililt' mimlici nt cuiuiiilat«' prnMcin.- incrcax's lAi-nncntialK with t!ic si/.c oi the 

>, wrii.i. ii inulil IK- I \pcriril ili.ii ihr iiuiiiiiri ut caiiiiiilatc prnltlfnis actually solved would also be 

nrvatK artfctcd li\ tlir ^i/f nl < i \iialvMs ..t variaixc results Im (.NT"» p>iieralh contirm ilii> cxpecta 

iimi a- do the tii.iph- in Ki^ure V ll i» ititerestitit;. tli.it the same statistical sitinilicance is not observed 

in the re-ult« toi t-(  11''-   However, the curve» in Kigure I certainh sun(ie«.t some size ol >, etlect. 

    -        n 
■■  I ll   ■MMii 
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MEAN NUMBER CANDIDATE 

PROBLEMS  SOLVED 

IOOO 

750 

500 

250 

^.SIZE 

25 50 75 100   0FX| 

KI(,L,RE4.    Mean number nl randidatr pniblems solved for lran>.piir'atiiin problems by sit» nl«, and solution method. 

6.2.2.   Relative Fixed Co»l Kflfeoli. 

Most  previously rfportrd resfarch on hxed charge problems has indicated thai computational 

efficiency is highly effected by the relative size of the hxed and variable costs. If fixed costs are small. 

H FCNP) provides a good estimate of i^FCNP), and only a few candidates need to be explicitly explored. 

When fixed costs are high, however, numerous possibilities for v must be investigated. 

Experimental results for FCTP's strong!) confirm this previous experience. The cost effect is very 

significant in both Table 4 and Table 6. However, results for (iNP's show rtie relation between hxed 

and variable costs is relatively insignificant. A possible explanation of this phenomenon is the higher 

hxed costs in GNP's lend only to force all flows along arcs without hxed charges. Thus, the value of a 

H FCNP I as a bound on HFCSPI is not diminished as hxed charges increase. 

6.2.3. Solution Method Efferl» 

The experimental factor of greatest interest to this research is the effect of changing the solution 

procedure used. Any techniques shown to be significantly superior would provide suitable focuses for 

future re?earch and applications. 

All results show at least mildly significant solution method effects, with the effects accentuated at 

high relative costs in FCTP's, The most outstanding of these effects is the difference between the 

no-group analysis and one-row analysis methods. Even for the relatively small case of 20 hxed charge 

-   • -in      —. 
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an-., rtsiili-- in Tallies '.', and \ intlicatf »ifiinti« ant improvftiifntr- art- (ililainfil li\ u«iiiti at lea»! some 

tirnuii-rrlatfil pcnallif». Mnrt'tivcr. tc\ifvs nl Table 2 will -Unv, llial ihr tiain i> |U!.I a^ urcal il Milutmn 

lime i« considered instead ol the numiier nl candidates. 

Ilic difference lietween nne-niw and Iwn-ruv* techiiit|ues arc imi a> clear Irtiin experiineiital 

results. HiM11 (Al'", and Mil'- slinvsed some sipiitKant efl'ects of variation in these solution methods 

i la 1 ilc .') and (»i and Kinures ',\ ami t coiihrm the effect jiraphicaily. However. Palile 2 shows cases where 

use nl the two-row analysis increased solution tune 

7. CONCU SION 

File altove IC-UIN are |ireliminarv. hut appeal to ileinonstrate that >:rouii theory hased penalty 

approaches can he ipiite effectively applied to fixed charge network prohlems. Ihc oh-ervatioiis in 

section I demonstrate the significant simplification« reali/.ed in penalt\ apiirodches V\III-II lin- special 

structure ot network prohlems is exploited. < junputational experience in sn lum , coiilirnis the value 

nt ,ii least siime use nl penalties. Ii would certainK appeal that ^muphased penalu approaches are 

worthy nl significant furthei investitiation. 

KKKKKKN< KS 
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ALI.OCATIOIN OK RESOURCES TO OFFENSIVE 
STRATEGIC WEAPON SYSTEMS* 

KcniH-tli I) Sliiict anil Jnhii W. \X iii^.iic 

Sttt'ttl Surffire Wrapon* (.mirr 

U hlle Oiil. I.iihuriiliii \ 

Siltvi Sprint!, Mnnlitiiil 

\liSIR\«T 

In ihiv iMpt'i ;t vi-r% wr^iiiili- ^anir riinilel i.- (Ic\rl«i|iril toi ii->(- in ihf longranjif plannmt: 

nl um «trali'iuc liiri'i' iHwIurc I In- liit;lil\ a|i)ir)-|iali' nindrl siclil- npiunal Inri-r IIIIM- Inr 

ihr Iriail 'land   anil »IM liasrii ini--ilr >v.tcin~ ar.il linnilier^l under a varii'l\ nl ririistrairil>. 
[In-   llliiill'l ilr-i Tllinl  lull-  i- ,1     lMM\a|illll\   IIUHW;   llottrlrl. 11  l-  -llcHMl lluw  I llf nnillrl can 

■ nil  lif ii-nl ,i- <i iin.i-iiii   nl iivt-rall -\-ii-iii (•flfilivcm->>. (inislrainlü imposeil mi ihr 

pmlilrni im luile Uilli S\l  I  ami lunlp't limilalinn-. 

I. INTROIHCTION 

I he Ifclmiial rcvi»*w ncciicd Inr llif sflcciioii nl ^l|■alt•fii(■ tmcc jj<isture> i> (iiiiduilrd ai \aiitiu> 

level)* nl sophislieatiDn anH i'nuiplivaiion. The niii>l detailed and largest simuiatintv^ ate especially 

useful Im the taifietiii^ nl leenln vehiides and the |)OMtionin^ nl our tiinhile Inrces. Maii\ nl the para- 

melers In a very large seale -iimilatinn are imnrly known lor today's envimnmenl and tmist he extrap- 

nlated itn ulisiiiditv l ten u-e in a -i enarin projeeled 7i nr 10 year- into the tuture. 

Smaller -i ale ■.imulatimi» using aggregate models ar»' uselul lor testing particular proposed force 

structures fhese rnudel- re((uire the pmiiction nj fevser parameters and are generally more helievahle. 

(ienerally, they are ilependcnt mi penetratimi tactic-- and postulated adversary force postures and 

tactic-. I he managet i- prohahh unaware n| all the assumptions that were made in developing the 

model. 

\ii alternative approach in Imig range planning i- the use ol game theory. This approach ohtains 

.in "nptimal Inrce pn-ture at the expense o| additional aggregation. \n advantage to this approach is 

thai the 11-ci knnw» ill nl I In- a-Mi nipt inn», however, it i- suhjeel to the criticism that nol enough detail- 

are used. 1 In- result« nl tin- type nl model could he used a- input tnr a simulation model, hut the 

primary purpose i- tn ipiickh prnvide the matiagei with Imlh a ifualitative and ipiantitative under 

-tanding nl the etleet.- nl improving existing -y-lenis, uitinducing new systems, SALT and hudgetan 

restrictions, uncmitinllahle nn ic.i-e- in operating ensts. etc. In the next section we develop along 

historical lines a game theoretic model siiitahle Inr the-e purposes. I lie model has heen exerci-ed and 

results are presented in the classified literature. 

In -crtimi III we ImelK indicate tin' method Used to solve lor the optimal allocation. 

• Hu- »..ik I i.i- li.-.-n -uppiirinl n- ill.- (ill i ih. i In, i nl Naval »i|..i,iii..ii-. (NO  Nill' Mil. uniti-i T.i-k Niiml>.-i NOI 

l.V  U I M 1    \in  planning i.ica- nnlii al.-.l in tin- pap.M ai.   tin   .miInn-   anil il" mil i.-pn -ml Nav \  pnlic v in proenfure- 
I',,-, nl    ililll.il     1    III      In.   ,   .:::  I .-. -Inn-   I'IK. .  I all- I   Inn. Ii.  \.i   JJOt.i 
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II. HISTORICAL DEVELOPMENT OF THE MODEL 

I'hc Hiii^inal "Max-Min Mndcl'" lor nflVnsive strategic systems v\a- (Ifvelopeii li\ Phipp^ [6]. 

Hcsliiclinn his attcnliipii to siirvivahility. he assumed tlial inissjlc s\s|ctiis could lie hroken down into 

two hasii l\[ifs. The first rlass is i umiiriscd (it systriiis llial arc dillu nil to lucalc hul compuraiively 

ias\ In destiny, nnce located. I'OI.ARIS is an example oi such a system. I'lnpps coined the name 

■■percentage vulnerahle" lor systems oi (his class hecaiise a tived effort », hv an attackei would lirin^i 

under attack a fixed percentage oi the relaliators weapons helongint! !<• the /lli system, independent 

oi their numher. Thus, the survivinu traction oi weapons iplatiormsl for this system is e "»"i where 

n, is the vultierahilit) o| the system. The exponential lonn used here is hased on Koopman's theory oi 

random search | 11. 

Kach ol the extensions ot I'lupp- inodei. including the rnodilii atioiis presented here also restrict 

attention in survivahilitv. The method ol sohiaoir presented in the next section can lie modified for am 

draw down or prohahility ol survival curve. Thus, nuxlihcations >o include [»eiietration slmuld not 

invoke additional conipulatinnal ditticulties. 

lire other class i orisrsls ol systems which are easy to locate but difficult to destroy, e.g 

\il\l i'KM W. These systems were laheled '■numcricallv vulnerahle'' hecause llrev lind safety in 

numliers. Mlnwrnj; liaclional reentry veliicles. the iraction oi weapons surviving a harrage attack is 

<■ "'"' ''. where (, is the leialialor- level oi effort. Temporarily we shall consider the ' level o( eHort". 

\, and \, tor each /, to he expressed ill dollars. 

Iieating numerically vulnerahle weapons a- point largels. the correct survival prohahility curve 

lie. mil allowing fractional reentry vehicles» is a hroken line whose corners tall on an exponential curve; 

however, the exponential is an excellent upproximatinn to the hroken line lor reasonably sized vulner- 

uhililies (/     I'lnpps |7| dis<'Usses how  these vulnerability parameters can he evaluated 

for ,i mix ol 1/ percentage vulnerahle systems and \ 1/ numeric allv vulnerahle svstenis. the 

-in v iv my ■'v ahre" o| the mix is 

All. v I     V i,i,e "'"■ ■ V r,i,e "'"■ '' 
.i i  ».i 

where r, is tlie value oi figure ol mcni ot the ;ih svstern —expressed originally a- a eost-elteciivenes. 

parameter, e.g, megatonnage pel dollai I bang per buck I. \pplving a conservative stralegv. the objectivi 

of this model is \i, determine the optimal allocations > ' and i * such that 

/ ' i '. v * I      mm /■ i i '. i i      max mm /■ i i. v i 
i i       i 

■iibiect to the fiscal constraints 

V >, ■   \ 0: /= 1. .  .    . \ 

Hid 

V  >,-   \ U,   •(): ( .. V). 

n r..»«,. -:  • ■     ...... . , .-...        ■-  I   - I   111   Mil 
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Unfortunately, although Hliipps developed this model (just before leavinn ()E(.~NWti| in 1%(), il y<a> 

not solveti until Danskin [2] published his hook «m Max-Min in 1%7. Independently, in 1965 Matliesoii 

[5] considered a l.a^ran^e multiplier approach to solving this prohlem in some informal working 

papers and showed how the percentage vulnerahle systems can he replaced hy a single equivalent sys- 

tem. Me also showed, for \ ^ 4, how regions of the feasible set may he iormulated according the mix 

ol nonzero systems in the optimal allocation. 

One of the biggest drawbacks to this model is its assumption that all systems are bought Iron» 

scratch. This was all right in 1%Ü: however, by 1965 some systems had already been procured and this 

should influence the results. To formulate a more realistic model. Shere and Cohen | ll)| took account 

of development or buy-in costs and Shere [H] turther extended the model to also include prior invest- 

ments. During the parameter evaluation and computational phases of this work. Shere noted that the 

cost-effectiveness parameter i, could be adjusted to inHuence the result1- by using various methods ot 

costing the systems. 

Consequently, the model was further modified to explicitly represent future costs, Hedetining \, 

to be the number of ictaliators weapons (or platformsi in the /lb system ami \, to be the number ol 

search units or reentry vehicles attacking the ith system, the surviving equivalent megatonnage 

(KMT) ot the force mix is 

(1) /•'(>. \)    £ w,x,e "'"' • ^UiXie "'"'" 

where n, i- the KMT per weapon or platform, The measure oi effectiveness could also be throw weight, 

equivalent numbers of 50 KT warheads, number of reentry vehicles, kill potential, etc. The kill potential 

is a measure of the effectiveness of a single reentry vehicle against targets oi a specified hardness. 

The attacker and retaliator need not. ol course, use the same measure oi effectiveness. For ex 

ample, the attacker may want to allocate his resources to minimize surviving KMT, whereas the re- 

taliator wants to maximize the surviving or residual kill potential. That !•-. subject to the constraints 

specified below v\e must find x* and a function \* such that 

12) /■ ( x. \ "( i I I     min /(A. \ I 

i Hi (i{x*. \*[x* I) = max (,[\. v*(»)) 

where (Ax. \) i- given by the right hand side ot (!) with the KMT per weapon H , replaced bv the kill 

potential per weapon (fc,.   The information available to the players requires the retaliator U-player) 

to allocate his resources tirst, then the attacker ( v-player) allocates his resources. Moreover, the re 

laliator knows the attacker« measure of effectiveness. 

There are a variety of constrainis that can be imposed. Let K, be the total funds available to the 

retaliator over a specified time frame and let Hu be the funds available to the attacker. ^ riting the cost 

per system as the sum of the operating, investment and buy-in costs we have lor the retaliator 

 ■ m. 
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y | 0,1«, '   >, l/L' • /(, max (0.  i,      i,l ' </,      '   Hj 

wheif (',./', an«) </, rfspeclivel) ilctiuic ihr npcralin^. pnicuifpiieni and liu\-iii cnstv prr vteapmi in the 

(ill syMcin: i, i- ihr nuinlitT nl w<-apoi^ al ihr end nl ihr linn- peril«) and t, i« ilic fxi-.i,'i^ nr Initial 

nurnhcr of wcapiin^. Niiic lliai </, (t i! ciihcr i, •Onri, •': ullierwisf il i* pn^ilivr. -Vs a tir»t altempl 

In include llit- effects "I pliasinf: -v-icin- inln and oui of ilic force structure, a constant rate uwr llie 

entire lime period was assumed. This is reflected in the operating cost calculation. Olli» r phase-in 

rales could lie used, for exam (ile. operating costs ol the / lii system couid lie »,( i, • i >,) I In actual 

applications v\e lia\e lurther extended llii- model, hut are not iiifsenting the resullx here. In account 

lor ill time la^i- hetween procurement "I platforms and delivers ol platforms, liii the M >< date loi new 

systems, and liiil nianufacturing capahilities (both annual capacitv and a niiiiiinal annual production 

required to keep production lines intact I. 

A sjniilar conslraini tor the attacker i» 

(:>) V   \   Oh* V,  •   v,)/!'   •   77    III.IX   Ml.   I ,       », 

or. more briefly. I ( \ ) '- H,,. where I i i I is the ipianliu ico«l lo the alia« km denoted la iIn leil hand 

side ol |5|. Phe attackers <osi« a>£aiiis| a mobile s\s(em. Inr example, .ur tin rosis oj operalinij a search 

and procuring more search units. Once these parameters are specified, it i- mil necessan to sj-n il\ 

the particular lorni in which the search takes place; i.e.. v*e can ilnnk in lernis oi the mill cosi |o an 

adversary to search a given area. 

The attacker's development costs, in Kquation i.'n. are ignored tor several reasons. KirstK, attacker 

systems used in a ciiunter-lorce role can generalh also be use<i m .i counter-value role ii.e.. against 

urban/industrial targets), (ämsequenth. the forces described in ibis model represent only a portion 

i.l the attackers loial lorces. II a -v-icin js used in both roles, jt would b«' impossible to specifv what 

portion ol the development ( osi i> chargeable In one rule or the other. Thus ii nnisi be reali/.ed thai the 

attacker's budget specified. /^ is oiilv a portion of Ins total budget, \iiotliei reason that this assuiii|i 

lion is convenient is the extreme difficulty in estimating buy-in costs. Kroin tin retaliator's viewpoint, 

this is a ( oiiservalivi assumption, (.enerallv though, new adversary systems can he i ompared m terms 

ol the vulnerability to the retaliatorv svstem and ihe cost to the attacker. I Ins is Illustrated hv f Igure I 

AlLarker 
Scürrh 
CipabllIty 

Kci'p   Exi -.1 Inji; | Buy  New 
System ■ 

At I ai k.T Cust 

I n.I HI   I      I rirniMrisnii ■■! m «  |., . \i.init -v-i. 
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In addition to the budgetary constraints, there are arms limitations imposed by international 

treaties. These constraints lor the retaliator on his total number of launchers, his sea-based launchers 

and his land-based launchers are, respectively; 

(6) Ys.x^S 

(7) £ s.x.^S, 

(8) ^ .s„>,*=.s-, 

where W, and M? are disjoint subsets of { I V}. 

There are various other constraints also imposed on the retaliator to make the model more realistic, 

for example. 

(4) .», = /,», , for I     2. 4.6 

where/i is a positive constant. If », were the number of Brand I boat« at sea. then »-.. would be the num- 

ber of Brand I boats in port. Sometimes the size of a system is influenced by political factors. Thus, 

there may be constraints of the type 

(10) it is a (riven constant. 

111) 7 -s «4« l,i 

or 

|  WO        if.-,   -O I 
112) u H 

I   0 ll   .:,       0    I 

(onMraint il2) say- lhat the number of weapon- allocated to system h is at least 430 unless system ."> 

ha- been phascd-oul. 

Hitherto only missile systems have been discussed: however, bomber systems mav also he in- 

cluded. Dr. Alden Turner [ 11 | of the Center ol Naval Analysis recently developed an empirical formula 

li\ analyzinit simulation data, for the fraction oi surviving bombers of the form 

i n i 1 — /», arc tan d, v, 

where », i- the number ol reentry vehicles attacking the bombei bases lor bomber Ivpc i and /■, and n, 

are positiv.- number- depending on the number of bases, reaction time and density o| attack. ()| 
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(•(lursc. tlit- Iracliim (l.i) is replacfd hy zero when y, is larp- cnou^li todrivf llit- fraction negalive. I -\n)L 

Turner'« results we could replace ill liy 

{]'] /•(>. \ I     V »,<,e """ • ^ ((,«,c """ ■ri + Y «-,.»,(I -//, arc tan «,v,) 

l.ir a conplele description id the triad. 

In the next  section  we descrihe llic metliod used tor solving the prohietn defined hy (I)-(I2). 

III. METHOD OF SOLI'TIOIN 

I he inner prolilem I-, to find, jiiven i. a point \ *( < I w !iicli mininu/es / ( i. \ I suhject In the con 

slrainls on ». The outei problem is to hnd a point \* wln<h maximi/es Cii. i'iii) sulked to the 

eonslraintü on x. (ii\, i * i i I I i~ a well-defined (|uantity since, a^ will he -ecu Liter. > *( » I i^ unique. 

The existence of > *l i I and i * 1- eslahlished li\ suitalde < ontinuilv and compactness ar)iuineiits. 

Two approaches to optimi/aiion prohlems are 111 lo apply analytic criteria lo calculate an optimizing 

point, and i2l In use a numerical scheme —often an iterative one —to find a point acceptahly close to 

the optimum. The second approach generally requires many function evaluations. 

As a function of «. ^ I >. i*l»ll is continuous anil piecewise continuously diHerentiahle. The 

locations o| the discontinuities are not known in advance since lhe\ depend on v *. that i-. on the general 

solution i< ''ie inner prolilem. I onstMiuently we ihd not Imd the outer prolilem analytically tractahle. 

(In the special rase in which only percentajie vulnerahle systems appear, there are no huy-in costs, 

and F = (,. the t unction / h.ts ,i saddle point I namely (x*. v* (a* I ) and a I .arrange multiplier approach 

can he used.i Kor solving the niilei prolilem we used an iterative scheme which will lie described later 

in this section. Quick evaluation nl (.t i. v * i i I I —and hence of i * i i i - is reifuired for such a scheme 

to converge in ,1 reasonahle amount of time Lacking a general solution ol the inner prohlem. we solved 

it lor each > required using ,i l.agrange multiplier technique, olitaining an exai i solution 

Solution (if the Inner Prolilem 

I.el I, lie defined hv 

/i >,. i.i 

lor /     I. .... W 

|o| ,      1/ ■   I. . \ 

ami y, hv 

so that 

y,1 i, i (u.i v, •  »; i  • rr   max {0. i. - \, 

i )     V M c 

Ii»i    V y,(», i * W, 

■ 
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Each/, is convex in its second argument, and each yi is convex, so that the attacker is faced with 

a convex programming problem. Let P be the set {y: yi ä» 0, 1= 1 V}. Consider the problem 

of finding the point y(x, ß I which minimizes F(x, v) ■*■ fiVi y) over /' for positive fj.. Then, according to 

Everett's Theorem 1 [3], y(x, ß) minimizes F{x, y) over P subject to the constraint; 

Ply) ^ rtylx. (i)). 

V(y(x. ^i)) is monotone nonincrcasing in M  From the strict convexity of F ■♦ ^1  in >. it can be shown 

that I (v(x. fji)) is continuous in ß. und that H». M
1
 '

S
 unique. The equation: 

(Ul n vu.^t) 1 = Ku 

is solved lor ß as follows: 

The minimization of /  • ^1  with respect to \ «.plits into \ separate minimisation problems, since 

A • /i.1  is separable in \. and/' a cartesian product 

nun V I/,(>,. v, 1 • ji-yM v,))     V min l./,i.«,. v.i ' /jty.l»,) I 

•\ simple calculation then show* that 

1   I i       ",«,<,{ I I 
nun I       \«v- max (   I. — . max ■,  \,.       In^ max 

»,!.»,. M' 

• in , \ 

mm {      log max < I.     -    . max < »,.      log max < I. 
I  n, I jiV  ! I "■ I        ^s 

lol ( 

lol /       W 

M 

»here s, 1/2 (u, ■ rt,. and s, M'l w unless V 0. when s l/J <■» • n "set- Kigure 2 lot a sketch 

"I \ ,n, /x 1 versus log 11 I In- I unction 1- piece wise linear and nonmcreasing m lu^ ^1. and hence I ' v i, ^ n 

is also. I'he values of ji ((irn-pundmj; to corners o| ibis graph are ra-il\ ( alculated from the condition 

that exacll» one ol the one-»ided derivatives »iih it-pt-i 1 in \ ■•(/!»,.> 1 • ^-yi v 1 i.-irn led in |U, xi 

van 1-lies at a cornel point Ei|uatioii 114i 1- soUed b\ bracketing H,, betw••en a pair nl cornel poinu and 

solving a lineal equation, ll^i' 1- .1 solution, \ *' u    v i. ^ ' 

I pper and lowei IIOIIIHI- on 1   1 an ta-iU In- incor)Mirated int" (he solution- lhe\ -ini|>l\ adil more 

corner points 

\« long a- the solutions |o the one-dimen«ional minnni/ation problem« < an be obtained simpU. 

as in the case presented and as in the an  tangent lorm used in ■ I ('. the snlution ol ihe innei problem 

ran be reduc/d lo the solution ol c ne equation in one unknown   In general the equation mat not be 

lineal, so thai the interpolation procedure ttiav have lo be repla<eil \>\ -nme olhei method, not ne< t- 

-arilv li\ one giving an exact solution 

The Outer Prolilem 

We solved the outer problem bv a Iwo-slage pro<f-s   In the tir-t -tage -eviial hundred feasible 

poinls »" ' »" ' »ere generated at random and (»u" '. v*u" 'n, . dt '. v *' i" ' H evaluated 
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I'hc \ •  I Ix-st points were u*f<i as an itiitial complex "( ('""inls for a variation of Box'* (iearrh method 

|1|. Both procedure» arc described in dt-iail in a separate dwumenl [''l- 

H<.l H>  -'       I'l.it -'I  \    i. /j    v-   lit^l ^i loi  .1 [M-r< i-titdf   viitiH-rrfhU   >V'!tiii 

l\. COVILl SIO!S 

W i- lum- |irr-rnlril ,i inoiiri lur .illi'i atioti "I tismirc «••- !.. .itli-n-iM »Iralegn -\-liin^ lhal i an I» 

ii-nl in rrali-in ail\ reflect tin- Imn: rant;«   planning! procr»« 

>up|x»M-. lur example, llial ili< planner ii.e . the relalialoi i wani~ lir-i to olitain a -pecitiecj capa 

lulitv auain-t hard iar>:<i- an«! ••crondh in inaxinn/.c In- -urMMiij: KM! He «an u»' the model, li\ 

■ haiiKing the o|i|ecti\e tunction. in minimi/c i-osl i mi-traint'il In a lnv«ri hound mi -(..MMIII: kill 

|Niicntial i «iniä ilw output from thi« protileni a- tin input n) the retahatoi -N-trtn loner hicind«. he 

i an then maximi/e »urxivniii r M I . pro\i(le<l the inimmutn co»t re«ultin)2 Imm the hr»t »lep i«. le»» than 

In- IPIHII;''! 

I In- plannet nun liaM- the mi »«lie Im each t\ [><• nt -\-tcni ealeiton/ed a« iwlul a(Cain*>t hard l art«-1- 

m n-t hil against -nit taritel» He »am- in inaximt/e -urviMn^ kill (Hilential Inr the tii-i urnup nt nn- 

-ilt- ami in maximi/e -urviMin: KM I Inr tin- »ei-ond ^roup liein|I presented with a inulln rilfrmn 

prolilrni tin plannet nui-I dei ide the t\|<»- oj nptimum In desire» Inr example, he can lake a eonxex 

i omltmalion n| the inn > rtlena a» In- ohieetiw lunetion Aimtlnt approach i- to find the Pareln optimum 

|MIIIII- I In- can In- done li\ P -nKmi; the kill pntintial prohiem i^nonnt! «urviMni! KM! and n 

then solvinii re|»ealedh the '"KM I prohiem while im|Mi<>in|i lower hound« on the kill |Mi|enlial ranting 

Imm /rro in the an-wft ohtamed in »tep IM I In planner no*» ha- a range nt raretn optimal mill niiir- 

lli  i an then i Imn-f a |iartn ulai lone MUX in adxiw-ate |ia-td on other consideration« 
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tooiirir u-ap- in an aticmpt in prcitirt tlir («'refill itH iia-r m crilital path (l.r.ilinn thai tt'sulled whrii 

a iniriKiiiinilair tiMi^liinnr heuri^lic na» applit'il hi cniwiraiiu'd-rt'sourt'f pr<il)l<'nis. His cxf^erimental 

rnciliiini c (>M»I--I(II cit 202 different •.innie-projeri netwnrk» sniveil undei a variety of resource limitations 

whieh Melded 7'2\ le^t problems, Kur the one sequeneiiifi rule, Davi- derived several multiple regression 

mo(iels Inr predicting the percent increase in critical path duration due to limited resource availa- 

lulitie-. Kach model had H: value- m the neighhorhood ol 0 Hfi O.T). The stan(iard error ol estimate 

in the»e model- wa- eipiallv liitml. Il ranged from ahout 0,0 to 0.1 I, These hndings demonstrate that 

ii i- po-sihle In -tali-iicalK i-olate project -umiiiai\ measures thai can he used as a ^ruide in predicting 

heuri-li<   performance. 

In tin- paper, difficulties which are often encountered when using artificial projects are descrihed. 

Im. group- nl dissimilai project ivfie-, linlli artilicialh generated, arc llieii investigated. Multiple 

i-lepdoHni regression i- ii-<'d to predict heuri-tic [lerformancc. (»uidelines are then developed tor 

-clieduling pro|e<t .niivii-.. Vifvantage- ol anal>/ing prohlein structure before choo.-ing a lechniciue 

liii -ulv inu it are ,il-ii reported, 

II. SKUl E.NCINC; Kl IKS KXAMINED 

I he prionlv dispatch -clieduling rule- evumined are indicated in i'ahle I. The-e rule- have all 

I'een le-led pre\ioU-l\ and ie[ire-eril a ei'lii-ction of tho-e uhii Ii have heel, found eflective elsewhere. 

,•- v»ell ,i- -oine WIIHII have geneiallv produced poor ie-ull- on -elected prohlein-. A rule which re- 

-ii|vr~ re-oiirce conflict- on a purelv ramloin ha-i- ha- also heen mcluiled to he u.-ed a- a comparison. 

I uti.K I.    Srhfilulirifi Riilrs h.xiimined 

-i llrrllllill^ ruli lililjlllii .lllnll 
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-I1..1I1-1 Imniiiiinl I l[.i-i.ilii.n 

i.n.ili-l  Hi-..un i   I  -i.i 
l-nln .1  I ,ili   I iin-li   I mir 
\|,,.t  |,.|,. l'..--,|,|i 

H,IIII|..III   \i Imlv  -ilii I1..11 
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i.KI) 
i.HHIi 
lf-\l 
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I,I;I 

i n 
Mil' 

II-li ninni-.l I., i ..m .riliiui,;! i iiln .il (Mill nillinl- 

llu  .n lu.il nil.   ii-i'i| i- .i . I MI.un n   vr i-i.. 11 ..1 i In   I ■ ,1-1   I ..i,i I h liiai lifiiii-tn-. anil i- ri(uivalriil i.- ,11 

h.iiln -1   I   IN   -l.lll   I   mi' Ulli' i-rr  |(i| Im   .1  |.l....|  nl  llu-  11 l.llii.|i«lli|il 

I In-  111I1   1-  ill,   -.Kill' ,l-   I In   I .11   1I1 -I   I ..l.ii  Hi-,.111. 1   Hi 1:1,1 in I  mir i.l     I.' 

I -1.1 niih mi miilti|iriiii-i 1 prnlilrin- 
I   -.-il  i.llh   nil   -lll^tr pmn-l I   |i|..i.li in- 

F arh nl the rule- li-ted in 1 able I i- applied in coiiiunelion wilh the parallel method of -clieduling 

in whii h -eipieiiciiig prioritie- are delcrmined during -eheduling. rathe) than helore, \\ ith the eveep- 

timi ' the KS\1 heuristic ia de-eripfion of which ran he found in | I )'. the lieiin-iii iitle indiealr- the 

priority gn,.,! i,,, .un pel i n g adixitie-, Im c\am(ile. I he I fast j'otal !■ loat heuri-tic ^'ivr- highest priori M 

in ai liv itir- po--e—mg ttie /e(/.s/ amount nl art iv it v mlai llnat, the (iri'ulesl Re-ouice I Irin a in I rule givc- 

hrghe-l   piiniiiv   in  iho-e  .niivitie-  demaniling the firvutrsi amount  of  re-ources.  . \  more complete 
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(lescriplion n) each "I tht- nilt-s ID tiihlt- I can lie found in |h| or in (12|.l Ties in activity priority are 

generail) liroken (ir>l l>y projerl nuniltrr (for the multiproject case) and then !>•■ activity (job) numher. 

No "add-on" or reschedule rules of the type investigated hy Wiest [15-17] are included in thi> investi- 

nation because v\c assume that each activity i- completed within its specified duration with a constant 

Usage ol resources. Activities cannot be expedited (slowed) with the addition (subtraction I o( resource 

units from those sperified. 

III. HEIRiSTiC DISCRETION AND THE I SE OF ARTIFICIAL PROJECTS 

In order to exercise purported lope relative to a specific criterion, a heuristic scheduling rule must 

he alile to discriminate amoiiK activities. This olten leads to difficulties when data arc artificially gen- 

erated. Discretion ii> ilsell, however. i~ often not sufficient. As is shown below, the rule must have the 

opportunity to make resolutions ol sequencinti conflicts which will have an ultimate bearing on the 

results obtained. 

Kigure I. lor example, represents iwo project networks requiring fixed amounts ol one resource. 

The activities in Network I ol figure I have identical values ol total float, have the same duration 

(three time units), and rei|uire the same amounts of resources (five units for each of three periods, for 

15 unit-periods I. With a limit ol live on the number ol resource unit« available, application ol each of 

the sequencing rules jiiven in Table I (except on occasion, H\Ni results in an identical schedule if 

lies are broken hv lowest job number. The priority dispatch sequencinii rule used to solve this problem 

is relatively unimportant. 

It is not diHicult (o explain wli\ any selection ol scheduling rules result- in identical schedule« 

lor tli< ahove problem. Resources arc "tight" m the sense that each activity requires live units u| the 

particular resource over it- three period duration, and oiilv live units ol the resource arc available. 

Only one activity can he on-going at any one time. Resource utiii/.ation over the constrained-resource 

duration is HK) percent. 

The scheduling abilities o) (he priority dispatch rules are not a function ol resource utilization 

alone, however. This i- evident in scheduling network I with a resource limit oi nine units. Che ratio 

ol usage to availability ol tin» resource measured over the resource-constrained project duration 

(schedule -paii( is only 5ft percent: yet the sequencing rules juven in Table I «till do not discriminate 

among the activities in sequencing them, and schedules identical to those obtained with a resource 

limit ol five units prevail. 

Network _' ol Kigure 1 was constructed to illustrate vet another type of problem for the sequencing 

rules ol Table I. The majority of activities in Network 2 have different durations, demands fur re- 

sources, amounts ol total float, and so on. Hence, there are ample opportunities in scheduling this 

second project to discriminate among activities in making sequencing decisions, With a resource limit 

ol six units, lor example, application ol each of the sequencing rules given in TaMe I results in a 

noniiletitical schedule. Ihese results are summarized in Table 2. Note also from TaMe 2 that use of 

each of the sequencing rules results in a schedule span of 31 time units, even though no two schedules 

are alike! An evaluation of these rules on Percent Increase in (Critical I'ath Duration or on Project 

\Iakespan (or on ;. host ol other criteria) would show no one rule superior or interior to the rest. 

■ 

.. ...     .-  
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NETWORK 

Activity Number 

Duration 

Resource 
Requirement 

KII.I HY  I     K\.iiii|p|r .il priMci'l ru'twnrk 

TABLE '2.    Period in K hirh Artivity Is Scheduled to Stan \etuvrk .', Limit oj Six Kesourrc I nits 

i 
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It is indeed likely that, for a host of real and artificial problems, the choice of a scheduling rule 

makes little difference in the results of scheduling effort. It is, therefore, relatively unimportant which 

sequencing rule is employed. Although the networks of Figure 1 were fabricated to produce the results 

shown, the results reported are not atypical of those obtained in examining smaller, laboratory type 

projects. For example, difficulties often arise when attempting to control certain values of project 

and resource parameters when smaller, laboratory type projects are examined. Resource utilization 

is one characteristic which is particularly difficult to control because of integer restrictions on the 

availability and use of resources. Other characteristics pose similar problems when the data are 

artificially generated. Considerable «are must, therefore, be exercised if the results of the experiment 

are to be generalized to the types of project.-, commonly found in practice. 

Project and resource summary measures designed to predict heuristic performance a>. well a- 

to indicate characteristics of problems for which heuristic choice is likely In be unimportant are de- 

scribed in the following section. These measures are intended lor use in scheduling actual as well 

as artificial projects and project sets. 

IV. IDENTIFICATION OF INDEPENDENT VARIABLES l SED IN PREDUTINC 
HEURISTIC PERFORMANCE 

In this section, the independent variables which may contribute to good (or poor) heuristic per- 

formance are identified. They are divided into three categories. In one. time and network based param- 

eters are computed prior to critical path analysis. In the second, time and network based parameters 

are computed suhsequenl to critical path analysis. The third categon includes resource-based param- 

eters which are generally computed subsequent to critical path analysis. Note from Figure I that a 

multiproject scheduling problem can be treated in the same manner as a single-prnjecl scheduling 

problem if a dummy activity is used to precede- (succeed) the beginning lending! activities of all projects. 

it is useful, however, to identify several sets that simplify the notation used when single vs. multiproject 

parameters are intended. Table '.\ gives these sets, and other notation for identifying variables used in 

describing the various problem characteristics examined.* 

I. Time and Network Based Paramelers Computed Prior to Criliral Path AnaKMs 

\PR().| Number of Projects To He Scheduled 
NNODE Number of Nodes (Activities) To Be Scheduled 
NARC Number of Arcs (Precedence Relationships) 

NDUMMY Number of Dummv Activities (0-duration) 

*ln ihr rfefiniliims llial follow, an gllrmpt h»> U-cn made In iiliiitif\ (laranieters (hal have lieen millalK dc-rrilieel l)\ "ihr' 

researchers <>( the ronstrained-resourre. pmiect srhetiulmis proMrm. These arc imlirated hv ihr author's nani.- fnltowinlt ihr 

description of ihr parameter referenced. In some mslanct".. ihr paramrirr a-* usril in ihc. paprr may nol hr a«. nnpnalU described 

hv ihr author 

— .— ■ 

 "  Hlh-   IMM , 
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TABLE 3.    IdentijicatUm oj Variables and Seis l seil In ('amputation <>/ I'rojert Parameters 

I Indriirnclcnl \ arialil»->| 

■DIR 

Nipiati .11 

j- 
I>t*^rripIiori 

i 

\ Hit- nrl ill all ai livilio hi lie -i hi-ihilfil 

/' Tlir srl nl all projccl« 1" In- x ln-diil.-il 

R Th«' srt nl all rrxnunr ralr^nrir* 

,/, Diiralinn nl arliviU - nl priiirrl i 

'.,. IVr-piTiiiil  ri-iiuirtrm-nl  nl  ri-min c /. 

[irniiMl i. 

i\  ai'livil» /   nl 

H. \vailalijlit\ nl rrHiiuri-f /. in each iirrnul 

«pan 

nl ihr -ihr lul. 

cr ( run al path Ipnglh nf prnjirl i 

/■>';;' hri-c-Hnal nt aiimtv / nl pmirel / 

•/>;;■ 
InlalHnal nl arlmlv / nl |>rn|erl y. 

1 Ih-tfrminrti 1(\ cnnvfnlinnat crilMal palh mrtlnnfs 

Sum of the Aclivitv Durations 

1'L 

XI)( H 

VA-Dl'R 

■Xvcra^f Activity Duratinn 

Variance in Activity Duration 

SDIR 
NNODK 

S K/n-XDl R)- 

WODK- I 

I   DENSITY Total Activity Density (Johnson) 

^ max j(), Numlier of Predecessor Activities—Numher of Successor Activities 

XDENSITY Average Activity Density 

T-DENSIiY 

COMPLEXITY Project Complexity (Pascoe) 

NNODE 

NARC 

NNODE 

igif i     ■ i     ■-" ii -•■-"- 
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Of ilmse parameters identified above, Varianc» in Activity Duration (VA-DUR) is iikelv to have 

an effect on the performance of the SIO lieuristic. which is an optimal rule (under a set nl restrictive 

conditions) for the one-machine sequencing prohlem of the job shop. This parameter should also affect 

the performance of other rules which are hased in part upon activity duration. 

The last three parameters iT DENSITY. XDENSITY. and COMPLEXITY) measure the inter 

connectedness of a network, and thereby influence when (in terms of network logic) an acti\il> can 

be scheduled. 

2. Time and Network Based Parameter» (iumputed Subsequent to (Iritiral Path Anahsi» 

ir.Pl. Sum of the Critical I'alh Lengths 

V CP, 
I' 

XCIM. \verage Critical Path Length 

St PL 
NPROJ 

VA  CPI. Variance in (Critical Path Lengths 

£ (CP.-XC^L)- 
2^  

NPHO.j - 1 

MAXCPL Maximum (ritical Path Length 

max {Cl' 
r 

SSLACK Total Slack (Float) of All Activities 

lTFn 

NSI.ACK Numlier of Activities Possessing Positive (NonZem) Total Float 

v i i    ifm.x) 
4* 1 o    ifrF,, = o 

PCTSLACK Percent of Activities Possessing Positive Total Slack 

NSI.ACK 

NNODE 

'- — ^ —-       nil |1|_         '   „m**^^^^^ 



■^ W«-"—""'—"•■J    ' •-P-IWII   iPii  J    P ...i..—w—-    -*"«'"■•"■——"->—^-'*——"■—'—-    ■ 

102 

XSI.ACK 

.1. H  PATTERSON 

Average Total Slack Per AcMvity 

TOTSl.ACKR        Total Slack Rati 

XSLACK-R Avcrane Slack Ratio 

PDENSITYT Project Density-Total 

ISI.ACK 

NNÖDE 

ISI.ACK 

MÄXCPL 

XSI.ACK 
MAXCPI. 

2DIR 

SDUR + ISLACK 

SKREKSI.K Kree Slack (Float I of All Activities (Johnson I 

S "', 

NFREESI.K Numlier of Activities Possessing Positive (Non-Zerol Free Slack 

V 
1       ii FFij > 0 

0       if FFij = 0 

PCTFREESI.K Percent of Activities Possessing Positive Free Slack 

NFREESI.K 

NNODE 

XF'REESEK Average Free Slack Per Activity 

PDENSITY-F Project Density-Free (Pascoe) 

SFREESI.X 

NNODE 

SDUR 

SDUR + SFREESI.K 

-. ....^   .,- -..— . 
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()l ihr parameters liMed in this srcimd category, those that reHect measure-, ol float or slack 

present in activities are likely to account for a significant portion of the variaiion present in the per- 

formance of the Least Total Kloat heuristic. Since measures of slack <io, however, reflect scheduling 

freedom in the sense that specific activities can he delayed without delaying the completion of a 

project, this measure will undoiihtedlv account lor a larjie portion ol the variation in the hehavior 

of the other sequencing rules. Delays should Ion the average) he less when using (e.g. I the SIC) heuristic 

in scheduling a project with large amounts of slack on a high proportion of activities than in scheduling 

a project in which lew activities possess relatively small amounts ol slack or total float. 

This second categorv of measures includes parameters hased on the total float and the free float 

present in project networks. Measures of free float were included because the measures of total float 

overstate the amount ol scheduling freedom available in an activity: activity total slack may he dupli- 

cated lor all activities in a given chain. Kor such activities, the delay in a preceding activity means a 

los> of slack in the succeeding activities. The above measures also reflect the percent of activities 

which possess either total or free slack, as well as the amounts possessed. 

S.  Resource Based Parameters (»enerally Computed Sulisequeiit lo (Critical Path Analysis 

ITTK,, Percent of Activities Requiring Positive Amounts of Resource k 

I il>,„ > 0 

o     if>,„ - o 

"NNODE; 
for all keH 

\II\ rr DKM \NI)      Minimum Percent of Demands loi a Resource 

nun (PCTRJ 

X%DKMAND \verage Percent of Demands for Resources 

V PCTR, 

NRKS 

\IA\r<r DKM WD      Maximum Percent of Demands tor a Resource 

max (PCTR, 

I Til I tili/.alion of Resource k I Measured over the longest critical path leiijith 11 Davis) 

V riß ■ </,, 

Rk   MAXCP! 
loralUe« 

"    '   -^1111 
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MINI III Minimum Resourcp I tilization 

min (I Til.,) 

V   li 

r oi 
(r,jk   -01 

1 ',,*=() 1 

\l  III. \verage Remturce I tilization 

SI TIL, 
H 

NRES 

\I\\l TIL Maximiitii Resource I tilization 

max {ITII J 

DMND* Average Quantity of Re-iune k Demanded When Required H>  \n Activitv 

lor all UR 

XDMND Average Quantity of Resources Demanded When Demanded 

^ 1)V1\DA 
j(  

NRES 

(.ONSIRj, Resource (ionslrainedriess 

—=         (or all Ltn 

M1\(!()N Minimum Resource (^»nstrainedness 

min (CONSTRJ 
H 

X<'()\' Average Resource (ionstrainedness 

VCONSTRA 
J(  

NRES 

MWroN Maximum Resource (lonstrainedness 

max {CONSTR,] 

_ ■    -    ■      -   ■■   -     ■■-- —■ ■ -  -- 
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Variance in K«-s<>ur<T Constrainrdncss 
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(CONSTR^-XCON)2 

NRKS-1 

TCON, Resourc«" (lonslrainedness ()V«T Tit 

i v^ I1      if r,J 

N     10        if r, 
,   '01 

Ät   MAX'IM.  | 
tor all kfH 

\IINr()\-TM Minimum Rfsourcf Gmstrainedness Over Time 

min (TCON,,.] 
K 

XCON-TM \vera{:e Res«tun-e (lonsirainedness Over Tim«- 

5; TCON, 
_«  

NRES 

\IAX(.ON-TM Maximum Resource (^onstrainedness Over Time 

max {TCON'),! 
H 

VA-CON-TM \ ariancc In Resource Constrainedness Over Time 

(TCON t-XCON-TM )s 

NRES-1 

ACON* Resource ('onslrainedness I sinp All Activities as a Base 

S '*>' 
NNODERk 

tor alUt« 

MINCON-ALL Minimum Resource ('.onstrainedness I sinj: All Activities as a Base 

min {ACONJ 
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XCON-ALL Average Resource Constrainedness I sing All Activities as a Base 

2 *a)N* 
NRES 

MAXCON-AI.I.       Maximum Resource (lonstrainedncss I sing Ml Activities as a Base 

max  { XCON, 

V X-t ;()\-AI.I. \arian<:- in Resource (.onstrainednc-.- I «inj:  Ml \<-tivilies .1» .1 Base 

V ( \(()\t     \(()N-M I  i- 

NRKS- 1 

The above resource utilization parameters reflect the "lightness" ol certain resource type». 

Obviously, it the demand lor a particular resource at an> («lint in lime does rmt exceed the availability. 

Kii. then this resource is not very constraining and lev. reiudutions ol conflicts in the demand lor tin.» 

resource will have to he made. *nd where conflicts do have to lie resolved, hut the quantities required 

approach the availability ol a resource, conflict resolution will have to be made but will be oi little 

consequence in terms ol the ultimate duration of a project. \ri example oi this latter situation wa- given 

in the previous section. 

Between the extremes ol a large portion ol the activities demanding a large quantitv of the avail 

ability ol a resource and resources being available to schedule all competing activities without resolu- 

tion, a given heuristic has the potential to eflect decisions which mav bear heavilv mi the criterion 

being evaluated. This is because, of course, the heuristic has the abilitv to -elect some Ipossibl) uniquel 

subset of the activities available lor scheduling. \s the number ol activities which could be included 

in a given subset of scheduled activities increases, and as the number of feasible subsets of activities 

for selection increases, the more potential there i- lor effecting decisions which will have an impact on 

the final results. The resource parameters herein termed "Constrainedness" and "(ionstraineduess 

Over Time" are examples of quantifiable indices of potential decision-making effectiveness.* High 

values of certain constrainedness parameters imply the potential lor masking the intended effectiveness 

of heuristic procedures. As the average demand for a particular resource decreases, for example, the 

potential lor making effective decisions increases. Several different constrainedness indices are 

included in order to identify their potential effect on heuristic performance. 

OFACTi Obstruction Factor of Resource L (l)a*is. I'ascoe) 

"Excess" Resourci   Requirement A 

Resource \X ork 1 Content» 
for all /,«« 

*Thi- impiirianc I- ol ili<- conslrainednes» paranwlrn- in mlp -Imii »chrduiin)! r<-»<arc h •hnulrj lie appdrent. Tin- impliralion 

»f a 111I1 («ctivitv) usmii all ol an availalite rr-inirrr (man. maihine. etr.i If., ol rciur«r, lhal 'In- ri'«<iluiion ol all rrwurce e-on 

flirts imiilie* »nr joh in activity is scheduled and .;// :ilhrr a>ailalili' iidis must IM- iHislponrd: w Iwn nr mnri-l artivitu-s umnil 
ihr samr ri-snurc.' can he im-|ioin|i al llir »an»- lime. 

n     11 
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K\i <s> KiHoiin «■  Requirrmfliti       N     max   {0, Iteniand, - Kn 

ilicrr ihr ilcinand ti>r rrsniin »• k i« lia»fil nn an all rarU «larl •>< lifdulc iSce Y igurr 

LM 

lOTOh \( T 

Kr^iiunr Wurk < «initiit, - V r, ,<!, 

Tulal Obstruction Kaclor lUavisi 

MINOh \( T Minimum Ohstrurtion Fan. 

\l\\()K\t T Maximum Obslruitinn Kactur 

V (»K\( T. 

min (OKACTt 

max OKACT 

I FACT, I ii(irriilili/alii>ii I ai to 

I niicriitiluatiniu 
Tulai W urk ( uiilf ni, 

Inr all U« 

I iidfriilili/alKiii. =  V   max  {0. K, - Dtmaml,, 1 

vslicrt- I lit- (icmaml  Inr  rcMiurcf  /.  i>  lia>«'il mi  an all <arl\  «tarl  srkedulf (see 

Ki^urt- 2). 

TOTl K\( 1 Total I mlcrutilization Kactur 

V I h \( T 

MINI h'\<' I Minimum I ndrrutilization Kavtor 

min (I I- \< T,, 

M \\l K\( I Maximum I ii(ierutilization Kactur 

max {I K\(T. 
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NOVER» 
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Number <>l Timt- Periods The I)t*rnan(J lor K»'>(iurce I, Exceeds the availability of 

Resource A inhere the ilemarui is hase«! on an all early start schedule) 

Y I it Demandi > fi>. 

f)       ii Demand» sK, 
L.r allkfR 

XOVER Average Excess Demami Time Periods tor Resources 

y N()\HR( 
_w  

NRKS 

MINOVER Minimuin Excess Demand  lime Periods tor Resources 

min (NOVER* 
H 

MAXOVER Maximum Excess Demand Time Periods tor Resource: 

max {NOVER,; 
H 

NLNDER, Number of Time Periods ihe Availability of Resource A Exceeds or Equals the 

Demand tor Resource k (where the demand is liased on an all early start 

schedule! 

1 
MAXCFl 

I   UK, 3= Demand) 
0   \i K, < Demand/ 

for all At« 

XINDER Average Time 1 nderutili/.ation of Resources 

£ MNDER, 

NRKS 

MINI NDER Minimum Time I nderutili/ation of Resources 

min {NINDERA 

MAXI NDER Maximum Time I nderutil   anon of Resources 

max {NTNDERA} 
H 

*—^—*  
i   i. .■■.^■I .i  
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Figure 2 is a rcsourt'e profile of the demands lor the one resource involved in Network 2 ol Kijiure 1 

liased upon each aetivity lieing schedided .it its r ritical path analysis determined early start time. As 

15 

Ct 
< 
UJ 

_J 
-I < 

10 

UJ 
-Jui 

*£ 
um 
K 
Dt- oir 
UJH 

/ 

RESOURCE 
LIMIT,Rk 

5 10 

TIME PERIOD 

18 

KK.I RK 2.    KfMJurcr iirutiK (if an all earh start silirduli' lor iiflwurk .' ■■! Iitiun- I. 

shown in the nonresource constrained version of this prohlem, the peak demand for resources occurs 

in time period seven at 16 units and reaches a low demand of three units in time periods 17 and 18. 

An imposed limit of six units on the quantity ol resource available will extend the duration ol this proj- 

ect beyond the 18 time periods indicated by its critical path length. These latter resource based param- 

eters provide an indication of the conflicts which will develop because ol the limitation on resources. 

These measures assess both the number of time periods in which resources are underutilized or over- 

utilized, and the amounts of overutilization and underutilization based on an all early start schedule. 

Knowing in advance, for example, that there are very few time periods in which the demand lor re- 

sources exceeds the availability, one might be tempted to employ conventional critical path procedures 

and resolve the conflicts as they develop in the life of the project and not plan the seciuencing of ac- 

tivities with any formal heuristic procedure. 

A FORTRAN program was written to calculate the parameters in each of the three categories 

above. The values obtained then served as independent variables in a regression model to predict 

heuristic performance. Stepdown multiple regression was used to analyze the scheduling results, and 

independent variables with a net regression coefficient signilicant U-testl at the 95 percent level re- 

mained in the regression equations developed. 

V. MULTIPLE REGRESSION RESILTS FOR PREDICTING HEURISTIC 
PERFORMANCE 

Sixty multiproject scheduling problems were computer generated using network, time, and 

resource parameters from |12| to construct each network. Project sets generated consist of 6 to 10 
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projects each, and each project consists of 20 to 40 activities. Thirteen different resource categories 
were involved, and each activity demanded fixed, positive amounts of resources from as many as 13 
resource categories. This generated data is thus representative of that found in practice. 

Three criterion functions are investigated for this multiproject data: (1) minimize the sum of 

the delays beyond the critical path length for all projects: (2) minimize the sum of the total weighted 

delays of the projects, where the weights are determined l>y the size of the project measured by total 

resource-unit requirements (total work content I for project completion: and (3) minimize the percent 

increase in critical path duration, where the group of projects are conjoined by dummy nodes to form 

one project. This latter criterion is equivalent to minimizing makespun. or the time required to com- 

plete all jobs (projects). In a typi .' multiproject organization, the firm rarely accepts a group of projects, 

finishes this group, then accept; another group, finishes it, etc. Kather. projects are entering and being 

completed in the organization coterminalely: still other- are in progress. For completeness, however, 

and to contrast our results in minimizing project makespan with those results reported in job shop 

scheduling research and elsewhere, the criteria of minimizing project makespan is included in the 

analysis. 

Table 4 presents some summary statistics tor the 60 project sets generated, and Table 5 gives 

information on a factor analysis performed to combine the project variables into independent factors. 

The six factors retained account for 71 percent of the information accounted for by all independent 

variables. Tables 6, 7. and 8 then give the results of the regression analysis for the objective functions 

minimize Total Project Delays. Total Weighted Project Delays, and Percent Increase In The Longest 

Critical Path, respectively. 

TABLE 4.    Summary Statistics For Sample Independent Variahles 

|W) inuitiproi ci tesi prolilem»! 

i 

Mean Standard 

| 
i i 

Mean Standard 
1 i 

Mean Standard 
Variable lavcraufi 

1              1 
deviation \ anablc lawrage deviation Variable* laveraye deviation 

JDl'R 
] ( 

1 ,#5.43 621.23 f'DK.NSITV T 047 007 VA  CON 0.08 

4 ( 

0.02 

XDIK 7.4y 0.40 FCTKRKKSI.K 0.(W 0.02 MAXCON TM 0.O4 0.01 

NSl.ACK 70.07 ,uiy PDENSITY V 0.82 0.05 MAX()KA( T 11.07 8.23 
PCTSI \V:K 0.38 003 XOf DEMAND O.lfl 002 MAXI FA( T 0..SH 0.16 
TOTSI.ACK R 8.62 

1 
t.3<J MlM Til. 

1 
0.11 

l 
006 MAXCON All. 0.24 0 13 

1                                         J 

Twelve independent variables given in section IV were omitted from the regression equations in 

Tables 6. 7, and 8 because of the multicolinearity which would have otherwise been present (several 

of the independent variables are partially derived from others I. Variables eliminated because of zero- 

order correlations exceeding O.MO with another variable left in the model include: NPROJ. NNODE. 

NARC. iDlR, T-DENSITY, iCPL, MAXCPL. iSI.ACK, PDENSITY-T, PDENSITY-F. MINCON- 

TM, and MAXCON-ALL. 

In order to not bias the objective functions of minimizing Total Project Delays and Total Weighted 

Project Delays, a record was kept of the delays and weighted delays in the projects as of a specific 

 ■■   'i nirn i- ^  ■^■■'—■- 
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TABLE 5.    Factor Loadings Exceeding 0.70 In. Absolute Value—Vanmax Rotation * 

|6() mulliprixlud Acht-duling |jr<rtilrm»{ 
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Variable 

Factor liiadintcit 
il'an-nilifsc- indirale nrtcalivr luadinKl 

K-l V-2 F-3 K-l K-5 K-6 

NDUMMY 0.76 

XCI'l. (0.82) 
VA-CPL (0.70) 
NSI.ACK 0.82 

XSLACK 
TOTSl.ACK-R 0,76 

XSLACK-R 
SKREESLK 0,70 
NFREESLK 0.78 
MINI Til, ().8.S 

XITII ■ 0,88 

MAXITII. 0,87 

XDMNI) 0,82 
MINC.ON (0,701 

XCON (0,84» 
VA-CON 

XCON-TM (0,7V) 
MAXCON-TM 0.72 
TOTOFACT (0.83) 
MINOFACT (0,83) 
MAXOFACT (0 911 
TOT11FACT 0 82 
MAXUFACT 0.92 

XÜVER (0.841 
MAXOVEK (0.92) 

XUNDER 0,81 
MAXUNDER 0,91 
NCO.VAl.l, (0,70) 

XCON-AI.I. (0.<M) 
VA-CON-ALL (0.75) 

(0.89) 

(0.91) 

10.82) 

'Thr *ix tarUirs computed rrlain 71 perrenl 

independrnt variable». 

>t the* intormation accountt'il tor b\ all 

time in eac-h schedule span (usually about 75 percent of the length), and the objective functions were 

evaluated as of this time. This removed bias which would have otherwise been present as projects 

entered the completion phase and the simultaneous demands for resources declined. 

Tables 6, 7, and 8 reveal some rather interesting relationships for the data examined. For example, 

specific independent variables remain in (stepdown regression I each regression equation with differing 

solution techniques (heuristics), indicating that a statistical relationship does exist between problem 

structures and the method employed to solve each problem. Note also that some of the project param- 

eters—especially those assessing relationships between resource requirements and resource avail- 

abilities—are significant in a majority of the regression equations, indicating their importance in 

scheduling proje-' activity for all solution orocedures. Additionally, from a comparison of Tables 6. 7. 

■*M. 
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TABLE 6.    Multiple Regression 
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TABLE 7.    Multiple Regression Results 
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Results for Total Project Delays 
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TABI.E K.    Multifile Repression Results for 
|60 hypothetical multiprojeci 
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and 8. which of the parameters remain in solution is a function of the objective function being evaluated, 

indicating that the choice of a scheduling rule is also dependent upon the desired result of scheduling 

effort. 

A comparison of the columns "Standard Deviation"" and "Standard Error of Estimate About Re- 

gression" and an examinatioti of the R2 values provide some indication of the efficacy of our procedure. 

In general, no less than 82 percent of the variability in results obtained using any heuristic procedure 

can be explained by the regression models developed. 

An experiment to further assess the efficacy of these regression models might consist of the follow- 

ing. For each of the objective functions evaluated, rank the heuristics on the lowest mean value attained, 

the next lowest mean value attained, etc. This gives an order in which to select a heuristic procedure 

for solving problems, not considering unique problem structures. Alternatively, predict (using the 

models developed! the heuristic rule which will likely produce the lowest value of the objective func- 

tion, the next lowesl value, etc. for specific problems. Then. one. two. three, . . . of the heuristic rules 

can be employed to schedule project activity, and the following question addressed: "What is the 

expected improvement (if any) in using the rules ranked by the regression equations on each problem 

as opposed to selecting the rules on the basis of lowesl average results obtained?" 

Figure '.i presents data in this regard. For example, if a heuristic is selected to minimize project 

delays on the basis of lowest mean value obtained in solving these mulliproject scheduling problems 

(in this case, the SJO heuristic), the amount of total project delay will be 16 percent above what could 

be obtained by solving these same problems with all rules and then selecting the schedule with the 

minimum amount of total delay. If instead, each problem is solved using the heuristic projected best 

^ . .,.-. ^■- niMMifcn— — .   . .......■.^.ii n---- —  ■--■■ -■ — 
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on inciease in total project delays, then the solution on the average will he only 8 percent above what 

could be ohtained hy using«// heuristic procedures. Using only one heuristic sequencing rule to solve 

a given problem (which might usually be the case), use of the regressijn equations results in an expected 

improvement of 8 percent in this objective function value (16-8 percent). Naturally, as the number of 

solution techniques examined increases, the relative advantage of using the regression models developed 

decreases. 

The use of the regression equations for minimizing Percent Increase in Longest Critical Path 

Duration generally does not produce a substantial improvement over using the rules based on lowest 

average value obtained, as indicated in Figure 3. The appropriateness of this particular objective func- 

tion is certainly open to question, however, as discussed earlier. And results in minimizing Total 

Weighted Project Delays using the regression models are encouraging, although the di.Terences in 

results obtained arc not as great as in the minimization of Total Project Delays. 

In order to further test the approach reported, relevant project scheduling literature was reviewed 

to gather project data from other sources for analysis. The most extensive set of data obtained consists 

ol83.s(n^/e project scheduling problems generated by Davis [2] for use in testing his bounded enumera- 

tion algorithm. Davis used resource and network parameters nearly identical to those used by Johnson 

[9] is his investigation of the single constrained-resource, project scheduling problem. Johnson based 

his network generation routines on experience gained from two sources. He examined more than 50 

CPM networks submitted for processing at one computing center. He also examined networks that have 

appeared elsewhere in various case studies. Briefly, each project consists of either 22 or 27 activities 

(nodes), and each activity can require fixed amounts of three scarce resources. Pertinent statistics for 
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KfM KK .i.    IV'rccnt inrrras«' in minimum heuristic results nbtained- muitipripjeet data. 

many of the independent varialtles given in section IV are presented in Talile 9 for the 83 problems. 

A factor analysis performed to combine the independent variables into factors is given in Table 10. 

Because single project data are examined, only the objective of minimizing the percent increase in 

critical path duration is assessed. As noted by Davis [4|. this criteria also minimizes the delay in the 

completion of the sitifile project. 
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The retrrt'ssion results obtained usin^ this sinnie project data are pven in Talile 11. Several «I the 

independent variables lound in the previous regression results do not appear in this table because ol the 

higher number of zero-order correlations exceeding D.W. Two independent \ariahles. PDENSITY h 

and MINCON-TM. not present in the previous renression equations, remained in lor this data. 

Despite the great dissimilarity of data types examined isingle vs. multiple projects: three vs.  \'\ 

resource categories; etc.), similar tendencies can be noted in the results reported in Table 8 and Table 

11. For example, there is a tendency lor the heuristics I.TK and ITT to perform the hest on the criteria 

examined, and tor the heuristics MJP and SIO to perform relatively worse than a rule which resolves 

resource conflicts at random in lioth sets of data. Many of the independent varialdes which remained 

in the regression equations for the previous results are also present for the Davis data even though 

several variables were eliminated from the candidate varialdes list because ol problems with multi 

colinearity which would have otherwise developed. Additionally, parameters based on resource utili/.a 

tion are significant in every regression equation for both sets of data: the minimum resource utilization 

parameter is significant in the Davis problems; the maximum resource utilization parameter is signifi 

cant for the multiprojecl data. 

Even the above discrepancy in the MINITII. vs. MAXUTI1. parameter being significant in the 

regression equations for these two important classes ol problems can be resolved. The difference in 

values of minimum and maximum resource utilization for the Davis single project data (averaged across 

all problem» I is 0.90—0.78 = 0.12: for the multiproje<'t scheduling data it is 1.67 -0.11 ; 1.56. a much 

larger difference. Moreover, the parameter MAXI TIL is highly correlated with \1A\(!()N I'M in the 

Davis data (p = 0.%l, so that the MAXI Til. parameter was not permitted to enter as an independent 

variable. The MAXCON TM parameter !■■ significant at the 0.% level in six of the eight equations 

reported. 

Theft- values for each regression equation for this second group of data range from a low of 0.83 to 

a high of 0.93. indicating again that a statistical relationship does exist between the parameters included 

and the objective of scheduling effort, 

VI. A1N IMPROVED PROGRAM FOR PROJECT SCHEDULllN«; 

(riven the improvments reported with the use of prediction equations described, advantage can 

be gained by constructing a program incorporating all heuristic procedures. Then, heuristic ruleisi 

can be selected from those available based upon unique problem characteristics for solving Individual 

problems. Figure 4 is a simplified flow chart of such a program. Figure 3 provides some indication of 

the advantages of such an approach over a similar program which incorporates only one solution tech- 

nique and in which no attempt is made to determine beforehand the solution procedure to use. 

VII. SUMMARY AND CONCLUSIONS 

Scheduling problems often exhibit unique characteristics which make them more amenable In 

solution with a particular procedure. The advantages of analyzing problem structure and then choosing 

a technique for solving it can be significant. For the data examined herein. the> are as indicated in 

Figure 3. 

For certain other problems, the choice of a scheduling technique (rulel is relatively unimportant — 

nearly all will produce schedules with the same or nearly the same objective function value.  These 
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READ PROJECT DATA 
(SINCLE-VS. MULT I-PROJECT) 

DETERMINER DESIRED 
RESULTS OF SCHEDULINi; EFFORT 

CALCULATE INITIAL 
CPM SCHEDULE 

EXAMINE PROJECT AND RESOURCE CHARACTERISTICS AND 
RANK ORDER 5CHEDULINC. RULES IN ORDER OF HIGHEST 
PROBABILITY OF MINIMIZING OBJECTIVE FUNCTION INPUT 

FREE RESOURCES 
FROM COMPLETED 
ACTIVITIES AND 
ADD TO RESOURCES 
ALREADY AVAILABLE 

INCREMENT 
TIME —SO- 

TIME - 0 

LIST ACTIVITIES AVAILABLE 
FOR SCHEDULING 

CALL APPRCRIATE SUBROUTINE T:1 

LIST PROCESS ACTIVITIES FOR 
SCHEDULING 

SCHEDULE ALL ACTIVITFS WHICH 
CAN BE SCHEDULED AT THIS TIME 
AND UPDATE RESOURCE AVAILABILITY 

PRINT COMPLETED SCHEDULE 

INITIALIZE 
RELEVANT 
VARIABLES t 
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I'll«- rrgrrssidti rf>>uli> ulitani'-il ii>iiit: llii^ ^i^nl«■ projetl ilaia arr fii\ei) in I'able 11. Several nt ill«- 

indfpcndenl Nanal)!»*» inund in ihr previmis r»'^rr>>iiin results dn mil appear in ihi> lalilr berau»e nl the 

liiftlitT numlier ui zem-ordei < cirrelaimn» exceeding 0.90. Two independent xarialtle^. PDENSI'Hf' h 

and M1N(!()\   TM, nut present in the previ<ius r«•nre*<^illll equations, remained in lur this data. 

Despite the ureai dissimilarity "t data types examined isinicle \«. multiple projects: three \-   l.'i 

resource rate|tories; etc. I, -iniilai tendencies can he noted in the results reported in I able H ami I alile 

11. Kor example, there i?. a tendency tor the heuristics I.TK ami I.I- I to pedorm thv In-1 «>II the criteria 

examined, ami lur the heuristics M.ll' ami Sl() in perftirm relatively worse than a rule which resolves 

resource conflicts at random in hoth sets o| data. Many i>t the independent variahle- which remained 

in the repre-Mori e<|uation> lor the previous re-ult> are also present lor the Dasi» data evn though 

several variahle» were cliininated Irom the candidate vanaliles li»! liec'ause ol problems with multi 

(iilmearilv which wniilii have otherwise developed, \dditioiially. parameters lia»e(i on resource ulili/a 

■•ion are • ,)i!iiti< .int in every re|iression equation tor hoth »ets ut oata  the minimum resource utili/.ation 

parameter i» sitcniheant in the Davi» problems: the maximum resource utilization parameter i« sijiniti 

cant tor 'he multiproject data. 

K.e.'i the above discrepant'y in the MINI 111 v»., \l^\l I'll parameter being significant in the 

regression equations tor these two important classes ot problems i an he resolved. I he difference in 

\ aiues ot nunimum and maximum resource utilization tor the Davis single project data iai eraged across 

all problemsi is 0.90 U.7K 0.12: for the multiproject scheduling data it is 1.67 0.11 ! .'if-., a much 

larger difference. Moreover, the parametet MAXI III i» hitililv correlated with MAXt'.ON TM in the 

Davis data lp = 0.%l, «o that the M \\l 111 parameter was not permitted to eiltet as an independent 

variable. The M\\(.()\ TM parameter i« sj^niKcant at the 0.90 level in »ix ,i the eight equations 

reported. 

TheH ' values jn, each regression equation tor this second group ot data range Irom a low ol 0.K.S in 

a high of 0.93. indicating again that a statistical relationship does exist between the parameters included 

and the ohjective ot scheduling effort. 

VI. A> IMPROVED PROGRAM FOR PROJECT SCHEDl UMi 

(.iven the improvements retiorted with the use of prediction equations described, advantage can 

he named hv constructing a prcgram incorporating all heuristii prix'edures. Then, heuristic ruletsi 

can he selected from those available hased upon unique problem characteristics tor sc.lvmg individual 

problems, figure 4 is a simplified ilow chart of such a program, figure '.\ provide- some indication ol 

the advantages of such an approach over a similar program which incorporates only one solution tech- 

nique and in which no attempt i- made to determine beforehand the solution procedure to use. 

Ml. SIMMAR^ AND CONCIA SIOINS 

Scheduling problems often exhibit unique characteristics which make them more amenable to 

solution with a particular procedure. The advantages of analyzing problem structure and then choosing 

a technique for solving it can he significant, for the data examined herein. the\ are a- indicated in 

figure '.'>. 

for certain other problems, the choice of a scheduling technique mile i is relatively unimportant — 

nearly all will produce schedules with the same or nearlv the same objective function value.   These 
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problrtns generally consist »I pmjert» in which the initial nhstruction as determined hy an all early 

-tart schedule i> Uiw. Several indices oi "resource eonstrainedness" were also described which can 

contribute to the masking of heuristic performance. 

Subsequent to the computation of the regression models reported, attempts were made using 

step-wise i -gression and multple correlation to determine characteristics of problems which would tend 

to mask the effectiveness o the heuristic procedures employed. In general, it was found that greater 

differences in heuristic pel lormance are likely to occur for those projects or those project sets in which: 

' I initial obstruction i-- l..gli: 2) projects possess relatively large amounts of and occurrences of free 

Hoat: and 3) certain resource eonstrainedness measures are low. Naturally, for example, as the amount 

ol obstruction in a problem decreases, lew resolutions ol sequencing conflicts have to he made, and the 

results obtained with different methods are similar. 

The following guidelines are useful for selecting a procedure to use in scheduling tnulliproject 

activity to minimize total project delays: The Shortest Imminent Operation heuristic generally performs 

the best, particularlv when the variance in activity duration is small (but is not zero!). Further, projects 

possessing a small proportion of activities of rather long duration are not effectively scheduled with 

this rule. This is because, ot course, the larger duration activities have a tendency to be postponed too 

long, resulting in greater total project delays. (These results agree with those reported elsewhere for 

the job shop. I Working on as many jobs (activities! at a time as is possible can be effective in reducing 

total project delays when the SIO rule has been discarded because of high variability in activity dura- 

tion, although this rule can be extremely dysfunctional when trying to minimize other measures of 

heuristir performance. And in general, the Least Total Float and the l.ate Finish Time heuristics are 

comparatively effective on those problems in which the variability in activity duration and the averaije 

free slack per activity is hi'di. We would expect these latter two sequencing rules to exhibit similar 

performance, since for each activity they differ from one another only by activity duration. 

The results reported also demonstrate the necessity of determining beforehand the desired results 

of scheduling effort. In minimizing project makespan, lor example, a combination of the Least Total 

Float or the Late Finish Time rules resulted in 44 out of 60 minimum makespan schedules for the 

multiproject data, and in 65 out of 83 minimum makespan schedules for the single project data. There 

was additionally little discernible difference in results reported using these two procedures to minimize 

project makespan for multiproject activity. By contrast, the Shortest Imminent Operation heuristic 

produced only 18 out of 60 schedules resulting in minimum total project delays, and the variation in 

results obtained with different rules was much more significant in a majority of the p-obltms examined. 

Hence, the determination of the most likely rule to schedule project activity effectively is not only a 

function of problem characteristics, but is also a function of the desired result • oi cheduling effort. 

For minimizing project makespan, one is fairly '"safe" in using the Least Total Float or the Late Finish 

Time rule: for other criteria of scheduling, regression analysis becomes an effective tool in selecting 

the appropriate sequencing discipline to employ. 

Perhaps an even greater use to be gained from the results reported in this paper is in the area of 

training project schedulers and program managers. I'sing an interactive system, for example, program 

managers can examine project and resource characteristics and through projections of their own and 

the actual results of scheduling, learn which sequencing rules are likely to be effective under various 

problem characteristics. This man/machine interaction should also enhance our ability to learn more 

of the role between problem structure and heuristic performance in scheduling multiproject activity. 
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SCHEDULING TO MINIMIZE THE WEIGHTED SIM OF 
COMPLETION TIMES WITH SECONDARY CRITERIA 

Rirhanl V Hurns 

imtrnliiifi \nliiitiiit I IUUT\II\ 

iinihti m.   iit\trnhii 

ABS IKAC I 

■\ rt'suli oi Smith prfvitiUsh publishfii in lluv louniiil j^l- "it tltc UM' "I *c< uitil.it\ 

critrria tit M Itrdiilin^ ptnliliitt-. i> -Itnwn In lie itirnrti rt and a inunU'i rx.ttttplr i~ prt'M'nlfd. 

Hrck ami Knlicrl- \'1\ susinoli'il that lltnr papi-t »nulil In- cvlfiiiicil in ihr >ainf »a\ 

Smith's alpiritltttt v^a^. \ ttrw alpinlbni t- ^iveii tltat cuiiviTiio In a Incul "plittnint Inr Imllt 

prnlilfiiis. 

I. BACKGROUND 

Thi' problem ol ntiniiuizin^ tit«' sum ttl wri^hted rompletiKn liim-s subject to a serondary ion- 

stiaini lia» ion^ been considered tu he similar tu minimizing the sum of completion times subject to 

a constraint. Smith [3| 1956 presented an algorithm tor the n-job. 1-machine case where he minimized 

the weighted completion times subject to the constraint that all jobs were completed b> their due 

dates. Recently Heck and Roberts 12| presented an algorithm lor minimizing the sum of completion 

times subject to not increasing the maximum tardiness calculated by the due dale sequence. They 

claimed that their result could be extended to the problem of weighted completion times in a manner 

similar to Smith's algorithm. Such is not the case since Smiths algorithm did not tind the optimum 

sequence. 

I sing the nutation ot (.onway. Maxwell anil Miller (l], let job i have process time p,. due date </,. 

weight d, ami completion time r,. The problem under consideration is to tind a seijuenre to 

ill ze V (i. 

12) »ubject to    V/i, —rf, ^T       for i =1.2. 
i i 

for 7'- 0 in i2) the problem is the one considered by Smith \:\\ and for T= maximum tardiness the 

problem is the our of Heck and Roberts |2|. 

2. 4 (OlMKK EXAMPLE TO SMITH'S ALGORITHM 

The methotl given bv Smith to solve tit subject to t2i with T=Ü is as follows. "It all jobs can be 
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conipleted by their due dales, an order wliieh minimizes (he weighted sum may be obtained. This order 

has its last job one with the largest value of />,/«, from those with due date as large as the Iota! processing 

lime of all jobs." 

Consider the following example: 

job I 2 3 

Pi 4 3 2 

dt 8 9 10 

Ui 1 4 3 

Pild 4 3/4 2/3 

Using Smith's algorithm, job 2 would be placed last, since job 2 and 3 both have due dates greater 

than or equal to the total process time and 3/4 > 2/3. Considering the remaining two jobs, again both 
:< 

job 1  and 3 may be last and 4 > 2/3. Therefore the optimum sequence is 3, 1, 2 with V 0,0 = 48. 
i-1 

:i 

However, the sequence 2, 1, 3 also has all jobs completed by their due date and V (/,f', = 46. Hence 
i-t 

Smith's algorithm does not give the correct sequence. 

When consid« ring job A to be placed last it is necessary to check that the resulting sequence satis- 

fies (2). Hence a more precise statement of Smith's algorithm would be as follows: 

ALGORITHM 1: (a) Order the jobs in the order of increasing due dates. It is assumed that all 

jobs are on time by this schedule. 

(b) Place job k last where 

Pk ^ Pi for all i such that the resulting sequence will satisfy (2). 

(ct Reduce n by I and return to (b) until all jobs have been sequenced by this method. 

3. LOCAL OPTIMUM 

Two sequences S and .S" are said to be adjacent if one can be formed from the other by a single 

interchange of two jobs. A sequence is feasible if and only if it satisfies (2|. 

DEHNITION: A sequence is a local optimum for (1) subject to (2| if V «.fj is less than or equal 
(=i 

to the sum of weighted completion times of all feasible adjacent sequences. 

In order to check (or a local optimum a method of comparing two adjacent sequences will now be 

developed. 

Let S be a sequence with the jobs numbered 1,2 n and let .S" be an adjacent sequence having 

jobs / and /. interchanged. Without loss of generality we can assume that job /. appears after job / in 

the sequence S. 

i    i.      
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For i s£ /c— 1 and for i s L, 

127 

For i=i, A+ 1, 

Therefore 

L-l. 

(i,r, = (ijri. 

c'i = f,+ (in - Pk] 

^ er, - 2 «Jcj = OA-C* + ai.Ci. ~ (n-ci - aid, + (/n -pi)    ^    «/. 
i^l i = 1 i    k * l 

The following lemma follows directly from the definition of a local optimum and equation (3). 

LEMMA 1:  A sequence S is a local optimum if and only if for all feasible sequences differing from 

S by having jobs /, and A interchanged with A < L the expression 

(4) «,.(■/ + UkCk — dk-Ci - aiCk + (/'/, - pi.)    ^    m « 0. 

For the special case where all the weights are one then equation (3) becomes 

(5J S 'i" S r' = (Pk~Pi.)(L~k). 

Note that for the unweighted case the difference between two adjacent sequences is only a function of 

the two terms being interchanged and their distance apart. Lemma I would have an equivalent form 

for the unweighted case where equation (5) would be substituted for equation (4). The proof that 

Algorithm 1 converges to a local optimum (for the unweighted case) is straight forward and in fact was 

done correctly by Smith as he essentially developed equation (S). 

For the weighted case the difference between adjacent sequences is a function of the jobs between 

the two interchanged jobs, in the papers by both Smith and Heck and Roberts a very special case of 

equation (3) was used. When L = k+ 1 equation (3) becomes the following. 

n n 

Y aid - ^ H.TJ = (H-rk + «/. • IO ■ i - »ua . , - iik ■ ia + (p* - Pk ■ i Wu . i 
i= I il 

«.- - 1 fc - 1 

= (Ik   V   pi + HkPk + <H ■ I   V   Pi+ ('I. ■ iPk + "A • iP* . 1 
il ii 

l-l II 

- (Ik   V    Pi - HkPk - dk .1    ]£   Pi - "'.   •   l/'A + "A   •   l/'A - 'Ik ■   l/'A   -  1 

(ft) V aid — V (i,(i = at, . IPA ~ "A/'A ■ i- 
ii f   i 
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E(|uuti()n (6) is the test used in step (1)) of Ainorithin 1. 

LEMMA 2: Algorithm 1 (Smith) converges to a constrained stationary sequence .S having ihe 
n 

property that  V UiCi for S is less than or e()iial to the sum ol weighted completion times lor the suhset 
i = 1 

of feasible adjacent sequences formed by interchanging only pairs of jobs tiial are adjacent in S. 

PROOF:  Let the jobs in .S be numbered in ascending order. 1,2 n. Assume the Lemma is 

false. Then there exists .S" a feasible sequence adjacent to S with 

^   (!,(■, —   y   (l',<',   > Ü, 

and S and S' differ only in the k and A + 1 si position. By (t)l 

/'A         I'I.   ■   I    >     . 

When Algorithm I was choosing the job for the A-4 1 position job k was rejected and later placed in 

position k. Since S' is also feasible, job k must have been eligible to go in the A + I si position. By step 

(b) of Algorithm I 

/'/. • i   ^ IH 

dk . i      "/. 

whicil contradicts the result of the assumption. 

The counter example presented shows that considering only interchanges between jobs lhal are 

adjacent in a sequence is not a sufficient condition for a sequence to satisfy Lemma 1. The following 

algorithm uses equation (2) to generate a local optimum. 

ALGORITHM 2: 1. Schedule the jobs in increasing order of due dale, ill is assumed lhal all 

jobs are completed by their due dale. If such is not the case a solution to {1) subject to (2) with 7" equal 

to the maximum tardiness is straight forward.) 

2. For k~n — \, n—'l, . . .. I,find the first value ol A satisfying the following three conditions. 

17) T^^p.-dk 

18) Ii>„>pA-,        then f, + p„-/^-(/;^ 7'       for j= A +1. A + 2 n-\ 

i   A ■ I 

If such a k is found, interchange job A and n. Reset n to its initial value if necessary and return to the 

beginning of step 2. if no A is found satisfying (7), (8| and (^1 reduce n bv I. Kor /) ' 2 return to the be- 

ginning of step 2. Kor /i = I the optimum sequence is the current one. 
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THEOREM 1: Algorithm 2 converges to a local optimum. 

PROOF: Every time step two is successful the sum of the weighted completion times is reduced. 

Since this can only happen a finite number of limes the algorithm terminates. Conditions (7) and (8) 

determine which term in the sequence can be interchanged with job n and equation (9) is equivalent 

to having the right hand side of equation (3) greater than zero. Step 2, will only terminate after n has 

passed (7), (8) and (9) for all values of n from 1,2, . . ., n. Hence hy Lemma 1 the stationary point found 

by Algorithm 2 is a local optimum. 

4. CONCLUSION 

\lgorithm 2 on the counter example would first find the stationary point that Smith's method 

stopped at, and then moves directly to the global optimum. It Is not always the case that the local 

optimum found by Algorithm 2 is the global optimum. 

Consider the following example: 

job 1 2 3 

/'/ 4 3 6 

d, 8 13 14 

a, 1 4 9 

Algorithm 2 would generate a local optimum sequence 1. 3, 2 with V rt,r,= 146. The global optimum 
i i 

s 2. 1. 3 with V OiC,— 136. At present there is no simple way of finding a global optimum for permu- i 

tation sequences. 
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ABSTRACT 

A ilass i>l rx|ii<nentiul type distributions with special «xpoiicntial Parameters is defined. 
It is assumed that the exponential parameters vary according to some (known) probability 
law. It has been shown in this paper that the compound distribution can be easily represented 
in form involving moment generating function of the mixing distribution. The results obtained 
in ibis paper provide an efficient and simple method of obtaining compound failure lime 
distribution with known mixing distributions I uniform, exponential, gamma). 

0. INTRODUCTION 

One method (among others) of constructing a new distribution is to use the known parametric 

form of a distribution and allow one (or some) of tbe parameters to vary according to a specified prob- 

ability law. Tbe new distribution is called a compound distribution. 

The theory of compound distributions is well known and frequently used in various scientific 

disciplines. In particular, it seems that tbis theory has useful applications in (industrial) reliability and 

(medical) survivorship analysis. The probability of surviving up to a certain time might be a function 

not only of the age of an individual, but also of other factors (parameters), l-f (£,, £2, . • •, CA). which 

may not, in fact, be constants but vary from individual to individual and with time as well. For example, 

in survivorship analysis explanatory variables such as a^e, blood pressure, blood count, lipid levels, 

etc., etc. are sometimes observed. When they are not observed, their effects are nonetheless still 

present; the £"s may be regarded as representing these effects. In the population, we then have a 

mixture (or compound) of distributions with ^'s as mixing variables. 

It seems to be useful to have a simple and rapid method of obtaining a compound distribution — and 

this is the purpose of this article. 

(a) It is shown in this paper that for a certain class of parental distributions, the compound 

distribution can be obtained from the moment generatinf; function of the mixing distribution. This is 

another application of the mpf. besides that of obtaining the moments. 

(b) Of some interest is the situation where the mgf is of txponential form. In this case the com- 

pound distribution can be factorized; the components due to parental and mixing distributions can 

be predicted. 

The paper is not concerned with the use of the compound distributions in statistical inference. 

'This work was supported b\ 1  S. National Heart and LUIIK Inslitutc contract NIH-NHl.1-71-2243 from the National 
Institutes of Health. 
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132 R. C. EI.ANDT JOHNSON 

The examples given in section 4 are mostly not new and are only used as illustrations. 

To make the paper selfcontained, a few definitions will be introduced in the next section. 

1. DISTRIBUTIONS OF EXPONENTIAL TYPE 

For the purpose of this paper we find it convenient to define a special class of exponential type 

distributions in the following way. 

DEFINITION 1: The distribution of a random variable (rv) X is of simple exponential type if its 

cumulative distribution function (cdf). F\{x), is of the form 

(1.1) F.\(x)=Fx(x; T); a) = 
0 for x «£ xn 

1 — exp [—TJMU; a)]        for x > Xo, 

where TJ( > 0) is a "special" parameter, which we will call the exponential parameter. a= (<»i. 

are "ordinary" parameters, and u(x; a) is an increasing function of x with 

a,] 

u{x: a) —> 0        as v—» x,). 
(1.2) 

u[x: a) as t -* °e. 

We extend the definition to the multiparameter case. 

DEFINITION 2: The distribution of a random variable X if of A-paramelcr exponential type if 

its cumulative distribution function. Fxix). is of the form 

(1.3) 
Fx{x)-Fx(x; r). a)- 

0 

1 — exp ^T),«i(.v: on) 

for x ^ x,i 

for r > XH 

and Tji >0, i= 1, 2, .  .  ., A. Here TJ= (rji, 172 

increasing functions of x such that 

.. Tj/,) arc exponential parameters and uAx: a,) are 

(1.4) 
Uiix: oti) —►()        as x—*Xo. 

ut{x: a,) —> *      as x-* oc 

for t= 1,2 k. 

Most lifetime distributions used in biology and reliability belong to the exponential type as defined 

in this article. For example, the Weibull distribution with cdf 

/•'.vU) = 1-cxp [-TjU-f)"],      x~>(.        T)>0,        « X) 

is of exponential type with u(x: f. «)= (x—()". 

In this article we will discuss compound distributions of A when the parental distribution is of 

exponential type and the exponential parameters, 17 T//, vary. 
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2. COMPOUND DISTRIBUTIONS OF A WHEN »> IS THE MIXING PARAMETER 

I.el F\(x) he (Iftincil as in (1.11. The funrtidii 

(2.1) /V|.V >.*}= l-F.x{x} = Fx(. 

is called a survival funrltun. (In reliability theory it is also called reliability fnnriion\. 

(-onsider TJ as a rv. with cdt 

(2.21 

salislyinj: the conditions 

(2.3' 

'M-r- y|=/Mv:yl=/Mv). 

P.,(y)-»0        as \-M„   I 
0-   /Mv) < 1        v„-   )< ^ 

Pn(y)—* 1        as \ -* x   ). 

(Here y= (yi y,„) are parameters of the distribution (2.2)). 

We will call t \{x) the parental distrihutinrt, and P>((>') the mixirifi tor compounding!) distribution. 

We assume that the moment generating function (mgf). M<iis}. of the mixing distribution (2.2) 

exists. Since T; > 0. all moments about zero of the distribution /%( v) are non-nefiative, and M'i{s) is 

a notidecreasinf; function of s. 

Let 6.v (JT; y. a) ~ G\{x) denote the cdl o( the compound distribnl'on, F\ (i. T;. «) > Pn{y: yt. anil 

let ^M = 1 —(i\(x) be its survival function. 

THEOREM 1: If the parental distribution of the rv A is of simple exponential type is defined in 

(1.1) and the exponential parameter 17 has a distribution (2.2) with mgf. M^(s). then the r'ompoiind 

distribution of V. (,\(r), is 

(2.4) l.\(x] = G\(x: y. a) 
0 for x •  Ti 

1 -\1\~nix: a) I        for <  -x, 

Proof is immediate. The survival function is 

(2.5) ,
;
AU)=       exp [-(/(.i: a)y](ll};{v 

J11« 

I'ut 

(2.6) 5 = — «(x: a) 

Thus the integral in (2.5) becomes 

=      e-."fi 
J i/f 

6\ ( <) =     e^dPr, (y) = M,, (s ) = M „ [ -;/(.<: a ) 

provided that  \l<i{ —(/(>; a)] exists for r > X». 

- -    " ^ " 
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We find interesting to consider mixiiifi distributions of TJ for which mgf has the form 

(2.8) Mvd)=/!($, 8)ey'. 

where 6=(S1, . . ., S,„) are parameters. We now denote the parental distribution (1.1) by /•'»:.,(.*) to 

emphasize that ii is a conditional distribution of X fiiven 17, and 17 can be considered as a random 

variable. 

Corollary  1: If the parental distribution /■'(:.,U) is fdven by (1.1) and the mixing distribution 

/J'i(.v; y, 6) has the mgf of the form (2.8), then the compound cdf of A', (J\(x). is of the (orm 

|2.(» Gx(x)=l-4[~u{x:a);8] [l-f.v;vU)]. 

Notice that Fx:y{x} in (2.'^) has the same orifdnal form as (1.1) with 17 replaced by y. 

PROOF: The survival function, C.vU), is, from (2.8) 

(2.10) 

Gx(x)=sA[-~u{x: a): 5] exp [—yu(x: a)] 

■A[-u{x: ar. S]Fx:y{x), 

and 

6\(.T)=--1    .'r- u(x: a); S]Fx:yix) 

= I -Ai-uix: a); a][l ~Fx:y(x)]. 

It is also easy to see that the following result is true. 

COROLLARY 2: If the trgf of )hi mixing Jistriuuiion is of the form 

f2.ll) ,l/„(,s) = ß(,v: 6)|l-e>»].        y>0 

then the compound cdf of A, Gxix), is 

(2.12) Cx(x} = I -B[-u(x: a): S] ■ Fx:y{x). 

3. COMPOUND DISTRIBL VlOfiS 01  X WITH MLLTIDIMENSIONAL MIXING 
niSTRIBUTIONS 

Theorem 1 can be extended to the multiparameter case (1.3). 

THFC1'- '. Z: For a parental distribution, Fx(x), of /-parameter exponential type defined in 

(I..5). >-r.j[. 1/= (r\\, . . ., TJA) are the mixing paranu-!ers with joint distribution Fx^(y: y) fur which 

themgfA/»)(s , 5A),exists, the compound distribution of A".6'.V(J:), is of the form 

(3. Cx(x) = \~Mn\-Ui(x:ai) -Ukix-.a*)] 

Proof is similar to that for Theorem 1 

1  '  --"-- ■■■■-'  -■--<'ii'-""■*"*"'"'-- 
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A CLASS OF DISTRIBUTIONS 

We now consider some special cases of the joint mixing distributions. 

First we notice, that (1.3) can be written as 

135 

(3.2) 

where 

(3.31 

FXn{x) = 
0 X S Xo 

l-fl [l-^:ifU)l.       -*> Xv 

Fx;ii(x)—l—exp[ — riiUi(x;ai)],       i=\, . . .,k 

is of simple exponential type. In case of a lifetime distribution of a certain system with k components. 

the parameters i) TJ/, may be associated with various properties (e.g.. resistance, strength. 

elasticity, etc. of the material). Keeping rji. . . .. r}t. hxed. each F*;ii(W in (3.3) may represent the 

lifetime distribution of the ith component: thus F.v; A U) in (3.2) would correspond to the minimum life- 

time distribution for the system, or it represents distribution of first failure of the system. 

In life testing, the assumption that v/i T;», are fixed implies that the units in the test sample 

were obtained from a homogeneous population. This may not always be true, in particular when an 

industrial process undergoes some seasonal fluctuations or the units are biological organisms for which 

initial conditions (e.g.. genetic makeup) cannot be controlled. We may then assume that Tj] T)), 

are independent random variables with joint cdf 

(3.4) /\(.v)= II P,,(yl 

If Mn (5,) is the n.gf of 17,. then the joint mgf. Vf,(.vi Si,), is 

(3.5) Mnis, 5*)= 11 */„,(*,). 
1   1 

We have the following theorem. 

THEOREM 3:  If A'.v^U) is as defined in (3.2) and the mixing distribution. /My) is as defined in 

(3.4). then the compound distribution of -Y. Gxix). is of the form 

(3.6) 

Here 

(3.7) 

is the compound distribution 

r;A(x) = i-f] {i-^.i-u.u:«)]}. 

1-W,,[-ii,(.»:a,)] = (;,(T) 

Fx   n.U)'.M/\(.V). 

Proof of Theorem 3 is straightforward. Extensions of Corollaries 1 and 2 are also straightforward. 

Him   ■■     mt^mmtuf^a^m ■ ■minn 
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4. ILLUSTRATIONS WITH PARENTAL VIE1BI LL DISTRIBUTION 

To illustrate tin- techniques, we use some examples in which the parental distribution is Weihull. 

Most of the resulting, compound distributions arc not new and have been derived by other authors 

EXAMPLE I; Weihull (TJ) j, Gamma. The results in this example have already been obtained by 

Duhey (1%8). The results are used to demonstrate the use of the moment generating function, let 

(4.1) f\ -,U)=ex|i [-TJI \ -()"] 

be the Weihull survival function. Suppose that r; has gamma distribution with pdf 

(4.2) i)rl{y)=      :       {y-y)* 'e "^ >"i.       >   " y. 
I (o) 

The mgf of gamma ilistrihution (4.2i is 

(4.3) l/„i.si=-^^- 

The compound survival  function. (>\{\\. is obtained from (2.ID).  Vic have ul x. i. n)     li —t)": 

ß" 
Ais: ß) = —~—-r, I'm s = -{x-( I". Thus, (rom (2.10) 

(4.4) ^M («) - [ß+{P_f)uV x exp 1 -- y (, - f r 1.        , > .<. 

Note that G\(x) is the product of two survival functions. The lirst lactor 

-T(57— ....       a>ü.       ß-0.       .... 

is the Hun Ti/ic Ml survival function. [1]as was pointed out li\ Duhev (1%8). The second lactor 

I4.6I cxp|-y( x -1 i'J.        .»   -t.        <»     0.        y   ■() 

is again a Weihull survival function with parameter ■) instead oi o'-iginal TJ. 

for y - (). the second factor in i4.4l is e<pial to I. ami it represent'- a Hun Type \ll distribution 

(Duhey [1%8]). 

For a~ 1. the parental distribution (4.1) is exponential truncated from helnw at i ■£. and i4.li 

takes the form 

,4•7, {:^) = Uß-n + *ve*J   '■     '   * 

  -- -       --.^    -   > ^-^- —_—^^-^^ _..—.^■^—^^.—^^^A^—^^^ 
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EXAMPLE 2: Distribution of the least value of k independent Weibull variables compounded by 

k independent exponential distributions. 

Let 

(4.8) F.v:»(x)=exp [-^ y^ix-f)0] 

for x >^, a >0. T)I >0. i= 1. 2 k. 

Let the pdf of TJ, be 

(4.91 pn,(.v)=/3e-a"'  Y'1,        y>Ti.       /3>0 

for i= 1,2 A. 

Then the compound survival function of (4.8) by (4.9) is. from Theorem 2 

(4.10) 
ß* (;^ - lfr^l^^[^y,(x-^]      x>t. 

Notice that putting A = 6 and V ')'i =-y. (4.10) becomes identical with (4.4). This is not surprising, since 
i = i 

i, 

TJ = V T), is the sum of exponential variables with the same ß. and so it has a gamma distribution. The 
i-1 

truncation points, yi y/,. contribute only to the second term in (4.10). 

EXAMPLE 3: Weibull (TJ) A Uniform. This distribution was considered by Harris and Singpur- 

walla (1968). 

Let F.vriU) be a parental distribution, and suppose that pdf of TJ is uniform with pdf 

(4.11) p-n(y) = 
11 lc     for n < y < a + c, 

10        elsewhere. 

The mgf of (4.11) can be written in the following form 

(^.12) WMI.S) = — e"' (e"-!). 
rs 

Then from Corollaries 1 and 2. we have 

(4.13) (nix) = 
1 

r • u ( J» . a) 
Fx.Ax) ■ Fx.r(x). 

■■■■■■■■■■.ül. '     — 
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When Fx.rt(x) is a Weibull distribution of form (4.1) we have, from (4.13) 

(4.14) Gx{x) = 
i 

c(x-t)a exp [-a(x-t)a] {1-exp [-c(x-^)a]}. 

An alternative form of (4.14) is 

(4.15) 
r i  \     2exp[-(<i + f/2) {x-tj)"]   .  .   ,c 
Gx(x) = cix-tV  [2 ^-^)' 

(3ther mixing distributions which can he considered but exponential, gamma, and uniform dis- 

tributions are those which are most likely to be applicable to real situations. 

REFERENCES 

|1J Burr. I. W. "Cumulative Frequency Functions." Ann. Math. Statist.. /J, 215-232 (1(M2). 

[2] Dubey. S. D. "A Compound Weibull Distribution." Nav. Res. Log. Quart.. /5, 17^-188 (1968). 

|3] Harris. C. M. and Singpurwalla, N. D. "Life Distributions Derived from Stochastic Hazard Kates." 

lE'.E Transactions on Reliability. «-77, pp. 70-79 (1968). 

IM T 1 r   -   ■-.■    ■ — —•"■■niiiiiitMiTaiiiriMWiai M^Maa ^^MrilMHIi MMMMH 



Hpi^P1 
IIJIIIPJ1WI.II   I  .■■INIIJl.^» iii.i.iniiiMi.i .».mnn II   njiiiiiiniju.j i.i.»  miiMiii,, Mlinmiifii »wiwiimi'•~, i.ij.i,Bimni#jp,^wpiwi I.H n ..^- 

THE NORMAL APPROXIMATIOIN TO THE MULTINOMIAL WITH AN 
INCREASING NUMBER OF CLASSES* 

Lionel Weiss 

('ornell I'nivenil) 

ABSTRACT 

For a fixed number uf ilasses and the iiuinber of trials increasing, the approach of the 

multinomial cumulalive distribution function to a normal cumulalive distribution function 

is familiar. In this paper we allow the number ol classes to increase as the number of trial» 

increases, and show that under certain circumstances the probabilities assigned to arbitrary 

regions by the multinomial distribution are all close to the probabilities assigned by the 

distribution of "rounded ofT" normal random variables. As the number of trials increasef. 

the amount rounded off approaches zero. The result can be used to study the asymptotu 

distribution of functions of multinomial random variables. 

1. NOTATIOIM AUD ASSUMPTIONS 

For each n. X\(n]. X^n) V^nil«) have a joint inultinomial distribution, with parameters 
n,p.(n) pA(„)(n) where pi(n) > 0 for t= 1, . . .,A(n), 

2 i>l(n) = \. 2 X,(n) = n. 

We make the following assumptions: 

11.1)     min    [1-/),(n)] > A for some A X): 
1 • / ■ At »I 

(1.2)     min    n/z/Ui) approaches infinity as n increases: 

/. ( II I 

(1.3)   V   [nfiiin)]   '-approaches /.en> as n increases: 

(1.4) k(n) [npmn){n)]   ' - approaches zero as n increases. 

Note that we do not rcmiire thai I, in] approach infinity as n increases, hut our assumptions allow 

this to occur. 

'This research was supported bv the National Science Foundation under (Grants i.V 31430X2 and MI'S 74-24270. 
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140 I., WEISS 

Define Ki(n) as [npiU')]1,2[A,(/i)-npi(n)] l(.ri= 1 A («), so that 

j  \pA^JYAn)=0. 

For typographical simplicity, from now on we write Yi instead of ^(n), p, instead o{f)l{n),Xl instead 

ofXiin), and also do not explicitly exhibit the dependence on n of certain other quantities to he defined 

below. 

Denote P[Yi = yi: i=\ k(n)-\] by h„(y >M„i  ,). hn{y >A(„I I) is given 

as follows. If yi, .  . ., yii(n)-t are such that «p/+ Vnp/ y, is a non-negative integer lor / = I  

k{n) — 1, and 

/,(n)    1 

^    [npi+ Vnpiyt] g n. 

the 

A(") kin) 

'og^nlyi yA(n)-i) = logn!+ ^  [«Pi+V^y,] bgp,-2) l«g([np,+ V^p.y,]!} 

where ykin) is given by the identity 

X  V^y, = 0. 

For other values of (y y««)-i), My y/i-(«)   i) = 0. 

Now suppose Zi, .  .  .,Zk(n)-i have the following joint normal probability density function: 

]     > I M ") - 1 1/2 

irJ [pki,,)] 
1   ^ i = i 

where zk(„) is given by the identity 

2  ^PiZi = 0. 

Define the random variables Z Z*-(n) as the following functions of Z Zkun   i. Fori = 

1 k(n) — ],Zi is the closest value to Z, which makes npi+ Vn/^Z,an integer (positive, negative, 

or zero). If there are two possible values for Z,, use the smaller one. <?*■(») is given by the identity 

*( n I 

2 v^z^o. 

.- ■..,.,    .........^. . ..■.-■^■■^h—H.-arttmirti.i.itilh« 
^..■.■■^^..■l .^...^r ■■■ ......i.....~~^.. ..<..*~^>~-**i*ia-ati***** 
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Denote P[Zi = 2i: (= 1 A(n) - 1] hy gn{iu ■ ■  ■, SH«)   I)- ««UI, •  •  .. ii(.o-1) is given as 

follows. If I ZAUH   i are such that npi + Vnp^ li is an integer for i = 1 A(n)-l,the:i 

gn(z\ Ziiin)   i) is equal to 

I   ,|;, (MI    I|J 

■In 

r     r        (ii 
ißkin)] ''    I • • • I    exp|-"2 S ^ \dz'' ■ ■dzk{") 

R.t!,. ■:....   ,1 

where the region R,Az\ ZK/O I) is the set of points (z, zu«)  i) such that 

 ^=§2, Sz.-f -=        lor 1 = 1, 
2 Vnpi 2 Vnp, 

.  ., A(;i)-1, 

a.irl in the integrand, 2/1,11 is niven hy the identity 

£   V'p,2, = 0. 

^'„(21 2A(II)-I) is zero for other values of 1 2;.,,,, |. 

For any event E, E denotes its negation. (I>U) denotes the standard normal cumulative distriliution 

function. Below we will use the following elementary inequalities: 

(1.5) For any events £, £„,. P(£, n   .  .  .   H £,„) S 1-£ ?(£,). 

(1.6) For any r > 0, l-^la:) < 
1 

2. THE ASYMPTOTIC EQUIVALENCE OF hn and #„. 

For any measurable region .S„ in (k(n) t-dimenstional space, let A,/,n(S„) denote the proba- 

bility assigned to S„ hy h,,. and let PgH{S„) ie the probability assigned to S,, by #„. We will prove 

the following: 

THEOREM: lim l/VUS,,)-P,/,I(.S'„I| = 01 for any sequence IS,,}, where S„ is an arbitrary 

measurable region in (A(«) — 1)-dimensional space. 

Before proving the theorem, we note the following application of the result. Suppose H„( Vi  

v,,,,, ,) is a function of k{n)~\ variables. Under our assumptions, the asymptotic distribution of 

H„(Yi, . . ., Kiinj-i) is exactly the same as the asymptotic distribution of W„(Zi. . . ., Z«n) 1). 

Since we can write 

£, = £,+     e' where 10,1 SI, 
2 Vnp, 

f**.— —:..   -■'|i|it-,il-l|'||, I, 
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for a wide variety of functions H„ the asymptotic distribution of //„(Zi, .  .  ., ZA(„I-I) will be the 

same as the asymptotic distribution of H„(Z\, .  . ., ZAUI  I). Examples are given in section 3. 

PROOF OF THEOREM. The theorem will be proved if we can show that 

nn{Z\,  .   .  ., Zi,{„]  r) 

gil(Z \,   .    .    ., Z!,(,,)- i ) 

converges stochastically to one as n increases |2|. which we proceed to do. 

First we show that 

lim P 
II   ■ X 

hn(Z\, . . .. Z/,(„)-1) 

_ gH{Zi,   .   .   ., Z/,(n)   i ) 
>0 = 1. 

It  ;"  easily varified that £{Z,} =0, oi = 1-p,. for i=l k{n), cov   (Z,, Z,}-- 

i ^ j, i, j— 1, .  .  ., k(n), where Zkw is defined by the identity 

VWj for 

2 v^z,=o. 

Define a, as the event {-1/2 < np,+Vnp, Z,} for i= 1 A(n). The event 

/ln(Z| ,    .    .    . , Z),|)i| 

gn{Z i,   .   .    ., //,(„) 
>0 

is the same as { fl aj, and therefore, using (1.5), 

hii(Z], . . ., ZA(I()- ]) 

gii{Z\, . . ., Z/,(,ii-1) 
>0 fel-^Pla, 

\ Vnpid-pt)  '     V Vnp.d-p,) / 

using (1.6). Using assumptions (1.2) and (1.3), we find 

1=        I Vnpdl-Pi) 

approaches zero as n increases, and thus Hi D a;) approaches one as n increases, or 

lim  P 
hi,(Z], . .  ., Zi,{„)-1) 

»-«        L ^n(Z, ZA(„)    ,) 
>0 = 1. 

• ■ -—  
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From the result of the preceding paragraph, with prultability approaching one as n increases. 

lot; 
h„{Z,. . .  ., Z^,, 

>„(Zi //.(«i i) 

is equal to the sum ol the following expressions: 

(2.1) lop n\ 

(2.21 ^ [np(4 Vnp.Z,] lo{- /. 

2.3) -2; ion {[*p,+ v«p,z,]!) 

(2.4) 
I      2 loi-' 2n- 

(2.5) 

(2.6) — lo". 

H.i/ /.,„ 

1/2 loj! /»,,,„, 

Slirliiifi's formula states that for any positive integer 

log w!=-log 27r+( m + - )lo- m-m+- 
m 

where  |w(m)| < 1. Applying the formula to (2.11, we write (2.1) as 

(2.1)' i|üg27r+(n+i)logW-„ + i^ 

We apply Stirling's formula lo (2.3). and write log (npcf \4^Z,) as 

log n + log p( + l«g ( IH—^=- i. 
\ \'ni>, ' 

For any c >0, define llic event /3i(r) as 

■' -.^■.^. ■■ ■ —    -        - - ■       ■        -  ^~~A MM 
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for J = 1 ^(n) 

The event ßi(c) is implied !>> the event y,(r) defined as {-rn/>,+ 1/2 S v'n^Zi g rnp,— 1/2}. and 

/'ly^rH^l-.^r^ 
np; 

1-pi    2 Vnp^l =)+<i,(-cV dX-ev/^-i 
1  -p,    2Vnpf(l-p/) -Di)  / 

'^(■Vä- 
1 

Pi    2Vnp/(l-pl) 
2 »Pi 1 

1 -p,    2 Vnpid -pt) 

and it Ib'lows from assumptions (I.!)-(!.4| tlial 

i   i 

approaches zero as n increases, which implies that 

kin) 

i  i 

approaches zero as n increases, which in turn implies that 

kin) 

P[ n ßir)] 
1--= 1 

approaches one as n increases. This last fact implies that with probability approaching one as n in- 

creases, we can write 

Zi      1 Z2    I /   z, 

Vnpi    2 «pi    .i V V/ipi /   \        \ np, ' 

Ö7i_ ^   ' 

np, 

tor /= 1, .  .  ., A(n), where  |W,| S 1 for ('= 1, .  .  ., A(n). Applying this expansion to (2.3), we find 

that with probability approaching one as n increases, we can write (2.3) as 

 — log 277+ n — n log n — log n 

(2.3)' 

kin) /  1 kin) j kin) _ 
- 2 {npj+ VnpiZi) log pi—- ^ log PJ-- 2 Z2 +A(n) 

where A(/i) is eijual to 

,....,.., —..... —  „„^■„i.—^ — — ■ —..■^^—....- ■- 
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Zi      \Z\    1 /   z, 

ff. \ Vnpi    2111),    ;n Vnp, I  \ 

H,Zi 

1 Al")   Z, 
'H/> ;): 

1 + tfjZi 

+- y —|— v — — 
Wpi 

It is easily shown thai A(n) converges stochastically to zero as n increases, hy using assumptions 

(1.1)-(1.4) and the following facts: 

(a) )(n/),+Vnp,Z,)| S 1        and |«,! SI        fori=l k{n) 

(h) 
lim P m ^j 

'"/'i     2 
i = l, A(«) = 1. 

(c) Kur any positive integers /. s. the sum ,S'„(r, s] defined as 

'f   \z.\r 

converges stochastically to zero as n increases. This is true hecause. for all large enough n. .S„(r. s) S 

S„(r, 1) for any s greater than one. £{|Zi|'} ^ Ar< ^ for some finite/f, independent of «.and therefore 

kin)      1 

E{S„(r, \)}^Ar2 
npi 

and this last expression approaches zero as n increases, by assumption (1.3). 

Next we investigate (2.6). If U, Zun)  i) is any point in Rn(Z\. ., Zi(„)  i). we have 

z, = Z,+ 
ti, 

2 V 
where I 0,- I § 1,        for l = 

"/>! 
A(n)-1. 

77——    y     V/)j2i        and ZK„1 = 
V/'A(iil    ffx 

1 AM nl    1 

V   Vp.Z, 
vpfc(„ 

we have 

..friii 1 — A/Ai ZAIIH — 
2 V "PA 1 in 

I    ».■ 

 — --      1   -^^^ 
mttmamttm m 
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Then we can write 

L. WEISS 

where k„(6.Z) is equal to 

Al n I A'lnl 

2^= ^Z-j+^O.Z), 
1=1 1=1 

/ K n )   1 A(ll)-1    U.7 A(lll-I      Ul 1 Adil-l I 

£    Vnpi       £   4np,     VnpA.,,,, ^ 'in,,, I   ^ 

AH(Ö,Z) \<€H(Zi, . . ., ZA(,,)_I) where e„(Z| 

4n/ni,ii        . 

Zkun  i) is defined as 

(fj    Vnp,       ^    4np, Vn/)A(«) \2Vrt^U) 

It is easily shown that e„(Z , Zkiny-i) converges stochastically to zero as n increases, using 

facts developed above and the fact that  | Zk{n) \ is bounded with probability approaching one as n 

increases. Using the law of the mean for integrals, we can write (2.6) as 

(2.6)' log n     !   i    ■ 
-- 'y /.• - '«.j/ /.,„ 

where | » | S I. 

Summing (2.1)', (2.2). (2.3)', (2.4), (2.5). and (2.6)'. we sec that 

■       hii{Zi,  .   .   ,,  Zii(n)   i ) 

g,i(Zi. . . ., Zkun 

converges stochastically to zero as n increases, completing the proof of the theorem. 

3. APPLICATIONS 

For each n, suppose//„(Ki KAUI-I) is a quadratic in V KA-(«I |. We will investigate 

'.he asymptotic distribution of H„{Yu .... KA-OD  I ), under certain conditions. 

Suppose Mi, is a (k(n) — 1) by (A(n ) — 1) orthogonal matrix, with the element in row i and column) 

denoted by mKii,j), and suppose 

Vp, 
mil(\,j) = ,/ ■, for/= 1 k{n) 

V 1 -/nun 

Let Z denote the row vector (Zi,  .  .  ., ZA-OM-I), and define the row vector W 

by the equation ff/' = /W„Z'. Define the row vector 7'= (T": T"/,,,,! i) a.s 

= (»', ff'\on   ,) 

- >MI>_a_M_>_^aH_ 
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Then  (T\, . . ., rA(„)-i) are independent, standard normal random variables. Define the vectors 

W, T as the same functions of Z as W,T are of Z. We have 

kin)-\ 

Wi-W^   y    mn(i,j)(Zj-2j), 

and therefore 

/M n ) - 1 /»,( n ) - I 

m n ) - 1     p 

where |ö/| ^ 1 for all). Thus 

i   M""-' 1 

say. By assumptions (1.2) and (1.3), «„approaches zero as n increases. Finally, we have 

|7W,|S 
En 

v for 7=1 k{n)-I. 
PUn) 

Since //„(Zi, . . ., Z/,(n)-i) is a quadratic function of the components of Z, we can write 

f/,i(Zi, . . ., ZAUDI) as Hn(T\, . . ., TAOD i), where this latter function is quadratic in the 

components of T. Then the proper orthogonal transformation taking T into V=(V], . . ., Fu,,» i) 

enables us to write //„(Ti, .  .  ., 7V(,i)  i) as 

Mn)-1 

2 ^«(y)^ 
J=I 

where {\n(j)} are the characteristic roots of the matrix of  H,,. Aiso, V consists of independent, 

standard normal variables, and it follows easily that 

-"^--'-■"■-'■"  -  

■ ■- — --  -   - —  -■-  i    i 
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..(")   i 

i-:{H„{T n.(,1,-1)}= 2 A»^)' 

Variance  {H„(T T,,,,) ,)}=2  %    K^j). 
j-1 

Under mild conditions on the sequence of vectors {A«(,/)}, the asymptotic distribution of 

HAT , r,,,,,, ,)-   ^   A"(^ 

-       -  = (?,-. 
Alii)    1 

say, is standard normal. Let. us assume liiese conditions are satisfied. Dehne F as the same function 

of T as y is of T. Then //„(Z , Zum  i ) «an be written as 

2   ^"U)?]. 

By an argument similar to that used above to bound | Wt — W, |. we find 

\    Pkiu)   I 

say. If 6n and 

(kin)    1 \    //,(«)    I \ 

both approach zero as n increases, it is easily verified that 

WJZ, Z,un ,) -   2]   k>'(J} 

I   /.ill)   I 

V2 1 WJ) 

differs from Q„ by a quantity approaching zero stochastically as n increases. From the theorem proved 

in Section 2. it follows that the asymptotic distribution of 

 -  — ■ --- i   mi ■r-"-""" 
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is standard normal. 

One particular quadratic function of interest is 

ki n I 

1*? 
i = i 

used in tests of tit. The asymptotic normality <>( this function has been proved hy various authors, uj-inj; 

assumptions under which the theorem of the present paper is not true. For a recent reference, see [1]. 

4. CONCLUDING REMARKS 

The Theorem of Section 2 stales that lim |fV(S„) - PU„{S„) | = 0. It would he useful to study the 
n -.« 

rate at which sup |/\,((S„) — P,,n(S„) 1 approaches ^ero LS r increases, where the supremum is over all 
s„ 

measurable regions in (A(n) — 1 )-dimensional space. That is, we would like a Berry-Esseen type bound 

lor arbitrary measurable regions.   The computations necessary to give a reasonably tight bound are 

lengthy. 
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A MARKOV CHAIN VERSION OF THE SECRETARY PROBLEM 
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ABSTRACT 

I In»   paprr   (iral1»   wilti   llic   >»•» iriar\   Prnblrfll   WIMT»    n   »»■»utarii-"   an    niI'r\iiHr«i 

srifurntialh ami ihe lu-^t k mu-i \>v hired.  1 h»- valur- ul tlir M-« rrtan»-» arr nif-rrvrd a» \\u-\ 

art- uilfrMrHrH. Iiul tx-torcdaml imU th«    liMnhutiunF» ot ilir^f- \alur*> art- known   hurilnr 

?iiiin'. iht- ili-lrihtiliun« ot Iwtt -urcphsivr >«•< ritarir-' \,IIM.~ ar»- govrrnrd lt\ d Markig chain 

Upnrnai hirinfE ptilicir* Inr tinilr n and linutirift optimal pulinr» a> k and n apprcai h inhinu 

art* nlilaitlrd. 

I. INTRODUCTION 

The Secretary Problem lui- been iliM'i^sed in the past l)\ many authors [\,'.\ y|. The problem i- 

that a tixcii number 'i "i >tTretarie> are interviewed »equeiilialK and the value oi each i* observed, 

vshere thi.» value may cither lie a numerical value nr simply a relative ranking. The case where only a 

relative ranking is observed has been treated by others [5, 6, 8. 9], and the necessary analysis and 

even the results are ci| a quite different nature than the case treated here, namely where the value of a 

seci.tarv is a numerical value troni a known probability distribution. Immediately attei a secretary's 

value is observed, a decision must be made to either hire her or not. with the proviso that she cannot be 

hired later on. The objective is to fill the /, available jobs, with/, possibly greater than I, with the k best 

secretaries. In this paper, we assume the values oi the successive secretaries are random variables 

from r different known distributions such that the successive distributions art- governed bv a Markov 

chain with a known transition matrix. The objective i- to find a sequential policy wlii< h maximizes the 

expected sum ot the values of those k secretaries chosen for the /, positions. 

In the first section below we >et up the problem and calculate the optimal policy fol finite n. In the 

next section the limiting form ot this policy as n -* * is discovered. In the tinal section a slightly dif- 

ferent problem is formulated and its optimal policy for finite n and its limiting optimal policy are given. 

We remark at this lime that the context of secretaries interviewing for jobs is retained mainly 

because of historical interest. The problem discussed certainly has other, probably more interesting, 

applications anytime a decision-maker wishes to choose the A best of n sequentially arriving objects. 

\ possible example is where there are several assembly lines lor several production plants) which 

jointly must fill k special orders from the next n item» produced. The line» may differ as to qualitv 

and the probability that a given line is the next to produce an item may depend on the line which pro 

duced the previous item, as confirmed by historical records. If a decision must be made on each item 

as soon as it is produced, then our model can be used to sequentially choose the best k in an optimal 

manner. 
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2. OPTIMAL POLICY FOR FINITE n 

Lei Ti, Tt, . . . be ihr successive slates of an r — siale Markov chain with transition probabiiities 

QIJ. Associate with each stale ; a sequence of i.i.d. non-negative randum variables ^fj, A'.',, . . . from 

distribution /■',. Then we assume the value of the ylh secretary is a random variable A,, where 

A, = 5] A'I ij-i 

and I ) is the indicator of the sei -i. V> e assume that when a set retarv is interviewed, both the value of 

A, and the distribution it comes from are observed. The following llieorem gives the optimal policy 

lor any A and n. 

THEOREM I: Assume there arc it secretaries left to interview. Then there are numbers 

0 = <v „ € a/ „ *£...« a,i !.„ *"!,,„ = x. such that if there are k^ n |obs still vacant and the next 

secretary has a value » from distribution /•',. she should be hired if and only it i 5* «;,  k n. 

Furthermore, suppose that in an n secretary problem, the first secretary's value comes, from 

distribution h,. a decision is made on her, and then n~ 1 secretaries and /, vacancies remain. At this 

point the sum 
A 

V a'   . „ 

is the optimal expected reward from the A secretaries who will eventuallv lie chosen. Thai is. a'   , 

may be interpreted as the incremental value from having / vacancies instead of /, — I. 

finally, the critical values may be calculated from the recursion: 

ll) "m,„.,= 2 
1=1     *-   J 

xF,{dx)+a;n ^J'.iu;,, ,.„)+«;„,„( I-/•,(",„,„ ))\q,. 

where the convention is that x   () wlien m = n. 

PROOF: The proof will be omitted since it i-^ a straightforward induction proof on n. The recursion 

(I) follows from the interpretation ol u',,, H , given altove. 

3. LIMITIiNt. RESULTS FOR LARGE n 

This section deals with the case where n-~* x but kjn approaches a nonzero limit. In particular we 

will find lim a'    ,        and lim 4,(n. n)ln for a fixed fraction 0 < 7r < 1. where 
„   •«    I""!"-1 

n 

.4,[n.n)=      ^      (;;„„., 
m    IIITTI , 1 

and [nn] is the greatest integer in nn. Note that from Theorem I. .4,(n. TT) is the optimal total expected 

value from n secretaries fdling n —[mr] vacancies, given that the previous secretary was from dis- 

tribution J. We find the limit of this quantity divided by n hv comparing the optimal policy with a sub- 

_. ^ — — .-. ■^-■- - 
 -■■    ■■-—- .—.^,.,... 
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optimal policy to obtain a lower bound and an impossible but better than optimal policy to obtain an 

upper bound. 

First we define some notation. Assume the Markov chain governing the successive distributions 

is ergodic and let p,, . . ., p,- be the associated steady-state probabilities. Let l,(n) be the number of 

A"s from distribution Ft out of the first n, and let fi(i), v-Ai), ■ ■ ■ denote the indices of these ,V"s. 

Dehne 

Z;(a)=l i.v^i     and K'(o) = Ajli.v ;-.;i, 

and then for any a and h, let 

Siin) = Si(n: a, b) = min I m £Z;,,n(a)Hn6]] 

ti{n) = ti{n:a,l>) = nün {l,{n), Si(n)). 

Finally, for any 0 ^ tTi « 1 and 1 =s i « r, denote by/•'. ' (<r,) any of the numbers T which satisfy/■Mr) 

(Ti, and let 

l'((7')=Jf,.(,x, xFAdx). 

The following three lemmas will establish the lower bound mentioned above. 

LEMMA 1:  Let 0 =£ o-, =S 1 be any number for which (T |/,',(r) = (T,) is nonempty, and let s,(n) = 

s,{n: Ff'{(Ti), pi(] -a-i)). Then 

lim Eti(n)ln = f),. 

PROOF: Since  0 ^ tj(n)/n =£/i(n)/n ^ 1. it  suffices  by  the  bounded  convergence theorem to 

show that fi(n)/n—»p, in probability as n —> ^ Let €>(). Then 

^(MrO/n-S A + e) ^/*(/.(")/« ^ p, + e)-^ 0 as n-> ac 

by Markov chain theory. Also 

P(Mn)/«Sp.-e) «P(/,(n)/n€:p,-e)+/J(.s,(n)/n^p,-e) 

and again the hrsl term on the right goes to 0. For the second term, we have 

P{s,{n)ln^P-t)=P (sAn)^ [n(p,-e)]) 

\n\p.   el] 

=P\    S    zi,ul(Fr1(o-1))^[«pi(i-<T1)] 
.;=i 

-'■'--'- ■ '-■ - ^.-i.^...,^.^..-,^.«—^ -mu •MMkMMMMaHMMMiMlMMHMMaaMlli   
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2      Zj(AVl(o-,))s[np,(l-o-,)] 
J-i 

lJ{   ("^t,|   Z;(f,'(a,))^   [^(l-cr,)] 

[«(p,-«)] [n(p,-e)] 

and this term goes to 0 by the weak law of large numbers, since the Z's are i.i.d. with mean 1 —tTiand 

..      [np,(l -o-,/]       1 -ov      , 
hm -f^ -r- = — > 1 - a,. 

LEMMA 2: Let en, sAn) and Mn) be as in Lemma 1. Then 

lim E 1^,)) [ / n = p,p,((r, 

PROOF. Define -4(/) t(i be the set of possible realizations of J'I((). vAi). ■ ■ . when /,(«) = /. 

Also, for v s {fi, u-i, . . .)eA{l), let /<(/, p) = {/((«)=/: »/;(j) = f> all;}. Notice that /<(/, «^1 is simply 

a subset of the probability space associated with the Markov chain. Kurlherniore. A(l) and A{l, c) 

are obviously dependent on n and /, although this dependence has been suppressed lor notational 

convenience. Then, 

^ i=l '   I I     r,HI) l   ;=-! 

-4(/, r)   /'(/Tl/, <■)) / n. 

On the set A{1, v), ti(n) is a finite stopping rule for she i.i.d. Y*. "s, so by Wald'» equation and inde- 

pendence the above expression is 

^   ^   £<''<n' \4U,v))t:{y\(ri'Ur,))}P(A(l,i')}  /n=(£Mn)/«W<r()^p,p,(o-,)as/i~»x, 
/    iiA(l) ' 

by Lemma I. 

LEMMA 3: Suppose F\. . . ., /■', are continuous. Then lor any 0<rr< I there exist fractions 

Osso-j-sl, l«i«r, for which lpliTl = TT and Fl
1(o-|)= . . . =/•',. M tr,). Furthermore, for these 

(Ti's a^d any I ^y « r, 

liminf/4;(n,7r) / " > ]£ p,p,(fr/). 

PROOF: The existence of the (r,"s follows by looking at solutions of/■'!'(iri) = . . . =^"r
1((Tr) = b 

and then adiusting A until ipi(r, = n. 

Recall that we are trying to fill « —[nn-J vacancies with n secretaries. Consider the infeasible 

policy which hires at most [npM —a-,)] of the secretaries from distribution /■', and, with this restric- 

1, IM   II--      ••-     ^l" ■"*"■"■' 
,,..    ...IT-  ■ 

^A^*^. 
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tion, hires only those secretaries from Fi with a value x 5* /•'j Ho-,). This policy is inleasible because 

the vacancies may not all he filled, but since 

£ [npid-cr,)] « 2 npi(l-<r() = n(l-Tr)«n-[nff], 
(-1 (-1 

the policy will never hire too many secretaries. If Rn is the value obtained from this policy, then the 

part of ERuIn due to the Xrs is exactly what we examined in Lemma 2, and its limit as n —♦ x is ^iven 

in Lemma 2. 

Now compare the above policy with a feasible, nonoptimal policy which hires only those secre- 

taries from Fi with a value x 5= /•', Mo-,) until there are as many secretaries left to interview as there 

are vacancies, if this ever occurs. Then hire all remaining secretaries. If R,, is the value obtained 

from this policy, then the non-negativity of the X's implies that 

r _ 

V PiUi(o-i) = lim HR„ln « lim IniER„ln slim iniAAn, Tr)ln. 
*-d n.x n,x n.x 

Next we find an upper bound on the optimal expected reward. 

LEMMA 4; Assume Fi, .  .  ., V, are continuous and let cri, .  .  . ov be as in Lemma .1 Then 

lim sup.'Jiin, TT)  / n s V p,/x,((r,). /      ri 

PROOF;  Recall that X, is the value of the ]\\\ secretary and let A',,, -V,,,! be the order 

statistics associated with \\ AV Then since no sequential hiring policy can d<   better than 

hirinji the secretaries with values X{\»v\.\\ Awn. it suffices to show that 

(2) limsupfc'j    ^     Aum-^^A,! 
'■»1= | rin| . l 1=1)1 

n^O 

where .4(i, /) is the event that A, is from distribution V, and A, ? /■', l((r,l = /''l '((ri).  This suffices 

because 

lim £ 1^ T X(lH(..i)|  / n=^ p.Mito-') 

Define /Vi(n)= V In,,,) and ,'V(n)= 'S Win).  Then the right-hand double sum in (2) contains ,\'(n) 
j=i i=i 

nonzero terms, all greater than or equal to V\ ^{a\). whereas the left-hand sum contain:- the n— [riTr] 

largest A/s. Therefore the expectation in (2) may be written as 

^-^■J1"J'-i- il   »ll.iM||-  U ||, 
ihirtMaa 

^---- 'Hill um 
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U{n-[nn]-Mn) terms, all ^F/Ur,)) 
.V(nKn- |n7T|| 

+ I (Ar(n)-n+[n7T] terms, all «-^'(o-,))} / n ^ F^{a,)E{n-[mT]-l\/{n)   In. 
J(.V()i) -n -[«»]) J   / / 

However, since lini^ £'A',(n)/« = p,(l — cr,) and ^p,(l — CTJ) = 1 — rr, the above expectation goes to 0. 

This shows that (2) holds, and the proof is complete. 

We put the preceding lemmas together to establish the following theorem. 

THEOREM 2: Let ¥ , V, and (7 , err he as in Lemmas 3 and 4. Then 

lim^,(n,7T)  / n=y pifii{(Ti). 
I fx 

Corollary 1 below lists two interesting results on sums of order statistics associated with Markov 

chains. The proofs follow easily from Lemma 4 and Theorem 2. 

COROLLARY 1: Under the same assumptions as in Theorem 2, we have 

m- [ HTT) • I ' i= I 

»ir | 

''I1! M S '*'""   / n-V, Mßi(0)~ni(a-i)). 

The following proposition perhaps gives a more intuitive reason why the cri's of Theorem 2 are 

associated with the optimal hiring policy. Its proof is straightforward and hence is omitted. 

PROPOSITION I: Iff) F, and cr,, . .  .,07 are as in Theorem 2, then these oi's also 

maximize Zp,jUi(cr,) subject to S ouTi= TT, 0 « er, ^ 1. 

Finally, we use Theorem 2 to obtain a limit on a,' , n< l itself. Assuming the cr,"s are as in Theorem 

2, dehne x(n) to be the common number F\ 1(o"i)== • ■ • —Fr'fov). Also define g{x) = 1piFi{x) 

and assume that ^r is strictly increasing in a neighborhood around X{TT). Then g ' is defined in a 

neighborhood around n since g(x(TT)) = TT. so that x(n) =g Hrr). We use this to obtain the following 

theorem. 

THEOREM 3: If fi, . . ., F, are each absolutely continuous and g and x(7r) are defined as 

above, then for any 0 < jr < 1, lim a.J   ,       =x(n]. 

PROOF: Since the proof is very similar to the analogous proof of Theorem 2 in [2], it will be 

omitted. 

The above theory has two important implications for implementation. First, although the optimal 

policy in Theorem 1 is simple to administer if the dm.p's are known, these critical numbers may be 

difficult to calculate. By Theorem 3, however, there are simple approximations for the critical numbers 

which may be used instead, at least for large n. to achieve near optimality. Second, the feasible, non- 

optimal policy described in the proof of Lemma 3 also yields nearly optimal results. Furthermore, 

-   ' ■ -■■.■ — ■'" 
■ ■-—- 
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this policy is trivial to administer and calculate since there is a single time-independent critical number 

lor each distribution which should he used until there are as many vacancies as secretaries to be 

interviewed. Past this point all secretaries would be hired. 

Finally, we mention a special case of the above model which is probably more realistic in many 

situations. This is when the next distribution is independent of the most recent one. that i.\ when 

q,,= H, for each (', /. However, our results then hold by taking r= 1 and usinfi the distribution F~ Sq,Fi 

which is a random mixture of the given distributions. 

4. ANOTHER SECRETARY PROBLEM 

Suppose the above model is changed so there are r categories of jobs such that a secretary from 

distribution /■', can be used only for vacancies of type ('. In this case it is convenient to think of r 

decisionmakers, each dealing with a single category of jobs, and each tree to make his decisions 

independently of the others. Also, we should now think of the number of available type i jobs as simply 

a maximal number of openings, so that if less than this many type i secretaries arrive, there is no penalty 

for unfilled positions. For this problem we list results analogous u» those in the previous two sections. 

Since the proofs of these contain no really different ideas than those in the previous sections, we omit 

them. 

THEOREM 4: Assume there are n secretaries remaining to be seen. Then there are numbers 

0 = (I,1, „ * (/', n« . . . « (/'l( ! „^ a',, „= *■, such that if there are k ^ n vacancies of typ«' i and the 

next secretary has a value » from distribution /•',. then she should be hired if and only if jt 3 n^   A n. 

Furthermore, if n — I more se( retaries remain to be seen, there are /, vacancies of type /, and the 

previous secretary was from distribution /•',. then the sum 

I«;, 

is the optimal expected reward from hiring the type i secretaries. That is, a'n   , „ is the incremental 

value from having A openings of type / instead ol only /, — 1. 

Finally, these critical numbers ina\ be calculated from the recursions; 

«',,„. , = (/J I    '" xF,(dx) + aln (\-¥i(a\_n)] 
Jo 

itnl 

o„)a'        x (h< \   I xF^(lx)+a•   ,    /•",(«'        > + a',„   {\ - F ,Ui'    ] 
- )     1 ■ "        ' f )      I . K i     1 .n J." '       l . n 

for 2 S   /   S; «. 

Now suppose n secretaries remain to be seen, the previous secretary was of type i. and n — [mr] 

vacancies of type i remain, where 0 < rr <' I. Then the optimal total expected reward from the secre- 

taries hired to these jobs is, by Tht >rem \. A,(n. TT ). Again we obtain a limit theorem for this quantity 

in the interesting case where, in the limit, there are not enough type i jobs. As before, we assume the 

Markov chain is ergodic with stationary distribution {p,}. 

- ■- - —■ I,--^■■" -^ ■' •■  - ■vikif a ^^**^^''"fW'f","^    '    '   * - illl        I ■    ,   j 
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THEOREM 5: Kor \—pi<n< 1, let (r, = 1 - (1 — 7r)/p,. and assume {T \ FAr) = iTl] is non- 

empty. Then lim Atin. Tr)ln = pißiiai). 

THEOREM 6: Suppose /•'/ is absolutely continuous and n and en are as in Theorem 5. Then 

lim «;    ,      , = /•'   '(oV. 

Also, let «, = sup {x\ Fl(x) = 0}. Then for 0 < n < 1-p,, 

lim sup a!    ,      . ^ Ri 

We conclude this section by describing one possible setting for the model of this section. Suppose 

the different categories of vacancies refer to different levels of necessary qualifications. For example, 

level 1 might be relatively menial work, whereas a higher ICNLI might be a more responsible position. 

Also assume that the values of all secretaries come from one distribution F, but there are fixed numbers 

0 = /(i si /: =S . . . =£ /r i =S /r = =c. such that a value x satisfying <, i < x < t, can only be considered 

for level i. This (its our model if we let qii = qi = F(ti) — F(ti   ,) and 

..,   ,       F(x)-Fitl   ,) 
h{x)=   Fit.)-FU.  ,)        '-<^<'' 

0 x^t,  , 

1 X>li 

5. CONCLUDING REMARKS 

Before concluding, we make several remarks which are pertinent to the above results. In section 2 

it is possible that the distributions F F, are degenerate at the points .n , .... AV. respectively. 

Then we would actually be observing a Markov chain, where being in state i would mean observing 

x,. In this case equation (1) takes the form 

"w.n.i = y i-*, 1, ' r    „'     i+a'    ,     1^    „J    .    l+"'      '(,■     J     IUM. 1 « I « r. i ^   .     i     (fjfn    lin    Xj    'im.;() HI    l.n     '^J    "m    l,rl' if, it    yJ j    ''m. «Y 

ll'l 

where l(j, n is 1 if xeA and 0 otherwise. 

Second, as in |1, 2. 3] any of the above results may be generalized to the case where there are n 

fixed quantities Pi ^ , . . « p„, or r sets of />"s in the model of section 4, which must be assigned to 

the n As, so thai a p assigned to an x receives a reward px. (Our p's were all O's and Ts.) The basic 

results are that the same sequences of am.n's determine the optimal policy for any set of p"s. For 

example in the model of section 2, if n /)"s remain and the next  » satisfies a'    < x <(i'    , then /;, ' ' i   \, n j, n ' •' 

should be assigned to this x. The reader is referred to |]) for more complete results along this line. 

Finally, further work should be done on the case where only the values of the j's, not their 

distributions, are observed,  in some contexts this would seem to be the most realistic approach. 

^  .,    u.,i*.*,„tmmm-   niiUniMillliMMlMjlMMIM   ■ .n        i,.,,.     I       m„lnmiltallili^tatmaatlt^M^äMmmmtt^^^ltllKt^la 
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However, there are also many cases where qualitative differences in the secretaries, or whatever 

objects are being observed, immediately identify the distributions from which they come, and this is 

the rationale for the approach taken here. 
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ABSTRACT 

In this note we analyze the fractional interval Programming problem (Fll') and tind. 
explicitly, all its optimal solutions. 

Though our results are essentially the same as those in (üiarnes and Cooper |4), the 
proofs and analysis we provide here are considerahly simpler. 

0. I INTRODUCTION 

Charnes and Cooper [3] provided a complete analysis of the linear fractional programming 

problem in all generality, and reduced the fractional problem to at most a pair of ordinary linear 

programming problems. They further applied the results in |3] to obtain an explicit optimal solution to 

a general class of linear fractional problems —those for which the constraint set is given by 6' ^ Ax^b* 

and A is of full r.w rank, see [4]. The'se problems were termed fractional interval programming problems 

(FIP)see|l,4). 

In this note we analyze the full row rank (KIP) and find, explicitly, all its optimal solutions. Though 

our results are essentially the same as those in [4], the proofs and analysis we provide here are 

considerably simpler. 

We transform the (F1F) problem to an equivalent problem in which all the regular cases are easily 

detected. Further, unlike in |4j, we do not apply the Charnes and Cooper transformation from a frac- 

tional linear problem to an ordinary linear problem in order to find an explicit optimal solution to 

(FIP). Rather, the optimality of the solutions we generate follows from a well-known property of the 

fractional function. 

1. THE (FIP) PROBLEM 

Consider the fractional interval programming problem (FIP) of the form 

CTX + Co 
(1) Max 

ctTx + dn 

•This research was partially supported li\ N.R.C. Crant No. A-4024 and by Office of Naval Research Contracts N00014- 
67-\-0126-0008 and N00014-67-A-0009 with the Center for Cybernetic Studies, The University of Texas, Austin, Texas. 
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subject to 

(2) 6-s£/4*s£ 6' 

where A is of full row rank (see [1,4]). 

Let us assume that (FIP) is feasible, i.e. 

(3) S={xeR":       6" «/**« i+} # 0. 

ASSUMPTION 1: J7x + ^o ^ constant on S. 

ASSUMPTION 2: There does not exist a constant keR such that  (c'jt + fo) = X(57;t+ 5o) on S. 

Since A is of full row rank it has a right inverse denoted by A*. Substituting 

(4) y = Ax 

or 

(5) jr = A*y+ {I — A*A)z,       2 arbitrary 

in (1), (2) we obtain an equivalent problem to (FIP) of the form 

(6) M 
cr[A*y+(l-A*A}z]+cl) 

'd'[A*y+(l-A*A)z] + 'd„ 

suhject to 

(7) b    ss.V^ tr. 

In order that (FIP), under assumptions 1, 2, will be bounded from above, we further assume that 

cT 1 {I-A*A) and d1 1 (l-A'A). A complete analysis when rT I (I - A* A) or d' I [I-A'A] is 

given in Charnes and Cooper [4]. 

Without loss of generality we can assume that 

(8) 6.  <b:        (i = l m] 
i       t 

Otherwise, if h: > bf then (FIP) is infeasible, or, if bi  = />.   we substitute >, = Ir 

Denoting by 

(9) yi = 
b-b 

(/=! m) 

and substituting in (6) and (7) results with the following equivalent problem: 

(10) \h 
dTy + du 

= F(v) 

—~—, . ^_  a.—        ■- -    -■ n  
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(11) 

where 

Ossy ss 1 

:T=6TA\       dT=dTA*,      co=Co(       do» do. 

We can assume, without loss of generality, that di&O (i—\, . .  .. m), since otherwise, if d, <0 v/c 

substitute yk— 1 — y*. 

Without loss of generality* the following three disjoint and exhaustive cases are describing the 

behavior of the denominator of ^(y) on Si = {y: 0 « y « 1}. 
m 

I. dn < 0. da+ V (f, >0 (i.e. the denominator changes sign on Si) 
i= i 

II. <i(i = 0 (i.e. the denominator has a unique sign but vanishes on Sil 

III. du >0 (i.e. the denominator does not vanish on Si)- 

CASE I:  Here there are the following two subcases 

(a) For some 

0<y<l.        d,,+ £rf,y, = 0        and Co+£ cm >0. 
i= r i=i 

Then, ^(y) is unbounded on Si. see Charnes and Cooper |4|. 

(b) For every 0 « y « 1. such that 

c/„+^rf,y, = 0 

c„+£c,y,=0. 

Charnes and Cooper [4] proved, by the aid of Farkas-Minkowski lemma, that if subcase 1(b) holds 

*Siiuf we ran always multiply the nurniralor and ihr drnnminator "f ' I > I by -I and «uhsliiulr for each y,.ic {I. 

(or which (/, •   0 a nrw varialile v,= 1 — y, ra>r II al.ovc ac iciunls (or th<  siluatiun wherr 

(i„-  0        and r/,,+ J (.', = 0 

.ml 

whereas case III accounts for the situation where 

m 

<i„<  0        and (/„+ V (/,<0. 
if, 

and therefort" ihr ihrrr rasrs drtinrd alinvr arr disjoin! and exhaustive. 

^ta^MMk 
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then y(y) is constant over S,. A different elementary proof will be given here. 

It is easy to verify for 1(1)1 that r, = () must hold whenever (1,-0. Moreover, there exists a vector 

y'={Y\ >J„).0<.vl<l for which 

m 
</„+]£ r/,y.'=0. 

i-1 

Next, let us construct the following vectors 

v—f v|-6.yl. v1        v1  -+ f-0 v"'=( 
dm I \ 

>«   ■:. ,v|„   , - t. >„ 

(Nearly, for t>() and sufficiently small we have that 0 •    v' *    I and 

dn + c/7v' = 0       (i = 2 mi. 

I.EMMA 1:  The vectors >' >'" constructed alio\e are lineariv independent. 

PROOF; Assume the contrary. Then 

il_') «,»'+.  .   .  + a,,,»'" = 0 

impli« 

(i;{) 
>,'  .u»! + ...■+ (t,„i —«,« = ()       (i = J. . . .. mi 

d, d- 
yi,(«i + .  .  . 4 (*„,! t ela.. — -f a.i — i   . 

Now, if lor some 2 s / s m. a, = Ü, then o   = 0. /= 1 m.  I liu^. it »'.      .. >'" are ilependent wi 

must have (»,*()   u = 2 ml. Kurt her  since €   -■(•.»'    • (I u -  I mi we oiitain 

i 111 «inn (c»i ^ «.i /  - si;,U) la,l        K = 2. 

Now, since (/, > Ü( j= I ml we • on« hide th u tK,- last equation in i I.Sl cannot hold, whuh < om- 

pletes the proof. 

Let  v he any element in .S, lor which (/„  • d'\  r (l. Then, since >' w = 1 mi -pan W ". \ i an 

he uniquely represented as 

I13I V^,. 

Suhslituling il'ii in / (\ I results in 

J**    m*. II        I        II   I    -«■ 
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constant. 

</.. + 2 MV   ''"+ X ß',_'i") 

Thus we proved that ii III)) holds then l\\\ = constant on Si. 

CASE 11;  l.et us denote hy 

/= {(; (/, = ()}. /, = {,; it/, r, >0}. 

Now, in Case 11 the following two subcases might occur 

la) fn + X r, > 0. 
«i, 

(b) r» 4 ]£r, « 0. 
i.l, 

It llial occurs I iv) is not hounded from above on S,. see |41. and if 11(b) occurs 'Kll'l p«issesses an 

optimal solution. 

An algorithm to find all the optimal solutions to tFlP) when ('.a>e Uihi or Case 111 it.e the de- 

nominator is unisignant on .S|i occur is given in section 2. 

2. EXPLICIT SOLUTIONS FOR (HP) (CASES 11(b) \S\} HI) 

The optimal solutions to (FIP) when Cases llihi or 111 occur are obtained in the following manner 

let 

117) /={i, <y,-Ot 

lor all indices it/ substitute in I ( vl 

118) 

and denote hy 

(19) 

1 if r, > I) 
0 it r, «   0 

p. if r, = 0 I) p, ^ 1 

r« = n, - £ 

\exl denote liv 

20) y^z   '<' 

and assume lor simplicity that 

(21) 5?   V.   9: Vi   2 Y: 



nmmmm mgmpnnpvipi uiiHiiiipij.ia M   i.« i | ...■N«.I,"J 

166 \. (HARNES, I). (.KANOT. AND K. GRANOT 

where r = m - \l\ and |/| is the numlicr of <'l«-m«nts in /  Let / be the smallest index for which 

:" + S r' 
(22) 

and let /| he the smallest index /i > / for which 

(23) ^o +  2  r, 
irr- >y. 

d„4  ^ d, 

in the following we shall prove that the set of optimal solutions >"'" to (FIF), denoted hy )', is 

iciven li\ 

iM) 

In |4|. (lharnes and (looper established the optimalil> of a solution for (KIF1). generated hy (22), 

hy exploiting the sper'i! structure of the pair of dual linear programming problems obtained after ap- 

plying their well-known transformation which was introduced in [3). 

\n elementan proof tor the optimality ol ) is gi\cn in the following: 

LEMMA 2:  Kor any two fractions «|/6i, ajh^, for which 6i, 62 >0 we have 

Min 
a 1   11 j 

ft," 7>. /-, + b. 
Max 

whenever ii\ /».■ * a-j/'i- 

PROOF: Suppose a,/i, •   ujh,. Then. 

Min \ihlhi, a-ilhi\ = <hlh 

\N 

rj./i; *    (l;/i|  ^> (lih.- + «i/'i  •    a«/>i   *   (l\fi 

=>    (111 /<|    +    /);)    <     />|U1|    T    (Ijl 

^>(ii//>i < ("1 +a»)/(6i -t /'j) 

^ Min Idi/Zi,, aj/6il = ai/61 < (a,+ a^hbf + ft,.|. 

. ^_ 
^^— - ■   - ■ -■ ■ 
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Similarly, it can lie shown that 

(«, +a2)l(bt +bi) < Max [ajb,, a-i/b-t]. 

From l.cmnia 2 and the manner with which (24l was constructed we conclude that the set K consists 

of ail the local maximum solutions to Viy) over.SV Now, since every local maximum to V(y) is also a 

global inaxiriui.i, see e.g. [6], the global optimality of the set Y follows. 
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ABSTRACT 

In ihis note some rxlcnsiims an1 made lo previous work by a numlur of aullior« on the 

deveiopmenl of Irsls tnr exponrnliality. The must recent example is due lo Kerch» and Kinder 

in wliicli lliev compare llie small sample power» of a lew well-known lesl sialistics lor the 

liypolliesis of a constant failure rate. It is the primary intent of this current work to extend 

(»nedenko's F test to situations with hypereensoring and tt» provide guidance lor its use. 

particularly when a log-normal distrilmtion is the alternative. 

1. INTRODUCTION 

There have been numerous papers over the years on the most appropriate choice of test statistic 

for the hypothesis of exponentiality. A recent example is a paper by Fercho and Ringer [2], in which 

the authors compare the small sample powers of four well-known test statistics for the hypothesis of a 

constant failure rate versus the hypothesis of a nonconstant hazard. The tests were compared for 

samples of size n— 10(5)50 using Weibull alternatives with shape parameters varying from 0.5 to 2.5 

(thus allowing both IFRs and DKRs) The four tests used were the classical F (first posed for this prob- 

lem in Gnedenko et al. [4]), 'wo tests due to Epstein [1], and a final one due to Hartley [5]. In their 

conclusions the authors also mention the application of Kolmogorov-Smirnov techniques to this problem 

as formulated by Srinivasan [8], to which this author would like to add the work of Lilliefors [7J and 

a further related paper by Kinkelstein atid Schaler [3]. In the end. Messrs. Fercho and Ringer come to 

the decision that their results provide a mixed bag, though the F test seemed to have the best overall 

performance. 

It is the primary intent of this note to extend the Gnedenko Ftest to situations with hypercensoring 

(i.e., removals occurring in a completely random fashion up until the very last failure), and to provide 

hints on the use of the /•', particularly in the event that the alternative is a log-normal distribution. 

2. THE TEST 

Most methods for goodness-of-fit require complete samples (to be distinguished from those that may 

be censored, truncated, etc.I lor their implementation. As pointed out by Fercho and Ringer, this 

•This work was supported In the I  S  Office ol Naval Research under Contrail So. N(HK)14-67-\-0JU »hen the author 

was with The George Washington I niversity. 
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problem can he somewhat circumvented in the exponential censored case hy considering the sequence 

of normalized spacings 

S,= (n-irl)(f,-/,,), 

where the hypothesized exponential data points are arranged so that all n interoccurrence periods begin 

at time tn = 0 and t, denotes then the time of the ilh occurrence. In the reliability context, this amounts 

to putting all items on lest at the same lime and then S, becomes the total time on test between the 

(i— 1 )st and ith failures. It can then he shown thai under the assumption that the failure limes are 

exponentially distributed, the normalized spacings wil' also be exponential, with exactly the same mean. 

But this result can be made even more powerful by allowing for hypercensoring. and it turns out to 

be still true that the normalized spacings arc indeed exponential. A proof of this contention follows 

(with no loss in generality) lor the two-item case. 

Suppose two items are put on test, each with exponential failure distribution /• U ) = 1 — e *'. 

Then let K= min{^i. A'.}, so that 

F, (y)=Pr{m\n{Xu A,} « y} = 1-/V{A, > >} • Pr{A, > y} 

= l-e  -^. 

Hence Y follows the exponential distribution with parameter 2K. NOW suppose one item is censored at 

time x* if it is still alive then, and let T be the total time on test until the first failure. So 

2}' for ) 

T = 

+ A,        for V 

and GrU) = Pr{2Y^t and 1 % >*) t Pr{.v* i A, =s ( and )    ■ x* \ 

CASK 1:  / « 2x' 

Here 

and 

Therefore 

l>r{2Y ■- I and V v x*\ =/V|l ^ tl2\ = 

/Vi.V, « r- .T and \   ■ «*}=(). 

CASK II: (   -2.»*. 

Now 

i;l(t)=\~e 

Pr{2Y - i and K s A* } = /'' 0' £ «*) = • " ''   "'*' *• 

' - 1-MII ■ 
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6'-;U)=l-e  -*■'■*+ e  A'* 
n    r* 

and 

Ae   ksds. 

— „- X.i* ).„- t.U    r* )— \„-Kl gr(t) = e-Xj*Ke = Ke- 

Therefore T follows the exponential distribution with parameter X. 

For this /•' lest, the hrst r and last in — r) of a set of n normalized spacings (as defined earlier) from 

the hypothesized exponential are grouped.t Then, since the S, are independent and identically dis- 

tributed exponentials with exactly the same mean as the underlying distribution, it follows that the 

statistic 

1 S'lr 

o= — 
2   Silin-r] 

is the ratio of independent Erlant; variables and thus follows an /•' distribution with 2r and 2(H —r) 

ilegrees of freedom when the hypothesis of exponentialily is true. Therefore a two-tailed F test would 

be performed on the (J calculated from the set of data in order to determine whether the stream is indeed 

truly exponential. It should be noted that a one-tailed test is to be used when there is specific information 

that the alternative is IFR or DFR. This is so because an IFR (DFR) should yield a (J statistic >(<) 1. 

Furthermore, any kind of information re^ardin^ the possible shape of the alternative's ha/.ard function 

can generally be used to improve the power of the /•' test by providing a more rational means for selecting 

the way to divide the data in two. This is so because under the null hypothesis of exponentialily, the 

maximum-likelihood estimator of the ha/.ard over any interval is simply the number of tailure times 

falling in that interval divided by the total time on test accrued over that period of time. The usual split 

at r= [ri/2] is especially nonoptimal whenever the ha/.ard is U-shaped, as it may be in log-normal cases, 

a point explored in more detail later. 

». SOME RESISTS 

A number of power comparisons were made to permit the testing of the feasibility'of any new 

approaches to the subject problem. Sample sizes were restricted to 10, 20. 30, and W. and ^uns were 

made with 1,000 repetitions lor each sample size at both the 0.05 and 0.01 levels oi significance. A 

number of specific <!DFs were selected for each alternative and results were based on a two-sided test, 

or a one-sided test whenever the alternative had either an IFR or DFR. A power test was also performed 

■•■Vi' [y] Im a clisfU-Mnn nl an inlrrr-lint: a|>pr<>arli In rlinnsint! llir valui' "I  I   One lirniTallv -re« r- |n;2| a- ihr inosl 

n-asiinalilt' i hiiice (tivfii ivn aililiiiuiial infiirmulimi 
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for the modified A'—S statistic of Finkelstein and Schäfer for a log-normal alternative usin^ the critical 

values contained in [3]. This variati »n on the usual K — S thcmt* due to Finkelstein and Schaler is 

called the S*,, statistic, and is pven by 

S',:=2 {ma%[\jln-F{tJ)\,        \F it,}-{j-])ln\]}. 

Co compare these results to those of Kercho and Hinder, the reader is rclcncd to their I ahlc ,1.3, 

where ß= 1.5. We have, in addition to providing! a run with the -arnc \alii<- of ß. also calculated the 

TABLE I.    Probability of Rejecting Hyputhesis oj Exponentiality 

(Null liypiptlii-si.s ii, //„: hi) = i-  ') 

K-tlllialr III   |lii» ■T 

I mierlying Mean >aMijil Siyiiil ^   
distribution ailf 

i 
icanct' 1 rail                       .'taj 

1 
/■ h S' 

Krlang Type 1 1 III (1.1).') o.L'iri 

I Il.lll (LOW 

fit] = K{\t) ■ r   A' ■m (Id') o.;?% 

0,(11 0.121 

.id II.H'i 

(MM 0..'.iT 
1 

[K^i] m 0.11.', 

0.(11 

().0,i 

0.673 

0.351 

l..)^-\nrriial 1 HI 

1 
j 

II.(UK 0.112 

(1.(11 0.004 0.017 

1                          (In/   - n)2 

.'ll (I.O.i 0  IU 0.174 

0.01 II.nil 
1 

0.0.17 

.to 
1 

(Ml.'i ii.n.iJ 0.201 

0.(11 (LOO1* 0.(K)() 

»=   \n Hi (iir, II.IMI 0,2'i7 

«■= 1 0.(11 (l.(HK) 

II, IJK     , 

II KM 

Wfilmil o.'rn 1(1 0.(15 

i 

i     0.222 

ii.(ii 11,(17(1           (1.040 

/I/) = Kßi"   ' •<■   "" 21! (1.(15 
0.(11 

0.4.iH          0.2W 
nid1'       lum 

:«i 0.(15 
ii in 

il fill           n Uil 

0.21'7         0.1% 

A -    1 H) on:. ii 77 (           0 d.i.'i 

li    M2 o oi II ;.i7           II ,<2(i 
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(Null hypothesis is Wip:/(») = «• ') 
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Estimate (if po wer 

1 lulfilvirif; Mean Sample Sijinif 

distribution size icance 1 tail                       2-Hul                i 

/■ h V 

WVilmll O.'XW 1(1 U.Ü5 

0.01 

0.1 HW 

0.052 

|(/l = Kßi"   ' ■ e   >'" 20 

to 

0,05 

0.01 

o.os 
(1.01 

O.ihH 

0.121 

0.50H 

0.214 

r A = i     i 40 0.05 0.670 

1 ß= 10/7 | (1.(11             0.341 

Weil.ull o.y.ii 10 0.05 

0.01 

0.113 

0.031 

0.062 

0.017 

Hl) = Kßt"   ' ■ e   >"" 20 0.05 

0.01 

0.207 

0.042 

0.127 

0.026 

30 0.05 

0.01 

0.275 

0.(N4 

0.160 

0.045 

r A= 1     | H) 0.05 0.365 0.225 

1 /^ = 5/4 J 0.01 0.135 0.072 

simulated power when ß= 5/4 and 10/7. This was dune because ii gives one run with a mean clnser to 

thai of the null distribution (namely. 0.^31 vs. 1). a second with a mean halfwa\ in between 1.0 and 1.5. 

and a third with a mean in between the other two. Kurthermore. for illustrative purposes, both one and 

two-sided tests were used; note that Kercho and Kinkier used 2.000-poinl (one-sidedl simulations as 

compared to our 1 .tMK). 

It seems therefore lair to say that the current results are quite consistent with the earlier ones. W e 

can be Mire these results can all be improved by a more judicious scheme tor data splitting, though the 

normalized spacing approach with r= [«/2J tends to do pretty well. 

i. SPECIALIZATION TO LOG-NORMAL 

The log-normal alternative turns out to be a very special case, since the r— [n/2] rule lor data 

splitting is especially unwise. \ careful look at the plot ol a log-normal with mean I. lot example. 

/(') 
1 

tV2n 
exp 

;ln/+ 1/2 )'■ 

and its hazard rate 

i ir         in in a i   
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gives extremely important information which can be used to greatly increase the power of the F test. 

We have chosen to split the data in such a way that the numerato. of the statistic is based on the first 

[n/4] points plus the last [n/4], while the denominator is calculated from the remaining points. This 

simple rule increases the power when the sample size is 30 at «= 0.05 from 0.032 to 0.533, a very 

significant improvement, which now allows the F to be superior toS*. The usual ([n/2], n— [n/2]) 

split does not work well in this case because the shape of the hazard tends to be decreasing for the 

first half of the data and increasing for the second half with the two averages working out to be very 

close to each other. Any such direct use of information regarding the shape of the alternative's hazard 

rate can alwayp be used as an easy but important way of improving the F's power. 

TABLE II.    Comparison of Results 

i    n Level Fercho & 
Ringer 

Harris: 0=1.5 Harris: j=1.25 

Mail 2-tail Nail 2-lail 

10 0.05 0.126 0.222 0,128 0.113 0.062 
0.01 0.028 0.070 0.040 0.031 0.017 

20 0.05 0.302 0.438 0.299 0.207 0.127 
0.01 0.112 0.169 0.096 0.042 0.026 

30 0.05 0.455 0.614 0.461 0.275 0.160 
0.01 0.206 0.297 0.1% 0.094 0.045 

40 0.05 0.620 0.773 0.635 0.365 0.225 
0.01 0.320 0.437 0.326 0.135 0.072 

TABLE 111.   Results for Log-Normal 

With Modified Spacing Plan 

n Level 

Ltail Previous 
Mail S' 

30 0.05 
0.01 

0.553 

0.149 

0.032 
0.009 

0.201 

0.066 
_J 

5. CONCLUSIONS 

In  pMmmary then, though  some other test statistics have some conpelilive advantages when 

— .  
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It-sling aK-ninsl specific alternatives, the F test comes out with the best net performance. Beyond all 

the pluses already mentioned, such as the handling of censoring, there is the further advantage of ease 

of computation and ready availability of critical points. In fact, it is rather easy to store/1' critical values 

for all possible pairs of degrees of freedom using one of many numerical approximation procedures 

from the literature (for example, see [6]). 
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