
1

f.

1

AFf^q .TR-7f5-n^02

T^l

O

CM

Q

KNOWLEDGE ACQUISI7 ION FROM STRUCTURAL DESCRIPTIONS

Fr«d»rick Heyes-Roth and John McDtrmpH

Computsr Sci*nc» Departmsnt^
Carnegis-Mellon University

Pittsburgh, Pa. 15213

February 11, 1976

^

DEPARTMENT
of

COMPUTER SCIENCE

_ D D- Cv

QyJ

. wmm mnm OF süimtttm RESEARCH (AFSC)
■-1 öf ERAF im '.ij m i.:

!;^eh;Ji< - / rtvigfsd And la
tad iAW i-ui; i^ü-ia (7bi.

A. I;. 1:JJ.,-:;
Teciiiilcul lai'nrmatiou Ofi'icer

Carnegie-Mel Ion University

KNOWLEDGE ACQUISITION FROM STRUCTURAL DESCRIPTIONS

Frederick Hfl^eB-Roth and John McDsrmott
i

Computer btience üepartmant'
Carnegie-Mellon University

Pittsburgh, Pa, 15213

February 11, 1976

ABSTR/4CT

The representation of concepts and antecedent-consequent productions Is

discuGsed and a method for inducing Knowledge by abstracting such representations

from a sequence of training examples is described. The proposed learning mathod,

interference matching, induces abstractions by finding relational properties common to

two or more templars. Three tasks solved by a program which performs an

interference matching algorithm are presented. Several problems concerning the

relational representation of examples and the induction of hnowledgt by Interferenc»

matching are also discussed.

«CESSIO« Hf

int Wh1? Sidtei Or

m rv' Sstf.M Tl

mm'Mts D
jüSTifiStrius

DISiBISSTIM aWUSIUTT C03ES

1 This research was supported in part by the Defense Advanced Research Project«
Agency under contract no. F44$20-73-C-0074 and monitored by the Air Force
Office of Scientific Research.

Hflyes-Roth & Mcüermott 1

/■ INTRODUCTION

A number of dir.tinct paradiuTiG for studying learning machines have emerged

during the last twenty years Though each differs from the others in a variety of

ways, the three differoncer. which most clearly demark each paradigm are (1) the

types of Knowledge which can be acquired, (2) the way in which this Knowledge is

represented, and (3) the type of learning algorithm used. The learning machine which

we will describe in this paper acquires concepts representable as conjunctive forms

of the predicate calculus and behaviors representable as productions (antecedent-

consequent pairs of such conjunctive forms); these concepts and behavior rules are

inferred from sequentially presented pairs of examples by an algorithm that is

provably effective for a wide variety of problems,

Learning is viewed here as a continual process of knowledge expansion,

that is, as the acquisition, in adaption to training experiences, of higher-order,

moro complex, and more elaborate knowledge structures. One's Knowledge at any

point in time includes those concepts and productions innately provided or

previously learned. The concepts are pattern templates! events which match a

concept are recognized as belonging to the class delimited by that concept. The

productions are pairs of concepts; one of the concepts functions as a recognizer, the

other specifies the form of an associated action. A production is interpreted as

a behavior generator in the sense that (in some computing environment with an

appropriate control structure) the detection of a condition in the environment which

matches the antecedent causes the consequent componunt to be instantiated and then

evoked. Here both the antecedent and the consequent are templates; the

antecedent determines jvhothor the production is to be executed, and if so, what

specific constants in the description of the event being attended to are to be bound

to variables in the consequent.

*** Figure 1 goes about here

Within this framework, the machine learning problem with which we are

concerned can be stated in the following way; Given a collection of concepts and

2 Hflyes-Roth & McDormott

productions constitutir-g whai is Known at some time and a way ot describing events

in terms of their structure, construct a machine which is able to induce additional

concepts or productions from training data. To make our treatment of this problem

more concrete, we will use the simplest of the concept formation tasks attempted by

Our machine a» «n exampic ihruughoui me paper. I he task is to find what the

throe exemplars in Figure 1 have in common. Our program induces the following

abstrectlon;

There am three objects, including a small circle and a small square.
The square is above the circle. The third object is large.

This paper is divided into six sections. In the next section we discuss in general

a way of describing events which facilitates finding what two or more events have in

common and a matching algorithm which can be used to find these abstractions Then

we locate SPROUTfR, our concept and production inducing program, within the

broader context of our work. The third section describes SPROUTER'S interference

matching (induction) algorithm In some detail; we indicate here more specifically

how SPROUTF.'R makes use of structural representations of events to acquire and

store Knowledge. In the fourth section we present the results of two concept

formation tasks and one production inducing task, and in the fifth section we discuss

some of the representational issues which our results help make evident. In the sixth

section we conclude with a brief consideration of the strengths and weaknesses of

SPROUTER.

//. STRUCTURAL RZPRtSENTATlONS AND INTERFFMENCZ MATCHING

The problem which we are addressing is simply described: Design a program

which can infer concepts and productions from illustrative instances. The method

we employ is correspondingly straightforward: Extract commonalitie« from the

examples and attenuate their differences. Such an approach is like fialton's very

primitive "composite photograph theory" of concept learning [3] and the "positive

focusing strategy" for conjunctive concept learning first studied by Bruner, et. aL

[2]. While Galton's contribution was simply to propose that unknown patterns could

be inferred by overlaying homologous memory representations of related examples

(as if one were forming a composite of many photographs of the same subject),

Bruner and his colleagues showed how such a process could in fact be realized. Each

presented object (exemplar) is described as a conjunction of specific feature values.

— v ,1. i i.i m

Hayes-Roth & McDormoU 3

To find the template which is matched by all of the presented objects, a feature

vector containing only those features common to all of the exemplars Is

generated. This feature vector is the concept. Since that seminal work, many

computer scientists have produced increasingly practical and sophisticated

feature-value concept learners based on related techniques [6, 1?, 13, 18].

Extending such learning models so that they can induce general (relational)

classification and behavior rules is the goal of our work. In focusing on methods for

generating relational abstractions which make possible the recognition of complex

events, we encounter throe problems not encountered in previr s work. First we

must develop a formal scheme for describing complex events which facilitates the

generation of abstractions. Second, given descriptions of two examples of the same

concept or production, we must develop a method for comparing them so that their

commonalities can be identified. Third, it is necessary to develop a way of storing

the discovered abstractions to facilitate their subsequent use in either of two ways:

they may be used as templates for classification and behavior generation, or they

may be used as knowledge representations whose precision may later be improved-

by learning if new instances of the same concept or production are prov-ded.

These problems are referred to below as the description problem, the

comparison problem, and the storage problem. Each is considered in more detail in

the subsequent paragraphs.

The description problem entails providing a symbolic representation of

each exemplar which satisfies two demands. First, those attributes of the

exemplar which are salient and potentially criterial must be reflected in its

description to insure that the classification rule induced will be sufficiently

discriminating. Note that since an exemplar may be composed of many objects, the

description must distinguish each object and indicate clearly how it relates to the

others. Second, the descriptions should facilitate the identification of commonalities

among the exemplars so that the abstraction being sought can be found quickly.

Since each object may exhibit a variety of characteristics and participate in

numerous relationships with other objects, finding commonalities between two or

more examples will necessitate search. A representational scheme which helps direct

this search is almost essential.

The method of description we employ is built on three central concepts, the

property, the case frame, and the parameter. A property it a feature or

characteristic of an object. For example, SQUARE and SMALL name two properties

of small squares; the properties ABOVE and BELOW are used in our work to describe

4 Hflyes-Roth & McDermotf

objects which are above or below others in pictorial displays, To define the

rela' onship of one object being above another, a case frame of the sort {ABOVE,

BflLOW} is used. In general, case frames are sets of properties which are

semantically related in some exogenously determined manner. To produce

descriptions of objects, events, or behaviors, case frames are parameterized

(instantiated); that is, a name is given to each object in the event being described

and this name is associated with each property of the object. ParBmetenzed

case frames are called c^sc relations. For example, if b is the name of a square

above a circle named c, this might be described by the following set of case

relations: {{SQUARF: b}, {CIRCLE: c), {A80VE:b, BELOW: c}}. Such a set of case

relations interpreted as a conjunction of valid propositions is called a parameterized

structural representation or PSR [5, 8. 9]. In this example, {b, c} is the parameter

set of the PSR.1

A structural description of the first two exemplars in the concept formation

task discussed in the introduction is given balow.

El:
{(TRIANGl.Eia, SQUARErb, CIRCLE:c),
(LARGRra, SMAl.Ltb, SMALL«),
{INMIR.'b, 0UTER;a),
{ABOVt:a, ABOVEib, BELOW;c),
{SAMEtSIZEtb, SAME!SIZE;c))

E2:
{{SQUARED, TRIANGt.E:c, CIRCLED),
{SMALLtd, LARGEre, SMAI.L;f j,
{INNERif, OUTER;e},
{AB0VE:d, BEL0W:e, BELOWif},
{SAME!SIZE;d, SAME!SIZE:f}}

The description of El asserts that there is an event composed of three objects,

named a, b, and c; that the object labeled a has the properties of a triangle, of a

1 The PSR, as a description, corresponds exactly to an exisfentially quantified
conjunction of predicates. In this example, the PSR is interpreted as {3b,c)
[SQUAI?E(b) A CIRCLE(c) A AB0VE(b,c)] with the appropriate interpretation for
the three predicates, PSRs have proved to be more desirable bases for
description than conventional predicate calculus formulae for numerous reasons:
PSRs are easily written in compact forms embedding many case relations efficiently
in a single set of property:parameter terms (each subset of such a compact relation
instantiates any case frame comprising the same selection of properties); the
interpretation of each argument (parameter) in a case relation is self-documented
by the property name; and subsets of case relations are interpretabie as
abstractions of individual predicates. See Hayes-Roth [7].

Hayes-Roth Si McDormotl 5

large object, and of containing the object labeled b; and so on.

PSRs provide a solution to the storage problem as well as to the description

problemi that is, they can bo used in storing discoverod «bstractions, In the case

of doscriplions, parameter symbols are chosen to name each object co that if the

same object is part of more than one case relation, it is referred to in 0 consistent

wey. if one alters the interpretation so that each distinct parameter is considered

as en unbound variable, the PSR can be considered a template for concept

identification. Such templates have been used by several researchers [I, 5, 8-10,

17] to specify what properties an object must have in order to satisfy membership in

a pattern class. While the parameters in a description can be thought of as being

existentially quantified, those in a PSR used as a template should be thought of as

being universally quantified, When used as a template for pattern

classification, the PSR is compared with an event (an existentially quantified PSR).

If a mapping from the event to the template can be found which preserves the

parameter bindings in the event description and which makes etch case relation of

the template true, the event is said to match the template,

In addition to their role as classification rules, PSRs cim be used i»s general

behavior ru'es. In this case two templates are associated. One of them, the

antecedent, is used to recognise a set of conditions (a tontevt) which indicates that a

particular set of actions is appropriate; when the antecedent template is matched by

some event in the environment, the rule is invoked. The second template, the

consequent, specifies what actions are to be performed. When the two templates

share common parameters, each parameter in the consequent is bound to the same

value as the corresponding parameter in the antecedent. These behavior rules

may act, for example, as Post productions, transformational grammar rules, or the

problem solving rules of STRIPS [3], In short, a rule with the antecedent A{X) and

the consequent C(X) over the variables in the set X is interpreted to mean (VX) [A(X)

-> C(X)). In actual applications, A defines a precondition which can be true of the

contents of some working memory, and C defines what is to be done If the

precondition is satisfied. Note that any such production can be described by a PSR

in which each case relation in the antecedent includes a term of the »ort EVENT-a,

each case relation in the consequent includes a term of the sort EVENT;c, and

the ,'SR itself includes a case relation {ANTECEDENT.-a, CONSEQUENT:c},

The abstraction of the first and second examples in the sample concept

formation tasK can be represented as below.

E1»E2:

Ha/««-Roth & McDermott

{{ABOVE:!,BELOW;?),
(SAML!SIZG:2,SAME!SIZE:1},
{SMALL:?},
{SQUARE:!},
{SMALL;!},
{CIRm F'?V
JTRIANGLEb},
{LARGE:3}}

Exemplar 1 is in fact an instance of this abstraction if the parameter ! Is replaced by

tht? parameter b, the» parameter 2 by c, and the parameter 3 by a. Likewise,

exemplar 2 can be seen to match the abstraction if the parameter ! is replaced by

d, the parameter 2 by f, and the parameter 3 by e.

•*• Figure 2 goes about here

The comparison problem can be solved by using a technique celled

interference matching or IM [7-8, 10]. It is a process for identifying all of the

common properties of t*o PSRs and extracting a third PSR which is a template

matched by the two exemplars. When two events have N attributes In common, their

descriptions will contain at most N case relations which ere identical (oxcepf for

alphabetic differences between the narres of corresponding parameters). Figure 2

schematizes IM as a process for finding the intersection containing these case

relations. The circular areas labelled A and B correspond to two PSRs; all of the case

relations common to the two PSRs are in the area labelled A»B (read "A star B").

Because any subset of this (conjunctive) set of common relations also defines an

abstraction of A and B, it is important to bo able to distinguish between the set

and its proper subsets. We call any abstraction of A and B which Is properly

contained in no other abstraction of A and B a maximal abstraction. More formelly, if

S (*) A denotes that A is a PSR matched by the PSR S, then a maximal

abstraction, A, of two PSRs, S and T, satisfies S(*)A and T(«)A and (VB) [B(*)A A S(«)B A

T(*)B -> A(*)B].

It should be pointed out that for any two PSRs, there may be more than one

abstraction which is maximal in the above sense. For example, given the following

two exemplars,

Hayes-Roth ft- McDermotl

E3; {{CIRCLEia),
{REÜ:«),{LARGfi:«}}

E4: i(CIRCLE:b}, [CIRCLE^}, {RED:b},
(GREENic), {SMALLtb}, (LARGErc)}

two maximal abstractions exint. If the pHramelerr. a and b «ro considered to

be identical, the maximal abstraction is

E3»E4! {(CIRCLE:!), (RED: 1})

If on the other hand, the parameters a and c are considered to be identical, the

maximal abstraction is

E3*E4; {{CIRCLE;!}, {LARGE: 1})

Thus in the language of PSRs, a maximal abstraction is defined to be the largest set of

case relations that can be formed by intersection of the two compared sets of case

relations when alphabetic differences betwren bound or corresponding, parameters in

the two PSRs are ignored. Parameter bindings may be detmed by any one-one

mapping between the parameter sets of the two PSRs. Note that an abstraction

produced by assuming one particular set of parameter correspondences may be

submnximal; that is, it may contain fewer relations than another abstraction which

matches it but was produced by assuming a different parameter binding relation.

To perform interference matching on reasonably complex representations, we

need an algorithm which, operating within as small a search space as possible, can

discover the best maximal abstractions as quickly as possible. Two approaches to

interference matching are known; (1) In the bind-first approach, each parameter in

one PSR is associated with a parameter in the second PSR and then a maximal

abcfraction is found by extracting the case relations which are identical in the

two PSRs (modulo the parameter bindings). In this case, if the lesser number of

parumelerr, (in either PSR) is MP and the greater number is NP, the number of

possible binding functions is combinatorial, (binomial coefficient of NP over MP) *

MP!. (2) Alternatively, in the match-first approach, all instantiations of case frames

of one type In one PSR are compared with all instantiations of the same type of case

frame in the other PSR, and possible parameter bindings are identified by determining

which parameters s corresponding properties in comparable relations. Here if N[

and Ml are the numbers of case relations in the larger and smaller PSR (assuming

only one type of case frame), the number of possible ways in which the relations

can be forced into correspondence is similarly combinatorial. While It is true

that if one were Interested in computing abstractions of quite low-level event

8 H«yes-Roth & McDermott

descriptions (such as undirected graphs) neither method would bo much preferable

to the other, in most real problems the number of instances of any particular cas»

frame is quite small relative to the number of parameters in the PSRi and so the

second method is usually preferable to the first. It is this method which it used In

our current work.

The actual algorithm we use has the following form: A randomly selected case

relation from one of the exemplar PSRs Is put into correspondence with a case

relation (which is a parameterization of the same case frame) from a second

exemplar PSK) paramete.r. having identical properties are identified as equivalent and

the resulting common cace relation becomes the (primitive) abstraction associated with

that set of parameter bindings. Then other pairs of primitive case relations,

one from each of the two exemplar PSRs, are put into correspondence. If a

compared pair of relations entails parameter bindings consistent with those already

identified, the crmmon relation is added to the abstraction being produced. This new

abstraction is the set union of the old abstraction and the new case relation, and the

new sot of p -«meter bindings is the set union of those bindings entailed by

the previous abstraction and the forced bindings of the parameters in the

compared pair of case relations. If a pair of case reldions entails parameter

bindings inconsistent with those already identified, the common ctse relation

becomes a new (primitive) absfraction.

Clearly, this algorithm may find a number of competing maximal ebstractions.

Our approach is to build as many distinct abstractions as possible, one relation at »

time, until a limitation on the number of distinct abstractions which car be

considered at one time is exceeded. At that point, only those abstracfiont which are

most significant in terms of the number and typo of case relations they include

are retained. These abstractions continue to be extended as other pairs of

consistent relations are found; at the same time, the least significant

abstractions are continually pruned from further consideration in order tc keep the

search space as small as possible.

The result of the process is a set of best maximal abstractions, represented

as PSRs. Any one of these abstractions (interpreted as existentially quantified) can

then be input to SPROUTER together with a third exemplar to produce a set of

maximal abstractions of three exemplars, or the process may be repeated on a« many

additional exemplars as desired. Since a maximal abstraction is compared to an

exemplar in the same way that an exemplar is compared to another exemplar, we find

it desirable to store abstractions as PSRs, with the interpretation that tfeir

Hayes-Roth Ä McDormolt 9

paramctero represent existentialiy quantified variables derived from the

correspondence of cane relations in the exemplars from which the PSR w« induced,

The successive steos involved in producing the maximal abstraction of the

first two examples in the concept formation tasK are shown below,

(1) {SMALL;!}

(2) ({SMALL;!), {ABCM^.BELOW:!})

(3) (({SMALL;!}, {AQ0VE:2,BEL0W;!}), {SAME!SIZE,!,SAME!SIZE:2})

(4) ((({SMALL;!}, {ABOVK^.BELOW;!}), {SAME!SiZE;!,SAME!SiZE;2}), (SMALL:2})

(5) (((({SMALL;!}, {ABOVE:2,BELOWi!}), {SAME!SIZE;1,SAME!S1ZE:2)). {SMALLS}),
{SQUARED})

(6) ((((({SMALL:!}, {ABOVE:2,BELOW:l}), {SAMEtSIZEil.SAMEfSlZEtZ}), {SMALL:2))(

{SQUARE^}), {CIRCLE;!})

The case relation {SMALL:c) is selected at random from El and is then put into

correspondence with the rase relation {SMAl.L:f) from E2. Tht parameters c and f

are identified as equivalent and so (since c and f are the first pair of parameters

bound) the primitive abstraction {{SMALL;!}} is generated. Then the pair of case

relations {ABOVE:b, BELOW:c) and {ABOVE^, BEL0W:f} are put into correspondence.

Since the identification of c with f and of b with d is consistent with the already

established binding, the primitive abstraction {{AB0VE;2, BELOW.!}} is added to

{{SMALL:!}}. It should be noted that our basic IM algorithm actually finds only six

of the eight case relations constituting the abstraction. This is because the

partial abstraction {{TRIANGLE;3}, {LARGE;3}} was pruned from consideration

early in the match under the space limitation constraint. To insure that such

complementary rolations are not missed, our algorithm, after completing the process

described above, searches for additional relations which can extend the abstractions

produced. Any such relations which are found are conjoined to the abstraction to

produce a maximal abstraction.

SPROUTER, the program which induces abstractions from structural descriptions,

is only one part of a classification and (earning system which we are developing. The

top-level program, called SLIM [6], is a general space limited interference matching

procedure which builds abstractions from examples and then uses these abstractions

to classify test stimuli. While the abstraction of feature-value repesentations can

be performed by simple bit vector operations (which SLIM itself Is capable of), the

1 Both SLIM and SPROUTER are implemented in SAIL for use on a PDP-lOs SPROUTER
loads in 11 thousand words of core.

10 Hayes-Roth Ä Mcüorrrolt

generafi, n of absirachons from FSRs requires the matching and parameter

binding determination'; discussed above. The program, SPROUTER, was created for

this purpose. Once an abstraction is computed from some PSRs, it is nearly as

complex a problem to use it for classification as it was to geneigte it original!/

With this m mind, SPROUTER was designed to produce two outputs: one of fnese is

a PSR, which as we have indicated can be matched with subsequent efremplars to

produce more refined abstractions; the other is a special purpc>s9 recognition

network used to exploit an abstraction as a template.

SLIM provides a general operating environment for concept (pattern)

learning and classification. It is first given a set of exemplars all of which are

known to belong to the same pattern class, and it induces abstractions (with "he help

of SPROUTL'R when necessary) by finding sets of common feature* or properties.

This procedure can be repeated for different sets of exemplars until a number of

abstractions have been built, each of which is an implicit rule for determining

whether an event belongs to a particular pattern class. When SLIM is giver, an

event to classify, its confidence in any particular classification judgment is

determined by the abstraction's performance measure. This measure is a weighted

combination of the a posteriori Hayesian probability of a correct classification

less the probability of an incorrect classification. During the learning phase of

processing, this measure is also used to eliminate insufficiently discriminating

abstractions. By keeping the most discriminating abstractions, SLIM optimizes

the expected overall performance of the limited set of templates it Keeps «s

classifiers.

The templates which SPROUTL'R generates for SLIM are automatically

compilable recognition networks or ACORN?. [8, 9]. An ACORN is a special data

structure, equivalent in representational power to a PSR, but better adapted to serve

as a template; if is essentially a Pandemonium pat'ern recognition system [1?],

generated to handle patterns and data described as general proposition«! formulae.

Once an ACORN has been produced, SLIM can determine whether e descriptive PSB

matches it by using the PSR to create »n instance list at each of the lowest-level

nodes in the ACORN and then aHowing the relevant instances of subpatterns of

interest to percolate upward in the network. If any instances of the highest-ievel

node are found, the template is matched by the stimulus pattern. The lowest-level

nodes of an ACORN correspond to the distinct case frames in a universally quantified

PSR and are like the feature demons of a Pandemonium system, A feature demon,

however, reports only the number of instances of its particular feature to Higher-

Hnyes-Roth & McDcrmotl 11

level demons, whereas the node in an ACORN actually passes its instances u^. to the

higher-^vel nodes winch it supports, The higher level nodes look for instances of

the pcir!icu!ar conjunct "n of case relations in which they «re Interested, just as

higher-level "cognitive ch mon.," in Pflndemonium look for specific combifiations of

feature values. The h^heM-level node in an ACORN is instantiated if and only if the

ebp'raction is matched by the PSR. Thus this highest-level node corresponds to

a PiindemoniurrTs highest-level cognitive demon which recognizes when a pattern of

interest is matched. Because ACORNs have been developed to provide a means

for sharing the results of the evaluation of subexpressions common to numerous

templates, each conjunction of predicates or subtemplates is asiociated with a

single binary-branching node whose two descendants represent the conjoined

propositionai formulae.

Once a set of best maximal abstractions is computed for two or more

exemplars, all training examplars (or a sample of them) may be examined to see if

they match the inferred hypothetical concept or rule. Omy to the extent that

exemplars of the same class match an abstraction and thosa of the other classes do

not, do we find support for the inference that the absn action is the criterial concept

underlying the training data [5-6]. ACORNs greatly cüitate this examination

process. 0'>e simply instantiates the terminal nodes c the ACORN whose

highest nodes represent the abstractions of interest, and then iteratively computes

ell instances of each higher-level node from those pairs of instances of its

subordinate nodes which satisfy criterial tests on their valij3s. If any instances of

the abstraction are produced, the training exemp'ar matches the abstraction,

Without ACORNi., it wou.d be extremely difficult to determine which positive and

negative training exemplars matched each abstraction.

A second reason for using ACORNs rather than some other sort of intermediate

data structure is that only one generic representation of any abrtriction need be

comouted during the search j*>r maximal abstractions. Since each abstraction is

associated with a node in an ACORN equivalent abstractions can be easily

identified and pruned from memory, Tt •> is done by computing all instances of

each abstraction of the two exemplar PSR md storing these at the associated ACORN

node, If two stances of two different higher-level nodes are produced by

conjunctions of identical sets of instances of the terminal nodes, the higher-level

nodes represent equivalent abstractions and one may be deleted. Equivalently,

we can rscogni^e automorphic substructures of the compared PSRs whenever we find

that the tests for one abstraction are satisfied by exactly the same case relations

12 Hayes-Roth & McDermott

as the tests for some other abstraction. As will bo shown later, sine» the tests on

ACORN nodes completely specify the underlying PSR, the only way two nodes' tests

can be satisfied by identical case relations is if the two nodes represent

equivalen. logical structures. Thus, ACORNs provide a basis fcr overcoming a difficulty

which invariably arises with string typo representations of PSRs (or »quivata

predicate formulae) because many alphabetically distinct abstractions can i

equivalent (each can match the other). For example, one may induce from examples

the following abstraction for the concept triangle: Three vertices connected by three

lines. Because there aro three factorial distinct parameter binding relations

between the vertices of one triangle and those of another, there are 6 binding

functions and related case relation correspondences which entail equivalent

abstractions. If each distinct abstraction of two PSRs were repesented only by a

symbolic string, there would be no efficient way to determine that alt of these

alternative descriptions were identical, ACORNs facilitate this determination, Jach

ACORN node repesents a distinct PSR, and consequently equivalent PSRa are

recorded as distinct instances of the same node in the network.

**« Figure 3 goes about here

Figure 3 shows the ACORN that is produced by SPROUTER for the first two

exemplars of the concept formation task. Each of the nodes, (I) through (6), in the

network corresponds to one of the partial abstractions given in the step-by-step

derivation shown earlier. Nodes (7) and (8) are produced when the ACORN is

extended. Note that if this ACORN were used to determine whether the third

exemplar in the concept formation task is an instance of tho class defined by the

first two exemplars, SLIM would find that it is not since the large object in the third

exemplar is not a triangle.

///. THE INTERrtRCNCE MATCHING ALGORITHM

SPROUTER's function, as we have said, is to build ACORNs which can be used

by SLIM for recognition. Before this construction process can begin, a set of

Hayes-Roth ä McDermoü 13

primitive (bottom-level) nodes mur-t be generated and then instantiated. To generate

these nodes, SPROUTER reads In the set of case frames which are relevant to the

task it is facing. For each of these case frames, a primitive node is created which Is

essentially a universally quantified case relation. SPROUTER then finds, in the

descriptive PSRs of two exemplars, the set of distinct instances (case relations) which

ere instances of each of these nodes. Each node has two associated instance listsi

each of those lists contains the instances of the case relation for one of the

exemplars, For example, given the two case frames Nl: {CIRCLE}, N2: {ABOVE, BELOW}

and the two exemplars

E5: {{CIRCLED, CIRCLED}, E6: {{CIRCLErc}}
{AB0VE:a, BELOWib})

SPROUTER will create two nodes, Nl and N2, and then produce four instance

lij's. Two of these lists, ([ES/a], [E5/b]) and ([E6/c]), are associated with node Nl.

The other two, ([E5/a, F.5/b]) and (), are associated with node N?.

When the primitive nodes have been instantiated, SPROUTER produces the

set of maximal abstractions of the two PSRs by constructing, bottom-up, a binary-

branching ACORN. Each higher-level node of this network is a conjunction of two

nodes, one of which Is always a primitive node. Before initiating the building

process, SPROUTER deletes all of the primitive nodes which do not have at least one

instance from each exemplar. Then one exemplar, the one with fewer Instances over

the remaining nodes, is tagged Einjroi the other exemplar is tagged Ecomp. And each

instance of Ejnjr0 is marked as unused. SPROUTER then begins the actual

construction. An unused E\n\r0 instance from a primitive node is chosen as one of

the two instances to bo used in the construction) it is selected on the basis of the

likelihood of its being an instance of a node which is a constituent of a best maximal

abstraction. This instance is then paired with every instance from Ein\r0 of every

node. Each of those pairs of instances is used to construct a candidate node which

will accept instance pairs only if they are equivalent to the prototypic pair. If

there is at least one such pair of instances in Ecom_, the candidate node Is added to

the network and all insiances of the node (from both exemplars) are computed.

Thus, each step in the abstraction building process involves combining, iteratively,

an unused instance from a primitive node with each other instance in the ACORN.

After each of the resulting conjunctive nodes is generated for a pair of instances

from EJ^Q, all instances of that node, first from Ecomp and then from Ejn|r0, are

computed. If no Instances are found in Ecomp, the node represents an abstraction

14 Hayes Roth & McOemoU

which is not true of the second exemplar and so the node is not added to the

network. The process continues until all of the case relations the' are common to

both exemplars have heen conjoined.

Of course, this algorithm, left unconstrained, would build a node for each

subset of case relations in Pm}r0 for which there was an equivalent subset in Ecomp.

Clearly, the si?e of the search space would increase exponentially. Thus, for even

small problems, it is important to somehow reduce the number of nodes which are

construcLd. We use two heuristics. The first of these enables us to keep the search

space to a manageable size by providing for the automaiic pruning of those

conjunctions which are least likely to be part of a best maximal abstraction. To

determine which partial abstractions are least promising, a value is computed

which we call the utility of a node. Basically, the utility of a node is »n Increasing

function of the number of properties covered by the node and a decreasing

function of the number of distinct parameters needed to instantiate the nod«.

More specifically, our current utility measure adds t.O for each property of a case

relation and subtracts 1.0 for each distinct parameter in the associated PSR. Our

justification for this rather rough measure of utility is that it will yield as the highest

valued nodes, those with the greatest scope and connectivity Equivalently, the

higher the utility of a node, the more informative and apparently "better" it is as an

abstraction.

During the construction of the ACORN, a list of all nodes currently in the

network is maintained. This list, which is ordered by the utility of its elements, has a

stipulated maximum length. Whenever the number of total nodes in the ACORN

exceeds this stipulated maximum, a primitive node which does not support any higher-

order nodes is marked as removed from consideration. If all remaining primitive nodes

support some higher-level node, then the least valued maximal abstraction

(provided there is more than one maximal abstraction in the network) and all nodes

suporting it (or supporting one of its supports, recursively) and not supporting some

other higher valued maximal abstraction are deleted (or marked as removed from

consideration if they are primitive nodes). Thus, the number of nodes in the network

can exceed the stipulated maximum only if just one maximal abstraction remains.

While in some cases, it might be desirable to require that e1 least K (k>l) best maximal

abstractions bo maintained, we have not yet found a need for this option.

As a result of the limitation on nodes in the ACORN, the typical behavior

during construction is as follows: Instances are introduced one-at-a-time from Ejn^r0

and are conjoined with other Ein(r0 node instances to form PSRs representing

Hflyes-Roth Ä McDormott 15

sublets of case relations of varying utility. As soon as the number of nodes

corresponding to those nodes in the ACORN exceeds the stipulated maximum, the

maximal node with the lowest utility together with all nodes which support only it are

deleted from the network. This consfrucfion-and-prunhg cycle is repeated until the

set of best maximal abstracl'Ons has been found,

The second heuristic provides the search with direction by Indicating which

one of the unused instances is to be used in the next cycle of construction. Our

search for the best maximal abstractions is essentially hill climbing, but occurs on

many hills simultaneously. Since our pruning heuristic enables us to maintain a

gradually decreasing number of maximal abstractions, the number of hills under

consideration is reduced as the search progresses. Clearly, if we could select first

all of those instances from Ejnjr0 which were instances of the best maximal

abstractions (the highest hills), then our search, since it would take place in an

essentially unimcdal space, would be as efficient as possible. Of course it is

impossible to determine a priori which instances are instances of the best maximal

abstractions. However, by using a variant of the utility function described above, it is

possible to compute, fairly cheaply, the upper bound of the actual utility of any node

which might bo constructed. Using this strategy, we can, at relatively little cost,

significantly increase the probability that the node constructed will be a constituent of

a best maximal abstraction. The selection procedure we use is as follows: We set a

sampling factor (currently 202) for the proportion of the unused instances from

^intro w^'c'1 are '0 he examined. We select at random this percent of the unused

instances (but at least three until there are fewer than three unused instances). For

each of the instances in this sample, we determine an upper bound of the utility of

all of the nodes which could be constructed by conjoining the sampled instance with

the remaining instances of nodes still under consideration. The one instance which

produces the node with the highest potential utility is constructed.

The actual construction of a node is a two step process. First SPROUTER

creates a set of tests which are both necessary and sufficient to accept just those

instances which are equivalent to the pair of instances used as a model in building

the higher-level candidate node. It is possible to create such a set of tests

working only with the sameness or difference of selected parameters. For

example, to construct an ACORN node to accept the two instances {CIRCLEx) and

{ABOVE:a, BELOWx), a same parameter (SP) test is generated to insure that the first

parameter of the first case relation is the same as the second parameter of the

second relation, and a different parameter (DP) test is generated to Insure that no

16 Hny-M-Roth * McDermott

non-explicit SPs are accepted. If we think of this ACORN node as being constructed

f'om a left and a right instance, where the parameter of the left instance is

m/mbored 1, and the parameters of the right instance ars numbered 2 and 3, then

a minimally complete set of tests needed to exactly represent the same and different

relations are {SP;1, SP;3} and {DP:], DP:2}.

After the set of tests has been created, the candidate node is associated

with a generator set which specifies how the parameters of its instances are to be

extracted from pairs of subordinate instances which satisfy the node's SP and

DP tests. Because of the implicit requirement for DP relations to hold on all

distinct parameters, the order of the new relation is exactly the number of

dir.tinct parameters in the two relation instances used in building the node. In

the above example, there would be two parameters in each instance of the new node

and these would correspond to parameters 1 and 2 (since 1 and 3 are identical).

The generator list for this node would be just (1,2). From the nature of the explicit

SP and DP tests used, it follows that any two nodes having instance» derived from

equivalent pairs of instances must bo equivalent. Whenever such a duplicate

node is constructed, it is removed from the ACORN.

It should be apparent that an ACORN constructed in the fashion described

above will not necessarily contain a maximal abstraction. Whether or not it

will is partially dependent on what maximum has been stipulated for the number of

nodes in the ACOPN. But even if the stipulated maximum is large enough so that the

highest node in the ACORN is a constituent of a maximal abstraction, the ACORN may

not be complete; that is, some of the case relations in the abstraction may have

been lost. This can occur if one or more primitive nodes whose instances are s part of

the abstraction were removed from consideration early in the construction process.

In such a case, however, it is always possible to extend the ACORN with

conjunctions of those lost primitive node instances. This is done by successively

re-intmducing into the construct-and-prune cycle each instance in £\n\r0 which

does not support all of the instances of all of the highest nodes in the ACORN.

Each re-introduced instance is conjoined with each of the instances ot each highest

node to produce candidate nodes. If instances of any of these new abstractions are

found in Ecomp. these new nodes are retained) the ACORN is then extended further, In

the same way, until the best maximal abstractions have been found.

Hayes-Roth & McDcrmott 17

!V. THRtf. TASKS

In this r.ection we will discuss SPROUTt'R's performance on three tasks. The

first of those is just the simple concept formation task which we have been using

ar. an example?. The second task is a considerably more difficult concept

formation problem. The third, the most difficult of the three, is a production inducing

task; SPROUTER is given three pairs of sentences, each pair containing the active

and passive version of the same sentence, and induces the general rule for

transforming active sentences into passive ones. Wo have chosen these three tasks

because each draws attention to an important dimension of SPROUTER's

performance, The simple concept formation task shows SPROUTER's inability to

deal with many-one parameter correspondences, a recently discovered problem of

some importance that is discussed in the next section. The more complex concept

formation task provides an example of the consequences of stipulating different

values for the maximum number of abstractions that SPROUTER can retertain at

any one time. Finally, the production learning task demonstrates that SPROUTER

is powerful enough to find the best maximal abstractions in extremely large search

spacer, tnd, incidentally, that the IM algorithm is effective for inducing such rules of

transformational grammar.

Wo have already seen the abstraction which SPROUTER constructs given tho

first two exemplars in the first concept formation task. The set of cdse frames

from which the primitive nodes were' created, all three exemplars, end the best

maximal abstraction found by SPROUTER are given below.

CF:
{Nl:{CIRCl.E),
N2:{SQUARE),
N3:(TR1ANGLE},
N4:{LARGF.),
NStiSMAIl),
N6:{INhJi:R, OUTER},
N7:{A0OVE, BELOW},
NSiJLEFT, RIGHT},
N9:{SAME!SHAPE, SAMEISHAPE},
N10:{SAME!SIZE, SAMEISIZE},
N11:{BESIDE, BESIDE},
NIZrfCONTIGUOUG, CONTIGUOUS})

El:

1 This set, CF, was used for both concept formation tasks.

18 Hayes-Roth & McDermott

{{TKlANGI.Eia, SQUARfrb, CIRCLE.-c),
{LARGria. SMALLtb, SMALL«),
(INNCR:!), OUTERifl),
{AOOVf-a, AöOVEib, BELOWx),
(SAMEISlZEib, SAME!SlZE;c)}

E2:
{{SQUAPFxi, TRIANGLE:«. CIRCLE:f),
{SMAt.L:d, LARGF:e, SMALL;f),
{INNIIRif, OUTERie),
{ABOVE;d(BELOW:», BELOWif},
{SAMEISIZEtd, SAME!SIZE:f})

E3:
{{SQUAREig, ClRCLE:h, CIRCLEil),
{SMALLtg, LARGEih, SMALLsi),
{INNER:», OUTER:h},
{ABOVE;B, BELOW:li, BELOW:!),
{SAME!SHAPE!h, SAMEISHAPEM).

{SAME!SIZE:g, SAME!SlZE:i)}

E1»E2«E3:
{{N10:{SAME!SlZE:l,SAME!SIZE:2j),
{N7:{ABOVEil,BELOW:2)),
(Nl {CIRCLE;?}),
{N5:{SMALL:1}),
{NBifSMALüa}},
{N2:{SQUARE:1}},
{N4:{LARGE:3}})

INSTANCES FROM EXEMPLAR EUE2
([El»E2/21El*E2/l)El*E2/3])
INSTANCES FROM EXEMPLAR E3
([E3/g,E3/i,E3/h3)

SPROUTER tooK 6 secondn of cpu time on a PDP-10 (model KA-10) to produce EUE2

which it found after constructing 14 nodes (7 more than neceseery). SPROUTER took 3

seconds and constructed 6 nodes (the fewest possible) to produce (E1*E2)*E3, The

abclraction which SPROUTER found, however, though it is the best abstriction

producible using our match-first method, is not maximal. It is missing two cess

relations. As we indicated in the first section of the paper, the •bttriction which

SPROUTER induces is the following:

There are three objects, including a small circle end a smell square.
The square is above the circle. The third object is large.

Hflyes-Roth Ä' Mcüormolt 19

The best «naximal abi.traction includes the specification that the large object

contain!; another one which is one of the two small objects. SPROUTER is unable to

find this abstraction for two reasons: (1) The grain size of the representations used in

describing the examples is too big; more atomic uniform representations are needed to

make abstraction, which ic a subiractive process, more generally applicable. (2) Many-

one parameter correspondences must be allowed in order to inture that relevant

correspondences are not lost. These two problems, whose solution requires methods

of greater generality than we have currently implemented, are discussed in detail in

the next section. For Iho moment, the reader need know only that to produce a

uniform PSR, every occurrence of the same parameter in the PSR is replaced by a

distinct parameter and the several symbols referring to the same object are then

related to one another by using the SP (same parameter) case fMme {SP, SP}. The

throe exemplars in uniform PSR notation and the more complete abstraction which

SPROUTER took a total of 5 minutes and 3 seconds to find are shown below.

El:
{{TRIANGLE'.al, SQUARE:bl, CIRCLExl},
{LARGF.:a2(SMAI.L:b2, SMAI.L;c2),
{lNI€R:b3, 0UTER;a3),
(AB0VE;a4, AB0VE:b4, BELOWxS},
{SAMh"!SIZE:b5, SAME!SIZE«4),
{SP;al, SP:n2, SP:a3, SP:a4),
{SP:bl. SP:b2, SP:b3, SP:b4, SPM},
{SPiCl, SP:c2l SP:c3(SP:c4}}

E2;
{{SQUARE:dl(TRtANGLEsel, CIRCLE:fl),
{SMAI.L:d2, LARGF:e2, SMAl.L:f2}>

{INNi:R:f3, 0UTER;e3),
{AB0Vt:d3, BEL0W;efl, BEL0W:f4),
{SAME!SIZE.-d4) SAME!SIZE;f5),
{SP:dl, SP;d2(SP:d3, SP-M],
{SP.el, SPie2, SP:o3, SPseA),
{SPifl, SP;f2, SP;f3, SP:f4, SP:f5)}

E3:
{{SQUARF:gl, CIRCLEshl, CIRCLE:il},
{SMAl.L;g2, LARGF:h2, SMALL;i2},
{INI€R:i3, 0UTER:h3}(

{ABOVEigS, BEL0W:h4, BELOW^},
{SAME!SHAPE:h5, SAME!SHAPE:i5},
{SAME!SIZE:g4, SAME!SIZE:i6},
{SP:sl,SP:g2, SP.-gS.SP^),
{SP:hl, SP:h2. SP;h3, SP:h4, SP:h5),

^S^gl ^ ...■*!.-'

20 Hayes-Roth & McD«rmott

{SP.iJ, $P:\2, SP:i3, SPM, SP;i5, SP;i6}}

E1*E2*E3;
{(N6:[!NWR;1,01JU:R:?}}.
{N0:{SP:3,SP!4})(

iN;:{Af3ÜVt:3,BELOW:r)}},
{NS^SMALL:/}}},
{M):{SP:6.SP:2}},
{NI^LARGE^)},
{N0:{SP!7,SPi2}}(

{NO;{5
D:6,SP;7}},

{NO^SP^.SPiS}},
{NOiCSP^SPiß}},
{NO^P-.B.SPJ}},
{NO;{SP:9,SP;5}),
(N10:{SAKC»SlZE!9,SAME!SirE:10})l
{N0!{SP:10fSP!4))(

{N0:{SP:10lSP!3}i,
{N0:{SP:11,SP;9}},
{WJtlSMAl.L:!!}},
{N0:{SP:121SP;11}}1

{N0:{SP:9,SP!l2}},
{N1:{CIRCLE:12}),
{NO:{SPA3,SP:10}],
{N0:{SP;13ISP;'}}},
{N0;{SP:3,SP:13}},
{N2:{SQUARE:13})}

Though this abstraction includes the specification that the large object contains

another object, it does not specify thai this contained object is one of the two small

objects. To induce that the contained object is small require« using a many-one

parameter binding approach to interference matching discussed in the next section.

**• Figure 4 goes about here

The second concept formation task is significantly more complex than the

previous one. Figure 4 displays the task. When SPROUTER was given this task and

allowed a maximum of 9 nodes, it induced the following best maximal abstraction:

El»E2»E3:

I - ' m . J ' ^ AL^fS^t" rmr'

Hflyes-Roth & McDcrmolt 21

{{N10:(SAMf:!Si;:f:;l,SAME!SlZE:2}},
{N/.-fABOVE^BELOWil}},
{N?:{CiQUARf-::l}},
lN6:{INNLrRi3,0UTER!l)},
{N5;{SMA|.L;3}},
{NU i{BESIDE;l,BESIDES}),
{N4:{LARGE!2}},
{N7i{AB0VEi2,BEL0W!3}})

{NU:{BESlDEs3,BESlDE:2})(

{N7;{AQ0Vf:4)BEL0W;l}},
{N9:{SAMi;!SHAPE:2,SAME!SHAPE:3}),
{NltilARGE:!}),
{NlilCIRCLE^}},
{N10:{SAME!SIZE:fl,SAM£!SIZE!3)},
{N!):(SMAi.L:4}},
iN7!(ABOVE!4,BELOW:3}})

INSTANCES FROM EXEMPLAR E1»E2
([El*E2/l1El«E2/2)El«E2/3,El»E2/4])
INSTANCES FROM EXEMPLAR E3
([E3/m,E3/j(E3/n,E3/l])

In other words:

There are four objects, ehj{2) is the same shape as dgn(3) and is the
same size as cfm(i). ehj(2) is above and beside both dgn(3) and cfm(l).
dgn(3) is a »imall object and is contained in cfm(l) which is a large
square. bil(4) is a small circle which is above both dgn(3) and cfm(U-

SPROUTER tooK 58 seconds to find El«E2 and built 66 nodes. It took 47 seconds

and built 52 nodes before finding (El«E2)*E3, which is a conjunction of 16 nodes.

Given the same tar.K, but with the constraint that the total numbar of nodos in

the ACORN must not be greater than 8, SPROUTER produced the following abstractions

E1*E2*E3:
{{N7:{AOOVE:i.t3ELOW;2}},
{N7!{ABOVE!3,BELOW:2}},
{N8:{LEFT!2,RIGHT!l}},
{N11:{BESIDE:1,BESIDES)},
{N10:{SAME!SIZE!3,SAME!SIZe!2}}(

{NiO:{SAMi;!SlZE:4,SAME!SIZE:l}},
{N9:{SAME!SHAPE:2,SAME!SHAPE:1}},
{N7:{ABOVE:l)BELOW:4}}1

{N7:{ABOVE:3IBEL0W:4})}
INSTANCES FROM EXEMPLAR E1*E2
(tEl*E2/2,El*E2/3,El«E2/4,El»E2/l])
INSTANCES FROM EXEMPLAR E3

22 H«yes-Roth A McDermott

(tE3/l,E3/k,E3/j,E3/n])

Though the stimpulated maximum for this run is only one less than the maximum of 9

stipulated for the previous run, the abstraction induced is very different:

There are four ohjects. ehl(l) is the same shape as dgk(2) and is the
same size at. bij(3). ehl(l) is to the right of dgk(2). dgk(2) is the same
size RS cfn(4). ehl(l) and cfn(4) are above dgk(2) and bij(3).

This cbstraction was sub-optimal because the stipulated node maximum was

insufficient to allow SPROUTER to see beyond the seemingly promising LEFT, RIGHT

relations.

The production inducing task is, of the three, by far the most difficult because

the search space is so much larger and the abstraction so much more compl»x.

SPROUTER was given the following three pairs of sentences:

(1) "The little man sang a lovely song." -->
"A lovely song was sung by the little man."

(2) "A girl hugged the motorcycles." —>
"The motorcycles were hugged by a girl."

(3) "People are stopping friendly policemen." -->
"Friendly policemen are being stopped by peoplB,"

*»♦ Figure 5 goes about here

Figure 5 giver, a graphical deep-structure representation of the first sentence.

In PSR notation, this sentence is described by the following set of 64 cas»

relations.

El:
{{ANTECEDL"fgT;e 1, CONGFOUENl .-62),
{S:sl, NP;npll, VPivpl, EVeNT:el},
{S:s2, NP:np21, VP;vp2, EVENT:e2),
{NP:npll, DELthel, ADJ;littlel, NOUN;nounn, EVENT;el),
{NP.np21, DET;al, ADJilovelyl, NOUN;noun21, EVENTie2)(

{NOUNmounll, N5T;manl, NUMBER:nU, EVENT«!),
{NOUNmoun21, NSTisongl, NUMBER:nl2, EVENT:e2),
{SINGULAR^U, EVENT:el},
{SINGULAR^ 12, EVENT;e2),

Hayes-Roth & McOormott 23

(VPivpl, AUXauxll, VERB.verbll, NP;np22, EVENTiel},
(SAMl'NPinp?!, SAMt!NP:np22},
{NPjnpg", DZT:*2, ADJ:lovely2, NOUN;i\oun22, EVtNT;el),
{SAMCINOUW^oiin?!, SAMtJNOUhl.-wunZ?},
{NOUW;i\oun22, N5T:song2,NUMBER:nl3> EVENT;«!),
{SINGULAR:n]3, EVENT:«l),
{VPivp?, AUK;aijyl?, PS:pbl, VERB!verbl2, PP:ppl, EVtNT;e2},
{AUX:fluxlJ, AUXSTihnvel, TENSEstll, NUMBER;nl5, EVENTtel},
{AUX:BüX)?, AUXSTihflveg, TCN5E;tl2, NUMBERmlS, EVENT;e2}1

{SAMiüAUX'.auyl 1. SAK€!AUX;8Uxl2},
{VERB^rbl 1, VSTmingl, TENSE:t21, NUMBERtnlB, EVENT;el},
(VERBiverblZ, VST:sinß2) TENSE:t22, NUMBER;nl6, EVENT:e2))
{SAMEIVERBiverbll, SAMEiVEROiverbl?).
{PB;pbl, PBSTibel, T(;N5E:t?3, NUMBERinlS, EVENT;e2}1

{SAMEITENCLitlJ, SAMEITENSEitlZ),
{SAMEm-:NGE:t21, SAMt"!TEN5E;t221 SAME!TENSE;t23),
{SINGULAR^ 15, EVENT»! 1),
{$IN(5ULAR:nl6, EVENT:«2}1

{PRESENT;! 11, EVENT.-el},
(PRESENT :tl 2, EVENT:e2),
{PAST-PART:t2i, EVENTiel},
{PAST •PART:t2?l PAST-PART:t23, EVENT!e2),
(PPippl, PREPibyl, NP:npl2, EVENT:e2)1

{SAMEtNPmpU, SAME!NP:npl2),
{NP:npl2, DET;lhe2, ADJ:litlle2, NOUN:»Ounl2, EVENT;e2),
{3AMi;!NOUN:iK)unl 1, SAME!hK)UN;iK)unl2},
{NOUN:noLinl2, NST:man2, NUMBERmH, EVENT;e2),
{SAME!Nl.lMBER:n) 1, SAMFJNIJMBERml^ SAME!NUMBER-nl3,
SAME!NUMBER:nl4, SAME'NUMBERinlB, SAME!NUMBER;nl6},

{SINGULAR-.nH, EVENTS},
{THi;;thol, EVENT:« 1),
{THK:thB2, EVENT:ß2}I
isAMEIWOPDilhol, SAM!:!WORO:the2j,
{LlTTLE;littlel, EVENT;el),
(LITTLE:litllo2, EVENT:e2),
{SAMEiWmiitllel, SAME!W0RD:little2}(

JMANimanl, EVENTloi),
{MAN:man2, EVENT:e2),
{SAME!WORD;manl, SAME!W0RD;man2},
{HAVEihavel, EVENT:el},
{HAVE:have2(EVENT:o2},
{SAME!WORD:havel, SAME!W0R0;have2},
{SINGiBingl, EVENT:nl},
{SINGtning?, EVENT:e2)>

{SAME!WORD;r.ing I, SAME!W0RD:sing2},
{Aisl, EVENT»l},
{A:a2, EVENT;ft2},
(SAMEIWORDial, 3AME!WORD;fl2),
{LOVELYitovelyl, EVENT»!},
{LOVELY;lovely2, EVENT;e2}1

24 H(tyes-Roth & McDermoU

{SAM[:!W0RD:lovelyl.SAME!W0RO:lovely21,
{SONGiBOngl, EVENT:«!},
{SÜNGir.ong?, EVENTW2),
{SAME!WORD:songl, SAMEIWOROiSOngZ},
(BE:bel, EVtNT:n2),
{BYibyl, EVEfyrr»2})

*«• figuro 6 goes about here

The best maximal abr.fradion found by SPPOUTER is illustrated in figure 6. Th»

arrows in figure 6 indicate where the abstraction contains case relations representing

that the connected nodes are the same part of speech (e.g., are both noun phrases,

nouns, verb phrases, etc.) or have the same value (e.g., are both singular or both the

same word). These car.e relations were provided for each training sentence as

indicated in the preceding PSR for the sentence pair El. Basically, these case roialions

connect two "tokens" of the same grammatical "tyP*" Those relations that have

survived the interference matching process can now be interpreted as identifying

parameters in the antecedent and consequent events which should be considered

identical. As previously explained, when the inferred production is used to produce

behavior and a PSR in working memory matches the antecendent component of this

rule, variable values will be bound and substitutions will be made into the consequent

event as prosenbod by the arrows. In an effort to simplify the figure, boxes hava

been constructed around any group of antecedent nodes where each contained

parameter is connected by a "same" type relation to the corresponding parameter In

the consequent box, SPROUTER took 19 minutes and 15 seconds and built 12A nodes

in constructing El«E2 and took 14 minutes and 33 seconds and built 97 nodes in

constructing (E1»E2)*E3. Since th<* rule which it induced contains 45 distinct

parameters over 40 case relations, we can take 45! as a lower bound on the size of

the search space; that is, there are 45! (approximately 10^) possible one-one

parameter binding relations which could be established between any pair of parameter

sets from El, E2, or E3. SPROUTER made 81 bed decisions (constructed nodes which

did not support the eventual maximal abstraction) in computing E1»E2 and 57 bad

decisions in computing (E1«E2)*E3.

Hayes-Roth Ä McDormotl 25

V, PROBLEMS IN REPRESENTATION ANO MATCHING

As SPROUTER's performance on the firbt of the concept formation tasks shows,

there are two problems which arise In the learning methodology that we have

describe.I, The first is that some learning problems can only be solved if the implicit

semantics of the case frame structure are made explicit in more .»laborat« and

primitive uniform representations. The second is 'hat, even with uniform

representations, some learning p'i>blems require the identification of many-one

parameter correspondences in order to proouce maximal abstractions and thus cannot

bo solved by SPROUTER or any other prOfram using a one-one matching method. Each

of these problems is discussed in turn.

The need for uniform representations can best be conveyed through a simple

learning example. Suppose we have two examples of the concept "two line segments,

connected in at most one place" whose descriptions are provided in terms of the

binary symmetric case frame {ENDPOINT, ENDPOINT} identifying the two endpoints of a

line segment. Let the two examples be El; {{ENDPOINTia, ENDPOINT;b}, {ENDPOINT;c,

ENDIX)INT;d}j and E2: {{ENOPOlNTiW, ENDPOINTix), {ENDPOINT:x, ENDPOINTry}). El

describes two disjoint lines and E2 describes two lines connected at vertex x. Imolicit

in those PSRs are the assumptions that two endpoints are the same if and only if they

a.-e labeled by the same parameter. In order to recognize that both El and E2 match a

maximal abstraction which represents the concept to be learned (tvo lines whether or

not connected at a common point), it is apparently necessary to establish parameter

con ospondences between two parameters in El (say b and c) and one parameter in E2

(say x). To avoid Ihis necessity and to permit induction of the most informative

abstractions, uniform PSRs are employed which make explicit the same parameter (SF)

and different parameter (DP) relationships between each pair of parameters in a

description.

While a detailed discussion of the formal characteristics of uniform

representations occurs elsewhere [7, 10J, several important properties will be pointed

out hero. First, rather than using one parameter (say p) In every case relation in

which the same object is cited, uniform PSRs employ distinct symbols (e.g., p', p", .,.)

for each. To preserve the information that the various parameters all refer to the

same object, every pair (e.g, p', p") of these parameters is used to instantiate an SP

case frame, such as {SP:p', SP;p"). Similarly, every pair of parameters (p'^') which

refer to distinct objects in the PSR are used to instantiate a DP case frame, {DPip',

DPrq'}. If the preceding exemplars El and E2 are represented by uniform PSRs, the

26 Hfiyes-Roth 6 McDormott

maximal abstraction which would be produced by SPROUTER would be E1«E2J

{{ENDPOINT:!, ENDPOINT;?}, {ENDP0!NT:3, ENDP0INT:4}, {DP:1, ÜP:2], {DP;!, DP;3),

{DP:1, DP:4J, {DP:?, DP:/}}). This abstraction would be entailed by the parameter

bindings l»a^w, 2»b''x,, ST^X", 4-d=y. The (act (hat the case relations {DP;b, OPx)

in El and {SP^', SP.'x"} in E2 did not match would simply be lost. The resulting

abr.lfaction E1*E2 would then be properly interpreted as meaning, "There «re two

lines, with endpoint pairs (1,2) and (3,4), such that all points are distinct except

perhapr. 2 and 3. Without uniform representations, SPROUTtR's requifüment for one-

one parameter correspondences would have meant that the best abstraction that could

have been produced would include only the one case relation (ENDPOINT:!,

ENDPOINT:?).

Furthermore, it can be seen that there are other induction problems which will

not bo solved correctly by SPROUTER's match-one-case-relation-at-s-fime approach.

Specifically, when abstractions entail discovering l'ia\ only some parts of case relations

of two PSRs match, the maximal abstraction should reflect the common subset of

property:object terms. This can be accomplished if each case relation of the form

(property^xj, ..., {propertyn:xn} is replacrd by the set of uniform ^gse relations

{{property^xj), ,., {property^}, {SCRix^ SCRsx^, {SCR:xn.ll SCR:xn}},

interpreted as follows Each object x, has some attribute propertyj and each pair of

objects Xj, x; (lsi<j<n) occurred in the same case relation (SCR). As a result of this

more atomic description of the case relation, abstractions including only a part of a

PSR case relation will be reflected as the largest subset of the associated uniform case

relations which is common to the two compared PSRs.

Because SPROUTER know? nothing about the semantics of its PSRs, learning

tasks may bo specified using PSRs whose case frames are at iho highest level of

description appropriate, which in some cases will be the atomic level of uniform PSRs.

SPROUTER simply assumes that every pair of references to identical (different)

parameters entails an SP (DP) test. Thus, the user of SPROUTER can choose the level

Of representation which is suitable for the learning problem to be solved. Because

uniform PSRs include more case relations and parameters, abstractions based on them

require more search and consequently more computing lime. Thus, we use the uniform

reprsentation only when necessary. As this discussion suggests, determining the

appropriate grain for a representation seems not as much a formal question as a

question of empirical sufficiency in particular induction task domains. Therefore, we

see the aspect of our work concerned with finding the appropriate grain of

representation for various problems as inherently experimental and empirical.

H«y©»-Roth Ä McDermott 27

The second problem we encountered concerns the feasibility of abstraction

methods based on one-one parameter binding functions. SPROUTER requires this type

of binding and exploits this restriction to reduce the search space of possible

solutions, If one thinks of PSRs as graph representations, where vertices correspond

to parnmeters and edges to SR, DP, and SCR relations, it is possible to show that

interference matching is equivalent to finding the common subgraphs of two event

description graphs [7, 10]. In other words, the one-one parameter correspondence

requirement is a restriction that each vertex In one event graph is permitted to match

at mOBf one vertex in the other graph. 'Vhile this seems "formally" attractive, it is

overly restrictive for a variety of learning tasks. For example, in order to find the

best maximal abstraction in the first concept formation task, for each pair of exampiars,

the small object which is inside the large ubject in one of the exemplars must be

permitted to match both small objects in the other exemphr. Though this problem is

superficially similar to the grsm si?e problem, the use of uniform PSRs with explicit SP

and DP relations is inadequate to overcome it. The problem can be solved only by

allowing many-one parameter correspondences and consequently requires more

general methods than those currently developed. A very simple example can illustrate

the general problem. Let El be {{SMALLx}, {SQUARF:x), {RED:K]} and E2 be

{{SMALUy}, {SQUARE:/}, {SQUARE*}, {R(IO;z)). In both examples, there is a small

square and a red square, but there is only one square in El and there are two in E2.

In order to produce the correct abstraction of El and E2, which in uniform

representation is {{SMAI.Ü1}, {SQUARE:?}, {SP;1, SP;2}, {SQUARE:3}, {RED:4}, {SP;3,

SP;4}), our method needs to be modified to allow the single instance of the SQUARE

case frame in El to match two instances of it in E2. Because it is impossible to know a

priori which case relations must be matched to more than one case ."elation in «

compared PSR, it would be very difficult to modify the match-first IM algorithm to

handle such problems even if many-one bindings were allowed.

The best so'ution we know of to this problem uses the bind-first approach to

interference matching. The method can be described as follows: First, uniform PSRs

El' and E2' are generated to replace the exemplar PSRs El and E2. If the parameter

sets of ET and E2' are P and Q, whore |P| is less than or equal to |Q|, then each

possible parameter binding relation for an abstraction is a set B - {(p,q) ; p c P, q (

Q} where (V p (P, V q (Q) (3 p' (P, 3 q' < Q) (p.q') (B A (p'.q) (B A |B| - |Q|. In

other words, each correspondence binding relation between tho parameters of the

uniform PSRs associates at least one parameter in El' to each parameter in E2' (and

vice versa) and establishes one correspondence for each of the parameterized

references to objects in the other PSR. Of course, those binding relations which entail

the identification of many commalitios between El' and E2' are the most preferred.

28 Hflye$-Roth & McDermott

While it Hppearr, that this generalization of the one-one binding method will be

infrequently needed, nuch a penerali/ation now seems essential for \h§ developmant of

completely general learning machines. Wo are currently designing « mtny-one, bind-

firut interference matching program which can overcome the now apparent weaknesses

of the one-one, match-first method.

At this point, it is closirsble to relate our worK to earlier reseach efforts.

Similar, but loss general, relational abstraction methods have been studied by PlotKin

[14, 15], Vere [19], and Winston [20]. Weaknesses of the previous work which are

considered here include the failure to utilize DP relations, a dependence upon

restricted end exponential enumerative algorithms, and an assumption of the

sufficiency of the one-one binding relation. Because all of the earlier researchers

failed to realise the necessity for OP relations to force distinct value bindings for

distinct variables, their learning algorithms would, for example, permit a single line

segment to instantiate all three distinct line segment predicate^ in the triangle

template, "throe line segments, LI, 12, and 1.3, connected at their endpoints." Winston's

learning methods were restricted to toy block construction problems using only unery

and binary predicates such as adjacency of two blocks and are apparently not

extensible to different domains. On the other hand, Plotkin and Vere studied the

abstraction problem in terms of general n-ary predicates, but could infer concepts only

corresponding to sets of (non-uniform) case relations and SP tests. While Hayes-Roth

[7, 10] was the first to show formally that the IM algorithm could be used for inducing

productions from antecedent-consequent training examples, our wo^k is the first to

demontrate its feasibility. The chief drawback of all of the previous work, however,

was its reliance upon enumerative matching procedures. As we have tried to show,

interference matching is best viewed as an exponential search problem which is,

fortunately, apparently amenable to simple heuristic methods. Because IM is an NP-

complete procedure (it subsumes the graph monomorphism problem), exhaustive

procedures are simply not feasible for solving even moderately complex problems.

Interestingly, Hayes-Roth, Plotkin, and Vere each independently proved that

their particular enumerative algorithms provided effective solutions to the "induction

problem" which each of them had formalized in terms of various assumptions about

what needed to be learned. All of these previous formalizations are inadequate to

solve the typo of learning problem introduced in this paper as I icessitating many-one

bindings. That is, all previous theoretical approaches assume the sufficiency for

abstraction of the one-one parameter binding relation. As we have shown, however,

with one simple example, any axiomatic system incorporating this assumption is

inadequate as a general framework for representation and learning.

Hnyes-Roth & McDormoü 29

YL CONCLUDING REMARKS

SPROUTER has already solved learning problems of theoretic«! significance

and of considerable complexity. Because of the extensive size of the search spaces,

such learning could not be done with simple onumerafive matching algorithms. In

essence, SPROUTER establir.hos the feasibility of induction from non-trivial exemplar

descriptions. In many respects, however, SPROUTER is quite primitive. It is a purely

syntactic matcher; it knows nothing at all about the underlying structure or

significance of any of the predicate descriptions it operates upon. For this reason, its

utility function, and thus its heuristics, are very weak. One interesting aproach to

improving the performance of SPROUTER would be to provide it with domain-specific

utility functions. For example, if SPROUTER knew that concordance on antecedent or

consequent relations was more important than concordance on most other relations, it

would never attempt to match the antecedent part of an example with a consequent

part. Similarly, if it knew that concordance of higher-order grammatical

constructs (e.g., a sentence) was more significant than concordance on lower-

order ones, it could quickly zero in on the concordances of two sentence

structures and then continue building abstractions in an essentially top-down

fashion.

Even though SPROUTER's performance has been quite impressive on several

tasks, there are a number of difficulties impeding the use of such a learning machine

in general applications. First, an empirical question has been raised regarding the

preferability of approaches to induction based on the one-one and many-one binding

alternatives. If object integrity in representations is generally tenuous—that is, if each

object in one PSR can correspond to multiple, diverse objects in another PSR, as was

the case in the first concept formation task—abstraction procedures based on the

many-one approach will have to be developed. Secondly, one must identify which

roal-world problems can bo solved by interference matching methods. Because the

case frames which SPROUTER uses in inferring abstractions «re assumed to be

externally provided, the u'.dity of our method depends upon the prior identification

of the criteria! properties of events. Thus while SPROUTER can solve many

concept learning and production inducing problems if it is provided the relevant case

frames, it remains to be shown that this will be a sufficiently powerful basis

for computer-based learning.

30 Hflyes-Roth A McDermott

BEEmtm

1. Barrow, H. G., Amblt?r, A. P., and Burstall, R. M. Some techniques for recognising

ttrudures in pidurp«,. In Frontiers of Pattern Recognition. S. Wafanabe (Ed),

Academic Pross, N<>w York, 1972.

2. Qruner, J. S,, Goodnow, J. J., and Austin, G. A, A Study si ThinKing, Wiley, New

York, 1955.

3. Fikes, R. E., and Nil'ison, N. J. STRIPS: A new approach to the application of

theorem proving to problem solving. Artificial Intelligence 2, (1971), 189-208.

4. Galton, F. Inquiries into Human Faculty and i]s Development. Dent, London, 1907.

5. HHyes-Roth, F. A structural approach to pattern learning and the acquisition of

classificatory power. Proc, First Intl. Jl Conf. Pattern Recognition. 1973.

6. Hayes-Roth, F. Schematic classification problems and their solution. Pattern

Recognition 6. 2 (Oct. 1974), 105-114.

7. Hayes-Roth, F. Fundamental mechanisms of intelligent behavior: the representation,

organization, acquisition, and use of structural knowledge in percepUon and

cognition. Doctoral Dissertation, The University of Michigan, Ann Arbor, 1974.

8. Hayes-Roth, F. An optimal network representation and other mechanisms for the

recognition of structured events. Proc. Second }ntl. Jt. Conf. Pattern

Recognition. 197^1,

9. Hayes-Roth, F. Representation of structured events and efficient procedures for

their recognition. Pattern Recognition (in press).

10. Hayes-Roth, F. Uniform representations of structured patterns and an algorithm

for grammatical inference. Working Paper, Department of Computer Science,

Carnegie-Mellon University, Pittsburgh, 1975.

11. Hayes-Roth, F., and Mostow, D. J. An automatically compilable recognition network

for structured patterns. Proc. Fourth Intl. Jl Conf. Artificial Intelligence. 1975.

12. Hunt, E. B. Concept Formation; An Information Processing Problgfft. Wiley, New

York, 1962.

13. Michalski, R. S. AQVAL/1—Computer implementation of a variable valued logic

system VLj, and examples of its application to pattern recognition. Proc. First

Mi JJL Conf. Pattern Recognition. 1973.

Hayes-Roth ä McDermoH 31

Iß, PlotKin, G. D. A note on inductive generalization. In Machine Intelligence, vol. 5, B.

Meltzer and D. Micliie (EdD.), American Elsevier, New York, 1970.

15. PlotKin, G. D. A further note on inductive generalization. In Machine Intelligence.

vol. 6, B. Mellzer and D. Michio (Eds.), American Elsevie', New York, 1971.

16. Solfridöo, 0. G. Pandemonium; a paradigm for learning. Symposium gn \he

Mechanisation of Thought Processes. H. M. Stationery Office, 1959.

17. Shaw, A. C, Picture graphs, grammars, and parsing. In Frontiers ßf Pattern

RecoRnition. S. Watanbe v'Ed.), Academic Press, New York, 1972.

18. Stoffel, J. C. A classifier design technique for discrete variable pattern recognition

problems, IEEE Trans, on Computers C-23, 4 (Apr. 1974), 428-441.

19. Vere, S. A. Induction of concepts in the predicate calculus, Proc. fourth Intl. JL

Conf. Artificial Intelligence. 1975.

20. Wim.fon, P.H. Learning structural descriptions from examples. AI-TR-76,

Cambridge; MIT Artificial Intelligence Laboratory, 1970.

32 Ha/»s-Roth & McDermott

Figure 1. The first concepf formation task.

Figure 2. Interference matching,

Figure 3. The ACORN for El ♦ E2 in the first concept formation task.

Figure 4. The second concept formation task.

Figure 5. Example El for the production inducing task. The example comprises two

sentences, the antecedent above and the consequent below.

Figure 6. The active-to-passive transformational grammar rule induced from 3

examples. Arrows indicate variable substitutions from the antecedent to the

consequent components.

EXAMPLE 1 EXAMPLE 2 EXAMPLE 3

o

Figure 1. The first concept formation task.

^1-"J""-JgWr,-J ' '"- • - m

Figure 2. Interference matching.

figiA« tij, (rtffu ii- iniAv;j
(LA»« »«p

(Jtt/t, n/b, ti/t

/
(fSHAIt. XI', (AftO\l X?, ULrt* vf,
fSA.*l?:sIri ».', SAWHJltt; M', '^'■A!! x? 1

fN>tA-,[|.5

(iuA, IJ/<. tj/«;)

fSMALt- XI', fABOVl x;, teü* xi',
ilMtlSUt: x.', 5iw?:5ily. XI], 'y.ALl v;].
(rtJUAkt XJ", irixrti; xt"

JISTASLts
Ft l"': .ill I
([t!/t, ti/il,)

(fSXOlLL K?, lAWhT: X?, BELfV xl],
ixvif ;M7i XI, MMCUIZf; xi),
{lHAU x;;, (SQUAU; R] };

(itl/c, ()/b't
(ItJ/c, ri-'d!) (•))

nSMALL: xi). (ABtnl x:, BCLOU Kt]
{sAW-IStZl X2, S>Lir:sUt xO,
(SMALL OH

PttOU
(in/c, ll/bii
(II.Vl, ti/d,)

/

[fSHALL: XO. [AÄOVT: X?, Bf.LOU xll,
(SAIICSUJ U, SAMt.'Sia «111

(ftiTT^ii/tl) (»I
null, ii/ti)

CUUIU III, (AtOVI

BJtMBM ,
(111/., tl/.l.
(tl/., tl/k])

(IJ/t, l!/<))

flVll: «11,

I|ti/<|,

(AimT u. HUJU
INSTA-SCt$
nti/t, II/«I,
HI/». Il/el)

((H/<, ti/.,
(H/<. Il/f»

(SAnt;sia: 14, SAA.'Sin: XO
lw^TA^a5
(ll/t, tl/tl,
lil/c, tl.'b|l

<(l!'<, U/fl,
(H/l, «J/«))

(SyfAtt: It)
iNXJAXCIS

(lll/d|)

fCIXLU XXl
ixsjAvn 5
ill'» !)
((tl/fll

fTX;AS<
X-'itAVl
(1 ft

(LAXCE X
TNSTAS^j
(.El *}»

Figure 3. The ACORN for El • E2 in the first concept formation task.

EXAMPLE 1 EXAMPLE 2 EXAMPLE 3

■> r "> r

B O

Figure 4. The second concept formation task,

S:al

iipl I

thpl

NCH N

SINGULAR b..ve PRESENT SINGULAR sing PAST-PART a lovely

\v

nl3

long SINGULAR

S:s2

> apl2

songf nl2 i '

a lovely

ounl2

have PRESENT SINGULAR t^' sing PAST-PART

song SINCUIAR the little

SINGULAR

Figure 5, Example El for the production inducing task. The example comprises two

sentences, the antecedent above and the consequent below.

s-.yi

jJUMSER

2 3_J

Figure 6. The «ctive-to-passive transformational grammar rule induced from 3

examples. Arrows indicate variable substitutions from the antecedent to the

consequent components.

UNCLASSIFIED
SECUIIITY Cl ikSSirtCA ION 0L (Wht*r\ htftn Enti'rfi}

/:\ AF^RUTP, 76- (/no 2r

Jf. REPORT DOCUMENTATION PAGE
I, REF-QRl'N^MBLn 2. GOVT ACCESSION NO

KKAD INSTRUCTIONS
BKKO^K COMPLETING FORM

4. TITLE (.nd Sublill»)

@
M ^KNOWUSME ACQUISITION FROM §TKUCTURAL I >

I ' UKSCilIPTIONS.
7 wJTHORflJ

rederick/Haycs-RoLh 7< Jolin/HcUcrmott

i. PttiFOHk,. .'TÖHGANiZATION NAME AND ADDRESS

Cariit?gie-Ma] Ion Univrrsity
Computer Scicnr.e Dcpt. , ^^
Pittsburgh, P/ 15213

3. RECIPIENT'S CAI^LÜG NUMBER

5^ TYPE OF REPORT & PERIOD COVERED

■^f Interim y^T»,
6. PERFORMING ORlT REPORT NUMBER

8. CONTRACT OR GRANT NUMBERfsJ

10. PROGRAM E .UITN T, I'RpjrcT, TASK
AREA 4 W£ T NUMBERS

II. CONTROLLING OFFICE NA,...; AND ADDRESS

Defense 'advanced Research Project Agency (JJ
1400 Wilson Blvd.

TORING «GENCY NAMlT» ÄtjOnESSf/f different from Canlrolllne Oilier)

Air Force Office of Scientific Research (NM)
Boiling AFB, DC 20332

A0 2466
61101D i) $P' I

Feb<—■i«76 ;
13. KlUMBER OF PAGES"

15. SECURITY CLASS, (ol this rcpotl)

UNCTASSIFIh'D

15«. OECLASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (ollhin ftcporl)

Approved for public release; distribution unlimited,

17. DISTRIBUTION STATEMENT (ol the «bnlrBd entered in Block 20, If dlllerenl from Report)

16. SUPPLEMEN TARY NOTES

19. KEY WORDS (Continue on rcveree aide it necessmv and Identify by block number)

JLr. 20. ABSTHAC7 (Continue on reverae tide II necee fry end Idenllly by block nummfW'^fog representation of COUC

.ind antecedent-consequent productions is discussed and a method for Inducing
knowledge by abstracting such representations from a sequence of training exam-
ples is described. The proposed learning method, interference matching, induces
ab«,t ractions by finding relational properties common to two or more exemplars.
Three tasks solved by a program which performs an interference matching algorithr
are presented. Several problems concerning the relational representation of

■ ■xamples and tlH> induction of knowledge by interference matching are also discus nd.

DD FORM
1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED VoZjri*
irCimtTV ri ftSJIflCAJJflM QE THIS PAGE rWhea tlutu Eutervd)

