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ABSTRACT

The representation of concepts and antecedent-consequent productions ls
discussed and a method for inducing knowledge by abstracting such representations
from a sequence of training examples is described. The proposed learning mesthod,
interference matching, induces abstractions by finding relational properties common to
two or more semplars. Three tasks solved by a program which performs an
interference matching algorithm are presented. Several problems concerning the
relational representation of examples and the induction of knowledge by Interference

matching are also discussed.
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Hayes-Roth & McDermolt 1

L._INTRODUCTION

A number of distinct paradigms for studying learning machines have emerged
during the last twenty years. Though each differs from the others in a variety of
ways, the three differences which most clearly demark each paradigm are (1) the
types of knowledge which can be acquired, (2) the way in which this knowledge is
represented, and (3) the type of learning algorithm used. The learning machine which
we will describe in this paper acquires concepts representable as conjunctive forms
of the predicate calculus and behaviors reprasentable as productions (antecedent-
consequent pairs of such conjunctive forms); these concepts and behavior rules are
inferred from sequentially presented pairs of examples by an algorithm that is
provably efiective for a wide variaty of problems.

Learning is viewed here as a continual process of knowledge expansion,
that is, as the acquisition, in adaption to training experiences, of higher-order,
moro complex, and more elaborate knowledge structures. One’s knowledge at any
point in time includes those concepts and productions Innately provided or
praviously learned. The concepts are pattern templates; events which match a
concept are recognized as belonging to the class delimited by that concept. The
productions are pairs of concepts; one of the concepts functions es a racognizer, the
other specities the form of an associated action. A production is interpreted as
a behavior generator In the sense that (in some computing environment with an
appropriate control structure) the detection of a condition in the environment which
matches the antecedent causes the consequent companent to be instantiated and then
evoked. Here both the antecedent and the consequent are templates; the
antecedent determines ‘whether the production is to be executed, and it so, what
specific constants in the description of the event being attended to are to be bound

to variables in the consequent.

#x+ Figure 1 goes about here

Wilthin this framework, the machine learning problem with which we are
concerned can be stated in the following way: Given a collection of concepts and
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2 Hayes-Roth & McDermott

productions constituling what 1s known at some time and a way of describing evenls
in lerms of their structure, construct a machine which is able to induce additional
concepls or productions from training data. To make our treatment of this problem
more concrete, we  will use the simplest of the concept formation tasks attempted by
Guit maching as an exampie inroughoui tnhe paper. lThe task 15 to find what the
three exemplars in Figure | have in common., Our program induces the following

abstraction:

There are three objects, including a small circle ana a small squars.
The square is above the circle. The third object 15 large.
This paper is divided into six sections. In the next section we discuss in general

a way of describing events which facilitales finding what two or more events have in
common and a malching algorithm which can be used to find these abstractions. Then
we locate SPROUTER, our concept and production inducing program, within the
broader context of our work. The third section describes SPROUTER's interference
matching (induction) algorithm in some detail; we indicate here more specifically
how SPROUTER makes use of structural representations of events to acquire and
store knowledge. In the fourth section we present the results of two concept
formation tasks and one production inducing task, and in the fifth section we discuss
some of the representational issues which our results help make evident. In the sixth
seclion we conclude with a brief consideration of the strengths and wesknesses of
SPROUTER.

I STRUCTURAL _REPRESENTATIONS AND INTERFERENCE MATCHING

The problem which we are addressing is simply described: Deslgn a program
which can infer concepts and productions from illustrative instances. The method
we employ is correspondingly straightforward: Extract commonalities from the
examples and attenuate their differences. Such an approach is like Galton’s very
primitive "composite photograph theory" of concept learning [3) and the “positive
focusing strategy" for conjunctive concept learning first studied by Bruner, et al.
[2]. While Galton’s contribution was simply to propose that unknown patterns could
be inferred by overlaying homologous memory representations of related examples
{as if one were forming a composite of many photographs of the same subject),
Bruner and his colleagues showed how such a process could in fact be realized. Each
presented object (exemplar)_‘is described as a conjunction of specific feature values.
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Hayes-Roth & McDermott 3

To find the template which is matched by all of the presented objects, a feature
vector containing only those features common to all of the exemplars Is
generated. This feature vector is the concept. Since that seminal work, many
computer scientists have produced increasingly practical and sophisticated

feature-value concept learners based on related techniques {6, 12, 13, 18].

Extending such learning models so that they can induce general (relational)
classification and behavior rules is the goal cf our work, In focusing on methods for
generating relational  abstractions which make possible the racognition of complex
events, we encounter three problems not encountered in previc's work. First we
must develop a formal scheme for describing complex events which facilitates the
generation of abstractions. Second, given descriptions of two examples of the same
concept or production, we must develop a method for comparing them so that their
commonalities can be identitied. Third, it is necessary to develop a way of storing
the discovered abstractions to facilitate their subsequent use in either of two ways:
they may be used as templates for classitication and behavior generation, or they

may be used as knowledge representations whose precision may later be improved

by learning if new instances of the same concept or production are provided.
These problems are referred to below as the description _problem, the
comparison problem, and the storage problem. Each is considered In more detail in

the subsequent paragraphs.

The description problem entails providing a symbolic representation of
each exemplar which satisties two demands. First, those attributes of the
exemplar which are salient and potentially criterial must be reflacted in its
description to insure that the classification rule induced will be sutficiently
discriminating. Note that since an exemplar may be composed of many objects, the
description must distinguish each object and indicate clearly how It refates to the
others. Second, the descriptions should facilitate the identification of commonalities
among the exemplars so that the abstraction being sought can be found quickly.
Since each object may exhibit a variety of charact.eristics and participate in
numerous relationships with other objects, finding commonalities between two or
more examples will necessitate search. A reprasentational scheme which helps direct

this search is almost essentiai,

The method of description we employ is built on three central concepts, the
properly, the caso frame, and the parameter. A property is a feature or
characteristic of .an object. For example, SQUARE and SMALL nams two properties
of small squares; the properties ABOVE and BELOW are used in our work to describe

SRR o —
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4 Hayes-Roth & McDermott

objects which are above or below others in pictorial displays. To define the
rela’ onship of one object being above another, a case frame of the sort {ABOVE,
BELOW} is used. In general, case frames are sets of properties which are
semantically related in some exogenously determined manner. To produce
descripiions  of  objects, evenls, or behaviors, case frames are parameterized
(instantiated); thal is, a name i. given to each object in the event heing described
and this name is associated wilh each property of the object. Parameterized
case frames are called case relations. For example, if b is the name of a square
above a circle named ¢, this might be described by the following set of case
relations: {{SQUARE: b}, {CIRCLE: c}, {ABOVE:b, BELOW: c}}. Such a set of case
relations interpreted as a conjunction of valid propositions is called a parameterized
structurai representation or PSR {5, 8 9] In this example, (b, ¢} is the parameter
set of the PSR!

A structural description of the ‘first two exemplars in the concept formation
task discussed in the introduction is given bslow. '

El:

{{TRIANGL.E:a, SQUARE:b, CIRCLE:c),
{LARGE:a, SMALL:b, SMALL:c),
{INNI:R:l», OUTER:a},

{ABOVE:a, ABOVE:L, BELOW:c},

{SAME!SIZE:bh, SAME!ISIZE:c}}

E2:

{{SQUAREd, TRIANGLE:e, CIRCLE:f},
{SMALL:d, LARGE:e, SMALL:S),
{INNER:f, OUTER:e},

{ABOVE:d, BELOW:e, BELOW:f},
{SAME!SIZE:d, SAME'SIZE:{}}

The description of El asserts that there is an event composed of three objects,
named a, b, and ¢; that the object labeled a has the properties of a triangle, of a

1 The PSR, as a description, corresponds exactly to an existentially quantified
conjunction of predicates. In this example, the PSR is interproted as (3b,c)
[SQUARE(b) A CIRCLE(c) A ABOVE(b,c)] with the appropriate interpretation for
the three predicates. PSRs have proved to be more desirable bases for
description than conventional predicate calculus formulae for numerous reasons:
PSRs are easily written in compact forms embedding many case relations efficiently
in a single set of property:parameter terms (each subset of such a compact refation
instantiates any case frame comprising the same selection of properties);, the
interpretation of each argument (parameter) in a case relation is self-documented
by the property name; and subsets of case relations are interpretable as
abstractions of individual predicates. See Hayes-Roth [7].
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large object, and of containing the object labeled b; and so on.

PSRs provide a solution to the storage problem as well as to the description
problem; that is, they can be used in storing discovered ebstractions. In the case
of descriplions, parameter symbols are chosen to name each object eo that if the
same object is part of more than one case relation, it is referred to In a consistent
way. « one ealters the interpretation so that each distinct parameter is considered
as an unbound variable, the PSR can be considered a tempiate for concept
identification. Such templates have been used by several researchers [1, 5, 8-10,
17] to specify what properties an object must have in order to satisfy membership in
a pattern class. While the parameters in a description can be thought of as being
existentially quantified, those in a PSR used as a template should be thought of as
being universally quantitied. When used as a template for pattern
classification, the PSR.is compared with an event (an existentially quantified PSR).
If a mapping from the evenrt to the template can be found which preserves the
parameter bindings in the event description and which makes sach case relation of

the template true, the event is said to match the template.

In addition to their role as classification rules, PSEs can be used #s general
hehavior ruies. In this case two templates are associated. One of them, the
antecedent, is used to recognize a set of conditions (2 context) which Indicates that a
particular set of actions is appropriate; when the antecedent template Is matched by
some event in the environment, ithe rule is invoked. The second template, the
consequent, spacifies what actions are to be performed. When the two templates
share common parameters, each parameter in the consequent is bound to the same
value as the corresponding parameter in the antecedent. These behavior rules
may act, for example, as Post productions, transformational grammar rules, or the
problem solving rules of STRIPS [3]) In short, a rule with the antecedent A(X) and
the consequent C(X) over the variables in the set X is interpreted to mean (VX) [A(X)
=> C(X)]. In actual applications, A defines a precondition which can be true of the
contents of some working memory, and C defines what is to be done If the
precondition is satisfied. Note that any such production can be described by a PSR
in which each case relation in the antecedent inciudes a term of the sort EVENT:a,
each case relation In the consequent includes a term of the sort EVENT:c, and
the 'SR itself includes a case relation {ANTECEDENT:a, CONSEQUENT:c}.

The abstraction of the first and second examples in the sample concept
formation task can be represented as below.

El¢E2:

.
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{{ABOVE:1,BELOW:2},
{SAME!SIZE:2,SAME!SIZE:1},
{SMALL:2},

{SQUARE:1},
{SMALL:1},
{CIRCI F:2}

1]

{TRIANGLE:3},
{LARGE:3})

Exemplar 1 is in fact an instance of this abstraction if the parameter 1 Is replaced by
the parameter b, the parameter 2 by ¢, and the parameter 3 by a. Likewise,
erxemplar 2 can be seen to match the abstraction if the parameter 1 Is replaced by
d, the parameter 2 by, and the parameter 3 by e.

s+ Figure 2 goes about here

The comparison problem can be solved by using a technique called
interterence matching or IM [7-8, 10]. It is a process for identifylng all of the
common properties of two PSRs and extracting a third PSR which is a template
matched by the two exemplars., When two events have N attributes In common, their
descriptions will contain at most N case relations which are identical {oxcept for
aiphabetic differences betweeu the names of corresponding paramaters). Figure 2
schematizes IM as a process for finding the intersection containing these case
relations. The circular areas labelled A and B correspond to two PSRs; all of the case
relations common to the two PSRs are in the area labelled AeB (read "A star B").
Bocause any subset of this (conjunctive) set of common relations also deflnes an
abstraction of A and B, it is important to be able to distinguish between the set
and its proper suhsets. We call any abstraction of A and B which s properly
contalned in no other abstraction of A and B a maximal ghstraction. More formally, If
S (+) A denotes that A is @ PSR matched by the PSR S, then a maximal
abstraction, A, of two PSRs, S and T, satisfies S(x)A and T(s)A and (YB) [B(%)A A $(2)B A
T(x)B => A(*)B].

It should be puinted out that for any two PSRs, there may be mors than one
abstraction which is maximal in the above sense. For example, glven the following
two exemplars,
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E3: {{CIRCLE:a), E4: {{CIRCLE:b}, {CIRCLE:c}, {RED:b},
{R70:a},{LARGF :a}} {GREEN:c), (SMALL:b}, {LARGE:c})

two maximal absiractions exist. If the paramelers a and b are ccnsidered to

be identical, the maximal abstraction is

E34E4; {{CIRCLE:1}, {RED: 1))

[t on the other hand, the parameters a and ¢ are considered to be ldentical, the

maximal abstraclion is

E3#£4: {{CIRCLE:1}, {LARGE: 1}}

Thus in the language of PSRs, a maximal abstraction is dofined to be the largest set ot
case relations that can be formed by intersection of the two compered sels of case

relations when alphabetic differences betwsen bound or corresponding parameters in

the two PSRs are ignored. Parameter bindings may be defined by any one-one
mapping between the parameter sets of the two PSRs. Note that an abstraction
produced by assuming one parlicular set of parameter correspondences may be
submaximal; that is, it may contain fewer relations than another abstraction which

matches it but was produced by assuming a different parameter binding relation.

To perform interference matching on reasonably complex representations, we
need an algorithm which, operating within as small a search space as possible, can
discover the best maximal abstractions as quickly as possible. Two approsches to

interference matching are known: (1) In the hind-first spproach, eech parameter in

one PSR is associated with a parameter in the second PSR and then a maximal
abstraction is found by exlracting the case relations which are Identical In the
two PSRs (modulo the parameter bindings). In this case, if the lesser number of
parameters (in either PSR) is MP and the greater number is NP, the number of
possible binding functions is combinatorial, (hinomial coefficient of NP over MP) s
MPL  (2) Alternatively, in the match-lirst approach, all instantiations of case frames
of one type in one PSR are compared with all instantiations of the seme type of case
frame in the other PSR, and possible parameter bindings are identified by determining
which parameters . e corresponding properlies In comparable relstions. Here if NI
and Ml are the numbers of case reiations in the larger and smaller PSK (assuming
only one iype of case frame), the numbor of possible ways in which the relations
can be forced into correspondence is simiiarly combinaiorial. While It is true
that if one were Interested in computing abstractions of quite low-level event
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8 Hayes-Roth & McDermott

descriplions (such as undirecled graphs) neither method would be much preferable
to the other, in most real problems the number of instances of any particular case
frame is quite small relative to the number of parameters in the PSR, and so0 the
second method is usyally preferable to the first. It is this method which Is used In

our current work,

The actual algorithm we use has the following form: A randomly selected case
relation from one of the exemplar PSRs ls put into correspondence with a case
relation (which is a parameterization of the same case frame) from a second
exemplar PSR; paramele.s having identical properties are identified as equivalent and
the resulting common case relation becomes the (primitive) abstraction associsted with
that set of parameter bindings. Then other pairs of primitive case relations,
one from each of the two exemplar PSRs, are put into correspondence, If a
compared pair of relations eniails parameter bindings consistent with those already
identified, the cc mmon relation is added to the abstraction baing produced. This new
abstraction is tho set union of the old abstraction and the new case reiation, and the
new set df p ameler bindings is the set union of those bindings entailed by
the previous abstraction and the forced bindings of the parameters in the
compared pair of case relations. If a pair of case reletions entails perameter
bindings inconsistent with those alresdy identitied, the common case relation
becomes a new (primitive) absiraction,

Clearly, this algorithm may find a8 number of competing maximal abstractions.
Qur approach is to build as many distinct abstractions as possible, ona relation at 2
time, wuntil a limitation on the number of distinct abstractions which car be
considered at one time Is exceeded. At that point, only those abstractions which are
most significant in terms of the number and type of case relations they include
are retained. These abslractions continue to be extended as other pairs of
consistant relations are found; at the same time, the least significant
abstractions are continually pruned from furthear consideration in order tc keep the

search space as small as possible.

The result of the process is a sat of best maximal abstractions, represented
as PSRs. Any one of these abstractions (interpreted as existentially guantified) can
then be input to SPROUTER together with a third exemplar to produce a set of
maximal abstractions of three exemplars, or the process may be repesated on as many
additional exemplars as desired. Since a maximal abstraction lg compared to an
exemplar in the same way that an exemplar Is compared to another exembnlar, we find
it desirable to store abstractions as PSRs, with the Interpretation that ttelr
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parameters  represent existentially quantified variables derived from the

correspondence of case relations in the exemplars from which the PSR was induced.

The successive steps involved in producing the maximsl abstraction of the

first two examples in the concept formation task are shown below,
(1) [SMALL:1}
(2) ({SMALL:1}, {ABOVE:2,BELOW:1})
() ({SMALL:1}, {ABOVE:2,BELOW:1}), {SAME!SIZE:1,SAME!SIZE:2})
() ((({SMALL:1}, {ABOVE:2,BELOW:1}), {SAME!SIZE:1,SAME!SIZE:2}), {SMALL:2}])

(5) (((({SMAIL:1}, {ABOVE:2,BELOW:1}), {SAMEISIZE:1,SAME!SIZE:2}), {SMALL:2)),
{SQUARE:2})

(6) ((((({SMALL:1}, {ABOVE:2,BELOW:1}), {SAME!SIZE:1,SAME!SIZE:2}), {SMALL:2}),
{SQUARE:2}), {CIRCLE:1})

The case relation {SMALL:c} is selected at random from El and Is then put Into
correspondence with the case relation {SMALL:f} from E2. The parameters ¢ and f
are identified as equivalent and so (since ¢ and f are the first pair of parameters
bound) the primitive abstraction {{SMALL:1}} is generated. Then the pair of case
relations {ABOVE:b, BELOW:c) and {ABOVE:d, BELOW:f} are put inlo correspondence.
Since the identification of ¢ with f and of b with d is consistent with the already
established binding, the primitive abstraction {{ABOVE:2, BLLOW:1}} is edded to
{{SMAtL:1}}. It should be noted that our basic IM algorithm actually finds only six
of the eight case relations constituting the abstraction. This is beceuse the
partial abstraction {{TRIANGLE:3}, {LARGE:3}} was pruned from consideration
early in the match under the space limitation constraint. To insure that such
complementary relations are not missed, our algorithm, after complating the process
described sbove, searchoes for additional relations which can extend the abstractions
produced. Any such relations which are found are conjoined to the abstraction to
produce a maximal abstraction.

SPROUTER, the program which induces abstractions from structural descriptions,
is only one part of a classification and learning system which we are developing. The
top-level program, called SLIM [6], is a genaral space limited interference matching
procedure which builds abstractions from examples and then uses these abstractions
to classify test stimuli.! While the abstraction of featurs-value repesentations can
be performed by simple bit vector operations (which SLIM ltself Is capable of), the

1 Both SLIM and SPROUTER are implemented in SAIL for use on & PDP-10; SPROUTER
loads in 14 thousand words of core.
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generati.n of absiractions from FSRs requires the matching and parameter
binding determinalions discussed above, The program, SPROUTER, was created for
this purpose. Once an abstraction is computed from some P5Rs, it is nearly as
complex a problem to use it for classification as it was to generate if originally.
With this in mind, SPROUTER was designed to produce two outpuls: one of fnese is
a PSR, which as we have indicated can be matched with subsequent exemplars to
produce more refined abstractions; the other is a special purposa racogmtion

network used to exploit an ubstraction as a template,

SLIM provides a general operating environment ‘or cencept (pattern)
learning and classification. It is first given a set of exemplars sli of which are
known to belong to the same pattern class, and it induces abstractions (with the help
of SPROUTER when necessary) by finding sets of common f{eatures or properties.
This procedure can be repeated for different sets of exemplars unhl a number o
abstractions have been built, each of which is an implicit rule tor determining
whother an event beiongs to a particular pattern class. When SLIM is giver an
event to classify, its confidence in any particular classification judgment is
determined by the abstraction’s performance measure. This measure is a weighted
combination of the a posteriori Bayesian probability of a correct classitication
less the probability of an incorrect ciassification. During the learming phase of
processing, this measure is also used to eliminate insufficiently discriminating
abstractions. By keeping the most discriminating abstractions, SLIM optimizes
the expected overall performance ol the limited set of templates It keeps as
classifiers,

The templates which SPROUTER generates for SLIM sre sutomatically
compilable recognition networks or ACORNs (B, 9] An ACORN is a special data
structure, equivalent in representational power to a PSR, but better adapted to serve
as a template; it is essentially a Pandemonium patlern recognition system [12],
generalized to handle patterns and data described as general propositional formulae.
Once an ACORN has been produced, SLIM can determine whether & descriptive FSR
matches it by using the PSR to create an instance list at each of the lowest-level
nodes in the ACORN and then allowing the relevant instances of subpatterns of

internst to percotate upward in the network. If any instances of the highest-level

node are found, the template is matched by the stimulus pattern. The lowest-level
nocdes of an ACORN correspond to the distinct case frames in a universally quentified
PSR and are like the feature demons of a Fandemonium system. A teature demon,
however, repor& only the number of instances of its particular feature to higher-
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.B level demons, whereas the node in an ACORN actually passes its instences ujp to the

i higher-~level nodes winch it supports. The higher-level nodes look for instances of
the particutar conjunct’~n of case relations in which they are Interested, just as
higher-level "cognitive ¢.mon." in Pandemonium look for specific combinations of
featL.:o values. The hignes<t-level node in an ACORN is instantiated if and only if the
ebstraction is matched by the PSR Thus this highest-level node corresponds to
a Pandemonium’s highest-level cognitive demon which recognizes when & pattern of
interest is matched. Because ACORNs have been developed to provide a means
for shering the results o the evaluation of subexpressions common to numerous
templates, each conjunction of predicates or subtemplates is associated with a
single binary-branching node whcse two dJescendants represent the conjoined
propositionai formulae.

Once a set of best maximal abstractions is computed for two or more
exempiars, all training examplars (or a sample of them) may be examined to see if
they match the inferred hypothetical concept or rule. Oniy to the extent that
exemplars of the same class match an abstraction and thosa of the other classes do
not, do we find support for the inference that the absiiaction is the criterial concept
underlying the training data [5-6). ACORNs greatly  cilitate this examination
process. Que simply instantiates the terminal nodes «¢: the ACTORN whose
highest nodes represent the abstractions of interest, and then iteratively computes
all instances of each higher-level node from thtose pairs of instances of its
subordinate nodes which satisfy criterial tests on their valuzs. If any instances of
the abstraction are produced, the training exemplar matches the abstraction,
Without ACORNs, it wou.d be extremely difficult to determine which positive and

negative training exemplars matched each abstraction.

A second reason for using ACORNs rather than some other sort of Iintermediate
data structure is that only one generic representation of sny abctraction need be
comnuted during the search ‘or meximal abstractions. Since each sbstraction is
associated with a- node in an ACQORN. equivalent abstractions can be easily
identified and pruned from memory. Ths is done by computing all instances of
each abstraction of the two exemplar PSR nd storing these at the assoclated ACORN
node. If two stances of two different higher-level nodes are produced by
conjunctions of identical sets of instances of the terminal nodes, the higher-level
nodes represent equivalent absiractions and one may be deleted. Equivalently,
we can recognize automorphic substructures of the compared PSRs whenever we find
that the tests for one abstraction are satisfied by exactly the same case relations

»
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12 Hayes-Roth & McDermott

as the tests for some other abstraction. As will be shown later, since the tests on
ACORN nodes completely specify the underlying PSR, the only way two nodes’ tests
can be salisfied by identical case relations is f the two nodes represent
equivalen: logical structures. Thus, ACORNs provide a basis fcr overcoming a difficulty
which invariably arises with string type representations of PSRs (or agquivals
predicate  formulae) because many alphabetically distinct abstractions can .
equivalent (vach can match the other). For example, one may induce from examples
the following abstraction for the concept triangle: Three vertices cornected by three
lines. Because there arc three factorial distinct parameter binding relations
between the vertices of one triangle and those of another, there are 6 binding
functions and related case relation correspondences which enteil equivalent
abstractions. 1f each distinct abstraction of two PSRs were repesented only by a
symbolic string, there would be no efficient way to determine that all of these
alternative descriptions were identical. ACORNs facilitate this determination. ach
ACORN node repcsents a distinct PSR, and consequently equivalant PSR. are
recorded as distinct instances of the same node in the network.

##s Figure 3 goes about here

Figure 3 shows the ACORN that is produced by SPROUTER for the first two
e«cmplars of the concept formation task. Each of the nodes, (1) through (6), in the
network corresponds to one of the partial abstractions given In the step-by-step
derivation shown earlier. Nodes (7) and (8) are produced when the ACORN is
extended. Note that if this ACORN were used to determine whether the third
exemplar in the concepl formation task is an instance of the class defined by the
first two exemplars, SLIM would find that it is not since the iarge object in the third
exemplar is not a triangle.

I, THE INTERFERENCE MATCHING ALGORITHM

SPROUTER's function, as we have said, is to build ACORNs which can be used
by SLIM for recognition. Before this construction process can begin, a set of
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primitive (bottom-level) nodes must be generated and then instantiatad. To generate
these nodes, SPROUTER reads in the set of case frames which are relevant to the
task it is facing. For each of these case frames, a primitive node is created which Is
essentially a universally quantified case relation. SPROUTER then finds, in the
descriptive PSRs of two exemplars, the set of distinct instances (case relations) which
are instances of each of these nodes. Each node has two associated Instance lists;
each of these lists contains the instances of the case relation for one of the
exemplars, For example, given the two case frames N1: {CIRCLE}, N2: {ABOVE, BELOW}
and the two exemplars

E5:  {{CIRCLE:a, CIRCLE:b}, E6:
{ABOVE:a, BELOW:b})

{{CIRCLE:¢}}

SPROUTER will create two nodes, NI and N2, and then produce four instance
lic's. Two of these lists, ((E5/a), [ES/b]) and ([E6/c]), are associated with node NI.
The other two, ([E5/a, £5/b)) and ( ), are associated with node N2.

When the primitive nodes have been instantiated, SPROUTER produces the
set of maximal abstractions of the two PSRs by constructing, bottom-up, a binary-
branching ACORN. Each higher-level node of this network is & conjunction of two
nodes, one of which is always a primitive node. Before initiating the building
process, SPROUTER deletes all of the primitive nodes which do not have at least one
instance from each exemplar. Then one exemplar, the one with fewer instances over

A comp' And each
instance of Ej,.,, is marked as unused. SPROUTER then begins the actual

the remaining nodes, is tagged Ej,,oi the other exemplar is tagged E

construction. An unused Eintro

the two instances to be used in the construction; it is selected on the basis of the

instance from a primitive node is chosen as one of

likelihood of its being an instance of a node which is a constituent of a best maximal
abstraction. This instance is then paired with every instance from Eintro Of overy
node. Each of these pairs of instances is used to construct a candidate node which
will accept instance pairs only if they are equivalent to the prototypic pair. If

there is at least one such pair of instances in E the candidate node Is added to

comp?
the network and all insiances of the node (from both exemplars) are computed.

Thus, each step In the abstraction building process involves combining, Iteratively,
an unused instance from a primitive node with each other instance In the ACORN.
After each of the resulting conjunctive nodes is generated for a palr of Instances

from Eintro' all instances of that node, first from E and then from Eintro' are

comp

computed. If no instances are found in E the node represents an abstraction

comp’
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which is not true of the second exemplar and so the node Is nol edded to the
network. The process continues until all of the case relations the’' ars common o

both exemplars have heen conjoined.

Of course, this algorithm, left unconstrained, would bhuild a node for each

subset of cace relations in £ for which there was an equivalent subset in Ecomp'

intro
Clearly, the size of the search space would increase exponentially. Thus, for even
small problems, it s important to somehow reduce the number of nodes which are
constructcd. We use two heuristics. The first of these enables us to keep the search
space to a manageable size by providing for the automaiic pruning of those
conjunctions which are least likely to be part of a best maximal abstraction. To
determine which partial abstractions are least promising, e value Is computed
which we call the ulility of a node. Basically, the utility of a node is an increasing
function of the number of properties covered by the node and & decreasing
function of the number of distinct parameters needed to instantiate the node.
Maore specifically, our current utility measure adds 1.0 for each property of a case
relation and subtracts 1.0 for each distinct parameter in the associated PSR. Cur
justification for this rather rough measure of utility is that it will yield as the highast
valued nodes, those with the greatest scope and connectivity. Equivalently, the
higher the utility of a node, the more informative and apparently “better” it is as an

abstraction,

During the construction of the ACORN, a list of all nodes currently in the
network is maintained. This list, which is ordered by the utility of its elements, has a
stipulated maximum length. Whenever the number of total nodes in the ACORN
exceeds this stipulated maximum, a primitive node which does not support any higher-
order nodes is marked as removed from consideration. If all remaining primitive nodes
support some higher-level node, then the least valued maximal abstraction
(provided there is more than one maximal abstraction in the network) and all nodes
suporting it (or supporting one of its supports, recursively) and not supporting some
other higher valued maximal abstraction are deleted (or marked as removed from
consideration if they are primitive nodes). Thus, the number of nodes In the network
can exceed the stipulated maximum only if  just one maximal abstraction remains.
While in some cases, it might be desirable to require that ¢! least k (k>1) best maximal
abstractions be maintained, we have not yet found a need for this option.

As a result of the limitation on nodes in the ACORN, the typical behavior
during constructior is as foliows: Instances are introduced one-at-a-time from Ej 4.0
and are conjoined with other E; o node instances to form PSRs representing
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subsets of casc relations of varying utility, As soon as the number of nodes
corresponding to these nodes in the ACORN exceeds the stipulated maximum, the
maximal node with the lowest utility together with all nodes which support only it are
deleted from the network. This construction-and-pruning cycle is repeated until the
set of best maximal abstractions has been found.

The second heuristic provides the search with direction by indicating which
one of the unused inslances is to be used in the naxt cycle of construction. Our
search for the best maximal abstractions is essentially hill ¢climbing, but occurs on
many hills simultaneously. Since our pruning heuristic enables us to maintain a
gradually decreasing number of maximal abstractions, the number of hills under
consideration is reduced as the search progresses. Clearly, if we could select first
all of those instances from E; 4 o which were instances of the best maximal
abstractions (the highest hills), then our search, since it would take place in an
essentially unimedal space, would be as efficient as possible. Of course it is
impossible to determine a priori which instances are instances of the best maximal
abstractions. However, by using a variant of the utility function described above, it Is
possible to compute, fairly cheaply, the upper bound of the actual utility of any node
which might be constructed. Using this strategy, we can, at relatively litHe cost,
significantly increase the probability that the node constructed will be a constituent of
a best maximal abstraction. The selection procedure we use is as follows: We set a
sampling factor (currently 207) for the proportion of the unused instances from
Eintro Which are to be examined. We select at random this percent of the unused
instances (but at least three until there are fewer than three unused instances). For
each of the instances in this sample, we determine an upper bound of the utility of
all of the nodes which could be constructed by conjoining the sampled Instance with
the remaining instances of nodes still under consideration. The one instance which
produces the node with the highest potential utility is constructed,

The actual construction of a node is a two step process. First SPROUTER
creates a set of tests which are both necessary and sufficient to accept just those
instances which are equivalent to the pair of instances used as a model in building
the higher-level candidate node. It is possible to create such a cet of tests
working only wilh the sameness or difference of selected parameters. For
example, to construct an ACORN node to accept the two instances {CIRCLE:c} end
{ABOVE:a, BELOW:c), a same parameter (SP) test is generated to Insure that the first
parameter of the first case relation is the same as the second parameter of the

second relation, and a different parameter (DP) test is generated to Insure that no
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non-explicit $Ps are accepted. If we think of this ACORN node as being constructed
from a left and a right instance, where the parameter of the left Instance is
numbered 1, and the parameters of the right instance are numbered 2 and 3, then
a minimally complete set of tests needed to exactly represent the same and different
relations are {SP:1, SP:3} and {DP:1, DP:2}.

After the set of tests has been created, the candidate node is associated
with a generator set which specifies how the parameters of its instances are to be
extracted from pairs of subordinale instances which satisfy the node’s SP and
DP tests. Because of the implicit requirement for DP relations to hold on all
distinct parameters, the order of the new relation is exactly the number of
distinct parameters in the two relation instances used in building the node. In
the above example, there would be two parameters in each instance of the new node
and these would correspond to parameters | and 2 (since 1 and 3 are identical).
The generator list for this node would be just (1,2). From the nature of the explicit
SP and DP tests used, it follows that any two nodes having instances derived from
equivalent pairs of instances must be equivalent. Whenever such a duplicate
node is constructed, it is removed from the ACORN.

It should be apparent that an ACORN constructed in the fashion described
above will not necessarily contain a maximal abstraction. Whether or not it
will is partially dependent on what maximum has been stipulated for the number of
nodes in the ACOPN. But even if the stipulated maximum is large enough so that the
highest node in the ACORN is a constituent of a maximal abstraction, the ACORN may
not be complete; that is, some of the case relations in the abstraction may have
been lost. This can occur if one or more primitive nodes whose instances are a part of
the abstraction were removed from consideration early in the construction process.
In suchh a case, however, it is always possible to extend the ACORN with
conjunctions of these lost primitive node instances. This is done by successively
intro  Which
does not support all of the instances of all of the highest nodes in the ACORN.

re-introducing into the consfruct-and-prune cycle each instance in E

Each re-introduced instance is conjoined with each of the instances of each highest
node to produce candidate nodes. If instances of any of these new abstractions are
found in Ecomp' these new nodes are retained; the ACORN is than extended further, In
the same way, until the best maximal abstractions bave been found.
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IV. THREE TASKS

In this section we will discuss SPROUTER's performance on three tasks. The
first of these is just the simple concept formation task which we have been using
as an example. The second task is a considerably more difficult concept
formation problem. The third, the most difficult of the three, is a production inducing
task; SPROUTER is given three pairs of sentences, each pair containing the active
and passive version of the same sentence, and induces the general rule for
transforming active sentences into passive ones. We have chosen these three tasks
because each draws atlention to an important dimension of SPROUTER's
performance, The simple concept formation task shows SPROUTER's inability to
deal with many-one pairameter correspondences, a recently discovered problem of
some importance that is discussed in the next section, The more complex concept
formation task prowvides an example of the consequences of stipulating different
values for the maximum number of abstractions that SPROUTER can retertain at
any one time. Finally, the production learning task demonstrates that SPROUTER
is powerful enough to find the best maximal abstractions in extremely large search
spaces énd, incidentally, that the IM algorithm is effective for inducing such rules of

transformational grammar.

We have already seen the abstraction which SPROUTER constructs given the
first two exemplars in the first concept formation task. The set of case frames
from which the primitive nodes were’ created,l all three exemplars, and the best

maximal abstraction found by SPROUTER are given below.

CF:

{N1:{CIRCLE},

N2:{SQUARE],

N3:{TRIANGLE},

Na:{LARGE],

N5:{SMALL]J,

NG:{INNER, QUTER],

N7:{ABOVE, BELOW},

NB:A{LEFT, RIGHT},
N9:{SAME!SHAPE, SAME!SHAPE],
N1O:{SAMILISIZE, SAML!SIZE],
N11:{BESIDE, BESIDE],
N12:{CONTIGUOUS, CONTIGUOUS}]

El:

1 This set, CF, was used for both concept formation tasks.

.
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{{TRIANGLE :a, SQUARE:h, CIRCLE:c},
{LARGE:a, SMALL:b, SMALL:c),
{INNER:h, OUTER:a),

{ABOVE :a, ABOVE:b, BELOW:c},
{SAME!SIZE b, SAME!SIZEx )}

£2:

{{SQUARE:d, TRIANGL.E:e, CIRCLE:f},
{SMALL:d, LARGE:e, SMALL:t},
{INNLR:f, OUTER:e),

{ABOVE:d, BELOW:¢, BELOW.},
{SAME!SIZE:d, SAME!SIZE:f}}

E3:

{{SQUARE:g, CIRCLE:h, CIRCLE:i},
{SMALL:g, LARGE:h, SMALL:),
{INNER:i, OUTER:h},

{ABOVE:g, BELOW:h, BELOW:},
{SAME!ISHAPE:h, SAME!SHAPE.:i},
{SAME!SIZE:g, SAMEISIZE:i})

E1«E22E3:
{{N10:{SAME'SIZE:1,SAME!SIZE:2}],
{N7:{ABOVE:1,BELOW:2}},
{N1-{CIRCLE:2}},

{NS:{SMALL:1}},

{NB:{SMALL:2}],
{N2:{SQUARE:1}},

{N4:{L ARGE.:3}}}

INSTANCES FROM EXEMPLAR E1sE2
([E1«E2/2,E1$E2/1 E12E2/3]
INSTANCES FROM EXEMPLAR E3
((E3/g.E3/i E3/h])

SPROUTER took 6 seconds of cpu time on a PDP-10 (model KA-10) to produce E1*E2
which It found after constructing 14 nodes (7 more than necessary). SPROUTER took 3
seconds and constructed 6 nodes (the fewest possible) to produce (EL+E2)sE3. The
abstraction which SPROUTER found, however, though it is the best abstraction
producible using our match-first method, is not meaximal. It is missing two cese
relations. As we indicated in the first section of the paper, the abstraction which
SPROUTER induces is the following:

There are three objects, including a small circle and a smail square.
The square is above the circle. The third object is targe.

Y R e ey - i —— et - . e m————
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The best maximal absiraction includes the speci'ficatjon that the lerge object
containe another one which is one of the two small objects. SPROUTER Is unable to
find this abstraction for two reasons: (1) The grain size of the representations used in
describing the examples is too big; more atomic uniform representations are needed to
make abstraction, which ic a subliractive process, more generally applicable. (2) Many-
one parameter correspondences must be allowed in order to inture that relevant
correspondences are not lost, These two problems, whose solution requires methods
of greater generality than we have currently implemented, are discussed In detail In
the next section. For the moment, the reader need know only that to produce a
uniform PSR, every occurrence of the same parameter in the PSR is replaced by a
distinct parameter and the several symbols ieferring to the same object are then
related to one anather by using the SP (same parameter) case frame {SP, SP}. The
three exemplars in uniform PSR notation and the more compliete abstraction which
SPROUTER took a total 'of 5 minules and 3 seconds to find are shown below.

El:

{{TRIANGLE:a1, SQUARE:b 1, CIRCLE:c1},
{LARGE:a2, SMALL:b2, SMAIL:c2},
{INNER:b3, OUTER:a3},

{ABOVE:ad, ABOVE:b4, BELOW:c3),
{SAME!SIZE:hS, SAME!SIZE:c4),
{SP:al, SP:a2, SP:a3, SP:ad},
{SP:h1, SP:b2, SP:h3, SP:h4, SP:b5},
{SP:c1, SP:c2, SP:c3, SP:c4}}

£2:

{{SQUARE:d], TRIANGLE:e 1, CIRCLE:f1},
{SMALL:d2, LARGF:e2, SMALL:f2},
{INNIER:f3, OUTER:e3},

{ABOVE:d3, BELOW:e4, BELOW:f4},
{SAML!SIZE:d4, SAMEISIZE:f5),
{$P:d1, SP:d2, SP:d3, SP:d4),
{SP:el, SP:ie2, SP:e3, SP:ed),
{SP:f1, SP:f2, SP:f3, SP:{4, SP:{5}}

E3:

{{SQUARE:g1, CIRCLE:ht, CIRCLE:i1},
{SMALL:g2, LARGE:h2, SMALL:2},
{INNER:i3, OUTERS),

{ABOVE:g3, BELOW:h4, BELOW:i4},
{SAME!SHAPE:hD, SAME!SHAPE:i5},
{SAME!SIZE:g48, SAME!SIZE:i6},
{SP:gl, SP:g2, SP:g3, SP:g4},
{SP:h1, SP:h2, SP:h3, SP:h4, SP:h5)},

el e BB 5 2 L e e S i i L S
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{SP:il, SP:i2, SP:i3, SP:i4, SP:i5, SF:i6})

E1$E22E3:

{1N6 (INNER:1,0UTER:2}),
{NO:{SP:3,5P:4}},
(N7:(ABOVE:3 BELOWSS))
{NS:{SMALL:A}},
INO:(SP:6,5P:2}),

{NA: {LARGF 6}}.

,--.’-,--..-—h

{S

NO:{S!

o

{rp B.5P: e}}
{SP:8,5P: 7)),
{SP:9,5P:5}},
0:{SAME!SIZE:9,5AME!SIZE: 10}),
{SP:10,5P:4)},

{SP:10,52:31),

{SP:11,5P:9}),

5:(SMALL:11}),

{SP:12,5P:11)),

{SP:9,5P:12}},

{CIRCLE:12}},

{SP:13,5P:10}),

{SP 19,5P: a}},

4
gt

Though this abstraction includes the spaecification that the large object contains
another object, it does not specity that this contained object is one of the two small
obhjects. To induce that the contained object is smail requires using a many-one
parameter binding approach to interference matching discussed In the next section.

s2¢ Figure 4 goes about here

The second concept formation task is significantly more complex then the
previous one. Figure 4 displays the task. When SPROUTER was given this task and
allowed a maximum of 9 nodes, it induced the following bast maximal abstraction;

ElsE22ET:
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{{N10:{SAME!STIE: 1 SAME!SIZE:2}),
{N7:{ABOVE:2,BELOW:1}},
{N2:{SQUARE:1}},
{NG:{INNIR:3,0UTER:1}},
{NB:{SMALL:3}},
{N11:{BESIDE:1,BESIDE:2}},
{Na: {LAR(:F 2},
{N7:{ABOVL:2,BELOW:3}},

{M1 1:{BESIDE:3,BESIDE:2}},

{N7:{ABOVE:4,BELOW:1}},

{N9:{SAME 'SHAPF 2,SAMEISHAPE:3}),

{NA:{LARGE:1}},

{N1:{ (‘IRCLF 4}},
{N10:{SAME!SIZE:A,SAME!SIZE 3},
{N5:{SMALL:4}},
{N7:{ABOVE:4,BELOW:3}}}

INSTANCES FROM EXEMPLAR E1#E2

([E1=E2/1,E12E2/2,E12£2/3,E12E2/4))
INSTANCES FROM EXEMPLAR E3

((E3/m,E3/},E3/n,E3/1]

Ih other words:

There are four ohjects. ehj(2) is the same shape as dgn(3) and is the
same size as cfim(1). ehj(2) is above and beside both dgn(3) and ¢fm(1).
dgn(3)is a small object and is contained in cfm(1) which is a large
square. bil(4) is a small circle which is above both dgn(3) and cfm(1).

SPROUTLR took 58 seconds to find E1sE2 and built 66 nodes. It took 47 seconds
and built 52 nodes before finding (E1*E2)sE3, which is a8 conjunction of 16 nodes.

Given the same task, but with the constraint that the total number of nodes in
the ACORN must not he greater than 8, SPROUTER produced the following abstraction:

E1+E24E:
{{N7:{ABOVE:!,BELOW:2}},
(N7:{ABOVE :3,BELOW:2}},
{N8:{LEFT:2,RIGHT:1}},
{N11:{BESIDE:1,BESIDE:2}),
(N10:{SAME!SIZE:3 SAMEISIZE:2}),
{N10:{ SAME!SIZE:4,SAME!SIZE:1}),
{N9:{SAMEISHAPE:2, SAME!SHAPE:1}},
{N7:{ABOVE:1,BELOW:4}},
{N7:{ABOVE:3,BELOW:4}}}
INSTANCES FROM EXEMPLAR E1+E2
([E1$E2/2,E 14E2/3,E18E2/4,E14E2/1])
INSTANCES FROM EXEMPLAR E3

—— T T T g g ro g g ey " - - e i
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({E3/LE3/WE3/),EI/n])

Though the stimpulated maximum for this run is only one less than the maximum of 9
stipulated for the previous run, the abstraction induced is very different:

There are four objects. ehl(l) is the same shape as dgk(2) and is the
same size as bij(3). ehi(1) is to the right of dgk(2). dgk(2) is the same
size es cfn(4). ehl(1) and ctn(4) are above dgk(2) and bij(3).

This ebstraction was sub-optimal because the stipulated node maximum was

insufficient to allow SPROUTER to see beyond the seemingly promising LEFT, RIGHT
relations. ‘

The production inducing task is, of the thres, by far the most difficult because

the search space is so much larger and the abstraction so much more complax.
SPROUTER was given the following three pairs of sentences:

(1) "The littie man sang a lovely song." -->
"A lovely song was sung by the little man.”

(2) "A girl hugged the motorcycles." -->
"The motorcycles were hugged by a girl."

(3) "People are stopping friendly policemen.” ~->
"Friendly policemen are being stopped by people.”

#+s Figure 5 goes about here

Figure 5 gives a graphical deep-structure representation of the first sentence.

In PSR notation, this sentence is described by the following set of 64 case
relations.

£l

{{ANTECEDENT:e 1, CONSEQUEN1 22},

{S:s1, NPanpll, VPivpl, EVENT:el},

{S:s2, NP:np21, VP.vp2, EVENT:e2),

{NP:pll, DET:thel, ADJlittlel, NOUN:nount i, EVENT:el},
{NP:np21, DLT:al, ADJlovelyl, NOUN:noun21, EVENT:e2},
{NOUN:noun11, NST:manl, NUMBER:n11, EVENT:el},
{NOUN:noun21, NST:song 1, NUMBER:n12, EVENT:e2},
{SINGULAR:n11, EVENT:a1},

{SINGULAR:n12, EVENT:e2},
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{VPwpl, AUX:aux11, VERBwverbl], NP:np22, EVENT:el},
{SAMEINP:p2 1, SAMENIEnp22],

{NP:np2~, DET:a?, ADJdovely2, NOUNmnoun22, EVENT:el},
{SAMEINCOUN:mmoung 1, SAMEINOUN:noun22},

{NOUN:noun22, NST:song?2, NUMBER:n13, EVENT:el},
{SINGULAR:1 13, EVENT:0 )},

{VPvp?2, AUX:aux12, PB:pbl, VERBwverb12, PP:ppl, EVENT:e2},
{AUX:aurz1 ], AUXST:havel, TENSE:t11, NUMBER:n15, EVENT:el},
{AUX:aux 12, AUXST:have?2, TENSE:t12, NUMBER:n16, EVENT:e2},
{SAMEIALIX:aux | 1, SAMEIAUX aux 12},

{VERB:vorb 11, VSTsingl, TENGE:t21, NUMBER:n15, FVENT:el},
IVERB:verh 12, VST:sing?, TENSE:$22, NUMBER:n16, EVENT:e2},
{SAMEIVERB:verb 11, SAMEIVERBverb12},

{P:pb 1, PBST:be ), TENSE:423, NUMBER:n16, EVENT:e2},
{SAMETENCL:t L), SAMEITENSE:t] 2},

{SAMETTENSE:A21, SAMEITENSE:122, SAME!TENSE:t 23},
{SINGULAR:NLS, EVENT:2 )},

{SINGULAR:N 16, EVENT:02),

{PRESENT:t1 1, EVENT:el},

{PRESENT:t12, EVENT:02},

{PAST-PARTA2], tVENT:e 1},

{PAST-PART:t22, PAST. PART:423, EVENT:e2},

{PP:pp 1, PRLP:byl, NPinpl2, EVENT:e2},

{SAMEINP:N 11, SAMEINPp12),

{NPinp 12, DET:the2, ADJlitlle2, NOUNmnoun12, EVENT:e2},
{SAMEINOUN:nounl 1, SAMEINOUN:noun12},

{NOUW:noun12, NST:man2, NUMBER:n14, EVENT:e2},
{SAMEINLIMBER:n 1, SAMEINUMBER:n1 2, SAMEINUMBER:n13,
SAMEINHIMBER:n1 4, SAME!NUMBER:n15, SAMEINUMBER:n16},
{SINGHLAR:n 18, EVENT 02},

{THE:the, EVENT:e 1),

{THE:the2, EVENT:02},

{SAMIEIWORD: he 1, SAMIZ'WORD:the 2},

{LITTLE:little |, EVENT:e 1},

{LITTLE:litlle2, EVENT:02},

[SAME'WORD:itlle ], SAME'WORD:litt1e2},

{MAN:manl, EVENT:e1},

{MAN:man2, EVENT:e2},

{SAME'WORD:man1, SAME!WORD:man2},

{HAVE:havel, EVENT:c 1},

{HAVE:have?2, EVENT:e2},

{SAMEIWORD:have ], SAME!WORD:have2},

{SING:sing 1, EVENT:e 1},

{SING:sing2, EVENT:e2},

{SAME!'WORD:sing 1, SAME!WORD:sing2},

{A:al, EVENT:e !},

{A:a2, EVENT:e2},

{SAME!WORD:al, 5SAME'WORD:a2},

{LOVELY:lovelyl, EVENT:e 1},

{LOVELY:lovely2, EVENT:e2},
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{SAMEIWORD:Iovely 1, SAME'WORD:lovely 2},
{SONG:song 1, EVENT:al),

{SONG:song?2, EVENT: 02},
{SAIAE'WORD:song 1, SAME!WORD:song2},
{BE:bel, EVENT:e2),

{BY:byl, EVENT:e2}}

#+3 Figure 6 goes about here

The best maximal abstraction found by SPROUTER is illustrated in figure 6. The
arrows in figure 6 indicate where the abstraction contains case relations representing
that the connected nodes are the same part of speech (e.g., are both noun phrases,
nouns, verb phrases, etc.) or have the same value (e.g.,, are both singular or both the
same word). These case relations were provided for eech training sentence as
indicated in the preceding PSR for the sentence pair E1. Basically, these case relations
connact two "tokens" of the same grammatical "type". Those relations that have
survived the interference matching process can now be interpreted as identifying
parameters in the antecedent and consequent events which should be considered
identical. As previously explained, when the inferred production is used to produce
behavior and a PSR in working memory matches the antecendent component of this
rule, variable values will be bound and substitutions will be made into the consequent
event as prescribed by the arrows. In an effort to simplify the figure, boxes have
been constructed around any group of antecedent nodes where each contained
parameter is connected by a "same” type relation to the corresponding parameter In
the consequant box. SPROUTER took 19 minutes and 15 seconds and built 124 nodes
in constructing EL#E2 and took 14 minutes and 33 seconds and built 97 nodes in
constructing (E1#£2)¢E3. Since tha rule which it induced containg 45 distinct
parameters over 40 case relations, we can take 45! as a lower bound on the size of
the search space; that is, there are 45! (approrimately 1057) possible one-one
parameter binding relations which could be established between any pair of parameter
sets from El, E2, or E3. SPROUTER made 81 bed decisions (constructed nodes which
did not support the eventual maximal abstraction) In computing E1*E2 and 57 bad
decisions in computing (E1+#E2)sE3.
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V. PROBLEMS IN REPRESENTATION AND MATZHING

As SPROUTER's performance on the first of the concept formation tasks shows,
there are two problems which arise in the learning methodology that we have
describe.J. The first is that some learning problems can only be solved if the implicit
semantics of the case frame structure are made explicit In more elaborate and
primitive  uniform represeniations. The second is that, even with uniform
representations, some learning prublems require the identification of many-one
parameter correspondences in order to prooice maximal abstractions and thus cannot
be solved by SPROUTER or any other program using a one-one matching method. Each
of these problems is discussed in turn,

The need for uniform representations can best be conveyed through a simple
learning exampla. Suppose we have two examples of the concept "two line segments,
connected in at most one place” whose descriptions are provided in terms of the
binary symmetric case frame {ENDPOINT, ENDPOINT! identifying the two endpoints of a
line segment, Let the two examples be El: {{ENDPOINT:a, ENDPOINT:b], {ENDPOINT:c,
ENDPOINT:d}} and £2: {{ENDIPOINT:w, ENDPOINT:x), {ENDPOINT:x, ENDPQINT:y}}. El
describes two disjoint lines and E2 describes two lines connected at vertex x. Imnlicit
in these PSRy are the assumptions that two endpoints are the same if and only if they
are labeled by the same parameter. In order to recognize that both El and E2 match a
maximal abstraction which represents tha concept to be learned (tvo lines whether or
not connected at a common point), it is apparently necessary to establish parameter
coriespondences betweoan two parameters in El (say b and ¢) and one parameter in E2
(say x). To avoid lhis necessily and to permit induction of the most informative
abstractions, unifern: PSRs are employed which make explicit the same parameter (SF)
and different parameter (DP) relationships between each pair of parameters in a
description,

While a detailed discussion of the formal characteristics of uniform
representations occurs elsewhere [7, 10], several important properties will be pointed
out here. First, rather than ucing one parameter (say p) In every cese relation in
which the same object is cited, uniform PSRs c:aploy distinct symbols (e.g., p', p™, ...)
for each. To preserve the information that the various parameters all rafer to the
same object, every pair (e.g. p’, p”) of these parameters is used to Instantiate an SP
case frame, such as {SP:p', GP:p"). Similarly, every pair of parameters (p’q') which
refer to distinct objects in the PSR are used to instantiate a DP case frame, {DP:p’,
Dr:q’}. If the preceding exen'nlars El and E2 are represented by uniform PSRs, the
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maximal abstraction which would be produced by SPROUTER would be El#E2:
{{ENDPOINT: 1, ENDPOINT:2], (ENDPOINT:3, ENDPOINT:4}, {OP:1, DP:2), {DOP:l, DP:3},
{DP:1, DP:4), {DP:2, DP:A}}. This abstraction would be entaled by the parameter
bindings l=arw, 2=bex’, 3rcax”, 4=d=y. The fact that the case relations {DP:b, DP:c}
in £1 and {SP:x’, SPx"} in £2 did not match would simply ba lost, The resulting
abstraction C1sE£2 would then be properly interpreted as meaning, "There are two
lines, with endpoint pairs (1,2} and (3,4), such that all points are distinct except
perhaps 2 and 3. Without uniform representations, SPROUTER's requirsment for one-
one parameter co'rrespondences would have meant that the best abstraction that could
have been produced would include only the one case relation {ENDPOINT:1,
ENDIPQINT:2).

Furlkermore, it can be seen that there are other induction problems which will
not he solved correctly by SPROUTER's match-one-case-relation-at-a-time approach.
Specifically, when abstractions entail discovering i*.at only some parts of case relations
of two PSRs match, the maximal abstraction should reflect the common subset of
property:object terms. This can be accomplished if each case relation of the form

{property iy, .., {property :x,} is replaced by the set of uniform case relations
{{property iy}, .., {property,x,}, {SCRix, SCRxp}, ., {SCRwx,.y, SCRxg}},

interpreted as follows. Each object x; has some attribute property, and sach pair of
objects x;, X; (1gi<jgn) occurred in the same case relation (SCR). As a result of this
more atomic description of the case relation, abstractions including only a part of a
PSR case relation will be reflected as the largest subset of the associated uniform case
relations which is common {o the two compared PSRs.

Because SPROUTER knows nothing about the semantics of its PSRs, learning
tasks may be specified using PSRs whose case frames are st iha highast level of
description appropriate, which in some cases will be the atomic level of uniform PSRs,
SPROUTER simply assumes that every pair of references to identical (different)
parameters entails an SPA(DP) test. Thus, the user of SPROUTER can choose the level
of representation which is suitable for the learning problem to be solved. Because
uniform PSRs include more case relations and paranmeters, abstractions based on them
require more search and consequently more computing time, Thus, we use the unlform
reprsentation only when necessary. As this discussion suggests, determining the
appropriate grain for a representation seems not as much a formal question as a
question of empirical sufficiency in particular induction task domains. Therefore, we
sea the aspect of our work concerned with finding the appropriate grein of
representation for various problems as inherently experimental and empirical.
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The second problem we encountered concerns the feasibility of abstraction
methods based on one-one parameter binding functions, SPROUTER requires this type
of binding and exploits this restriction to reduce the search space of possible
solutions. It one thinks of PSRs as graph representations, where vertices correspond
to parameters and edges to SP, OP, and SCR relations, it is possible to show that
interference matching is equivalen! to finding the common subgrephs of two event
description graphs [7, 10} In other words, the one-one parameter correspondence
requirement is a restriction thal each vertex in one event graph is permitted to match
at most one vertex in the other graph. While this seems "formally™ attractive, it is
overly restrictive for a variety of learning tasks. For example, in order to find the
hest maximal abstraction in the first concept formation task, for each pair of examplars,
the small object which is inside the large ubject in one of the exemplars must be
permitted to match both small objects in the other exemplar. Though this problem is
superficially similar to the grain size problem, the use of uniform PSRs with explicit SP
and DP relations is inadequate to overcome it. The problem can be solved only by
allowing many-one parameter correspondences and consequently requires more
general methods than those currently developed. A very simple example can illustrate
the general problem. Let El be {{SMALL:x}), {SQUARE:x]}, {RED:x]}} end E2 be
{{SMALL:y}, {SQUARE:y}, {SQUARE:z}, {RED:z}}). In both examples, there i1s a small
square and a red square, but there is only one square in El and there are two in E2.
In order to produce the correct abstraction of El and E2, which in uniform
representation is {{SMALL:1}, {SQUARE:2}, {SP:l, SP:2}, {SQUARE:3}, {RED:4}, {SP:3,
SP.4}}, our method needs to be modiflied to allow the single instunce of the SQUARE
case frame in ELl to match two instances of it in E2. Because it is impossible to know a
priori which case relations must be matched to more than one cese :elation in a
compared PSR, it would be very difficult to modify the match-tirst IM algorithm to

handle such problems even if many-one bindings were allowed.

The best so'ution we know of to this problem uses the bind-first epproach to
interference matching. The method can be described as follows: First, uniform PSRs
El' and E2° are generated to replace the exemplar PSRs E1 and E2. If the oarameter
sets of EI’ and E2' are P and Q, where |P| is less than or equal to |Q|, then each
possible parameter binding relation for an abstraction is a set B = {{p,q) : p ¢ P, q ¢
Q} where (Y p (P, Vag(Q (Ap ¢P,3q ¢Q (pa" ¢BA(Pa)¢BAIBl =|Q In
other words, each correspondence binding relation between tho parameters of the
uniform PSRs associates at least one parameter in E1' to each parameter in £E2° (and
vice versa) and establishes one correspondence for each of the parameterized
references to objects in the other PSR, Of course, those binding relations which entail
the identification of many commalities between E1’ and E2’ are the most preferred.
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While it appears thal this generalization of the one-one binding method will be
intrequently needed, such a generalization now seems essential for the development of
completely general learning machines. We are currently designing & many-one, bind-
first interference malching program which can overcome the now apparent weaknesses
of the one-one, match-first melhod.

At this point, it is desirable to relate our work to earlier reseach efforts,
Similar, but fess general, relalional abstraction methods have been studied by Plotkin
(14, 15], Vere [19], and Winston [20]. Weaknesses of the pravious work which are
considered here include the failure to utilize DP relations, & dependence upon
restricted and exponential enumerative algorithms, and an sssumption of the
sufficiency of the one-one binding relation. Because all of the earlier researchers
failed to realize the necessity for DP relations to force distinct value bindings for
distinct variables, their learning algorithms would, for example, permit a gingle line
segment to instantiale all three distinct line segment predicate, in the triangle
template, "three line segments, L1, L2, and L3, connected at their endpoints.” Winston’s
learning methods were restricted to toy block construction problems using only unary
and binary predicates such as adjacency of two blocks and are apparently not
extensible to different domains. On the other hand, Plotkin snd Vere studied the
abstraction probiem in terms of general n-ary predicates, but could infer concepts only
corresponding to sets of (non-uniform) case relalions and SP tests. While Hayes-Roth
{7, 10] was the first to show formally that the IM algorithm could be used for inducing
productions from antecedent-consequent training examples, our work is the first to
demontrate its feasibility, The chief drawback of alt of the previous work, however,
was its reliance upon enumerative matching procedures. As we have tried to show,
interference matching is best viewed as an exponeniial search problem which Is,
fortunately, apparently amenable to simple heuristic methods. Because IM is an NP-
complete procedure (it subsumes the graph monomorphism problem), exhaustive

procedures are simply not feasible for solving even moderately complex problems,

Interestingly, Hayes-Roth, Plotkin, and Vere each independently proved that

their particular enumerative aigorithms provided effective solutions to the “induction
problem” which each of them had formalized in terms of various assumptions about
what needed to be lecarned. All of these previous formalizations are iradequate to
solve the type of learning problem introduced in this paper as i 1cessitating many-one
bindings. That is, all previous theoretical approaches assume the sufficlency for
abstraction of the one-one parameter binding relation. As we have shown, however,
with one simple example, any axiomatic system incorporating this assumption Is
inadequate ar a general framework for representation and learning.
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I, CONCLUDING REMARK

SPROUTER has already solved learning problems of theoretical significance
and of considerable complexity. Because of the extensive size of the search spaces,
such learning could not he done with simple enumerative matching algorithms. In
essence, SPROUTER establishes the feasibility of induction from non-trlvial exemplar
descriplions. In many respects, however, SPROUTER is quite primitive. It is a purely
syntactic matcher; it knows noihing at all about the underlying structure or
significance of any of the predicate descriptions it operates upon. For this reason, its
utility function, and thus its heuristics, are very weak. One Interesting aproach to
improving the performance of SPROUTER would be to provide it with domain-specific
utility functions. For example, if SPROUTER knew that concordance on antecedent or
consequent relations was more important than concordance on most other relations, it
would never attempt to match the antecedent part of an example with e consequent
part.  Similarly, if it knew that concordance of higher-order gremmatica!
constructs (e.g., a sentence} was more significant than concordance on lower~
order ones, it could quickly zero in on the concordances of two sentence
structures and then continue building abstractions in an essentlally top-down
fashion.

Even though SPROUTER's performance has been quite imprassive on several
tasks, there are a number of difficulties impeding the use of such a learning machine
in general applications. First, an empirical question has been raised regarding the
preferability of approaches to induction based on the one-one and many-one binding
alternatives. If object integrity in representations is generally tenuous--that Is, if each
object in one PSR can correspond to multip'e, diverse objects in another PSR, as was
the case in the first concept formation task--abstraction procedures based on the
many-one approach will have to be developed. Secondly, one must Identify which
real-world problems can be solved by interference matching methods. Bocause the
case frames which SPROUTER uses In inferring abstractions ere assumed to be
externally provided, the ullity of our method depends upon the prior identification
of the criterial properties of events. Thus while SPROUTER can solve many
concept learning and production inducing problems if it is provided the relevant case
frames, it remains to Dbe shown " that this will be a sufficiently powerful basls
for computer-based learning.

.
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EIGURE CAPTIONS

Figure 1. The first concept formation task.
Figure 2. Interference matching,.
Figure 3. The ACORN for E1 * E2 in the first concept tormation task.

Figure 4. The second concept formation task,

Figure 5. Example El for the production inducing task. The example comprises two
i sentences, the antecedent above and the consequent below.

Figure 6. The active-to-passive transformational grammar rule induced from 3

examples. Arrows indicate veriable subslitutions from the antecedent to the
consequent components,
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Figure 1. The first concept formation task.




Figure 2. Interference matching.
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