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Abstract 

This thesis is a study of speech recognition at the parametric level. It attempts to 
evaluate and understand the reiative merits of a number of alternative design choices at 
that level. Such a study raises issues in Artificial Intelligence, Linguistics, Acoustics, 
Pattern r?« cognition, Statistics, and Speech Understanding research. In particular, it 
involves an investigation of segmentation and labeling techniques, and the use of 
parametric rgpresentat ons for the acoustic signal in those techniques. Every speech 
recognition system employs some parametric representation and some initial signal to 
symbol transformation. We show the performance currently available for fhes9 initial 
processes, and assert that such performance is comparable to human performance. We 
present the relative merits of some typical parametric representations, and develop a 
methodology for such comparative evaluation. Simple, parameter-independent schemes for 
segmenting, labeling, and training are developed as well. The role of pattern classification 
techniques is clarified, as it relates to the initial signal to symbol transformation. 

Tour parametric representations have been chosen for study: a set of ampl'ludes 
and zero-crossing measurements from 5 octave filters (ZCC); a set of energy 
measurements from a 1/3 octave filter bank (ASA); a smoothed, short-time spectrum 
computed from the LPC filler (SPG); and the LPC coefficients themselves (ACS). Note that 
the first two involve the use of analog devices. Each method yields a set of measurements 
at uniform, short intervals -- a pattern. Distance functions, chosen from Pattern 
Classification theory, are then applied to the parameter pattern? as measures of acoudic 
similarity. 

A method for segmenting speech into isolated, acoustically consistent segments is 
presented. The method is fairly independent of the choice of parametric representation, 
since it relies upon the acoustic similarity measure as the primary evidence of acoustic 
change. Missing and extra segment errors are found to be as good as 47. and 197., 
respectively. Significant differences in the segmentation effectiveness of the parametric 
representations is found. They may be ordered as follows; SPG, ACS, ASA, and ZCC. The 
best performance Is found to be comparable to the state of the art. Little reduction in 
accuracy is encountered when new speakers are tested. 

Labeling is accomplished by the same pattern similarity measures. However, 
similarity is measured between the unknown pattern and each of a set of stored templates. 
A clustering algorithm is presented which finds the most suitable set of templates to 
represent a population of patterns which correspond to a particular phonetic label. The 
patterns tested are those isolated by the oest machine segmentation routine, hand 
corrected for serious errors. 

Little difference is observed along the parametric representation or the 
classification metric dimensions, except for poorer performance for ZCC input. Each input 
segment is labeled as one of a set of 40 phone labels. The correct phone appears as the 
first choice 287. of the time. It appears in the first three choices 557. of the time. 
However, when a lower level, acoustic transcription is used as evaluation referent, these 
values increase to 427 and 657.   Even the 287, accuracy, which arises from a comparison 
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Abstract 

against  phonemic expectation, is acceptable performance.   It is the same as or slightly 
better  than human spectrogram reading performance in the absence of other linguistic 
clues. 

The major contributions are as foüows. 1) Simple yet effective, parameter- 
independent procedures tor segmenting and labeling speech are developed. 2) A 
methodology for performance evaluation at this level is presented. 3) A number of 
alternative design choices are examined. 4) A better understanding is of feted of the role 
of pattern classification techiniques in the initial signal-to-symbol analyses. 
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Chapter  1 

Background and Problem Statement 

In recent years, a renewed attack has been made on the problem of input of human 

speech to computers. [New71,Red75b] This dissertation is particularly concerned with one 

component of this problem -- the initial analysis of the acoustic input. A great deal of our 

understanding of this problem has come from areas such as linguistics, physiology, 

acoustics, and psychology. Computer science, and in particular artificial intelligence, has 

played a catalytic role in drawing together knowledge from diverse sources into workable 

structures. Common to all these structures is a component which deals with the acoustic 

input in some parametric form. From that component we expect an initial isolation or 

identification of the information borne by the acoustic signal. In this thesis we focus on 

this essential element, its inherent problems, the issues involved in its implementation, and 

its role in a total systen,. 

1.1 Introduction 

The basic vehicle for this research is the problem of choosing a parametric 

representation for the acoustic signal which is to be input to a speech understanding 

system. The choice must ultimately be made by the individual system designer for there 

is, as yet, no one clearly superior parametric re -escntation that se-vts the variety of 

purposes of segmentation, phonetic analysis, prosodies, «tc. which are needed to 

understand general continuous speech. Up to this point, the prospective system builder 

has made the choice in an ad hoc manner. Either certain hardware was already available, 

or the necessities of cost and/or time prevaileH. In other cases, representations were 

based upon traditional methods. In those cases where a parametric representation was 

developed from first principles, those principles have consisted of limited empirical studies, 

often influenced by the element of human speech understanding ability, or they have oeen 

based  upon  simplified  assumptions  about  the physical or stochastic  nature  of  human 

  



Background and Problem Statement 2 

speech. In short, ^ve are faced with a number of different methods for extracting acoustic 

parameters from the speech signal. All are based upon reasonable, but not complete, 

understanding of the nature of the speech signal. Some make trade-offs with speed and 

cost which may not be suitable or necessary. Many have been employed in speech 

understanding systems of varying complexity and success. Some can be shown to support 

re-synthesis of speech. But very few have been comparatively examined in the light of 

their eventual use in a total system. (See [Fla72] for a survey of speech analysis end 

synthesis techniques.) 

In order to mike the comparisons so that they will be useful to the speech system 

designer, three problems must be considered. 1) The role of the acoustic information and 

knowledge about acoustic-phonetics, in the context of the entire system, should be 

understood. 2) The method by which the acoustic parameters are analyzed — the 

recognition scheme -- should be chose.i with care. 3) The performance statistics must be 

designed to convey sufficient information about the abilities of a parametric representation 

to support recognition. The information is needed by the designer to predict what the 

choice will mean in terms of his system. 

This chapter is a statement of the problem to be attacked. As such, it must survey 

the terrain before proceeding. In the following section, we will discuss those aspects of 

speech understanding systems which seem to be relevant to the question of system use of 

the acoustic parameters. Section 1.3 is a look at the uses to which the acoustic knowledge 

itself is put - what kind of processing will be needed depends upon what kind of 

information about an utterance is required at the acoustic level. Section 1.4 is a survey of 

the available methods for extracting parametric representations of a speech signal. And 

the finai section states the specific problem in terms of the limitations, assumptions, and 

performance dimensions chosen for study. 

In succeeding chapters, we will present a very brief survey of pattern classification 

ideas and methods, chapter 2, since these concepts are so basic to the type of analysis 

done at the parametric le-el of speech understanding systems.   Chapter 3 will discuss 
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aspects of the pattern classification problem particularly relevent to speech recognition. 

In addition, a brief survey of the acoustic/phonetic processing of a number of current 

systems is included in chapter 4 to provide some context for this work and for other 

results in the area, as well as to provide some idea of the currently available technology 

and performance. 

Chapters 5 and 7 will present and discuss the methods for segmentation and 

labeling, respectively, used in this research Chapters 6 and 8 will present the 

methodology for evaluation of performance and the results obtained. Finally chapter 9 is a 

concluding discussion which will serve to focus attention on the most important elements 

of this work, and will provide an appropriate overall view for evaluating results of 

research at the level of acoustic-parametric analysis. 

1.2 Speech Understanding Systems 

In this section, we will discuss Speech Understanding systems. Speach 

Understanding invloves the input of a speech utterance, the extraction of relevent 

linguistic information from the acoustic input, and the decoding of that information into 

some meaningful construct. A distinction is often made between Speech Recognition -- the 

process of extracting information by the use of knowledge about speech -- and Speech 

Understanding -- whore knowledge about the meaning of the utterance may be used to 

decode it. The purpose of the discussion is to provide enough of an overall picture of 

these systems that the acoustic analysis problem can be seen in perspective to the total 

problem. Since there is little difference for our purposes between these two types of 

speech system, we will use the terms interchangeably. 

At first glance, the problem of understanding the role pls/ed in speech 

understanding systems by acoustic parameters might seem to be insurmountable. Clearly 

different systems will use their acoustic knowMge sources different'y. Their other parts 

will interact with each other in very different fashions. Errors fatal to some systems might 

be easily corrected by others.   However, this apparent lack of any unifying model of a 
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speech understanding system is not total. One may assume some structure and limitations 

for the purpose of studying systems to be developed now and in the near future. There 

is no clear model of what a speech understander should look like except the hum.'-n model, 

which is not descnbable to any great extent as yet. The information we do have about 

human speech is structured into well defined theories or levels, and this structure can tell 

a lot about the form that speech systems will take and the role that acoustic (parametric) 

knowledge and analysis will play 'n them. The variations among systems become, in this 

view, more questions of degree than of essential differences. How much weight does one 

give to semantically based inferences about the utterance? Mow powerful a model of the 

speaker i>> available? etc. The answers to such questions of rfciativ» merit of the various 

types of knowledge about speech and speakers gives flesh to the skeleton structure of 

the different levels. Then a control structure fOf Handling interactions amor.g the levels li 

imposed so that errors can be detected quickly, work can be shared and efficiently 

performed, and the knowledge source most likely to succeed can be invoked in any 

situation. 

1.2.1 Sources of Knowledge 

In their report on speech understanding systems, Mewell et al [New71] point out 

the relevance of the levels commonly accepted by linguists and phoneticians to questions 

of system structure and control. It is important to note that every system developed to 

date has a number of internal representations of the input utterance. These 

representations correspond to the levels of discourse in speech science such as the 

acoustic, phonetic, lexical, syntactic, and semantic. Working at various levels are sources 

of knowledge about speech which serve to translate from one representation to another. 

In these processes, such recognition activities as search, classification, error correction, 

hypothesizing, and verifying may occur, (see figurb 1.1) A source of knowledge at the 

word level, for example, may initiate a lexical search to convert a phonetic sequence into a 

word. Or it may be used to generate a sequence of phones to be verified or matched 

against the input at any of a number of lower levels. 

i 

•.   ■. r—r    .. 
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—Levels— 

PHRASAL 

LEXICAL 

SYLLABIC 

SURFACE- 
PHONEMIC 

PHONETIC 

SEGMENTAL 

PARAMETRIC 

-Knowledge Sources- 

Syntactic-Semantic Parser 

 \ Syntactic-Semantic Hypothesizer 

 Phoneme Hypothesizer 

Word Candidate Generator 

 Phone—Phoneme Synchronizer 

Phone Synthesizer 

Segment Combiner 

 Segmenter-Classifier 

Figure 1.1: Levels and Knowledge Sources in HSII 

Using the common data representations and speech knowledge of traditional theory 

to relate speech understanding systems to one another, one can hope to draw some 

conclusions (albeit general ones) about the role of acoustic knowledge sources and data in 

an entire system. People often conceptualize the structure of speech understanding 

Knowledge application as one of a linear flow through the levels. Either bottom-up or top- 

down strategies of search allow decisions (and errors! to be transmitted and transduced 

through the levels in a rather straightforward manner. However, the interactions among 

levels may, in general, be complex. One cannot assume any particular form for the control 

flow of such systems, but we will briefly discuss below a number of forms that have b—n 

applied to speech understanding systems. 

Two data representations common to many systems are the acoustic parameters and 

a  phonetic-like transcription.   The knowledge sources that we are investigating In this 
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dissertation are partly responsible for translating from the former tj the latter. Some 

limited word recognition systems have shown great success bypassing the phonetic 

.ranscript'on and recognizing words directly from the acoustic input parameters. It is, 

however, generally agreed that such techniques fail with connected speech for a number 

of reasons. (For one, the 'ack of word boundaries will cause an exponential increase in 

the size of the recognition pattern storage required.) 

In most systems for understanding general continuous speech, the processes which 

apply knowledge about the acoustx and phonetic nature of speech gestures to the task of 

producing phonetic transcriptions of the signal play a very important role. Essential to 

this task is some form of classification scheme and some process for segmenting, 

regardless of the manner ;n wh-rh these two processes interact. Segmentation may 

proceed and be independent of classification (labeling). A label may be chosen at regular 

short intervals and segmentation procede on the resultant string. Or the two processes 

may operate on the same data and interact to support or reject each other's decision. In 

any case, a parametric representation which does not reflect a particular acoustic cue of 

segment boundary will produce segmentation errors, and one which maps different 

acoustic realizations of phones into the same parameters with produce labeling errors. 

1.2.2 Some Control Structures 

Although there is no one structure for interactions among the knowledge sources of 

a speech understanding system, there are a few paradigms of such interactions which have 

been proposed and applied to working systems. All of these paradigms deal with 

information about the input utterance represented internally at a number of levels in some 

incomplete, possibly errorful, data structure. 

Systems organized to interact in a linear manner tend to be susceptible to error 

propagation through the levels.   However, subsystems of a number of speech recognizers 

t Other sources of knowledge, concerned with phonetics, coarticulation, and stress for 
example, are needed to deal with truly general speech. To deal with this straightforward 
translation, it appears that classification based on acoustic patterns alone is not powerful 
enough. 
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do obey linear control flow where a sequence of separate sources of knowledge each act 

upon the previous one's output and feedback is initiated only from certain levels. An 

example is in Hearsay I where broad classification, segmentation, fine classification, and 

Isxical search are linearly invoked, but feedback only results from higher levels initiating a 

different lexical search. [Erm74b] This is a case where everything that can be done in the 

general area of acoustic analysis of the utterance is done immediately. Thus, there is no 

purpose to invoking any inter-level paths other than the straightforward one tha» reduces 

the reprsientation to the highest level data structure used in the system. 

An early paradigm for speech recognition, suggested by Halle and Stevens [HalSZ], 

is Analysis-by-Synthesis. A representation of the input is postulated at some level and 

the sources of knowledge are used to create a corresponding representation at another 

lower level to be compared with the input. Some measures of closeness of the two 

representations at the lower level are used to decide upon the "truth" of the higher level 

assertion. Again, a linear system structure is likely to be used here since the point at 

which feedback is initiated is at the low level comparison, after a sequence of 

transformations of the represented synthetic utterance. Analysis-by-Synthesis can also 

be applied in subsystems where the rules are available in a powerful but generative form, 

and the size of the search for the correct representation to synthesize is not excessively 

large.   [Kla75] 

The Hearsay system paradigm of Hypothesize and Test [Red73] is similar to, but 

more general than, Analysis-by-Synthesis. The test need not be a comparison of two 

structures at the same level. In fact, the test will most often be constructed to compare 

only those parts of the rep-esentation which may feasibly differ in a teleological sense (in 

the sense that they might lead to different results at the higher levels). Flow of control 

among the levels is much less constrained, and consequently the interactions are more 

complex, 

Various parts of speech understanding systems may be treated as heuristic searches 

in   the   sense   that   a   universe   of   feasible  solutions   (interpretations   for   the   input 
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representation to the subsystem) is being searched by application of specialized rules 

dependent upon the current point in the universe being investigated. Knowledge sources 

that allow representations at one level to be recognized only as legal representations at 

another higher level are the operators that traverse the universe of solutions. Heuristics 

for applying the operators may be explicit in some scoring mechanism or implicit in the 

knowledge sources. (E.g., when a key syntactic element is discovered, it is reasonable to 

generate the surrounding modifiers or function words.) 

Dynamic programming techniques have been successfully applied to simple, powerful 

systems for word or short phrase recognition. [Ita75, Fu68, Ich73, Whi75] Usually a single 

source of knowledge -- an acoustic das ifying scheme -- is used within the dynamic 

programming algorithm to find the best fit among a number of stored templates. The 

dynamic program provides the ability tc adJL-l nme durations of the various segments to ■ 

limited degree without explicitly segmenting. This is a very powerful technique for short 

utterances from a limited set and may be used as a component within a speech 

understanding system. 

Baker [BakJK75b] presents the Hidden Markov process as a model for recognition at 

each of a number of levels, implemented as a dynamic progran. Flow of control in his 

system is handled by the probabilistic model itself. An underlying representation of each 

level is hypothesized as a Markov sequence which best fits the observed representation. 

At each level, blements of the lower level representation may stand for realizations of 

elements of the representation in view. These latter are connected in a standard Markov 

chain. The probability of a realization is a combination of the underlying (higher level) 

chain's probability and the individual realization probabilities. The translation Oi the 

underlying sequence to that of a higher level is much simpler since it is more highly 

constrained than the observed representation. 

Our purposes in briefly discussing these models of system interaction are twofold. 

First, one can see that, inherent in all the systems thus far developed, there is the action 

of translating a piece of one level's data structure into that of another.   At the acoustic 
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level, this almost always means some form of classification of a short interval of the 

acoustic representation into one of a number of phone-like classes. Measuring the 

performance of such an action for the different acoustic representation schemes wi'l, 

therefore, provide information relevant to the performance of the vast majority of speech 

understanding systems. The second purpose is to point out the feasibility of using models 

of performance of knowledge sources in an analysis of the entire system's performince. 

Although the control paradigms affect the order of applying the different knowledge 

sources and the amounts of effort wasted on false paths or bad hypotheses, the 

progression of the correct representation through the levels is universal. Some piece of 

the input signal will have oeen transformed by a sequence of classifications into either a 

phonetic sequence, a word, or a phrase element. In continuous speech systems, further 

transformations will have eventually carried these elements to l single semantic or task 

related construct. While the entire system analysis may require simulation, if no analytic 

model is available, the individual knowledge sources are separable and their effects on 

system performance are separable. 

1.2.3 Human Performance 

A great deal has been written about all aspects of human perception of speech, and 

we cannot even survey what is known or postulated about the structure and interactions 

of knowledge within the human speech understanding system. However, the existence of 

hurran speech perception under all manner of difficulties and limitations does point to 

ways •>{ analyzing individual knowledge sources for their role in the total picture. 

Experiments in perception of words under noisy conditions have quantified to some 

extent the role of semantic support in disambiguating errorful inputs. [Bru56] In ■ like 

manner, errors in perception are correlated with ungrammaticality to measure the role of 

syntax. An experiment involving unfamiliar languages [Sho74a] has shown some 

interesting results as far as the accuracy of humar phonetic recognition is concerned. In 

this last, expert phoneticians are presented with utterances in a number of languages 

whose words, syntax, and phonology are totally unfamiliar (Turkish, Cantonese, Swedish, 

•   ■■ «c- 
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etc.). They are asked to produce as accurate a phonetic transcription as possible from 

listening to the recorded utterances or from observing graphical displays such as sound 

spectrograms or Cbcillograms. Very briefly, using auditory input the subjects achieved 

about 507. recognition at the phonetic level, with a chuoice of about 50 phone-like labels. 

With oscillogram or spectrogram input only, accuracy was about 251 The results indicate 

that the acoustic knowledge source in human perception is not much better than the best 

machine procedures currently available. The human perceiver is much more adaptable and 

more robust over a wide range of conditions than the machine at this level. But it seem$ 

entirely likely that present techniques could, under favorable conditions, perform the 

foreign language experiment as well as the human subjects. 

There is disagreement on whether higher level knowledge or low level recognition 

tecnniques are the bottleneck at this point. It is our opinion that there is much more to 

gained from improvements to higher level knowledge sources. This does not stop us from 

continuing to improve the acoustic level procedures t/aiiable, until they are as good or 

better than hi man ability, but it does point out the need for a clear understanding of their 

performance characteristics. With such an understanding, system design efforts may be 

best directed, and the results of improved higher levels will he recognized. 

1.2.4 Summary 

We have presented a picture of speech understanding systems as collections of 

separable sources of knowledge, with representations of the speech signal occuring at a 

variety of levels. The manner of interaction among these knowledge sources is of varying 

importance in analyzing their performance. Our view is that the acoustic level processes 

are particularly easy to separate. 
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1.3 Acoustic Level 

This section will discuss the role that acoustic knowledge can play in a speech 

understanding system and the types of decisions that can be supported by it. The 

parametric representation of the utterance to be understood may be considered as the 

raw input of the system. Mos* higher level knowledge is not expressed in terms of this 

representation. For this reason as well as the quantity of data tha is input, some serious 

reduction of the amount of data and some translation into another 'epresentation nre the 

primary requir ments of this level. In addition, the system needs a reasonably powerful 

way to begin its search for a solu! on. In some situations, semantics or syntax may be 

able to provide such a handle, but often one must rely upon the acoustic input to make an 

initial hypothesis from which the rest of the system may proceed. These three actions — 

data redaction, translation, and hypothesis generation are the most common uses for 

acoustic level analysis in speech understanding systems. 

The two types of processing that are typically applied are segmentation of the 

utterance into quasi-phonetic segments and labeling of those segments with information 

mterpretable by higher levels -- usually indentifying phone-like sound». Although the 

production of an actual phonetic transcription might involve a number cf sources of 

knowledge concerned with coarticulation, phonetics, prosodies, etc., an initial translation 

inic e sequence of acoustically separate segments and their classification into types of 

speech sounds can provide a reasonable first approximation at a transcription. [GolH7fl] It 

is our contention that a simple segmentation anrl labeling scheme can be used in this 

comparison study. That is not to s»y that the limits of acoustic knowieoge sources are 

such simple schemes, but rather that these two basic processes are elementary processes 

that more complex algorithms will depend upon. It is also an assertion that the primary 

role of acoustic level analysis is satisfied by these two processes. The following brief 

discussions should give a better id^a of both the kind of processing to be done with 

parametric representations of speech and the roles that the result«: of such processing 

play in th«. whole system. ' 

—I»—">-~—' -—.-- 
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1.3.1 $egm»ntation 

The segmentation process is conceptually simple -- to find the boundaries in time 

between the different sounds that make up an utterance. The difficulty seems ':o lie in 

defining what is meant by "different sounds". In a phonetic or phonemic segmentation, 

some segments are essentially steady state in their acoustic characteristics, others are 

continuously varying or transitionary in nature, and some are composites of two or three 

sounds of either type. An acoustic segmentation, on the other hand, separates the input 

into portions within which the acoustic character is consistent. Transitionary sounds will 

still present a problem, For example (see figure 1.2), the sound /I/ displays a time varying 

resonant structure, as does the initial portion of a vowel following a /g/ or the middle 

portion of a diphthong. Yet only in the first case would everyone agree that a separate 

sound must be identified anJ set apart from its neighbors. Clearly, the fineness of 

resolution to which one requires segmentation be done depends upon the final uses one 

has for a machine transcription of the utterance. If differentiation of words is done by 

crude identification of consonants and careful analysis of fhf most stressed vowel, for 

example, then segmentation should be biased toward» identifying the long steady state 

portions as single segments, even at the cost of losing some consonant segments. If 

consonants are identified by their coarticulative effects upon neighboring phones, 

transitionar/ portions become very crucial and must be located. In general, the commonly 

accepted phonemes of English (or whatever language is being spoken) give an idea of the 

degree of resolution needed for most analyses. If the segmenter can separate those 

portions of the signal most likely to be associated with the phonemes that make up the 

utterance, then small variations in how diphthongs, plosives, etc. are treated are not 

critical. If the speech understanding system relies upon a set of labels for sounds that «re 

considerably different fron the phonemes, the segmentation must be able to separate 

■mmm*»r~-~*- 
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Figure 1.2: Some Time-Varying Segments 

1.3.2 Libeling 

The labeling process is the central pattern recognition process at the acoustic level. 

The parametric representation of an input segment of speech is labeled with an indicator 

of the information it is deemed to be carrying. Until some such labeling is accomplished, 

the sequence of segments may be any sequence at all. Thus 10 segments, each of which 

may be any of 30 types of speech sound, represent 30l0 possible transcriptions of the 

input. The labeling process, by reducing the 30 choices to, say, 3, can reduce the search 

by a factor of ID10. This possibility of reducing the exponential search size la due to the 

fact that the acoustic labeling and segmenting are applied first, when little else is Known 

about the utterance, and that the vast majority of representations at this level are illegal 

at higher levels and would never have been produced by the speaker In the first place. 

t One segmentation process in Hearsay I picks out voiced, fricated, and silent segments 
only.  A later process may subdivide these segments upon more detailed analysis. 
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The isoue of what are the label', that are to be placed upon the input utterance is 

an issue involving the design of a m mber of levels. Whether labels are to be considered 

as distinct classes or as regions in a continuous space of labeling information is central to 

the choice of whether to recognize phonetic features or phone-like gestures. 

Segmentation may be accomplished by labeling at regular short intervals and then marking 

boundaries at maximal changes in the labels. !n such a situation, the label set must reflect 

such a goal. The dynamic programming model that is used as a word recognition system 

by Itakura and others labels an entire short utterance as a word. The primitive operation 

in that case is a pattern recognition measure which determines how close a fit a short 

interval in the input word makes with the stored template. Even in such a system, where 

there is no actual phone-like labeling being done, the primitive action of comparing two 

patterns for likely identity is basic. Chapter 2 will discuss the pattern classification model 

aiVd a number of methods for solving simple recognition problems within that general 

model. 

1.3.3 Data Reduction 

A typical digitized signal contains at least 10K samples per second, where each 

sample should be at least 9 bits, probably more.1" The parameters extracted from the 

signal may reduce this data rate considerably. Spectrograms offer no reduction per se, 

although the locations and amplitudes of spectral peaks (formant tracking) represent 

approximately an order of magnitude saving. Typical analog filter banks, digitized every 

10ms., offer the same order of magnitude reduction. However one is still faced with 

perhaps 10K bits per second, and only the most straightforward analysis can keep up with 

such a data rate. Thus, an important role of the acoustic analysis level is the reduction of 

the input data rate to an amount manageable by the hgher levels, where interactions, 

backtracking, and more complex analysis will preclude large, redundant data 

representations.   Merely labeling each 10ms. interval with one of a set of about 50 labels 

t In fact, 16-bit accuracy or a floating point scheme is needed. In dealing with 9-bit data, 
our experience has been that not enough dynamic range is available. Either stressed 
vowels are clipped, or unstressed nasals lack any waveform structure. 
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reduces the rate to 600 bits/second. Further reduction is available by forming segments 

with one labei tor a longer duration of signal (typically from 10 to 200m8., usually 50 to 

100ms.). However, this latter saving may be spent on multiple labels, rating sche-.ies, and 

certa.n special parameters, such as overall amplituus, which may be useful to other 

Knowledge sources. The data in its ntw form is not only more compact, but also much less 

redundant. 

1.3.4 Translation 

It has often been pointed out that a problem in applying much of the codified 

knowledge about speei h is that it exists in terms of generative rather than analytic rules. 

However, another serious problem in applying such knowledge is that the rules are written 

in terms of very different primitives. For example, syntax is often understood in terms of 

lexemes -- words or endings of words; coarticulation rules are in terms of phones or other 

perceptual features. The difficulty is that making a clear and universal correlation 

between such elements and another representation, such as the acoustic parameters, is 

not possible. (That is what speech recognition is all about.) Clearly, some initial translation 

must be made from the acoustic parameters to some other representation better suited to 

application of these rules. Most system designers have chosen the new representation to 

be some form of phonetic label1" although this need not be the case. The new 

representation may consist of entirely heuristic elements, pseudo-phonemes, or even, as in 

some word recognition systems [Ich73, Ita75] entire words. The latter case is one where 

no other knowledge is applied to the utterance except the acoustic matching In the context 

of a dynamically adjusted time scale. The point to be made is that the role of acoustic 

level translation is determined by she data structures of the other sources of knowledge. 

t The term "phonetic" carries implications of more human perception orientation than is 
usually available. Indeed, one could argue that machine labels merely represent classes of 
sounds with certain acoustic characteristics. They are no more phonetic or phonemic in 
nature that any other soundr However, it is usually the goal in defining these classes to 
pick sounds whose acoustic characteristics correlate highly with phonetic or even 
phonemic information. In this sense, machine labels can carry both acoustic and phonetic 
nformation. 

———w-t»».'«»-»—^i 
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Most systems have adopted a phonetic data representation at sorm» level. Even if a 

system has no such representation, translation still occurs in some form, from the 

parametric representation to some other representation. 

1.3 5 Hypothesis Creation 

In a system which attempts to develop a partial representation of the utterance at 

higher levels, the key to successful recognition is often the ability to create a "handle" 

early in the process. Figure 1.3 shows an example of hypotheses created in Hearsay II. 

Some phoneme, word, or phrase is recognized with high confidence, and the search spaces 

of a number of different levels are significantly reduced. In addition, many rules of both 

generative and analytic nature deal with elements in some limited context, so that 

inference can only be made when some such context is available. It is, therefore, an 

irrpcrtant role of the acoustic knowledge sources to provide initial hypotheses about the 

utterance from which inferences may be carried forward, verified, cr altered. Some 

system structures, such as Analysis-by-Synthesis, do not proceed in this fashion. Rather, 

the entire utterance is generated or stored as a template and I complete test is made. 

Most implementations of such methods are restricted to particular levels with more flexible 

overall control of the system; then the results of such tests are used on only limited 

portions of the utterance. It is generally accepted that systems (in order to be robust In 

the presence of errors) will require the ability to create hypothetical recognitions and to 

alter them as new information is discovered. Therefore, the acoustic level results will 

have to be viewecJ as an important source of such initial hypotheses or at least as the first 

source of verification decisions. Issues such as: how confident one can be in a particular 

piece of the result, how often a really solid handle is found, and how errors will affect the 

usefulness of the results as hypotheses for the rest of the system, become important to 

the analysis of performance and the prediction of merit to a working system of an «coustic 

level recognition scheme. 
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1.3.6 Summary 

We have seen the two processes of Segmentation and Labeling and their roles in 

data reduciion, translation, and hypothesis creation. Any knowledge source which 

provide, »hese functions from acoustic to higher level representations is a satisfactory 

candidate for use in a speech understanding system. 

1.4 Parametric Representations 

The parametric representation of the acoustic signal is the basic Input to the entire 

system.   The choice of a good method for representing the utterance at this level has 

been the subject of a great deal of research, conjecture, and rationalizing.   Even though 

very little .nvestigation of the choice itself has been done (see Ichikawa for an example 

[Ich73]), a number of parameterizations have been developed from theoretical models of 

the vocal tract, from experience with human perception, or from experience with heuristics 

found to be effective for machine recognition of speech.   An extensive survey of all the 

representations for speech would be beyond the scope of this dissertation, both because 

of the numbsr of different methods (some only slightly different from others) and because 

only certain representations appear to be useful for recognit.on.   Reasonably current and 

complete surveys are available. [SchRW75] This section is intended to be more a sketch of 

the range of possible parameterizations, and ? statement of the significant approaches that 

have been taken to the problem of designing a representation, than a survey of the field. 

1.4.1 Properties 

The parametric representation should have certain properties in order to be useful 

to a speech understanding system. There is a clear trade-off among cost, either of 

implementation in hardware or of digital computation on a general purpose machine, and 

flexibility and small data rate. However, somewhere between representations that are 

very simple to extract (such as the digitized version of the signal) and representations 
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that are very flexible and parsimonious (an extreme example being a sub-phonemic 

transcription), is the parametnzation best suited to each system and its resources. In 

addition to properties relating to cost, size of representation, and flexibility, the 

representation should be robust in the sense of causing the least fatal errors possible. 

This is a teleologica! property, since the seriousness of errors is only determined after the 

entire system is applied to the acoustic parameters. A major result of this research Is 

intended to be a better idea of the relationship of phonetic information and the various 

parametric representations under investigation. In one sense, much of this question 

reduces to understanding what regions of the space of representations of short speech 

segments correlate well with useful information in the utterance, and what regions are 

liKely to cause confusions because of their "nearness" in the rpace to very different 

information elements' patterns. In short, one hopes to find a representation which 

preserves the acoustic correlates of higher level information, is robust in those 

correlations, reduces redundant ;nformation in the signal, and is reasonably simple to 

extract from the raw signal. These may not all be possible at one time, or to the degree 

desired, but they should be considered in selecting a parametric representation. 

1.4.2 Simple Parameters 

Given the digitized version of an analog signal as input, there are a number of 

simple yet powerful measurements which can be made on the signal. Within a short time 

interval where the signal is assumed stationary, the peak to peak amplitude, the positive 

and negative peak amplitudes, the period between major peaks, and the number of zero 

crossings in both or either direction may all be extracted. The pitch period, energy, 

voiced-unvoiced feature, and the amount of high frequency micro-structure on the 

waveform may all be estimated with these parameters. In particular, Baker [BakJM75] 

shows that a single event, the zero-up-crossing, when parametrized by the period 

between events and the peak amplitudes in that period gives very good information for 

t The usual length of this interval is from 6ms. to 15ms. Clearly the longer the interval, 
the great the information reduction. Most speech gestures take longer than lOmt. to 
complete. Only vary short burst phenomena might be lost. 

—   -.    » .   - 
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segmenting and identifying stop consonants. With other measures, such as a sine-fit to 

measure micro-structure on the waveform, the parameters can support a general phonetic 

segmentation and labeung scheme. Reddy [Red68] showed that simple measurements made 

upon the signal and its high frequency component separately, could alone support a 

reasonable acoustic segmentation. Finally, even simpler measures can give useful 

information. Schäfer and Rabmer point out the usefulness of the deltas in adaptive delta 

modulation schemes for detecting silence-speech boundaries.   [SchRW75] 

1.4.3 Spectral Analysis 

A great deal of phonetic information is known to be encoded in the various 

frequency components of the speech signal. One often wants to separate the components 

of the signal according to their information content. This usually means, for speech, a 

transformation into the frequency domain, or rcme separation of the various frequency 

components of the waveform. 

1.4.3.1 Filter Arrays 

The simple measurements mentioned above may be coupled with pre-processing by 

analog or digital filter arrays to produce a number of signals in parallel. Besides 

straightforward signal enhancement by bandpass filtering to reduce AC line noise, 

digitization aliasing, etc., there is bandpass filtering for the purpose of isolating separate 

information-bearing elements of the acoustic signal. The number and bandwidth of these 

filters is the subject of much discussion. How well do they correspond to the formants? 

How costly is the array of filters to build and to digitize (in money and processing time)? 

The Hearsay I system uses five bandpass filters of one octave width from 200 to 6400Hr 

and peak to peak amplitude and zero crossing counts on each band and the unfiltered 

sijnal. (see figure 1.4) These 12 parameters are extracted every lOms. and used in a 

simple pattern classification scheme for the basic acoustic level knowledge source. We are 

presently experimenting with a set of 25 narrow bandpass filters which span the range of 

63 to 16KHz. with ten filters per decade, (figure 1.5) Many other researchers have used 

^ V 'M*' ■ •—   "• "■ -—.—- '■    — -   - 
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Figure 1.4: ZCC Parametric Representation 
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Figure 1.5: ASA Parametric Representation 
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arrays of filters in similar fashion to estimate a spectral analysis of the signal. These two 

sets of filters are fairly representative of the types and numbers of such filter arrays in 

current use. 

1.4.3.2 Transforms 

In addition to arrays of filters, whether analog or digital, the techniques of the Fast 

Fourier Transform may be used to calculate the frequency domain transform of a digitized 

speech signal quite efficiently. [Coc67] Schäfer and Rabiner [SchRW75] give typical results 

of FFTs of speech, and discuss the various parameters of the algorithm, length of window, 

shape of windowing function, if any, the kind of frequency resolution obtainable, ttc. The 

short time spectrum may be used to detect pitch fairly well since peaks appear In the 

spectrogram at harmonics of the fundamental pitch frequency.   Other methods for pitrh 

detection are also derived from the spectrum, such as the harmonic product spectrum. 

[SchRW75] A related method of analysis is sometimes called homomorphic filtering.   The 

problem  is   to  separate  two signals which  have  been  combined by  multiplication  and 

convolution.    In speech processing, the central assumption is that the signal is such a 

combination of the excitation source and the vocal tract impulse response characteristics. 

Without going into details [0ppb8] the log of the magnitude of the Fourier transform is the 

sum of the logs of the two contributors.   The inverse transform, being a linear operation, 

preserves the additive combination in the result, known as the cepstrum.   Because of this, 

the pitch signal, the excitation source, may be separated out and analyzed.   The vocal tract 

impulse response may also be analyzed separately.   This is accomplished by multiplying 

the cepstrum by a "cepstrum window" that only passes short-time components. 

1.4.4 Linear Prediction 

A number of formulations of a method based upon the prediction of a sample as a 

linear sjm of the previous samples have been recently developed and fall under the term 

Linear Prediction or Linear Predictive Coding (LPC). These formulations, all introduced to 

the acoustic literature since 1966, represent a new application of a method in use by 
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statisticians and economists for a number of decades. However, the recent extensive work 

in this direction has served to demonstrate the usefulness of Linear Prediction to the 

analysis of speech -- particularly formant estimation — and to provide the speech 

community with a number of algorithmic methods and the body of theory to support their 

use. As Schäfer and Rabiner point out, the method is extremely powerful for the accuracy 

»f the estimated speech parameters it provjes as well as for the speed of computation 

possible. 

1.4.4.1 Basic Method 

The basic idea is that, within a short time interval (usually from 5 to 50 ms.) which is 

assumed stationary, the samples of the digitized signal may be expressed as a linear 

combination of the p preceding samples. The squared error is minimized and the least 

squared optimal coefficients for this prediction are found by solution of a system of linear 

equations. 
* 

Two formulations, which deal with slightly different treatments of the interval 

boundaries, are known as the Covariance [Ata71] and the Autocorrelation [Mar72, Ita68] 

methods. The Covariance method goes outside the interval for the p samples needed to 

predict the first through pth samples, while the Autocorrelation method assumes zero 

outside the interval In the latter case, the interval must be windowed by a function that 

goes to zero smoothly at the boundaries to avoid introducing the characteristics of a step 

function. While the system of equations for the Covariance method is harder to solved 

Atal has shown that it requires fewer samples to achieve similar accuracy. The saving in 

terms of the cost of calculating over fewer samples may be significant. Neither method 

seems clearly superior to the other. Beside the original papers, an extensive comparieon 

of these methods is available [M2k72] as well as shorter discussions. [SchRW75] 

t The covariance system is solvable by Cholesky decomposition, for example, with 
approximately p3 operations, while the form of the autocorrelation system is known as a 
Toeplitz matrix and may be solved by Levinsons method in p2 operations. 
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1.4.4.2 Parameters 

The e are a number of types of parameters derivable from the Linear Prsdiction 

model. They all rely upon the same assumptions; sfationarity over the interval, boundary 

and window choices, and size, p, of the prediction equation. However, they represent very 

different kinds of information about the speech signal. 

The resjlts of solving the linear equations are p parameters which are the 

coefficients of the predictor, or, as sometimes formulated, the coefficients of ar inverse 

filter which can reduce the signal to noise. Itakura further processes them to t-emove any 

correlation between the ith parameter and the remaining p-i parameters. These are called 

the Part;i! Correlation Coefficients (Parcor) and have been shown to be an efficient 

representation for analysis and re-synthesis of speech. [Ita70, Ita68] 

In actual use for speech recognition, these parameters seem to be deficient or, at 

best, not robust enough for simple classification algorithms. Ichikawa et.aL [Ich73] point 

out that the parcor parameters must be smoothed to achieve a reasonable recognition 

performance, and they still are inferior to the spectrum envelope. However, Itakura 

[Ita75] has developed a decision procedure from the probabilistic model of the signal used 

in his LPC derivations, and has shown that the predictor coefficients can be used 

effectivel1, for recognition of speech. 

By far, the most popular use of linear prediction is in producing estimates of the 

short-time spectrum envelope. The Fourier transform (using a pruned FFT) of the linear 

predictor impulse response, just the coefficients themselves, results in a smoothed 

spectrum envelope of the vocal tract response with the effects of the excitation source 

removed, (see figure 1.6) It is, in fact, very similar to the results of cepstrum windowing. 

These spectral estimates are quite accurate in locating the peak frequencies (a good guess 

at the formants). These locations in frequency can be derived directly from the solution of 

the filter transfer function, but the FFT is so fast, especially pruned for only p non-rero 

•w >■»    ■.«. 
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Figure 1.6: SPG Parameters for a 20ms. Window 

inputs, that this is only useful when formant bandwidths are also desired. Fant [Fan74] 

has indicated that reasonable estimates of the formant amplitudes can be derived simply 

from their frequencies. Hence, the frequencies themselves seem to be more major 

information bearing parameters than amplitudes or bandwidths. 

1.4.5 Summary 

There is a vast range of possible parametric representations, many derived from 

basic methods of extracting information from the signal. It is not possible to survey the 

entire field, but we have discussed the methods in common use at the present time. Figure 

1.7 summarizes some aspects of the four parametric representations we have chosen. 

t Accurate estimates of the formant bandwidths are available from the Covanance method 
coefficients [Ata71]. 
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Param. # Interval Uindcw Approx. 
blt-rate 

# Interval 
si ze 

128 10ms. 
15 10mß. 
26 IBms. 
12 10m3. 

SPG              128              10ms.              20m3.   Hamming 80K 
ACS                15              10mß.              20m5.   Hamming 49K 
ASA               2B             IBms.             10m8.   square 15K 
ZCC                12              10m3.              10mB.   square 10K 

Figure 1.7: Four Parametric Representations 

1.5 Problem 

The mam problem to which this research is directed 's the comparison «nd 

evaluation of parametric representations for speech and their effects upon the 

performance of speech recognition schemes at the acoustic level. Enough background has 

been presented now to discuss limitations upon the problem, dimensions of the 

investigation, and goals of the research. The task implied under the broad statement 

above is beyond the scope of this dissertation, and is, in view of the lack of clearer models 

of the entire speech understanding process, beyond the state of the art of performance 

analysis. Thus, the primary message of this section is how we may limit the analysis so 

that the results will be meaningful, useful, and extendable to specific system analyses. 

1.5.1 Limitations 

The first and foremost limitation ie to consider only the acoustic level, and at that 

level, to consider only sources of knowledge that do segmentation and labeling of the input 

utterance into an acoustic-phonetic transcription. It is reasonable to make these 

restrictions. The acoustic parameters are primarily input to this level only, although, 

occasionally, knowledge about such aspects as prosodies will be employed by higher 

levels. So the main effect of the parametric representation is felt through its effect on the 

segmentation and labeling processes. Therefore, this effect can be understood to a large 

degree if the interface between these processes and the rest of the system Is understood. 

That interface is best characterized as a machine transcription. 

Second, the acoustic level processes will be measured as a separate sub-system, 

• —■ •«* -^••->-»». p» i^. 
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w.th the interface strictly viewed as a transcription of the utterance with boundaries 

marked in time and some encodmg of the .dentity of each segment. In this w.y. th. 

interface is more clearly understood and available to analysis. A performance model can 

be constructed that produces such transcriptions if the two process of segmenting ..d 

labeling are able to be modeled individually. 

By way of describing the general aspects of the experimental set-up. the following 

are relevant dimenstons from the speech understanding system goals in th. Study Group 

report [New71]: 
■ 

1) Continuous  speech  is to be  used.   The  articuletory  targets, and 

hence,   the   resultant   acoustic   patterns,  are   much   less   well   achieved  in 

continuous   speech    than   in   isolated   words.     The   labeling   errors    are 

considerably different therefore, and segmentation become- harder as well. 

2 -- 5) Cooperative speakers will be used, recording over a high 

quality microphone in a quiet room. The relaxing of these restrictions may 

provoke errors, but it is likely that these errors will be predictable in nature 

- a general degradation Cue to many speakers, fricative confusions due to 

loss of high frequency information, etc. 

6 -- 7) Tuning of the acoustics level knowledge will be in the form of 

pre-testlng training data. The training will be over each speaker«, utterance«, 

although not the same utterances as used for test.ng, and thus will be tuned 

to his voice. 

8) The vocabulary will be chosen to include a wide range of contexts 

for all the commonly occuring allophones of American English phonemet. 

[Sho74b3 

1.5.2 Performance Dimens 9ns 

There ar« essentially three dimensions to the investigation of the performance of 

acoustic representations. The first, obviously is the choice of the reou station it.elf. 

Here, the major task in defining the research is to isolate repr.sentetK    method, from 
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among the many possibilities. Although the possible combinations of filter arrays, 

waveform measurements, spectra, etc., i re numerous, the representations that ^ eopla have 

chosen thus far seem to fall into a few general types. It is our intentron to represent 

those types according to currently available techniques. If someone invents a new 

representation for speech, this research will be available to help place the new 

representation into the total picture. The gencal types of parameters are: simple 

measurements on arrays of filters to obtain rough spectral information or to separate 

different information bearing parts of the signal, LPC parameters of various kinds to 

parametrize a model of the waveform either acoustically or probabilistically, and spectral 

envelope estimates that seek io characterize the vocal tract response separately from the 

excitation source. 

Estimating short-time spectra by the output of an array of bandpass filters '« 

represented by the Zero-Crossing count (ZCC) parameters used in Hearsay I [Erm74b] and 

the Audio Spectrum Analyzer (ASA) [Kri75]. The former consists of five broad bandpass 

filters with both peak-to-peak amplitudes and zero-crossing counts to Increase the ability 

to estimate frequency information. The latter consists of 25 narrow bandpass filters 

whose output energy is measured. The LPC method developed by Merkel [^■''72] (the 

autocorrelation method) is used to provide inverse filter coefficients and an estimate of 

the spectral envelope (SPG) by ^se if an FFT algorithm. Itakura's log ratio measure 

[Ita75] will be used in conjunction with the autocoerrelation sequence (ACS), although this 

representation will not be used with other classification metrics. 

The second dimension concerns the particular algorithms used to perform the tasks 

of labeling and segmentation. These will be based primarily upon the pattern c'assiflcatlon 

concept of a pattern space distance metric. Some traditional metrics employ first or 

second  momer.t  statistical estimates of sample populations of  patterns.    Two specially 

t We realize that, no matter which parametrizations are chosen, someone will be sure to 
point out, "...yes, but if you use this, different measurement, you can disambiguate t/io«« 
phonetic classes..." The answer to such comments is usually a question, "At what cost» and 
with what new errors introduced?" 
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designed metrics will also be used. 

The third dimension can be chat a^s"^! by the issue of cost. It involves cost of 

implementation, memory and processor requirements, and the effect of these demands 

upon total system speed and size (tht real-time question). As these issues are much 

better understood, especially at this level where straightforward, uniform procedures ere 

usually employed, no attempt will be made to span this dimension with empirical results. 

1.5.3 Goals 
. 

Necessarily, the goals of this research are limited to understanding the effects of 

parametric representations on acoustic level performance. Central to that understanding 

are two issues which may be taken as goals. 

1) The answers to designer-voiced questions should be available. They 

are usually of the form, "How much can I get for a certain amount of resource 

expended?" or "Will I be satisfied (i.e., will the system I am planning be able to 

use the acoustic level information)?" 

2) A methodology for testing and comparing these representations 

should be available. New representations can, thus, be viewed in perspective. 

Advances in the state of the art will be recognized and effort can be directed 

more usefully, This requires a set of algorithms for parametric level 

processing that are relatively independent of the choice of parametric 

representation. 

1.5.4 Summary 

In this section, we have attempted to define a region of the space of possible 

performance experiments at the lowest level of speech recognition. The entire chapter 

was aimed at fixing a point of view and a set of basic assumptions about speech 

understanding systems, the parametric level of analysis, and performance evaluation goals. 

t BaKor's log probability estimate and Itakura's log probability ratio 
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In that point of view, parametric analysis is the basic input for the lowest level of 

recognition activity. That activity is primarily performed by segmenting and labeling 

processes, which produce more manage ble data for higher level knowledge sources. 

When those knowledge sources use knowledge from such high levels as semantics or 

pragmatics, ^e may truly call the system a speech understanding system. By carefully 

evaluating the performance of the low level recognition processes, we may provide a firm 

base for total system peformance analysis. We have limited this research to a number of 

the most commonly accepted methods for parametrizing the acoustic signal, and for doing 

segmentation and labeling. The results and methodology thus provided will further our 

understanding of many of the issues of speech recognition activity at the parametric level. 

''—■'» ■— — •: 



Chapter 2 

Pattern Classification Techniques 

This chapter consists of a short survey of pattern classification and commonly 

accepted techniques. (For further details see [Dud73, NagöS, Mei72, Fu68p In chapter 3, 

we will discuss the ideas from pattern classification theory chosen for this research, the 

issues surrounding a choice of classes, and considerations for training and testing data 

corpi. 

2.1 Basic Model 

Most pattern classification problems are concerned with classifying input patlerna 

into one of a finite number of classes. One approach to pattern classification is to keep a 

representative of each class, and to match the input for some "closeness" measure with 

each. This has many shortcomings, not the least being the lack of a way of defining a 

good template for the various occurrences of speech phenomena under different 

conditions . A more general model, for which template matching Is a special case, is 

usually presented. A series of measurements are made on the pattern, either in its 

original physical form, or from some representation of it. These measurements should be 

chosen tor their invariance under the kinds of informationless perturbations expected and 

for their dependence upon the classes sought (information content). 

Assuming a reasonable set of m features is chosen, their values represent a pattern 

vector in an m-dimensional feature space. The problem is then to provide a partitioning of 

that space. (If continuous valued classifications are required, a mapping into the class 

space is needed.) 

A number of different techniques are available for drawing these partitions.   Some, 

t -- The approach has been used for word identification in the Vicena system at a higher 
level [Vic69]. First the word is segmented and the segments are classified, then the 
duration-normalized sequence of labels is matched with stored templates for each word in 
the lexicon. 

■ 
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by nature of their returning a decision value related to an estimate of the confidence or 

closeness of class identity, can be used to provide continuous classification. Often, 

however, these values have little meaning outside of their application in partitioning. One 

usually assumes a single class identity or an ordered subset of the classes (perhaps with 

estimates of goodness) is to be returned by the classifier. 

Various aspects of the acquisition and refinement of these partitionings are of 

importance. We will discuss the size of sample and test sets of identified patterns and 

their relevance to the expected results of a method developed with such sets. Algorithms 

for automatic learning are also available. In these, a teacher is sometimes postulated who 

can provide feedback to re-adjust the partitioning rules in light of errors committed. 

Often the set of classes is not known, and unlabeled samples may be partitioned by 

optimizing various measures of clustering or separability. 

By way of example, a simple pattern recognition scheme might work thus: 

Collect, properly segment and label a set of sample patterns 

(training set) 

Average the feature measurements fo.' each class. 

For another set of labeled samples (t^t* set) compute the 

Euclidean distance to each class avera^? from the Input 

features and assign the closest class as the input identity. 

If the classification is wrong, adjust the correct class's average 

towards the new input by 1/n of the distance (where n is 

the number of training samples in that class). Also adjust 

the other classes which were closer than the correct one 

away by a similar fraction. 

Obviously, a great many issues are untouched or oversimplified by this example. 

But it does serve to point out a typical approach. We can easily show that the decision 

boundaries thus drawn ai e linear.  It has been shown that under certain conditions [Nag66, 
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Nag68]   the   adjustment   described   here   converges.    With   some   pre-processing   for 

normalization, this method can provide good results for well clustered classes. 

2.2 Stochastic Patterns 

Implicit in almost every investigation of Pattern Recognition is the assumption that 

non-deterministic (stochastic) processes are at work, adding noise and otherwise 

transforming the original patterns. Let us model this process by asserting that each class 

corresponds to a multivariate probability distribution in the feature space. If the set of 

classes corresponds exactly with the information intended to be conveyed by the patterns, 

this will be a good model. If not, there will be in the observed distributions effects of 

other sub-class distributions or of correlation between the classes (in effect, clustering 

of the clusters) . However, we may take this model as a first approximation for speech, 

although we must investigate the distributions carefully. 

For the following development, let: 

Pj be the a oriori probability of an occurence of a pattern in the 

ith class. 

fj be the probability density function for the ith class 

x be the unknown pattern vector. 

then: 
fj(x)-Pr{x|class ij 

Pi*fi(x)-Pr{x,class i) 

Bayes rule states that the largest expm-ted rate of correct classification is attained by 

classifying x  in class i if Pr{x,i}iPr{x,j) for all \t\.   Furthermore, we may define a loss 

function L(u,v) as the cost of classifying an input in class u when it should be v.   Then the 

expected Loss, or Risk, of a classifying rule C(x) is: 

t —Multimodality of the cluster for a diphthong, or for vowels in different contexts 

* —The broad classifications of vowel, nasal, fricative, etc. are much easier to effect than 
more specific phonetic classes. 
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If we wish to minimize this then we must clearly minimize: 

c-l 

where x is classified in class c. 

Until more is Known about the relationship between a particular speech 

understanding system and the classifier it uses, we would assume the first case above 

which corresponds to a loss of 0 for correct and 1 for incorrect classification. The 

successful application of Bayes' rule rests upon the availability of the underlying 

probability distributions. However, they may be estimated parametricaily If their forms are 

known, or approximated by a number of techniques. 

2.3 Overview 

The methods for estimation of distributions, learning of parameters, and decision 

boundary drawing may be placed into a few group that will serve to clarify their 

relationship to the basic model and to optimality as represented above. 

If the forms of the distributions are available, we may seek to estimate them 

parametricaily by taking relevant statistics of the samples.   For instance, if we have good 



Pattern Classification Techniques 36 

reason to believe that the features are independent variables and the clusters have 

Normal distributions, the variances and means of the features will yield an optimal rule. 

Normalize by the variances and decide upon the distance to the mean in the normalized 

space.   These are essentially spherical clusters. 

Where forms are not known, a number of methods are still available. The method of 

Potential Functions [Ais64] forms the sum of a number of peak-like functions * each placed 

at a particular sample point in the class cluster. The amount of spread of each peak 

determines the smoothness. Many heuristic methods may also be thought of in this light. 

The kth-nearest neighbor method retains all the samples. The probability is essentially 

estimated by the number of samples in a class that lie close to the unknown point. 

Some decision rules may be thought of as ignoring the distributions and, rather, 

seeking to find good separating boundaries direc,!y. Forms are chosen, as in the cases of 

linear or piecewise composite boundaries. Then parameters are estimated from the 

samples.   Equivalences between a number of method;; can be shown theoretically. 

Learning approaches seek to adjust the parameters of whatever methods are chosen 

as new information about the patterns is obtained, Supervised learning can occur when a 

correct label is available for the samples upon which learning takes place. When 

completely unknown samples are presented, unsupervised learning methods can still obtain 

rules that separate the samples according to the way they cluster^. 

A number of transformations upon the pattern space may be made to simplify the 

task of the recognizer. This is really a continuation of the basic pattern recognition 

problem, but many researchers have chosen to separate the search for good feature 

spaces from the search for good decision rules. 

t — A spherical Gaussian distribution is often used. 

• — Clustering is a concept that must be defined mathematically for such learning to take 
place. 

.-■■■'»  ■• 
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2,4 Estimating Distributions 

Since the Bayes optimum rule assures us the "best" results attainable for a 

separating boundary decision rule, we would liKe to be able to apply it. Unfortunately, we 

may not Know the probability densities or the a priori probabilities of the classes. 

However, if there is some evidence from the nature of the feature measurements, or from 

the underlying pattern process itself, we may be able to estimate the a priori probabilities 

and to make assumptions about the form of the densities. This information might also come 

from statistical analysis of the samples such as estimates of closeness of fit to well-known 

forms. 

The mean vector and covariance matrix fully specify a multivariate normal density 

function. However, to compute the density values, the covariance matrix must be inverted. 

The density function is: 

where |C| is the determinant, C the Covariance matrix (mxm), M the mean vector (m), and x 

the samples (m). 

The classes may be composite clusters of a number of forms or they may 

correspond to highly complex distributions which no simple form can suitably estimate. In 

fact, we may not fully understand the underlying physical process well enough to derive 

the form at all. 

An important approach available in such a case is that of Potential functions (or 

Parzen estimators) [Ais64, Mei72]. The estimating density p is directly constructed by 

superposition of a number of potential functions f as follows: 

N 

pC*) - ^ I f(*>*) 
N 

J=l 

^   '■ V* <   ■—— 
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Thus, if these estimators are formed on each of the N sample ooints y, the "density" 

value of a point x is a superposition of its relation to all the points in that class's sample 

set. A typical form for f is the multivariste normal with covariance matrix a multiple Of the 

identity matrix (spherical shape, independent dimensions) and mean equal to y. The 

multiple of identity used for the variance determines the sharpness of the peaKs at each 

point and, thus, the smoothness of the overall function. 

Although the Gaussian is very well-behaved, a more computationally efficient 

function given by Meisel is f(x,y)-h[d(x,y)] where d is a distance function (e.g. the city 

block function or the sum of the absolute differences in the m dimensions) and h is a 

piecewise linear window function such as shown below (Figure 2.1). 

Figure 2.1: A Piecewis-Linear Function 

In addition, if / f(x,y)dx-l for all y, then p(x) is guaranteed to be normalized If f is. 

We can insure that the space is not warped. 

Four criteria for the function f are given: 

l-f(x,y) should be maximum for x-y 

2-f(x)y) should be approximately 0 for x distant from y 

3-  f(x,y)  should   be   a  smooth  (continuous)  function  of 

distance from x to y 

4-if f(xl,y)-f(x2,y) xl and x2 should be equally similar to y 

in some sense 
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One may choose to construct an indirect approximation to the density function. Certainly, 

a conceptually simple approach is to divide the feature space into small volumes and 

collect a histogram of the sample patterns. This can be disastrous if the dimensionality is 

high, however. The number of small volumes in m dimensions is rm If each feature is 

broken into r parts and there are m features. 

Another problem of the histogram is that it depends very greatly upon the choice of 

volume chunks for buckets. The sample points may be ummodally distributed, but if the 

buckets are chosen to split the mode, and if not enough samples are available, spuriou« 

modes may be observed. Another technique is to collect the Empirical Cumulative 

Distribution Function. The N samples are ordered and plotted at increments of 1/N against 

their values, for the single variate casu. The resulting distribution approximation may be 

smoothed and the slope measured for a density function. The advantage can be seen if 

one notes that the ECDF depends in some sense on all the points that produce the 

ordering rather than the points in a single bucket for the shape at any particular location. 

It is thus a cumulative estimate rather than a local one. Techniques exist for estimating 

the closeness of fit between standard distributions and an ECDF [Wil681. Unfortunately, 

extending the concept to the multivanate case is difficult and not usually done. However, 

if there is reason to suspect that the features are independent, the ECDFs can be made 

separately on each dimension. 

2.5 Linear Forms 

The simplest form for any decision boundary that partitions the feature space into 

two separate parts is a linear form. Linear discriminant functions have a number of points 

of appeal and have been extensively investigated . Often good linear discriminants may 

be determined as approximations or special cases of more general forms. The advantage 

of simplicity in the decision -ule is apparent to anyone who considers producing a 

classification of a speech signal into one of 50 clashes each 10ms. window, using a vector 

t -- Nagy [NagßS] presents a theoretical comparison of a number of linear functions for a 
two class problem. 
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of 128 FFT spectral values. Computationally, a linear decision rule can be effected with m 

multiplies and a comparison, for m dimensions. The N class problem may take from log2 

N to N-l decision boundaries. Thus, at least 80,000 multiplies per second would be 

required for the above classification scheme to be done in real time. 

An additional advantage is that linear rules are easily parametrii'ed, and thus, 

learning can take place by means of the adjustment of a reasonttil) small number of 

parameters. The effects of transformations of the feature space are more easily 

understood in connection with simple rules. Finally, higher order forms for decision rules 

can be reduced to linear form with addition of extra dimensionality. 

2.6 Distances 

The first thing that comes to mind when considering the pattern space clusters for 

classification is to somehow use a distance measure from the unknown to the clusters in 

the decision rule. A number of distance measures have been defined for this purpose. 

Although we are now faced with slightly more computing, since we must make a distance 

calculation for each class as opposed to successive dichotomies o' the space by 

boundaries, this approach is more easily adapted to different sets of classes. We need not 

depend upon the fortuitous placement of clusters where one decision can discard a large 

set of classes. Furthermore, the usual properties of distance measures ensure that there 

are no areas of the space where no class identity is assigned. 

Euclidean distance is defined, in m-dimensions, as: 

'A. 

L o-.t j 

t —If the hyperplane dividing the classes has the equation: 

Z H ^   * ^   = 0 

then it can be seen that all vectors x where w.x - -X lie on the plane. Hence the decision 
rule is to form the dot products and compare with X. The distance to the hyperplane is 
also easily calculated as |w.x+X|/||w||. 
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the  lucus  of  points such that d(x(ml)-d(x(m
2) (i.e. the boundary between  two classes 

'•epresented by m1 and m2) is: 

a   linear   equation   in   x.    Geometrically,   the   boundary   is   ,   hyperplane   which   passes 

oerpendicular to the segment joining m1 and m2 through its midpoint. 

Correlation is defined as: 

HL 

or simply the cosine of the angle in m-space between the two vectors. The boundary 

between two classes here passes through the origin and is at right angles to the plane 

containing the origin and the two representatives. 

More complex forms may yield a distance measure which is still linear. The 

approximate maximum likelihood method assumes a single covariance matrix for all the 

classes and multivanate normal distributions. In this case, it can be shown that the locus 

of equul probability between two classes is a hyperplane cubing the segment connecting 

the means at the midpoint but not necessarily perpendicular.  The equation is: 

U/ 7^   -   C     =   O 

\*    A"' 

and the distance measure is I 

A - Covo.ria.nce 

There is  a more computationally costly procedure than computing from the hyperpl 

equation, sometimes called the Mahalanobis distance [Dud73] which may be used. 

ane 
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2.7 Piecewise-linear Discriminants 

Since linear discriminants are computationally inexpensive, we may wish to define 

areas of the feature space in which different hyperplanes are used without fear of 

excessive cost.   In fact, arbitrarily complex boundaries can be approximated in this fashion. 

The Perceplron model [Ros57] taker, just such an approach. Perceptron networKs 

are oriented towards learning linear boundaries between two classec. When applied to the 

N class situation, the boundaries are all applied in a pairwise fashion, and the classification 

is made upon the advice of a number of classifiers. Figure 2.2 shows such a situation. 

Note that the assignment is made when an input pattern gets at least two votes In this 

case. 

bl? 

Figure 2.2: Perceptron-like Classifying 

We may have a good idea of the implicit subgroups within each class. In this case, 

we may define bounaaries separating samples from each subclass from the rest of the 

samples in other classes. Then define a piecewise boundary as Max(ws.x), where w$ are 

the coefficient vectors of the various subclass discriminants. It can be demonstrated that 

this forms a convex, piecewise boundary around the composite of the subclasses. 

It is  clear  that certain aspects of linear discriminants are desirable for  speech 
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applications. These include motl notably speed, ease of adaptability, and ease of 

pp ametnration (size of the learning task). However, some constraints of 'he speech 

P'oblem, such as the need to deal with more than two classes, mako many of tnese 

methods unwieldy to apply or too computationally cOotly. The amount of computation 

needed to evaluate the Mahalanobis distance directly is equivalent to that of using the 

individual covariance matrices in a maximum likelihood rule. Thui, the need to handle many 

clusters, of unknown placement in the feature space, leads to an algorithmic structure, 

distance measures, which voids the usefulness of the approximate maximur; likelihood 

assumption. Without a better idea of the actual clustering of the classes, one cannot 

suggest a generally applicable or even reasonable method for all speech classification, a 

prio'i. The conceptualization of the patten space which most theoretical investigators 

have brought to the problem may be invalid for speech. For instance, a g eat deal of 

overlap may be the inevitable result of variations in speaker, performance, and phonetic 

context. This is rertainiy borne out by the difficulty which even experienced phoneticians 

have in identifyir; speech sou ids in certain contexts or under certain conditions. The 

best characteristic of linear rules is that they provide an extremely simple structure for 

learning or tracking, and that they are computationally cheap. The ability to adapt the 

classifiers under the aegis of higher-level feedback will be much more im^trtant to the 

overall task than careful optimization of performance in a static situation. 

2,P Learning and Tracking of Clusters 

The sets of samples from which decision rules are deduced ard their parameters 

extracted are called training sets; the process of acquiring the pbrameter.> in a statistically 

proper manner is dealt with by Bayesian learning methods. In an important sense, the 

pattern classifier Is a learning process -- although of a vory simple kind where learning 

may only occur at set t-mes (training). A number of attempts have been mane tr. employ 

learning processes more directly (e.g. [Dru73, Nag66, Sel63, Uhr63]), to allow a classifier 

to seek its own parameters or its own rules, to allow it to adapt them to slowly varying 

pattern spaces, and to allow the identification of patterns for which no classification was 

expected. 

■■ 
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Many algorithms have been set forward which guarantee convergence to an optimal 

linear classifier under various conditions. A famous one, for which an upper bound on the 

number of steps for convergence was derived, is the perceptron error correcting 

algorithm [Ros57]. The training set is presented in order as often as necessary and the 

coefficients of the linear boundary separating the two classes, Cl and C2, change as 

follows, for j-1,.,.: 

w(j+l) - w(j) + x(j) if x(j) in Cl and w(j). x S X, 

w(j+l) - w{j> - x(j) if x(j) in C2 and w(j). x i \ 

w(j+l) - w(j> otherwise 

where x is classified as Cl if w . x .i X, etc. The weights a™ thus adjusted on 

misclassification. A number of variations on this scheme deal with various amount« for 

adjusting the w vector, varying the order of presentation, and the problem of using 

imperfect components. Nagy [Nag68] discusses some of these results and also point« out 

that if the problem (i.e. the samples from the two classes; is not indeed linearly separable, 

learning methods may not converge. Instead, they ma/ oscllate or converge on a local 

optimum. However, one way of gaining insight into whether two ^'rsses are linearly 

separable is to try such a learning scheme on them. 

Related to these methods are devices tor tracking vprying pattern clusters by 

adjusting a linear discriminant to follow new patterns as they are presented. It has '.>een 

assumed so far that the training samples arp drawn from the same distribution as the 

unknown patterns will be. However, there may be overall changes in the pattern producer 

that shift the clusters very slowly (relative to the frequency of incoming patterns) as one 

proceeds with actual recognition. Consider the effects of excitement, fatigue, or 

confidence upon a speaker dealing with a computer speech recognition system. Some 

speaker normalization may be treated in this fashion as well. Al^h^gh in the case Of 

changing speakers, the clusters shift suddenly, such a change happens rarely in the time 

scale we are considering and much structure of the pattern space is common among 

different speakers. Such adaptive behavior in pattern recognition dates back to work on 

Morse code [GolB59, Sel63]. 
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Whil» many of the methods discussed here are on shaky footing without an idea of 

some of the aspects of the particular patterns in question -- how well they cluster, what 

shape the clusters are, or how many -- there do seem to be areas of  applicability In 

speech recognition.   In particular, it may be possible from phonetic studies to predict how 

many clusters will be found and develop a good idea of the hierarchy of classes into which 

they  may be placed.   However, we must taKe care not to infer relationships upon the 

pattern space that we feel exist in some linguistic model of speech perception.   The best 

application for these methods is in discovering how well Our ideas of the proper set of 

classes coincide with particular feature spaces, the oata, and rules we have chosen.   In 

addition, tracking techniques may well prove useful in going from one speaker to another 

or in changing acoustic environments.  The ability to train without tedious hand labeling of 

speech data  would be a great help, but  the assumptions necessary for  unsupervised 

learning algorithms thus far discovered do not seem to apply well to speech. 

2.9 Conclusions and Discussion 

This survey has taken a narrower view of nattern classification than is sometimes 

set forth by those who have viewed entire pattern recognition systems (e.g. [Min63, 

New71, Uhr73]). The gross description of any pattern recognition problem is simply: map 

a space of patterns onto a space of symbols (usually a finite set of names). The speech 

recognition problem can be variously viewed as any of the following mappings: 

utterances -> semantic states 
phrases -> syntactic structure»» 
words ■• lexical entries 
segments -> phones 
time slices -> acoustic-phonetic labels 

This many level view is taken in some currently operative systems such as CNxon 

[DiK75a] and Reddy [Red73]. Each level has its own data structures and sourcea of 

knowledge from which rules of varying complexity can be deduced -- either for 

recognition or interlevel translation. The same thing occurs in visual pattern recognition 

with the various levels proposed for scene analysis and picture decomposition.   Speech In 
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particular, has large bodies of research relevant to these levels, although most of the rules 

are available in generative form [New71]. Thus the question of where to draw the line 

between "raw" pattern classification and various processes for reduction of search, 

inference of goals, syntactic analysis, and even phonetic segmentation is a system 

structure question. A good decomposition of the patterns at each level exists ir. the rules 

that translate to the next lower level. The decomposition into phone-like labels for short 

time windows is the most primitive one proposed. There is general agreement that the 

burden of complex processing, feedback, context, etc. should be placed on the higher 

levels with the stream of labels serving as input to them. This sort of constraint will be 

necessary in order to achieve real-time response in the future. Furthermore, a translntion 

to symbolic form must be made on the input signal for space and time economies in the 

higher level processes as well. 

The previous survey provides an overview of the methods available for 

classification. However, some specific limitations must be made, justified by what is known 

about speech, in order that the comparisons that are the object of this research may be 

made in a reasonable time frame. The central aim of this discussion is to fix upon a useful 

environment for comparing parametric representations. At the level of labelling the 

acoustic signal, that means finding a "typical" algorithm or family of algorithms for 

classification. The constraints placed upon this choice are time and space requirements, 

the need for graceful error recovery and robustness under variations In the input quality, 

and the necessity of experimenting with methods at the level of current technology. 

Speech understanding systems have not generally employed extremely powerful 

pattern classification schemes. The view has been often expressed that the problem must 

be addressed at multiple levels by a variety of knowledge sources. The benefit of a 

highly tuned and powerful classifier is nullified by the fact that speech hjs such inherent 

variability that even different utterances by the same speaker will demonstrate widely 

differing patterns for the same informational elements. The warning against overkill in 

tuning to any set of training samples, no matter how extensive, has been made throughout 

the pattern recognition literature, and speech is clearly subject to this problem. 
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We have chosen, therefore, I few, well-accepted, classifiers, simple and robust, that 

cover much of the current speech understanding usage. The existence of more complex 

methods at the state of the art should not invalidate these results, since the comparative 

psrformance of parametric representations in the context of these straightforward 

methods will serve as guides to the design of simpler, soon realizable systems for limited 

tasks, as well as first-order predictions of more complex classifiers built upon the basic 

classifica^on algorithms. The latter will be true for the following reasons: The complex 

methods for classifying sounds thus far proposed have been based, perhaps in a hierarchy 

of decisions, upon simple concepts of "closeness" or "matching" in a pattern space or over 

certain elements of evidence. Second, the evidence provided by human production and 

recognition of speech seems to imply a continuum of sounds, arbitrarily interpreted as 

belonging to information bearing classes. A classifier and parametric representation which 

adequately capture the structure of that continuum can be expected to perform well in 

partitioning it. Thus, a parametric representation which allows some uniform distance 

function to separate patterns according to their actual information class, will have 

indicated this similar structure, as well as an amenability to the use of concepts Of 

closeness in more complex methods. 

The concept of distance is central to the use of a pattern space as a representation 

of the actual phenomena. Thus the simplest method of classifying a pattern is according to 

the distance from that pattern to the clusters of sample patterns. If the clusters are 

parametrized by some Mj for samples belonging to class Cj, then the distance is some 

function of the input, x, and Mj, and x is classified in Cj, where j minimizes the distance. 

The property that the distance is a function of a single class's parameters means that no 

region of the pattern space is unclassified, since every point must produce some minimal 

value. If there are m classes then m evaluations must be made and m sets of cluster 

parameters must be stored. A hierarchy of decisions would provide a clear computational 

improvement, but may be derived after the representation and distance function are 

chosen, or may be deduced from the pairwise distances of the clusters themselves. In the 

context of this research, the independent evaluations provide flexibility in the choice of a 
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set of classes and a way of comparing entire parametric spaces to one another upon a 

simple bas^. 

Finally, the value returned as a distance may be used to estimate the probability of 

that class being the proper choice. Some distances estimate the distributions of patterns 

for each class and provide this probability directly. Others may be compared to empirical 

distributions of distances for that class. When such probabilities are available, meaningful 

combinations of classifications can be made and the information available from classes that 

are close to minimal distance can be employed. 

The choice of a limited kind of classifier will not hurt the usefulness of the results 

because most classifiers are based upon the distance concept But more importantly, the 

choice will help because results will be easily applied to simple systems or parts of more 

complex ones. The role of parametric representations can be mora clearly seen in the 

light of results that measure performance of simple algorithms. And the structural 

similarity of the pattern space to the space of speech sounds is brought cleaHrly into focus. 

■iMm—" |—mm 



49 

Chapter 3 

Experimental Considerations 

This chapter continues the discussion of pattern classification issues. Two very 

important issues are: I) the set of recognition targets — the information-bearing classes, 

as distinct from the templates for those targets -- which are the object of classification 

activity; and 2) aspects of data quality and quantity. The methodology of training and the 

experiments we have devised in this research are strongly affected by these 

considerations. 

3.1 Acouotic-Phonetic Classes 

A very important issue is the number and nature of the classes that are the output 

of any classifier. Sometimes this choice is trivial -- in fault recognition in machinery for 

example, there are two classes, faulty and fault-free. Often, even in binary choices like 

this however, there are many sub-classifications -- unnecessary in all but a few special 

cases (such as "fault-free but having a slight vibration that might lead to faults after 

extended use" to continue the example.) The situation in speech is just such a one. 

Nasalized vowels, devoiced glides, {»-ansition portions, deleted or altered consonants all 

represent subclasses of things one may wish to deal with most of the time as entire 

classes. Consequently, we feel some discussion of the directions available is warranted. 

Our view of speech understanding systems is that non-local considerations, relating to 

context, speaker idiosyncracies, reduction of search, and Knowledge about other levels 

than acoustic-phonetics, will be dealt with at those other levels by other processes. 

Hence, the Kinds of recognition that some systems have done or propose to do -- tracking 

slopes of formants, for example to disambiguate consonants by the transitions into 

'ollowing sonorants -- will reqjire different objects of recognition than the process that 

notices the appropriate conte/t in which to invoke such specialized rules. 

Data  reduction,  representation  transduction,  and  hypothesis  generation   are  the 

"?-"  
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principal roles for the processes we are investigating. These require general utility over 

a broad range of speech sounds, robustness, and low cost at least for some (initial) 

parametric analysis routines. 

There   are   two   alrernative   approaches   that   have   been   taken   in   defining   or 

discovering classes for speech pattern classification, which may be called acoustic gertur«« 

and features.   The acoustic gesture approach takes the view that the phonetic significance 

of a speech segment is to be extracted by other sources of knowledge.   The classes into 

which the segment is mapped have phonetic correlates, to be sure, but those correlates 

are  subject  to context  and speaker  variations as well  as the  acoustic  nature  of  the 

segment.   A set of gestures is chosen, therefore, which represents all the significantly 

different  sounds encountered in speech.   Where the difference between  two phonetic 

classes  is  clearly  reflected in  a difference  in their  acoustic  realizations,  the  task  of 

differentiating them is accomplished by differentiating the corresponding acoustic gestures. 

Where the same sounds may realize different phonetic classes, however, an optimization of 

sorts must be made, balancing usefulness of the information supplied by identifying the 

acoustic  gesture with the complexity of a growing number of specialized cases, each 

identified   as   a  separate  gesture  and  many  overlapping  in  the  pattern  space.    The 

boundaries, and thus the classes, most suitable to the problem divide the pattern space 

into regions sur!. that any pattern in a particular region could be a realization of the 

phonetic situation that produced any other pattern in that region. 

The feature approach is well described by Meisel: The selection of a set of 

features which efficiently describe a system in terms of a pattern to be recognized in 

those features is itself a pattern recognition (problem). Each feature describes some 

aspect of the pattern and amounts to a decomposition of the quality to be recognized in 

the overall problem into a set of more easily recognized qualities." [Mei72] Since the 

object is to disambiguate phonetic situations, the features must be those qualities that 

distinguish different such situations. While the parametric representations may be viewed 

as features, we would prefer to reserve the term for those qualities that more highly 
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correlate with phonetic information. For example, energy in the frequency band from 3KHz 

to 5KHz may often imply the feature "Fricative," yet there are enough cases of non- 

fricatives, high vowels for instance which produce moderate amounts of energy in that 

band. Obviously, a parametric representation which effectively allows for extraction of 

these teleological features is a good one, but it has been the experience in speech 

research that such a representation is very hard to find. 

Under the influence of the simple model of a classifier used in this research, these 

two points of view merge. More complex recognizers often mix the two views in 

hierarchical schemes where the presence of certain features may trigger attempts to 

classify among a sub-set of the target phonetic labels [Erm7flb]. If the gestures 

correspond to a set of features, then the fact of recognizing a ges!'ire provides evidence 

in favor of its features' presence. Likewise, the set of features recognized forms an 

address of the gesture. The duality of this relationship depends upon having the 

corresponding weights available to calculate how much evidence is provided. (See figure 

3.1 for the features and weights used in Hearsay II, phonetic hypothesizing.) 

iFMTfl HI nil) Ltl FRN1 UNI HK KNO HIN VtL NHS HIP VCD NUL LOF FRC VOC CON DIPH 
;UCTSi 7S 75 78 75 75 75 1B0 168 186 186 56 166 168 166 166 16 86 166 
- ♦5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 45 -5 -5 -5 45 -5 
1 ♦5 -5 -5 «5 -2 -5 -2 -5 -5 -5 -4 45 -2 -1 -5 -5 ♦5 -5 
p ♦3 -3 -5 +5 -2 -5 -2 -5 -5 -5 41 -5 -5 -5 45 -5 ♦5 -5 
F ♦3 -3 -5 *S -5 -5 -2 -5 -5 -5 -2 -5 -2 -5 44 -5 45 -S 
Z ♦3 -3 ♦5 -2 45 -3 -5 -5 -5 -5 42 45 -5 -5 46 -5 45 -5 
S ♦3 -3 _5 -2 45 ^2 -5 -5 -5 -5 43 -5 -5 -5 45 -5 45 -5 
1 ♦ 1 -3 -5 -2 45 46 46 45 -1 -5 43 45 -5 -2 -5 -2 4« -S 
nx -2 +6 -2 -2 45 46 -5 -5 -2 -5 43 43 -5 -5 -5 46 -6 -5 
M -5 -5 46 -5 -5 4» -5 -5 46 -5 45 45 -5 44 -6 45 -6 -5 

Figure 3.1: Some Phonetic Features and Weights, HSI1 

In recognizing continuous speech, segments are usually labeled with some phonetic 

information. As more phonetic 'nformation is available for a s; jment and its context, one 

can state with more certainty the phonemic interpretation of that portion of the signal.   An 

"-^ — ■ 
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interpretation is being made and the speech understanding system is making it. Thus, the 

most important criterion tor the source of knowledge which provides the phonetic 

information is whether it is adequately serving the needs of the rest of the system. Those 

needs are for interpretations to be made consistently-- certain phones in certain contexts 

should 'je interpreted in the same way -- and robustness -- unusual contexts or poor 

conditions should bring about interpretations which are wrong in proportion to the degree 

of degradation encountered. 

In conflict with recognizing a single phonetic situation is the problem that features 

interact in complex ways under various canditions. The feature "high third formant" may 

mean entirely different things depending upon the location of the second formant, or may 

be irrelevant. These interactions could be expressed as rules and the appropriate 

recognitions could be the output of a complex interpretive stage. The question is whether 

anything is gained. The key to a suitable feature decomposition of the pattern recognition 

problem is the discovery of a set of features which are easier or more accurate (or both). 

While many methods of speech analysis have attempted to provide parameters that make 

such recognitions easy, none has been able to carry the entire burden. Some features are 

easily extracted from one parametric representation and others are just confused, yet all 

are necessary if critical errors are to be avoided. 

If one attempts to interpret the speech signal by the results of (.oustic gesture 

recognition, one finds that different phones often give rise to the same acoustic gesture, 

and, conversely, that the same phone can be influenced by phonetic context and conditions 

of emotion, speaker accent, prosodies, and so en, to produce different acoustic gestures. 

In the same way that features might be disambiguated by a system of rules, so could a 

string of acoustic gestures by corrected. The context dependent errors will appear in 

sequence with labels that indicate the context. Alternative labels of acoustic gestures 

would give an indication of likely candidates for error correction. The sequence /g i e - s/ 

for example, could be altered to read /g e t/ by application of some simple and obvious 

rules from the phonetic source of knowledge.   In fact, features could br extracted from 
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the sequence of acoustic gestures. The recognition of /rr/ means "voicingVlow second 

formant", and "nasal" features are present to some extent. Again the major issue is 

whether the recognition process is easier or more accurate. 

Taking the entire label as a unit will tend to help avoid errors resulting from 

interactions with one or two wrong features. The classifier can rank the labels, ai>d thus 

provide graceful error correction. On the other hand, in order to represent a wide range 

of acoustic situations encountered in continuous speech, and to provide sufficient 

disambiguation of similar phones under most conditions, the set of acoustic gestures must 

be fairly large -- multiple labels for each sagment may be required. The trade-offs 

depend upon system organization to some extent. The amount of higher level support Is a 

significant factor in this choice. However, the essential interchangeability of the two views 

should be apparent. For the purposes of this research, it does not matter whether the 

parametric representations are compared for their feature recognition support or their 

acoustic gesture recognition. Rather, their ability to allow the classifier to come up with 

the label or feature set best correspondirg to the phonetic situation can be measured 

over the entire test data by either method of recognition. 

The labeling results that will be reported are accuracies over a set of acoustic 

gestures with phonetic interpretations. The selection of *hese is important, as is the 

training of the classifiers used. 

In chapter 7, we will diccuss an algorithm for discovering the natural clustering of a 

set of sample patterns, and for discovering representativesi -- template« -- for »ach 

cluster from the samples themselves. This algorithm is used to refine a set of phonetic 

labels -- targets -- which have been marked over a training corpus of speech parameters 

by hand segmentation and labeling. There are a great many other methods for refining 

such a set of classes. Iterative adjustment techniques are discussed in the pattern 

classification literature [Nag68]. In addition, learning techniques miftht be used to adjust 

the set as well as to "track" slow shifts in the nature of 'he data in an operating speech 

understanding  system.   A careful survey  and analysis of  the  relative merits of these 
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methods seems to be rather far removed from the central issues of this dissertation. We 

are primarily concerned with acquisition of a reasonable set of classes for testing labeling 

proficiency in a benchnarK procedure. The clustering method implemented has given 

evidence of quite adequate performance, as well as of being consistent with the viewpoint 

of pcousfics-onented, parameter independence. 

3.2 Data Quality and Quantity 

The discussions above have been concerned with empirical methods for pattern 

classification for speech understanding systems. Consequently the data upon which the 

methods are based is an important factor in the validity of the results. While the form of a 

decision rule may be chosen by intuition, necessity, or fiat, the data which provide training 

statistics (which most rules use) is never perfect. The data which provides the testing 

results must be subject to similar scrutiny. Are the corpi representative of speech (and 

what dOM that mean)? Are they large enough? What should be the relationship between 

training and testing data? 

3.2.1 Spe..S Data 

The quality of data one acquires in a body of speech depends upon who is speaking, 

how he is speaking, and how the recording is made. Many applications and a number of 

existing systems deal with isolated words, and thus avoid the variability introduced In 

continuous speech by coarticulation, varying stress, and the difficulty of isolating the 

proper segments to form a lexeme. Variation in speaker falls into three types - different 

speakers have different gross vocal characteristics, the most notabh being fundamental 

pitch frequency; individual speakers within one gross type use different portions of the 

acoustic domain for particular phonetic items (varying "dialect"); and speakers vary in the 

coarticulation rules that may explain their performance. Effects of ambient noise, 

microphone characteristics, and such must be dealt with as well at some level. 

Speech   recognition   research  has   been  primarily   concerned   with   intra-speaher 

variations.   This is not to say that methods for normalizing inter-speaker variations are not 
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a significant part of the problem, but it is generally felt that a model capable of dealing 

with one speaker well, will be extendible to the multi-speaker problem. This view arises 

from the observation that nearly every sound within the usual domain of speech may be 

expected to be produced by a speaker in some context. Furthermore, we understano total 

strangers, albeit those with unusual accents cause more difficulty, with very little training 

effort. Certainly, the acoustic recognition process in human (or machine) perception of 

speech is little affected by changes of a phonological nature. These are handled (or 

should be) by higher level transformations. Whereas changes in the interpretation of 

acoustic gestures from one speaker to another, while seemingly a more fundamental 

normalization problem, appear to be the kind of problem more amenable to solution by 

some fairly straightforward iterative adjustment or learning techniques. There must be a 

common structure to the patterns we process that is very pervasive. The ability of a 

parametric representation to measure just that structure will become apparent by 

experiments with no consideration given to speaker normalization. It can be observed that 

almost as much variation exists within one speaker's performance as between two similar 

speakers'. 

A final consideration is that of recording quality and related issues. Some difficulty 

is introduced when microphone characteristics, for example, impose varying spectral 

characteristics, or when noise influences the values of some parameters. However, noise 

subtraction and spectral leveling methods can be employed, and good quality equipment 

and quiet recording conditions are reasonable for these experiments. 

The following decisions seem reasonable for training and testing data: Continuous 

speech by adult male speakers will be used for testing. The sentences will be drtwn from 

a variety of task domains and therefore represent various words and sentences for 

varying phonetic contexts. All recordings will be on reasonably high quality equipment 

with low ambient noise, but no excessive concern with this seems warranted. 

■ 
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3.2.2 Quantities 

It is very difficult to acquire large numbers of sample speech patterns which are 

properly labeled. This is a common problem to other pattern classification applications, 

although for a variety of reasons. In speech, the difficulty is in properly segmenting and 

labeling by hand the training and test corpi. Although refinement methods will help in 

training with poorly labeled data, the best possible hand segmentation and labeling should 

be used. Testing can produce valid estimates of accuracy only if the test data is also 

properly marked, and the validity of the estimates will increase with the quantity of data. 

There is a strong tendency, therefore to try for as much data as possible, and to make 

what data is available serve both purposes. 

One can over-design or over-train a rule to the point of degrading performance on 

data other than the training set. This phenomenon depends upon the type of classifier 

rule, but also upon the fact that the data may not be truly representative. As more data is 

used, this latter becomes less likely. The size of the training set, then, should relate to the 

complexity of the classifier. More complex classifiers will be better able to separate the 

training sample clusters, and thus take on their particular structure, so one would want 

that structure to be more representative of speech in the pattern space. For example, a 

nearest-neighbor rule, trained on a few samples, Mty allow a few spurious samples to 

capture large areas of what should be another class because no representatives of that 

othar class were in the training data. A simpler, Euclidean distance classifier ushg the 

aample means, would be less affected by the few bad samples. 

The number of dimensions of the pattern space also plays a role. Data points in 

high dimensional spaces will be remarkably far apart and thinly spread. If one wishes to 

estimate a distribution in such a space, one needs a large number of points to fill In a 

histogram, fewer to oroduce a valid covariance matrix, and fewer still to estimate the 

mean. The simple clössification rules may be as good when trained on a few samples as on 

many for these reasons. 
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Meisel [Mei72] points out that the ratio of the number of samples, N, to the number 

of features, m, should be significantly larger than unity. His experimental results indicated 

an N/m of 3 - 5 usually yields successful training. However, consider the case where 100 

two-valued patterns are available. If someone maliciously adds 98 values to each pattern, 

all drawn from the same distribution, the results will still be as good as in the case where 

N/m was 50. Thus the "true" dimension of the patterns must be considered. Meisel also 

gives as example an experiment where 10 two-valued samples are drawn from the same 

distribution for each of two suppofedly different classes. A linear transformation could be 

found which allowed a perfec» classification with a linear boundary, 'at, when 90 more 

samples were produced, no such transformation could be found. The two clusters had 

merged perfectly. 

The expected performance of rules in practice can only be estimated by examining 

their performance on separate test sets. (If distributions are available for the expectod 

inputs, theoretical bounds can be oerived for the expected error rates.) Either the 

available samples must be divided into training and test sets for this purpose or else an 

iterative process as follows can be used. 

Divide the samples into k sets: Si..\ 

Tram on all but S, and test on Sj, for each i. 

It can be argued that if k is the number of samples, this is equivalent to testing on the 

training set.   Yet there are some methods — Potential functions or Nearest Neighbor — 

which are guaranteed to perform perfectly on the training set that will not necessarily do 

so in this case. 

The training sets to be used in this research consist of enough data to provide 

between 30 and 150 sample segments for each of about 40 ccn.mon phones of English. 

While this is not really enough to provide good estimates of all the major alltphonic 

variants of each phone, the difficulties of acquiring the extremely fine hand sbjmentation 

and labeling needed to avoid introducing errors in training have precluded using more 

data.   While this gives a rather small N/m value for m-128 (in the SPG case), it must be 
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noted that the SPG parameters are highly correlated with one another and are, in fact, 

derived from 15 LPC parameters. No doubt the "true" dimensionality of »he space is 

considerably lower. 

The test data is representative of the kind of speech to be encountered by actual 

speech understanding systems. For the near future, that seems to be cooperative 

speakers, high quality low noise conditions, somewhat limited vocabularies, and continuous 

speech. To that end, we have chosen to train with a separate set of 27 sentences spoken 

by each speaker. These contain approximately 1200 phonetic segments, and are designed 

to contain a number of instances of the most commonly occuring allophones of English. 

[Sho/flb] 

r 

3.3 Summary 

We have discussed two issues of considerable importance to recognition of speech: 

recognition targets and data quality and quantity. W.- have tried to make choices in these 

areas which are reasonable, given the limited resources available. Considerably more data 

is being dealt with in this research than has been the case in past efforts. Training and 

testing sets are of the order of 1000 segments and are separate data. Rt cording is still 

over high quality microphones. The choice of template recognition instead of feature 

recognition is one of avialable methods, and personal preference. 
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Chapter 4 

Speech Recognition Systems 

It is impossible to study the parametric level without paying some attention to the 

total Systems, In recent years, there have been a number of implementations of speech 

recognition systems with a variety of knowledge sources, control mechanisms, and data 

structures. Some of these systems have understanding of the content of the utterance as 

part of their power. Others may be called word recognition systems and are oriented 

towards isolated word recognition by uniform strategies, or with limited knowledge 

sources. All these systems have a component which analyzes the parametric input. 

Almost all produce a phonetic-like transcription of the utterence as some internal 

intermediate representation. This chapter is a brief survey of the more salient aspects 

and the available performance measurements of a number of systems in current 

developement. 

4.1 The Parametric Level 

The previous discussions have dealt with the individual aspects of acoustic-phonetic 

processing in speech understanding systems: the parametric representation, the roles of 

segmentation and of labeling, pattern classification techniques, costs, and quality and 

quantity of data. In one stnse, this covers most of the background material for the 

particular experimental results to be presented. However, it is often important to view 

such results with the perspective of other research in the area. Indeed, a large part of 

the effort spent in this work was spent in developing methods which could perform 

reasonably well by current standards and yet which would not be specific to any 

particular parametric representation. This chapter is a brief survey Of the parametric 

level analysis performed in a number of current speech understanding systems or partial 

systems. However, it is almost impossible to meaningfully compare their performance 

results in a quantitative manner since they use different representations for output of the 

-■• fm -«»-w-^-» 
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acoustic-phonetic information, since the published results involve widely varying test 

conditions and methods of evaluation, and since the design goals of the various programs 

dif'er considerably depending upon the structure and goals of the complete systems of 

which they are sub-parts. This survey merely seeks to provide a framawork for better 

understanding of the role of acoustic parameters, their use, end the kind of performance 

currently available. In addition to the mechanical speech recognition work, we will cite 

some human performance results [Sho75a] in order to better place machine performance 

in perspective. 

Since we have had only limited contact with many of the systems currently being 

developed, we have had to rely upon published descriptions of their methods, 

performance, and overall structure. In this, we were greatly aided by an in-depth survey 

of four acoustic-phonetic levels of large systems by Hieronymus [Hie75]. However, come 

assertions and methods of evaluation which have been encountered in the speech 

recognition literature seem to be biased by pre-conceived notions, or to reflect poor 

techniques. For example, Hieronymus, in summarizing vowel recognition for the system at 

Lincoln Labs, points out that BOf vowel identification accuracy for first-choice is very poor 

since humans find this task so easy. Yet Shockey and Reddy discovered that human vowel 

perception — using auditory input - of continuous, but unfamiliar, speech was not 

significantly better, perhaps 557, to 60%. This mistaken belief that humans do very well 

because they have some spectacularly successful auditory mechanism has doubtless led to 

a great deal of misdirected effort. 

A number of published results appear to have been based upon testing with the 

same data corpus used for training (if training is done) or gathering of statistics to 

describe recognition targets. Even "tuning" or deriving rules from the same data used 'or 

testing can bias results. It is an understandable mistake to make since much speech data 

seems to us to be of equivalent difficulty and quality. Yet this is a bad practice. We have 

observed considerable degrading of performance results when separate test data is used, 

indicating that the results over the training data are artificially high.   This is a point that is 

: 



Speech Recognition Systems 61 

strongly taken in the more traditional pattern classification literature.   The manner and 

extent of development of classifiers can severly bias results. 

A final point on the difficulty of directly comparing reported results is that the 

application of phonological knowledge greatly improves some of the raw acoustic 

recognition results before they are measured. This is unavoidable since some systems 

have phonological mechanisms built in at the lowest level, while others apply this 

knowledge at other levels -- either explicitly or implicitly (e.g., integrated into the lexical 

entries) -- or not at all. One experiment with the Dragon system has shown us just how 

much action can result, in continuous speech, from this knowledge. When a set of 

templates tor phone recognition, acquired by the clustering algorithm to be described in 

chapter 7, was used, word accuracy of the system dropped dramatically from previous 

results. Yet when new phonological descriptions (all drawn from inspection of the training 

data only) were integrated into the word lexicon, performance was improved to better 

than 957. over a separate test set of sentences.^ 

There are, therefore, a variety of reasons for the relative lack of comparative 

studies at this (or other) levels of speech understanding systems. The least that a look at 

the current efforts can show is the essentially central nature of the parametric 

representation, the important role often played by pattern classification techniques, and a 

fairly broad consensus on the rob of acoustic-phonetic analysis in the total understanding 

task. 

4.2 Ltrge Systems 

The following descriptions are, of necessity, very brief. We cannot hope to do 

justice to the great deal of effort and knowledge that has gone into these programs. We 

are merely trying to gain a general understanding of the nature and quality of recognition 

at the lowest level of a number of current speech understanding systems.   In a number of 

t Clearly the prior lexical entries contained valid phonological descriptions of the words in 
terms of the old templates, but when a new set of templates was introduced, a new 
phonetics was introduced, hence the need for a new phonology. 
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cases, labeling accuracies are cited for classes of sounds such as vowels or fricatives. We 

do not know how many phones are contained in each of these classes, so we cannot 

recommend detailed cross-comparisons of these results. 

4.2.1 BBN Speechlia 

The Bolt Boranek and Newman Spoechlis system [Woo74, Woo75, SchR75] acoustic- 

phonetic recognition procedures are based upon a lattice data representation used 

throughout that system, which allows alternative segmentation and labeling decision« to be 

maintained, They have chosen a number of fairly feature-specific parameters (i.e., 

designed to capture specific phonetic features) which are input to a set of heuristic 

decision procedures. The stated philosophy is to deal with the inherent ambiguities in the 

speech signal by allowing ambiguity in the recognition process. First, segment boundaries 

are located by looking for clues in any one of a set of special segmentation parameters, 

then labeling is performed on a different set , averaged over the central half of each 

segment. This produces a broad class label from [Sonorant, Obstruent, Fricative. Nasal, 

Plosive]. Finally, class-specific decision procedures are applied to identify each segment 

as one of a set of 36 phones. 

Hieronymus reports segmentation accuracy of about 57. missing and 57. extra 

boundaries on a small set of data. Labeling accuracy is about 917. correct vowel 

identification within three choices. Formant tracking and speaker normalization functions 

are employed to benefit here. It is not known whether this accuracy figure includes cases 

where the vowel identification routine was not invoked because of an incorrect class label. 

This does appear the most sophisticated aspect of their labeling. 

In general, the structure of the program seems interesting, the invocation of special 

tests, formant normalization, and the alternative segment structure being often cited as 

t LPC parameters such as formant frequencies seem to play an important role in both 
processes 

■f Vowel identification (presumably after the vowel segment has been located and classed 
as such) is often cited as an important statistic. It «ometimes is the only labeling process 
that can be separated from segmentation or phonological analysis. 
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powerful techniques to be applied at this level. However, we suspect that these 

preliminary results should be treated carefully unt.l more detailed performance analysis is 

forthcoming. 

4.2.2 CMU Hearsay I and II 

There are three systems being developed at Carnegie-Mellon University: Hearsay I, 

which is not being carried any further, Hearsay II, the research system for a great deal of 

the current effort, and Dragon and related systems, developed by Baker [BBKJK75b] and 

extended by Lowerre [Low76].  We will discuss Dragon later in this chapter. 

Hearsay I [Red73] was developed to test the Hypothesize and Verify paradigm as 

well   as  to provide   a  system  which give relatively great  importance  to  higher  level 

Knowledge sources.   The acoustic parameters are six derived parameters based upon the 

amplitude and zero-crossing measures from octave bandpass analog filters {ZCC mentioned 

earlier).   A pseudo-phone (PP) label is placed on the signal every 10 ms.   The stream of 

PPs is smoothed and their broad class membershipst yield a first segmentation.   Then 

acme correction and further segment identification is made using additional parameters 

designed to measure overall energy and locate points of maximal energy such as vowels. 

The same classification function is used to verify phones hypothesized by higher level 

knowledge sources as is used to label the segments.  Labeling is based upon the Euclidean 

distance from the input 10 ms. sample parameters to a set of speaker-specific templates 

for the PPs.   These are trained on a list of ..eutral-context words, one training segment 

per label. 

The acoustic-phonetic processing in Hearsay 1 is fairly crude, and the good 

performance of the system is, to a large extent due to correct application of syntax and 

semantics. 

The procedures developed for use in this thesis research are being employed as the 

parametric level for Hearsay H [Erm75].  Some of the parametric representations which we 

t Silence, Fricative, Voiced 
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test here are currently being considered. This is not a critical design decision, however, 

because of the flexible nature of these routines. The set of phone-like labels for the 

acoustic-phonetic transcription output o* this level are re-processed at a higher level. A 

ret of ternary phonetic features is assigned to each label and weighted according to their 

relative importance. A simple algebra of features and weights is !hen availabl«» to combine 

alternative labels with scores, and to convert back to phonetic labels if so desired. This 

information, along with stress contour analysis to locate syllabic nuclei, location of stop 

consonant patterns in the sequence of acoustic segments, a Kf recombination of similar 

features, produces hypotheses of segments which may overlap in time or have multiple 

alternative labels (much as in the BBN lattice). 

A major concern is to avoid disastrous errors by paying the higher cost of keeping 

many hypotheses around. Thus, the segmentation is tuned to miss as few boundaries as 

possible (approximately 27.). The use of phonetic features at the next level, where 

recombining of segments as well as hypothesizing and verifying of labels is done, allows 

the partial match of correct phones where a less conservative system might reject them. 

A final note about Hearsay II is that it is probably the most flexible overall system 

organization being developed for speech understanding. There is nothing in the global 

data representations nor in the control structures to preclude applying knowledge at any 

time to various parts of the data. Such decisions are made by the knowledge sources 

themselves in an asynchronous fashion. 

4.2.3 SDC VDM System 

The VDM System of System Development Corporation is oriented toward verfying, 

at the acoustic-phonetic level, a string of phones hypothesized by other levels. [Rit74] 

Lexical entries are used to generate phonemic, then phonetic, and finally parametric 

representations of hypothesized syllables through the application of lexical lookup, 

phonological rules, and parametric mapping procedures. Then a syllable mapping process 

attempts to mat«-h the observed parameters with the hypothesized ones. (Actually, word 

beginnings are found in a bottom-up segmentation.) A number of coarticulatlon rules are 

implemented in a very flexible structure. 
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Vowel recognition is reported at 111 for three choices (48^ for first choice) with an 

3dd.tional 117. very nearly the correct vowel. Segmentation of vowels, extremely 

important m a syllahle-onented system was 912 correctly found. Fricatives (except /th/) 

were generally in the 807. recognition range.1" 

As an overall view, there seems to be a great deal of phonological and coarticulative 

knowledge being applied by this system as an integrated part of the parametric 

recognition processes. This makes it difficult to use the reported results in direct 

comparison with other parametric level recognizers. Some experimental results for 

individual pieces of this system are available [M0I74, Gil74, Kam74] but the conditions of 

testing vary in quality. 

4.2.4 MIT Lincoln Labs 

The speech understanding system developed at MIT Lincoln Laboratories seems, at 

this time, to have the most sophisticated acoustic-phonetic analysis of the systems 

mentioned thus far. ^74, Wie74] It is a bottom-up system with phonetic segments and 

labels being produced from the acoustic parameters without help from higher level 

knowledge sources. Essentially, segmentation is performed and formant tracking proceeds 

first. Pitch and frication detection is also done. Then a broad assignment of [Vowel-like, 

Dip, Fricative, Stop] is made, and specialized identification routines are applied. In the 

case of Vowel-like segments, some further segmentation of semivowels and other voiced 

consonants is performed, A final stage merges and edits the various decisions mad« thus 

far. 

The results of labeling vowels are 417. and 69Z for first choice and first three 

choices, respectively. Dips were recognized with 827, and fricatives with 91* accuracy. It 

must be noted that these classes were rather broad. A single class each represented 

nasak glides, and liquids. There was however, careful attention given to testing 

conditions, the data was described in the reports, and one is inclined to believe that the 

above results are reliable estimates of the performance. 

t As more details of the testing were reported, these results may be more reliable than 
some others. 
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4.2.5 IBM Research •- GL0D1S with Speech Knowltdge 

The IBM Speech Processing Group, using the General Language-Oriented Decision 

Implementation System (GLODIS), has implemented a number of heuristic rules for phoneme 

identification. [Dix75a] The inputs to this system are a digital spectrum (from 10 KHz. 

digitized data), and energy measure, a spectral change measure, and the five best results 

of a spectral match function (from a set of 30 to 40 phonetic targets). After application of 

the phonetic, phonological, and prosodic rules, overall recognition accuracy of 61.77. is 

achieved. In broad classes, accuracy is 88.67.. Segmentation results are also reported: 6.9^ 

missing; 10.57 extra. 

A second stage has been added to this system, consisting of a dictionary, statistical 

language model, and probabilistic match. Sentence level accuracy is reported as 85 and 

word level, 987. 8.5 minutes of speech, consisting of 6175 segments were analyzed. 

[DiK75b] 

4.3 Other Models and Systems 

4.3.1 Dragon -- Hidden Markov Process 

In discussing the Dragon system [BakJK75a], we would like to make the following 

observation. In a system capable of utilizing all the results of the acoustic parameter 

recognition, raw labeling accuracy may appear to be very poor, yet the labeling routines 

can support extremely accurate recognition of higher level elements provided the 

"correct" labels are available. The higher levels must also understand the set of labels. 

They must be able to use the results of acoustic recognition optimally. 

The recognition statistics presented later for the BAK distance metric (which uses 

ZCC parameters that have been amplitude normalized) represent the primative decision 

rule performance in Dragon. 88 templates for 33 phone-like labels were found using the 

clustering algorithm described in chapter 7, and Dragon was run on a separate set of test 
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utterances. Very poor results were obtained. However, it was observed that a single 

critical error in one word could abort the entire correct utterance, because of Dragon's 

Markov chain representation and certain unconstrained aspects of the grammar. It was 

imperative, therefore, that the lexicon (in which all the phonological knowledge is encoded) 

include all reasonable realizations of each word so as not to be a source of a critical 

rejection. This was accomplished by studying the low level recognition stream of words in 

their occurences in the training data if the word caused a problem in the test data. 

Essentially, the lexicon was being trained, or rather, word-specific phonological knowledge 

was being acquired, Although only the training data was used to develop this knov.'ledge, 

the results on separate test sentences from a fairly unconstrained grammar and moderate 

sized lexicon (250 words) exceeded the 957. word recognition level. One speaker was 

used for all these sentences. 

Tins experiment serves as an existence proof, then, that correct machine recognition 

of continuous speech can be based upon what researchers have traditionally considered 

low performance at the acoustic-phonetic level. It also poirts out the need to include 

aspects other than first choice statistics in any analysis of labeling performance. 

4.3.2 Dynamic programming 

Dragon has no separate segmentation process; rather, the probability of each word 

in every time interval is carried through the intern?' representation. A similar, non- 

segmenting approach used by Itakura for Isolated word recognition [Ita75, Ich73] is the 

Dynamic Programming model. In this model, stored parametric representations of an entire 

word or phrase are compared against the input. Time justification is accomplished by a 

dynamic warping of time, within certain limits, so as to optimize an overall pattern match 

score. A primitive parameter pattern match rule is still needed, to be applied at regular 

intervals (15 ms.) and Itakura introduces the minimum prediction residual — the log 

likelihood ratio of one interval of the signal being predicted by the LPCs derived from the 

corresponding template interval. 

The  results  of  extensive  experimentation with this system  were  97.37. correct 
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recognition (1.657, rejection) over 2000 test utterances compared ..gainst 200 template 

utteraices. The utterances were Japanese geographical names of 0.6 seconds average 

duration.   [Ita75] 

We mention this program even though it differs in many ways from the task and 

structure of the continuous speech understanding systems. It, like Dragon, demonstrates 

the power of a simple, uniform model for applying the results of parametric level 

recognition, and it presents an interesting use of the LPC model to directly estimate 

similarity of acoustic signals. It is not clear whether this approach could be extended to 

continuous meech, or even whether results would be good over a different set of 

utterances. But this clearly fills in one more point in tKe space of current technology 

available for certain speech understanding tasks, 

4,3.3 Other Efforts 

Two othei efforts deserve a^ least brief mention. Hess 0les74] reports a pitch- 

synchronous approach to parameter extraction. With pitch synchronous non-harmonic 

analysis (apparently similar to some of the LPC methods) he is able to do careful formant 

ti «tcking. Segmentation produces alternoiing steady and ti ans'tion regions with labeling 

accuracy reported at 857. to 907 over a set of 24 labels, (These are results of testing on 

the training corpus, about 1700 segments.) 

Haskins Laboratories [Mer75] has been developing strategies for parametric 

recognition by studying human protocols on certain spectrognm reading tasks. From this 

they have developed Phonetic-Context Controlled methods for segmentation and labeling. 

The results of human performance for spectrogram reading include location of reference 

words in similar context', and in different contexts and phuneme identification without 

.reference spectrograms available. [Coo74] While these showed 707. to SOt reference 

word identification, and about 70^ phoneme identification, correct words were found only 

507. in the third experiment. In addition, the language used was English (presumably the 

language most familiar to the subjects) and thus use of higher level Knowledge could 

-     --■•%* -*-' Piwn^        m   — < ip .   i« -«. 
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hardly have been avoided.   Indeed, acquiring this knowledge was a large part of the Intent 

of the experiments. 

4.4 Human Performance 

The implications of human performance IO designers of speech understanding 

systems have often been misunderstood. Shockey and Reddy [Sho74a] point out two 

phenomena found in the discussions of human performance and computer speech 

recognition. The over-expectation phenomenon results in a tendency to expect too much 

from machine recognition at certain levels (such as the parametric analyses studied here) 

because humans seem to do so veil. Under-expectation occurs because of the poor 

results in the past, and has led a very great reli?nce upon lexical, syntactic, and semantic 

constraints. The suggestion is that a balance should be struck. At the acoustic-phonetic 

level, one ought not expect recognition of things that are not fh.jre (acoustically). Neither 

should one forgive not recognizing things that are present in the acoustic parameters. 

The problem in performance analysis at this level is, therefore, to determine just what is 

present. This appears to be a strong plea for an acoustic approach to segmentation and 

labeling, leaving phonology and phoneme recognition to other knowledge sources. This 

approach is supported by the results of the experiments with connected speech 

transcriptions of unfamiliar languages reported by Shockey and Reddy. These results may 

serve as another point in the performance framework with which one may view the work 

at this level. 

Fifty short utterances in 11 languages were recorded. Ten of the languages were 

unftmiliar at all levels (even the phonological level) to tfn subjects. Correct identification 

of phonetic elements was measured for transcriptions ma.le by the subjects, who were 

expert at phonetic transcription techniques. The st.muli were auditory speech, 

spectrograms, or waveforms. Accuracy of identification into 70, 14, and 5 classes was 

measured. Auditory input supported results of 562, 66Z, and 787. for the three sets of 

classes.   Spectrogram and waveform were both very similar at about 247., 467., and 67%. 

■^tw^y    •mm    — 
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In the light of reported vowel identification results of some speech understapding systems, 

it is interesting to note that the computers are doing better than phonet'cians working 

with spectrogram or waveform data and about as well as auditory perception. When 

vowel performance was compressed into 6 overlapping classes: high, mid, low, iront, 

center, and back the results were about 66/,, 417,, and 467. for the three prerentation 

media, respectively. 

A different approach to studying human performance on spectral parameters was 

taken by Klatt and Stevens [Kla72]. Here spectiograms of unknown English sentences 

from an unknown but fairly simple grammar anc vocabulary W9re used in transcription and 

word identification expenm«?"»^. The object was to study the methods of search, 

particularly at the lexical lookup interface. Total segment identification performance was 

reported at 337. correct, 407 partially correct, 177. in error, and 10Z OMitted segments. 

Vowel and consonant identifications were each similar with the exceptior, of a much lower 

omission rate for vowels. An interesting result of the study of lexic«! interactions was 

that most of the searches initiate did not yield the correct word. However, after 

extended interaction, (and obviously application of some higher level knowledge) word 

recognition was improved to 967., 

There are a large number of other experiments which deal with issues of human 

perception of speech, although they are often intended to reveal aspects somewhat 

irrelevant to this dissertation, such as the perception of altered speech, superimposed 

sounds, context, dialect, speed, or stress. We am concerned here with the much more 

basic problem of robust acoustic identification and segmentation. However, human 

perception performance does serve as another point in the space of speech understanding 

systems, as well as an existence (or, sometimes non-existence) argument for certain 

acoustic-phonetic correlations. Ladefoged [Lad69], in discussing perception of vowel 

quality, points out a great deal of ambiguity in the way vowels are perceived and 

described by phoneticians and linguists that seems to invalidate much of the dettiled 

analysio of vowel quality as being descriptive of real physical phenomena.   Dealing with 
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specific acoustic gestures (with whatever phonetic correlates th^rnay possess) is more 

reasonable than attempting to do phonetic or phonemic recognition. Structures and rules 

such as MarKov chains, Sniffers (SDC), dynamic programs, etc., may have little to do with 

the kinds of things traditional linguists have studied, yet may be better oriented to 

computer understanding of speech. It is rot at all unreasonable that in the context of 

different systems (from humane) and different acoustic representations, the optimal 

phonetic classes and types of segments may not be the same as those defined by 

traditional phoneii*:. 

4.5 Summary 

In thr. chapter, we have presented some of the results and relevent aspects of a 

variety of phone recognition components from a number of current speech systems. 

Direct comparisons are very difficult, although some have been made. [Hie75] There is 

wide variety in the types of knowledge used, the representational level for output, and the 

expectations and system demands which characterize these recognizers. 

From these descriptions it may be possible to form a picture of the uses to which 

parametric l^vil analyses will be put. It is impossible, however, to form in accurate 

estimate of the performance expected at the state of the art today. Depending upor 

conditions of testing, knowledge sources used, level of represention, etc., tf.e reported 

accuracies may vary a great deal. There are a few existence proofs, even so, that may 

indicate that the state of the art is approaching a point where genaral connected speech 

understanding will be possible In a number of limited domains, very high «ccurr.y and 

e/en real-time resr^nsmay be achieved. 

-—■-"» -»— .1. •—•-, ■«■ .p* 
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Chapter 5 

Segmentation Procedures 

This chapter presents a method for segmenting speech into acoustically uniform 

segments. The algorithm is relatively independent of the choice of parametric 

representation (except for the use of one amplitude parameter specifically as s'ich). The 

basic operation is the application of a distance metric to petterns adjacent in time. A 

special metric has been devised for this purpose. A second aspect of the method is that it 

employs a number of different decision functions. 

5.1 Role of Segmentation 

'here is a very strong interdependence between the performance of segmentation 

and of labeling at the acoustic level and, indeed, at higher levels. The dependence 

operates (in one sense) because of the need for labeling to be performed on the "target" 

areas of the signal — those portions of the phonetic gestures' duration in which the 

articulators are closest to their intended positions, during which the excitation source is 

most stressed and steadiest, and during which coarticulation effect may be minimized. In 

the opposite sense, interaction occurs because segmentation is highly der rndent upon 

context. As simple a cue to segmenting as amplitude or energy in the signal is much less 

meaningful during strong fricatives, such as /s/ and /z/, than during most voiced segments. 

In the former cases, amplitude may carry no phonetic information at all. In the latter, It 

often signals some important change, such as a vowel/glide juncture, and may be the only 

robust signal of some pathological cases. Thus the information gained in classifying the 

phonetic context of an acoustic change in the signal can be very important in determining 

its relevance to phonetic changes. 

Different approaches have been taken in a number of speech recognition programs 

to deal with this interaction. The Hearsay I system [Erm74b] attempted to do labeling 

first, by placing acoustic labels on the signal at regular, short intervals. The string of 
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acoustic labels was then smoothed, and points of change in the nature ** the labels were 

located. Additional information, such as amplitude and the location of amplitude peaks and 

dips was also used to n, prove this label-driven segmentation. After changes in the gross 

signal type (voiced, fricated, silence) were located, voiced segments were further 

subdivided using the amplitude clues. 

Another, very different, approach [Ita75] is to ignore segmentation entirely as a 

separable process. Rather, a dynamic programming problem is postulated for solution. In 

this problem, short time windows at regular intervals are matched by means of some 

general matching function (labeling), the two intervals for each match being taKen from the 

input signal and from a stored template. Within certain constraints, time may be warped so 

♦hat different regions of the unknown are matched with different regions of the template 

(segmentation). The solution to the dynamic program is the time warping which "best" 

aligns the two signals; the solution also provides a rating of their match to be compared 

with those of other templates. 

Both of these methods, as well as other, similar approaches have been successful in 

limited speech understanding systems. However, acoustic level input to a speech 

understanding system of more general scope must take another point cf view. Crude 

segmentation may be sufficient for tasks with small vocabularies and high degrees of 

syntactic and semantic suppor;. No segmentation at all is a possible approach in 

recognition of short uttei ances (single words) where the advantages of a uniform 

algorithm are not overweighed by an excess of computational and storage requirements 

nor by the chanc^ of significantly wrong paths being taken in the "search" for an 

appropriate time warping. However, in dealing with continuous speech over weakly 

constrained subsets of natural language, the difference between two semantic outputs may 

rest upon locating a few glides and nasals as separate entities from the surrounding 

voiced context, or may rest in ignoring large intervals of irrelevant signal (silences, 

offglidos, etc.). in fact, an accurate segmentation is more than half the battle In many 

cases, since an accurate account of the numb and general nature of the phonetic 

elements can greatly reduce higher level searches. 

 ••-X*^--'^r^»rwi 
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5.2 Present Segmentation Method 

For such reasons, we have been investigating the feasibility of segmentation-first 

machine transcription. In addition, such machine-produced segments provide a realistic 

test of labeling performance for the different parametric representations. In actual 

practice, a parametrization of the input signal must support both processes of 

segmentation and labeling. If critical errors are made in either, the total performance will 

suffer. Because the choice of representation is a very open question, we have attempted 

to develop algorithms which are, to a large degree, parametrization-independent. Although 

certain prosodic parameters are necessarily assumed and relied upon within the 

algorithms, the general approach has been to develop segmentation and labeling at a level 

where various representations are treated in a uniform manner. Thus, the programs that 

result are also useful research tools for this comparative study. 

5.2J. Detecting Change 

The basic concept of segmentation is very similar to the well known signal detection 

problem. (A more detailed  tiscussion of this model is presented in the next chapter.) In 

tl-.is case however, the signal to be detected is "significant" change. Given some function of 

time which measures change and which can operate within a small time window on the 

input   signal,   we   can  postulate  two  distributions  of  values  for   that   function:    those 

correlated with times of acoustic or phonetic change, and those correlated with times of no 

relevant change.   Unfortunately, the form of these distributions is not available a priori, 

although we may not care about their form. So long as a change measuring function is 

available which produces significantly different (higher) values at just those times when 

changes are occurring in the phonetic state of the signal, the segmentation problem may 

be solved. The actual distributions are useful, in signal detection, for choosing optimal 

thresholds for the detector. Given the costs associated with type I and type 11 errors, one 

can balance the decision. However, the costs are not really known here, since they may 

■y'-'wjw.wi—y     n, ■ 
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rest upon much higher level considerations uhe phonetic similarity of two semantically 

different words, for example), We would hope to learn enough about the change function 

from empirical analysis for our purposes. 

From the previous discussion, it appears unlikely that any one measure of change 

will  suff.ce for the segmentation of continuous speech since the changes  are context 

dependent.   To look at the problem from a pattern space point of view, different regions 

of the pattern space wijl change in different ways.  The intra-class distances of samples of 

/s/. for example, have been found in some parametric representations to be much greater 

than those of /n/( and they vary in different elements of the patterns.   We can take this 

view   further   and   rely   upon  a   distance   measure  in  the  pattern  space   to   compare 

neighboring   (in   time)  patterns  of   the   input   signal  and  to  rate   the   likelihood   of   . 

phonetically significant change. In addition to merely rating the likelihood of change, we 

wish to locate N in time as accurately as possible.   If tne resolution wüh which we look at 

the signal is fine enough, we may assume that neighboring high values in the di6t«nce-of- 

neighbors function relate to the same segment boundary, and we ought, thus, to choose 

the time of the highest value, the local peak. 

5.2.2 Multiple Decision Algorithm 

Since the following discussion goes into the details of the segmentation program, the 

reader may wish to skip the rest of this section after looking at figure 5.1 for a general 

idea of the method. 

The f.rst approach [GolH74] was to employ a single decision function which 

cor. bined measures of both short and long durat.on changes. This proved to be too 

inflex.ble. No simple threshold could be found on such a composite function to separate 

change-related from non-change-related peaks. If this were because the distributions of 

peaks both at segment boundaries and not at boundaries were identical, then the function 

would be useless. However, we found some value in the function if it was employed with 

different thresholds, and with varying resolutions in time, during different portions of the 
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signal.    It  appeared that the distributions were overlapping significantly because they 

were composites of different kinds of phenomena. 

The current segmenter, therefore, first attempts to locate points of major change in 

the signal source and in amplitude. Then less robust functions are used to segment within 

these broadly separated regions. Additionally, some correction rules are applied to adjust 

certain cases where two functions do not quite coincide in the time-placement of segment 

boundaries, but where they are both clearly responding to the same signal change. The 

following discussion describes the philosophy of combining evidence from a number of 

segmentation functions, the decision functions themselves, and the correction rules. Then a 

discussion is presented of the training of thresholds and the rating of segment boundaries. 

t * t 
Figure 5.2. Speech/Silence Detection 

As the first stage (see figure 5.2), speech is separated from silence segments by 

locating those times when the amplitude parameter has dropped below a threshold, Tl. If 

the amplitude also falls below a second threshold, T2, at some point in the segment, It Is 

accepted as a silence region. (The acquisition of values for Tl and T2, as well as 

thresholds used by other levels, will be discussed later.) The amplitude parameter plays s 

special role in the segmenter. Because of limitations in the accuracy of digitization, as well 

as inherent shortcomings of the methods, many parametric representations are unreliable 

at low amplitudes. It is important that the regions of the signal be located where analysis 

can be done with greatest confidence. Moreover, amplitude carries important 

segmentation information which ought not to be overlooked when, for reasons of 

normalization, it is often removed from the parameters. 
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Within the regions identified as silences, a third low threshold T3 is applied from 

either end of the segment to separate onset and offglide regions, or very low amplitude 

nasals or fricatives, from true silence. These regions may belong "phonetically" with 

neighboring, higher amplitude segments, but have been divided by the application of 

threshold Tl from the main part of the speech region. It is a serious question whether 

this sort of segmentation is an error for a mechanical segmenter. Our goal in machine 

segmentation ought not to be to duplicate hand segmentation of phonemes, but rather to 

isolate those locations in the signal which will best support labeling and will provide as 

accurate and reliable a map of the acoustic reality of the signal as possible. Higher lave! 

rules in the speech understanding system can then deal much better with the problem of 

fitting phonemes to the acoustic labels and segments. Therefore, in isolating the low 

amplitudes, offglides, etc., from both speech and silence, we provide for their possible 

recognition as separate segments (a final nasal perhaps), and we ensure that labeling of 

the speech segments will be performed as higher amplitude signals, where more accurate 

classification may be expected. The above premise, that performance of the acoustic level 

of speech understanding must be measured at that level and that one cannot expect 

certain kinds of recognition behavior from the simple, local algorithms one encounters 

there, u very central to our approach in this research. Ws will meet it again in other 

contexts. 

There is one other speech/silence boundary phenomenon which must be dealt with 

at an intermediate level. Flaps will not, in general, drop in amplitude to a level where the 

silence detection described above can detect them. However, the flap does have a very 

particular kind of amplitude contour. (Figure 5.3) Thus, in the speech portions, abort 

periods of amplitude below a threshold T| togethei with preceding drop TD and succeeding 

rise Ts are isolated as flaps. Only durations of 10 or 20 ms. are considered. We have 

observed that flaps of longer duration are adequately detected by the other functions of 

the segmenter. Moreover, it is a point of phonological debate when an intravocalic stop 

consonant is really a flap. Thus the program only labels as flaps such stops of 20 ms. 

duration or less. (The coarseness of the resolution, 10 ms., may allow stops of 30 ms. to 

be detected.) 
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>L >I 

Figure 5.3: Flap Detection by Amplitude Contour 

From this point on, a number of detection functions are used. Figure 5.4 displays 

some typical ones, as well as the hand and machine detected boundaries. 

At the second stage, the speech regions (between silences and/or flaps) are subject 

to the first decision function, V«. This may be any acoustic distance function. In this case 

it is a vote-for-change function computing in the following manner: the difference of 

successive parameter values, |Pj(t)-Pj{t-l)|, is composed with a threshold Rj, where 

i-1...(number of parameters). If the threshold is exceeded, a vote of 1 is accumulated. The 

acquisition of Rj will be discussed later. This function will peak at a time when the 

parametric representation is changing in a number of its element?. The local peaks above 

threshold Tf are considered strong candidates for boundaries of significant change In 

signal type. 

At this point a third decision function, Va, is applied. This is the magnitude of the 

change in the amplitude parameter between t+1 and t-2. This larger duration measure 

was adopted because the object of this level is to find fairly major boundaries between 

voiced segments, such as vowel/nasal junctions and even certain vowel/stop boundaries 

which escape the previous function because the patterns are similar In overall type. It 

was found that using shorter duration amplitude changes introduced too many spurious 

decisions while a longer span would confuse amplitude changes of a gradual nature with 

shifts that signal phonetic change. 

By now, boundaries of three different types have been found, major silence/speech 

■   • •-•■ r~ ""^ ^' '»».I nw^i    «. 
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Figure 5.4: Some Detection Functions (and Amplitude) 
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junctures, points of major change in signal types, and significant changes of amplitude 

within speech segments. The final decision level deals with slow changing boundaries of 

the kind encountered in vowel/glide junctures or in diphthongs. 

By the time segmentation has proceeded to this fourth function, we may assume that 

all the obvious boundaries have been detected. Therefore one ought to take a general 

look at the input patterns in order to detect changes which persist for a length of time. In 

addition, some errors of omission from higher levels may be corrected here. Such a 

situation as an /I//z/ boundary, where, because of the high third formant of the /I/ and 

the voicing of the /z/, as well as similar amplitude levels, an obviously important boundary 

is missed, will be corrected by a function that is more sensitive to the acoustic change in 

question. Consequently a difference threshold, Sj, is applied to each of the pattern 

channels and a vote sum, Vs, is taken similarly to that of level two. 

The differences above are taken between the input patterns at times t+1 and t-2 

for reasons similar to those concerning the amplitude diffe-ence function V,. This function, 

Vs, is intended to detect slow changes in the signal, the windowing gives a 30 ms. span to 

the observation of change. 

There are a number of situations where two or more of these functions respond to 

the same change phenomenon yet locate it at slightly different times. This may occur 

because the different functions are sensitive to different portions of the pattern, or 

because of scaling or windowing considerations of the particular parametric 

representation. Therefore, after the various levels mark the boundaries, correction rules 

are applied. For example, speech silence (level one) boundaries may be corrected 10 ms. 

to the location of level two boundaries in situations where speech is going to silence. (In 

speech onset cases, one cannot afford to miss short burst segments by correcting this 

way, but in off-glide cases, there are no such short segments.) V, and V, boundaries, 

being responses to phenomena spread over 40 ms., may differ by 20 ms. and be corrected 

to the point in this region where a general difference vote function is highest. These 

correction   rules   have  been  developed  in   an  empirical   manner.    However,  we   have 

. 
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attempted to maintain a sense of justification for any such rule. The limitations of a 10 ms. 

time-resolution also justify the assumption that errors will consistently be made in the 

time location of more gradually changing boundaries. 

Issue might be taken with the use of thresholds in so much of this process. One can 

never rely completely upon thresholds to perform under varying conditions. However the 

data to be used in this study has been accumulated and analyzed under fairly consistent 

conditions, with regard to noise, gain, and microphone characteristics. This «sumption of 

consistent data should not affect the more general applicability of these methods, since 

amplitude and spectral normalization techniques are fairly commonly available. For 

example, Itakura gives a method of normalizing the long-term spectra which essentially 

models the transducer characteristics with a two variable linear equation. [Ita75] 

5.2.3 Training 

At this point we should discufs the problem of training- that is acquiring values for 

the various thresholds and weights mentioned above. It is important to the goal of this 

comparison that these values be acquired in a uniform fashion for all parametric 

representations. Uniformity was equally important in order to maintain some detachment 

from tue initial test data upon vhich the segmentation program was developed. 

The functions Vf and Vs depend upon vectors of thresholds. These have been 

derived empirically from a corpus of training data which is segmented and labeled by hand 

It consists of 27 separate utterances of continuous speech of about 3 or 4 seconds each. 

Given a parametric representation, P^t), where time, t, advances one unit each 10 ms., all 

the times at which hand segmented boundaries occur (within the 10 ms. resolution) ere 

considered. At each such time, t, the differences, dj
1-!Pi(t)-Pi(t-l)| and di

2-|Pi(t+l)-Pi(t-2)| 

are cslculated. The greatest dj1 and dj2 are 'oen collected by assigning the threshold R, 

to be the least such dj1 and Sj the least dj2. Although a large amount of data may be 

thrown away, this selection ensures that only the most significant parameters in the 

representation are given low vote thresholds.  Clearly, however, this method is sensitive 
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to any errors in the hand segmentation, and great care has been taken with the training 

corpus especially. 

The calculation of V* Val and Vs is thus dependent upon the training corpus only. 

The next step is to describe a method for finding *he detection thresholds, Ta, Ta, and T$ 

used to accept or reject peaks in these functions as signifying segment boundaries. Signal 

detection theory can help us derive optimal detection thresholds from statistical analysis 

of the stimuli. A typical detection model postulates a umvarlate measure, L, of the stimulus 

that relates to the two events, signal-plus-noise, S, and noise-only, N. Very often, a 

convenient measure is the ratio ^{Slinputj/PrlNlinput}. It is further assumed that the 

distributions of L|s and L|N are distinct, very often idf-ntical except for different means. In 

standard studies of signal detection, L cannot be accessed. Rather the forms of the 

distribution are ass'imed, and the actual performance of the detector is used to measure 

the difference in distribution means. The basic model shows that performance, as 

measured by both Pr {detection |S} and Pr {detect on|N}, can be optimized for any set of 

costs. As we shall see in the following chapter, when we discuss the signal detection 

model further, the choice of threshold is really an arbitrary tuning device. The choice of 

decision function has thi> primary effect on performance. 

In the segmentation program described above, the signal (boundary) measure is 

known, and we may collect distributions empirically. Therefore histograms were collected 

over a corpus of training utterances to estimate the distributions Pr {L|S} and Pr {L|N}. 

Since the measures Vj, Val and Vs are coarse in time, a peak was considered to correlate 

with a boundary (S) if it was within 10 ms. of the hand marked boundary. The histograms 

of local peak values within 10 ms. of segmental boundaries estimate Pr {l\t] for L-V^, Va, 

or Vs. 

At this point, we had to decide what costs to assign to errors and what confidence 

to place in the histograms. The distributions all had the same approximate shape, although 

somewhat different apparent variances and different means. Since the means of the 

populations could be estimated with the most confidence, the thresholds were chosen to 
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be halfway between the two distribution means. This corresponds to the model with equal 

variances, same distribution, and equal costs— a simplification of the observed situation. 

The figure (5.5) shows some empirical distributions for the SPG representation and a 

possible threshold value for one of the three decision functions. 

Noise a reasonable choice 
for threshold 

Peak Height 

Figure 5.5: Choosing Thresholds 

Finally, the acquisition of the thresholds for silence and flap detection has been 

more ad hoc in nature. Amplitude values wera collected over the training corpus for 

silence segments within utterances (which might be more noisy than inter-utterance 

silences). The mean and standard deviation were computed and Tl (the boundary locating 

threshold) is assigned mean and standard deviation. T2 (silence verification) Is mean, and 

T3 ( low amplitude segment location) is the mean of amplitude readings over silence, /b/, 

/d/, and /g/ segments, tending to be slightly higher. 

The flap thresholds were chosen by observing the behavior of the amplitude 

function in a small number of cases. The flap is a rare enough phenomenon so that it Is 

dilficult to collect adequate statistical Information about it. Moreover, since flaps are one 

specific performance and occur in limited contexts, it 's unlikely that the observed patterns 

were not representative. 
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5.3 Summary 

We presented the outline of a segmentation procedure. The details provided are of 

interest only to those who may be involved with speech segmentation. However, the 

general scheme should be of interest to othe:s. Speech may be separated into broad das» 

regions firsi -- silence and speech, or if voicing can be detected, silence, sonorant, and 

fricated speech. These regions require different types of segentation activity. However, 

most of that activity can be based upon a simple detection process with very good results. 

We have introduced some rather ad hoc methods of training, which still work well. One 

reason for this, is that the choice of detectioii thresholds is guided as much by the 

requirements of the speech systemas regards the missing-extra trade-off. Thus, the 

tuning of thresholds is a job for the system designer. 

-^ ■•« * «i.i »#»i-^. 



Chapter 6 

Segmentation Performance 

In this chapter, we will deal with some of the problems involved in evaluating 

segmentation accuracy. The difficulty of obtaining a correct standard for comparison with 

'.he machine determined boundaries, the nature of various types of discrepancies between 

the machine boundaries and the standard, and a normalized measure of accuracy of 

segment detection which is derived from vgnal detection theory will all be discussed. We 

will also present the results of segrv »ing continuous speech employing the four 

parametric representations chosen and described < <.riier, ZCC, SPG, ASA, and ACS . 

Finally, some «xperiences with the use of the segmentation algorithms, as well as case 

analyses of particular interesting "errors" are included. 

6.1 Evaluating Segmentation Errors 

Errors in segmentation of continuous speech must be considered in the light of 

reasonable expectations. If a segment boundary is actually indicated in the acoustic input, 

then it ought to be detected. In a like manner, indications of boundary-like change that do 

not correspond to phonetic boundaries should be accepted as legitimate results of 

segmenting without higher level knowledge sources. Alternatively, boundaries that are not 

indicated by some change in the acoustic signal (such as the nasal/nasal juncture in /sono 

milk/) should obviously not be expected from a segmentation procedurr which only 

examines the acoustic parameters. Another, equally important, consideration in evaluating 

a segmenter is the effect of its errors on the overall speech understanding system. Some 

speech understanders are more sensitive to missing segments (boundaries) while others 

will handle these well, bi-» become overloaded if too many extra segments are "detected". 

If the above statements are taken as a definition (or description) of the kind of 

discrepancy between standard and test transcriptions which we wish to consider an error, 

t using Itakura's distance measure 
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then a problem arises with respect to the usual structure of hand transcriptions of 

continuous soeech. The transcription process is very often one of successive refinement 

and, consequently, descent through the "levels" of linguistic elements. First the words are 

considered, and approximately fit to strong features in the signal. Then an attempt is 

made to fit the . vandard phonemic spellings of each word, with corrections being made 

whenever phonological or phonetic interactions are detected. Finally, if the transcription 

is at a sufficiently fine level, the short-term «xcustic nature of the signal is used to infer 

sub-phonemic segments (sometimes due to co-articulation effects) as well as phenomena 

which might not be explained by accepted models of speaker or language, but which can 

be justified by the acoustic data. The transcription may, therefore, have segment 

boundaries which are justified by strong or weak acoustic cues, by phonemic expectation, 

by phonological or phonetic rules, or by any combination of these factors. Thus, when the 

machine segmentation misses such a boundary, we must determine what kind of a 

boundary it is to determine whether an error has been made. Likewise, when we have 

marked an extra segment »rror, we must be sure that there is really no justification for a 

boundary at that point in the utterance. We are often not in control of the source of the 

hand transcriptions used for evaluation standards. These may also be used for other 

purposes, and, since they are costly to acquire, may have to include the kinds of 

information just mentioned. 

In a paper describing their segmentation and classification evaluation system [Sil75], 

Silverman and Dixon discuss the difficulty of acquiring standard (referent) transcriptions of 

continuous speech. This difficulty is compounded by having different sots of 

phonemic/phonetic elements. For example: /ch/ versus /t/Zsh/, /t/ versus /-//t<bur6t>/, 

or /el/ versus /e//I/. Their philosophy appears to be similar to ours in that they consider 

sub-phonemic segments when evaluating, but only insist that phonemic segment not be 

missed. They also collect statistics on missed and extra segments, with the addition of 

separate statistics on displaced boundaries. These are defined by specifying alternate 

transition and steady state regions and declaring segments to be properly placed If they 

fall within the appropriate region. Segmentation errors can be reported Individually for 

each phonetic label. 
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In her dissertation involving a new acoustic analysis method [BahJM75], BaKer 

evaluates the performance of five segmentation programs on a small set of sentences (5 

sentences -- about 200 segments). Her evaluation was performsd by hai.H «nd extremely 

careful measurements were made of the mislocations in time for various classes Of speech 

sounds, as well as the usual missing and extra counts Her philosophy concerning what 

boundaries are important agrees very well with ours, as well as Dixon and Silvermen's. 

Thus we may compare all the segmentation results from these two sources with our own 

and each other. The following caveat must be offered, however. A number of the routines 

tested by Baker were in the early stages of development. In addi'.ion, the quantities of 

data are very small to draw any far reaching conclusions. Finally, some way of normalizing 

for different decision criteria, which lead to large amounts of trade-off between extra and 

missing segments, must be applied. The following section on a signal detection model will 

provide such a normalization. The Results section of this chapter presents both our "»wn 

segmentation performance and what we feel is an accurate interpretation of the other 

reported performances. 

One way to rectify the problem of acquiring good standard segments is to use two 

transcriptions (possibly derived from one another). One should contain all the segments 

that might ever be justified (the union of the various descriptive levels). The other should 

contain the segments that are both acoustically and phonemically justified (the 

intersection). A set of segmentation boundaries, M, are evaluated by comparison with 

these two standard transcriptions, HI and H2, in the following way.  (See figure 6.1) 

Hand 1       ..>v..»v >v .«...>> ft....*. 
Hand 2       ..ft..ft.ft ft ft... .ft.ft... .ft, 
flach i no     ft ft »v.... ft ft. ft.... ft. 
Error ..tl X X X  

Figure 6.1: Evaluating Segmentation 
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Given a margm of admissible (rror^ an EXTRA segment boundary is recorded if 

there exists a boundary in M at time t but none in either HI or H2 in tne Interval [t- 

margin.Umargin]. Similarly, a MISSING segment is recorded if there are boundaries in HI 

at tl and H2 at \2, (fl-t2|<margin1 and there is none in M in the interval [mm(tl,t2)- 

margin1max(tl(t2)4margin]. Obviously, when H1-H2 this^ becomes an obvious comparison of 

two sets of segment boundaries. 

This technique has allowed us to use hand transcriptions which are actually rather 

inappropriate for segmentat.on performance evaluation.   However, there are, In any corpus 

of continuous speech, a number of segments which may be best described as transients. 

Unless the hand transcription has some indication of these, their detection by a machine 

segmenter will show up as extra segment boundary errors.   While many such transient 

segments are indicated, a careful inspection of the extra segment errors discovered about 

300 additional segments in a corpus of about  1000 primary segments which were not 

originally marked in even the careful hand segmentation we have available for this corpus. 

The number of EXTRA segments is usually not as critical to system performance as the 

number of MISSING segments.   However, each serves at least as a counter-measure to the 

other.   We will observe, in the following section on s.gnal detection that the response 

characteristics of a subject in a series of detection trials will trade off correct positive 

with correct negative responses.   Similarly, one can tune the segmentation algorithms to 

deliver many more segments, thereby increasing the number of EXTRA and decreasing the 

number of  MISSING segment boundaries.   So the two statistics must be considered in 

conjunction to determine the detectability of segment boundaries. 

An additional test was added to the evaluation routine described above. This test 

checks for pairs of MISSING and EXTRA errors which 1) are close together (e.g. s30 ms.) 

and 2) have no intervening hand segment boundaries indicated in HI or H2. These pairs 

may be taken together as cases of misplaced boundaries since, if there were any other 

significant phonetic change in that region, it would be indicated in the hand segmentations. 

t Wo are using a margin of 10ms. 

"* —* —*« 
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This correction to the statistics is made after the entire utterjnce is examined for missing 

and extra boundaries. 

A final point concerning evaluation of segmentation is the place occupied by hand 

evaluation. We have had to rely, for some of the evaluation fidelity, upon hand inspection 

of the waveforms. This has been necessary to determine how critical the errors may be 

and wtvt.ier, in fact, they are errors at all, rather than mistakes in the standard 

transcription or cases of non-acoustic boundaries with no acoustic correlates for missing 

segment errors, or the reverse for extra segment errors. This is especially important 

because of the low percentage of boundaries which are missed, and the consequently 

large effect of each incorrect evaluation decision. The MISSING segment errors are typed 

as Type 2 if they are critical to recognition or if the acoustic cues are c'early present end 

there is a significant phonetic juncture In the area. Type 1 represents less critical 

boundaries. Often the lack of a segment may be explained by some reasonable phonetic 

theory of the speaker's performance. In other cases the boundary has been detected, but 

at a different point in time. Often, with slow transitions, the exact time location of 

boundaries is impossible. Type 0 errors are usually cases where the standard 

transcription is in error or is not acoustic in nature. These are boundaries which we 

cannot expect the segmenter to detect. In the case of extra segment boundaries, we have 

marked as type 1 those boundaries which appear to have no acoustic validity upon 

inspecting the waveform. Type 0 EXTRAs are, again, places where the standard 

transcription is a non-acoustic description, at best. The cases presented in Appendix SI 

may serve to indicate the kind of problems one will encounter in dealing with continuous 

speech - no matter how carefully one thinks the standard transcription has beeri prepared. 

They will also give an idea of the performance of the segmentation algorithms which we 

are using. A subset of the speech corpun, pre»«,ited as oscillograms, with the standard 

transcription, is included as Appendix 82. Marked on this display are the segmentation 

errors for one run (SPG parameters^ speaker CO and their type i/u. the previous 

discussion. 

_, 
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6.2 A Signal Detection Measure 

In this section, we will prnsent the basic mathematical model of Signal Detection 

Theory and discuss its application to the evaluation of machine segmentation of speech. 

The parameter d' is a measure of the inherent detectability of the signal versus noise 

which is independent of any decision process application of costs or a priori l;Kelihoods. 

We have empirical evidence that the model fits the actual performance of our segmentation 

algorithms for at least one parametric representation over a wide range of detection 

thresholds. 

The theory of Signal Detection as formulated by Tanner et. al. [Tin64, Uc64] is 

primarily applied to detection trials which may be considered similar to the segmentation 

process. Detection trials consist of a series of responses to stimuli which may be 

composed of noise or of noise and some known signal -- not unlike the decision process 

resulting in the placement of a segment boundary based upon local information only. It is 

assumed that the a priori likelihoods and costs of various errors are known to a decision 

process which senses and possibly transforms the stimulus into some internal signal space 

before it yields an optimal decision on the presence of the signal. The detector's sensory 

data is considered, in this model, to be reduced to a single decision parameter. A 

reasonable one might be the ratio of the probabilities that the input stimulus was 

signal «-noise versus noise alone. A simple threshold on this single parameter may be 

placed to optimize the expected costs given a priori likelihoods, costs of misses, false 

alarms, etc.   Figure 6.2 represents such a hypothetical internal decision parameter. 

Very simply stated, the model assumes a single decision parameter, x, which may be 

any sensory measurement one wishes. The distribution of x values for the two types of 

stimuli, signal+noise and noise alone, are assumed to be normal (with equal variance in the 

simplest version of the model).   Their means differ by d' times the standard deviation. 

t in a decision theoretic sense, given the a priori knowledge about the test 
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missed extra 

Figure 6.2: Signal Detection Mode! 

Rates of "hit" and "false alarm" -- Pr{accept|signal) and Pr{accept|noise} respectively -- 

are sufficient to determine the least d' for which an optimal decision process can display 

the observed rates. When the hit and false alarm rates a'e plotted against one another 

for a number of sets of trials where the detector's acceptance threshold has been altered, 

a response operator characteristic curve is obtained (see figure 6.3). 

1.0 

Pr{accept 5 

I signal} 

Pr{accept | noise} 

Figure 6.3: Typical ROC Plot 

The theory states that the curve is totally determined by d'.  When the axes of the 

ROC curve are transformed by the inverse function of the Normal distribution function, the 

r-— - - 
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\ : 
curve   is   approximaLly   a   straight   line   with   slope-sigma(noise)/sigma(sign»l)   and   x- 

i 

intercept»d'. 

This theory has been most often applied to detection trials to provide estimates of 

the detectabihty of the signal as it appears In a h-oman perceiver's internal sensory signal 

space. The estimate provided by the signal detection model may then be compared with 

well known properties of visual or auditory signal"; to provide a bound on the efficacy of 

the perceiver's transduction process — the sensory channel. While (he main thrust of its 

application is not relevant htre,, the signal detection model and the dimensionless measure 

d' can be used as a normalized measure of segment boundary detection that is relatively 

unaffected by adjustments in the proportion of missing versus extra segment errors. 

Furthermore, the d' value once estimated may be used to predict the entire response- 

operstor characteristic. 

Following the procedures shown i,i Egan et.al. [Ega64], a series of segmentation runs 

were made with the ZCC parametric representation for a set of 40 utterances (TAP) In the 

AP news retrieval task domain with one speaker. These runs were to investigate a range 

of detection responses by varying the thresholds used internally in the segmentation 

algorithm (see Chapter 5). The resultant error rates may be seen in figure 6.4 below 

plotted on inverse No-mal axes. A linear least-squares fit to the points yielded a slope of 

1.000 and a d' value oi 2.250. We will, henceforth, assume that the simple model with 

equal variances gives a jjood estimate of the performance of the segmentation algorithm 

we are testing.   The d' values reported below will be derived from that model. 

Finally, a confidence interval was calculated for the d' statistic, under the assumption 

♦hat it is approximately normally distributed for any particular experiment. The 95^5 

interval for the SPG experiment was +.14 in d'. We shail see that this is considerably !3ss 

than the differences in d' observed among parametric representations. 
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Figure 6.4: A Series of SegmenttTiions with Different Thresholds 

6.3 Results 

As we mentioned in Chapter 5, the segmentation procedures used here were 

developed for use with the Hearsay II speech understanding system. In keeping with the 

philosophy of that system ~ the separation of Knowledge about speech Into individual 

modules or Knowledge sources — we employ no phonetic or phonological Knowledge to 

correct segmentation decisions, Indeed, we do not even use the labeling information to 

join similarly labeled adjoining segments at this stage. It is difficult, therefore, to compare 

our results directly with other segmentation and classification schemes which Interact 

closely to produce a transcription at the phonetic or phonemic level. What we have done, 

however,  is   to  carefully  inspect   the  errors  made  by our  segmenter   with  the   SPG 
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parameters as the input representation.^ Then a new reference segmentation was 

produced by adjusting the old one to ail of the type 0 errors (those cases where the hand 

segmentation was in error, or the machine segmentation agreed with the acoustic signal). 

The  following table (Figure 6.5) shows the results of segmentation for  the  40 

sentences from the News Retrieval task (TAP), spoken by CC (male, American). 

SPG ACS ASA zee St ■gments U 
HI 1082 1882 1882 1882 H2 1541 1541 1541 1541 fl 2825 2882 2818 2298 

ni seing 
n 37 57 91 52 X 3.7 5.8 9.2 5.3 Ex tra 
n 299 391 434 681 
X 27.5 36.1 48.8 63.8 

Sh if ted 
(19.4) (25.3) (28.1) (44.2) 

n 28 34 45 41 
% 2.8 3.4 4.5 4.1 

d* 2.38 1.93 1.58 1.29 
(2.55) (2.24) (1.91) (1.77) 

Figure 6.5;Segmentation Performance -- Different Parametric Representations 

The first reference segmentation contains 1082 segments primarily at the phonemic 

level of description. The second reference contains corrections to this file, as described 

above, to make it more an acoustic description of the corpus. It has 1541 segments. The 

number of machine segments reported may be greater than the sum of this number {hand 

reported acoustic segments) and the number of extra boundaries. The discrepancy is 

merely the result of the way we evaluate segmentation by boundaries. Occasionally, two 

machine boundaries will fall close enough to a har.d boundary to both be accepted. Such 

segments must, therefore, be very short, and are usually t ansition segments which may 

t Decisions were made from inspection of the waveforms only.   The results of this hand 
evaluation are included as Appendix S2. 
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be easily detected at higher levels. The number of missing boundaries (segments), divided 

by the number of boundaries which are included in both reference segmentations, is the 

missing segment error rate. The number of shifted boundaries is also divided by this 

number. The numbei of extra boundaries is divided by the number of primary segments 

(the size of HI in this case). The extra segment rates in parentheses are those where 

division is by the number of acoustic segments (size of H2). Finally, d", as determined by 

the missing and extra segment error rates is calculated from the equal variance model 

discussed in the last section of this chapter. 

In d', we can see a clear decrease in "detectability" of segment boundaries which 

agrees well with what we would suspect about the information content of the four 

representations. 

A second set of results were obtained over two data sets for which no such 

carefully compiled hand segmentations are available. (See Figure 6.6) They can, however, 

be compared with the machine segmentation results just presented, as a demonstration of 

the robustness of the algorithms used, and thus the validity of evaluation made with them. 

Wo employed the 7CC representation for this experiment because of its availability, 

although any of the parametric representations would have provided just as valid results. 

In this evaluation, we used only the primary phonetic level hand segmentation. The results 

of comparison with this not necessarily acoustic description of the data will, obviously, be 

inferior to those presented above. We will reevaluate the ZCC segmentation from that 

experiment in a similar manner. 

The additional sets of utterances are drawn from two different task domains with 

much less restricted vocabularies and grammars and are spoken by two different male 

American speaKers. The Allophone (LAL) sentences are 27 general Engl'sh sentences 

designed to contain a wide variety of the commonly occuring allophones of that language. 

[Sho74b] The Btrain set (BTR) consists of 55 sentences drawn from seven, more restricted 

grammars and task domains. [BakJK75b] In the following tab1», the somewhat poorer 

performance shown for BTR is possibly attributable to the different  method of hand 
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BTR LAL TAP 
Segments 0 

H 18G1 12G9 1297 
n 2990 2157 2290 

fl i B 8 i ng 
i 253 95 111 
X 13.G 7.5 8.5 

EKtra 

(T 1153 819 854 
X G2 GG G4 

«*' .80 1.03 1.01 

Figure 6.6: Segmentation Performance -- Other Speakers and Tasks 

segmentation used to produce the reference segmentation. In this case, ■ variant of the 

Dragon speech understander [BakJK75c] was used to fit standard lexical transcriptions to 

the signal in a sense defined by the Dragon model to be optimal. These were hand 

corrected to some extent, but by a different person than the transcriber of the rest of the 

data. It has not been possible at this point to correct this discrepancy. However, the 

experience we have had on a wide range of data sets is of the robustness of the 

segmentation procedures. The excellent agreement between LAI. and TAP is found In spite 

of the fact that thresholds for the segmenter were derived from another corpus, spoken 

by the speaker of TAP, but the utterances of LAL. 

Finally in Figure 6.7, comparison can be made between the first set of results and 

previously reported segmentation performance as given in Baker and Dixon and Silverman. 

[BakJM75, Dix75a] 

A note concerning interpretation: A careful inspection of Baker's results showed 

that secondary boundaries increase the total number of hand segments to about 370. We 

have not generally provided that detailed a hand transcription and, thus, may be reporting 

as extra boundaries some legitimate detect'ons of secondary segments. Secondly, 

Silverman and Dixon do not report the sources of knowledge used to produce the 

segmentation results we have quoted, It is our impression that some amount of label and 

phonetic rule information is used to improve the segmentation. 
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S&O Baker SPG 
# Segments 6175 21B 21G 21B 158 21B 1882 
Mi Being 

u 425 20 48 98 22 SB 37 
% B.9 9 19 42 14 2B 3.7 

Extra 
n G58 38 43 9 51 32 299 t 10.S 18 28 4 34 15 27.B 

Shifted 
n 293 — — mm —-» — — 28 
X 4.7 2.8 

*' 2-73 2.2B   1.72   1.95   1.78    1.68 2.38 

Figure 6.7: Segmentation Performance — Other Programs 

6.4 Discussion 

Although the difficulty of really accurate comparison between different segmentation 

programs would seem tc preclude drawing firm conclusions from the lest set of results 

concerning their relative merits, it is fairly clear that progress is being made. Certainly 

some programs may be better at detecting and locating certain types of boundaries. At 

this point, only careful comparison of system errors can provide those insights. However, 

the major result w» wish to put forward is concerned with the parametric representation 

dimension. There is, indeed, a measurable improvement as one goes to more 

informationally complete representations of the signal. However, that improvement may 

not be so critical to system performance as to justify increased computation or hardware^ 

costs. If higher level Knowledge can effectively cope with 2 or 3 times the number of 

«xtra segments, then we could Keep the number of missing segments constant and go from 

an LPC/DFT computation for SPG to the six analog filters of ZCC. At the ZCC value for d' 

(1.29), a missing segment rate of 4X corresponds to an extra segment rate of 687. (versus 

28^ for SPG). Whether or not he is willing to maKe such trade-offs is entirely up to the 

system designer. 

t Computationally expensive but straightforward representations may be handled rapidly 
with the use of special purpose hardware at a loss of generality and an increase in Initial 
costs. 

— m 
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It has been our experience in working w.'h the segmentation algorithms developed 

at C-MU, that, although improvements in performance have been, and will certainly 

continue to be made, this "snapshot" of the parametric representation dimension is valid 

for some time to come. We have yet to see promise of any completely parametric level 

solution to the segmentation problem. This should be obvious upon considering the highly 

variable nature of continuous speech and the variety of kinds of phenomena to be dealt 

with in segmenting any single utterance. Thus LIP (Baker) parameters may be effective in 

locating short burst types of segments while LPC models of the resonant structure may be 

superior for long, voiced segments and sonorant/sonorant boundaries. 

In the final analysis, :■>«;, ..ction of specific cases gives the kind of qualitative insights 

that are also needed to predict performance in a total system. Particular kinds of errors 

may be very costly if they lead down wrong paths in the search, but only detailed 

understanding of particular systems can identify such cases. In Appendix SI, we have 

tried to identify some of the different situations, by presenting cases of discrepancy with 

the hand segmentation. Where the hand segmentation is correct, other sources of 

knowledge must be able to override the segmenter's mistake. Where the machine segment 

best fits the acoustic signal, higher level knowledge must understand auch cases of 

variation from expectation. 

6.5 Summary 

In this chapter, we have described some of the problems encountered in making a 

fair evaluation of segmentation. The major problem is acquiring a hand transcription of the 

correct level of representation. Our approach is to use two referent segmentations at 

both the acoustic and phonetic level. A model of signal detection, derived from existing 

theory, gives a useful measure of detectability which normalizes for missing-extra trade- 

off. The resultant evaluations show a clear preference for high information 

representations. The SPG and ACS parameters contain a c. riplete model of th* resonant 

structure of the vocal tract imp'-se response.   The ASA and ZCC are approximations to 
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this information. The first two contain more than 500 bits of information per window, the 

latter two, less than 100. Finally, WA have compared the results obtained >"ith our very 

low-Kfvel segmentation routine to other results reported in the literature. We feel this 

rou'.ine performs quitb satisfactorily. With the improvements of phonetic and phonological 

knowledge used by other programs, it should perform at least as well as them. 

■»■"■— 
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Chapter 7 

Labeling Procedures 

In this chapter, we discuss the labeling procedure adopted for this research. An 

important issue to be faced is the choice of segmenting or labeling first, and whether the 

two processes will interact. The choice of distance metrics is also a primary one for this 

evaluative study. Finally, we introduce some simple parameters which relate to the 

segmentation; these are prosodic in nature. Training the labeler is discussed, and an 

algorithm for clustering the training data into natural, mtra-phone groupings is presented. 

7.1 Role of Labeler, Interface with Segmenter 

We have observed that labeling and segmenting are often strongly Interconnected in 

many systems.   Indeed, the two processes seem to be two sides of the same coin.   Similar 

techniques are often used to match input patterns with stored templates as are used to 

match  inputs  from  neighboring  time  intervals  for  boundary detection.    The  choice  of 

whether to segment or label first is, to a large extent, an arbitrary one, often based more 

upon system structures than upon the requirements of acoustic analysis.   However, since 

we have tried to separate the two processes as much as is realistically possible for the 

comparative analyses made, it has seemed more sensible to segment first.  By associating a 

number of input patterns with each other in a single segment, this strategy allows one to 

reduce the sheer number of input patterns which one must compare against a set of 

stored  templates.    Labeling second also allows one to make  use of  the  segmentation 

decisions to locate  regions of least acoustic change in the input signal.   It is not our 

purpose to argue the merits of any particular approach to structuring the application of 

these two processes; it is assumed that segmentation proceeds directly upon the acoustic 

input.   Labeling occurs at those regions of the input which segmentation has selected as 

being relatively stationary (e.g., pieces of vowels) or as being primitive acoustic gestures 

(e.g.,  bursts).   The  recomposition of  these segments, with the labels  which  they will 

■ • - ■—•»■ 
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acquire, into higher level constructs such as stop consonants, diphthongs, or even 

phonemes that, althou^n ideally stationary, were realized with internal acoustic variations 

is a task for a different set of algorithms v/hich utilize phonetic and phonological 

knowledge. The labeling is intended to be acoustic-phonetic -- it attempts to identify in 

the input those acoustic patterns which occur during the realizstion of the phonetic 

elements. 

A second aspect of the labeling process has to do with how one measures correct 

performance. It is generally considered important for speech under6ta.,ding systems, that 

the correct label be "available" among a few alternative choices. Rather than considering 

only the first choice, most systems will use other sources of knowledge to choose among a 

few labels for each segment. Thus we are not concerned that the labeler may label a 

segment with the wrong label, provided it also reports the correct label as an alternative. 

This kind of requirement has implications mainly for the training process which will be 

discussed below. A similar way of stating it is to look at the allophonic variation problem. 

Very often allophones of one phoneme are acoustically very similar to those of another 

phoneme. Although these separate allophones represent the same acoustic state, we might 

wish to Keep separate descriptions of each -- thus guaranteeing that the labeler wilt 

report the "correct" as well as other phonetic labels. 

f-or both reasons, therefore, we have chosen to learn and keep as recognition 

"templates" the acoustic patterns of a number of variants of each phonetic label. The 

method of acquisition of the template set and the patterns will be discussed when we 

present the clustering method below. 

In the survey of pattern classi'ication techniques, a number of distance metrics were 

described, and the obvious and central role of the distance concept was discussed 

Distance in the pattern space occupies just such a central role not only In the pattern 

recognition but also in the template training methods. Thus, we will briefly restate tome 

of the features of the set of metrics chosen for these experiments. 

7.2 Choice of Metrics 
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Euclidean distance (EUC) and Correlation (COR) are eacd functions of two pattern 

vectors. Euclidean distance serves to draw spherical loci of equal distance around any 

point in the sphere. The loci of equal distance around a point for Correlations are cones 

with the vertex at the origin. Correlation may also be thought of as Euclidean distance ir 

the two dimensional space of the surface of the sphere around the origin. The decision 

boundaries drawn between any two template points are hyperplanes (perpendicular 

bisectors of the connecting segment for EUC, through the origin for COR). Although one 

could consider Euclidean distance to be much more powerful in capturing relationships in 

the pattern space, Correlations do serve to absolutely normalize out any scalar terms 

'such as amplitude from a set of filter band parameters). 

When second moment data about the templates is available, such as variance of the 

parameters within each phonetic label class, or covariance (overall or label-specific), more 

complex distance metrics give somewhat improved results at the cost Of more computation. 

Standard Deviation weighted Euclidean distance (SIG) normalizes each term of the 

Euclidean distance by the variance in that dimension. Its loci are ellipsoids with axes 

parallel to the dimensional axes. Finally, if covariance information is available for each 

label class, we can use the quadratic form to draw boundaries of general quadratic 

surfaces. This is the Maximum Likelihood metric (L1K) which assumes general Gaussian 

distributions o' the classes and assigns the input to the class most likely to have produced 

it. 

Two other distance metrics have been chosen. The Itakura (ITK) metric is based 

upon the linear prediction theory and is the estimate of the least squares error term when 

one interval is predicted by the LPC model of another. The motivation for this type of 

measure is different from the previously described geometric partitionings of a pattern 

space; however, it is included in the investigations in so far as it can be applied witfvn the 

algorithms. Finally, the Baker log probability estimate (BAK) is an ad hoc estimate, based 

upon the Euclidean distanca in a normalized version of the ZCC parameter spare, which is 

of particular interest because of the relatively good results which have been obtained in 

■- —*•   •«•<  -^'—- «t    I J»    ■> ■  ~**r 
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the Dragon system using it (even though the ZCC parameters are fairly crude by current 

standards).   [BaKJK75b, Low76] 

7.3 Prosodic Features 

The labeler has available to it the segmentation decisions, and could use these to 

some benefit it segmental information is known about the training data. Thus, an additional 

aspiict of pattern matching or distance computation which has been useful is a comparison 

of what may be called the prosodies of the entire segment — as opposed to the acoustics 

of the center. We have chosen three rather simple parameters which measure the broad 

nature of each segment: 

1) The average amplitude of the signal over the segment; 

2) The duration of the segment; 

3) The  contour  of  the   amplitude   as   it  compares   to  neighboring 

segments. 

Calculation of the first two is obvious; the last is merely given a value 1, 0t )r -1 if the 

segment represents a peak, intermediate level, or trough in average amplitude, 

respectively. A particularly conservative application of this information is made in 

comparing two segments. A scalar multiplier for the regular distance metric score is 

composed of the product of three values derived from these three parameters: 1) the 

ratio of the two average amplitudes, 2) the ratio of the two durations, and 3) the 

difference between the two contours. These are applied to a {ad hoe) function giving 

values betwen 1 and 2. (See figure 7.1) Thus the minimum scalar is 1 and the maximum is 

8. The distance between input and template will be increased when any of ihese 

parameters disagree. 

While the effect of such prosodic matching is net complete y determined when 

comparing segments produced by different segmenters (hand versus machine), it has 

proven valuable in clustering, where different duration, contour, or stress may be 

corollary to allophonic variation. 

i   IHWIII^   .. 
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Weight 

2.0 

1,0 ^ 
Region of Interest 

P-Feature Deviation 

Figure 7.1; Prosodic Weighting Function 

In summary, a segment is labeled by computing the distance between its center 

pattern and each of a set of template patterns, sometimes using the prosodic scalar to 

penalize the scores of very different "shaped" segments. The closest templates indicate 

the best alternative labels for the segment.   Training uses some of the same metrics. 

7.4 Training, Cluster Acquisition 

In Keeping with the philosophy expressed above, we have designed a training 

procedure for label templates which discovers the inherent clustering of the sample 

patterns in the parameter space. The purpose is to identify the acoustic patterns which 

commonly occur during the realization of each phone. 

Since our only model of acoustics is similarity in the pattern space of a particular 

parametric representation, the algorithm for clustering is based on pattern space distance 

(and the previously mentioned segment oriented prosodic scalar). 

A particular corpus of data has been chosen as the source of samples for training. 

We have employed for this purpose a set of 27 continuous speech utterances (about 2 

minutes) designed to include examples of most common allophones of American English 

phonemes in semantically and syntactically correct, yet unusual (and thus care-invoking) 

sentences. These training sentences are recorded under similar conditions for each 

speaker tested. The approximately 1700 phonetic segments in this corpus have been hand 

segmented and labeled to an extreme degree of care and fineness of view. This 

segmentation  bears a very strong acoustic flavor in that clear acoustic cues, such as 

■ 
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changes in amolitude or formant shifts, are taken to indicate separate sub-phonemic 

segments. The transcription may be taken to be as close to an acoustic description of the 

signal as can be justified by reasonable phonetic theory and careful listening and study of 

wave forms and spedrograms. 

For each segment, the center 10 m.secs. of data yield a vector of parameters in the 

chosen representations, and the segment boundaries and overall amplitude parameter yield 

the three prosodic parameters. Each of 40 phonetic labels is represented by an exclusive 

subset of these 1700 inout samples. For each subset, ell samples are read in and the 

complete set of pairwise distances and prosodic scalars is computed. The resultant matrix 

of distance (y scalar) values is then reordered in the following fashion: 

First a threshold is chosen by computing the mean and standard deviation of all the 

entries in the matrix and setting the threshold to equal MEAN ♦ C x STANDEV (where C is 

usually -1/2). This data-determined threshold is then applied to each row of the matrix 

and the row with the most elements within the threshold is selected as indicating the first 

template. (Ties are resolved by the least sum of all below-threshold elements.) Those 

samples within the threshold distance of this identified sample are removed from the set. 

Then we iterate, producing a b»cond, third, etc., template for the particular label, until the 

entire set is exhausted. (See Figure 7.2 for the resultant matrix of pairwise distances for 

89 samples of schwa.) The number of samples supporting each template (the number of 

remaining samples within threshold) is used to discard "errors" or unusual realizations by 

discarding templates supported by less than K samples (usually 2, 3, or 4 in these 

investigations). 

Some interesting results have come out of applying this simple algorithm in addition 

to the particular se*s of templates. 1) Erron in the hand segmentation and labeling were 

clearly identified as poorly supported (often by no other sample) samples of the (errorful) 

label. 2) While some clenrly allophonic d stinctions were made, such as de-voicing in /r/ 

(as in "crude"), often clusters had greater correlations with such factors as position within 

a word (i.e., stress).   We consider all variants of a label which occur frequently enough to 
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be useful sources of templates. 3) Finally, even though considerably different parametric 

repmsenfations and distance metrics were used in the clustering algorithm, very small 

variation was discovered in the total number of templates, ard a fair degree of consistency 

was found in the number of templates for each label. This seems to Indicate that the 

inherent acoustic variations are indeed being discovered. 

The following chap.er discusses the evaluation of labeling performance and presents 

the  results  for  a  number of parametrization/metric  combinations.   The  most important 

performance issue is accuracy,  however, some attention is due to requirements of storage 

and computation time.   The single most important number to these aspects of performance 

is the number of parameters in the representation.   Storage of templates is linear with this 

number (except for covariance data which rises as its square).   Computation of EUC, COR, 

and SIG is linear, and of L1K is as the square of the number of parameters.   Of similar 

importance is the number of templates.  All storage and computation requirements increase 

linearly  with  this  number.    Speed-ups  may be  effected  by  methods  such  as  partial 

evaluation of  the distance metric and discarding of a choice if the partial evaluations 

exceed some threshold.   Or, if the distance to one v^wel template is too far, no other 

vowels might be evaluated.  A number of ways are available of speeding up the very time- 

consuming process of evaluating the full set of distances from the input to each template 

for every segment. The trade-off between a smaller number of templates yielding a less 

fine  oarfitioning  of  the  pattern space, and more  templates  with consequently  higher 

storage and computational costs is one which must be considered in the light of what the 

rest of the speech understanding system expects from the acoustic-phonetic level analysis. 

A  small   number  of   templates  will  be costly,  and  indeed, will  be  "correct"  a  higher 

percentage of the time.   Yet the information provided by these fewer templates will be 

less constraining to the search for the utterance precisely because the classes recognlxed 

are broader. 
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7.5 Suinmary 

The simple pattern classification model is chosen, and a set of basic distance metric 

are apllied to it. The distances are augmented by a prosodic weight function, composed ot 

three simple measurements of stress and duration of each segment. The less in agreement 

these parameters are, between the template and the unknown pattern, the greater the 

distance value will be. Training of the labeler ncludes discovering the inherent clusters 

within each phone class. This process is, again, based upon the distance metric and 

pattern space measure of acoustic similarity central to this lovel. 

-  — •>•< -»■--«> IJ» ^. '   " 7" 
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Chapter 8 

Labeling Performance 

In order to properly evaluate the labeling performance results, we must first 

consider some of the issues associated with the labeling process as we have defined it. 

The following section deals with the problems of deciding 1) w'.iat are the objects we are 

to recognize, 2) what is error and correctness in an ambiguous situation, and 3) whet Is 

the effect of segmentation performance on the definition of labeling correctness. Section 

2 defines the types of statistics we will present and the experimental dimensions we will 

cover. 

8.1 Some Issues for Evaluation 

8.1.1 Recognition Targets 

In Section 1 of Chapter 3, we introduced the need to have acoustic-phonetic 

elements as recognition targets. We decided that, although recognizing phonetic features 

was also a valid approach to the problem of constructing a phonetic description of the 

signal, using individual target sounds (hopefully with associated phonetic information) 

would be more likely to provide the robustness needed by continuous speech 

understanding systems. In Chapter 7, we presented a method )f cluster analysis which 

could derive these acoustic-phonetic labels as acoustic clusters and representative 

templates with hand supplied phonetic labels. 

A second issue raised at that time pertains ;o the size of the set of recognition 

targets — the fineness of the partitioning of the phonetic space. While we do not deny 

the existence of such entities as phonemes within the domain of higher level speech 

knowledge, we have reached the conclusion, along with many others (SchR75, S\\75, 

Erm74b, Red75bl, that the acoustic-phonetic elements found in continuous speech belong 

to an entire spectrum of «'ich partitionings. That is, to any degree of fineness, there will 
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always be some ambiguity encountered in labeling (and segmenting) the speech signal, yet, 

at any degree of fineness, a valid description of the signal can be given. Thus, in choosing 

where to fix our goals for identification of sounds, we must make some aroitrary decisions. 

Those decisions may, however, be guided by .vhat we know about the input requirements 

of knowledge sources at higt.^r levels and about common practice in describing speech at 

this low level. 

The problerr of evaluating labeling performance depends upon a set of decisions 

regarding 1) the samples of the signal used to test -- whose segmentation to employ, 2) 

the recognition targets -- how fine a description of the acoustic-phonetic states of the 

signal to create, and 3) the criteria for correctness. This last decision must be made in 

terms of the system which will eventually use the labels. Thus some discussion of the 

sources and types of error in labeling is in order if we are to justify how we present the 

performance results and how we define correct behavior. 

8.1.2 Errors 

To declare a label in error, we must have at our disposal the "correct" 

interpretation of the acoustic signal for that segment. Since such information Is usually 

provided by hand segmentation and transcription, we are faced with the problems of level 

of description and of human error similar to those discussed in Chapter 6 for hand 

segmentations. 

It is clear, for example, that we should not expect the output of even a totally 

"correct" labeler to match the phonemic content of the utterance, even ignoring 

discreoancies introduced by acoustic rather than phonemic segmentation to define the 

location of labeling activity. Vowels will be affected by context -- rounding caused by 

velerization, centralization caused by lack of stress. Transitions from /z/ t') /$/ caused by 

gradual loss of voicing in final /z/ is another commonly occuring discrepancy. 

If there were a clearly accepted set of phonetic rules to explain such deviations 

from the standard phonemic expectation (and assuming phonological variation was also 
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handled, perhaps integrated into the lexicon), an automatic evaluation could be used with 

confidence that the errors found were truly errors of the acoustic-phonetic level. 

Ws are forced, rather, to rely upon a careful hand transcription, where the 

segmonter/labeler has taKen seme effort to provide an acoustically valid description of the 

signal, in spite of its inherent errors and misrepresentations, such a transcription is the 

best representation of the acoustic-phonetic situation that is currently aveileble. We can 

only try to make up for incorrect reference labels by providing a few degrees of fineness 

in the sets of targets for which performance is reported. 

8.1.3 Segmentation 

We have already raised the problem of segmentation and its effect upon labeling. 

While we cannot have a perfect segmentation for reference, any more than a perfect 

laoeling, we can improve the correspondence of our reference segmentation with acoustic 

reality by using a finer, corrected, hand segmentation. In many CJSOS, acoustic segments 

(with phonemic labels at times) will direct the machine labeler to the relevant portions of 

the signal. Sonorant segments will be composed of more or less steady state sub- 

segments, which are the places where we can expect the best labeling performance. Their 

locations are not always available at the phonemic or phonetic level. 

The procedure we have adopted is to acquire the best hand segmentation possible 

at the lowest level of description possible. Then a corrected segmentation, such as the 

one refered to in Chapter 6 and Appendix S2, is merged with this transcription . Th» 

"correct" label for these segments is considered to be the hand label which was in effect 

at the middle of the acoustic segment. 

Labeling experiments are, therefore, performed over the set of segments 'and thus 

samples in the pattern space) which wa would most li^e our segmentation routines to 

t If such a correct segmentation is not available, it is better to use the machine 
segmentation of the best parametric representation, with its segmentation errors, but 
tuned to miss as few segments as possible, than to use a broad, hand segmentation and 
label over transition portions of thr signal. 
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provide in the actual system. We will additionally show some results of labeling the 

segments provided by the machine segmenter, although we will not evaluate these 

completely. It is hoped that the construction of a labeling reference which combines our 

expectations for acoustic segments and phonetic labels will most accurately reflect the 

f xpectations or needs of a speech understanding system at the higher levels of analysis. 

8.2 Evaluation Space 
■ 

The design space which we are attempting to investigate is quite large. Even after 

we have accepted the limit&tions discussed in Chapter 1 — the choice of four parametric 

representations, ignoring the multiple speaker normalization issue, restricting ourselves to 

acoustic pattern space labeling, and the choice of simple distance metrics with static 

training procedures -- we are faced with the issues of recognition target set size, error 

criterion, and segmentation just discussed. Instead of spending any more time justifying 

the decisions we have made -- it is probably sufficient to have raised the issues - we will 

outline the dimensions to be covered and the methods of presentation of results. 

8.2.1 Expsrimental Dimensions 

The foir parametric representations will be used for a set of 40 sentences from the 

News Retrieval task (also used for the segmentation evaluatiOiM. In addition, a second set 

of News Retrieval sentences, spoken by another male American speaker, and third set, 

used in the development and testing of the Dragon system [BakJK75b], will be evaluated. 

With the first set, as many of the basic distance metrics — EUC, COR, SIG, and UK — 

as are applicable will be used over the SPG, ASA, and ZCC parameters. The modified ZCC 

parameters used by Dragon will also provide a point of reference for one total system's 

performance. The ACS representation is to be used with Itakura's specially designed log 

ratio measure only, as it is poorly suited for the more standard distance functions. (See 

Ichakawa, [Ich731 for the poor performance of Partial Correlation Coefficients.) 

The  purpose  of  the additional  sets of  utterances  is, of course, to  Justify our 
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assertion that the training and labeling process as a whole is valid for more than one 

speaker and set of utterances.   However, the additional data can only help to improve the 

fidelity of our performance results. 

Finally, for each experiment, we will present a family of result* for a sequence of 

phone class sets (see Figure 8.1), Each set provides a partitioning of the phonetic space 

at a different degree of fineness, ana may be relevant to particular aspects of the tot«! 

speech understanding problern. 

8.2.2 Methods for Presenting Labeling Accuracy 

Schwartz and Makhoul [SchR75] point out that the appropriate response to the 

problem of ambiguity in continuous speech is ambiguity in the segmentation and labeling 

output. That is, optional interpretations of the input signal should be put forth as possible 

alternative recognitions rather than one and only one label for each segment and one 

stream of segments.1" If the labeler finds t number of plausible labels for a single speech 

sample, it can do no better than to rate and return them all. Thus, it is not sufficient to 

evaluate labeling accuracy without indicating the criteria for accepting a label as such • 

plausible interpretation of an input pattern. Indeed, returning a number of labels may 

merely be considered to represent a finer partitioning of the pattern space. There is a 

duality, which it similar to the feature vs. (emplate issue, between returning elternetlve 

labels and using more and finer ones. 

In lieu of any more global information, the labeler can only use the pattern space 

distance value with which it orders the templates to rate them as well, and to select the 

t While we do not provide a lattice structure of segments and labels as in the Speechlis 
system, neither do we claim to make use of phonetic rules or sub-phonemic segment 
sequences. The acoustic segments are detected with a strong bias towards the extra 
segment end of the ROC curve, and the next level in Hearsay II, for example, Is able to 
combine many of them in an optional manner within the flexible data base structure of 
Hearsay 11. Within this optional segment structure, sets of alternative labels ere re- 
combined according to a phonetic feature calculus to produce a new set of most IIKely 
labels for the combined segments. 
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acceptable ones. If we define a selection criterion (e.g. d(x,y) S miny {d{x,y)) + T ) then 

we can collect the statistic: Pr{correct label passes criterion). In order to understand the 

effect of the acceptance of multiple labels on system performance, size of search, etc., w* 

must also collect the statistic: E[number of recognition objects which pass criterion] for 

every segment labeled. This latter may be considered as a measure of the factor of 

growth a search of the possible optional machine transcriptions displays at each new 

segment -- the branching factor (BF). These statistics can be presented in graphic form as 

a relationship between BF and Accuracy. It ought to be noted that the recognition objects 

mentioned above are whatever labels or classes of labels we choose to evaluate 

performance over. 

In case we are interested in the kind uf errors made, a confusion matrix provides 

the Pr{recogni2e y|input x}, where x and y are both members of the particular set of 

labels or classes of labels under consideration. However, there is some difficulty in 

presenting multiple choices in this format without producing a great deal of extraneous 

information. The confusion matrix does, however, give an idea of the error behavior of the 

iabeler -- the quality of the mistakes as well as the quantity. Combined with the 

measurement of correctness provided Dy the BF/accuracy graphs, this should be a broad 

enough picture of Iabeler performance and yet provide enough detailed information for 

special cases of interest. The BF values may be used to estimate system resource 

demands; the confusion matrix conditional probabilities to estimate higher level confusions 

(word confusions based upon incorrect phnnetic information, etc.). 

A final measure of labeling proficiency can be derived from the signal detection 

theory referred to in Chapter 6. This measure can be used to normalize for recognition 

target set size. A detailed discussion may be found in Green, et al. [Gre64], but, basically, 

the accuracy, Prjcorrect target chosen out of N possibilities), is related to the same d* 

measure presented earlier -- the difference between the signal and noise distributions in 

* We do, in fact, use certain global information in the form of prosodic features mentioned 
in Chapter 7. The effect of these features is, however, integrated into the pattern 
distance value as soon as the templates are matched with the unknown input pittern. 

■*i..<m*     -mm-        »T .^ 
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some signal measure space. The d' values given below are computed from tables provided 

in [Gre64] and based upon a theoretical model which assumes all the N targets to be 

orthogonal m the pattern space. Since this is not true, because of our need for phonetic 

templates which may duplicate one another to some degree, the «ccuracy rates ere 

consequently lower, and the d' values lower, than predicted by the model for the actual 

signal to noise ratio. They can, however, serve as an interesting normalized measure for 

comparison of labeling performance, just as they do for segmentation performance. 

8.3 Results of Labeling — One Speaker 

There are so many dimensions to even a simple labeling experiment that we will 

explore the space along each one, individually, rather than try to cover the entire set of 

possible labelers. This section presents the results of labeling experiments performed on 

the 1415 segments which comprise the 40 news retrieval sentences dealt with in Chapter 

6. The dimensions of interest are; Parametric Representation, Distance Metric, Acceptance 

Criterion (Branching Factor), and Target Set Size. In addition, confusion matrices and hand 

analysis are presented to provide a qualitative picture of some typical labeling 

performance. 

Figure 8.2 shows overall labeling accuracies for the four parametric representations. 

P SPG ASA ZCC ACS 

1 24.6(1.9) 27.1(1.0) 28.3(1.0) 28.7(1.0) 
2 42.4(1.9) 33.1(1.9) 31.4(1.9) 44.4(1.9) 
3 54.9(2.8) 50.4(2.8) 42.0(2.8) 54.5(2.7) 

Figure 8.2: Labeling Performance -- Different Parametric Representations 

I 
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The distance metric is the Euclidean distance function^ and the full set of 40 

recognition targets is evaluated. The values reported for position p are Pr{correct 

template in position s p}. The expected number of different targets (branching factor) is 

given in parentheses. In these results, concerned with speaker CC, the clustering 

algorithm of Chapter 7 provided 63 templates for SPG data, 76 for ASA, 75 for ZCC, and 

87 for ACS.  All are acoustic templates for the 40 phonetic targets. 

Note that, although ASA is a bit better than SPG for p-1, SPG improves faster with 

increasing position (BF), This may be due to one or two bad templates for SPG which 

"capture" first place often enough to affect that statistic. More careful tuning of the 

template sets, while desirable, could not be done for all experiments. The ZCC 

representation is the only clearly inferior one, much as might be expected from its few, 

broad filters.  Yet its performance is not too much worse than the others. 

Figure 8.3 shows the representation fixed at ASA, and presents four distancegu^e 

metrics. Again, the accuracies are given for the first three positions. The same template 

set was used throughout. 

P EUC COR SIG L1K 

1 27.1(1.8) 25.8(1.0) 28.7(1.8) 25.1(1.8) 
2 33.1(1.9) 37.8(1.9) 41.3(1.9) 35.5(1.5) 
3 58.4(2.8) 49.3(2.8) 58.6(2.8) 44.1(2.3) 

Figure 8.3: Labeling Performance — Distance Metrics 

Almost identical performance is obtained from EUC, COR, and SIG. Tht LIK metric 

ma;,es use of more information (the covariances within each target training set), yet Is 

unstable for some targets.   This is due to instability of the covariance matrix Inversion 

t The ACS representation was run only with Itakura's log ratio distance. 

» if   "«W    »   I    ^MM»    t I 
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caused by insufficient samples in the training set. It should be noted, hoover, that the 

BF values for UK are lower at each position, indicating a greater likelihood of multiply- 

recognized targets.   For the MMM BF values. L1K performs comparably. 

In both of the above dimensions, there is very little difference among the choices 

examined. We w-il discuss th,s apparent lack of preference in the last section. It is a 

rather strong result of this work. 

Figure 8.4 is a graphic display of accuracy versus Branching Factor for the SPG/SIG 

experiment. 

correct      ~ 

6 8 

Branching Factor 

Figure 8.4; Branching Factor vs. Accuracy 

Five plots are given, identified by the size of the target set used In each evaluation. 

The BF plot gives a particularly convenient view of accuracy against the demands that will 

be made upon higher levels by excess options in recognition. 

A normalization may be made for target set size by the signal detection model 

discussed earlier in this chapter.  The figures for BF-l.O from the SPG/SIG experiment are 
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5iz8 ^B 23 17 IB 

PrJCI 25. B 31.8 3B.B 43. B B8.3 
d* 1.4 1.5 1.4 1.3 1.6 

Figure 8.5: Effect of Size of Target Set 

given in Figure 8.5 with their theoretical detectability, d'+. 

The confusion matrices in Figure 8.5 were obtained from the SPG/SIG experiment. 

The entries are normalized by row to estimate, for entry ij, Pr{target j in position 1 ( h^nd 

i). Clearly, for rarely occuring hand labels, this estimate will be less accurate. Importent 

types of confusion can be seen, however. 

The last display (Figure 8.7) is a trace of a representative utterance. The entries 

are: segment times (in centi-seconds), hand label, ranK and score (distance) of "correct" 

template, and -- in order of score — template, score, and prosodic weighUlO. 

Appendix LI 'jontains the BF/accuracy tables and the confusion matrices for each of 

the experiments run. Appendix L2 is a more extensive machine transcription of the CC 

data corpus. This displays the segmentation and labeling, both machine and hand 

produced. 

8.4 Results of Labeling — Other Speakers and Vocabularies 

In the last section, we extensively explored the evaluation space for one speaker 

and task (vocabulary). In order to extend the validity of our results accross both the 

speaker and vocabulary dimensions, we have run a limited set of additional labeling 

experiments. 

These  include   a  second  speaker  (LE),  again  for   the   news   retrieval   task  and 

t Calculated by approximation — the procedure may be less accurate for small size, (see 
[Gre64]) 

•""■ —'T    '— ■•■irf : 
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vocabulary, and a third speaker (JB) with partly different tesk influences. The JB 

sentences were run by the Dragon system and were all recognized correctly using the 

BAK distance metric -- a modified Euclidean distance. Most important to that performance 

was the carefully tuned word lexicon, which provided a great deal of phonological 

disambiguation. 

Figure 8.8 gives the results for recognition of the full phone set, in the first three 

positions, for these data sets, as well as the ZCC/EUC results reported above for speaker 

CC. 

Speaker                CC                    LE JB                   JB                    JB 
Ta8k                        AP                     AP FRtl&AP                  FRfl                   FRrt 
Parameters        ZCC                   ZCC ZCC                  ZCC                   ASA 
flBtric                 EUC                   EUC EUC                  BAK                   EUC 
H Segments      1416                   932 1144                  732                   732 

P-l               28.3(1.8) 21.8(1.8) 48.7(1.8) 42.8(1.8) 39.9(1.8) 
2 31.4(1.9) 3B.9(1.9) 53.5(1.8) 53.8(1.7) 48.8(1.6) 
3 42.8(2.8) 44.8(2.8) 57.8(2.6) 62.6(2.4) 56.6(2.4) 

Figure 8.8; Labeling Performance -- Other Speakers and Tasks 

There are a few observations to be made. First, the performance of the LE data is 

almost identical to the CC data. This is in spite of the fact that many more (120) templates 

were found for the LE training* However, the conditions under which the recordings 

were made and the hand segmentation and labeling performed were the seme for both CC 

and LE data. Thus, the level of representation of the expected labels wes very similer for 

both data sets. 

In the case of the JB data, the hand referents were actually generated by a 

modified form of the Dragon system. This form sought to fit the correct sentence to the 

t A totally arbitrary variation, due to a different cluster rejection criterion. 

—-—-^. 
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signal (using the ZCC/6AK decision metric) by applying all the knowledge that Dragon 

would have at its disposal for recognition. Then rovious errors were hand corrected. 

Clearly, thie expectation is closer to the ZCC/6AK results. However, it is also closer to the 

other acoustic, machine results tested here than a totally hand produced transcription 

would be. The fact that the level of representation of the evaluation referent, end not the 

decision metric and parametric representation, is the cause of this increased accuracy is 

shown by the last column. The same data run on ASA/EÜC, neither used by the machine 

transcription *orm of Dragon, produced the same high performance results as the ZCC/EUC 

experiment. 

8.5 Discussion 

A short discussion of the preceding labeling evaluations is in order. The lack of 

significant differences among a large number of the experiments might seem rather 

counterintuitive in the light of the differences among the parametric representations in 

segmenting. However, the tasks of segmentation and labeling are quite different, and we 

believe this lack of comparative difference to be an important result. In addition, the 

labeling may seem to be performing at a rather low level in comparison to other systems 

such as *ere discussed in chapter 4. We claim that this level of performance is, in fact, 

reasonably good performance for the current state of the art. It merely needs to be 

evaluated at a lower level of representation than has been done. 

In a preliminary study of labeling accuracy, we found considerable differences 

among both representations and metrics. The experimental set-up was, however, quite 

different. One template per target sound was acquired by averaging a number of training 

samples. Testing was then performed ever the same data set. In such a situation, second 

moment data greatly aided the SIG and LIK metrics in identifying the training populations 

correctly. In addition, averaging had a more disastrous effect upon some parametric 

representations than others. 

In the current experiments a significant amount of knowledge about the distribution 

mi TMHI   i    .. 
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of patterns for speech sounds is contained in the multiple templates for each target sound. 

Thus, the theoretical shape of the decision boundaries is of much less significance in 

affecting error rates. Since we do not test and train on the same sei, performance is 

poorer (more realistic), and the specific distribution of »he training samples is less 

significant. 

Errors of a higher level are probably responsible for the performance shown in the 

last section. Coarficulation, effects of phonological and phonetic variations, prosodic 

effects, and other sources of confusion are all beyond the capacity of a simple template 

matching routine. li is significant, in fact, that the labeling performances are so much alike. 

This similarity indicates that most of the action available to acoustic level labeling is being 

achieved. 

A second issue is the low accuracy reported in the last section. The explanation is 

clearly the lack of any higher level knowledge in our labeling routine. But to supporl our 

claim to reasonable performance of this simplified labeler, we can point out the following. 

First, the Itakura log ratio metric has been tested in a word recognizer by Itakura [It875] 

and has yielded excellent results for limited speech recognition tasks. The same 

parametric representations and metric yield less than 307. accuracy at the acoustic lovel, 

and close to 982 at the word level, 

A second point is Baker's Dragon System.[BakJK75b] The parametric representation 

and distance metric used are essentially ZCC/EUC (with some amplitude normalization). 

This classification function was tested and gave results comparable to the results reported 

above. Templates generated b1. our clustering routine were substituted for the standard 

phonetic spellings used by Baker in his initial drvelopment. In addition, phonological rules 

were applied to the lexical entries for mistaken words to produce alternative template 

sequences for those words. However, none of this tuning was performed on the test data. 

Dragon was run on ? set of 578 words in 102 sentences from five tasks, one speaker, with 

a dictionary of 354 words. The word level accuracy reported was greater than 992. 

Phonological and syntactic knowledge sources were sufficient to correct »II the errors of a 

307. accurnte labe'.er. 
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When the Dragon system knowledge sources are used (in a modified form of th«» 

system) to generate a transcription of the known utterance, they produce a referent 

transcription more suited to evaluating acoustic labeling. Comparison with this referent 

yields accuracies of 407. and greater for the least capable parameters, ZCC. 

Finally, we may refer to Shockey and Reddy's foreign language transcription 

experiment [Sho74a] and to Klatt and Stevens' spectrogram reading results [Kla72]. Our 

results are quite comparable with trained phoneticians reading spectrograms or wavtforms 

in the absence of any iii^ner lever linguistic support. They are not much worse than 

human performance with auditory input. 
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Chapter 9 

Conclusions 

In this concluding chapter, we would like to Jraw together some of the previously 

discussed results and methods into a more coherent view of speech recognition activities 

at the parametric level. At the same time, we should also restate the major contributions 

of this work and point out particular areas where future effüi t is warranted. 

We will first offer a briet summary of the entire thesis, in order to draw together 

some of the major points and restate the primary results. We will then list the 

contributions with short discussions, and finally proceed to discuss the parametric level of 

speech understanding systems in the light of this work. The last section will be devoted 

to possible areas for further research. 

9.1 Summary of the Thesis 

This thesis is a study of machine speech recognition at the parametric level. It 

attempts to evaluate and understand ^he relative merits of a number of alternative design 

choices at that level. Such a study raises issues in Artificial Intelligence, Linguistics, 

Acoustics, Pattern Recognition, Statistics, and Speech Understanding research. In 

particular, it involves an investigation of segmentation and labeling techniques, and the use 

of parametric representations for the acoustic signal in those techniques. Every speech 

recognition system employs some parametric representation and some initial signal-to- 

symbol transformation. We show the performance currently available for these Initial 

processes, and assert that such performance is comparable to human performance. We 

present the relative merits of some typical parametric representation», and develop a 

methodology for such comparative evaluation. Simple, parameter-independent schemes for 

segmenting, labeling, and training are developed as well. The role of pattern classification 

techniques, as they relate to the initial signal-to-symbol transformation, is clarified. 

- ... —•*» 
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9.1.1 Background 

Although most of our Knowledge about how to recognize and understand speech is 

taken from human performance, the structure of computer speech recognition and 

understanding systems is of particular importance to this study. Knowledge about speech 

is generally organized into separate sources of knowledge) each works with • 

representation of the information content of the input utterance. These representations 

may exist at a number of different levels, as suggested by their elements: speech sounds, 

phonetic gestures, phonemes, syllables, words, syntactic units, concepts, etc. In evaluating 

the performance of recognition processes at the parametric representation level, we 

eliminate, as much as possible, the effects of ambiguities from other levels. Such 

ambiguities as coarticulation or phonological variation will strongly affect the degree to 

which the expected transcription of an utterance corresponds with the ecoustlc 

performance. A great difficulty in comparing published results is that the level of the 

knowledge used in recognition and he representation used for evaluation ire not usually 

specified. Usually, only total system performance may be compared, not the effectiveness 

of component methods. 

9.1.2 Parametric Representations 

Parametric representations fall into a few major types; typical examples of each 

have been chosen for study. A bank of broad-band filters (ZCC) with amplitude and rero- 

crossing measurements, and a bank of narrow-band filters (ASA), amplitude only, represent 

analog methods. A digital Fourier transform of the LPC filter [Mar72] produces a smoothed 

spectral envelope (SPG) very much in current use. Finally, the autocorrelation sequence 

(ACS) is employed with a special method designed for it.[li«75] Each method yields a set of 

measurements at uniform, short intervals — a pattern. 
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9.1.3 Diotanc» Motrics 

Distance functions, chosen from Pattern Classification theory, are then applied to the 

parameter patterns as measures of acoustic similarity. The basic model adopted is that of 

a vector of parametric measurements for each pattern. These vectors define a space of 

possible patterns; within this space a measure of distance may be applied between 

patterns. As populations of sample patterns are accumulated, better statistical 

descriptions may be estimated of the true distribution of those patterns in the space. A 

simple example might be to collect all the occurerces of a phone and compute the mean 

and variance of each dimension. Then a suitable measure of similarity might be Euclidean 

distance, weighted by variance, to approximate a measure of the deviation from population 

mean. This is one distance metric chosen (SIG). The others are Euclidean distance (EUC), 

Correlation (COR) -- the magnitude normalized dot product, and Maximum Likelihood (UK). 

In tills last, the population covariance matrix is used to calculate Pr{unknown produced 

from population}, under the assumption of Gaussian distributions. 

9.1.4 Segmentation 

A method for segmenting speech into isolated, acoustically consistent segments is 

presented. The method is fairly independent of the choice of parametric representation, 

since it relics upon the acoustic similarity measure as the primary evidence of acoustic 

change. First, however, B threshold is applied to the signal amplitude measurement to 

discriminate between speech and silence. Then the speech portion is examined further. In 

collecting evidence for a segment boundiiry, a measure of change is applied to neighboring 

parameter patterns. This measure produces e. time sequence of values whose peaks are 

detected and subjected to a threshold for acceptance or rejection. A composite of such 

functions yields the final segmentation. Narrow and broad pattern similarity and amplitu> 

change are the three functions applied to the non-silence portions of the signal. This 

process is very much like the process hypothesized in the basic model for Signal Detection 

^—,—^ "^ " ? 
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[Ega64].    That  model  may be applied to the problem of evaluating segment bounder/ 

"detectabihty." 

MiGsmg and extra segment errors are found to be as good as 47. and 197., 

respectively. Significant differences in the segmentation effectiveness of the parametric 

representations is found. They may be ordered as follows: SPG, ACS, ASA, and ZCC. The 

best performance is found to be comparable to the state of the art. Little reduction in 

accuracy is encountered when new speakers are tested. 

Figure 9.1 shows the results of segmentation for 40 sentences from the News 

Retrieval task, one speaker, 

SPG ACS ASA ZCC 
Segments U 

HI 1882 1882 1882 1882 
H2 1541 1541 1541 1541 
n 2928 2882 2818 2298 

fl i 8 a i ng 
I 37 57 91 52 
X 3.7 5.8 9.2 5.3 

Extra 
0 299 391 434 881 
X 27.8 36.1 48.8 83.8 

(19.4) (25.3) (28.1) (44.2) 
Shifted 

U 28 34 45 41 
X 2.8 3.4 4.5 4.1 

d* 2.38 1.93 1,58 1.29 
(2.85) (2.24) (1.91) (1.77) 

Figure 9.1: Segmentation -• Different Parametric Representations 

The reference segmentation contains 1082 segments, primarily at the phonemic level 

of description. The second reference contains corrections to this tile (1541 segments), to 

make it more an acoustic description of the corpus.   The number of machine segments 
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reported   may  be greater  than  the sum of  this  second size (hand  reported  acoustic 

segments) and the number of extra boundaries.   The discrepancy is an artifact of the way 

we evaluate segmentation.  Occasionally, two machine boundaries will fall close enough to a 

hand boundary so that both are .iccepted.   Such segments must, therefore, be very short, 

and are usually transition segments which may easily be deleted at higher levels.   The 

number of missing boundaries (segments), divided by the number of boundaries which are 

included in both reference segmentations, is the missing segment error rate.   The number 

of shifted boundaries is also divided by this number.   The number of extra boundaries is 

divided  by  the number of primary segments (the size of HI  in this case).    The extra 

segment  rates  in parentheses are those where division is by the number of acoustic 

segments (size of H2).   The value, d'. is a single measure of detect.bility from the Signal 

Detection model.   It has the effect of normalizing for the trade-oM between missing and 

extra segment errors. 

9.1.5 Labeling 

Labeling is accomplished by simple pattern distance metrics.  Given a set of phonetic 

elements as the recognition targets, a set of templates for each target is derived from the 

training data.   This is achieved by a clustering algorithm developed for the purpose of 

encoding   into  the set of  templates some of  the ambiguities encountered  because  of 

allophonic variation.   The pairwise distances are computed for ill pairs of sample patterns 

in the training population for a particular phonetic target.  Then a threshold is chosen from 

these values, and the distances below threshold are marked.   The sample pattern In the 

most marked pairs is chosen as a representative template and all its marked mates are 

discarded.   After iterating, the population is divided into clusters of various sizes, each 

with  a  "best" representative template pattern.   Clusters of sufficiently small  size  are 

ignored. 

Labeling itself proceeds by computing the distance from the unknown pattern to 

each template. In addition to the distance metrics mentioned, three prosodic features of 

each segment -- the average amplitude, the duration, and the amplitude contour of the 
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surrounding segments -- are used tc increase the distances to templates whose prosodit 

features are considerably different. 

The set of templates (and their appropriate target labels) and the distance scores 

give the total recognition information available from this straightforward labeler. If some 

criterion is placed on the templates which one is willing to report to the rest of a system, 

then accuracy may be measured as a function of the severity or looseness of that 

criterion. If the true effect, upon a speech recognition system, of loosening the 

acceptance criterion is to be understood, one must also measure the expected number of 

separate targets reuorted at each instance. We call this the Branching Factor (BF), end 

collect it as well as accuracy statistics in evaluating labeling performance. 

Little difference is observed along the parametric representation or the 

classification metric J'mensions, except for poorer performance for ZCC input. Each input 

segment is labeled as one of a set of 40 phone labels. The correct phone appears as the 

first choice 287. of the time. It appears in »he first three choices 557. of the time. 

However, when a lower level, acoustic transcription is used as the evaluation referent, 

these values increase to 427. and 657.. Even the 287. accuracy, which arises from a 

comparison against phonemic expectation, is acceptable performance; it is the same as or 

slightly better than human spectrogram reading performance in the absence of other 

linguistic clues.[Sho74a] 

Figure 9.2 shows overall labeling accuracies for the four parametric representations. 

The distance metric is the Euclidean distance function^ and a se» of 40 phonetic 

recognition targets is used. The values reported for position p are Pr{correct template in 

position s p}. The expected number of different targets (branching factor) is given in 

parenthesis. 

Figure 9.3 is a graphic display of accuracy versus Branching Factor for the SPG/SIG 

experiment. Five plots are given, identified by the size of the target set used in each 

evaluation. The BF plot gives a particularly convenient view of accuracy versus the 

demands that will be made upon higher levels by excess options in recognition. 

t The ACS representation was used only with Itahura's log ratio distance. 

,-- >«r -•. -r~. 
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SPG ASA ZCC ACS 

1 24.6(1.8)    27.1(1.B)    28.3(1.8)    28.7(1.8) 
2 42.4(1.9)     39.1(1.9)    31.4(1.9)    44.4(1.9) 
3 54.8(2.8)    58.4(2.8)    42.8(2.8)    54.B(2.7) 

Figure 9.2: Labeling — Different Parametric Representation« 

T ~i   i    i—i—i—i—i—i—r 
4 6 8 10 12 14 

Branching Factor 

Figure 9.3: Branching Factor vs. Labeling Accuracy for Various Target Sett 

9.2 Contributions 

9.2.1 A Comparison of Parametric Repreteptationi 

It should be clear that any effort to compare the various parametric representations 

in terms of their suitability for use in speech recognition systems is needed, and such 

— ■ r.-«».••• -»v«rT| 
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results' are of value. What is not clear is how accurately such comparisons have been 

made and with what confidence they can be applied to predicting performance and 

designing systems. It is our contention that the uniform manner in which we have applied 

the tested representations to segmentation and labeling, the simplicity and ubiquitous 

nature of the pattern classification assumptions, the quantities of data, and the c^re with 

which we have evaluated the results reported in this dissertation all contribute to the 

fidelity of those results and to our confidence in, at least, the relative strengths of the 

representations reported. 

In   the   segmentation   process,   the   choice   of   parametric   representation   shows 

med -- for SPG, missed rate - 47., extra rate - 19^ ignificant effect.   The best results obtai 

ired to the next best, ACS, by normalizing with d' for ore of the error 

missed rate as SPG would produce 337, extra segments. 

— may be compa 

•jtes.   ACS for the same 

Labeling performance is not afrected by choice of parametric representation among 

the three: SPG, ACS, and ASA. Nor does the choice of distance metric for the labeling 

algorithm have any effect. Although the top labeling choice is correct only about 257. of 

the time, in over 50^ of the segments labeled, the correct choice is among the top three 

choices. This behavior agrees well with human performance at spectrogram and waveform 

reading under similar constraints. If we believe that the human spectrogram reading was 

very competent, then while the representations may not afford all the information about 

speech available to the human ear, the labeler is performing about as well as may be 

expected with those representations as input. 

9.2.2 Parameter-Independent Segmentation 

The segmentation algorithm described in Chapter 5 may be easily adapted to any 

set of parameters and any measure of similarity in the space of those parameter vectors. 

The algorithm need not be trained for every speaker, and works well for a variety of 

parametric representations. Our experience with it has indicated very little degradation of 

performance accross speakers, with recording conditions MKtt*t  This is probably due to 
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the fact that boundary detection depends upon detecting changes in the pattern space. 

Large, sudden changes will bo detected by any reasonable scheme for segmentation. The 

small or slow changes are the most difficult to detect correctly. Yet, these small shifts are 

not affected by large, smooth transformations to the ovfral! pattern space which may 

characterize speaker change, (e.g. Different format locations, for a new speaker, will not 

seriously affect the detection of format shifts.) Labeling, on the other hand, depends upon 

gross comparisons of patterns to a much greater extent; it is more dependent upon the 

absolute locations m the space of patterns for particular phone templates. The segmenter 

represents an available tool and a benchmark for acoustic level segmenting whose overall 

performance is comparable to other current programs. Moreover, the method of threshold 

acquisition is easily adapted to more dynamically sensitive techniques, as will be mentioned 

below. 

9.2.3 The Role of Primitive Pattern Classification Methods 

In the past, many of the methods and results available from statistical pattern 

classification research have been dismissed or tacitly assumed of small value without 

sufficient attempt to understand the implications of the surrounding issues (training, target 

sets, metrics, etc.) which strongly affect performance. It is hoped that this work will 

stimulate further, careful application of the methods involving stochastic pattern spaces. It 

is apparent, however, that much of the disenchantment with these techniques stems from 

their failure to solve the recognition problem at a level accessible to higher level 

knowledge sources. Pure statistical classification approaches will not, in our opinion, 

provide such a solution, as our low initial labeling accuracies indicate — 257. may sound 

low to the uninitiated. The analysis of the proper roles for pattern classification methods 

which we have presented, in the context of testing their usefulness, may also serve to 

define fruitful avenues for applying more sophisticated pattern classification techniques. A 

great deal has been written about the acoustic level of speech, but fairly little attention 

has been paid to techniques which are specifically and specially suited to computer 

implementation.   We feel that pattern classification methods are so suited.   One interesting 

■j""jk 
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result  of  our   worl\,  with direct  implications  for  pattern classification  techniques  and 

speech,  is   the   irreievence  of  second  moment   statistics   for  describing  the  template 

distributions -- the distance metric dimension.  For example, ASA parameters were labeled 

with  the   four   metrics:    EUC, COR,  S1G,  and UK,  the  last  two  utilizing  variance   and 

covariance  statistics,  respectively.   When  accuracy  results  are  calculated  for   a  fixed 

branching factor of 3.0, all accuracies are within 17, of 507,.   Either the clusters are fine 

enough divisions of the pattern space to capture all the rele^ er{ information about the 

target   population   distribution  without  the  need  to  involve  second  moment   data,  or, 

alternatively, the distributions are spherical (i.e. the parameters are uncorrelated).   It is 

hard to imagine adjacent narrow filter bands in the range of frequencies in question ta be 

uncorrelated, so it is likely that the former argument is more valid.   This implies that the 

emphasis   for   speech   applications   of   pattern  classification   techniques   should   be   in 

clustering, tracking, or dynamic training — to capture, empirically, the complexities caused 

by stress, coarticuldtive, and other phonetic variations. 

• 

9.2.4 Methodology for Evaluation 

Closely related to our view of the role o* pattern classification is the methodology 

we have adopted for evaluating performance in those pattern spaces. We have essentially 

found that, in order to evaluate accuracy fairly, one must have a fair representation of 

what is expected or correct. As an example, labeling accuracy over a set of 40 phones 

increases from 207. to 407, when the labeling referent is supplied by a machine aided 

process rather than purely hand transcription. The machine aided process find the best fit 

to the acoustic input of label templates, constrained by the stored phonological variations 

in a word lexicon. AIU. gh this method yields higher accuracy measurements, we have 

not used it because it is open to question. The referent is being generated primarily by 

the same process which is to be tested. However, we believe that the machine aided 

referents generated are as valid descriptions as are the hand transcriptions. Much of our 

difficulty has been in acquiring hand segmentations which represent a fair expectation for 

ecoustic level performance. 
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The methods and attttudes presented are applicable fo any parametric 

representation, to any segmentation and labeling output, and to a number of levels of 

description of speech. Where knowledge in addition to acoustic/phonetic knowledge is 

used, the results will be more like higher level representations and may, therefore, yield 

higher accuracies when compared to hand transcriptions. For the IBVl labeling and 

segmentation program, reported accuracy at the phonemic level is 627.. The program uses 

digital bpoctral parameters and a pattern matching scheme vsry similar to our own as input 

to a detailed set of phonetic and phonological rules. Such performance results are valid 

measurements to be applied to the analysis of total system performance, even though they 

may imply less about particular aspects (such as a particular parametric representation) 

than our primitive level evaluations. 

9.2.5 Signal Detection Model 

Applying the model of signal versus noise, and the d' measure of signal detectability 

[Tan64] may prove quite useful for modeling errors of raw segmentation and labeling 

output over a wide range of performance trade-offs. Notably, extra versus miss ig 

segment errors, and recognition set size can be normalized by d', and whole ranges of 

performance predicted. While the validity of this model has not been completely 

established, our preliminary success with it, added to the large amount of human 

perception research supporting it as a model of detection, seem to lend it credence. We 

also see possible applications in predicting performance of systems under simulated 

errorful inputs, prior to implementing the actual knowledge sources. 

9.2.6 Clustering 

Our success with the acoustic/phonetic clustering algorithm gives us hope of even 

«        further gains to made in this direction.   By using multiple templates for various acoustic 

manifestations of phones, we are able fo describe complex partitionings of the pattern 

space with simple metrics.   In addition, we are able to factor out effects which alter the 

acoustic, but not phonetic, natu-e of the signal.  Dynamic methods for tracking clusters may 

.-•: ^ '«w i 
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be applicable here. At minimum, this routine provides a method for integrating two levels 

of representation, acoustic and phonetic, which are often difficult to correlate. Once again, 

the routine is applicable to any pattern space, distance metric> definition of similarity of 

two speech samples. 

9.3 Parametric Representations 

The design or choice of a set of acoustic parameters for speech recognition analysis 

is still a difficult problem. We have shown how accuracy is improved -- usually at the cost 

of increased computation and memory requirements -- by choosing more informationally 

complete representations. However, this is not the only source of computational costs. 

Lower accuracy, in most systems, introduces larger data bases and more extensive 

searches at higher levels. Thus a total system analysis of costs in memory and speed 

requirements versus accuracy must be made by the system designer if the choice of 

parametric representation is to be made with cost in mind. 

At the present state of the art, emphasis has been i.laced mainly upon accuracy, 

since that aspect of performance is the most critical to a number of the goals of speech 

understanding systems, even to overall speed and memory. However, if systems are to be 

designed for limited resources, low cost, and real-time operation, exqessive parametric 

information must be trimmed away. !n another sense as well, parametric information 

should be as sparse as is necessary to meet the system performance goals. This is in 

order to reduce the likelihood that extraneous aspects of an input pattern will lead to 

error . A number of methods for selecting parts of the parametric pattern, according to a 

priori, decisions about speech clius, are available, from sequential decision methods [Fu68] 

to specific parameters designed for such classes [Wei75, Ata75). 

Of the performance information reported in Chapter 8, the confusion matrices are 

the most useful to a system designer concerned with special cases -- specific situations 

t For example, in a situation where one is reasoncbly sure of a fricative sound, a lot of 
information about resonant structure in the lower frequencies is worse than useless. It 
may actually cause mislabel ng to a high vowel if there is any voicing present (as there 
often is). 
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where particular parametrir representations may fail or succeed. An extensive analysis of 

sub-matrices such as is found in Weinstein, et.al. [Wei75] should redly be structured to 

match the particular higher level knowledge and particular requirements of processes 

found in each system. \NJ cannot give specific recommendations of the type, "Use 

parameters X for case A...," since the cases of interest are determined by the individual 

systems. 

The overall performance results do reflect actual, continuous speech recognition of 

American English sentences. Ir. that respect, they reflect tho a priori distributions of 

phonetic types, coarticulation situations, stress and pitch variations, etc., which are likely 

to be encountered under similar conditions of speech. The results are, therefore, more 

valid for prediction than if they had been compiled from artificial word lists or from a 

smaller data corpus. In the light of such a belief, the results indicate the relative 

effectiveness with which segmentation and labeling can be performed at the most primitive 

level of lecogmtion, averaged over a number of different situations. Since most 

knowledge sources will build upon primitive decision mechanisms, we feel the comparative 

results reported here will be valuable even for more sophisticated, phonetic level speech 

recognition programs. 

9.4 Parametric Level Knowledge Sources 

in comparison with some of reported work at the acoustic/phonetic level, our 

segmentation and labeling routines may seem rather harshly limited to the parametric 

representation level only. However, our view has been that other knowledge can be 

applied by separate processes at separat* times if the system structure is sufficiently 

flexible. This is neither a new, nor an extremely insightful, point of view, but it does «How 

us to focus or the set of recognition decisions which occur prior to any phonetic or 

phonological analysis. It also is a "ogical extension of the co-'crpt of modularly 

implemented separable sources of Knowledge so often expressed in the literature. 

[New71, Red73, Erm74b, Les75, Woo75] 

■ "  mm-fim T     .. 
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We suggest that a reasonable approach to analysis of speech at this level is to make 

the transformation from parametric representation to acoustic/phonetic segments as soon 

as possible and with as much information as is relevent. The machine transcription 

occupies considerably less space than the complete parametric representation of the 

signal. In addition, the kind of processing needed to create this transcription is 

straightforward and easily performed in a parallel manner, perhaps with special purpose 

machinery, or off-line, in cases where experiments are run before or during system 

development. 

Wo have shown that, by using simple pattern classification techniques, reasonable 

labeling and good segmentation performance may be achieved. Using these simple pattern 

space measures for many decisions yields the additional bonus of parameter independence. 

The routines are not built to accommodate particular parameters, but rather designed to 

make use of the information inherent in the occuring populations of entire pattern vectors. 

Thus, the method of extracting parameters may be changed during system development, or 

after, whenever better methods are found, and the routines may be expected to work well 

without extensive re-tuning. 

We are not, however, arguing against the use of more complex decision procedures, 

nor against more feedback from higher level knowledge sources. Rather, we stress the 

need to make as complete and valid ube of the patterns of parameters as is possible, as 

early (low level) as possible. This requires detailed knowledge of the statistical nature of 

the pattern space, encoded in the trained templates, distance measures, and related 

aspects of the pattern classification functions. 

9.5 Evaluation 

Our approach to parametric level processing by simple pattern classification 

requires that one disengage higher level prejudices and expectations from one's evaluation 

of the accuracy of such methods. Our philosophy for performance evaluation has been to 

expect what is really in the input to appear in the output transcription, and, additionelly, to 

■^- ■— 
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expect absent what is not in the input. For example, if we consider only individual 

parameter vectors extracted at a single short interval of time, we cannot hope to integrate 

into our decisions segment-sequence phonetic information such as is available in stop 

consonants. This is not to say that such complex patterns are not in the input as a whole, 

just not in the particular input to the decision rule being evaluated. Rather, we suggest 

that the right time to determine whether such information is preserved by the lower level 

routines is when higher level knowledge sources are evaluated. To continue the example, 

since a /t/ burst is acoustically similar to an /s/, we are somewhat satisfied if our labeler 

returns /s/ for some of the /t/ bursts. V is the job of the phonbtic/phonemic level 

Knowledge sources to discover /-//s/ sequences and label them /t/. Such cases will lead 

to a lower overall accuracy score for 0"r labeling evaluation, since we do not have such 

knowledge encoded in our labeling referent. However, the confusion matrix entries of /t/ 

for /s/ and vice versa should be recognized as less critical by anyone investigating the 

labelirg accuracy of a particular parametric representation. 

In view of the previous discussions, our performance measurements would appear to 

be the lower bounds of performance to be expected from a particular representation. We 

feel that such a lower bound is as valuable a measure as more optimistic estimates which 

integrate the results of some higher level knowledge sources. Certainly, if the total 

systems are to be modeled in terms of individual processes, such a "separation of power" 

view is necessary. 

The idea of modeling the entire system is particularly attractive but difficult to 

accomplish. As knowledge source interaction has become more complex, our understanding 

of the implications of errors at various levels has become less complete — more derived 

from the special cases actually traced. The signal detection model may provide a (very 

broad) model of this lowest level of recognition activity — less detailed than the confusion 

matrix model of errors, but easier to manipulate. We can foresee the d* detectability 

measure in use to parametrize a zeroth order simulation of segmenting and labeling. This 

model   might   be   improved  by  applying   the  conditional   probabilities   available   In   the 
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confusion matrix.   As similar models are developed for other levels, overall Knowledge 

interaction schemes can be simulated. 

9.6 Topics for Further Research 

It has become almost obligatory in many dissertations such as this one to include a 

list of topics for further research. However, we would like to include such a list for quite 

a different reason than tradition. In the course of these investigations into parametric 

level processing of speech for machine recognition and understanding, we have been made 

aware of a number of interesting possibilities for extending or improving techniques for 

segmenting and labeling as well as some interesting approaches to evaluating performance 

and the problems of training the parametric routines. We believe that a great deal of 

progress may be made in these areas, and have had some difficulty in keeping to a 

particular path of research with all the tempting problems surrounding this level. 

Moreover, we have spent some effort in presenting a view of the current state of the art, 

and that view will not be complete without pointers to the aspects most likely to yield 

further progress. 

9.6.1 New Parametric Reprostntationt 

The search for new and better parametric representations will, of course, continue. 

Particular models of speech production or reception in humans, such as the all pole LPC 

model, or Baker's LIP parameterst [BakJM75], will continue to provide new insights into 

the Kind of information and encodings found in human speech. Another direction yields 

parameters and decision procedures designed to detect specific phonetic features. [A^75] 

It is important to consider the decision procedure to be used with a particular parametric 

representation, for the effective shape of the pattern space depends upo i both. 

Where does this lead for future parametric representations? Perhaps • more 

integrated approach to their development will result from such considerations - one In 

t based upon neuropsychological evidence of zero-crossing responsive cells 
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which the needs of machine recognition of speech, and machine oriented higher level 

features, play as strong a role as aspects of human perception have played in the past. 

Certainly, any new parametric representation must be extensively tested and compared 

with the already numerous available ones if we are to make real progress. In this, the 

work reported here will serve as a valuable tool for guiding research. 

9.6.2 Segmentation 

A number of different segmenters are currently being developed and tested, and it 

is quite likely that features of many will prove particularly useful to others. The ideas 

expressed in our segmenter for integrating boundary detections from a number ct 

functions of the signal may prove useful for integrating segment evidence from a variety 

of sources of such knowledge. However, one problem which seems likely to yield to 

immediate beneficial solution is thai of adjusting detection thresholds (or whatever tuning 

parameters are relevant to the particular segmenter in question) to the non-stationary 

behavior of speech. Boundaries are characterized by a variety of durations, magnitudes, 

and qualities of signal change. If may be necessary to extend the period of time over 

which the signal is viewed, to adjust the thresholds to reject insignificant changes, or to 

ignore entire regions of the pattern space, if they are independent of the phonetic 

information in the signal. 

A powerful line of attack is suggested by recent work in visual segmentation. 

[0hl75] In this approach, histograms of the parametric measurements are analyzed for 

each scene, in order to determine the most likely parameters for segmentation as well as 

the best thresholds for those parameters (for that scene). 

In speech research, a very low level segmenter has been added to the Dragon 

system to improve speed of recognition [Low76]. Good success has resulted from a single 

detection parameter which tracks the change over a varying time period, looking further 

during slow changes for evidence of acoustic boundaries. 

The message here is that a number of statistical pattern classification techniques 
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seem to be applicable to the segmentation problem.   Dynamically adjusted, self-training 

detection routines will result in very robust, high performance segmentation. 

96.3 Recognition Target« 

In a very similar sense as segmentation, better training of recognition templates will, 

undoubtedly, result from dynamic tracking of input data in the manner discussed by a 

number of pattern classification researchers.   We wish to point out another aspect of the 

target problem which needs attention at this time -- the integration of acoustic and higher 

level  knowledge  about  speech in the recognition target set.   This problem  has  been 

extensively änmmi by others [Wei75] and efforts have been made to construct, a priori, 

sets of phonetic labels which are acoustically distinct.   We feel that r,uch sets must be 

discovered in much the same way as other aspects of the pattern space, by statistical 

analysis of bodies of data.  Clearly, there are many improvements to be mad» to the simple 

clustering algorithm of Chapter 7.   We look forw?rd to more positive results from data- 

derived recognition targets, and, in addition, from data-derived higher level rules [Smi75, 

Hay75] 

9.6.4 Evaluation 

With regard to evaluation, thera is so much to be done that we will limit our 

discussion to one important aspect of evaluating accuracy performance at the parametric 

level. That is the problem of acquiring high-fidelity referents to vhich recognition results 

may be compared. Since the performance of knowledge sources at one level of speech 

may not be expected to match the expectations of another level, performance evaluations 

will be in error unless the level of description (of the signal's contents) of the referent 

and the recognition are quite similar. 

An obvious procedure is to take great care in hand producing the referent 

transcriptions. Not only is this extremely laborious1, but it also fails because the human 

t which leads to errors and limits the quantities of data that may be analyzed 
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transcriber may not understand just what the expectations and implications are of a 

knowledge source encoded in rules, programs, or trained statistics. It would appear that 

the best source of these expectations is the speech understanding system itself. The time 

has come for systems to be designed and implemented with evaluation of various 

Knowledge sources as a basic facility. At each level of representation, facilities should be 

available to derive, from the knowledge sources, just what Inputs from other sources 

would result in the correct action, decision, etc. As an example, if a higher level of the 

system can recognize the transition segment /I/ in lower vowels following /g/ or /k/ es an 

indication of those stops, such cases in the referent should include /stop//I//vowel/ as an 

alternative to /g,k//vowel/. 

It may well be time to depart from the close ties to human perceptual experience 

with speech. Some of the most successful systems to date, both for word recognition and 

connected speech understanding, [Ita75, BakJK75b, Erm74b] have had much less in common 

with what we know about humans and linguistics than with what we know about computers 

and artificial intelligence techniques. It is less important to model human processing than 

to match human competence; especially since we know so little about the elements of the 

human speech perception mechanism. To this end, the best use must be made of quite 

different information processing devices than humans seem to have, and of different forms 

of data and control. 

I 

9.7 Envoy 

This ttvci.s has involved investigations of a number of design choices for the 

acoustic/parametric level of computer speech recognition. It has led us to survey a large 

range of techiques, and to attempt to extract aspects of Pattern Classification, Acoustic 

Anal/sis, and Performance Evaluation most relevent to the stated goal - a comparison of 

segmentation and labeling performance. The current efforts to develoo speech 

understanding systems a e producing in their wakes a number of theories about speech. 

Although overall performance of a total system is an important measure of the validity of 
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its assumptions, the difficulty of studying each system's components, in vitro, has been a 

handicap to the entension of our understanding of the entire problem. This work is an 

attempt to extract one basic component and evaluate it in a manner which will both aid 

designers and increase understanding of its role in the total speech recognition K-oblem. 

-   — -« '*-~K1 
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SI: Segmentation — Some Cases 

The following are some cases where the hand and machine regmentations disagree. 

They are classified according (o type of error ((M)issing or e{X)tra) ind degree (0-mechine 

correct, 1-not critical, 2-critical error). We introduce these cases to illustrate the various 

phenomena which are involved in segmentation, and which must be considered in 

evaluating segmentation. Two displays are given for each case: a plot of the digitized 

waveform -- lOKHz,, 9 bits -- ari a plot of the SPG parameters (which serves well ■• ■ 

digital spectrogram). 

M2 — Cases where a critical segment boundary is not detected: 

/EH//L/, slow change in sonorants not detected 
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hi!GI< voice bar not detected 

I 

54 ,58 ,62 £6 ,70 
CIVE    GIVE    GIVE    GIVE    GIVE    GIVE    GIVE    GIVE I GIVE GIVE    GIVE    GIVE 
lltltltllttltttgiiittl I    I    in    I    I 
i   t   f   i  t   r i   i   i   t   t   «  t  t   iV  f   t   1 

GIVE    C 
I    I    I 

  

• »• 

• *••• 
3 

/AE//rj/, nasalized vowel and nasal 
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Ml -- Cases where a non-critical boundary is missed: 

/V//M/, very slight change, phonologically explainable 
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MO -- Cases where hand segmentation is not correct 

/EL/, no separate vowel segment 
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/NG/( nasal to voice bar, /G/ probably deleted 
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XI -- Cases where machine boundary is incorrectly included: 

/B/( voice bar lost (SPG amplitude parameter insensitive) 
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/IY/, vowel segment broken up 
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XO — Cases where hand boundary should be indicated: 

/K//K/, burst and aspiration separated 
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I 

/AW//AW/, vowel onsev transition segment 
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S2: Segmentation - Hand Corrected Machine Segmentation 

In  the  fo'lowmg waveform plots, the results of running the- segmenter  with SPG 

input parameters are shown.   Ratings of all the points of disagreement with the referent 

segmentation   are   g.ven.    In  this   plot,  the  referent   segmentation   is  given   below   the 

,   waveform in two lines, a phonemic and a sub-phonemic transcription.   The ratings are the 

same types as indicated in Appendix SI. 
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LI: Labeling Evaluations 

The following are evaluations of labeling for a number of the parametric 

representations, distance metrics, and labeling target sets investigated. The entire design 

space for labeling could not be covered in this appendix. The first table in each case 

contains two different acceptance criteria for templates: position (POS) and relative 

distance (RELDST). This latter is the difference between the score of the best template 

and that of the template in question. For either criterion, the target class accuracy (CL- 

SCOR) and the target class branching factor (CL-POS and BRNCH) are given for a range of 

acceptance vaiues. The second display is the confusion matrix for the evaluation run. 

Entries are conditional probabilities * 100. 
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V  v».   Accurwr  »nd Confusion N*lrl« 
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10 
II 

B.37 
9.07 

TBBO 
B0.(« 

9.00 
M 00 

70.55 
73.09 

5.66 
6 26 • 

17 979 BI.64 II.M 75.00 6 87 

13 10.M B3.40 12.00 76.41 7.45 
14 11.20 B4.60 13 00 77.75 802 
IS lt.B9 B9.45 14.00 79.24 8 63 • 
If, 17.59 B5.95 15.00 BO. 01 9.20 
17 13 76 86. V 16.00 91 «0 9.77 
IB 13 93 97.36 17.00 B1.32 10.31 
10 14 57 68.21 19.00 B2.B4 io.es 
7« 15 19 BB 49 19.00 B3.62 11.36 
71 15.?7 8B.6J 20.00 84.68 11.8S 

. B 0 C   P    T *   r TH V OH S SH   2 2M W 01   1 NWI CN u R L    T CL JU UH OU M) M AX C* EM CT W IX IM IT 

. 76 r 7 5   5    . 1  1  . 1    1 .  i 1 .    3 .     .     1 

9 1? K 10 t 11 .   12 .  12 •     •     • 
0 0 14 16 4  12   t 4     . .    2 4   6 2 2 .   14 .    4 .    2    2 

c 5 9 ei .     7   5 M    .     . 2    . .     7    . %    ■ 2   1 2 S .    7 ■     •     • 

F n • «    • 6 .  13 .     .     . 
t 6 z 4 .   16 29 •   4    . 4    . .   18    . 2   8 4    . . .    4 .    2 •     •     • 
> \z .     3    . 13    3    . . 27   • 3   3 8    . • .     . •     •     ■ 

r r s II 16   . .  II    . .   s   . .    S .  II •     •     • 
TM le 2% IB ?S    . .  IB   f .  16 .     .     . 

3 
N 1« 

3 1    1 
.    7 

.    . 20 11 

...    7 
1 
7 

13 . IB .     1    . 

OH 7    7 .     .     . 
s z .    S   2 ;2   2    . , II It   • .    2 2   . .    5 .    2    . 

SH . 67   .    . 11    ■    . , , .    .    . 
/ .    .    t IB   .    . 1    . 2« 12 2« . .    t .    .    . 
w 25    . .  50    . . . . 26 .    .    . 
M4 .Hi?. .  33 .   17 i    .    . 

01 ,     , IB   . . 48 ...  18 .    .    . 
n .   14 4 16 11 18    . .    .    . 
N .     , 7 IS II 21    . .    1 .    .    . 
NI , .   S 74    . .    . t    .    . 
EN .    .    . 
H 13 ,     , 7 7    . 67 7 .    .    . 
« .    2    . 4 2 11 13 .    fe 2 .    .    2 2    . 44   2 .    2    . 

1 7 ? 4   2    ■ 4 6   . 7 2 26 H .    « 2 II    .    6 7    7 4    2    . 

» .   II    . .    6 .   38 .  18 .  13 11 

n , .160    .     . 

in 1 .     .    1 1   . .  10 5 11 1   .    . 8 33 .   13   5 

IM B •   .    ■ It 38 IS    . . IS   . 

nu 6 8    . 23 , .    8 21 .16.. .   IS 

MO 3    . 23 7 17    . 17 .    .    t .771» 1    . 

M) 4 4     .      . 4     . 4 8 8    .    8 8 18    .    . .    8 .    8 

AI { .    2    . 2    ■ 1    2 1    1 2 1 8    1    9 1 10   2   2 .     7 2 16   2 

r» 4    4    . II    ■ 9 4 4 .    . 11    . .    4 4   8   8 

TH .     1    . 2 .    7 .    ■    1 9   6    1 IS .  II .  75    1 

rr . 20 .     .    .    . .  80 

nf 3 .    9    . 6    . 1    . 6 .    3 .    .    1 .16   6 .  44 .    *    3 

IX 6 6 6    . .  26 ■    .    « .   25    6 .    6 t    .   13 

IH 1 . 1    . . 26 .    .    1 .116 .  38 .   !7   S 

IV 1 1 2   t    . .  i 1    1 1 . 26 .    1    . .  IS 26 16 
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Bf   v».   firfirtcy  «nd Con(ul u«  Httr ir 
Nuii**r   p<   clulttrti   B7 
Distanrt  )\tr ic l   IT) 

o»»» rii.i inp tmmtm - cc. ink - n~.„< 

TcUl t ^urt 1           MI6 
POS ci pos a «OP PtLosi  a-\cop BWCH • 

1 1 "e (Ml 00 79 38 116 
? 1 w. H.n 1.00 37.06 1.S7 
3 t.M 54 59 700 34.53 174 < 3 H 59 96 3.(10 36 51 1 90 
f. 1 ?9 64  17 4.00 38 3S 7.OB 
6 5 r« P.tt BOO 40 87 7 19 
7 S  HI 70. |3 t.t$ 43 (« 7.36 
a E SB 77.3» 7.00 45  77 7 6' 
a r.» 74.77 8 (« 47.37 7 80 

in 7.11 ■% <JS 9.(« 48.B7 7.97 
n 9.U 78.74 1(1.(1« BO 7B J.17 
II 9.IB 79.57 11.PO B7.(iB 3 4B 
13 9 ?B B>? 79 17.(« B3 46 3 68 
M IP 36 81 B7 13.1V BB 16 3 89 
IS 1(1.93 87.70 14,00 B6 B7 4.13 • 
ID 11. IB 83.5B IB 00 58 CB 4.44 
17 11  97 84. 7S IB (10 59.75 4.67 
IR I? Bl BB.57 17.00 60 BB 4,94 
in 13 fM 86 BE 18 W 6,? 08 BIB 
,-'■ 13.BB 87.43 19.(0 63 49 B.39 
?i M PS 88 76 70. (« 64  34 S 67 

- e 0 C   P    T t   r TM VOH S SM    7 7H HM 0» NNW (H H   P   L   V CL IM IM OU AO AA AX C« EH cr « IK IH ir * /« i b Z    7 1    1    3 7 .    .    .    7   . 1    1 
B 17 K .   10 7    . 10   S 2    . 
0 H 7 1? ?    i    ■ B   7    . 7   7 .     7    . 1    .    9 7 II ...  14    . 4    2 
0 b H IB 2 9 7    7 9    . .   14 7    .     .    S    . 2    .    2 
P 19 6 19 .    6    . . ia s 

1" 2 Z   7 7 IB   7 7    . 17    7 .    .    .    7    . 2   2    . 
i 1 6 .    6 .   36    . 3   9.3. 9    .    . 3    .     . 
1 se BBS .   s  . II   s .     .    S    .     . 
IH » 10 |0    . .   10 IB B .  7B    . 
V 3 7 10    3    . 73    3 

7 79 
73    ...    . .     3    3 

OH 21 ?0 .     7    . 
s .    7    7 7   7 47 17 IS 
4H 33 
? 3    3    . .    3    . 3       41    3 37 .     3    3 
W BO .  7B    . 
HH .   17    . .      .   17 .     .    .  33    . .  33    . 
01 M 10 IB .      .   4B ...   IP    . .  26    . 
n 7 7    . 79 79 7 4 14 
N 2 .    .    . 7 61 IB 7 .    7    . 1 
Hi B    . 47 71 S 

1 ».»3.7 13 
R .    7    . .    7 4 79    .    .    . II .     .    2 .     2    7 
l 7    . 7 7 6       76    .  IB 17    t .     7 

n 
6    .     . 6   S    . ...  31 .   75 K 

uu 3 8 .    .    »    .     . IB .   21   41 
I« 
nu 

31 B 73    . .IS ■ 23    . 
15    ft          8 . 31   a a •  .   . .   IB    . 

MU J 7 13 n    .  10 17 .   . n 
HA < B    . .   IS       17 t    .     4 4 12    .     . • 19    . 
AI ? 3    1     . 11    . 7    . .    7 .1111 4 8    1    4 2 27    1    ? 3 IB   S 
If 
tM 

B .   1?    .    4    . 8 .     4 29    4 
.    .    .    6    . 1     .    t till? 2 17    . 

I» . ...  BO    . .  29    . »» .    3    . 3         3 3         3. S    .    . Ill 11 .   39    B 

IH 
ir 

.   13 ...    6   6 •   13    . .  31  13 1 i    1 .    .    .  3»    . .    1    . ■    2    .  It | 4 37    9 
• ■ 1 Z   .    ■ 7 .     . •    • .     .     1  41     . .    1    . 1    S    .    i 1 2 16 22 

■ 
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Pvmtir.iL »■«wtMntmioni  AS« 
0.1. r,l,,  WlMHt« .Ä1 ,„.  .j^, 
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To«.I Cou-t; IK« 
p0S CLPOS   CL-»C0P PfLOST a-wor 3PNCM 

I 
? 
I 

s 
E 
7 
e 
J 

in 
ii 
i? 
13 
M 
is 
16 
1? 
18 
13 
?n 
21 

im 
l.fl 
7 67 
3.73 
< 5S 
S 33 
5 17 
6 8] 
7« 
• 17 
8 88 
9S9 

18.:? 
ID.a 
11.(4 
II.M 
ir.TS 
13 « 
1407 
M 6« 
isrj 

?7.1P 
39.IZ 
SO.^j 

Ml. 18 
63.(i8 
68.7] 
71 83 
74 IB 
76.89 
77.81 
79.» 
81.81 
BMS 
»2.79 
•4.87 
84.64 
SS.4Z 
86.27 
87. Z7 
88.41 
88 98 

-   f   B 

P 
B 
T 
0 
I 
c 
T 
V 
TN 
W 
i 
I 
tu 
in 

m 
u 
■ 
I 
T 
UN 

77 

12 
12 
IB 
1 
S 

•I 
3 

M 

2 
I 

18 
^21 

2 

T     0 
3   10/ 
i 19 . 
i 24 
2 9! 4 
S 9 S 
2 I 8 
2 9 9 

i II 
3 

t 
• H 
t   . 

I 

f  v 

6 
S 

2    . 
S 

i    6 
.    2 

.   17 
4    . 
t    I I I 

•c 
EN 
IM 
IT 
M 
t» 
K 
■ 

i 1 
■ I 
■ t 
I I 
» r 

• •  f . 
• t . I 

it      .   . 

4 . 
I 4 
I    . 

II 

-«• 
1.08 
200 
3.1» 
4.00 
6.no 
6.08 
7.88 
8.08 
9.08 

10.0« 
II 00 
12.08 
13.(« 
14.08 
It.W 
16.08 
17.00 
18.(« 
19.W 
20.00 

TH ON 
.     4 

4S 
4     .      i 
2 21     . 
3 3 

19    . 
S . 

• 17 . 
i 18 . 

43 . 
2 6S 
i    3 62 

14 
7 

II 

2 
2 
B 

27.60 
. 32.36 

3521 
39.0S 
42.62 
46. B7 
SO. 71 
SS 8S 
69.17 
61.74 
64.58 
67.43 
69.42 
71.76 
73.76 
74.69 
77.03 
76 46 
79.46 
88.37 
61.29 

'34 
1 66 
195 
2 33 
2 69 
3 18 
3 S3 
4.08 
4.47 
4.94 
5.49 
B.IV 
6 69 
7.12 
7.70 
6.27 
8 61 
9 36 
9.93 

18.46 
11.02 

9    2 SH 2H 

2 16 20 
• 2   2 
• 6 24 

r 2i 
• 5    . 

.   IB   S 

9   2   5 
21    .    3 

■       108 
.  S« 6« 
.     .  W 

• ••.. ii.'.'.'; i  
:.?:22;;;:-:': • ^6: : : : : 

: ; ,6 • • z • • •   • : ■ ' • : ? : : : ; 2 : 
• 7   9    .     .'    ?    ; »«••.11..,. 
.    5    .     .     .     .  «  

• 27 27   1   7    .    .    .'  
 i..:    » • • . . 
•7.7    
 2    .    .    .    .  ,  
■    '    ■    •    •    3   .    .    .    .  *   

21 (4 
23 57 
6 63 

31    7 
4 4 

It    . 
6 
•    5 

17 
17 

I 
4 
6 
3 

I 
2 
4 

7 33 

.  11 

B 
23 

IB 
26 

t 
23 
48 

. 7 
• .'I 
2   2 

■ 13 

.    4 

I 
II 

26 
6 

t   . 
It   . 

12 
10 

I   2 
4     . 
4    1 1 . 

2 1 

lor 

i  i 

i   . 
2   2 

■    I   . 
B . . 

18   7   | 
4 23 19 
• ■ 2S 

3 II 
S 2 
1 I 
I . 
5 13 

2   . 
6 5*« 

26 
6 

■ IS 
0 23 
•    .    .    . 
3 3.. 
4 ■    I    4 
4 13    .    4 

■7 2S    6   6 
19 19 25 18 
* 22 12 38 
• S 12 41 
7   9   7   S 

28        60 

4 
4 

II 
7 

2   6 
6    . 

73    . 
■    I 
•  23 

7 
6 
4 

I 
I 
2 

16 I     I 

II 
13 6 13   C 

.     3 
4 

•   II 

1    3 
.  20 

13 

' 
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O'flUftC«   Mr x     rev 
P|(f »-«>* 1'  if   Piprr*rM At i(-n     (»SM 

Tt ti.1 C^un»! M'« 
POS Cl   POS ri-»rop Ptiosi CLXrO» BPNCH 

1 1 «o r« 96 no n.w 1  4S 
? |.M 36 98 IOC 3« SO 7.06 
! ? w 49 r9 7 no «r,« 7 75 
4 J.64 w. rs 3 no 49  79 3 49 
s V3B SMB 4 no S4.77 4.19 
G S II bE 93 S.nn S9.3; S.00 
7 S PI 7n 3« 6 no 67. S7 5-70 
d b <3 7:.4B 7.00 PS S8 "-36 
5 r.« 7«. «(< 8 M 67 SO 98 

111 ? S9 76 ('3 9 rn 68 H r  S8 
11 s n 77.9S Id 1X1 7» ro 8 16 
If B P< 79 87 II ne 71  91 8 76 
13 9 M B1.68 It.M 73.'., 9 37 
1« 0 18 B.' 93 13 iV 74 87 9 8i 
1!, i(< t.s 84 SI» M   00 7S 89 IP 4| 
K. li.lt 86 :" IS 00 77  38 10 99 
1» IIS« 86 91 16 no 78 39 11 SO 
IB ir ra 87 6.- 17.00 78 PS It.« 
II ir ei «8  || 18 M 80 16 17 SS 

N 13 33 89 ?S 19 (10 81.79 13 07 

tl 13 m PJ 69 70 (« 87 01 13 SI 

-   p   e   '   o •   c   r   v TH OH  <.   7 SH 7H i«*  n  N m  M  P  I   r uu i>4 ou «o m FR « CH IH ir A« tr (L CN u 
49 1 6 14 17    3 7 .  I 3 ... I I 11  

P   6 6 . 19 i3 .  .  . S .  . .   13 6   . 6   . t . S 11  
B   77.   76 S.  .67 I    .    .    Z    .    .    ■    .    t i  
I   6 7   76 4 .  7 7 . 7   4 . 79 IB .  . 7 . . 4  
0        S74|1117477Z16.Si.7 19..7? '    i  
• ...36    ^393.    3 17 46 |   .    .    .    I   «    .    .    I  
C       7    ?   7   9   9 .     .    7       71    ■ 78 .   17    . 7 »  
t      37    ...   II    . 5       It M   ft   • II   •   I   I      
W        ... 3   3    3    ..        73 70 77    .  |H   3    . 3 I  

TM    10 

OH 

s 
7 

SM 

7H 

IS    S i   s S IS 
so  . 

38   S   t 

.   14     . 14 
ft   . 7.7669ES 
3    3 68 IS S 
 IW 

7S 76 
67 17 

n 
H 
HI 
H 
p 

( 
r 
IU 
in 
(U 
id 

(P 

tH 
|H 
IT 
M 
t» 
n 
CN 

I« 

II 
I 13 

II 
13 

4     4 

14 
13 
N 
7 

2 
13 

14 54 
6 SS 

16 47 
13 13 

4    7 
7 

I 
II 

33    .        13    7      

7 19   7       13 4   7   7 77 
4    .  37    .    9   7 13   I    . 

6   6 

9   3 71 
8   9   9 

1?, 31 

7   7   9... 
.   .   .   t t  I  4   •   t  • 
.    .    . 13 SS    . ■ ■ ■ 
.     3 13 31     B 3 5 S 
0        IS IS 38 . ■ 

8 . .          B . 73 

4    B 

3    .  77 3     . 7 13    .    3 .   II . . .  Zt 
B       17 B 17 16 16   4 4    4 . B B .     . 
.    4    . .   13    . .    4    .  13 .    B . . 4 4    . 

6 S .    3   B 17 31 G II 3 .     . 

I     1 
I     .     I 

1 
I I 
I    5 
I    . 1    I 

4    I .     I    I    7    . 77 33 II    9    . 
.    .41    I    .     .     .    I73BS761 
.766 7 18   G 4a   G 
I    B         &    7    I    7    6    7   9 13 18. 6 IS 
 48    .  48    . 

.     4 

7    I 
78 

.108 

13   6 19 75 
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BT   v*.   Atcurucy  and  C»n(u»iW( M«>ri» 
Mjabar  o)  clutltrti   76 
Oitlsnrt  n>trfc>   LI) 
P*rMM«ric  Ptiviuntationi   ««« 
O.i. Fild   TAP tuwattr  • ((• t«k •( 

TMal CouM i 
POS 

14« 
a-pos  ci-ww puoti uxcai flpt* i 

1 00 ?S.ll .00 26.17 1  16 
)   63 3549 IPO 44.45 111 
7 3» 44.1(1 ZW 61.10 5.42 
t.m 50.36 if» 78.77 7.57 
I.M 55.33 4.00 77.67 18 26 
•.it 59.17 5.M 83 07 12 30 
4 69 61.74 6 OP 86 49 14.67 
5 ?4 64.44 7.00 89 69 16 37 
5.75 6671 8 08 91 68 17.77 
6 n 69 49 9 PP 92.67 18 89 
6 74 7Z.33 1800 93 46 28.P5 
7 15 74. ?S 11.00 B4.3I 28 95 
7.67 76.Z4 12 08 94.59 21. 72 
B II 7«.W 13.08 9582 22.63 
e 64 79 09 14 88 9552 2358 
9 14 60 58 15.08 '.5.88 24.12 
9 M 81  65 16 0» 95.87 24  78 
9 !« 8,' B6 17.08 96 16 2542 

19 IP 3Z 83.64 18.0« 96 44 25 83 
M 10 7« 84 35 19.08 56 -.9 26 26 
?i II 07 85.21 20 Of 96 94 26 66 

-PBTDtCrWTHDMS2SH2MI 
- B5,     .21 2... 
P 31     6 31 6    6  
B M    .     .    2 17 17    ...    . 
T M    2   2 32    2    4  16   B    .    2    .   12    .    .    . 
0 ?1 2 II    9   2    7    ...  M    ...    . 
r        8 » IB    .    9 21    3    .     .     .  21    .    .    . 

C       S.    BBS 16   22.  12   (2.    2 
r ♦7    ••••..,  ||    .. i|   s   ..    . 
V       '   »   3    •    I    ...    I    . 28    ...    . 
™ 'S S 16    .     .   10 ?8    .  28   5 18    .    .    . 
W      7    7    .     .     7    .     .     .     .    7 M    .    .     .    . 
• •.•S2...63   2.. 
' »    •     ■     •     •    I    .    S    .     .    .  41  12    .     . 
fi I»   .......    . 
W IBB  

n N w  u * L   r uu IM ou «o M n w n« iH IT Mx cr a CN u 
• '    •  2 .     .    S    .     .     . 
■ *  6   6  
• •   t   .   I          2    . S .    .  3»    .     .     . 
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1 28 

II     . 
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16 II 
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14 
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5 

B   I 
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i3 

14 36 II    4    .    . 
1 53 12 I . . 
S 47 IB . . . 
7 27 IS «8 . 7 
.    2   2 II  II    . 
2 2    B   5    2 22 
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II 

B   . 
tl    . 
I   . 
B . 
4 4 
I    . 

17    . 
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S . 
1 . 
2 . 
1 I 
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• I . 
1 4 . 
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8 

21 
27 
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.    B 
b IS 
t 17 

t   6 
15 

I    I    2 

1 1 
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. 23 
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I   1 7 IB 
.  IB 4 12 
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VIXWM ^ " <c   sin 

0*t* F.lr.   IiK>  i-.,, j..       CC.   iHl   - N»..ii 

To«.l Count: 
CL-POS    Cl UOP rttKI    CIVCW HPNCH 
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i 
b 
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I 
1 

1(1 
II 
ir 
13 

14 
IS 
If. 
II 
IB 
ll 
:« 
n 

I  H 
I.M 
r.M 
3 h« 

ST" 
s.% 
I.K 
7.7: 
7 P3 
e si 
3 lb 
971 

IP M 
)(' PS 
11 37 
11 B7 
1? «3 
II 09 
13 V> 
I 4   i'< 

H 
7S 
47 
'.* 
fW 

It 
.77 
6? 
c« 

■ 
HI 

M 
17 

.57 
S7 
4,- 

PS 
49 
f..' 
"S 

M 
H 
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3. 
4 

|. 
(> 
7. 

B "0 

I.M 

II.M 
ir.w 
II.« 
M.no 
15.f* 

16 (* 

I? oe 

is r« 
19."« 
7». no 

.-9 » 
3S.7(i 
41 69 
1751 
51 71 
54 57 
58 39 
51 57 
64 79 
67 5P 
7« ?«> 
77 PS 
71.II 
75 6? 
77.« 
79 «7 
pi> (<9 
en 51 
Bl 51 
B7 PI 
83 P7 

H 
U 
H8 
« 
9S 
5& 
11 
^9 
» 
H9 
5« 

M 
s: 
15 
7Z 

21 
71 
IS 
55 
93 

PBTO«  irviNwiiwaii 

p 
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V 
IH 
DH 

s 
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SH 

«-H 

»«4 
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N 
«• 
U 
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I 
r 

uu 
l>4 

nu 

M 
tf 
« 
CM 

IH 
I» 
at 
li 
fL 
fN 
1« 

7S J    9   7 II 
75 19 19         8    .     . 
17 10 7        36          .     . 
10 7 7 70         8    7    7 
IB 4 4    5 11          9 

3 9       71          3 
5 2 17 17    7    7 

53 5 5         5 16 
3 3. 

10 S .   10          .   in 3(> 

14 

4 

2 
S I 

E   6 

79   4 7 
7   7 4 

77 71 3 
7 II 7 
5 

. 3 

1    3 

33 
4 4    7 

17 
3 

16 
5 5 
.  70 

10        5 15   5    . 
7 36 .    .7 
7    7 53   9   9 
3   5 57 15 S 

33 (7 
50 75 
17 

M 
I . ■ I 
5 

n NOT U P I r UU I* OU PO RP t" PC CH IH IT AI tf CL CN U 
1 

13 
7 

13 
3 . 

5 t 

33 

16 
6 3 

M 

7 7 

7 

II 36 

1 66 

63 

13 70 

7 

3 17 1 

7 

3 7 
5 5 

SO 

II I 
74 

13 

13 

109 

13 

II 
IB 

5 

7 2 

2 2 

7S 
17 

7 

S 
13 SO . 

S 44 IB 

.  . 11 

3 1 1 

■ 15 IS . . 

I . IS • .  . 

3 7 7 1. 

15 IS 19 . 4 4 
. 17 4 .  .  . 

6 27 17 6 9 
4 4 21 IS 33 6 

1 . 7 19 16 71 
2 .  . 4 7 SI 

5 4 IB S 16 S 23 
. . . 29 2« 40 . 

3 
IS 
e 

2 
1 
9 

S S   - 19 

2 2 

8 
7 

17 
1 
2 

29 
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BT v».  Becu'»ci' w<4 ..OB(U»I|'<> H»tri» 

OntaAC« NMrMI  CUC 

D»i» rilri   "»■ ipnat«   - LC    XmtV - 

Tetat Count > MI6 
POl Cl-POS    Cl-»COP PtLWT   C'.-»CO» BWCH 

1 (* 

S.91 
7 G8 
B M 
9 34 

I« % 
10 74 
II.4S 
I? II 
I?.B» 
11.44 
14.11 
14.7» 
15.37 
16 «3 

W 34 
31 43 
41 95 
49 (« 
53 M 
5S » 
6179 
54 7S 
S7.94 
70.4« 
73.M 
74 93 
76 98 
7B JC 
79.56 
61. Zl 
Kit 
B3.B3 
84.53 
85 «1 
66.K 

l.M 
t.m 
i.i* 
4 oe 
5 08 
6 (« 
7.09 
B.O» 
9.(« 

10.OB 
11.00 
ir HA 

13.00 
14.(W 
15.00 
16 W 
17 00 
IB.08 
19 » 
ZO.OB 

?l 06 
n 56 
31.43 
35 03 
36.56 
41.31 
44.07 
46.12 
46.16 
51 » 
53 GO 
55.79 
57.91 
59.60 
6144 
53 06 
64.41 
F5.96 
67.«6 
69 14 
70.46 

1.32 
IM 
Ml 
2 66 
3 07 
3 52 
4.01 
4.46 
4 90 
5 33 
5 76 
6 28 
677 
72« 
767 
6.08 
6 49 
666 
9.27 
966 

10 02 

0 
C 
P 
t 
r 
r 
TH 
V 
OH 
5 
SH 
2 
2H 
** 
01 
fl 
N 
NI 
CN 
I 
« 
I 
y 
ci 
LM 
UM 
» 
w 
M 
A« 
If 
CM 
CT 
« 
1» 
IM 
ir 

-    ■    D    C   P    1    »    TTM   VOM   S SH   I2MWDI   H   NWCN   U   R   L    raUUWCHMMMCRCMCT« 
41 S 6 2 
J8...S...S 48. ..2. .2 
2I94.224.7.2....2.3S7..2..2 
14 6 .    7 2 7 2 12 . 2 . 2 . 2 »  39 2 
13 13    . 6 6 25 . 6 
12 . 
i 3 

42 C 
2S 6 
7 . 10 

4 12 2 10 16 
12 9 24 

11 
IS 38 

7 

33 

10 

7 
6 

1 3 

3 . I 

I I . 
.  ■ I 

2 II 

4 I! 
2 
13 

1 3 • • • . 39 
. 48 

. 2 2 . 35 7 . 
2 2 . i ' 9 33 

. 2S • . 
14 12 8 4  . 
IS 3 3 . 

. 6 . 17 
IS s . 

7 . . 13 23 27 
. 67 

3 2 42 . 
67 . 

t . 
• ■ 

3 i, t . 44 
166 

67 

. 8 

16 16 30 . 
. 43 36 . 
56 36 . 

6 11 . 42 21 11 

7 . . 7 20 . 
9 . 4 4 . 
1 • 2 6 2 2 

• 6 . 11 

. 1 . 1 

8 . 
7 1 
2 
2 . 

1 . 

. 2 

. 8 

3 

2 t 
II ■ 

1 1 

. • 1 

6 1 
. 11 
. 2 
. 4 

1 . 

1 . 
2 ■ 

3 3 
7 

10 
16 4 
4 . 
t . 

20 48 . 7 
. 4 20 2 
4 t 4 II 

.108 . 
16.. 
... It 
.   . it a 
. 16 16 28 
. 12 8 
« . 18 

4 
7 

6 
19 . 13 
2 I I 
2 2 2 1 

2 4 
7 4 

. 28 
It It 

. • 
IB 1 
4 . 
4 t 
4 4 

2 
4 17 

3 . 
II 8 
S . 
S . 

.  in 
i ii i 
i .  . 
2 2 i 

I I I 

2 I 

7 II 7 

19 

13 

IK IM IT 
I 

2 
2 2 

17 

It 

1 
4 4 4 II 

2 II 12 I 2 2 
I II 4 4 . 

I t 26 12 2 I 

1 14 III I 
. 8 . . . 
2 7 2 4 
18 12 

II S 
• 23 

17 31 
7 II 
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0'vt»f»cr PMr if     CO*1 

lr. • 1 CouM MM 
ros n PW Cl Xf»» PUOST    U-VCOBBPNCH 

1 1«« rri.T», M .■7. S3 1 34 
Z 1   3.' 33 « l »P 3S "3 2 37 
f r -D *? 94 t.m 4S 34 3 49 

< 3 c: ■.r.ss 1,88 K.M 4.S$ 
1 «.17 S7.34 4  «0 S8 g-' S 67 
6 5.«7 6.V(i| ü fK> K.M 6 63 
7 S.7? (*   |7 6 IK» r. in 7.SI 
1 ■.«• 69 ^8 7 (« 68 S7 8 33 
9 t.m 71 .«(< 8 (10 71. S4 9 (IS 

I« 7.77 7«  ?9 9 (IP 72. 74 9.75 
11 8 «3 n 48 in M 73  73 IP 39 
1.- |.M m iB li.«i 74.79 11.W 
II 9 K> n s; It.M M.n 11 54 
M m ro 81.71 ii m 7S 99 12.04 
IK id rs 0.7  7(1 14.«1 76 98 If M 
II ii *. 84 t8 1'j (•? 77.9i> 12.97 
II 11 e? K.7I 16 (« 78 46 13 37 
IB i? <i 86 51 17 (W 79 17 13 70 
IS 1? 93 67.43 18 (•> 79 94 14 PS 
20 13 «7 88 .■'1 19.W W 44 14 41 
n 14 ng 88.96 20. TO »79 14.75 

1 D G    P    7 »     t   TM V OH S SH   2 2M (♦( 01 1 um tk M    R I   v U uu iw ou 80 rn 8i E» [H ET «r IK  IM IY 
. ? is I    1 3    1 2   9 i; 1 2 .     ■     1 
1 7 5 & io   . y t 2 f .    2    ■ 
0 1 IB .   ;•   « 4     |    4 2   2 .     4     . .    2    . tB s •    2 ♦    .    . 
c !. .   ?  s 7    9   3 7     . 5   5 ,-6 1 .    2 ■    2 
p 6 \J    .    E 13 6 19 6 6 6 s 
i 2 18 2 12 10 8   2 20    . 4 2 2    . 4 . .     2    . 
t 3 .     3 It 12 12 12 .   15    . 3   6 3 .    J 
r 16   S 37 .    5 .    S 
M .   . rs 4i IS . S 
V in 3 27 20 10 17    . •    3 3 
rin 21    7 1   w 7 

5 .' r        .       S 2    2 n s 4$ 2        ] •    2 2    . w 33 .   S7 
? .        .       t 3 2       68 3 9 1    .     . 
r" . 2S .   7S 
IK . 67    . .  31 
H 18 . 20 38 rn 10 10 
N . 46 46 4 
s 62 27 t 4 .     1 
Nl 42 16 M S   6 
1« 
M 13 7 13 2C 33 7 
P .     4 .    2    . 7 9 4 20 4     . 2 4 .  1« 2 2 ■   I«    . 
I .' .    •    I 6 2 «   11 22 7 2 2 S 13 
i B 13 13    . 13 .    E .   13 M 
n t . .     .108    . 
IM .    .    1 5 41 3 S 18 2S 
w . , IS 8 23 16 8 8 23    . 
H 8    . II    . 8 31 8 .    8 .    •    . 
* .      • .    .    1 3 28 17 1» 3 27 .    3 3 
M .     .     4 .   42 4 4 8   8 19 .    4     . 
ni ?    .     . 2 2 2 12 2    2 S S 2 S 2 S S 13 1 2 2 17    Z 
(p 4    .     . . .  a 13 8 13 .     4 4 . 29 4 ■   13     . 
(H I 4 1 9 & 27 IS 5 1 4  17 11 
(T 40 60 
x .    .   8 3 6 6 3 31 6 E .     8  17 
II 6 13 .    6 S   E . 25 13 .    S    S 
IM ■      ■     1 2    •     . 2 J 1 s 1    1 E .     7 7 1 27 32 
II 1     .      . 2    . .    .    . ■    .    1 ? 4 2 2 18 2 . 1 . 1    2 10 2    9 44 
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V »».  Xcurmiy and Condjui« fWtf I« 
*M*<«r   (t(   cluttirti   7t 
iiMMM "•!' II >   ID. 
P»r«imrit   P|Pft»»n(«l icini   TCC 
D«(» filn   !(*>  luvattr  - CC    «MV  - 

TMal C»uM ■           MIG 
POS a-pos  a. »COP pf Lost awwwNCM 

i «e 19.84 .00 70.76 1 36 
1. 74 76.77 im 35.45 7 60 
7.W 37.77 7 00 47.67 4 15 
3 «i 47.03 3.00 57.34 5.74 
3 B5 67.64 4.00 63 35 7.37 
1   48 66 79 500 67.94 • 77 
S II 59.46 6.00 71.47 18.13 
S 70 67.43 7.00 74.58 11  30 
E 34 68 10 8 0» 76.98 17 35 
7 1» 66.6« 9» 79 17 13.74 
7.66 70.97 10.00 8» 90 14.01 
874 77.81 II.00 81.36 14.63 
8 79 76.47 17 00 87 56 15.71 
8 36 78 91 13 00 87.70 1561 
9 Sli 77.97 14 00 83.05 15 10 

10 48 79.94 15 00 81.76 16.5» 
II «7 81.43 16 00 83.40 16.84 
II  U 87 «6 17.00 83.47 17.14 
It.N 87.84 18 (I» S3 76 • 7.41 
1? 64 63.97 19.0» 81 81 17.64 
13 70 84.46 70.00 81.9? 17 86 

- C   P    T K  r TH V OH S SH   7 TH W 01 n   N NT EN    U R   L    r tl Ul UH OU W Mt W CR tH CT OC  IX  IH IT • « 1    7 .    7 ,         , 38    . 
B X .     7    7 7    .    7 71    . 76 .    7 
D 21 ■    7 II 7         7 7   7 .    7   . .    7 33 11 4 .     .    7 
C H S 16 S   6   t .    7   7 .    7 35    . 
P ii .  7S 13        13 6 13   6 6 
T 17 34 7 17   • .    4 .  M    . 6   4 7    .    . 7 r I .     9 33 S 17    . ■  Ii    . .    1   . 9    . 
r 37 •    5 II 47    . 
TH 70 .   10 35 15 5   6 5 « 7 ie i 53 17 .    3 ■   1   ■ OH 7 .     .     7 .     7    7 $7    . 14 
5 6 .    .    S 7 18   1 .     .  4 i   1 II 7    . 
SH 33 67    . 
7 } 9   i .    • 4 1    . 7S 1   . 
I» 108    . 
W4 • 33    . 33    . 1 ' 17" 
0« 18 18 •    .    . ■    ■ 1 »    . M 18 78 18 n .    .    . 79   7 7 
N I 75 17 6 ■ • 63 76 
tN 
M 77   . II 7 13    . ■ 48 • .    7    . 7   . 11   7 7 74    .    . IS '   7 11 2    4    . 
L ■    •    7 7 17   7 7 4 4 17    .    1 !   S 1 S 78 2    .     . T 
fL 

■  II   . 1    . Ii   . 
188 

t S S 44 

uu 
UN 

m 
MO 

M 

.    .    1 6 i 1    .    . 64 I   IS 11 
•    • .    i    . M • s   . • IS    . 

•     • • ' •    • •    ■ i 11    . 73   i • ■    ■    1 .    ■    . 
•    •    • 17    . 10 13   3 3    .     . 7 33 IC I    . •     • .     .     4 i    . IS    .    .    . i  4   . 4    . .  19 IS •    4    . 

AX 

t» 
CM 

CT 

« 
III 
IN 
IV 

1 1    .    7 7    1    . 6   7 6i?; II   4    . 1    I 4   i 4 77   1 3    7    7 ♦ .    4    4 .    4    . II   . II  .   .   . »    .    . .    1 .   i   . ■   4 a 
•     • •     ■     • •     1     . I.I. 6    1    . i  i ♦   ! 6 17    4 ■ is a . •     •     •     • 78    .     . ,      , .          . .   48 48 

i  .  a S   . t ,    , .    i in I? ■   17    1 
i    t .   .  . IB 11 %.'.'. 75 .    S S    .   II 
1    7 .   .   . 4    1 1 . II   . 11    . t ,       1 1  s 1 17   . 1  17 21 
i    1 •   .  i ■     .     1 6 18 1 7 .    4    . 1» . , • 1 1 1  1   . .   18 4i 
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NuBk^f   rl   clultr^f:    ?S 
0.»1»BC«  fWlr it .   tIC 
PifWdr^c   P«prrtcnl«t pf.n.   ?CC 
D»t»r,li^   tr*» (fp,MM   -  CC.  Iwt   - N^n) 

Ict.l Count.              |4|6 
pos       n pos  ti-\rop mos ci-irw RRNCH 

1         1  »f« :7.S3 .00 73 09 1  31 
1  w 3)  9? 1  CO 30 73 1 90 

.1         1.74 41. 31 TOO 34 60 7 39 
4          3.M' 48 S? 3 "0 38 63 7 93 
s     i :3 S.-.97 4.00 43 43 3 4S 
G        4 9- 57.70 5.no 47  10 3 94 
»        S M- U.M 6.00 49 44 4.53 
9     6 r'j r.4 i9 7.W 53.04 5 17 . 
9       (■ M 67.SI B '•> 55 44 5-78 
"      7 (* 7<>.ro 9.'« 59 04 6 77 
1         B TO n.n 10 no 61. 37 6 79 
?     9 <e 73  16 II  00 67 97 7.78 
3        9 W 74 58 17 00 64.77 773 

M    m r« 76 4B 13.no 65 67 8 18 
is    in e< 77.76 M   00 67 66 8 63 
i 6      II   4S 79. 31 IS.no 68.57 9 07 
17    iroj 00.77 w.« 69.70 9 5» 
is    ir 6i 81.50 17.0» 70 5S 9 91 
19      13)0 8.' 70 18 H 71.40 10 79 
!o    ia ^ B.V9e 19 IM 77 37 10 64 
?l       M 33 83 55 ?o oe 73 31 10 99 

. M 
D   C    P    t t     f   TM V OH 

1   17 
5 SH   7 i M * D>    n   N Wt CM   u    B    I    T fl UU UH U 80 M M CR CM tr W 1« |H tr 

.     .    .  17                                         • 
B .-4 .   |ri I    .    Z 56 .    .    .    i    .    . .    7    . 

• 
0 tl 4.47 4    .    7 7 7    . 7       79   9   7 7 7    . 0 1? .57 14    5    7 .   14 5    7 7    .  73         . 7 
p 13 e  G 19   6   S E   S ...It. t    .     . 
I 1 i 

■   ::: 4  IS    B t. 14    . 4.6.. 7    7 .    7 
t 3 9.-4 IB 17    9 15    . 3         3   3 
f !i SB 5    6 16 .     .     .  37   5    . M :s s       s M 70 15 IS 
V 3 1(1 1« .    3 .     .     .  17 10 18 7    3 
0« ? 7 .  79 .     .     .  4|    .     . .     7    . 
s f. 7          8 7    5    3 .     .  4 1   3 28 7    ...    7    . 
SH m   . 
? 3 .    3    ■ 3 31 1        41 .     .    6    .    . 
M 100    . 
t* .    .    . 17     . SO    ...    . 33 
DI 10 ■    .    , ■     ■   tl 9 in 70 IP 10 10    . 18 
M .    .    . 14 .79 50 7    . 
W 3 1    3 .    . 47 39   . 4    . 

EN 
•    •    • •     • ■    . 53 76 IE S    .     . 

U 
.    .    7 70 78 li        13    . 

P ■    7 7   7   4   4   ? 7 77    ?    1 11 13 . 7   7    . 7 I 17   4    . .     . 7   6   4., '    4    9 19         4 6 • S 2 t    .    . Y 

'I 
6    . •     ■ 13       13    .    . .    t II 14 

180    ...     . 

UM 

M 

  s  .   .   a  . 49 1 , ■    S II If 
i  .... a 
1        15        71 71 1 

IS 73 § .    .    9    . 
9-9. 

>•< 
M 
IB 
IH 
(r 

1    ■    1 

13 3         3   3 
.4.4.. 

7    4.     .     J 

7    7 M    .     7    7 
4 IS 17        17    • 
1  11    7    7    1   11   < 

J   1    . 
1.4. 
'    4    1    J 

i 
17 4 7    1 

7    .     ,     . 
It    .     .     . 
9 19   S    1 

1    ■    . .     .     . 
.     .    8 13         . 8 

.     1     . 
7S 

4     .      .     J 7    1 
4    • 
B 17 

.    1 
9   2 

..49 
17   4 17 19 

(*. 
I« 
IM 
I» 

3 . 7« 78 6» i 9 3          3 .IE... I    . 1           1 S 1   i Zt   1 II    9 6 .   E   .    . 11 
.    .   7   .    .    . 

E 11   s   . 
IS    .    4 

• 
S    4 1   7 

19    .19 
.   17 79 99 

1 7   t    .    .    I 7    1 17    . 1 5 ■    . 7 17 41 

''«ir-**l>"T - "w 
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V it    Atcyrjcr and Can(u»if<n fUt-i« 
^■♦»•f   p<   clutters:   66 
Oitlvic« rwtnci   CUC 
9>rm—\r<c Piprixntat icmi  7CC 

*m i.i.i WWWW     OAT«. -fi/«   PÄM (ar<Äk«r T6.  rA»K  F<M) 

'o(.1     Counti 732 

TOS CL-POS    CL-»COB «LOST    a-»Ct» WKCH 

I        I Mt      47.(« (« CX |  18 
Z        I W      SIM I m 47.11 167 
3 7EO      Sfi 97 7.(« S3.9E 7 SI 
4 3 17     GI.34 3 OC S8.n 3.71 
5 3.73      64.n 4M 67 S7 4.OS 
6 4 47      67.67 S » es (t3 677 
7 S 16 69 61 S.W 67.76 6.(C 
6 S 0? 71 4S 7 W 7«.49 666 
9       6 49      7J.63 ■ C« 73.77 7.49 

16 6 94      75.14 9» 7637 6 17 
II        ' S"      ?S SS 10.06 77.60 661 
17 7 69      75.67 11.00 7861 978 
13 6 77      76.78 17 00 79.78 991 
14 864      77 60 1300 81.63 10.$9 
15 9 77      78 69 14.00 6370 11.71 
II       9 ft>     7964 15 00 63 66 II.71 
17 1814      80.05 1600 64.15 1776 
18 1051      BO.46 17.00 84 97 1784 
19 ||.||     81.1» 18 00 66 48 1345 
70 II.54      81.83 19.0» 67.43 1407 
71 17 09      87.10 70 0« 86» 1461 

-   *  8   T   0   r   c  r   VOH  swMt  n  nm  H I   ruuu<w(aw«HCticcMlHirAxi»*  . 
"  77 131.  11533.  ..3.1....  I t    t 
J •          48 . . 
9   .10»   

'    ■     • " < • • • <    is 8 4 4 8 . . . 4 . . . ! ! ! ! ] ! ! ! j .' " 
0     •    ■ 47 8 .  . 17 8 .  .  . 8 6   
*    70 .. 10 10 10 . 70 10  18 |8 
06» 68  
'  17 3 .  t   17 3 17 7 I 18 ... 3   3  
W  » ?? 78 7 . 
OM 43 {| 7 7  
S  10    . 6 84  

. 13 . . 

.  .  , n 
7 7.7 

SM \/ 67 17    . 
Mt .  7S 13 11 .  68    . 
H IS 4 7 ■    . IS IS 7 . 22    . IS 
N 10 S ■  13 64 3 ■   S   . 
Nl 17 17 SO 17 u 13 70 77 33 7 
L 1 .   18 1? 6 35 .    6 6        6   6 
1 33 17 11    . 17    .     . uu .  31 6 >    .   •   . . 44    . 
l»t 

.188 ou 1 8 .  33 .    .    .   1 17 .  17    . 8 w 14 .    7 7 7 M    .  7«    7 .    7    . 7 
MM . t 17 33 33   8 .    8    . 

6 S .  11 .  71  16    . 5 S 37    . 
I» 7 7 .    7 7 .     7 .    .    7 47 7 7 ■  it    . 
M 6 .   13 6 13 ■    ■    .   li 6 19 6 .  II    . 
IH 6 . 6 6 .   11 6   6    3 6 19 6 . 27    . 6 
;M t 3 I 7 7   . 7.71 5 7 76 1171    . 
i» 8 8    . . IS * 864    8    . 
Ml 6 7 .   IS 6 7 6 10 ■    • 4.4» • . 7 . 2»   2 , 
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»(./•♦■«r   n(   (lulUrti    l.'O 
Bi«tM(« UK    • i f DC 

Itil  <il«i  UUm —      0«Ta   til« LAP   ^(r««K«r  Lr  ,  t«(k   Mewt) 

TP(.I Couri* i 
ci tw  ci.-\rop most   ii-\r(FHP»cM 

1   (W 

i 
in 
II 
12 
13 
M 
II 
II. 
17 
IB 
II 
N 
n 

u 

t *: 
.•93 
e «3 
0 93 
■•■ 
n «♦ 

in .11 
in. rt 
u?: 
II   71 
ir 19 
17 6< 

n w 
3fi 7| 
«391 
u.ii 
b? 4(1 
b,' (W 
(.'• II 
t? 67 
69.49 
7« 6« 
ri 30 
A'.Bl 
74. i7 
TVM 
76 re 
?6 74 
77.19 
77.49 
78 id 
7« 45 
79 46 

M 
.4« ■ 
l>l 

H 
(ir. 

111 W 
ll«P 
I? (« 
13 rin 
14 «I 
16.(«« 
16.'ip 
17 O« 
IB im 
19.(«< 
TO 09 

. ." M. 

33 (« 
39 r7 
47.75 
46 37 
50 15 
54 68 
56.5" 
H.tl 
67 69 
64 95 
66 97 
67 98 
69 64 
70 54 
77 05 
HM 
73 re 
73 7? 
74 9? 

1 03 
1 56 
7.70 
7 81 
3 34 
3 9* 
4 49 
5 09 
5 67 
6 19 
6 75 
7.J1 
7 » 
e i3 
B 97 
9.48 

10 (14 
10 55 
IB 98 
11 46 
II 87 

P 
I 
I 
B 
I 
C 
r 

M 
V 
OH 

f t 
43 14 
14 56 
IB 77 

4 4 
13 19 
31 19 
ZO . 
17  18 

8  0  c  r n 
14 

. . S . 
9 9 9 
I . . 4 

C 13 
• . . f 

M 4B . 
. . '47 . 

■     ■     .  %» 

V DH 
M 

s  ZSH?H* n NincN u » in.   » uu * w « «»t» «c eH IH IT i« o« 

4 
13 
6 

13 

13 

66 17 |? 

6 
7 14 
7     . 

S 4 4BI8         775.i9.4Z. 
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P a 17 S IB    . 

33 
4    4    2 

3    3 
.     7 

33    . 
Z   14 2   2    2 

ti 

c 5 S Z\  M Z    . 1? \Z .    S    7 
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L2: A Machine Transcription 

The 'ollowing is a transcription of some of the sentences in the TAP date set 

(speaKer CC, tasK News Retrieval). The transcription is the result of «egmenting and then 

labeling with the routines described in this diesertation. The input parameters were the 

SPG spectrograms, and the labeling vas done with the SIG metric and a set of templates 

very similar to the ones used in the labeling evaluations. (Some hand correction of the 

template names was done by adding phonetic modifiers to the template labels.) The first 

column indicates the time in centi-seconds at which either the hand or machine 

transcription changes. The second column is the hand transcription. The remaining 

columns indicate, in order of increasing diskxe (decreasing rating score), the recognized 

tempUtes. The best score \H 50, this is arbitrarily assigned to silences and flaps, which 

are detected by the segmenter. The ARPABET uppercase phonetic symbols have been 

used throughout this work. 
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UHI     4? 
IHtNll     48 
0«     W       ■ 
14     40 
IT3    43 

IT?     34 

t*3    4? 

83    38 

VI     41 
14    38 
N4     4| 

S8 

THI     39 
- W 

I?    37 SS    3S 
III]     4P 01     39 Rl    38 
ft»l     4| IMS    4P IH]    4P 
AT?     43 «iED'1    4? ««:    41 

UUI    38 Ul    36 
EMMHI    3i IH|    33 IH8   33 
IMS    37 
II«     40 ITI    39 IH3    39 
IM6    37 IT3    37 IHlMI^ 
1?    3«. THI    35 01    34 

01    34 

IM|     41 
1H5    4P 

W>1     4? 

PI     37 
tMHO'3    3S 

Ufl    37 
HH1     4| 

THI 37 
IHI 4| 
ITI 4P 
*3 4? 

lit     41 
I«l     4P 

I«l     41 
DH1    39 

[MII013    48 
«01     4? 
«01    48 

IMINl?    40 
ITI     48 

IH3    33 

Ml     4| 

01    37 

N?    41 
T?    39 
01     41 

PI    38 

THI     34 

EH'NIl     41 
t8iNi?   4P 

N3    4? 

tH'fD'3    36 
IH|    3S 

1H6 33 
f?    4P 

03    36 
IH6 4P 
IM3 39 
Ml     4? 

8?    48 
UH?     4P 

IHS     4P 
03    39 

IH3 39 

IH« 31 

Wll 41 

N4 37 

Ht\ 4| 
n 36 
83 4P 

► ? 34 

PI    33 

IT?    4P 
FPl     38 

m   4? 

P3    36 
EHiNU    33 

SHI     39 

1MB    39 

n  39 
««ipri4   39 
EH1EO13    48 

EHitO>3    33 

IH6    37 
!•!      36 

BiMi?    33 

BiHi?    3? 

IH3    39 
««?    38 

VI    4? 

I'l    3S 
Ufl    33 

Tl    39 

B3    3C 
ft»?    4P IW    39 
IT?    39 IHB   38 
Nl     4| M?    39 

8T$    48 IK3    48 
RiO'?    39 V?    39 

«AIPTM   39     RCINM   38 
U?    38 Nl    38 

EHiMil    39 «01    39 «f?    39 
IHIU4    4? «I?    4| «EiEO'l     41 
ft(<E0l3    48        IHtL>4    39 IW?     39 

mi    39 

Ml     4P HI 4P 

M?    36 03 36 

Ml     4| Nl 4P 
IMiNi? 36         UH? 36 
M?    4P THI 31 
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r.v 

•CPU ynu TCU 1%. twi»»ini* ««oui «rocwTs- 

p -   se 
ia - 
M I«    39 ?H1     X n »/ T2    X U    X 
IE 1 
18 «■l.l H«    «? IH3    «8 IT?    «8 IHI    X 
It M 
M Iff    X IHB    X rntNu  H Ml    33 M2    X 
<-3 «f»Wi 
:* NiPi 
R o>  s« 
?7 . I<r?   X 
» m 
*. D 
% -    W 
3-' - • 
«i T in i« IH3    33 SS    32 m   32 IHI     31 
<3 Wl    X '3    X T«   37 ?HI     X 21    X 
«b » tMit0i3   «J tHiNM    «1 «W2    «8 tC*tOt|    X 81?    X 
«7 tMI^I 
w tMIL« 
M OH?    «? «I«    X OUI    X 
SI L 
S7 L'-t 
59 n «1    «1 Hi    39 Nil    X V2    X U2    37 
6« irt.i 1«   «« »«iKri«  x CHitOtJ    37 IHI     X M   K 
ts If 
68 I»?   X 
V IT?    X in   33 IM3    31 II«    31 
n in «» IK    X 1»?   X IH3    X IHtNl?    37 •* irt^i 
87 • oi   «e 81    «8 83   «8 VI    36 
W> tHI.t P?   X IM3    37 »I0<2   37 K?    X T3   X 
9? IHI    «1 II«   «8 1«    «8 IH3   X IHB    X 
9« tH 
« tPiNi;  «i til    «? IMS   «1 CHit0'3   «8 PI    X 
99 k •n «3 u?   «? UUI    «1 Ml    «8 V?    «8 
M tl.t 
10* C»)NI2   K EMit0t3    K C8I    X IMS   32 IHI    31 
1«S IT 
187 m x in  37 IH3    K !HB    X IHE    33 
:r« in.t 
ne • IH]    37 in   x n   3« I«   3« 2MI    X 
in m 
n? Mil     X r?   x T«    37 n   x IH?    X 
1?0 • rmNU   «. [HICDI3   «1 1»«   «1 IHI     «8 1»«   «8 
in IH 
12* IHIH» IMS    37 I«    37 IHI    37 tHtNU    37 IH3    X 
131 IHIN-I 
1« in   «i 11«   «1 MM  x IH3   X M  x 
133 Mt 

US Nil    «7 N3   «? W    «8 NI    «8 m   X 
IV I IHINI7   «8 «1    X CHtNt?    X IH3   X P?    X 
MS P?    X V?    <7 Wl    37 U?    37 »1012    37 
M8 Ml 

MM m «i «'.    «1 IMS    X IHIN12    X AI3    X 
m 8 
ISl -    S8 
IS« aiNt ?H|    «3 
1M «e... tMltOtS    «1 ««?    «1 IMS   «8 CHINU    «8 Ml    «8 
161 « 
IS« UN... 
16* UN «2    «? IHIll«    It «OIWM     «| Mtf   «1 «(COM    «1 
IT« • 
17? I W   «1 m  «i 0M1    X 83    X PI    37 
17? D 
17« -    M 
ITt - 
181 {HI    «? Tt   «8 
IB? DIM. 
IM 
18* 

EH i«  «e IHI    «8 ■MM    48 tHitots x m H 

189 
• 
1 

IH3   X WiRFM    3a III    37 Ml    37 l«   K 

IM 
191 VI     «? ONI    «1 ni   «i NZ   «1 03   «1 

s m 
- 

IKI    «8 

-    M 

II«   «8 Ml    X WINI2   37 »1    37 

ms K 
?87 Ml    X IKI    K IH3   33 813   32 mot?   31 
?M «10» 
78S MH K M4I    X W    X P2   33 
713 mm P3    37 All    37 1«   37 EHiN<2   37 ER3   X 
?IB P?   «3 «INI«    «8 IMIN^   «8 tHiNi2    X III    X 

- 
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r,-6 
,-78 
rn 

m 

■i.> 

>:   M PZ IB B'Htr    36 IMJ     36 pitur  K 

■    M 

I?    M 13 IM n 38 IM1    37 PI     37 
S* 

IH|     1H »Z (1 B'Hir    39 PI   n n   m 
!..'     «1 M »1 SI    IP 
THI     «C H <■> rt  36 Dl    36 PI     36 

M 

•cut is «»«» »u«; -THOUI WPMW 

n 
i" 
ir 
16 
i ■ 

17 
H 
. i 
n 
?6 

<l 
«c 

♦I 

«I 
*7 

u 
M 
17 
H 
61 

66 

H 
M 
73 

77 

78 
H 
B7 

I"? 
m 
113 

III 
118 

ire 
tu 
1.-3 
ITS 
131 
13S 
IM 
I «I 
1S.3 

I» 
I'P 
IM 
Id 
;t.< 

r* 
17? 
174 

IM 
■a- 
IBJ 

Ifll 
m 
i« 
IH 
Mi 
n% 
.••17 

.-18 

rrs 

(.mi 
IM 

AX 

S 

iriN' 

N 

UK 

I 

S 

Ml 

I 

m 

I 

N 

I" 

T 

UUiM> 

I 

M «? 
INI IH 

IM 37 
m »1 

im 39 

n ■ 
K'tO'l 
Ml >H 

.1. 

S? «(' 

SI   «2 
IHINI7    48 
TMl     37 

SO 
IH6    4| 
It«    41 
Or    S» 
I»?    39 

M    39 

N'l 43 

IM3 36 

UU1    .-9 

S3    4? 

SS 4.- 
O.7 4(1 
VI     39 

SO 
<UI     41 
H?    43 
•   se 
EMiNll     4| 
m3   43 
«7    39 
- i* 

N;   44 

IM6 '■? 

All 47 

01     43 

- 5" 

17    36 

S« 

?H|    36 

T4    39 

IH3    3B 

N7    4| 

M 

T7     34 

- » 

Dl    «1 m  4i 
\i!   36 in   36 

II«    37 
fW.-    3S tH'tO'3 
rHilO'3    37 IHI    36 

H    36 IV1    37 
0X4    4P -».(     4(1 

m 3s 

SS 4(< 

S: 39 

IM3    4(1 

PI 36 

IMI    39 
IHI    41 

II«    3S 

IV7    J/ 

M3 43 
Iir7    36 
11 79 

51 4P 

n w 
BiHir    38 

m 39 

IMS    4P 

01    47 

W7    4« 

UH|     47 

(13    38 

Dl    47 

IV7 4P 

IHI 4| 

N4     47 

PI     34 

57    37 
M    38 
IHINI7    V 
Mil     39 

X7    34 

<■!    39 

S7    37 

IM3    38 

D.'    38 

N4 41 

1Y1 4P 
IHI 39 
m 47 

13 34 

PI    37 

N4    39 81    39 

IH3    33 

irr   34 
IMIL'4 

S3    38 

IHiNi:'   38 

01    37 

M7    41 

»7    33 

T3    38 

«ttOiS    33 

l^    35 

Ht\    37 Ml    37 
IHiLM    4p tU    39 

54    36 

S3    39 55    37 
B'Hir    39 P7    39 N3    37 
83    36 Dl    36 N4    37 

IHI«""     ^ 1M3    38 EHIN17    17 
«17    39 rHitO'3    39 If?    38 

Ml    34 

IH3    36 tHiNU    34 

ni    4| NI     4P U7    4P 
II«    35 IMI     31 
13    76 in   74 

71    37 
W7    37 

Id     4P IMIKI,-    39 IH3    39 
81    47 81     47 N4    4P 

!'',     4« [Hl[0>3    4P IHI     48 
WtHOU 47 IMILI4    41 Mil     40 
01    37 THI    35 Ul    35 

OHI    39 

IHI 4P      IH1M17 19 

MHPTM 39   IHI 39 

83 4|       81 41 

eiHir ii 

53 36 51 3S 13 35 
HH] 37 7M| i' 17 37 

IMiMi? 37 t»3 36 P7 36 
M 38 VI 37 81 37 

P3 » 

•UlL  US tVCPTTHINt CK I^Mn.VMtl«' 

" -    68 
1" 
15 1 13     41 
16 81    39 
71 EMU i KK    47 
74 1<JI     4« 
77 L 

T7    411 
12    38 
«ilO'l     «I 
(«7    39 

IHI    39 ^7    37 
01    38 *<l    37 
{HifOiS 41        AOI    41 
OUI    38 «.I    IB 

PI    37 
IH?    36 
IH1LI4     39 
«ICOU    38 
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36 
n ■ 
«i 

b3 

bl 
63 
66 
6- 
69 
•* 
H 

00 

63 

e- 
93 
97 

119 
in 
t:i 
i» 
irs 
133 
134 
I3S 
13t 
\*: 
M3 
M» 
Ml 
M9 
165 
I'j? 
Ib9 
161 
16« 
167 
170 
171 
in 
178 

IBS 

106 

19« 

191 

19« 

1« 

?05 

M 
m 

Si-< 

V 

» 

I«- 

TH 

mim 

N 

i 

[MINI 

N 

AHL* 
L 
V 

tHiNI 

IMINt 

KIPl 

T 

AI 

All    3S \m   3? 

^l    37 

S3    39 
mi    41 

ITZ    39 
IM    41 

01    39 
TM1    41 
I'«    42 

IHB    43 
I'l     4» 

N4     39 
W     44 
UK?    40 
All     42 

N2    43 
-    M 

1HJ    4| 

IM)     42 

N2     42 
-   se 
T3 42 
S3 40 
M 39 
A« 3    40 

VI    43 
-    M 
rHiMH    12 
I»«    42 

M    39 

m\   42 

113   39 

N.-    39 
Kl    49 
81     44 

2m    37 

51    39 
r2    39 

IM1    42 tHiNU    42 
TMttO'S    43        AA2    41 
UUI    41 LI    37 

CHiro>3    38        IKS    16 

It«    34 
lit   49 

VI    39 
n  40 
P2    41 

HMM  *i 
UZ   39 

01 37 
Nil    43 
Kl    39 
IKI     40 

Nil    42 

I«    41 

EHIN'I    41 

Nil    42 

P3 41 

52 39 

T3 31 

III    39 

«2   41 

IMS   41 
IMS   42 

in   39 

M2   42 

N3    37 
UUI    39 
01    43 

«tfOiS 39 All    39 
IH}   37 Ul    37 

ra as SS    3S 

52    39 55    36 

1MB    '0 1«   if 

Ul    36 N3   36 

IM9   36 

IM3    39 

03 37 
T3 40 
IM3   41 

IMI    43 
IMS    39 

n2 36 
Ml 42 
UUI 39 
042 40 

01    42 

Ul    40 

Ml     40 

I »2    34 

II«    39 

N2   41 

IH1NI2    S 

tHit0t3   41 IH3   40 

01    41 N2   49 

B'HI2 41 T2 40 
SI 39 SS 39 
01 39 TMl 37 
Ul 39 UUI 39 

0M1    40 

tHttoia 40 All     40 
IM3    4» I«    49 

IM)    37 I»3    » 

OH,    42 03   41 

<IOilt2 
INI    37 

At2    4» 

IH1     34 

1MB    37 

Bl    37 B3   35 
M    49 tH2    »9 
MM  4i All     40 

IH3    42 CHIMH    41 
IH3    37 IMiMi2    17 

BtMl2    36 02   36 
OHI    41 N4    41 
CMtMir   37 (CtN<4    It 
AAIVI4    40 IM3    39 

03   41 

14    39 

IMS   3* 

Nl    39 

»7 40 
54 36 
02 37 
LI 39 

m 40 

IMI 39 
IMI 39 

1« 3S 

tt2 41 

N4    37 01    37 VI    36 
AI3   39 CMiNt2    37 Alt   37 
■3   43 02    41 N2   41 

•COUO TCU UlL U> CVtPTiMI« CM CHLf • 

0 
10 
14 
IS 
17 
IB 
19 
21 
21 
24 
27 
99 
J2 

4« 
41 
44 
41 
4i 
SI 
S7 

UM 

IM 
uu 

0 

t 

tH»Lt 

Kl M 
02    19 

fMttOtJ 
I »2    »7 

01    40 
112    IS 
I »2    17 
ii? m 

-    » 
1MB 91 

in   ii 

IH9 42 
AM2 44 
LI    37 

All    37 IKI    36 
PI    SB M    39 

AAt«ri4     35 

CMIC0I3   13 

IMI 36 
urn 34 

91 40 
2H1 34 
IM9 35 
IMS 33 
01 34 

2M1 N 
II« 3) 

N2 

Wl 
37 

33 

IMS   32 

IM    33 

21    13 

tMiNM    41 INI    39 
WiCOn    41       912   41 
L2    IS OW    IS 

B<Mt2   14 
eiNi2    IB 

[91    IS 
[NIMH    33 

IHB    32 

INI    32 
r2   12 

2MI     11 

AIS    14 
PI   17 

INI    33 

SS   12 

tMI10'3    iZ 
BINI2   32 

Wl    32 

ir2 17 tHitOH   17 
AOl 41 CNICO*!   42 
A(4 35 

' 

c"»"    *       — 
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u 
rz 
73 

■< 

77 
H.- 
Hi 
64 
'H 
9S 
9S 

IM 
I'M 
'!■( 

'.-14 
II'.- 
IM 
lit 
117 
IIS 
:: i 

13) 
134 
14? 
m 
IM 
IM 
IM 
IM 
167 

IM 
17« 
171 
17; 

IM 
IM 
IM 
IM 
igt 
137 

IM 
:o? 
:■'" 

m 
t» 

?r4 

IM 

V 

l- 

ir 

TH 

1M1NI 

S 

t. 

CtHl 
i 

AAtLI 

L 

LIKt 
f 

WS   M «01    43 «'FO'l M im 41 
i"".'i  n tn'eD'3 W 17    38 1M| w 
M    « HS   37 K3    3S V? J4 

i^l     4(< 

S3    39 
13    37 

lt«    »1 
tPlN'.'    44 

W3     4| 

l"S    36 

1>:    35 
1H3    41 

IMtHil    41 
1M6    4,- 

UU1      4,- 
|H3     4H 

«      41 

M 
1"H    3£ 

«01      41 

OUl      4) 

IM      4| 

- se 
IHI    38 
- SO 
TH]    3] 
- » 

1»?    38 

Sl    38 
?H1     37 

IHI     41 
IP1     44 

M)     4P 

IH3    3S 

IM    38 
in  4»i 

r:   38 

IHI     4« 
|M|     4(1 

tn   4r 

1X1     4(< 

«»1     4« 

01      4« 

IT?    3S 

in  3? 

Ul    38 

IH2     37 

tMllOl3    4B 

1VZ    38 

m   4i 

UH?    38 
MMfH    39 

m « 

7H1    3S 

Ul    37 

l>«    36 

f 1    34 

1HS 48 

IHINI7 3a 

ni    4(1 

II     38 
IKI    38 

trtl    39 

It«    34 

IHUM    41 l«)tD)| 41 «7 39 
80)1)2    41 («I    38 MI w 

W    37 

IHIL)4    41 
8>1     31 
l!    34 

D«    36 

S7    36 SS    3S 
71     36 SS    36 Tl    K 

IH3    41 IHIKT.- 4(1 EH)Kir 37 
P3    41 R|    48 IMS    48 

N1|    48 P7    39 ■    3S 

IH|    36 EP)Mi7 34 IT?    14 

in  38 l«    38 |i«    3S 
iHwr  a 1H1NI7 3- 14    36 

«wi    T* 
irl     38 

H7    39 

L3    37 
IMS    38 

07    39 

IHI    34 

(M3    38 
IHUM    37 

11    37 

•ei«« nt C^PTIMINC «flout Bttr* 

• -    M 
111 C 
.-'1 C)H) ZH|     48 13    38 
n IHt    38 SS    Jj IT?    11 ?l    3? T3 37 
.'3 IM 

1« i 

'T7    36 fHiNil TS IHI    3$ FHifOiS   14 IH6 14 

n IH3    38 P?    17 IM    36 «<1    36 Tl 3S 
33 "7    43 VI     4? N4    4? H2    4? Hl 41 
34 H 
30 UU1    39 m  39 ««3    38 v?    37 Hl 37 
4| 1» 
4? IT?    36 IH8    31 CHiNil    31 
47 It«    31 IT1    31 IT?    ?7 
S7 tH)M)l    J9 IHI    ig JH6    39 PC?    36 CH)tO)3    36 
S4 f» 
63 tHtlO)3    41 (H)Nl| 4? AI?    41 8AZ    4| 881 48 
66 ü CP)    37 P3    3S HiCli3   M IH!     34 Kl 34 
68 
7| | 

W     41 03   4? ► 3 4: M?    41 Nil 48 

77 M     3« «BlPf14 38 im   38 OU?    36 IHI X    . 
74 IV tM)lO)i    14 IT?    33 IHI    3? E»l    3? ue 31 
76 I'.'    38 ITI    36 -Hä    X iH3    36 it* 34 
•1 TH T3    41 ?H1     48 Hl     48 T?    48 ri 39 
81 TH|     4i Pl     48 n   48 83    39 TZ 38 
BS -    6« 
87 THI    43 Pl     4j I?   4? n   4? Tl 48 
89 T3    47 K?    41 T?    48 P?    48 PI 48 
90 IH)NI 
91 (MiNii   47 tHir0'3 41 l«    48 IHI     48 All 39 
97 IM)    44 IHI     4) rniMii   4? IH3    4? IH6 4? 

101 ItC    39 IT?    39 IHI    1J ITI    39 1H1N)Z   17 
186 N» 
108 m   4i H3   41 Nil     4| NI    41 NZ 48 
116 fl«<N) UM?     43 IKI     41 All     48 «)N)4    39 
1Z3 AD«) 
1ZS P?     4C P3    39 BiHi?    19 0?    38 V7 38 
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IV «ii   <e Kl     4<t l«    W <iAtpr>4   it A«4    37 
m im   41 All     41 MtPFM    41 fi»3    39 Ul    3t m 9 V    «H 0H|     40 IC    39 M    39 Nl    3t 
IM -    M 
119 MI T3    11 m   3t v  m BiHir m Pl    17 
in «01    41 CHi(0i3 «1 m;   4* 1«     4« CHINM    n 
m fOl     4(« tHicoia 39 IHS    38 iHa<4  ■ •«'(DM     3t 
IM 0 M    36 N«    3S Pl    11 DHi   n DI    32 
i« -    M 
i« • 
|«i - 
it* •Mt ?HI    3t BIHI: s «"(er   14 Tl    14 TZ    14 
Itl 1» 
IM II«    3? IH]    37 ra a? 
IM \12    V iM3 n 
IM m   3i in   3.' im  n Ul   ?9 
IM U3    K ei   3i 12    11 01    3? TW    12 
it.« IK3    4» iHiNie 39 Kl     38 CHIMtZ    S IHiNi?   K 
IBS 1 
1B7 f?    41 ei  4i T4     30 T«    17 
IM f 
IM ■    » 

IM 

MI 

Mf 

THI    39 
- M 
THI     37 

- W 

THI     3S 

- M 

Pl    3t 

HZ    3t 

Pl    31 

IC    3S 

IM 

•t** nu ciuc n. €«»TTHIN6 «OUT G*m«r 

19 
17 
?■) 
ZI 
H 
re 
ii 

« 
♦ 6 
4t 
49 
&1 
S7 

«»Hl 

I 
uu 

c 

C<H 
IH 

H 
ir 

1» 

!H 

Ifcl 

c 

MM 

Sl    IS 
?H1      IS 
in it 
M   n 
Nl    4? 
I«    41 
I»Z    19 
IHK    19 

81 40 
Sl    17 

IT?    39 
IHt    4| 

»«1    19 
UUI    41 

IT? 16 
IH8    IS 

IHI     4? 
IH|     4? 
tHttO'l    4? 
Ul     37 
W    4« 
tPiNi?    41 
CHKD*?    34 
IT?    39 
Tl    43 
EHtNM    42 

N3   43 
IH3    41 
CHINM     *l 
Mi    3S 
IM    42 

n?   4? 
- st 
IH8    42 
EHitOO    43 
Wl    43 
Itf    38 
- M 

ir2    34 

|r| 37 
I« 37 
IW 41 
(HiNil     42 

T3 34 

IHt 37 
P2 37 
V2 39 
i-e 38 
II« 14 
Tl » 

01 40 

IHt X 
IMS 40 

im 37 
IXI 41 

IHt U 
IH6 11 

IK 40 
fHltO'l 
IHI 40 
»Pl 17 
Nl 40 
CPI 19 
IHI 32 
II« 37 
W 39 
8C2 3t 

Nm 42 
IHt 42 
IHI 4t 
V2 IS 
«m 4i 

DHI 42 

CHINII    42 
«'tDM    42 
C3    38 

:HI II 

IT2 11 
IHt X 
IHI 40 
IHI 41 

SS 12 

CHINM    X 
im x 
DHI 38 

IM X 

IT2 X 

N2 17 

CHINM    4t 

Tl     17 

t»l    19 

IYI     X 

CHINM    39 
IHt   X 
MC X 
IHI 17 
P2 19 
CHIC0I3 X 
IT2 31 
IHS 34 
TIC X 
1«    X 

"1    40 
II«    X 
Ml     X 
P2    14 
MIRTM    49 

N4    41 

M2    41 
IHUH     4t 
DHI    37 

2HI    X 

21 » 
IHI Ä 
Nl X 
U2 X 

tl     17 

f2    17 
W2    X 

«*E0<1    X 
«lEO'l    X 

i¥)<prt4   x 
UUI    X 

C*l    29 

Nl    X 
IT2    X 
IHtNi?    X 
mi    14 
IHS    X 

01    40 

«1    41 
CHICOU   40 
N4     17 

II«    X 

CHiCO'l    14 
Tl    K 

IHIN<2    S 

N4    37 

tHttO'l   X        IHI    X 

P2    36 
N]    X 

II«    X 

ICE    X 
U2    17 

OM    7A 

U2    X 

IHE    X 
«es  14 
•WM   ■ 

02    X 

MC 4t 
«»2 X 
Pl    X 

CHINM 

IHt    11 
CHINM    K CH1C0I3   34 IHI    34 
CHINM    40 IHE    H IT?     X 
II«   41 CHICOU    41 ««    41 

-     -»■•*« -» ' 
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.-»I Nl     <J m <: 03   11 Nl «i DMI     11 

tm |«1K1 DMHI     38 M 3? 1»«    38 fH'(0'3     K IM'    3t 
, i" n 
.11 HI      11 u> 11 Nil    11 M «P V?    18 
:\ ■ |M3    V m 38 P2    38 l«l 3« IV    J7 
ne i' 
ftt U?    37 I'B H CHINU   » 
tzt ITI    36 IV? » 1-1    3S 116 ■ 
Z31 D 
TK. W 
.'39 D'HI 

ne T3    38 tz ■ «    3S M ft B<H<Z    13 
841 tt    18 81 M 11    10 IN « 01    39 
2*! 
'■■■ 


