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rprocesses, and as sert«} at cuch performance is comparable to human pcrformancc We> 44

presentthe relative merils of some typical parametric representations, develop a
methodology for such comparative evaluation. Simple, parameter- mdependent schemes for
scnmentingv labeling, and training are,developed as welle The role of pattern classificaticn
techniques is clarified, as it relates to the initial signal to symbol transformation.

NS ]

Four parametric representations have bc\enp‘(hoscn for study‘: a set of amplitudes
and zero-crossing measuremongts from 5 octave filters; (2CC)f a set of energy
measurements from a 1/3 octave filtei bank (ASA)- a smoothed, short- tamc spectrum
computed from the LPC filler (SPG) and the LPC coefficients themselves (AGS)Y Note that
the first two involve the use of analog devices. Each method yields a set of measure ments
at wriform, short intervals -- a pattern. Distance functions, chosen frora P-ttern
Classilication theory, are then applied to the parameter pattcrn; as measures of acoustic
simu ity ;

A method for segmenting speech into isolated, acoustically conflslent segments is
presented. The mcthod is fairly indenendent of the choice of parametric representation,
since it relies upon the acoustic similarity measure as the primary evidence of acoustic
change. Missing and extra segment errors are found to be as good as 47 and 197,
respectively, Significant differences in the segmentation effectiveness of the parametric
representations 1s found. They may be ordered as follows: SPG, ACS, ASA, and ZCC. The
best performance is found to be comparable to the state of the art. Little reduction in
accuracy is encountered when new speakers are tested.

L)

Labeling is accomplished by the same patlern similarity measures, Howcver,
simllarity is measured between the unknown pattern and each of a set of stored templates.
A dustering atgorithm is presented which finds the most suitable set of tempiates to
represent a population of patterns which correspond to a particular phonetic label. The
patterns tested are those isolated by the best machine segmentation routine, hand
corrected for serious errors, .

Little difference is observed along the paramelric represcntation or  the
classification metric dimensions, except for poorer performance for ZCC input. Each input
segment is labeled as one of a set of 40 phone labeis. The correct phone appears as the
first choice 287 of the time. It appears in the first three choices 557 of the time.
However, when a lower level, acoustic transcription is used as evaluation rzferent, these
values increase to 427 and 657. Even the 287 accuracy, which arises frum a comparison
against phor~mic expectation, i1s acceptable pertormance. If Is e same as or s{ighlly
belter than human spectrogram reading performance in the absence of other linguistic
clues.

The major contributions are' as follows. 1) Simple yet effective, parameter-
independent  procedures for segmenting and labeling speech are developed; (2) A
methodology for performance evaluation zt this level is presented: (3) A number of
alternative design choices are examined. 4) A better understanding is offered of the role
of pattern classification techiniques in the initial signal-to-symbol analyses.
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Abstract

This thesis is a study of speech recognition at the parametric level. It attempts to
evaluate and understand the reiative merits of a number of alternative design choices at
that level. Such a study raises issues in Artificial Intelligence, Linguistics, Acoustics,
Paltern Recognition, Statistics, and Speech Understanding research. In particular, it
involves an investigation of segmentation and labeling techniques, and the use of
parametric representatons for the acoustic signal in those techniques. Every speech
recognition system empioys some parametric representation and some initial signal to
symbol transformation. We show the performance currently availzole for thesa initial
processes, and assert that such performance is comparable to human performance. We
present the relative merits of some typical parametric representations, and develop a
methodology for such comparative evaluation, Simple, parameter-independent schemes for
segmenting, labeling, and training are developed as well. The role of pattern classification
techniques is clarified, as it relates to the initial signal to symbol transformation.

Four parametric representations have been chosen for study: a set of amplitudes
and zero-crossing measurements from 5 octave filters (ZCC); a set of energy
measurements from a 1/3 octave filter bank (ASA) a smoothed, short-time spectrum
computed from the LPC filter (SPG); and the LPC coefficients themselves (ACS). Note that
the first two involve the use of analog devices. Each method yields a set of measurements
at uniform, short intervals -- a pattern. Distance functions, chosen from Pattern
Classification theory, are then applied to the parameter paiterns as measures of acousiic
similarity.

A method for segmenting speech into isolated, acoustically consistent segments is
presented. The method is fairly independent of the choice of parametric representation,
since it relies upon the acoustic similarity measure as the primary evidence of acoustic
change. Missing and extra segment errors are found to be as good as 47 and 197,
respectively. Significant differences in the segmentation effectiveness of the parametric
representations is found. They may be ordered as follows: SPG, ACS, ASA, and ZCC. The
best performance is found to be comparable to the state of the art. Little reduction in
accuracy is encountered when new speakers are tested.

Labeling is accomplished by the same pattern similarity measures. However,
similarity is measured between the unknown pattern and each of a set of stored templates.
A clustering algorithm is presented which finds the most suitable set of templates to
represent a population of patterns which correspond o a particular phonetic label. The
patterns tested are those isolated by the vest machine segmentation routine, hand
corrected for serious errors,

Little difference is observed along the parametric representaiion or the
classification metric dimensions, excep! for poorer performance for ZCC input. Each input
segment is labeled as one of a set of 40 phone labels. The correct phone appears as the
first choice 287 of the time. It appears in the first three choices 557 of the time.
However, when a lower level, acoustic transcription is used as evaluation referent, these
values increase to 427 and 657. Even the 287 accuracy, which arises from a comparison
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against phonemic expectation, is acceptable performance. It is the same as or slightly
better than human spectrogram reaning performance in the absence of other linguistic
clues.

| The major contributions are as follows. 1) Simple yet effective, parameter-
independent procedures for segmenting and labeling speech are developed. 2) A
methodology for performance evaluation at this level is presented. 3) A number of
alternative design choices are examined. 4) A better understanding is offered of the role
. of pattern classification techiniques in the initial signal-to-symbol analyses.
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Chapter 1

Background and Problem Statement

In recent years, a renewed attack has been made on the problem of input of human
speech to computers. [New71,Red75b] This dissertation is particularly concerned with one
component of this problem -- the initial analysis of the acoustic Input. A great deal of our
understanding of this problem has come from areas such as linguistics, physiology,
acoustics, and psychology. Computer science, and in particular artificial intelligence, has
played a catalytic role in drawing together knowledge from diverse sources into workable
structures. Common to all these structures is a component which deals with the acoustic
input in some parametric form. From that component we expect an initial isolation or
identification of the information borne by the acoustic signal. In this thesls we focus on
this essentiai element, its inherent problems, the issues involved in its Implementation, and

Its role in a total systen..

1.1 Introduction

The basic vehicle for this research is the problem of choosing a parametric
representation for the acoustic signal which is to be input to a2 speech understanding

system. The choice must ultimately be made by the individual system designer for there

‘is, as yet, no one clearly superior parametric re . resontation that serves the varlety of

purposes of segmentation, phonetic analysis, prosodics, etc. which are needed to
understand general continuous speech. Up to this point, the prospective system builder
has made the choice in an ad hoc manner. Either certain hardware was already available,
or the necessities of cost and/or time prevailed. In other cases, representations were
based upon traditional methods. In those cases where a parametric representation was
developed from first principles, those principles have consisted of limited empirical studles,
often influenced by thehelement of human speech understanding ability, or they have been

based upon simplified assumptions about the physical or stochastic nature of human

-
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Background and Problem Statement 2

speech. In short, we are faced with a number of different methods for extracting acoustic
parameters from the speech signal. All are based upon reasonable, but not complete,
understanding of the nature of the speech signal.” Some make trade-offs with speed and
cost which may not be suitable or necessary. Many have been employed in speech
understanding systems of varying complexity and success. Some can be shown to support
re-synthesis of speech. But very few have been comparatively examined in the light of
their eventuai use In a total system. (See [Fia72] for a survey of speech anaiysis and

synthesis techniques.)

In order to meke the comparisons so that they will be useful to the speech system
designer, three problems must be considered. 1) The role of the acoustic informaiion and
knowledge about acoustic-phonetics, in the context of the entire system, shouid be
understood. 2) The method by which the acoustic parameters are analyzed -- the
recognition scheme -- should be chosen with care. 3) The performance statistics must be
designed to convey sufficient information about the abilities of a parametric representation
to support recognition. The information is needed by the de-igner to predict what the

choice will mean in terms of his system.

This chapter is a statement of the problem to be attacked. As such, it must survey
the terrain before proceeding. In the following section, we wili discuss those aspects of
speech understanding systems which seem to be reievant to the question of system use of
the acoustic parameters. Section 1,3 is a iook at the uses to which the acoustic knowledge
itseif is put -- what kind of processing will be needed depends upon what kind of
inform;tion about an utterance is required at the acoustic level. Section 1.4 is & survey of
the available methods for extracting parametric representations of a speech signai. And

the final section states the specific problem in terms of the iimitations, assumptions, and

performance dimensions chcsen for study.

In succeeding chapters, we will present a very brief survey of pattern ciassification
ideas and methods, chapter 2, since these concepts are so basic to the fype of analysis

done at the parametric le''el of speech understanding systems. Chapter 3 will discuss
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Background and Problem Statement 3

aspacts of the pattern classification problem particularly relevent to speech recognition.
In addition, a brief survey of the acoustic/phonetic processing of a number of current
sysiems is included in chapter 4 to provide some context for this work and for other
results in the area, as well as to provide some idea of the currently available technology

and performance.

Chapters 5 and 7 will present and discuss the methsds for segmentation and
labeling, respectively, used in this research. Chapters 6 and 8 will present the
methodology for evaluation of performance and the results obtained. Finally chapter 9 is a
concluding discussion which will serve to focus attention on the most important elements
of this work, and will provide an appropriate overall view for evaluating results of

research at the level of acoustic-parametric analysis.

1.2 Speech Understanding Systems

In this section, we will discuss Speech Understanding systems. Spesch
Understanding invioves the input of a speech utterance, the extraction of relevent
linguistic intormation from the acoustic input, and the decoding of that information into
some meaningful construct. A distinction is often made between Speech Recognition -- the
process of extracting information oy the use of knowledge about speech -- and Speech
Understanding -- where knowledge about the meaning of the utterance may be used to
decode it. The purpose of the discussion is to provide enough of an overall picture of
these systems that the acoustic analysis problem can be seen in perspective to the total
problem. Since there is little difference for our purposes be'ween these two types of

speech system, we will use the terms interchangeably.

At ftirst glance, the problem of understanding the role plssed in speech
understanding systems by acoustic parameters might seem to be insurmountable. Clearly
different systems will use their acoustic knowl~ge sources different'y. Their other parts
will Interact with each other in very different fashions. Errors fatal to some systems might

be easily corrected by others. However, this apparent lack of 'nny unifying moadel of a

7 - -—"'—‘M( g T



Background and Problem Statement 4

spt;ech understanding system is not total. One may assume some structure and limitations
tfor the purpose of studying systems to be developed now and in the near future. There
is no clear model of what a spe2ch understander should look like except the hum=n model,
which is not describable to any grea! extent as yet. The information we do have about
hurran speech is structured into well defined theories or levels, and this structure can tell
a lot about the form that speech systems will take and the role that acoustic (parametric)
knowledge and analysis will play in them, The variations among systems become, in this
view, more questions of degree than of essential differences. How much weight does one
give to semantically based inferences about the utterance? How powerful a model of the
speaker is available? etc. The answers to such questions of reiativa merit of the various
types of knowledge about speech and speakers gives flesh to the skeleton structure of
the ditferent leveis. Then a control structure for handling interactions amorg the levels |3
imposed so that errors can be detected quickly, work can be shared and efficlently
performed, and the knowledge source most likely to succeed can be invoked I;\- any

situation.

1.2.1 Sources of Knowledge

In their report on speech understanding systems, Newell et al [New71] point out
the relevance of the levels commonly accepted by linguists and phoneticlans to questions
of system structure and control. It is important to note that every system developed to
date has a number of internal representations of the input utterance. These
representations correspond to the levels ot discourse in speech science such as the
acoustic, phonetic, lexical, syntactic, and semantic. Working at various levels are sources
of knowledge about speech which serve to transiate from one representation to another.
In these processes, such recognition activities as search, classification, error correction,
hypothesizing, and veritying may occur. (see figure 1.1) A source of knowledge at the
word level, for example, may initiate a lexical search to convert a phonetic sequence into a
word. Or it may be used to generate a sequence of phones to be verlfled or matched

against the input at any of a number of lower levels.
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—Levels— m ﬂ —Knowledge Sources—
PHRASAL

-=—==== = = Syntactic-Semantic Parser

-------- Syntactic-Semantic Hypothesizer

LEXICAL
———————— Phoneme Hypothesizer
SYLLABIC
— === === Word Candidate Generator
SURFACE-
PHONEMIC
—————— Phone—Phoneme Synchronizer
PHONETIC
_________ Phone Synthesizer
=== = = =Segment Combiner
SEGMENTAL
—— — — ~Segmenter-Classifier
PARAMETRIC =

Figure 1.1: Levels and Knowledge Sources in HSII

Using the common data representations and speech knowledge qf traditionai theory
to relate speech understanding systems to one another, one can hope to drsw some
conclusions (albeit general ones) about the role of acoustic knowledge sources and data in
an entire system. People often conceptualize the structure of speech underctanding
knowledge application as one of a linear flow through the ievels. Either bottom-up or top-
down strategies of search allow decisions (and errors) to be transmitted and transduced
through the ieveis in a rather stralghtforward manner. However, the interactions among
levels may, in general, be compiex. One cannot assume any particular form for the control
flow of such systems, but we will briefly discuss below a number of forms thel have been

applied to speech understanding systems,

Two data representations common to many systems are the acoustic psrameters and

a phonetic-like transcription. The knowledge sources that we are investigating in this

e T s —— e~




Background and Problem Statement 6

dissertation are partly responsible for translating from the former to the latter.t Some
limited word recognition systems have shown great success bypassing the phonetic
:ranscription and recognizing words directly from the acoustic input parameters. It is,
however, generally agreed that such techniques fail with connected speech for a8 number
of reasons. (For one, the lack of word boundaries will cause an exponential increase in

the size of the recognition pattern storage required.)

In most systems for understanding general continuous speech, the processes which
apply knowledge about the acoustic and phonetic nature of speech gestures to the task of
producing phonetic transcriptions of the signal play a very important role. Essentlal to
this task is some form of classification scheme and some process for segmenting,
regardless of the manner ‘n which these two processes interact. Segmentation may
preceed and be independent of classification (labeling). A label may be chosen at regular
short intervals and segmentation procede on the resultant string. Or the two processes
may operate on the same data and Interact to support or reject each other’s decislon. In
any case, a parametric representation which does not reflect a particular acoustic cue of
segment boundary will produce segmentation errors, and one which maps ditferent

acoustic realizations of phones into the same parameters with produce labeling errors.

1.2.2 Sume Control Structures

Although there is no one structure for interactions among the knowledge sources of

i a speech understanding system, there are a few paradigms of such Interactions which have
been proposed and applied to working systems. All of these paradigms deal with

information about the input utterance represented internally at a number of levels in some

Incomplete, possibly errorful, data structure.

Systems organized to interact In a linear manner tend to be susceptible to error

propagation through the levels. However, subsystems of a number of speech recognizers

+ Other sources of knowledge, concerned with phonetics, coarticulation, and stress for
example, are needed to deal with truly general speech. To deal with this stralghtforward
translation, it appears that classification based on acoustic patterns alone is not powertful
enough.

- —r— R e e B B e e e e
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Background and Problem Statement 7

do obey linear control flow where a sequence of separate sources of ¥nowledge each act
upon the previous one’s output and feedback is initiated only from certain levels. An
example is in Hearsay | where broad classification, segmentation, fine classification, and
I2xical search are linearly invoked, but feedback only results from higher levels initiating a
different lexical search. [Erm74b] This is a case where everything that can be done in the
general area of acoustic analysis of the utterance is done immediately. Thus, there is no
purpose to invoking any inter-level paths other than the straightforward one that reduces

the representation to the highest level data structure used in the system,

An early paradigm for speech recognition, suggested by Halle and Stevens [Hal62},
is Analysis-by-Synthesis. A representation of the input is postulated at some level and
the sources of knowledge are used to create a corresponding representation at another
lower level to be compared with the input. Some measures of closeness of the two
representations at the lower level are used to decide upon the "truth” of the higher ievei
assertion. Again, a linear system structure is likely to be used here since the point at
which feedback Is initiated is at the low level comparison, after a sequence of
transformations of the represented synthetic utterance. Analysis-by-Synthesis can also
be applied in subsystems where the rules are available in a powerful but generative form,
and the size of the search for the correct representation to synthesize is not excessively

large. (Kia75]

The Hearsay system paradigm of Hypothesize and Test (Red73] is similar to, but
more general than, Analysis-by-Synthesis. The test need not be a compaiison of two
structures at the same level. In fact, the test will most often be constructed to compare
only those parts of the representation which may feasibly differ In a teleological sense (in
the sense that they might lead to different resuits at the higher ieveis). Fiow of control
among the ieveis Is much less constrained, and consequently the interactions are more

complex.

Various parts of speech understanding systems may be treated as heuristic searches

in the sense that a universe of feasible solutions (interpretations for the input

-
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Background and Problem Statement 8

representation to the subsystem) is being searched by application of specialized rules
dependent uponr the current point in the universe being investigated. Knowledge sources
that allow representations at one level to be recognized only as legal representations at
another higher level are the operators that traverse the universe of solutions. Heurlstics
for applying the operators may be explicit in some scoring mechanism or impliclt in the
knowledge sources. (E.g.,, when a key syntactic element is discovered, it Is reasonable to

generate the surrounding modifiers or function words.)

Dynamic programming techniques have heen successfully applied to simple, powerful
systems for word or short phrase recognition. [Ita75, Fu68, Ich73, Whi75] Usually a single
source of knowledge -- an acoustic clasuifying scheme -- Is used within the dynamic
programming algorithm to find the best fit among a number of stored templates. The
dynamic program provides the ability tc adju.i ume durations of the various segments to a
limited degree without explicitly segmenting. This is a very powerful technique for short
utterances from a limited set and may be used as a component within a speech

understanding system.

Baker [BakJK75b] presents the Hidden Markov process as a model for recognition at
each of a number of levels, implemented as a dynamic program. Flow of control in his
system is handled by the probabilistic model itself. An underlying representation of each
level is hypothesized as a Markov sequence which best fits the observed representation.
At each level, elements of the lower level representation may stand for realizations of
elements of the representation in view. These latter are connected In a standard Markov
chaln. The probability of a realization is a combination of the underlying (higher level)
chain’s probability and the individual realization probabilities. The translation of the
underlying sequence to that of a higher level is much simpler since It is more highly

constrained than the observed representation.

Our purposes in briafly discussing these models of system interaction are twofold.
First, one can see that, inherent in all the systems thus far developed, there Is the action

of translating a plece of one level's data structure into that of another. At the acoustic
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level, this almost always means some form of classification of a short Interval of the
acoustic representation into one of a number of phone-like classes. Measuring the
performance of such an action for the different acoustic representation schemes wi'l,
therefore, provide information relevant to the performance of the vast mejority of speech
understanding systems. The second purpose is to point out the feasibility of using models
of performance of knowledge sources in an analysis of the entire system’s performance.
Although the control paradigms affect the order of applying the different knowledge
sources and the amounts of effort wasted on false paths or bed hypotheses, the
progression of the correct représentation through the levels is universal. Some piece of
the input signal will have been transtormed by a sequence of classifications into either a
phonetic sequence, a word, or a phrase element. In continuous speech systems, further
transformations will have eventually carried these elements to a single semantic or task
related construct. While the entire system analysis may require simulation, if no analytic
model is available, the individual knowledge sources are separable and thelr effects on

system performance are separable.

1.2.3 Human Performance

A great deal has been written about all aspects of human perception of speech, and
we cannot even survey what is known or postulated about the structure and Interactions
of knowledge within the human speech understanding system. However, the existence of
human speech perception under all manner of ditficulties and limitations does point to

ways of analyzing individual knowledge sources for their role in the total picture.

Experiments in perception of words under noisy conditions have quantified to some
extent the role of semantic support in disambiguating errorful inputs, [Bru56] In a like
manner, errors in perception are correlated with ungrammaticality to measure the role of
syntax. An experiment involving unfamiliar languages [Sho74a] has shown some
interesting results as far as the accuracy of human phonetic recognition is concerned. In
this last, expert phoneticians are presented with utterances in a number of languages

whose words, syntax, and phonology are totally unfamiliar (Turkish, Cantonese, Swedish,
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etc.). They are asked to produce as accurate a phonetic transcription as possible from
listening to the recorded utterances or trom observing graphical displays such as sound
spectrograms or oscillograms. Very briefly, using auditory input the subjects achieved
about 507 recognition at the phonetic level, with a chuoice of about 50 phone-like labels.
With oscillogram or spectrogram input only, accuracy was about 257. The results indicate
that the acoustic knowlédge source in human perception s not much better than the best
machine procedures currently available. The human perceiver is much more adaptabie and
more robust over a wide range of conditions than the machine at this level. But It seems
entirely likely that present techniques could, under favorable conditlons, perform the

foreign language experiment as well as the human subjects.

There is disagreement on whether higher level knowledge or low level recognition
techniques are the bottleneck at this point. It is our opinion that there is much more to
gained from improvements to higher level knowledyge sources. This does not stop us from
continuing to improve the acoustic level procedures available, until they are as good or
better than human ability, but it does point out the need for a clear understanding of their
performance characteristics. With such an understanding, system design efforts may be

best directed, and the results of improved higher levels will be recognized.

1.2.4 Summary

We have presented a picture of speech understanding systems as collections of
separable sources of knowledge, with representations of the speech signal occuring at a
variety of levels. The manner of interaction among these knowledge sources is of verying
importance in analyzing their performance. Our view Is that the acoustic level processes

are particularly easy to separate.
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1.3 Acoustic Level

This section will discuss the role that acoustic knowledge can play in a speech
understanding system and the types of decisions that can be supported by it. The
parametric representation of the utterance to be understood may be considered as the
raw input of the system. Most higher level knowledge is not expressed in terms of this
representation. For this reason as well as the quantity of deta tha' is input, some serlous
reduction of the amount of data and some translation into another -epresentation are the
primary requir ments of this level. In addition, the system needs a reasonably powerful
way to begin its search for a solut'on. In some situations, semantics or syntax may be
able to provide such a handle, but often one must rely upon the acoustic input to make an
initial hypothesis from which the rest of the system may proceed. These three actions --
data reduction, translation, and hypothesis generation are the most common uses for

acoustic level analysis in speech understanding systems.

The two types of processing that are typicaily applied are segmentation of the
utterance into quasi-phonetic segments and Iabg|ing of those segments with Information
interpretable by higher levels -- usually indentifying phone-like sounds. Although the
production of an actual phonetic transcription might involve a number cf sources of
knowledge concerned with coarticulation, pionetics, prosodics, etc.,, an initlal translation
inic a sequence of acoustically separate segments and their classification into types of
speech sounds can provide a reasonable first approximation at a transcription. [GolH74] It
Is our contention that a simple segmentation and labeling scheme can be used In this
comparison study. That is not to sey that the limits of acoustic knowledge sources are
such simple schemes, but rather that these two basic processes are elementary processes
that more complex algorithms will depend upon. It is also an assertion that the primary
role of acoustic level analysis is satisfied by these two processes. The following brlef
discussions should give a better idra of both the kind of processing to be done with
parametric representations of speech and the roles that the results of such processing

play in the whole system. d
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1.3.1 Segmentation

The segmentation process is conceptually simple -- to find the boundaries in time
between the ditferent sounds that make up an utterance. The difficulty seems ‘o lle in
defining what is meant by "different sounds”. In a phonetic or phonemic segmentation,
some segments are essen'ially steady state in their acoustic characteristics, others are
continuously varying or transitionary in nature, and some are composites of two or three
sounds of either type. An acoustic segmentation, on the other hand, separates the input
into portions within which the acoustic character is consistent. Transitionary sounds will
still present a problem. For example (see tigure 1.2), the sound /I/ displays a time varying
resonant structure, as does the initial portion of a vowel following a /g/ or the middle
portion of a diphthong. Yet only in the first case would everyone agree that a separate
sound must be identified ani set apart trom its neighbors. Clearly, the fineness of
resolution to which one requires segmentation be done depends upon the final uses one
has for a machine transcription of the utterance. If differentiation of words is done by
crude identification of consonants and careful analysis of the most stressed vowel, for
example, then segmentation should be biased towards identifying the long steady state
portions as single segments, even at the cost of losing some consonant segments. If
consonants are identified by their coarticulative effects upon neighboring phones,
transitionary portions become very crucial and must be located. In general, the commonly
accepted phonemes of English (or whatever language is being spoken) give an idea of the
degree of resolution needed for most analyses. If the segmenter can separate those
portions of the signal most likely to be associated with the phonemes that make up the
utterance, then small variations in how diphthongs, plosives, etc. are treated are not
critical. It the speech understanding system relies upon a set of labels for sounds that are

considerably different from the phonemes, the segmentation must be able to separate
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or

those sounds robustly.

H “jolf" I 1 “PICOJ‘"

Figure 1.2: Some Time-Varying Segments

1.3.2 Labeling

The labeling process is the central pattern recognition process at the acoustic level.
The parametric representation of an input segment of speech Is labeled with an Indicator
of the Information it is deemed to be carrying. Until some such labeling Is accomplished,
the sequence of segments may be lnly sequence at all. Thus 10 segments, each of which
may be any of 30 types of speech sound, represent 3010 possible transcriptions of the
Input. The labeling process, by reducing the 30 choices to, say, 3, can reduce the search
by a factor of 1010, This possibility of reducing the exponential search size |s due to the
fact that the acoustic labeling and segmenting are gpplied first, when little else is known
about the utterance, and that the vast majority of representations at this level are lllegal

at higher levels and would never have been produced by the speaker In the first place.

t+ One segmentation process in Heirsny I picks out voiced, fricated, and sllent segments
only. A later process may subdivide these segments upon more detalled analysls.
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The issue uf what are the label. that are to be placed upon the input utterance lIs
an issue involving the design of a number of levels. Whether labels are to be considered
as distinct classes or as regions in a continuous space of labeling information is central to
the choice of whether to recognize phonetic features or phone-llke gestures.
Segmentation may be accomplished by labeling at regular short Intervals and then marking
boundaries at maximal changes in the labels. In such a situation, the label set must reflect
such a goal. The dynamic programming model that is used as a word recognition system
by Itakura and others labels an entire short utterance as a word. The primitive operation
in that case is a pattern recognition measure which determines how close a fit a short
Interval in the input word makes with the stored template. Even in such a system, where
there Is no actual phone-like labeling being done, the primitive action of. comparing two
patterns for likely identity is basic. Chapter 2 will discuss the pattern classification model
and a number of methods for solving simple recognition problems within that general

model.

1.3.3 Data Reduction

A typical digitized signal contains at least 10K samples per second, where each
sample should be at least 9 bits, probably more.’ The parameters extracted from the
signal may reduce this data rate considerably. Spectrograms offer no reduction per se,
although the locations and amplitudes of spectral peaks (formant tracking) represent
approximately an order of magnitude saving. Typical analog filter banks, digitized every
10ms., offer the same order of magnitude reduction. However one is stlll faced with
perhaps 10K bits per second, and only the most straightforward analysis can keep up with
such a data rate. Thus, an Important role of the acoustlc analysis level is the reduction of
the input data rate to an amount manageable by the higher levels, where interactlon;.
backtracking, and more complex analysis will preclude large, redundant data

representations. Merely labeling each 10ms. interval with one of a set of about 50 labels

t In fact, 16-bit accuracy or a floating point scheme is needed. In dealing with 9-bit data,
our experience has been that nat enough dynamic range is available. Either stressed
vowels are clipped, or unstressed nasals lack any waveform structure.
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reduces the rate to 600 bits/second. Further reduction is available by forming segments
with one label for a longer duration of signal (typically from 10 to 200ms., usually 50 to
100ms.). However, this latter saving may be spent on multiple labels, rating schemes, and
certain special parameters, such as overall amplitu’s, which may be useful to other
knowledge sources. The data in its new form is not only more compact, but also much less

redundant.

1.3.4 Translation

It has often been pointed out that a problem in applying much of the codlfied
knowledge about speech is that it exists in terms of generative rather than analytic rules.
However, another serious problem in applying such knowledge is that the rules are written
in terms of very different primitives. For example, syntax is often understood in terms of -
lexemes -- words or endings of words; coarticulation rules are In terms of phones or other
perceptusl features. The difficulty is that making a clear and universal correlation
between such elements and another representation, such as the acoustic parameters, is
not possible. (That is what speech recognition is all about.) Clearly, some initial translation
must be made from the acoustic parameters to some other representation better suited to
application of these rules. Most system designers have chosen the new representation to
be some form of phonetic label? although this need not be the case. The new
representation may consist of entirely heuristic elements, pseudo-phonemes, or even, as in
some word recognition systems [Ich73, Ita75] entire words. The latter case is one where
no other knowledge is applied to the utterance except the acoustic matching In the context
of a dynamically adjusted time scale. The point to be made is that the role of acoustic

level translation Is determined by ihe data structures of the other sources of knowledge.

t The term "phonetic” carries implications of more human perception orientation than is
usually available. Indeed, one could argue that machine labels merely represent classes of
sounds with certain acoustic characteristics. They are no more phonetic or phonemic In
nature that any other sounds. However, it is usually the goal in defining these classes to
pick sounds whose acoustic characteristics correlate highly with phonetic or even
phonemic information. In this sense, machine labels can carry both acoustic and phonetic
‘nformation.
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Most systems have adopted a phonetic data representation at some level. Even If a
system has no such representation, translation still occurs in some form, from the

parametric representation to some other representat.on.

1.3.5 Hypothesis Creation

In a system which attempts to develop a partial representation of the utterance at
higher levels, the key to successful recognition is often the ability to create a “hendle”
early in the process. Figure 1.3 shows an example of hypotheses created in Hearsay II.
Some phoneme, word, or phrase is recognized with high confidence, and the search spaces
of a number of different levels are significantly reduced. In addition, many rules of both
generative and analytic nature deal with elements in some limited context, so that
inference can only be made when some such cortext is available. It is, therefore, an
Important role of the acoustic knowledge sources to provide initial hypetheses about the
utterance from which inferences may be carried forward, verified, or altered. Some
sysiem structures, such as Analysis-by-Synttesis, do not proceed in this ‘sshion. Rather,
the entire utterance is generated or stored as a template and = complete test Is made.
Most implementations of such methods are restricted to particular levels with more flexible
overall control of the system; then the results of such tests are used on only limited
portions of the utterance. It is generally accepted that systems (in order to be robust In
the presence of errors) will require the ability to create hypothetical recognitions and to
alter them as new information is discovered. Therefore, the acoustic level results will
have to be viewed as an important source of such initial hypotheses or at least as the first
source of verification decisions. Issues such as: how confident one can be in a particular
piece of the result, how often a really solid handle is found, and how errors will affect the
usefulness of the results as hypotheses for the rest of the system, become important to
the analysis of performance and the prediction of merit to a working systehw of an ecoustic

level recognition scheme.
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1.3.6 Summary

We have seen the two processes of Segmentation and Labeling and their roies in
data reduction, translation, and hypothesis creation. Any knowledge source which
provides these functions from acoustic to higher level representations Is a satisfactory

candidate for use in a speech understanding system.

1.4 Parametric Representations

The parametric representation of the acoustic signai is the basic input to the entire
system. The choice of a good method for representing the utterance at this level has
been the subject of a great deal of research, conjecture, and rationaiizing. Even though
very little investigation of the choice itseif has been done (see Ichikawa for an example
[Ich73)), a number of parameterizations have been developed from theoretical modeis of
the vocai tract, from experience with human perception, or from experience with heuristics
found to be effective for machine recognition of speech. An extenslve survey of ail the
representations for speech would be beyond the scope of this dissertation, both because
of the number of different methods (some only slightiy difterent from others) and because
only certain representations appear to be useful for recognition. Reasonably current and
complete surveys are available. [SchRW75] This section is intended to be more a sketch of
the range of possible parameterizations, and » statement of the.significant approaches that

have been taken to the probiem of designing a representation, than a survey of the field.

1.4.1 Properties

The parametric representation should have certain properties in order to be useful
to a speech understanding system. There is a clear trade-off among cost, either of
implementation in hardware or of digital computation on a general purpose machine, and
flexibility and small data rate. However, somewhere between representations that are

very simple to extract (such as the digitized version of the signal) and representations
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that are very flexible and parsimonious (an extreme example being a sub-phonemlc
transcription), is the parametrization best suited to each system and its resources. In
addition to properties relating to cost, size of representation, and fiexibility, the
representation should be robust in the sense of causing the least fatal errors possible.
This is a teieological property, since the seriousness of errors is only determined after the
entire system is applied to the acoustic parameters. A major result of this research is
intended to be a better idea of the relationship of phonetic information and the various
parametric representations under investigation. In one sense, much of this question
reduces to understanding what regions of the space of representations of short speech
segments correlate well with useful information in the utterance, and what regions are
likely to cause confusions because of their "nearness" in the space to very different
information elements’ patterns. In short, one hopes to find a representation which

preserves the acoustic correlates of higher level information, is robust in those

correlations, reduces redundant information in the signal, and is reasonably simple to
extract from the raw signal. These may not all be possible at one time, or o the degree

| desired, but they should be considered in selecting a parametric representation.

| 1.4.2 Simple Parameters

Given the digitized version of an analog signai as input, there are a number of
simple yet powerful measurements which can be made on the signal. Within a short time
intervait where the signal is assumed stationary, the peak to peak ampiitude, the positive
and negative peak ampiitudes, the period between major peaks, and the number of zero
crossings in both or either direction may ail be extracted. The pitch period, energy,

f voiced-unvolced feature, and the amount of high frequency micro-structure on the
waveform may aii be estimated with these parameters. In particuiar, Baker [BakJM?75]

shows that a singie event, the zero-up-crossing, when parametrized by the period

between events and the peak amplitudes in that period gives very good information for

t The usual length of this interval is from 6ms. to 15ms. Clearly the longer the interval,
the great the information reduction. Most speech gestures teke ionger than 10ms. to
complete. Only vary short burst phenomena might be lost.
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segmenting and identifying stop consonants. With other measures, such as a sine-fit to
measure micro-structure on the waveform, the parameters can support a general phonetic
segmentation and labeiing scheme. Reddy [Red68] showed that simple measurements made
upon the signal and its high frequency component separately, could alone support a
reasonable acoustic segmentation. Finally, even simpler measures can give useful
information. Schafer and Rabiner point out the usefulness of the deltss in adaptive delta

modulation schemes for detecting silence-speech boundaries. [SchRW75]

1.4.3 Spectral Analysis

A great deal of phonetic information is known to be encoded in the various
trequency components of the speech signal. One often wants to separate the components
of the signal according to their information content. This usually means, for speech, a
transtormation into the trequency domain, or ecme separation of the various frequency

components of the waveform.

1.4.3.1 Filter Arrays

The simple measurements mentiored above may be cdupled with pre-processing by
analog or digital filter arrays to produce a number of signals In parellel. Besides
straightforward signal enhancement by bandpass filtering to reduce AC line nolse,
digitization aliasing, etc., there is bandpass filtering for the purpose of isolating separate
information-bearing elements of the acoustic signal. The number and bandwidth of these
tilters is the subject of much discussion. How well do they correspond to the formants?
How costly is the array of filters to build and to digitize (in money and processing time)?
The Hearsay I system uses five bandpass filters of one octave width from 200 to 6400Hz.
and peak to peak amplitude and zero crossing counts on each band and the unfiltered
signal. (see figure 1.4) These 12 parameters are extracted every 1Oms. and used in @
simple pattern classification scheme for the basic acoustic level knowledge source. We are
presently experimenting with a set of 25 narrow bandpass filters which span the range of

63 to 16KHz. with ten filters per decade. (figure 1.5) Many other researchers have used
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arrays of filters in similar tashion to estimate a spectral analysis of the signal. These two
sets of filters are fairly representative of the types and numbers of such filter arrays in

current use.

1.4.3.2 Transforms

In addition to arrays of filters, whether analog or digital, the techniques of the Fast
Fourier Transform may be used to calculate the tfrequency domain transtorm of a digitized
speech signal quite efficiently. [Coc67) Schafer and Rabiner [SchRW75] give typical results
of F:ETs of speech, and discuss the various parameters of the algorithm, length of window,
shape of windowing function, if any, the kind of frequency resolution obtainable, ete. The
short time spectrum may be used to detect pitch fairly well since peaks appear in the
spectrogram at harmonics of the fundamental pitch frequency. Other methods for pitch
detection are also derived from the spectrum, such as the harmonic product spectrum.
[SchRW75] A related method of analysis is sometimes called homomorphic filtering. The
problem is to separate two signals which have been combined by multiplication and
convolution. In speech processing, the central assumption is that the signal is such a
combination of the excitation source and the vocal tract impulse response characteristics.
Without going into details [Opp68] the log of the magnitude of the Fourier transform is the
sum of the logs of the two contributors. The inverse transform, being a linear operation,
preserves the additive combination in the result, known as the cepstrum, Because of this,
the pitch signal, the excitation source, may be separated out and analyzed. The vocel tract
impulse response may also be analyzed separately. This is accomplished by multiplying

the cepstrum by a "cepstrum window" that only passes short-time compunents.

1.4.4 Linear Prediction

A number of formulations of a method based upon the prediction of a sample as a
linear sum of the previous samples have been recently developed and fall under the term
Linear Prediction or Linear Predictive Coding (LPC). These formulations, all introduced to

the acoustic literature since 1966, represent a new application of a method in use by
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statisticians and economists for a number of decades. However, the recent extensive work
in this direction has served to demonstrate the usefulness of Linear Prediction to the
analysis of speech -- particularly formant estimation -- and to provide the speech
community with a number of algorithmic methods and the body of theory to support thelr
use. As Schafer and Rabiner point out, the method is extremely powerful for the accuracy
o¢ the estimated speech parameters it provides as well as for the speed of computation

possible.

1.4.4.1 Basic Method

The basic idea is that, within a short time interval (usually from 5 to 50 ms.) which Is
assumed stationary, the samples of the digitized signal may be expressed as a linear
combination of the p preceding samples. The squared error is minimized and the ieast
squared optimal coefficients for this prediction are found by solution of a system of lirear

equations.

Two formulations, which deal with slightly different treatments of the interval
boundaries, are known as the Covariance [Ata71] and the Autocorrelation [Mar72, 1ta68)
methods. The Covariance method goes outside the interval for the p samples needed to
predict the first through pth samples, while the Autocorrelation method assumes zero
outside the interva! In the latter case, the interval must be windowed by a function that
goes to zero smoothiy at the boundaries to avoid introducing the characteristics of a step
function. While the system of equations for the Covariance method Is harder to solvo*,
Atal has shown that it requires fewer samples to achieve similar accuracy. The saving In
terms of the cost of calculating over fewer samples may be significant. Nelther method
seems clearly superior to the other. Baside the original papers, an extensive comparison

of these methods is available [Mak72] as well as shorter discussions. [SchRW75]

t The covariance system is solvable by Cholesky decomposition, for example, with
approximately p° operations, while the form of the autocorrelation system’is known es @
Toeplitz matrix and may be solved by Levinson's method in p2 operations.

.
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1.4.4.2 Parameters

The-e are a number of types of parameters derivable from the Linear Pradiction
model. They all rely upon the same assumptions: stationarity over the interval, boundery
and window choices, and size, p, of the prediction equation, However, they represent very

different kinds of information about the speech signal,

The results of solving the linear equations are p parameters which are the
coefficients of the predictor, ur, as sometimes formulated, the coefficients of ar inverse
filter which can reduce the signal to noise. Itakura further processes them to remove any
correlation between the ith parameter and the remaining p-i parameters. These are called
the Partial Correlation Coefficients (Farcor) and have been shown to be an efficient

representation for analysis and re-synthesis of speech. [Ita70, 1ta68]

In actual use for speech recognition, these parameters seem to be deficient or, at
best, not robust enough for simple classification algorithms. Ichikawa et.al. [Ich73] point
out that the parcor parameters must be smoothed to achieve a reasonable recognition
performance, and they still are inferior to the spectrum envelope. However, Itakura
[1ta75] has developed a decision procedure from the probabilistic mode! of the signal used
in his LPC derivations', and has shown that the predictor coefficients can be used

effectivel' for recognition of speech.

By far, the most ponular use of linear prediction is in producing estimates of the
short-time spectrum envelope. The Fourier transform (using a pruned FFT) of the linear
predictor impulse response, just the coefficients themselves, results In a smoothed
spectrum envelope of the vocal tract response with the etfects of the excitation source
removed. (see figure 1.6) It is, in fact, very similar to the results of cepstrum windowing.
These spectral estimates are quite accurate in locating the peak frequencies (s good guess
at the formants). These locations in frequency can be derived directly from the solution of

the filter transfer function, but the FFT is so fast, especially pruned for only p non-zero
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Figure 1.6: SPG Parameters for a 20ms. Window

inputs, that this is only useful when formant bandwidths are also desired.’ Fant [Fan74]
has indicated that reasonable estimates of the formant amplitudes can be derived simply
from their frequencies. Hence, the frequencies themselves seem to be more major

information bearing parameters than amplitudes or bandwidths.

1.45 Summary

There is a vast range of possible parametric representations, many derived from
basic methods of extracting information from the signal. It is not possible to survey the
entire field, but we have discussed the methods in common use at the present time. Figure

1.7 summarizes some aspects of the four parametric representations we havo thosen.

t Accurate estimates of the formant bandwidths are available from the Covariance method
coefficients [Ata71}

.
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Param. # Interval Windcw Approx,
size blt-rate
SPG 128 10ms. 28ms. Hamming 88K
ACS 15 10ms, 20ms. Hamming 40K
ASA 26 1Pms. 1Oms. square 15K
s 12 18ms. 19ms. square 10K

Figure 1.7: Four Parametric Representations

1.5 Problem

The main problem to which this research is directed is the comparison and
evaluation of parametric representations for speech and their effects upon the
performance of speech recognition schemes at the acoustic level. Enough background has
been presented now to discuss limitations upon the probiem, dimensions of the
investigation, and goals of the research. The task iniplied under the broad statement
above is beyond the scope of this dissertation, and is, in view of the lack of clearer models
of the entire speech understanding process, beyond the state of the art of performance
analysis. Thus, the primary message of this section is how ve may limit the analysis so

that the results will be meaningful, useful, and extendable to specific system analyses.

1.5.1 Limitations

. The first and foremost limitation ic to consider only the acoustic level, and at that
‘ level, to consider only sources of knowledge that do segmentation and labeling of the Input
utterance into an acoustic-phonetic transcription. It is reasonable to make these

restrictions. The acoustic parameters are primarily input to this level only, aithough,

occasionally, knowledge about such aspects as prosodics will be employed by higher
levels. So the main effect of the parametric representation is felt through Its effect on the
segmentation and labeling processes. Therefore, this effect can be understood to a large
degree if the interface between these processes and the rest of the system lIs understood.

That interface is best characterized as a machine transcription.

Second, the acoustic level processes will be measured as a separate sub-system,

————— Sl et i e e
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with the interface strictly viewed as a transcription of the utterance with boundarles
marked in time and some encoding of the identity of each segment. In this way, the
interface is more clearly understood and available to analysis. A performance model can
be constructed that produces such transcriptions if the two process of segmenting «nd

labeling are able to be modeled individually,

By way of describing the general aspects of the experimental set-up, the following
are relevant dimensions from the speech understanding system goals in the Study Group
report [New71]:

1) Continuous speech is to be used. The articuletory targets, and
hence, the resultant acoustic patterns, are much less well achieved in
continuous speech than in isolated words. The labeling errors are
considerably different therefore, and segmentation become- harder as well.

2 -- 5) Cooperative speakers will be used, recording over a high
quality microphone in a quiet room. The relaxing of these restrictions may
provoke errors, but it is likely that these errors will be predictable In nature
-~ @ general degradation cue to many speakers, fricative confusions due to
loss of high frequency Information, etc,

6 -- 7) Tuning of the acoustics level knowledge will be in the form of
pre-festing training data. The training will be over each speaker’s utterances,
although not the same utterances as used for testing, and thus will be tuned
to his voice.

8) The vocabulary will be chosen to include & wide range of contexts
for all the commonly occuring allophones of American English phonemes.

(Sho74b]

1.5.2 Performance Dimens ons

There ars essentially thre.c dimensions to the investigation of the performance of
acoustic representations. The first, obviously is the choice of the repre ontation itself.

Here, the'major task in defining the research is to isolate representativ mathods from

.
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among the many possibilities.'r Although the possible combinations of filter arrays,
waveform measurements, spectra, etc., ire numerous, the representations that ;:eoplz have
chosen thus far seem to fall into a few general types. It is our intention to represent
those types according to currently available techniques. If someone invents a new
representation for speech, this research will be available to help place the new
representation into the total picture. The gencral types of parameters are: simple
measurements on arrays of filters to obtain rough spectral information or to separate
different information bearing parts of the signal, LPC parameters of various kinds to
parametrize a model of the waveform either acoustically or probabilistically, and spectral
envelope estimates that seek io characterize the vocal tract response separately from the

excitation source.

Estimating short-time spectra by the output of an array of bandpass filters 's
represented by the Zero-Crossing count (ZCC) parameters used in Hearsay 1 [Erm74b] and
the Audio Spectrum Analyzer (ASA) [Kri75). The former consists of five broad bandpass
filters with both peak-to-peak amplitudes and zero-crossing counts to Increase the ability
to estimate frequency information. The latter consists of 25 narrow bandpass filters
whose output energy is measured. The LPC method developed by Markel [‘4ar72] (the
autocorrelation method) is used to provide inverse filter coefficients and an estimate of
the spectral envelope (SPG) by t'se of an FFT algorithm. Itakura’s log ratio measure
(1ta75] will be used in conjunction with the autocoerrelation sequence (ACS), although this

representation will nol be used with other classification metrics.

The second dimension concerns the particular algorithms used to perform the tasks
of lateling and segmentation. These wlll be based primarily upon the pattern c'assification
concept of a pattern space distance metric. Some traditional metrics employ first or

second momert statistical estimates of sample populations of patterns. Two speclelly

t We realize that, no matter which parametrizations are chosen, someone wlll be sure to
point out, “..yes, but it you use this, different measurement, you can disambiguate those
phonetic classes.." The answer to such comments is usually a question, "At what cost; and
with what new errors introduced?"
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designed metrics will also be used.t

The third dimension can be characterized by the issue of cost. It Involves cost of
implementation, memory and processor requirements, and the effect of these demends
upon total system speed and size (the real-time question). As these Issues are much
better understood, especially at this level where straightforward, unlform procedures are

usually employed, no attempt will be made to span this dimenslon with empirical results.

1.5.3 Goals

Necessarily, the goals of this research are limited to understanding the effects of
parametric representations on acoustic level performance. Central to that understanding
are two issues which may be taken as goals.

1) The answers to designer-voiced questions should be avallable. They
are usually of the form, "How much can [ get for a certain amount of resource
expended?" or "Will I be satisfied (i.e., will the system | am planning be able to
use the acoustic level information)?"

2) A methodology for testing and comparing these representations
should be available. New representations can, thus, be viewed In perspective.
Advances in the state of the art will be recognized and effort can be directed
more usefully. This requires a set of algorithms for parametric level
processing that are relativ'ely independent of the cholce of parametric

representation.

1.5.4 Summary

In this section, we have attempted to define a region of the space of possible
performance experiments at the lowest level of speech recognition. The entire chapter
was aimed at fixing a point of view and a set of basic assumptions about speech

understanding systems, the parametric level of analysls, and performance evaiuation goals.

t Bahor's log probabllity estimate and Itakura'’s log probability ratio

7 -
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In that point of view, parametric analysis is the basic input for the .lowest level of
recognition activity, That activity is primarily performed by segmenting and labeling
{ processes, which prodﬁce more manage :ble data for higher level knowledge sources.
When those knowledge sources use knowledge from such high levels as semantics or
pragmatics, we may truly call the system a speech understanding system. By carefully
evaluating the performance of the low level recognition processes, we may provide a firm
base for total system peformance analysis. We have limited this research to a number of
the most commonly accepted methods for parametrizing the acoustic signal, and for doing
segmentation and labeling. The results and methodology thus provided will further our

understanding of many of the issues of speech recognition activity at the parametric level.
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Chapter 2

Pattern Classification Techniques

This chapter consists of a short survey of pattern classification and commonly
accepted techniques. (For further details see [Dud73, Nag68, Mei72, Fu8]) In chapter 3,
we will discuss the ideas from pattern classification theory chosen for this research, the
issues surrounding a choice of classes, and considerations for training and testing data

corpi.

2.1 Basic Model

Most pattern classification problems are concerned with classifying input patterns
into one of a finite number of classes. One approach to pattern classification is to keep a
representative of each class, and tc match the input for some "closeness"” measure with
each. This has many shortcomings, not the least being the lack of a way of defining a
good template for the various occurrences of speech phenomena under different
conditions ¥. A more general model, for which template matching is a speclal case, is
usually presented. A series of measurements are made on the pattern, either in Its
original physical form, or from some representation of it. These measurements should be
chosen tor their invariance under the kinds of informationless perturbations expected and

for tfélr dependence upon the classes sought (information content).

Assuming a reasonable set of m features is chosen, their vaiues represent a pattern
vector in an m-dimensional feature space. The problem is then to provide a plrtltionlng.of
that space. (If continuous valued classifications are required, a mapping into the class

space Is needed.)

A number of different techniques are available for drawing these partitions. Some,

t -- The approach has been used for word identification in the Vicens system at a higher
level [Vic69] First the word is segmented and the segments are classified, then the
duration-normalized sequence of labels is matched with stored templates for each word in
the lexicon.
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by nature of their returning a decision vaiue reiated to an estimate of the confidence or
closeness of class identity, can be used to provide continuous classification. Often,
however, these vaiues have little meaning outside of their appiication in partitioning. One
usually assumes a single class identity or an ordered subset of the classes (perhaps with

estimates of goodness) is to be returned by the classifier.

Various aspects of the acquisition and refinement of these partitionings are of
importance. We will discuss the size of sampie and test sets of identified patterns and

their relevance to the expected resuits of a method deveioped with such sets. Algorithms

for automatic iearning are aiso avaiiabie. In these, a teacher is sometimes postulated who
can provide feedback to re-adjust the partitioning rules in light of errors committed.
Often the set of classes is not known, and unlabeied samples may be partitioned by

optimizing various measures of ciustering or separabiiity.
By way of exampie, a simple pattern recognition scheme might work thus:

Collect, properly segment and label a set of sampie patterns

(training set)
Average the feature measurements for each ciass.

For another set of labeled samples (tect set) compute the
Euclidean distance to each ciass averag? from the input

features and assign the ciosest class as the input identity.

If the classification is wrong, adjust the correct class’s average

towards the new input by 1/n of the distance (where n is
the number of training samples in that class). Also adjust
the other classes which were closer than the correct one

away by a similar fraction.

Obviously, a great many Issues are untouched or oversimplified by this example.
But it does serve to point out a typicai approach. We can easily show that the decision

boundaries thus drawn aie linear. It has been shown that under certain conditions [Nag66,
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Nag68] the adjustment described here converges. With some pre-processing for

normalization, this method can provide good results for well clustered classes.

2.2 Stochastic Patterns

Implicit in almost every investigation of Pattern Recognition is the assumption that
non-deterministic (stochastic) processes are at work, adding noise and otherwise
transtorming the original patterns. Let us model this piocess by asserting that each class
corresponds to a multivariate probability distribution in the feature space. If the set of
classes corresponds exactly with the information intended to be conveyed by the patterns,
this will be a good model. If not, there will be in the observed distributions effects of
other sub-class distributions® or of correlation between the classes (in effect, clustering
of the clusters)*. However, we may take this model as a first approximation for speech,

although we must investigate the distributions carefully.
For the following development, let:

pj be the a oriori probability of an occurence of a pattern in the

ith class.
f; be the probability density function for the ith class
x be the unknown pattern vector.

then:

f,(x)=Pr{x|class i}

p;sti(x)=Pr{x,class i}
Bayes ruie siates that the largest expected rate of correct classification is attained by
classifying x in class i if Pr{x,i}2Pr{x,j} for all j#i. Furthermore, we may define a loss
function L(u,v) as the cost of classifying an input in class u when it should be v. Then the

expected Loss, or Risk, of a classifying rule C(x) is:

t --Muitimodality of the cluster for a diphthong, or for vowels in different contexts

$ --The broad classifications of vowel, nasal, fricative, etc. are much easler to effect than
more specific phonetic classes.
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If we wish to minimize this then we must clearly minimize:
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where x is classified in class c.

Until more is known about the relationship between a particular speech
understanding system and the classifier it uses, we would assume the flrst case above
which corresponds to a loss of O for correct and 1 for incorrect classification. The
successful application of Bayes’ rule rests upon the availability of the underlying
probability distributions. However, they may be estimated parametricaily if thelr forms are

known, or approximated by a number of techniques.

2.3 Overview

The methods for estimation of distributions, learning of parameters, and decislon
boundary drawing may be placed into a few group that will serve to clarify their

relationship to the basic model and to optimality as represented above.

If the forms of the distributions are available, we may seek to estimate them

parametrically by taking relevant statistics of the samples. For instance, |f we have good

e
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reason to believe that the features are Independent variables and the clusters have
Normal distributions, the variances and means of the features will yleld an optimal rule.
Normalize by the variances and decide upon the distance to the mean in the normalized

space. These are essentially spherical clusters.

Where forms are not known, a number of methods are still available. The method of
Potentia: Functions [Ais64] forms the sum of a number of peak-like functions t each placed
at a particular sample point in the class cluster. The amount of spread of each peak
determines the smoothness. Many heuristic methods may also be thought of in this light.
The kth-nearest neighbor method retains all the samples. The problbilify is essentially

estimated by the number of samples in a class that lie close to the unknown point.

Some docision rules may be thought of as ignoring the distributions and, rather,
seeking to find good separating boundaries direc.!y. Forms are chosen, as in the cases of
linear or piecewise composite boundaries. Then parameters are estimated from the

> samples. Equivalences between a number of methods can be shown thecretically.

Learning approaches seek to adjust the parameters of whatever methods are chosen
as new Information about the patterns Is obtained. Supervised learning can occur when a
correct label is available for the samples upon which. learning takes place. When
completely unknown samples are presented, unsupervised learning methods can stlll obtaln

rules that separate the samples according to the way they cluster?.

A number of transformations upon the pattern space may be made to simplity the

task of the recognizer. This is really a continuation of the basic pattern recognition

problem, but many researchers have chosen to separate the search for good feature

spaces from the search for good decislon rules,

t -- A spherical Gaussian distribution is often used.

‘ ¢ -- Clustering is a concept that must be definad mathematically for such lsarning to take )
| place.
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2.4 Estimating Distributions

Since the Bayes optimum iule assures us the "best" results attainable for a
separating boundary decision rule, we would like to be able to apply it. Unfortunately, we
may not know the probability densities or the a priori probabllities -of the classes.
However, if there is some evidence from the nature of the fealure measurements, or from
the underlying pattern process itself, we may be able to estimate the a priori probabilities
and to make assumptions about the form of the densities. This information might also come
from statistical analysis of the samples such as estimates of closeness of fit to well-known V

forms.

The mean vector and covariance matrix fully specify a multivariate normal density
function. However, to compute the density values, the covariance matrix must be inverted.

The density function is:

, JEL o C' (%)}

where [C| is the determinant, C the Covariance matrix (mxm), M the mean vector (m), end x

the samples (m).

The classes may be composite clusters of a number of forms or they may
correspond to highly complex distributions which no simple form can suitably estimate. In
fact, we may not fully understand the underlying physical process well enough to derive

the form at all.

- An important approach available in such a case is that of Potentlal functions (or
Parzen estimators) [Ais64, Mei72] The estimating density p is directly constructed by

superposition of a number of potential functions f as follows:
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Thus, if these estimators are formed on each of the N sample points y, the "density
value of a point x Is a superposlition of its relation to all the points In that cless’s semple
set. A typical form for f is the multivariste normal with covariance matrix a multiple of the
identity matrix (spherical shape, independent dimensions) ’and mean equal to y. The
multiple of identity used for the variance determines the shsrpness of the peaks at each

point and, thus, the smoothness of the overall function.

Although the Gaussian is very well-behaved, a mcre computationally efficlent
function given by Meisel is f(x,y)=h[d(x,y)] where d Is a distance function (e.g. the city
block function or the sum of the absolute differences In the m dimensions) and h Is a

plecewlse linear window function such as shown below (Figure 2.1).

h(d)

d

Figure 2.1: A Piecewis-Linear Function

In addition, if ff(x.y)dx-l for all y, then p(x) is guaranteed to be normalized If f is.
% !

We can insure that the space Is not warped.
Four criterla for the function f are glven:
1-#(x,y) should be maximum for x=y
2-f(x,y) should be approximately O for x distant from y

3- f(x,y) should be a smooth (continuous) functlon of

distance from x to y

4-if f(x1,y)=f(x2,y) x1 and x2 should be equally similar to y

In some sense
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One may choose to construct an indirect approximation to the density function. Certainly,
a conceptually simple approach is to divide the feature space Into small volumes and
collect a histogram of the sample patterns. This can be disastrous if the dimensionality is
high, however. The number of small volumes in m dimensions is r™ |f each feature is

broken into r parts and there are m features.

Another problem of the histogram is that it depends very greatly upon the choice of
volume chunks for buckets. The sample points may be unimodally distributed, but if the
buckets are chosen to split the mode, and if not enough samples are available, spurious
modes may be observed. Another technique is to collect the Empirical Cumulative
Distribution Function. The N samples are ordered and plotted at increments of 1/N against
their values, for the single variate casi:. The resulting distribution approximation may be
smoothed and the slope measured for a density function, The advantage can be seen if
one notes that the ECDF depends in some sense on all the points that produce the
ordering rather than the points in a single bucket for the shape at any particular location.
It is thus a cumulative estimate rather than a local one. Techniques exist for estimating
the closeness of fit between standard distributions and an ECOF [Wil68} Unfortunately,
extending the concept to the multivariate case is difficult and not usually done. However,
if there is reason to suspect that the features are independent, the ECDFs can be made

separately on each dimension.

2.5 Linear Forms

The simplest form for any decision boundary that partitions the feature space into
two separate parts is a linear form. Linear discriminant functions have a number of points
of appeal and have been extensively investigaled'r. Often good linear discriminants may
be determined as approximations or special cases of more general forms. The advantage
of simplicity in the decision -ule is apparent to anyone who considers producing a

classification of a speech signal into one of 50 classes each 10ms. window, using & vector

t -~ Nagy [Nag68] presents a theoretical comparison of a number of linear functions for a
two class problem.

.
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of 128 FFT spectral values. Computationally, a linear decision rule can be effected with m
mu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>