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SUMMARY 

This is the last in a series of technical reports concerned with 
mathematical approaches to instructional sequence optimization in 
instructional systemss  The prnhlem treated here is very closely re- 
lated to that treated by Sraallwood and Sondik (A).  Both papers deal 
with Markov decision processes where the true state of the system is 
not known with certainty.  Hence the state of the system is characterized 
by a probability vector.  Each action yields an expected reward, trans- 
forms the system to a new state and yields an observable outcome.  One 
wishes to determine an action for each probability Ptate vector so as 
to maximize the total expected reward.  Smallwood and Sondik (4) solve 
this problem exactly for a finite time horizon.  This report treats 
the infinite time horizon with a discount factor, using a partial N 
dimensional Maclaurin series to approximate the total optimal reward 
as a function of the probability state vector.  While this model was 
developed for computed aided instruction, it is applicable to other 
situations as well.  This model also is of considerable theoretical 
value. 

-i- 

-—— ~*--r ^ »». -r «v.'M'y "-«■■ 
-■^w- '^^ "-—  

■ - ■ . 



ABSTRACT 

This paper describes a system that may be in any one of states 
1,2,...,N.  The true state of the system is not known with certainty 
and consequently is described by a probability vector.  At each stage 
an action must be chosen from a finite set.  Each possible action 
returns an expected reward, transforms the system to a new state in 
accordance with a Markov transition matrix, and yields an observable 
outcome.  It is required to determine an action for each possible 
state vector in order to maximize the total expected reward over an 
infinite time horizon under a discount factor, ß, where 0<ß<l. 

The problem of finding the total maximum discounted reward as 
a function of the probability state vector may be formulated as a 
linear program with an infinite number of constraints.  The reward 
function may be expressed as an N dimensional Maclaurin series and 
in this paper it is approximated by a partial series consisting of 
terms up to degree n.  The coefficients in this series are also 
determined as an optimal solution to a linear program with an infinite 
number of constraints.  A sequence of related finitely constrained 
linear programs are solved which generate a sequence of solutions 
that converge to a local minimum for the infinitely constrained pro- 
gram.  It is an open question as to whether this local minimum is 
actually a global minimum.  However it should be noted that the 
function being approximated is convex and consequently has the pro- 
perty that any local minimum is a global one as well. 
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PARTIALLY OBSERVABLE MARKOV DECISION 

PROCESSES OVER AN INFINITE PLANNING 

HORIZON WITH DISCOUNTING 

1.  Introduction 

This paper describes a system that may be In anyone of states 

1, 2,.,.,N.  The true state of the system Is not known with certainty 

and consequently is described by a probability vector.  At each stage 

an action must be chosen from a finite set.  This action returns an 

expected reward, transforms the system to a new (but not necessarily 

different) state according to a Markov process, and yields an observ- 

able outcome.  The problem addressed here is that of determining an 

action for each possible state vector in order to maximize the total 

expected reward over an infinite horizon under a discount factor, ß, 

where 0<ß<l. 

Sraallwood and Sondik (4) have treated this problem for the 

finite horizon case without a discount factor and have determined that 

the total maximum expected reward is a piecewise linear function of 

the probability state vector.  Their results can be trivially extended 

to include the discount case. 

The observable state case, that is the case where the true 

state of the system is known with certainty has been treated extensively. 

For both the finite and infinite horizon under a discount factor, Howard (1) 

developed a policy improvement routine for determining an optimal action 

and the optimal cost for each state. 

-1- 
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II.  Formulation 

In this formulation, the notation of Smallwood and Sondik will 

be used.  It is assumed that this system can be modeled by an N-state 

discrete time Markov decision process. 

The observed state of the system is characterized by a proba- 

bility vector n where T^ is the probability the true state of the 

system is i. 

At each point in time an action must be selected from a finite 

set.  Associated with an action, a, is a probability transition matrix 

P where P^ is the conditional probability the system will make its 

next transition to state J given the current state is i and action a 

is taken.  An observed outcome follows each action with ra denoting 

the probability of observing output 9 given the new state of the system 

is j and action a was taken.  In addition an immediate reward wa  is 

incurred if action a is taken, output 6 is observed, and the system makes 

the transition from state i to state j.  Thus if action a la taken and 

output 6 is observed, the new state is TT' where 

0 

TT .    = 
J iViVje / E    IT Pa ra 

ij i irje (1) 

The above transformation is summarized by 

TT' = T(Tr/a,9) (2) 

A policy is a rule that assigns an action to each possible state 

vector.  It is required to find a policy that maximizes the expected dis- 

counted rewards over all periods for each possible state vector.  Let 

V(.r) be the total discounted reward associated with such a policy. 

-2- 
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Then V(ir) must satisfy the following recursive equation, 

max 
V(ir) = a 

N     N 

1=N   j-1  1J 0 
!   ' ^ rje{wije+ßT(7r/a'e) (3) 

Letting q^ = ^ P^w*^ (4) 

equation (3) is simplified somewhat to equation (5) 

max 
V(IT) = a ^V^^i.j.eWje7^«^] (5) 

C 

( 

Once the function for V(TT) is known, an optimal action for TT can 

can be determined as one which maximizes the right hand side of (5). 

-3- 



III.  A Learning Example 

As an illustration, it will be shown how the system described 

in the previous section may be applied to the human learning process. 

Consider a course which is given in several levels of instruc- 

tion.  The levels are denoted 1, 2,...,N with N being the easiest and 

1 the hardest.  The structure of the levels Is a lefinite hierarchy in 

the sense that if a student knows the material at level 1 he must also 

know the material at any level j>i.  Several examples where this situ- 

ation may apply follow: 

The first situ^.Lion is one where the material covered at one 

level includes all that covered at preceding levels, plus some additional 

material.  An example of this is a program developed at Behavioral Tech- 

nology Laboratories (BTL) to teach students Kirchoff's Laws.  This 

course is comprised of eleven levels with the lowest level defining the 

units for voltage, current and resistance up to the highest level which 

deals with the application of Ohm's Law and Kirchoff's voltage and current 

laws in complex networks.  Another program developed at BTL is a short 

course in trigonometry consisting of five levels.  At the lowest level 

students are given the definitions of the six basic trigonometric ratios. 

Then the student is given a right triangle in which the lengths of the 

sides are determined by a random number generator and the student is 

asked to determine these ratios for one of the acute angles.  Succeeding 

levels deal with material on relationships between these ratios and pro- 

blems testing the student's knowledge of these relationships. 

A second situation is one where the material and problems covered 

at a particular level are virtually the same as the immediately preceding 

level except more clues and hints are given at the preceding level.  A 

good example of this is a version of the Kirchoff's laws program considered 

-4- 
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earlier at BD. in which problems would be given In level as follows: 

1. Problems are given in steps with cues and knowledge if 
results at each step. 

2. Problems are given in steps with no cues or knowledge of 
results at each step. 

3. The student solves problems in steps but he chooses the 
steps, 

4. The student is simply given problem« and asked to solve 
them. 

A third situation is one in which g. student is to be drilled 

in a skill in order that he be able to perform it rapidly.  Thus the 

exercises are virtually the same at all levels but the time constraints 

are tighter at the higher levels.  In the BTL intercept trainer for 

the radar intercept observer function, the student is trying to fire 

a missile at the nose of a target and then turn around and fire another 

missile at the tail of that aircraft.  The first missile is a radar 

guided missile fired when in the forward quarter and the second a heat 

seeker fired when in the rear quarter of the enemy aircraft.  He is 

given a radar reading and must correct his angle of approach so as to 

be on a lead collision course that will insure a high hit probability 

when he fires the missile.  At higher levels the student is given such 

problems at faster aircraft speeds. 

Note, however, the assumption given for this model would not 

be applicable for the situation where a given level did not use certain 

material introduced at preceding levels. 

A student is in state 1 if he knows the material of level 1 

but not at any level more difficult than i and in state N+l if he does 

not know the material at any level. 

There are N actions and action 1 consists of instructing the 

student in the material of level 1 and then giving the student a test 

-5- 
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on that material.  For each action there are two possible outcomes— 

either the student passes the test or he falls It.  The obj--  1 ve Is 

to develop an adaptive Instructional sequence so that the student demon- 

strates knowledge of the material at level 1 as aulckly as possible. 

Knowledge at level 1 is demonstrated by passing a test on the material 

at level 1.  The reward, »..„, would be the negative of the expected 

time it would take to obtain Instruction at level a and the system goes 

from state 1 to state j and 6 (success or failure at a) is observed. 

For completeness a trap state ^ would be needed.  The student goes to 

state (j) with probability one once he successfully completes the material 

at level 1.  The only action in state ^ is to do nothing which yields 

a zero reward and keeps the student in state ^ with probability one. 

Wollmer (6) treats the more restricted problem where pa = 0 

unless i=j or if i=a and j=i+l.  Thus if a student is in state 1, he 

remains in state i unless he receives instruction at level 1+1, in 

which case he either remains in state 1 or advances to sttte 1+1,  This 

would not allow the possibility of forgetting. 

Other situations where partially observable Markov Decision 

processes occur are in machine replacement, decoding from sources trans- 

mitting over a noisy channel, medical diagnosis, and searching for a 

moving object. 

Note, that If the assumption of a strict hierarchy in levels 

were dropped, the set of states would expand from N+2 to 2N+1 including 

the trap state. 

-6- 
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IV.  The Maxtmuir Reward Function 

In this section it will be shown that a maximum reward function 

exists and that it is a convex function of the reward ir. 

Let V (TT) be tho maximum reward function for the n period 

horizon.  Then 

V (TT) 
n 

max 
a Ii1Tiq'+ßi.LeP^r?öVn-i[T(7T/a'e)] (6) 

C 

Srnallwood and Sondlk (4) have shown that V (v)   is * 
n 

1. Convex 

2. Piecewise Linear 
lira 

It will be shown that n -> «V (TT) exists and Is convex in TT. 
n 

Define f so that |V (TT) - V  (w) | < f all n and f  is the 
n n      n-i        n n 

smallest real number with this property and V ijr) = 0.  The f 's are 
o n 

well defined since all V (ir) are bounded above and below. 
n 

Lemma 1:  f ., £ ßf 
n+1 -  n 

Proof  :  Choose a(TT) as the action that maximizes the right 

hand side of (6) for V .. (TT) if V ,, (ir) > V (TT) or for V (TT) 
rn-i      n+L      n n 

otherwise. 

Then |Vn+1(TT) - Vn(7r)| < |ß I    P^rJg^tTCTr/a.O)] 
i.j.e 

-V jTCir/a.O)]! < ßf , 
n-i n 

Corollary 1:  For n* > n,|V *(Tr) - V (TT) | < e(n) 

where e (n) -> 0. 

o<ß<a, 
While Srnallwood and Sondlk assume ß=l, their results hold for 

■7- 
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Proof:  From lemma J, fn < ß" 1f1 and consequently 

* n* no 

|Vn(7,) -Vn^J ^  I     h     <.&\     I ß1 - f/Zd^) 
i=n+l 1=0     i 

Theorm 1:  The function Vn(7r) Is absolutely convergent. 

Proof:    Choose any particular ^,     By Corollary i, the 

Vj(7T)  is bounded above and below and hence has an infinite covergent 

subsubsequence with limit V*0r).  Choose e > 0 and n such that e(N) < e 

for N > n and e(n) is as defined in corollary 1,  For any N > n and 

n > n in the convergent subsequence |VN(ir) - V-(Tr) | < e and consequently 

|VN(IT) - V*(TT)| < e.  Since n is independent of TT, the theorem is proven. 

Thus VOO = I™ J^)   is well definedi 

Theorem 2:  V(7r) is convex in TT. 

Proof:  Define fCV.^.T^) = v^ + Ij^) - ^(TT ) - ^(TT ). 

Assume V(7T) is not convex and choose TT and TT such that f(V,TT .TT, ) = 
■«•     * 12 

k > 0.  Choose n such that N > n HV^TT) - V(TT)|< K/2.  |f(V,ir ,TT ) - 

f(VN,7rl,1T2)l < K'  Thus f(VN,7ri'7T2) > 0 which is ^Possible since V (TT) 

is convex. 

Note, that the piecewlse linear property of V (TT) does not imply 

piecewise linearity of V(ir) as any continuous function may be expressed 

as the limit of a sequence of piecewise linear functions. 

-8- 
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V.  Linear Program Formulation 

In the case of the observable finite state Markov decision 

processes with a discount factor, the problem of finding a maximum 

return for each state may be formulated as a linear program.  The 

development of this may be found in Ross (6).  In this section it is 

shown that a modification of this formulation extends to the problem 

formulated in Section II.  Portions of the development which are similar 

to the finite state case will be outlined but without rigorous proofs. 

Consider the set B of all continuous bounded functions defined 

on S = K/T^ > 0 all 1, I    1ii = 1 j Let the operator A be defined on 

this set as follows, 

max 
Au(Tr) = a liVk + ß I   vVje11 tT^)/3'9)] (7) 

Note that 

1. u<.v-»-Au<.A 
v 

2. AueB all utB 

3. A:&>B is a contraction mapping on B. 

The Operator A is the optimal return function for the one period 

problem in which a terminal reward u(Tr) is given for the terminal state. 

Since A:B -> B Is a contraction mapping, it has a unique fixed point. 

V = Av = 
lim .n 

„.A u for any ucB.  By Equation (3), this unique fixed point 

must be the optimal reward function.  Let us consider any u such that 

Au < u.  Then u.>Au.>Au.>n-*-°°Au = v.  Thus the optimal return func- 

tion V minimizes U(TT) for each irrS among all lunctions u satisfying Au £ u. 

In the finite state case where the above conditions also hold, 

it is noted that minimizing u for each state 1 may be accomplished by 

-9- 
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minimizing the sum of the u.'s.  For this problem where such a sum 

would be infinltr, the average value of 11(71) may be minimized.  Thus, 

finding the function u(Tr) is equivalent to solving the following 

infinite constrained program. 

Find min 8, u such that 

Z =/... I u(v)dv  du ,<        „...dir, 
J J n n-1 n-2    1 

(8) 

subject to 

^TT q + 0 I     TT p  r  u[T(Tr/a,e)] < U(TT) for 
i.J.Ö  ^ 3 

(9) 

^ > 0. l^  - 1 

Since the iL'nction U(IT) IP continuous and defined on a closed 

bounded set, it may be expressed in an N-dimensional Maclaurin series: 

V(TI) = C + 
o I 

i1, i2,...,in w i  IT   TT  . . .TT 
n 1 2   N 

(10) 

If V(TI) is expressed as such a series or approximated by a 

partial series consisting of terms up to degree n, the coefficient of 

1'   2' 
in   (8)   is  simply 

n 
1 1-1T, 

l-vv 
J\l A2      J \* dWr-'diri (ID 

In evaluating the integral the following, lemma is needed. 

/ 
Lemma 2: I  (a-x)nixndx 

o 

m!  n!  m+n+1 
(nr+Ti+l)! a 

-10- 
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Proof:  Integrating by parts one obtains for the above 

integral  - ~^ x^1 (a-x)m 

m+l J 
a .  .m+1 n-lj 

(a-x)  x  dx 

nrfl 

recursively, one obtains 

n  /  .  ,nH-l n-1. 
+1 J      (a~x)       x  "x-  Applying this relationship 

nlml 
(nrHi)l 

/a 
,       xin+n,    m!n! (a-x)  dx = 

(m+n+1)! 
m+n+l 

From this lemma, expression (11) can be evaluated. 

< 

Theorem 3:  The value of expression (11) is IT i   ]/ 

j-1 i 
j-1 * 

Proof: 

1 

Integrating (11) with respect to TT gives 
n 

l-TT, 

(V1)! J    h1  /^   / 
0  ^ 0  ^   0 

n-2 
l-l    * 

1 
n-1  1 +1 i 

J (i - T^.)",ä    " ! T  .  dir  n .. .dir, n-1   n-1    1 

n-2 
Applying lemma 1 with a=l- £ TT and integrating with respect to TT 

I    J n-1 
yields 

n-3 

,1- I  ^ 
n  n-1     / 1, / I.,    /    ]  J     v         1 +1  +2 

(1 +i ,+2)! J V/ ITJ2 ... I    '   (1- ^ rr ) n n-1  dTr „...dir. 
n n-1    « « i  J           n~z    1 

0 0 0              1 

Continual application of lemma 2 yields  n  ±ii/( T M +1)1 i 

J-1   /\J-1 j  j 
Thus if V(TT) is to be approximate, by an n=h degress polynomial 

function in TT, then substituting the expression of theorem 3 and (1) in 

(8) and (9) and rearranging terms yields: 

Find C . C min g such that 

z = c + y 
o   L 

n 
I! 

J-1 V d-1 J 'i 'i . 
1 2 (12) 

-11- 
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"-^(A^tvA^Aj) 
1 2 •" n  i-1 1 1 

(0). a a .1. wherekV2-C=A(Ei1T^r^)ij 

d
i i    i (9> = ^ Vii<3

) (ij'11 1
112--'1N      lj 1 ^ J9 

(13) 

(14) 

(15) 

for all 6, all TT>0 such that J-n  =1 

Thus the problem of solving the program (8-9) with a multi- 

nomial approximation of u(Tr) becomes a linear program (12-15) with 

an infinite number of constraints and unrestricted variables.  Note 

that the minimum value of Z obtained in the linear program (12-15) 

would actually be larger than that obtained in the program (8-9). 

■12- 
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VI.  Computational Procedure 

Given an optimal solution to the linear program (12-15), con- 

sider the set of constraints for whlcu the C        are basic.  If 

iV'^N 
the program was solved with these constraints only, the same solution 

would be obtained and all other constraints would be satiafied.  Thus, 

while the program consists of an infinite number of constraints, only 

a finite number need to be included provided the correct ones are chosen. 

This will be taken advantage of by solving the program with a finite 

subset of the constraints, introducing an unsatisfied constraint, then 

diopping any that are not binding, and continuing until an optimal 

solution is obtained. 

Let the quantity f(TT,C) be defined as follows. 

F(TT,C) = (1 

o    ^=1 J      e[ hh-'-h W'-SJj 
n 

Cili2---1N" Jl"^ (") 

The constraints (13) are equivalent to F(Tr,C) > 0 all IT.  Thus if at 

least one constraint is not satisfied for a given C vector, the value 

of TT that minimizes F(TT,C) is the most unsatisfied one. 

The procedure for solving the linear program (12-15) is given 

in algorithm 1. 

Algorithm 1 

1. Formulate the linear program with any finite subset of the 

constraints in (13). 

2. Solve the linear program for C. 

3. Delete any constraints for which a slack variable is basic. 

A.  Solve the following non-linear program. 

-13- 
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Find IT > 0, min Z such that 

i» _ fOr.C) (17J 

1=1 
\ = 1 (18) 

If 2' >_ 0, terminate as C Is optimal.  Otherwise Introduce the 

constraint corresponding to the value of TT that optimizes (17-18) and 

go back to Step 2. 

A local optimum to (17-18) may be found by algorithm 2. 

Algorithm 2 

1. Choose an arbitrary probability vector and evalute f(TT,C). 

2. Find an order pair (l,j) such that Increasing TT by E and 

decreasing TT by E decreases f(TT,C) without violating 0<Tr.<l and 
J J_ 

Ql^jl1«  If no such pair can be found, terminate as TT is a local 

optimum. 

3. Increase TT to TT and decrease TT. to TT such that neither 
1    i J    J 

the pair (l,j) or (j.i) satisfied the conditions of Step 2.  Then go 

back to Step 2. 

For finiteness, the e of Step 2 would be chosen ahead of time. 

There are several ways of performing Step 3 to find the new 

value of T^ and ^.  One efficient way is to first bracket TT  and TT 

between irj, TTJ and TT^ and TT" and continually reduce the difference between 

these by a factor of one half, thus converging on a single point. 

Initially TT| and TT' would be the current values of TT and TT 
^ 1     j 

and TT^ = 7r1 + 6, TT'' - ^ - «S where fi = rain [1-TT^TT.].  Then consider 

the pair ^ = ^(nj + ^) and ^ = ^(TTJ + IT").  If f(^,c) is a local 

-14- 
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minimum under the reütriction that all components of TT other than TT 

C 

and TT are held constant, then TT is the desired point.  Otherwise, 

— _ •     • 
let TT^ and TI  replace TT . and TT . if the direction of decrease is towards 

» II _ _ M II 

n  and TI . but let TT and TT  replace TT^ and TI  if the direction of 

i      i 

decrease is towards TI and TT .  If neither direction yields a decrease, 

- _ I        I i      n it       n 

let TI^ and  TI. replace TT and ir if f(TT )>f(TT ) but replace TT and TT 
J J X J 

k "   i 

otherwise..  Step 3 would terminate when TT . - 7r,<e, wher^ c,<e. 
i   i 1       1 

Note that if the C vector approximation of U(TT) were exact, 

any local minimum of f(Ti,C) would be a global minimum due to the con- 

vexity of V(TT).  While this is not guaranteed in the approximation, one 

could take random samples of IT in an attempt to find a vector yielding 

a lower value of g' than the local minimum or evaluate Z' for all TT 

vectors whose components are multiples of 1/n where n is large if the 

result min g^O is obtained. 

When introducing an unsatisfied constraint, it is recommended 

that the dual simplex method be used to solve the resulting program 

which is already dual feasible. 

The sequence of min 8 values generated by algorithm 1 is non- 

decreasing, bounded above, and nence must have a limit.  It is an open 

question as to whether this limit is the true min Z or in particular 

if the sequence of Z' values in algorithm 2 tend Co zero.  Consider the 

sequence of linear programs solved by algorithm 1 and assume the number 

of equations in each equals the number of components in the C vector 

plus one.  It has already been shown that it will not exceed this num- 

ber and if it is less, additional constraints with all coefficierts 

being zero may be added.  Consider also the sequence of matrices formed 

by the probability vectors that generate these constraints.  Since these 

-15- 
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are bounded above, these matrices, and consequently the set of linear 

programs for algorithm 1 must have a convergent subsequence.  Consider 

now the sequence of constraints generated by this sequence in algorithm 2. 

By the same argument this sequence must have a convergent subsequence. 

In this latter sequence, either f(TT,C)-vO or else the cost coefficient 

in the pivot column tends to zero for if not the increase in min a 

would not tend to zero which is impossible since min 2 is bounded above. 

If the sequence of f(Tr,C) values generated by problem 2 did 

not appear to tend to zero after many iterations while the change 

in rain Z did appear to tend to zero, some possible ways out are as 

follows.  First one may sample a large number of probability vectors 

and find one which would gi\e the largest increase in Z on a single 

pivot.  Second, one may search all probability vectors that are multiples 

of 1/n where n is a large number and find the one which gives the largest 

increase in Z for one pivot 

i 

It should be noted that if the sequence of Z values obtained 

in algorithm 2 do not tend to zero, then one has a situation somewhat 

analogous to cycling in the dual simplex method.  Since cycling almost 

never occurs in the primal simplex method, there appears to be some 

t 

basis for thinking that the sequence of Z values would tend to zero 

the majority of times. 

One could of course only consider constraints generated by 

probability vectors whose components are multiples of 1/n.  By imposing 

a lexicographic ordering, one could insure a true optimum in a finite 

number of steps. 

Ö 

i  1 
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VII.  Bounds on Accuracy 

In solving the non-linear program (17-18) in Step 4 of the 

algorithm to find the most unsatisfied constraint of the linear program 

i 

(12-15), one may wish to terminate the program when Z >-6 rather than 

for a>0 where 6 is a small positive number.  If so, the value of 2 

obtained for (12) will be less than the true minimum for i  since the 

program has been optimized for only a subset of the constrair'zs. How- 

ever, it is easy to see from (12) and (13) that increasing C by 6/(l-ß) 

yields a feasible solution and increases Z by that same amount.  Conse- 

quently, this feasible set would come to within 6/(l-ß) of minimizing Z. 

The question now arises as to how close  (TT), the Maclaurin 

series approximation to V(TT), is to the true value of V(TT).  To answer 

this coasider the operator Au(Tr) defined in equation (7) and define: 

max 
||Au - u|| =  T |Au - u| (19) 

Since the operator A is a constraction mapping with |Au - Av\<. 

ß|u - v| it can be shown that ||An+1u - Anu||<ßn||Au - u|| and 

||Anu - u||<(l-ßn)||Anu - u||/(l-ß) and V(ir) = n^A
nu, it follows that 

|V(^) - V(TT)|<||AV - v| |/(l-3) (20) 

One could find a local maximum to JAv - v| by an Incremental 

procedure similar to that used to find the most unsatisfied constraint 

to introduce into the linear programming problem.  Alternatively, one 

could enumerate (20) for all possible probability vectors whose com- 

ponents are multiples of 1/n. 

-17- 
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